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Abstract 

The aim of this paper is to estimate the attitude of the quadcopter using the sensors: 3-axes 

accelerometer, 3-axes gyroscope, 2-axes compass.  

At first I introduce some basic conception of quadcopter, such as the three main factor: roll, pitch, 

yaw, and the coordinate system that are used to implement the next calculations. Then according to the 

mathematical model, I simulated the quadcopter in Simulink. The sensors are also modeled using the 

real sensor measurements to correctly estimate the measurement noise.  

After finished the model, I gave it a step input and get the output from the scope. Then I add the 

Gaussian noise on to it and use this as the input of Extended Kalman Filter. And compare some 

different type of Kalman Filter to conclude that the EKF is the best strategy. 

Finally we can conclude that the standard extended Kalman filter is the best estimator. If all 

of the parameters can be set correctly, The EKF can have a better result. But since it is not 

implement on the embedded system, it can be used only as a reference and provide satisfying 

result in most situations. 

 

 

 

 

 

 

 

Keywords: Quadcopter, Extended Kalman Filter, Eular angle 
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1. Introduction 

1.1 Quadcopter history 

Quadcopter is not a new concept in nowadays. Etienne Oehmichen was the first scientist who 

experimented with rotorcraft deign in 1920. Among the six design he underwent, his second prototype 

with four rotors and eight propellers are mounted on a single engine. Oehmichen used a cross shaped 

frame with two rotors on top of four arms. Due to the change in angle of the blades, so that the 

propellers spinning in the horizontal plane, can achieve lift and stability. For two of the propellers used 

for forward propulsion and others for steer. The quadcoptor was able to make a few minutes’ flight and 

a close circuit control. 

 

Figure 1.1 Oehmichen No.2 Quadcopter 

But the development of quadcopter was once abandoned in favor of research for what have become 

out traditional helicopter. Only in 1956 would the concept be refreshed with the “ Convertawings 

Model A”, as shown in Figure 1.2 inspired by both Oehmichen and Bothezat, a four rotor aircraft was 

built. With proper power and simplified mechanism, this vehicle flew successfully. 

 

Figure 1.2 Development of the Quadcopter Concept 
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1.2 Structure of the thesis 

The work is divided into two parts. The first parts deals with the modeling of the quadcopter, 

presenting the conventions used throughout the work, the dynamics and kinematics describing the 

quadrotor motion and the model of the snesors, including the evaluation of the parameters of the 

model. The choice of sensor is explained. 

In the second part, a control model is presented and implemented in Matlab to generation data 

useful for the eastimation purposes. Then different estimation approaches are discussed and 

compared using the Matlab. 

Finally, the conclusion are drawn and some possible improvements for the stabilization of the 

quadcopter attitude are presented. 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

2.  Modeling the Dynamic of a Quadrotor 

2.1 Basic Conception 

The concept of the quadcopter is not a new word to most of us. It is a helicopter with four rotors. 

The rotors are directed upwards and placed in a square formation with equal distance from the center 

of mass of quadcopter. The quadcopter is controlled by adjusting the angular velocities of the rotors. 

In this section, I will introduce some important factors, that are used for simulate a quadcopter. 

2.1.1 Roll, Pitch and yaw 

     To discuss the motion of quadcopter, it is necessary to mention three main factors: roll, pitch 

and yaw. These three motion can lead to the quadcopter’s uplift and downfall. The space motion of the 

rigid body quadcopter can be divided into two parts: the barycenter movement and the movement 

around the barycenter. Six degree freedom are required in describing all of the space motion, which 

can be expressed as three rotation movement along three axes and three translation. We can control the 

six degree movements through adjusting the rotational speed of the motors.  

 Roll 

Rotation around the front-to-back axis is called roll. Roll is making the quadcopter fly sideward, either 

to left or right. Roll is controlled with the aileron stick. 

 Pitch 

Rotation around the side-to-side axis is called pitch. Pitch is the movement of quadcopter either 

forward or backward. Pitch is controlled by elevator.  

 Yaw 

Rotation around the vertical axis is called yaw. Yaw is the deviation/rotating the head of quadcopter 

either to right or left. Yaw can be controlled by the throttle stick, also called rudder. 
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Figure 2.1 yaw, roll and pitch 

 

2.1.2 Euler angle 

The Euler angle are three angles introduced by Leonhard Euler, which used to describe the 

orientation of a rigid body. To describe such an orientation in the 3-dimensional Euclidean space, three 

parameters are required. And they can be described in several ways. We will use ZYX Euler angle. 

They are also used to describe the orientation of a frame of reference relative to another and they 

transform the coordinate of a point in a reference frame. [ , ]    , [ , ], [ , ]
2 2

 
       . Euler 

angle represents a sequence of three elemental rotations，since any movement can be achieved by 

combining three elemental rotations. The combination used is described by the following rotation 

matrix. 

Rotation about the x-axis by angle   is 

                     

1 0 0

( ) 0 c o s ( ) s i n ( )

0 s i n ( ) c o s ( )

xR   

 

 
 

 
 
  

                   (2.1) 

Where >0 indicates a counterclockwise rotation in the plane x=0. The observer is assumed to be 

positioned on the side of the plane with x>0 and looking at the origin. Rotation about the y axis by 

angle   is 
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cos( ) 0 sin( )

( ) 0 1 0

sin( ) 0 cos( )

yR

 



 

 
 


 
  

                  (2.2) 

Where >0 indicates a counterclockwise rotation in the plane y=0. The observer is assumed to be 

positioned on the side of the plane with y>0 and looking at the origin. 

Rotation about the z axis by angle   is  

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

zR

 

  

 
 


 
  

                 (2.3) 

The inertial position coordinate and the body reference coordinate are relate to the matrix 

R ( , , )zyx     

P=R ( , , ) ( ) ( ) ( )zyx z y xR R R       

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

c c s s c c s c s c s s

c s s s s c c c s s s c

s s c c c

           

           

    

  
 

  
 
  

      (2.4) 

Where ( ) cos( )c   , ( ) sin( )s   , ( ) cos( )c   , ( ) sin( )s   , ( ) cos( )c  , ( ) sin( )s   .The 

matrix describes the rotation from the body reference system to the inertial reference system. 

The R ( , , )zyx     matrix describes the transformation Earth-fixed coordinate to the body fixed 

coordinate. The first set of state equation is describing the change of position according to quadcopter’s 

attitude in its velocity measured in the body frame: 

1

2

3

b i

b P j

b k

   
   

   
   
                            (2.5)

 

2.2 Coordinate system 

Before describing the mathematical model for a quadcopter, it is necessary to introduce the reference 

coordinate system in which we describe the movement and the attitude. For the quadcopter, we need 
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to use two possible reference system. The first is the fixed and the second is mobile. The fixed system 

is also known as the inertial coordinate system. As fixed coordinate system, which is also called NED 

frame, for the frame centered on O, is set on the ground and point towards North, East and Down. The 

mobile reference system refers to the frame fixed on the quadcopter, and is united with the barycenter, 

the center of mass of the quadcopter. Thus is called the Body-fixed coordinate system or the Aircraft-

Body-Centered frame. As shown in the Figure 2.2, are the two coordinate system. 

 

Figure 2.2 Inertial and Body-Fixed Frame 

 

 

2.3 Mathematical model 

We provide a mathematical model of quadcoptor in this chapter, exploiting Newton and Euler 

equation for the 3D motion of a rigid body. The aim of this section is to further explain the movement 

of quadcoptor and providing an reliable model that can be used for simulating and controlling the its 

behavior. We first set a sequence vector  
T

x y z    contains the linear and angular 

position of the quadcoptor in the earth frame and  
T

u v w p q r  the vector contains the linear 

and angular velocities in the body frame. From the 3D body dynamics, it says that these two frame has 

the following linked relation: 

Bv R v                             (2.6) 
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BT                             (2.7) 

Where 3

T

v x y z R
 

   
, 3

T

R   
 

   
,   3T

Bv u v w R  ,   3T

B p q r R   . 

Figure 2.3 shows the free body diagram of the quadcoptor.  

 

                Figure 2.3 Free body diagram of quadcopter 

 

2.3.1 Linear acceleration 

The linear acceleration in Earth-fixed frame is described by the Newton’s Second Law: 

F ma                                 (2.8) 

Then, 

24

3 2
1

( )
i

i

i

x
d

F F e mgk m r m i j k y
dt

z





 
     

   
  



             (2.9) 

Where F refers to the external forces that worked on the quadcoptor, m refers to the mass of the 

quadcoptor, and v is the velocity of the quadcoptor, iF  is the lift force on each rotor. From the 

transformation matrix (2.4) and (2.5), we can know that:  

3

cos sin cos sin sin

sin sin cos sin cos

cos cos

b i j k

    

    

 

 
   

   
  

               (2.10) 

Substitute (2.10) into (2.9), we can get: 
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4

1

cos sin cos sin sin

( ) sin sin cos sin cos

cos cos

i

i

i

x

F i j k mgk m i j k y

z

    

    

 





   
        

      
      



     

(2.11) 

From the equivalence of two matrix: 

4
2

1

4
2

1

4
2

1

(cos sin cos sin sin ) /

(sin sin cos sin cos ) /

(cos cos ) /

t i

i

t i

i

t i

i

x K w m

y K w m

z K w m g

    

    

 







 

 

 






            (2.12) 

 

2.3.2 Angular acceleration 

Application of an external torque will change the angular momentum of the quadcoptor: 

d H
M

dt


                                 (2.13) 

But the angular momentum vector changes its direction , thus the total derivative of vector H is 

applied: 

 b

d H
M H

dt
  

                           (2.14) 

For  

               1 2M M M                              (2.15) 

Where H is the angular momentum, M is the resultant external momentum on the quadcoptor, 

M1 is the momentum caused by the lift force, M2 is the momentum caused by the air drag, and 

22i d iM K   , dK  is drag coefficient and 2

i is the rotate speed of motor. 

4

1 2 13 1 4 2

1

(F F ) (F F )i i

i

M r F l b l b


                        (2.16) 

 
2 2 2 2

2 1 2 3 4 3( )dM K b                        (2.17) 
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4 2

1 2 31 2 3 1

2 2 2 2

1 2 3 4

(F F )

( , , ) (F F )

( )d

l

M M M b b b l

K    

 
 

   
 
    

             (2.18) 

Because the quadcopter can be viewed as a rigid body, so its inertia matrix is a diagonal matrix: 

              

0 0

0 0

0 0

x

y

z

J

J J

J

 
 


 
                                (2.19) 

 

The angular momentum matrix of quadcopter is : 

1 2 3( , , )

x x

y y

z z

J

H b b b J

J







 
 


 
  

 

 1 2 3

( )

( , , ) ( )

( )

x x z y y z

y y x z x z

b
z z y x x z

J J J
d H

H b b b J J J
dt

J J J

  

   

  

  
 

     
   

               (2.20) 

We substitute (2.18) and (2.20) into (2.14) can get: 

 

4 2

1 2 3 1 2 3 3 1

2 2 2 2

1 2 3 4

( ) (F F )

( , , ) ( ) ( , , ) (F F )

( ) ( )

x x z y y z

y y x z x z

z z y x x z d

J J J l

b b b J J J b b b l

J J J K

  

  

      

    
   

      
                (2.21) 

From the equivalence of two matrix: 

4 2(F F ) ( )z y y z

x

x

l J J

J

 


    

 

 3 1(F F ) ( )z x x z

y

y

l J J

J

 


  
                          (2.22) 

From Euler dynamical equation: 

sin sin cos

cos sin sin

cos

x

y

z

     

      

   

  
  

   
      

＝

              (2.23) 
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x

y

z

 

  

 

  
  

   
     

＝

                             (2.24) 

We define U1,U2,U3,U4 as the input of the four control channel of the quadcopter, it can be 

simplified as 

 

4
2

1 2 3 41

1

4 2 2 22

4 2

3 1 2 23

3 1

2 4 1 3 2 2 2 24

1 3 2 4

( )

( )

( )

t i

i

t

t

d

K wF F F FU

F FU
K w w

F FU
K w w

F F F FU
K w w w w



 
      

    
     
     

              



            (2.25) 

Where U1 is the control of the vertical input, U2 is the control of the roll input, U3 is the control 

of the pitch input, and U4 is the control yaw. i  is the rev of the propeller. 

From (2.12),(2.22) and (2.25) , the dynamic model of the quadcoptor in the inertial frame is: 

1

1

1

2

3

4

(cos sin cos sin sin ) U / m

(sin sin cos sin cos ) U / m

(cos cos ) U /

U ( )

U ( )

U ( )

z x

y

y z

x
x

x y

z
z

x

y

z m g

l J J

J

l J J

J

J J

J

    

    

 










 

 

 

   

   

   

 

2.3.3 Simulation of quadcoptor 

According to the mathematical model of the quadcoptor, I built a model in simulink.  
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Figure 2.4 Simulation of the quadcoptor 

The model basically is divide into for part: input, acceleration on x,y,z direction, acceleration 

on roll, pitch and yaw, and the output. The input of the quadcoptor are the angular velocity of 

each rotor. 

 

Figure 2.5 Input of the quadcoptor 
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Figure 2.6 X, Y, Z acceleration 

 

 

 

Figure 2.7 Roll, pitch and yaw acceleration 
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Figure 2.8 Detailed composition inside the roll acceleration 

From this simulation, we can simply control the angular velocity of each rotor as the input, and 

get the displacement on x, y, and z axis and the angular change on roll, pitch, and yaw as the 

output.  
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3. Sensor 

In this section, I will give a brief description of the option of sensor, and explain their principle 

of operation. The noise associated to the sensors is measured on the prototype for greater accuracy 

of the simulation.  

3.1 Choosing the sensor  

In order to justify the choice of the sensors and explain what the sensors must be sensitive to, 

I have to quote a reference to the basic concepts. As said in Wahba’s paper in 1966, the solution 

for estimating the attitude of the satellite lies on finding a matrix which brings a first set of two 

non-collinear vectors into the best coincidence with a second set of non-collinear vectors. The 

important idea is that, for a correct estimation, the measurement of two non-collinear vector are 

needed. For example, the main factors in selecting a position sensor are excitation, filtering, 

environment, and whether line of sight or a direct, physical connection is required to measure 

distance. Both the preference and application play an important role in making a decision. 

  In this case, we use the gyroscopes provide the main information which is updated by a gravity 

sensor and a magnetic sensor. The accelerometer is used for the gravity vector and the magnetic 

compass is used for the magnetic vector. In consequence, the chosen sensor are: 

 A 1-axis Gyroscope LY530ALH for Uz and a 2-axis Gyroscope LPR530AL for Ux and Uy 

 A 3-axis accelerometer ADXL330 

 A2-axis compass Honeywell HMC6352 

3.2 Model of the sensor 

  The sensors played an important role in measure the state variable. Naturally, they carry 

limitations directly linked to their inherent functioning principle. By understanding it, it becomes 
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possible to reduce the noise affecting the measurement and guarantee the correct behavior of the 

quadcopter. 

3.2.1 Gyroscope 

  The gyroscope was created according to miniaturization and micro machining techniques. It 

can be divided into several categories due to their sensing elements. According to [1] the simplest 

MEMS gyroscopes are vibratory rate will is similar as the chosen one. The sensor LPR530AL 

data sheet presents a value for the noise density and [2] suggest a value for bias. These theoretical 

characteristics of the sensor are presented in Table 3.1: 

 

Table 3.1 Gyroscopes Characteristics 

3.2.2 Accelerometer 

To define the pitch and yaw angle, we use the accelerometer is to measure the direction of the 

gravity vector, g. At first we set it as a constant, and pointing down along Ud with an intensity 

2

0 9.8 /g m s  and set Ba  denote the accelerometer vector. 

There are different types of MEMS accelerometers based on different functioning principles, 

some use the piezoelectric effect to create an electric signal due to accelerative forces. According 

to [3], for the chosen frame system, we can write: 
BB Ba g a  . As the Gaussian measurement 

mentioned in [2] , the general model can be written as: 

B J B

a aa Sg a b     
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Figure 3.2 Functioning Principle of Accelerometer 

Where Ba  is the sensor output in 2/m s , S is the rotation matrix, 
Jg is the gravity vector define 

in the inertial frame, Ba  is the acceleration of the craft due to its movement defined in the body 

fixed frame, a  is a Gaussian noise component, ab  is the constant bias of the accelerometer. 

The theoretical values for the chosen sensor is shown below: 

 

Table 3.3 Accelerometer Characteristics 

3.2.3 Compass 

The compass is a sensor designed to detect the magnetic North direction, written as tN . By 

the definition of the reference frame and neglecting the magnetic inclination or magnetic dip,

 1 0 0
TtN  . 

  For the chosen compass Honeywell HMC6352, is a two axis magneto-resistive sensor; It is 

made of thin strips of permalloy, whose electrical resistance varies with a change in the applied 

magnetic field [4]. By measuring the electric resistance, the orientation of the magnetic field can 
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be estimated. Let BN  be the sensor measurement, considering the frame system, a Gaussian 

measurement noise, m  and a bias term, mb . As in [5], the compass measurement corresponds 

to: 

B t

m mN SN b    

Where BN  is the measured magnetic vector, tN  is the magnetic vetor,

T

m m x m y m z     
     is the Gaussian measurement noise, 

T

m m x m y m zb b b b  
    is 

the measurement bias. 

The Gaussian noise term is given on the data sheet of the sensor and presented in Table 3.4 

 

Table 3.4 Compass Characteristics 

 

3.2.4 Discussion of the choice of sensor 

  We need to combine the characteristics of the model and the advantage of the sensor when we 

making a choice. The acceleration corresponding to the movement of the craft, to gravity and to 

vibrations of motors, this will make the accelerometer estimation difficult. Moreover, these 

vibrations are usually considered in the noise term of the model. These vibrations affect the high 

frequency measurements of the sensor. On the other hand, the gyroscopes measure angular rates 

which are subjected to a low frequency bias.  

   It becomes clear that only the accelerometer is not efficient in providing information about 

pitch and roll because of its inaccuracy on high frequencies. The gyroscope fails at low 
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frequencies. The fusion comes as a good idea. This explains the difficulties experience by Jorge 

Domingues [6] and justifies the acquisition of the gyroscopes. For security reasons it is desired 

to have the quadcopter above a certain threshold but also not flying too high, which might 

probably become a threat. Therefore, the range finder was acquired. 
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4. Attitude Estimation 

  During the quadcopter’s navigation, neither the accelerometer nor the gyro could be used by 

itself to get accurate reading. The accelerometer can be used to get estimate the direction of the 

gravity acceleration vector while stationary but it will become difficult when the quadcopter is 

moving. The gyro reading on the other hand can be integrated over time to get angle relative to 

staring point but each measurement error will also integrate into angle estimation. So we can use 

the Kalman filter to merge sensor reading of a gyro and an accelerometer into pitch and roll of 

the quadcopter.[9] 

4.1 Introduction of Kalman Filter 

 The Kalman filter uses a dynamical model for the time development of the system and a 

model of the sensor measurements to obtain the most accurate estimate possible of the system 

state using a linear estimator based on present and past measurements. [14] It is ideally suited to 

both ground-based and on board attitude determination. However, the applicability of the Kalman 

filtering technique rests on the availability of an accurate dynamical model. 

The dynamic equation for the spacecraft attitude pose many difficulties in the filter modeling. 

In particular, the external torques and the distribution of momentum internally due to the use of 

rotating or rastering instruments lead to significant uncertainties in the modeling. For autonomous 

spacecraft permits the circumvention of these problems.[7] In this representation the angular 

velocity of the spacecraft is obtained from the gyro data. The kinematic equations are used to 

obtain from the attitude state and this is augmented by means of additional state-vector 

components for the gyro biases. Thus, gyro data are not treated as observations and the gyro noise 

appears as state noise rather than as observation noise. 
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The Kalman filter consists of six steps, executed over and over again with a sample time between 

the executions [12] . As shown in Figure 4.1: 

 

Figure 4.1 Mathematical Formulation of Kalman Filter 

 

 State prediction based on dynamic model 

This is one of the most important parts of Kalman filter. The model is used to predict the next state 

based on the current state and control signals. Since we separate the estimation of pitch and roll, state 

x according to one of the filter can be described by three different variables (two identical filters are 

created). 

 

Three rows refer to the angle, the angular velocity and the bias in the angular velocity. Using this 

state representation the equation: 

                    (4.1) 

Can be used to make a good guess of the states in this sample  based on the state in the previous 

sample  and the current control signal.  
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The matrix represents the dynamics of the system. Multiplied with the old states the result is a guess 

of the new states. For the quadcopter the following matrix is used: 

 

Expand the matrix equation for xk the result will be: 

 

 

                                (4.2) 

The angle in the next sample will be the angle in the sample before plus the unbiased angular 

velocity multiplied with the sampling time. The model also shows that the other two states will remain 

the same as in the previous sample which means the angular velocity and angular velocity measuring 

bias will change slow enough to be barely noticeable between two sample times.[9] 

The next part of equation (4.1) involves the control signal input to the system. The multiplication 

with the B matrix can be expanded in exactly the same way as the F matrix. Feed the filter with the 

input to the motors affecting the filter angle u1 and u2 and you also know that the force generated by 

the motor is linearly dependent of the input by the constant k. You also know the inertia J around the 

axis of the angle. So u and B can be represented like this: 

 

 

Resulting in a model for the estimation of the angular velocity looking like this 

                  (4.3) 
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Since the model is pretty coarse there is a need for something more to take model errors into 

consideration. It is easy to see that the model for the 2nd and 3rd state will not be 100% accurate all 

the time.  Then we introduce w, which is known as model noise. A zero mean Gaussian noise is 

added to each state to represent changes that doesn’t agree with the model. In mathematical terms 

 

Q is the covariance matrix of the noise, For the quadcopter the noise on each state is considered 

to be independent which makes Q diagonal 

 

The elements on the diagonal represent how large model errors we expect in the different states 

and will be an important tuning parameter in the filter. 

 State covariance matrix update based on model 

Another important part of the Kalman filter is the matrix P which represents how much we trust 

the current values of the state variables.  A small P matrix means that the filter has converged close 

to the real value. When the model predictions in step 1 have been done the P matrix has to be 

updated according to the uncertainties induced by the model noise w with the covariance Q. This is 

done with the equation 

                      (4.4) 

 Model and measurement differences  
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The next part of the filter is the new measurements come in. In this step the difference between 

the states calculated from the model is compared to what is measured using the equation 

                   (4.5) 

H matrix maps the current state on the measurements. We measure the angle based on the 

gravity vector by using the arctan(b, a) on the acceleration vectors perpendicular to the filters 

rotational axis and the angular rate measured by the gyro. This results in a measurement vector 

 

To map or state vector x onto the measurement vector z we multiply by the matrix 

 

The vector v is similar to w it represents errors in the measurements which are assumed to be zero 

mean and Gaussian distributed as well 

 

R is similar to Q the covariance matrix of the measurements. This can be directly related to the 

sensor quality. As with the Q matrix the sensor errors are assumed to be independent which make 

the R matrix diagonal as well 
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 Measurement covariance update  

After including new data in form of measurements we need to calculate the covariance 

matrix of this data which is known as S and is similar in many ways to P. This is calculated 

with the equation 

                                      (4.6) 

   As we can see from the equation, the value of S depends on the covariance of the previous model 

predictions transformed to the measurement vector through H plus the covariance of the sensor 

readings.  

 Calculate Kalman gain 

In this part we merge the knowledge from the model with the measurements. This is done through a 

matrix called the Kalman gain, K. This matrix will help us weigh the measurements and the model 

together. K is calculated by 

                      (4.7) 

 Improve model prediction 

Now it is time to improve the model prediction by adding the difference between measurements and 

predictions to the states predicted in step 1 after scaling it with the gain matrix K: 

                        (4.8) 
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The result will be the filter output at this sample time.  

 Update state covariance  

Since we added data in form of measurements to the state vector we need to update the state 

covariance matrix P which is done by the equation 

                     (4.9) 

Where I is the identity matrix 

 

After this step is done we can wait for the next sample and then start over at first step . 

4.2 Extended Kalman Filter used in attitude estimation 

When we want to use matlab to illustrate the whole process, we need the following steps to 

achieve it.[8] 

First we need to initiate state variable: 

T

x y z x y z x y z x y zw w w wa wa wa ze ze ze mu mu my    

T

x y z accx accy accz x y z x y zgyro gyro gyro gyro gyro gyro acc acc acc mag mag mag   

where w is the angular velocity, wa is the angular acceleration, zw is the gravity vector and mu 

is the magnetic vector. 

Then we need to compute the current state estimate from the previous estimation body angular 
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accelerations. 

1 * ( * ) *

x x x

y y y

z z z

wa wa wa

wak wa J wa J wa dt

wa wa wa



      
      

         
            

 

The body angular rate is : 

*

x

y

z

w

wk w dt wak

w

 
 

 
 
  

 

 

Then calculate derivative of the prediction rotation matrix: 

0

0

0

z y

z x

y x

w w

O w w

w w

 
 

  
  

 

Calculate the prediction of the earth z vector: 

1 0 0

0 1 0 *

0 0 1

x

y

z

ze

zek O dt ze

ze

    
    

     
        

 

1 0 0

0 1 0 *

0 0 1

x

y

z

mu

muk O dt mu

mu

    
    

     
        

 

Compute the error covariance estimate from the previous estimation: 

0

0

0

T

z y

z x

y x

ze ze

EZ ze ze

ze ze

 
 

  
  

 

0

0

0

T

z y

z x

y x

mu mu

MA mu mu

mu mu

 
 

  
  

 

1 0 0

E 0 1 0

0 0 1

 
 


 
  

 



34 
 

0 0 0

0 0 0

0 0 0

Z

 
 


 
  

 

A state convert matrix is : 

lin

Z E Z Z

Z Z Z Z
A

EZ Z O Z

MA Z Z O

 
 
 
 
 
 

 

 

 

The process noise matrix is : 

Q

rs rs rs

ra ra ra

acc acc acc

mag mag mag

q q q

q q q

q q q

q q q

 
 
 
 
 
  

 

Where rsq  is process of gyro, raq  is the process noise of gyro acceleration, accq is the process 

noise of acceleration and 
magq  is the process noise of magnetometer. 

The process covariance matrix is： 

* * T

apr lin apa linP A P A Q   

The measurement noise matrix is: 

v gyro gyro gyro acc acc acc mag mag magR r r r r r r r r r     

The observation matrix is: 

k

E Z Z Z

H Z Z E Z

Z Z Z E

 
 


 
  

 

Then using the Kalman Filter to get the estimation of the attitude.The model is used to predict 

the next state based on the current state and control signals: 
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(1:9) *k k aprY z H X   

State covariance matrix update based on model: 

* * T

k k apr kS H P H  

Model and measurement differences: 

(1:9 1: ) (1:9 1: )k k vS end S end R     

Measurement covariance update: 

( * ) /T

k apr k kK P H S  

Calculate Kalman gain: 

*apo apr k kX X K Y   

Improve model prediction: 

12 12( * )*apo k k aprP I K H P   

Euler angle extraction: 

(7 :9)

(7 :9)

apob

n

apo

X
Z

X


  

(10 :12)

(10 :12)

apob

n

apo

X
M

X
  

b b b

n n nX Y Z   

apob

n

apo

X
X

X
  

b b b

n n nT X Y Z     

23

33

13

12

11

arctan( )

arcsin( )

arctan( )

T

T

T

T

T







 
 

 
 

 
  

 
 

    
  

 

4.3 Simulation and discussion about Kalman Filter 
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The estimations obtained with the different kinds of Kalman Filter models are presented in 

Figure 5.1.  

 

 

Figure 5.1 Attitude Estimation with Kalman Filters 

 

Table 5.2 Comparison of Extended Kalman Filter with accurate data 
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The linear filter has the advantage of estimating all necessary states whereas the improved 

filter has no processing angle rates. On the other side, the improved filter is computationally more 

efficient and presents a better estimate. The advantage of Extended Kalman Filter is to overcome 

the 1rad   limitation. Therefore, considering that for the hovering situation, the angles   

and   do not change considerably, the system is only linearized around k . It suggests that the 

Extended Kalman Filter filters can reaches a very good stationary estimation.  

The figure below shows the Kalman Filter applied on practical model. I introduce the 

Gaussian White noise to the input signal. And let it pass through the Extended Kalman Filter, 

then we can get the plot of the original signal, estimated signal and the mean square error between 

these two. The result are shown below: 

 

Figure 5.3 Original signal and Estimated signal 
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Figure 5.4 Combination of two signal 

 

Figure 5.5 Mean square error between two signals 

From the figure, we can conclude that the standard extended Kalman filter is the best 

estimator. If all of the parameters can be set correctly, The EKF can have a better result. But since 

it is not implement on the embedded system, it can be used only as a reference and provide 

satisfying result in most situations. 
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