
Lehigh University
Lehigh Preserve

Theses and Dissertations

2019

Modeling and Analyzing a Patch of Human Red
Blood Cell by Coarse-Grained Particle Method
Orhan Kaya
Lehigh University, orhankaya.us@gmail.com

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Kaya, Orhan, "Modeling and Analyzing a Patch of Human Red Blood Cell by Coarse-Grained Particle Method" (2019). Theses and
Dissertations. 4354.
https://preserve.lehigh.edu/etd/4354

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4354&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F4354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4354?utm_source=preserve.lehigh.edu%2Fetd%2F4354&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


   
 
  

I 
 

 

Modeling and Analyzing a Patch of Human Red Blood Cell  

by Coarse-Grained Particle Method 

 

by Orhan Kaya 

 

 

A Thesis 

Presented to the Graduate and Research Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

 

 

 

in 

Department of Mechanical Engineering and Mechanics 

Lehigh University 

Jan - 2019 



   
 
  

II 
 

Thesis is accepted and approved in partial fulfillment of the requirements for the Master 

of Science in Department of Mechanical Engineering and Mechanics. 

 

-------------------------- 

Date Approved 

 

 

 

 

 

----------------------------------------------           

Dr. Yaling Liu, Thesis Advisor 

 

 

 

 ---------------------------------------------- 

Dr. Gary Harlow,  

Chairperson of Department of Mechanical Engineering and Mechanics 

 

 

 



   
 
  

III 
 

ACKNOWLEDGMENTS 

First and foremost, I would like to dedicate this thesis to my family, including my mother 

Yazgül Kaya, my sister, Duygu Kaya, and my father, Hıdır Kaya. As someone who was not 

able to go to school, my mother dedicated her life to me. She invested all her time and energy, 

in working nonstop to finance my education. 

Second, I would like to thank my advisor, Dr. Yaling Liu, who gave me the opportunity to 

pursue my Master of Science at his excellent interdisciplinary research laboratory and to 

purchase a mini workstation to run my simulation on it. His laboratory allowed me to acquire 

high-quality knowledge and taught me how to do real research not only in my research area 

but also in diverse research fields with different scopes. His laboratory gave me the first 

substantial step into the world of research. 

Third, I would like to express my sincere appreciation to the Ministry of National Education, 

the Republic of Turkey, for its financial support through my master education.  

Next, thanks go to Doruk Erdem Yunus for the collaboration on Short Fiber Reinforced 3D 

Printed Ceramic Composite with Shear-Induced Alignment project. In addition to that, I 

would like to express my gratitude to Meghdad Razizadeh and Ratul Paul for collaboration 

on LAMMPS and Red Blood Cell damage analysis projects. I would like to extend my  

thanks to all present and previous Bio Nano Mechanics Lab's valuable members for 

collaboration on the numerous exciting research projects at the Sinclair Lab, and thanks to 

good friends and faculty members over fifty at Lehigh University for discussions on 

scientific topics. 

 



   
 
  

IV 
 

TABLE OF CONTENTS 

TITLE ................................................................................................................................... I 

APPROVED & ACCEPTED PAGE …………………………………………………… II 

ACKNOWLEDGEMENTS ……………………………………………………………. III 

TABLE OF CONTENTS ………………………………………………………………. IV 

LIST OF FIGURES …………………………………………………………………….. VI 

LIST OF TABLES ……………………………………………………………………….. X 

ABSTRACT …………………………………………...…………………………………. 1 

 

 

CHAPTER I 

INTRODUCTION 

1.1 Human Red Blood Cell ..……………………………………….……………………… 2 

1.2 Molecular Dynamics ………………….....…………………….………………………. 6 

      1.2.1 Potential Energy Functions ………………………………………………………. 8 

      1.2.2 Coarse-Grained Patch of Erythrocyte Membrane ………………………….….... 11 

 

 



   
 
  

V 
 

CHAPTER II 

CGMD MODEL FOR A PATCH OF A HUMAN RED BLOOD CELL 

2.1 Lipid Membrane ……………………………………………….……………………... 13 

2.2 Spectrin Network ……………………………………………….………………….…. 14 

2.3 Transmembrane Proteins and Actin Junctions ………….……………………………. 16 

2.4 Force Fields and Simulation Setup ...……………………………..…………………... 18 

2.5 Patch of Human Red Blood Cell ...…………………...………….…….……….….…. 21 

 

CHAPTER III 

 RESULTS,  CONCLUSION AND FUTURE WORK 

3.1 Membrane Diffusion and Diffusivity ………………………………….……………... 23 

3.2 Mechanism of Rupture of the Patch of RBC and Membrane Tension ….……………. 27 

3.3 The Pore Area of the Patch of Erythrocyte Membrane at the High-Stress Region ….. 34 

3.4 Conclusion and Future Work ………………………………………….…………….... 39 

REFERENCE ……………………….…………………………………………….……… 41 

VITA ……………………………………………………………………………………... 45 

EDUCATION ……………………………………………...……….……………………. 45 

PROFESSIONAL EXPERIENCE ..………………………………….…….…………….. 46 

JOURNAL PAPER ……………………………………..……….…………………….…. 47 



   
 
  

VI 
 

____________________________LIST OF FIGURES___________________________ 

 

Figure 1.1 Classification of human red blood cells. (a) RBCs that are unequal in size are 

referred to as anisocytosis. (b) Macrocytic anemia is a condition in which RBCs are more 

extensive than their average volume.  (c)  RBCs with their average volume. (d) Microcytic 

is a condition that RBCs are smaller than their average volume  [1] ……………………… 2 

Figure 1.2 Types of blood vessels (a) Artery wall consists of three layers surrounded by a 

basement membrane. (b) Tube-formed vessels, transport oxygen-depleted blood. (c) 

Capillaries are connecting branches between the arterioles and venules [4] …………...… 3 

Figure 1.3 Red blood cell deformation in vivo capillary: (a) Cells are squeezing and taking 

on a parachute-like shape through capillaries of about 7 µm; and (b) Cells are rolling up or 

flowing at the end of the capillary vessels [5] …………………………………………..... 4  

Figure 1.4 RBCs are squeezing through the capillaries: (a) Red blood cell deformation in 

capillary has a diameter of 7 µm; and (b) Red blood cell deformation in capillary has 

diameter of 4 µm [5] ............................................................................................................. 5 

Figure 1.5 (a) Hierarchy of time and length scale simulations .……………….………….. 6 

Figure 1.6 (a) Molecular Dynamics Simulation Process: after having positions versus the 

time, many more macroscale properties can be defined [8] ................................................. 7 

Figure 1.7 (a) Interaction Models to Molecular Dynamics Simulation [9] .........................  8 

Figure 1.8 (a) Lennard-Jones Pair Potentials ...................................................................... 9 

Figure 1.9 (a) Schematic of cytoskeleton of the patch of human red blood cell [10] ....... 11 



   
 
  

VII 
 

Figure 1.10 (a) At the first yellow circle, band-3 complex connected to the spectrin network, 

band-3 complex illustrated at second green circle by connecting spectrin tetramer as well. 

Blue circle third marks a group of lipid particle, and on the fourth circle actin junction 

connected to the band -4.1 [11] ........................................................................................... 12 

Figure 2.1 Construction of the hierarchic model for the lipid membrane of a human red 

blood cell. (a) The lipid bilayer is represented as the full atomistic model. (b) The mesoscale 

coarse-grained bead from the lipid bilayer has a diameter of 5 nm. (c) The patch of the 

erythrocyte membrane is made of mesoscale beads. Blue mesoscale beads represent the parts 

of either actin junctions or transmembrane proteins ...........................................................  13 

Figure 2.2 (a) Spectrin network are encoloured as purple, green and light purple beads. 

Purple beads are connected to both green beads and actin junctions which are blue beads. 

Light purple beads are bonded to both transmembrane proteins and green beads. The 

remaining green beads are bonded to entire adjacent ones ................................................. 14  

Figure 2.3 Coarse-grained particle model of the spectrin network. (a) Spectrin filament with 

39 beads connected by bonds. (b) The six-fold structural unit of the spectrin network. (c) 

The spectrin network ........................................................................................................... 15 

Figure 2.4 Transmembrane proteins and actin junctions’ places on the spectrin network and 

lipid membrane, respectively. (a) Transmembrane protein located on the middle spectrin 

filament along with 39 beads and a lipid membrane. (b) Actin junctions are placed on a 

hexagonal spectrin filament by bonding 6 green beads to the lipid membrane ................... 17 

Figure 2.5 Flow of our simulation process on LAMMPS [12] .......................................... 20 

 



   
 
  

VIII 
 

Figure 2.6 A human red blood cell [13] and our patch models created MATLAB. (a) The 

smallest patch size of 30 x 20 nm (b) Size: 40 x 40 nm (c) Size: 80 x 80 nm ..................... 21 

Figure 2.7 A human red blood cell [13] and our patch model created on LAMMPS ........ 22  

Figure 3.1 Snapshots taken from A to F illustrate membrane diffusivity configuration at 

different time steps (a) Initial state of red blood cell membrane where color transition is 

represented in red and white. (b) Diffusivity dispersion at the time step 200 microseconds 

(c) Diffusivity dispersion at the time step 400 microseconds (d) Diffusivity dispersion at the 

time step 600 microseconds (e) Diffusivity dispersion at the time step 800 microseconds (f) 

Diffusivity dispersion at time step 1,000 microseconds ..................................................... 24 

Figure 3.2 (a) Diffusion property of patch of human Red Blood Cell membrane versus time; 

rectangle A is located very close to zero point and its time just first microsecond at the 

beginning of the simulation. Rectangles from B to F are shown as have 200 microseconds 

time range............................................................................................................................  25 

Figure 3.2 (b) Diffusivity versus time: At the ultra-short time what is first micro-second 

particle do not interact with each other. This time observes as almost vertical slope goes 0.5 

to 2.6. From 0 to 200 microsecond the system can stay at stable stage, which means when 

the simulation is run; it can’t start at the beginning of the equilibrium stage. After the 200 

microsecond, beads behave like a fluidic structure and they travel randomly both from 

boundary and through the membrane .................................................................................. 26 

Figure 3.3 (a) Tether formation phases are given with time versus frame[17]. (b) Membrane 

tether was formed by stretching out the bead[17]. (c) Total surface area of the stretched bead. 

(d) Schematic figure of red blood cell with its stretched bead ............................................ 27 



   
 
  

IX 
 

Figure 3.4 Rupture mechanism for the patch of human erythrocytes membrane is given in 

here as snapshots created on LAMMPS. (a) The initial condition of the lipid membrane with 

spectrin network is shown. (b)(c)(d) From B to D, first, a small pore formation  is observed, 

and then those pores are increased both in size and number, respectively. (e)(f)(g)(h)(i) At 

the E snapshot, the simulation reached the breakable point, and the patch was ruptured. After  

E, dispersion of the fragmental lipid membrane and spectrin network's motion is observed.30 

Figure 3.5 Uniaxial tensile stress is applied until we reach the membrane-spectrin final 

rupture point to determine the ultimate force. Rectangle marks; A, B, C, and D, are given in 

order to illustrate the different stages of the snapshots on the patch of the membrane as a 

result of pulling forces. (A) Entire pulling forces are determined until the force reaches to 

membrane breakable point .................................................................................................. 31 

Figure 3.6 (a) Surface tension is given with several tether deformations revised by paper[17] 

graph, and (a) The surface tension is defined to the length (L) of our modeled patch along 

which the force acts ............................................................................................................. 33 

Figure 3.7 (a) Energy vs. distance graph. The breaking point of the membrane-spectrin 

network is illustrated here inside the black circle ................................................................ 33 

Figure 3.8 (a) RBC`s motion in shear flow proposed by Keller and Skalak (KS) model.  

(b) Initial condition of the Patch of Erythrocyte Membrane at the High-Stress Region ....35 

Figure 3.9 Shear–induced pore formations on the high stress/strain region of the patch of 

coarse–grained cytoskeletal is given as snapshots in here. The shear forces applied to the 

patch as were follows: (A) = 5pN, (B) = 10pN, (C) = 15pN, (D) = 20pN, (E) = 25pN [17].37 

Figure 3.10 (a) Shear (pN) forces versus the area ratios at the high-stress region ............. 38 



   
 
  

X 
 

______________________LIST OF TABLES________________________ 

Table 2.1 Potential parameters for the system ……………………………………………. 18 

Table 3.1 Shear forces and their converted values to LAMMPS units ….................……. 35 



   
 
  

1 
 

 

 

Abstract 

 

This thesis consists of three sections. First, some background information and theories about 

the erythrocyte membrane are provided. Second, a coarse-grained molecular dynamics 

model for a patch of erythrocyte membrane is built up. Third, the mechanical responses of 

the patch of red blood cells to diffusion and diffusivity, tension, rupture, and shear-induced 

pore area are analyzed.   

The patch of erythrocyte membrane is validated by modeling diffusivity and determining the 

diffusion coefficient constant. Then, the patch of the coarse-grained erythrocyte membrane 

is stretched uniformly until rupture.  The critical stress/strain from simulation match with 

those obtained in experiments in laser optical tweezers trapping a bead. Lastly, the pore area 

of the patch of erythrocyte membrane at the high-stress region is determined over a range of 

deformations.  

The purpose of creating the patch of erythrocyte membrane is to reduce computational cost, 

obtain accurate and detailed answers from our interested regime conditions, and transfer 

some quantities from nanoscale to mesoscale by solving time and length scale gaps. 
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Chapter I. INTRODUCTION 

1.1 – Red Blood Cell 

Human red blood cells (erythrocytes) primarily transport oxygen from the lungs to body 

tissues and carbon dioxide from the tissues to the lungs through the circulatory system. Their 

shape is oval biconcave, and their diameter is between  6.2 and 8.2 micrometers. The 

thickness in the center is about 0.8-1 micrometers, and at the edge, it is about 2-2.5 

micrometers [1]. Erythrocyte volume distribution illustrates statistically and graphically that 

the average volume of a single RBC cell is about 90 fL with a surface area of 136 μm2 [2]. 

The total number of erythrocytes in the human body is roughly 20-30 trillion at any moment, 

and their rate is 70%, including whole cells [3]. In addition, they are so flexible that their 

structure allows to squeeze through channels that are narrower than their size, as well.   

 

(A)                                     (B)                                    (C)                              (D) 

 

 

 

 

Figure 1.1 Classification of human red blood cells: (a) RBCs that are unequal in size are 

referred to as anisocytosis. (b) Macrocytic anemia is a condition in which RBCs are more 

extensive than their average volume.  (c)  RBCs with their average volume. (d) Microcytic 

is a condition that RBCs are smaller than their average volume  [1]. 
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Having presented some geometrical features along with the classification of human red 

blood cells, the RBCs' route through the circulatory system can now be described. In the 

process of red blood cells circulate through the body, they pass through three types of blood 

vessels that are classified as arteries, veins, and capillaries. Arteries transport blood away 

from the heart, veins transport them toward the heart and capillaries are connecting branch 

between the arterioles and venules [4]. 

(A)                                                                 (B) 

                       

(C)  

 

 

 

 

 

 

Figure 1.2 Types of blood vessels (a) Artery wall consists of three layers surrounded by a 

basement membrane. (b) Tube-formed vessels, transport oxygen-depleted blood. (c) 

Capillaries are connecting branches between the arterioles and venules [4]. 
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Capillaries are the smallest vessels and just big enough for red blood cells to pass through 

them in a single line. RBCs become deformed while traveling through capillaries because, 

at the starting and stopping points of capillaries, RBCs can rapidly change their shapes 

results in an acceleration of flow. Capillary diameters range from 3 micrometers to 10 

micrometers. Within these diameters, some take up different shape configurations such as 

parachute or umbrella, while others take the form of rolls [5].        

(A) 

 

(B) 

          

Figure 1.3 Red blood cell deformation in vivo capillary: (a) Cells are squeezing and taking 

on a parachute-like shape through capillaries of about 7 µm; and (b) Cells are rolling up or 

flowing at the end of the capillary vessels [5]. 
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The pressure differences, as a result of the diameter changes of the capillary vessels, can 

cause a local non-uniform stress distribution. Those local stresses generate some 

deformations of the cell. The experimental results illustrated that if the diameter size of the 

pore is smaller than 3 micrometers, there is cell damage, and if it is greater than 3 

micrometers, the cell remains undamaged [6][13].    

 

(A)                                                                                  (B) 

 

 

 

 

 

 

Figure 1.4 RBCs are squeezing through the capillaries: (a) Red blood cell deformation in 

capillary has a diameter of 7 µm; and (b) Red blood cell deformation in capillary has 

diameter of 4 µm [5]. 

 

The local deformability of red blood cells on high shear stress is essential for observing pore 

area, rupture, diffusion, and diffusivity. This will allow us to develop our coarse-grained red 

blood cell patch model, to better understand the mechanical response of various deformable 

conditions, and to get accurate and detailed answers.  
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1.2 – Molecular Dynamics 

Molecular dynamics technique explores the physical movement of atoms and molecules by 

Newton’s equation of motion respect to time. 

�⃗� = 𝑚�⃗�      =>       �⃗�𝑖 =
𝑑𝑣𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡
⋅ 𝑚𝑖 =

𝑑2𝑟𝑖⃗⃗⃗ ⃗.

𝑑𝑡
2 ⋅ 𝑚𝑖                                                     {1.2.1}                                                           

 

Molecular dynamics methods have been applied in many fields of science including 

chemical physics, materials science, and the modeling of biomolecules. It is considered a 

network between the mesoscale and quantum mechanics. Its hierarchic place is presented as 

follows:                                                       (A) 

 

Figure 1.5 (a) Hierarchy of time and length scale simulations.  

Quantum mechanics deals with motion and interaction of subatomic particles. Few atoms 

can be used with the quantum mechanics simulations with the time scale range between 

femtosecond to picosecond so that its principle can precisely solve any problem, but it is 

impossible to solve its equations.  
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The advantage of using molecular dynamics compared to quantum mechanics is that from  a 

few hundred to a few million atoms can be used. In addition to that, by defining some 

parameters such as the diffusion coefficient, molecular dynamics method yields to couple 

with finite element method for the simulation of solids or coupling with lattice Boltzmann 

method for the simulation of soft biological materials or fluidic systems.  

The process of molecular dynamics is summarized as follows: in order to have precise 

macroscale properties, the most significant number of atoms with the accurate time-step 

selection criteria that is depending on the potentials must be applied to the simulation 

systems.                                                         (A) 

 

 

 

 

 

 

 

 

 

Figure 1.6 (a) Molecular Dynamics Simulation Process: after having positions versus the 

time, many more macroscale properties can be defined [8].  

Our Created Model Implemented with  

Initial Position 

Calculate Velocity 

of Each Atom 

Calculate Acceleration 

of Each Atom 

Calculate Total 

Forces on all Atoms 

Move All Atoms to 

New Positions 

Macroscale 

Properties 
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1.2.1 – Potential Energy Functions 

Interactions between particles can be classified into interatomic and intramolecular. By using 

this interaction, the mechanical properties of the lipid membrane can be captured. 

(A) 

 

 

 

 

 

Figure 1.7 (a) Interaction Models to Molecular Dynamics Simulation [9]. 

Inter-Atomic Potentials as Non-Bonded Forms 

Pair potential – The van der Waals interactions can be classified as attraction that act at 

long distances and repulsions that act at short distances.  

In our simulation, we used the Lennard – Jones potentials (n = 12, m = 6):                                                                                                                   

                                     

                                                                                                   

           Repulsive     Attractive                                                                                               {1.2.2}                                                                                                                             

  

                                  {1.2.3}                                                                                                                             

Potential Energy Functions 

Intramolecular Interatomic 

Pair Coulomb EAM Reaction Bond Angle Torsion 
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(A) 

 

 

 

 

 

                    

 

 

Figure 1.8 (a) Lennard-Jones Pair Potentials  

The parameters of pair potentials can be reproduced by either experimental data or accurate 

quantum chemistry calculations.  Ε is the local minimum of potential energy, σ is referred 

to as the distance to the point where potential is zero, and r is the distance between the 

particles. 

Coulombic interaction can be included if the electrostatic force between atoms is significant. 

Formulation of coulombic is as follow: 

[9]                                                                                             {1.2.4}    

qi and qj are refered to as atomic charges. 

r(σ) 
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Reactive potentials can also be included along with bond formation and bond disassociation 

if the system has some chemical reactions. 

Intra – Molecular Potentials as Bonded Forms 

Bonded potentials functions have distances, angles and dihedral angles as follows: 

 ------------------------------------------------------------------------------------------------------------- 

Bond Stretching Models 

 

                                                                                                       

k is a spring constant r0 refers to bond length. [9].                                                       {1.2.5} 

Bond Angle Models 

k is energy constant and θ0 is the equilibrium angle [9]         {1.2.6}                               

Torsion Models (dihedrals) 

 

Φ is the angle between two planes [9]                                                                               {1.2.7}              

 

r0 

θ0 
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1.2.2 – Coarse-Grained Patch of Erythrocyte Membrane 

Coarse-Grained Modeling is widely used to define the behavior of complex systems such as 

biomolecules, proteins, cell membranes, and many other molecular level models, and it is 

crucial to solving time-scale and length-scale problems [7]. A patch of human red blood cell 

is modeled by using molecular dynamics, but not all-atom methods. Therefore, we need to 

reduce the scale of representation to avoid sizeable computational time. To do that, we 

placed a group of atoms into a coarse-grained bead, which is also called a pseudo-atom 

model. Before building our own the coarse-grained bead model, we will carefully look at the 

erythrocyte membrane components.  The erythrocyte membrane mainly consists of the 

spectrin network and a phospholipid bilayer. The spectrin network forms consist of spectrin 

tetramers tethered to the membrane at the junctional complex (actin), ankyrins, and band-3 

proteins. 

(A) 

 

Figure 1.9 (a) Schematic of the cytoskeleton of the patch of human red blood cell [10]. 
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A two-component model is built up to simulate two main components of the erythrocyte 

membrane, the lipid bilayer, and the spectrin network, separately [10]. 

Lipid bilayer resists bending and has a large local area stiffness but cannot undergo in-plane 

shear stress because the lipids potential is not as strong as spectrin network and most of the 

proteins can diffuse freely within the membrane to relax the shear stress [11]. Each spectrin 

tetramer has intertwined and antiparallel α-spectrin and β-spectrin filaments.  

(A) 

 

Figure 1.10 (a) At the first yellow circle, band-3 complex connected to the spectrin network, 

band-3 complex illustrated at second green circle by connecting spectrin tetramer as well. 

Blue circle third marks a group of lipid particle, and on the fourth circle actin junction 

connected to the band -4.1 [11]. 

Now, we will build a coarse grained model which consists of the lipid membrane, spectrin 

network, actin junctions, band-3 complexes. 
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Chapter II. CGMD MODEL FOR A PATCH OF A HUMAN RED BLOOD CELL 

2.1 – Lipid Membrane 

In our model, the lipid membrane is modelled with coarse-grained particle beads. A group 

of lipid molecules are inserted (A) into a bead (B) with a diameter of 5 nm.  

(A)                                                                                                       (B) 

 

 

 

(C) 

 

Figure 2.1 Construction of the hierarchic model for the lipid membrane of a human red 

blood cell. (a) The lipid bilayer is represented as the full atomistic model. (b) The mesoscale 

coarse-grained bead from the lipid bilayer has a diameter of 5 nm. (c) The patch of the 

erythrocyte membrane is made of mesoscale beads. Blue mesoscale beads represent the parts 

of either actin junctions or transmembrane proteins. 



   
 
  

14 
 

2.2 – Spectrin Network 

The structural model of the spectrin networks has three coarse-grained components. The first 

one is a bonded bead that is composed of spectrin tetramers. Second, the transmembrane 

protein is a combination of two beads wherein one bead is in the middle of the spectrin 

network and another bead is inserted just below its couple ones on the membrane. Third, the 

actin junction consist of two beads wherein one is located in the middle of the hexagonal 

network and another is oriented perpendicular to the membrane.  

Tetramers are connected at the actin junctional complexes by combining a hexagonal 

network with 39 beads, but transmembrane proteins on tetramers represent different types 

due to being bonded with membrane beads as well. The remaining spectrin beads are linearly 

connected with adjacent ones by bonds. Besides those, whole spectrin beads are assigned 

with varying numbers of types to implement interaction potentials.  

 (A) 

 

Figure 2.2 (a) Spectrin network are encoloured as purple, green and light purple beads. 

Purple beads are connected to both green beads and actin junctions which are blue beads. 

Light purple beads are bonded to both transmembrane proteins and green beads. The 

remaining green beads are bonded to entire adjacent ones. 
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(A) 

 

      (B) 

 

      (C) 

 

Figure 2.3 Coarse-grained particle model of the spectrin network. (a) Spectrin filament with 

39 beads connected by bonds. (b) The six-fold structural unit of the spectrin network. (c) 

The spectrin network. 
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2.3 – Transmembrane Proteins and Actin Junctions 

Transmembrane proteins, known initially as band-3, are made up of a couple of light purple 

and blue beads in our model (a) and are located on the middle of the spectrin filaments and 

perpendicularly on the membrane. We used unique types of those beads to connect the lipid 

bilayer by with relative Lennard-Jones potential and to connect spectrin filament beads with 

a weak harmonic bond.  

The actin junctions are connected to the lipid bilayer via glycophorin. (b) In our model, we 

had two actin junctions made up of one light purple bead and one blue bead. Connections 

between the actin junctions located on the spectrin network and the lipid membrane are 

represented by a relatively weak LJ potential, and a weak harmonic bond. Each actin 

junction’s bonds are not only connected to membrane proteins but to hexagonal networks, 

as well.           

(A) 

 

  

                                     

 

 

Transmembrane Protein 
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(B) 

 

 

 

                                         

                                                  Actin Junctions  

 

 

 

 

 

Figure 2.4 Transmembrane proteins and actin junctions’ places on the spectrin network and 

lipid membrane, respectively. (a) Transmembrane protein located on the middle spectrin 

filament along with 39 beads and a lipid membrane. (b) Actin junctions are placed on a 

hexagonal spectrin filament by bonding 6 green beads to the lipid membrane. 
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2.4 – Force Fields and Simulation Setup 

Seven-atom types were used in our model; lipid membrane beads, actin junctions, 

combinations of two types of beads, transmembrane proteins divided into two types, a 

spectrin network, and water molecules as six layers located downwards of the spectrin and 

upwards of the lipid membrane. 

The repulsive potential is used to define interactions between non–bonded actin junctions 

with the hexagonal spectrin network and lipid membrane’ beads. The interaction between 

the spectrin network and the lipid membrane are quite weak, as represented by LJ potentials. 

To simulate LJ in LAMMPS, we need to define some main parameters: 

 ϵ (Kcal/mol), σ (Angstrom), cr  (Angstrom).  

For bonded potentials, we used bonds between the transmembrane proteins of spectrin, 

middle particles of spectrin and actin junctions. The main parameters are given in Table 2.1 

as non-bonded and bonded parameters obtained from Fu et al. [12].  

Table 2.1 Potential parameters for the system 

Non – Bonded Potential Parameters ϵ (Kcal/mol) σ 

(Angstrom) 

τ 

Membrane beads 0.269 kcal/mol 5 nm 0.1 μs 

  

 

 

 

  Bonded Beads 

Middle particles of spectrin. 

Spectrin heads and actin junctions. 

Middle particles and head particles of spectrin. 

K (Kcal·mol-1·A-2) 
0r  

300 7.6 (A) 

200 7.6 (A) 

300 63.8 (A) 



   
 
  

19 
 

The non-bonded terms for force fields can be expressed as: 

Spectrin particles that are not connected by the spring potential which interact with each 

other via the repulsive part of the L-J potential as follows: 

𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑈𝐿𝐽(𝑟) = 4𝜀𝑖𝑗[(
𝜎𝑖𝑗

𝑟
)12 − (

𝜎𝑖𝑗

𝑟
)6]                                                               {2.1.1}        

    

In the formula, ij  denotes the closest approach between two particles, and ij represents the 

strength of their interaction, and only one type of bond is used in the spectrin tetramer 

interaction between the middle particles of spectrin, middle particles and head particles of 

spectrin and spectrin heads and actin junctions.  

The total energy of bilayer beads can be summarized as: 

𝑈𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 = ∑ 4𝜀[(
𝜎

𝑟𝑖𝑗
)12 − (

𝜎

𝑟𝑖𝑗
)6]                     𝑛

𝑖𝑗                                                                          {2.1.2}           

Compared to the lipid membrane, the spectrin network’s bonds are stronger than non-bonded 

membrane beads. That is why, in our rupture analysis, we recognized this weakness by 

observing small pore deformation on the membrane before the patch completely ruptured.   

The bonded interactions included harmonic forms and angles with weak harmonic potentials 

𝑈𝑏𝑜𝑛𝑑 =  
1

2
𝐾𝑏𝑜𝑛𝑑(𝑅 − 𝑅𝑏𝑜𝑛𝑑)2 +

1

2
𝐾𝑑𝑒𝑔𝑟𝑒𝑒[𝑐𝑜𝑠( 𝜃) − 𝑐𝑜𝑠( 𝜃0)]2                                       {2.1.3}           

Although LAMMPS has harmonic functions that can represent all beads bonds, we obtained 

our revised harmonic functions from Fu, Peng, Yuan, Kfoury, and Young’s, (2017) paper by 

implementing some parameters [12]. 
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2.4 – Simulation Setup 

 

 

 

 

 

 

 

 

 

  

 

 

  

Figure 2.5 Flow of our simulation process on LAMMPS [12].  
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2.5 – Patch of a Human Red Blood Cell Modelled on MATLAB         

 

                                                                                   (A) 

 

[13] 

[13] 

 

                                                                                    

                                                                                    (B) 

 

  (C)  

 

 

   

 

  

Figure 2.6 A human red blood cell [13] and our patch models created MATLAB.  

(a) The smallest patch size of 30 x 20 nm (b) Size: 40 x 40 nm (c) Size: 80 x 80 nm. 

Water molecules as 

six layers are 

located downwards 

of the spectrin and 

upwards of the 

membrane. 
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2.5 – Patch of a Human Red Blood Cell Modelled on LAMMPS 

(A) 

 

 

 

 

 

 

                [13] 

             

 

Figure 2.7 A human red blood cell [13] and our patch model created on LAMMPS.  
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CHAPTER III. RESULTS, CONCLUSION AND FUTURE WORK 

3.1 – Membrane Diffusion and Diffusivity  

Having obtained and applied paired potentials for coarse-grained lipid molecules, we are 

able to model the diffusivity properties of the patch of red blood cell. One of the main reasons 

we analyze the diffusion property of the patch is to define the diffusion coefficient value the 

and type of diffusion regime. 

We found the diffusion coefficient value to be 𝐷 ≈ 2.4624 𝜇𝑚2𝑠−1  which can be obtained 

by taking an average of diffusivity from time step 200 to 1000 microseconds. Auth et al. 

calculated that the diffusion coefficient of the lipid membrane is 𝐷 ≈ 1 𝜇𝑚2𝑠−1 [14].  

The diffusion coefficient is known to depend on the surface tension. Furthermore, Auth & 

Gov (2009) found that the density of the anchor point results in pressure differences in the 

cytoskeleton that can cause a different diffusion coefficient together with different degree of 

stretching [14].  

Our modeled membrane's dimensions are: 71σ x 56σ (σ=5nm), and the number of particles 

is 3,976 beads. We performed constant NVE integration with the MSD LAMMPS command. 

The Mean Squared Displacement is formulated as: 

𝑀𝑆𝐷 ≡ 〈(𝜒 −  𝜒0)2〉 =
1

𝑁
∑(𝑥𝑛(𝑡) − 𝑥𝑛(0))2

𝑁

𝑛=1

 

N represents the total particles in the system, and 𝜒 and 𝜒0 refer to the position of each 

particle. When we add time, which is 𝑥𝑛(𝑡), we can determine the position of the particle for 

our desired time. 
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(A)                                                                          (B) 

 

 

 

(C)                                                                         (D) 

                

(E)                                                                         (F) 

 

 

Figure 3.1 Snapshots taken from A to F illustrate membrane diffusivity configuration at 

different time steps (a) Initial state of red blood cell membrane where color transition is 

represented in red and white. (b) Diffusivity dispersion at the time step 200 microseconds 

(c) Diffusivity dispersion at the time step 400 microseconds (d) Diffusivity dispersion at the 

time step 600 microseconds (e) Diffusivity dispersion at the time step 800 microseconds (f) 

Diffusivity dispersion at time step 1,000 microseconds. 
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(A) 

 

 

Figure 3.2 (a) Diffusion property of patch of human Red Blood Cell membrane versus time; 

rectangle A is located very close to zero point and its time just first microsecond at the 

beginning of the simulation. Rectangles from B to F are shown as have 200 microseconds 

time range.  
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(B) 

 

 

Figure 3.2 (b) Diffusivity versus time: At the ultra-short time what is first micro-second 

particle do not interact with each other. This time observes as almost vertical slope goes 0.5 

to 2.6. From 0 to 200 microsecond the system can stay at stable stage, which means when 

the simulation is run; it can’t start at the beginning of the equilibrium stage. After the 200 

microsecond, beads behave like a fluidic structure and they travel randomly both from 

boundary and through the membrane. 
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3.2 – Mechanism of Rupture of the Patch of RBC and Membrane Tension 

In this part, uniaxial tensile stress applied to patches of red blood cell and rupture mechanism 

was explored. Then, the critical stress/strain analysis was compared to experimental results.  

Raucher and Sheetz experimentally stretched membrane-attached beads with uniformly 

using laser tweezers [17]:    

 

                                           (A)                                                                       (B) 

 

 

 

                                                                                                                                                                      

                                                                                                             

                                            (C)                                                                      (D)   

               Tether length (L) = 10 micrometer   

Total surface area is 2πR x L   =   10 μm2                                   Magnified Tether                   

 

Figure 3.3 (a) Tether formation phases are given with time versus frame[17]. (b) Membrane 

tether was formed by stretching out the bead[17]. (c) Total surface area of the stretched bead. 

(d) Schematic figure of red blood cell with its stretched bead. 

http://tureng.com/en/turkish-english/magnified
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In this model, the patch is built with the total area of 103 nm2 and then the lipid membrane 

and spectrin network were stretched with uniformity until the patch completely ruptured. 

Maximum stress at the breakable point is found as 2.5 x 10-5  GPA.  We need to convert this 

result to pN which will enable us to compare the result with experimental data. 

The GPA can be expressed to pN by using a mechanical SI derived unit as follows: 

1 𝐺𝑃𝐴𝐺𝑖𝑔𝑎𝑝𝑎𝑠𝑐𝑎𝑙 = 109 (
1 𝑁

𝑚2) (
1012 𝑝𝑁

1 𝑁
) (

1 𝑚2

1018  𝑛𝑎𝑛𝑜𝑚𝑒𝑡𝑒𝑟2)                                            {3.2.1} 

After reducing this expression, we have: 

1 𝑃𝑖𝑐𝑜𝑁𝑒𝑤𝑡𝑜𝑛 = 10−3(𝐺𝑃𝐴 𝑥 𝑛𝑎𝑛𝑜𝑚𝑒𝑡𝑒𝑟2)                                                            {3.2.2} 

If we multiply the breakable point by total area, we get 2.5 x 10-3 (𝐺𝑃𝐴 𝑥 𝑛𝑎𝑛𝑜𝑚𝑒𝑡𝑒𝑟2)                                                          

This result equals 2.5 pN force.                                                                                                                                     

Simulation snapshots and results are given as follows: 

(A)                                                                                  (B) 
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(C)                                                                            (D) 

 

 

 

 

 

(E)                                                                                (F) 

 

 

 

 

 

 

(G)                                                                        (H) 
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(I) 

 

 

 

 

 

Figure 3.4 Rupture mechanism for the patch of human erythrocytes membrane is given in 

here as snapshots created on LAMMPS. (a) The initial condition of the lipid membrane with 

spectrin network is shown. (b)(c)(d) From B to D, first, a small pore formation  is observed, 

and then those pores are increased both in size and number, respectively. (e)(f)(g)(h)(i) At 

the E snapshot, the simulation reached the breakable point, and the patch was ruptured. After  

E, dispersion of the fragmental lipid membrane and spectrin network's motion is observed. 
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 (A) 

 

Figure 3.5 Uniaxial tensile stress is applied until we reach the membrane-spectrin final 

rupture point to determine the ultimate force. Rectangle marks; A, B, C, and D, are given in 

order to illustrate the different stages of the snapshots on the patch of the membrane as a 

result of pulling forces. (A) Entire pulling forces are determined until the force reaches to 

membrane breakable point. 

After dividing surface force which are obtained in experiments in laser optical tweezers 

trapping a bead to the length of circular tether membrane given at figure 3.6 (a) and dividing 

surface force to the length of our modeled patch along which the force acts given at figure 

3.6 (b), we define the surface tension to compare. 

The surface tension equation is given by: 

Surface Tension = [surface force] / [length force acts] 

E 

C D B 



   
 
  

32 
 

(A) 

                                         Magnified Tether                           2πR = 1 μm = 1000 nm 

Surface Tension = F / 2πR 

 

 

 

 

 

 

 

(B) 

                                        

 

 

L =  100 nm 

L = 0.1  μm                    

Surface Tension = F / L 
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Figure 3.6 (a) Surface tension is given with several tether deformations revised by paper[17] 

graph, and (a) The surface tension is defined to the length (L) of our modeled patch along 

which the force acts. 

 

(A) 

 

 

 

  

 

 

 

 

Figure 3.7 (a) Energy vs. distance graph. The breaking point of the membrane-spectrin 

network is illustrated here inside the black circle. 
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3.3 – The Pore Area of the Patch of Erythrocyte Membrane at the High-Stress Region 

Shear induced single cell has been well studied in literature in order to obtain some 

mechanical properties. Nevertheless, the coarse-grained model as a patch has not yet been 

analyzed.  Looking at the velocity field around the cell illustrated in Figure 3.5 (A), we 

encounter some stagnation points that exist during the motion of shear flow.  In that region, 

shear forces lie symmetrically to opposite sides. Abkarian and Viallat [18] illustrated that 

highest stress distribution exists in that region. After determined this area, we applied shear 

force on our patch model which is in Figure 3.5 (B) to further and with greater define pore 

formation. 

(A) 

 

 
 

(B) 
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Figure 3.8 (a) RBC`s motion in shear flow proposed by Keller and Skalak (KS) model.  

(b) Initial condition of the Patch of Erythrocyte Membrane at the High-Stress Region. 

To simulate this phenomenon in LAMMPS with the LJ model, we need to transfer pN force 

to the LJ unit system force scale. For LJ style, all physical quantities have no unit. We first 

need to determine three main parameters ( σ, τ, and ε) to define the pN force, and the method 

of determination is described in LAMMPS documentation. The parameters to be used are 

the following: 

σ = 5 nm 

τ = 0.1 μs 

ε = 0.269 kcal/mol 

These parameters are taken from Fu et al. [12]. Using these, we calculated the shear force to 

be applied on our coarse-grained patch to determine pore formation under different shear 

force values. To do that, we first need to convert pN forces into LJ units. 

From the LAMMPS documentation: force = epsilon/sigma, where f* = f sigma / epsilon. 

After inserting values, we have: F = F* x 35.7*10-12 Newton. 

 

Table 3.1 Shear forces and their converted values to LAMMPS units [16]. 

 

 F = 5 pN F = 10 pN F = 15 pN F = 20 pN F = 25 pN F = 50 pN 

F
*  = F/ 35.7 0.140056 0.28011204 0.42016806 0.56022409 0.70028011 1.40056022 

 

Shear forces are applied symmetrically to the patch region through to the opposite sides, as 

shown in figure 3.5 (B). Shear-induced pore formation is observed on the highest stress 

region. We applied several forces starting from 5 pN to 25 pN by increasing 5 pN at each 

stage. We summed up all pore areas that are drawn with yellow circles to create the entire 

pore formation area that are illustrated as black circles.  In addition to that, we considered 
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pore size as two times greater than size of the bead. Total patch area is 14400 nm2 . Entire 

process are shown by taken snapshots as follows: 

(A) 

 

(B) 

 

   (C) 
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(D) 

 

(E) 

 

Figure 3.9 Shear–induced pore formations on the high stress/strain region of the patch of 

coarse–grained cytoskeletal is given as snapshots in here. The shear forces applied to the 

patch as were follows: (A) = 5pN, (B) = 10pN, (C) = 15pN, (D) = 20pN, (E) = 25pN [17]. 
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(A) 

 

Figure 3.10 (a) Shear (pN) forces versus the area ratios at the high-stress region. 
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3.4 – Conclusion and Future Work 

Conclusion 

Mechanical response of the patch of human erythrocyte has been studied in coarse – grained 

scale using molecular dynamic methods with interest on membrane diffusion and diffusivity, 

membrane tension, rupture, and shear-induced pore area. 

First, we validated the patch of erythrocyte membrane by modeling diffusivity and 

determining the diffusion coefficient constant. We recognized that beads behave like a fluid 

structure as results of linearly increasing the diffusivity.  

Second, we stretched the patch of the coarse-grained erythrocyte membrane uniformly until 

rupture. The critical stress/strain from simulation match with those obtained in experiments 

in laser optical tweezers trapping a bead. Then, we defined surface tension, both circular 

tether membrane and our modelled patch, to compare the surface tension to our modelled 

patch, which was ten times bigger than that obtained experiment's surface tension. 

Lastly, we determined the pore area of the patch of erythrocyte membrane at the high-stress 

region over a range of deformations. We observed that lipid membrane’s beads rupture from 

the membrane on the highest stress regions and this rearing significantly increase when we 

increase force at each stage. 
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Future Work 

In our future model, first, we will investigate how the diffusivity and diffusion coefficients 

can be changed under a variety of surface tensions. Those coefficient parameters can be used 

on the SN model for the purpose of capturing singular phenomena at molecular level.  

Second, we count on the effects of membrane curvature on our coarse-grained model to 

further investigate how it may affect our obtained results.  

Lastly, we will link CGMD to the mesoscale spring model with a finite element method by 

defining the required parameters. 
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working there for a few months, I transferred to the service department. (In Turkey,  

military service is compulsory for all male citizens. That is the custom here; I do not 

know if this is acceptable as a job or not.) 
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FOREIGN TRADE SPECIALIST                                               [06.11.2014 – 07.05.2014]  

PETES MACHINE INDUSTRY CORPORATE                                ISTANBUL / TURKEY  

JOB DESCRIPTION:  

▪ I was managing the process of the import and export of various lift tables, jacks, 

compressors, oiling equipment, lifts, garage equipment, and engineering parts 

between the company and partners.  

 

OPERATING SYSTEM PROJECT                                                [09.10.2014 – 11/15/2015]  

C AND SYSTEM PROGRAMMERS ASSOCIATION                   ISTANBUL / TURKEY 

JOB DESCRIPTION:  

First, I took some courses as follows: C, C++, Unix/Linux System Programming and 

Assembly Language. Then, I accepted the operating system project on 08/15/2015. Our 

team's tasks were implementing low-level programs.  

▪ To introduce the project, CSD is a new operating system being developed by C and 

System Programmers Association (CSD in Turkish, giving a name to the operating 

system). It has a graphical user interface and supports multithreaded preemptive 

operations on multicore hardware. The kernel is completely original; it is designed 

and implemented by the CSD members and is not a Linux derivative.  

 

JOURNAL PAPER 

D.Yunus, R. He, W. Shi, O. Kaya, Y. Liu, “Short Fiber Reinforced 3D Printed Ceramic 

Composite with Shear-Induced Alignment”, Ceramics International, in press, 2017 


