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Abstract 

One of the unique properties of fracture healing is that bones heal by producing 

new tissues that eventually become indistinguishable from the original ones in the pre-

injury state, through the process of tissue differentiation. This process is fundamentally 

controlled by the mechanical conditions at the fracture site, particularly mechanical 

strain. Numerical models with strain-based fuzzy logic rules have been successfully 

applied to simulate bone healing in response to local mechanical stimuli for simple 

axisymmetric fracture geometries. However, these simplified models were not designed 

to replicate in vivo observations such as delays in healing with torsional instability or 

anticipated differences in healing rate between different fracture types. Accordingly, 

the purpose of this work was to apply fuzzy logic mechanoregulation fracture healing 

simulation techniques to 3D models representing a wider range of clinical fracture 

geometries under multi-axial loading conditions representative of clinical 

intramedullary nail fixation. Normalized virtual torsional rigidity of the fracture bone 

were used in the model to provide the structural measure to track the percentage of 

healing each patient had undergone. 

The results of the strain-based mechnoregultaion models showed that the rate 

of healing depends on the geometry of the fracture, but that all fracture types experience 

delayed healing with torsional instability. When simulating healing with clinically 

relevant torsional loading and fixator mechanics, published strain-based rules for tissue 

destruction predicted nonunions that would not be expected clinically. This suggested 

that clinical fracture healing may be more robust to distortional strain than has been 
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previously reported and that fuzzy logic models may require parameter tuning to 

correctly capture clinically relevant healing. Ultimately, this study is the first-ever 

model to include both fracture morphology effects and realistic implant mechanics and 

the proposed improved methods have the potential to extend into clinical fracture 

healing prediction.  
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1. Introduction 

Through the process of tissue differentiation, bone heal by producing new 

tissues that eventually become indistinguishable from the original ones in the preinjury 

state, which is ascribed to be one of the unique properties of bone fracture healing [1], 

[2]. After a fracture, a broken bone usually repairs itself by a process known as 

secondary healing, in which a cartilaginous soft tissue structure called a callus will 

grow around the fracture line, progressively stiffen as it ossifies, and eventually 

remodel itself. Self-regulation of tissue differentiation is vital in the recovery [3], but is 

difficult to monitor continuously in vivo. Despite these challenges, animal and clinical 

studies have consistently shown that callus development is a mechanoregulated process 

that can be accelerated or disrupted by the local strain environment at the fracture site. 

If the interfragmentary mechanics are unfavorable, the healing process may be delayed. 

If delayed healing shows no evidence of radiographic progress for an extended period, 

it will be diagnosed as a nonunion [4]. Nonunion treatment is associated with an 

extended period of disability and multiple expensive and painful interventions to 

promote union [5]–[7]. In extreme cases, a false joint or pseudo-arthrosis may be 

generated [2]. 

In a clinical setting, progressive fracture healing is difficult to measure 

quantitatively. A wide range of risk factors may contribute to delayed healing or 

nonunion. Injury-related factors like excessive fracture gap, fracture classification [8]; 

Patient-dependent such as age [9], compartment syndrome , chronic disease, smoking 

[10]; Surgeon-dependent like impropriate implant, well-controlled trials are complex 



4 
 

to design. Large amounts of animal models have been used to show how the fixation 

mechanics influence the healing outcome. Especially, angular instability and shear 

disrupt bone formation. Recent research shows that fixation that allows excessive 

torsional rotation and shear movement significantly delayed the healing of diaphyseal 

osteotomies[11]–[14]. However, the osteotomy fractures in these models do not reflect 

the complex and diverse morphologies of clinical fractures, which are categorized by 

the OTA/AO Classification System [15](Figure 1). 

One potential approach to bridge the gap between clinical observations, which 

are abundantly complex but lacking in end-point detail, and animal models, which are 

much more controlled and rich in detailed outcomes measures (e.g. computed 

tomography scanning, histology, and mechanical testing), is computational simulation 

of bone healing. The prevailing simulation techniques are based on the fundamental 

observation that new tissue formation is correlated with the local mechanical stimuli 

[16]. Since these relationships were first observed, many researchers have proposed 

theories to model strain regulation of three major processes: endochondral ossification, 

intramembranous ossification, and tissue destruction if the mechanical stimuli are 

unfavorable. In those models, numerical methods with fuzzy logic rules for 

mechanoregulation have been successfully implemented to simulate the bone healing 

response [17] and have been used to explore the utility of various definitions for the 



5 
 

mechanical stimuli that may influence the fracture healing process, such as principal 

strain, deviatoric strain, and pore pressure [16], [18].  

One common approach, and the method selected for this investigation, uses two 

major mechanical stimuli: one for volumetric deformation, another for the local change 

of shape [19]. This method was first validated in the literature by comparison to an 

ovine transverse osteotomy fracture model and was shown to have the ability to predict 

Figure 1: The morphology of the tibia diaphyseal segment fracture is defined as 

three categories from AO/OTA Classification. A1 – Spiral, A2 – Oblique, A3 – 

Transverse; B1 – Spiral Wedge, B2 – Spiral Wedge, B3 – Fragmented Wedge; C1 

– Complex spiral, C2 – Segment, C3 – Irregular (B1 and B2 are excluded from the 

new 2018 Classification). 
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the bone healing under a single axial loading situation [20]. Other researches extended 

the technique to include the vascularity as another important factor in the tissue 

differentiation process, showing that new bone forms only if the blood perfusion is 

adequate [21]. In recent years, studies of healing outcomes in numerical simulation 

models under different loading conditions and fixation stiffness were performed and 

used to show that for simple transverse osteotomies, optimization of fracture treatment 

outcome can be accomplished by adjusting the fracture fixation stability [3], [22]. 

These results have generally supported preclinical and clinical observations that 

shear motion, particularly torsional instability, can disrupt healing. However, clinical 

fractures present with a wide variety of shapes of fracture bone. Previous numerical 

models have used only simple axisymmetric fracture geometries and 2D quadrilateral 

meshes to model fractures for comparison to animal studies. Those simplified models 

were not designed to replicate in vivo observations such as delays in healing with 

torsional instability or anticipated differences in healing rate between different fracture 

morphology types. Accordingly, the purpose of this work was to implement a fuzzy 

logic controlled mechanoregulation fracture healing simulation technique to explore the 

effect of clinically relevant fracture morphology on the interfragmentary mechanical 

environment, and in turn, on the speed of healing considering only strain-regulated 

mechanisms. 
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2. Methods  

2.1 Geometries 

The OTA/AO fracture classification, unified from Müller/AO and OTA 

systems, was designed to provide a standardized approach to the classification of long-

bone fractures. Referencing this standard, we created idealized tibia diaphysis fracture 

models from nine geometry categories (OTA/AO 42-A/B/C types; see Figure 2) in 

SolidWorks 2018 (Dassault Systèmes SOLIDWORKS Corp., Waltham, 

Massachusetts, USA). In all models, the cortical shaft segments were axisymmetric 

with length, 𝐿  = 50 mm, diameter, 𝐷  = 17 mm, wall thickness, 𝑡  = 3 mm, and 

volume, 𝑉  = 7900 mm3. These dimensions are consistent with previous idealized 

transverse osteotomy simulation models [22] , which were established for comparison 

and validation with respect to in vivo ovine fracture healing data. In all models, a 

consistent axial gap distance, 𝑑 = 3 mm, was used to mimic accurate fracture reduction 

and normal healing conditions in vivo [16], [20].  



8 
 

 

Figure 2: Idealized CAD models representing the AO/OTA classification of 

tibial fractures: A1 – Spiral, A2 – Oblique, A3 – Transverse, B1 – Spiral Wedge, 

B2 – Spiral Wedge, B3 – Fragmented Wedge, C1 – Complex spiral, C2 – 

Segmental, C3 – Irregular. 
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Figure 3: Model of spiral fracture callus geometry with the axial spring and 

torsional spring represents the IM nails. Loading Case I of an axial load only. 

Loading case II of an axial load and a moment. 
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2.2 Finite Element Models 

All simulations were carried out in ANSYS 17.2 (Ansys, Inc., Canonsburg, PA, 

USA). The trabecular bone cylinder and the callus region were meshed with ten-node 

tetrahedral element (TET10). In the A1 model, the trabecular bone was meshed with 

30030 elements while the callus region was meshed with 35098 elements. Max element 

size was set as 1.2mm to generate more than one layer of meshes between the gap 

region. The Boundary conditions of the FE models were supported in axial direction at 

the distal end of the cortical bone. The nodes at the axis of rotational symmetry were 

fixed radially. 

An iterative simulation approach was used to predict the mechanoregulated 

healing response based on the strain conditions within the callus zone of each model, 

assuming an intramedullary (IM) nail was implanted. To define clinically relevant 

implant mechanics for the simulations, previously completed mechanical testing data 

for four commercial IM nailing systems (Biomet, Smith & Nephew, Stryker, and 

DePuySynthes) was reviewed [23]. Each implant system had been tested in axial and 

torsion loading in a multiaxial material testing machine.  

In these tests, all of the commercial nailing systems allowed some free 

movement (see plateau in Figure 4), which arises due to the necessary dimensional 

clearance between the bone screws and the mating holes in the implant. This behavior 

occurs in both axial and torsion loading modes and is frequently misunderstood or 

misinterpreted because in most published papers, construct mechanics is generally 
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defined in terms of stiffness (e.g. axial stiffness [N/mm] or torsional stiffness [N-

mm/deg]). Based on these tests, the mechanical behavior of IM nail in our models was 

modeled as a torsional spring allowing 8 degrees of free rotation followed by a linear 

torsional stiffness of 880 N-mm/deg (Figure 5a), and a nonlinear longitudinal spring 

allowing 0.2 mm of unrestricted axial compression followed by a linear axial stiffness 

2650 N/mm (Figure 5b). 

Figure 4: IM nail torsion bench test showing free movement occurring. Construct 

“stiffness” is frequently reported but misrepresents the nonlinear implant 

mechanics. 
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Figure 5. The mechanical behavior of a clinically relevant tibial IM nail construct 

was modeled using two nonlinear springs: (a) longitudinal spring; (b) torsional 

spring. 

To simulate the forces that would be applied through the implant during the 

early stage of healing, conditions of partial weight-bearing (400 N axial load) were 

assumed. Previous investigators have frequently neglected torsional loading and 
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deformation in mechanoregulation models of bone healing [24], so these simulations 

were carried out under two loading conditions:  

I. Partial weight-bearing (axial only): 400𝑁 axial compressive load, or 

about 50% of body weight for an average adult. This condition might be 

achieved when patients are instructed to begin immediate weight-

bearing as tolerated (WBAT), which is generally considered safe for 

extra-articular fractures [25], [26].  

II. Partial weight-bearing (axial + torsion): The same axial load from Case 

I above was applied in superposition with an additional 1 Nm torsional 

load. This torque is less than would be expected in normal full weight-

bearing [27], but enough to ensure that both axial and torsional 

interfragmentary motion occur because the pure axial interfragmentary 

loading modes, such as simple axial compression or simple torsion, are 

not generally expected in clinical practice. 

The fundamental premise of mechanoregulation simulations is that cell 

differentiation and tissue formation is directed by local mechanical strain. At any point, 

Cauchy’s symmetric strain tensor can be written:  

𝜀 = [

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀21 𝜀22 𝜀23

𝜀31 𝜀32 𝜀33

] =

[
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 (1) 
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The classical approach to bone healing simulation is to represent the mechanical 

stimulus by defining two scalar quantities from the general 3D state of strain – the 

dilatational strain, 𝜀𝐻𝑦𝑑𝑟𝑜, and the deviatoric strain, 𝜀𝐷𝑖𝑠𝑡: 

𝜀𝐻𝑦𝑑𝑟𝑜 =
1

3
(𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧) (2) 

𝜀𝐷𝑖𝑠𝑡 =
2

3
 

√(𝜀𝑥𝑥 − 𝜀𝑦𝑦)2 + (𝜀𝑦𝑦 − 𝜀𝑧𝑧)2 + (𝜀𝑧𝑧 − 𝜀𝑥𝑥)2 + 6 ∗ (𝜀𝑥𝑦 + 𝜀𝑦𝑧 + 𝜀𝑧𝑥)2 

 

(3) 

These strain components were obtained from ANSYS and the resultant 

mechanical stimuli (Hydrostatic and Distortional strains) for each callus element were 

extracted and calculated from ANSYS mechanical solutions using ANSYS Parametric 

Design Language (APDL). 
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2.3 Material Properties 

In the finite element models, all materials were presumed linear elastic, 

isotropic, and homogeneous, with material properties for individual tissues defined in 

Table 1. Cortical bone fragments were assigned properties corresponding to intact bone 

and were kept constant throughout all iterations. Initially, all callus elements were 

assigned properties corresponding to granulation tissue. In the secondary bone healing 

process, connective tissues, cartilage, and woven bone are formed in the bridging callus 

at the fracture site over time. The local variation in the ratio of these three tissue types 

is determined by the tissue differentiation process, which in this model was assumed to 

be mechanoregulated. Accordingly, the degree of membership 𝑐 was introduced to 

quantify the proportion of different tissue types of an element inside the callus region. 

The balanced equation of the degree of membership is given as:  

𝑐woven + 𝑐𝑐𝑎𝑟𝑡 + 𝑐conn = 1 (4) 

where 𝑐woven, 𝑐𝑐𝑎𝑟𝑡, 𝑐conn denote the volume fraction of woven bone, cartilage, and 

connective tissues within the elemental tissue mixture, with the mechanical properties 

of all tissues given in Table 1. The degree of membership for each element within the 

callus region was defined with elementwise material properties.  

Table 1: Tissue material properties used in simulations 

Tissue Type Young’s Modulus, 𝐸𝐹𝐸  [MPa] Poisson’s Ratio, 𝑣𝐹𝐸  [-] 

Intact bone 15,750 0.45 

Woven bone 4,000 0.45 

Cartilage 40 0.35 

Connective tissue 0.5 0.3 
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Tissue differentiation as a continuous process occurs within the callus as the 

healing process proceeds. Consequently, the material properties of each callus element 

were updated in each iteration based on new volume fractions with a linear rule of 

mixtures, as has been previously reported [17]: 

𝐸𝐹𝐸 = 𝐸𝑤𝑜𝑣𝑒𝑛𝑐woven + 𝐸𝑐𝑎𝑟𝑡𝑐𝑐𝑎𝑟𝑡 + 𝐸𝑐𝑜𝑛𝑛𝑐conn (5) 

𝑣𝐹𝐸 = 𝑣𝑤𝑜𝑣𝑒𝑛𝑐woven + 𝑣𝑐𝑎𝑟𝑡𝑐𝑐𝑎𝑟𝑡 + 𝑣𝑐𝑜𝑛𝑛𝑐conn (6) 
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2.4 Fuzzy Logic Controller 

The Fuzzy Logic Toolbox (ver. 2.3.1) in MATLAB R2017A (MathWorks, Inc., 

Natick, MA, USA) was used to characterize the process of tissue differentiation during 

the healing process. The fuzzy controller took in the output files of the strain results 

from the ANSYS simulation as fuzzy inputs, determined the input state for each 

element in the callus region based on fuzzy logic rules, and output which kind of 

biological process would happen to predict the tissue differentiation result (Figure 6). 

Figure 6: Tissue differentiation diagram based on previous research [28]. The 

boundaries between the regions are fuzzy zones rather than thresholds. 

At the start of each iteration, the input state of each element was evaluated in 

the ANSYS finite element model as described above with elementwise material 

properties dictated by the tissue volumetric rules of mixtures (Equation 5 and Equation 

6) at the previous iteration. The input variables to the fuzzy logic controller included 

the octahedral normal and shear scalars, 𝜀𝐻𝑦𝑑𝑟𝑜  and 𝜀𝐷𝑖𝑠𝑡 , as well as the volume 

fractures for bone and cartilage, 𝑐𝑏𝑜𝑛𝑒 and 𝑐𝑐𝑎𝑟𝑡. 
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𝐼𝑛𝑝𝑢𝑡𝑠 = [𝜀𝐻𝑦𝑑𝑟𝑜 𝜀𝐷𝑖𝑠𝑡 𝑐𝐵𝑜𝑛𝑒 𝑐𝐶𝑎𝑟𝑡𝑖𝑙𝑎𝑔𝑒] (7) 

Membership functions were used to regulate the degree to which the inputs 

belonged to each of the fuzzy sets. In the process of fuzzification, each of the fuzzy 

inputs was defined with its fuzzy sets consisting several membership functions (Table 

2) which maps the non-fuzzy input values to fuzzy linguistic terms between 0 and 1. 

For example, for a given fuzzy input A (Distortional strain values) on the universe of 

discourse X (Distortional strain). The value 0 means that X is not a member of the fuzzy 

set; the value 1 means that X is fully a member of the fuzzy set. The values between 0 

and 1 characterize fuzzy members, which belong to the fuzzy set only partially.   

Table 2. Fuzzy inputs and associated membership functions 

Fuzzy input Fuzzy set Membership 

functions 

Distortional strain 'Very High’, ‘High’, ‘Middle’,' Near Zero'  

 

 

 

Trapezoidal 

hydrostatic strain 'Positive Very High’, ‘Positive High’, 

‘Positive Middle', ' Near Zero’, ‘Negative 

Middle’, ‘Negative High’, ‘Negative Very 

High' 

Bone concentration 'High’, ‘Middle’,' Low' 

Cartilage concentration 'High’, ‘Middle’,' Low' 

After the inputs were fuzzified, 24 linguistic If-Then rules were defined to 

control tissue differentiation during healing process (see Figure 7 and Table 3). For 

example, one rule for cartilage formation can be expressed linguistically: 

IF % Cartilage (𝑐𝑐𝑎𝑟𝑡) is Not Low AND Normal Strain (𝜀𝑛) is Negative High 

AND Shear Strain (𝜀𝑠) is Not Destructive THEN increase % Cartilage (𝑐𝑐𝑎𝑟𝑡). 
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Figure 7: (a) Membership function of bone, cartilage concentration. (b) 

Membership function of hydrostatic strain. (c) Membership function of 

distortional strain. 
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Table 3: Fuzzy rules implemented in the fuzzy controller 

Rules Mean Strain Shear Strain Bone Volume 

Fraction, 𝑐𝑤𝑜𝑣𝑒𝑛 

Cartilage Volume 

Fraction, 𝑐𝑐𝑎𝑟𝑡 

Bone Change Cartilage Change 

1 Positive very High    Decrease Decrease 
2 Negative Very high    Decrease Decrease 

3  Very high   Decrease Decrease 

4 Low Low   Decrease Decrease 

5 Negative medium Medium  Low Increase  Decrease 

6 Positive medium Medium  Low Increase Decrease 

7 Low Medium  Low Increase Decrease 

8 Negative medium Not very high Not high Low No change increase 

9 Negative high Very high  Not low No change  Increase 

10 Negative medium Very high  High No change  Increase 

11 Negative medium Low  Not low Increase decrease 

12 Negative high Low  Not low Increase Decrease 

13 Negative medium medium  Not low Increase Decrease 

14 Negative medium Medium  Not low Increase Decrease 

15 Negative medium Medium High Low Increase  Decrease 

16 Negative medium Low High Low increase Decrease 

17 Negative medium High   No change  No change 

18 Low High   No change  No change 

19 Positive medium High   No change No change 

20 Positive medium Not very high   No change  No change 

21 Negative high Not very high  Not low Increase  Decrease 

22 Negative medium Not very high  Not low Increase Decrease 

23 Low Not very high  Not low Increase Decrease 

24 Positive medium Not very high  Not low Increase Decrease 
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Finally, defuzzification was performed according to the membership function 

of the output variables describing the process of interpreting the membership degrees 

of the fuzzy sets into a specific decision or real value. The resulting end state 

probabilities included the likelihood tissue destruction ( 𝑝𝑇𝐷 ), intramembranous 

ossification (𝑝𝐼𝑂), cartilage formation (𝑝𝐶𝐹), endochondral ossification (𝑝𝐸𝑂), cartilage 

calcification (𝑝𝐶𝐶 ), remodeling (𝑝𝑅 ), and no change (𝑝𝑁𝐶 ). In vector form,  the 

differentiation probabilities are:  

𝒑 = [𝑝𝐼𝑂 𝑝𝐶𝐹 𝑝𝐸𝑂 𝑝𝑅 𝑝𝑁𝐶 𝑝𝐶𝐶 𝑝𝑇𝐷] (8) 

To illustrate how the fuzzification, linguistic rule application, and 

defuzzification processes work, consider this example of an arbitrary finite element 

inside the callus region. Suppose the mechanical stimuli are 𝜀𝑛 = -0.0001 and 𝜀𝑠 = 

0.057 and the tissue volume fractions are 𝑐𝑤𝑜𝑣𝑒𝑛  = 2% and 𝑐𝑐𝑎𝑟𝑡  = 10%. This 

elemental input condition fits fuzzy rules 6 and 7 (see Table 2) which means both rules 

will be activated. Multiple rules have been activated because there are several 

overlapping regions in which the input condition fall in the membership function. In 

this example, the tissue differentiation result has the probability of 30% to be 

“Intramembranous Ossification”, 70% to be “No Change”, and 0% to be all the other 

outputs. 

After the differentiation probabilities for each element have been calculated, the 

concentration of woven bone and cartilage for the next time steps then can be 

calculated:  
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𝑐woven,t+1 = 𝑐woven,t + 

 𝑐woven,t[𝑝𝑇𝐷 𝑝𝐼𝑂 0 𝑝𝐸𝑂 𝑝𝑅 0 𝑝𝐶𝐶  ]

[
 
 
 
 
 
 
−𝑅𝑇𝐷𝐵

𝑅𝐼𝑂

0
𝑅𝐸𝑂

−𝑅𝑅𝐵

0
𝑅𝐶𝐶 ]

 
 
 
 
 
 

∆𝑡 

 

 

(9) 

𝑐cart,t+1 = 𝑐cart,t + 

 𝑐cart,t[𝑝𝑇𝐷 0 𝑝𝐶𝐹 𝑝𝐸𝑂 𝑝𝑅 0 𝑝𝐶𝐶  ]

[
 
 
 
 
 
 
−𝑅𝑇𝐷𝐶

0
𝑅𝐶𝐹

−𝑅𝐸𝑂

−𝑅𝑅𝐶

0
−𝑅𝐶𝐶 ]

 
 
 
 
 
 

∆𝑡 

 

 

(10) 

Where the rate constants 𝑅𝑇𝐷𝐵, 𝑅𝑇𝐷𝐶 , 𝑅𝐼𝑂 , 𝑅𝐶𝐹 , 𝑅𝐸𝑂 , 𝑅𝑅 , 𝑅𝑅𝐶 , 𝑅𝐶𝐶 represent the 

following biological processes: tissue destruction of bone (𝑅𝑇𝐷𝐵), tissue destruction of 

cartilage (𝑅𝑇𝐷𝐶 ), intramembranous ossification (𝑅𝐼𝑂 ), cartilage formation (𝑅𝐶𝐹 ), 

endochondral ossification (𝑅𝐸𝑂), remodeling of bone (𝑅𝑅𝐵), remodeling of cartilage 

(𝑅𝑅𝐶), and cartilage calcification (𝑅𝐶𝐶). The parameter values chosen for each of these 

rate constants can be found in Table 3. ∆𝑡  means the time interval between each 

iteration, in our model, was set to be 1 day. The new material properties can be 

calculated by the rules of mixture.   

Note that blood supply is a very important factor for the osseous healing [29]. 

While the chondrogenesis and the calcification of the fibrocartilage may precede the 

angiogenesis, intramembranous and endochondral ossification rely entirely on 

sufficient perfusion. Cartilage forms instead of woven bone if mechanical stimuli are 
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inadequately large or local blood perfusion is too low for intramembranous ossification 

[21]. This model assumed a permanent homogeneous optimal blood supply for all 

elements inside the callus region with no linguistic rules for perfusion-limited 

differentiation. These could be easily added but were not varied in this body of work. 

Table 4: Tissue transformation rates of fuzzy rule conclusions [17]. 

Fuzzy conclusion From To Rate [%/day] 

Tissue Destruction of bone Bone Conn. tissue 10 

Tissue Destruction of cartilage Cartilage Conn. tissue 20 

Intramembranous ossification Conn. tissue Bone 1 

Cartilage formation Conn. tissue Cartilage 5 

Endochondral ossification Cartilage Bone 2 

Remodeling of bone Bone Conn. tissue 4 

Remodeling of cartilage Cartilage Conn. tissue 8 

Cartilage calcification Cartilage Bone 2 

No change    
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2.6 Healing Assessment over Time 

A widely applied method is accomplished by measuring the biomechanical 

properties of skeletal tissues to assess the recovery condition. The ideal status of bone 

recovery is not considered achieved when the mechanical performance of the newly 

developed tissues at the fracture site is not restored [30]. 

As healing progresses, the granulation tissue of the initial callus will be 

gradually replaced with a mixture of stiffer tissues, leading to a progressive stiffening 

of the entire callus region and decreased interfragmentary motion and strain [16]. To 

measure the healing status at the fracture site, a virtual torsion rigidity (VTR) test was 

chosen as a summary indicator of mechanical integrity. Post-mortem torsion testing is 

commonly used to determine the extent of recovery in animal models [11], [14], [31], 

because the results produced are direction-independent, unlike bending tests [32]. In 

the models, torsion mechanical testing was carried out at each iteration in a 

correspondent testing model that had the same settings as in each simulation model 

while excluding the intramedullary nail, just as would be the case in post-mortem 

mechanical testing in an animal model. This ensured that the mechanical result 

measured the structure of the callus only, not the implant. Torsion tests consisted of an 

applied one degree of rotation at the proximal end of the bone and calculation of the 

resulting reaction moment at the fixed end. Torsional rigidity across the fracture site, 

𝑅𝑡𝑜𝑟 was assessed at the end of each step:  

𝑅𝑡𝑜𝑟 =
𝑀𝐿

𝜙
 (11) 



25 
 

Where 𝑀 is the reaction moment, 𝐿 is the segment length, and 𝜙 is the angle of the 

twist. Healing progress over time was measured by normalizing the torsional rigidity 

of the fractured model to the torsional rigidity of a comparison model consistent of 

intact cortical bone with no defect. Iterations were repeated for 100 steps in each model 

to estimate the patient’s healing status within 100 days after the surgery. 
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2.7 Iterative Healing Simulation Procedure 

In the model, tissue differentiation occurs continuously within the callus as the 

healing process proceeds (see Figure 6). First all elements of the callus were ini-

tialized to connective tissue. Each iteration involved application of loading (Case I or 

Case II, see §2.2 for rationale). At the beginning of each iteration, the strain status of 

each elements was measured in ANSYS; the degree of membership and tissue 

differentiation results were estimated using fuzzy logic controller; and the degree of 

bone formation was examined, then the rule of mixtures (Equation 6 and Equation 7) 

was then used to update E and ν for each mesh element. After each iteration,. The 

strain status of all callus elements was updated and used to determine the tissue 

mixture change for the next iteration using the fuzzy controller described above. 

Finally, at each step, the structural progress of healing was measured using a virtual 

torsion test as described in §2.6. Thus, the healing process in our numerical method 

was modeled by iterations (see Figure 8).  

In the simulation models, each iteration was used to represent the approximate 

daily healing process, as had been done by previous investigators [17].  
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Figure 8: Flowchart of the fracture healing model including the FE method and 

the fuzzy logic. 

 

 

 

 

 

 

 



28 
 

3. Results 

In general, as in all computational mechanoregulation models of fracture 

healing, these models predicted formation of cartilage and bone, with progressive 

stiffening of the callus over time (see representative example in Figure 9).    

Figure 9: Prediction of bone and cartilage concentration for A1 geometry under 

loading case I. 
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Figure 10: Prediction of bone and cartilage concentration for A1 geometry under 

loading case II. 

Recorded variables at each iteration included the predicted distributions of all 

input variables (strains, element stiffness, and tissue concentrations) inside the callus 

region. As described in Figure 8, the torsional rigidity, 𝑅𝑡𝑜𝑟 , of the bone-callus 

structure was assessed at each iteration and was normalized to the rigidity of the intact 

bone to provide a relative measure of healing over time on a percentage scale. This 

procedure was repeated for all nine OTA/AO geometries under both loading cases I and 

II for 100 iteration days. In all models, when 𝑅𝑡𝑜𝑟 approached 100%, this represented 
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standard uncomplicated healing of the fractured bone. If 𝑅𝑡𝑜𝑟 remained substantially 

low over the 100 iteration days, this was considered a model-predicted nonunion. 

First, we attempted to compare the two loading scenarios (I – axial only; II – 

axial and torsion) for the three simplest geometry models in the data, which represent 

OTA/AO classifications A1 (simple spiral), A2 (simple oblique), and A3 (simple 

transverse). When simulated for 100 days, progressive healing occurred as expected in 

for the axial-only loading scenario (Figure 10a), but did not occur when clinically 

relevant torsional instability was introduced into the simulated implant construct 

(Figure 10b). In fact, less than about 1% recovery was observed for these three fractures 

under the loading case II over the 100 iterations, compared with at least 90% recovery 

for the axial-only loading Case I. This result was surprising because in clinical practice, 

nonunions are rare for these simple fractures, particularly when there is good 

vascularity (optimal perfusion in this model).   
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Figure 11: Progression of bone-callus normalized torsional rigidity during the 

early healing period of the A1, A2 and A3 model in the two loading cases: (a) Case 

I – axial loading only; (b) Case II – axial and torsion loading. 

A closer examination of the data produced with the published 

mechanoregulation models under the torsional loading case provided a mechanical 

strain explanation for the predicted slow healing. When the implant model was 

configured to allow realistic torsional instability, the resulting callus strain field 

included large regions of high distortional strain from the first iteration (see Figure 11). 

According to the published mechanoregulation rules, under these scenarios, fracture 

callus will fail to achieve bony bridging because the elements inside the callus region 

experience extremely high distortional strain conditions that have been previously 
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attributed to tissue destruction conditions. According to the published 

mechanoregulation rules, the tissue in the navy-blue region of Figure 11 were 

destructed, exceeding the supposed limit for formation of woven bone. As a result of 

these distortional strains, this model set predicted no bony bridging between the distal 

and proximal fragments. Most of the tissue in the grey region were in the phase of intra-

membranous ossification (cortical bone are not included); the tissue in the green and 

sky-blue region were in the process of endochondral ossification. 

 

Figure 12: Distortional strain results for A1, A2 and A3 model in both loading at 

the first iteration. Note the large regions of destructive strain according to 

published baseline fuzzy logic mechanoregulation models. 
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Based on the results for Cases I and II in OTA/AO fractures A1, A2, and A3, 

the traditional fuzzy rules for distortional shear destructive cutoff worked well when 

modeling fracture healing under axial loading only, but failed to produce union when 

predicting healing outcomes under multiaxial loadings. The elemental strain 

distributions within the callus zone for the first iteration are illustrated in Figure 12. 

 

Figure 13: Box plot of elemental distortional strains in A1, A2, A3 geometries at 

the first iteration. A1 represents the strain distribution at loading case I, while A1* 

represents the strain distribution at loading case II, et al. The dash line shows the 

upper tissue formation limit.   
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 Figure 12 shows that most of the elements fell into the region that would be 

favorable for tissue destruction at loading condition case II, resulting in the healing 

curves shown in Figure 10(b), even though this would not be expected clinically. To 

address this issue, the tissue destruction cutoff for distortional strain was increased from 

the previously published cutoff of 0.17 to an unrestrictive upper limit approaching 1.0. 

This limit was not chosen based on an expected physiological mechanism, but rather to 

avoid producing tissue destruction in the fuzzy model. This adapted model was then 

run for 100 iteration days, producing the healing curves shown in Figure 13. 
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Figure 14: Progression of callus torsional rigidity during the early healing period 

based on fracture geometry, grouped by OTA/AO type. A1 means at loading case 

I while A1* means at loading case II, et al.   
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After effectively removing the distortional strain-mediated destruction term 

from the fuzzy model, the new simulations showed that progressive healing would 

occur across all fracture types, even with torsional loading and realistic implant 

mechanics (Case II). Across all nine fracture models, the simulations showed that 

torsional instability, which occurs naturally in realistic intramedullary fixation, can 

delay healing slightly compared to perfect torsional rigidity. The progression of callus 

torsional rigidity showed a plateau at the early period of healing for all the nine models 

in the loading case II compared to the loading case I. This delay was around 15 days 

for type B and C fractures compared to one week for type A fractures. After this initial 

delay, healing began to progress rapidly and the bone-callus torsional rigidity then 

increased at approximately the same rate as in the perfect torsional stability scenario, 

just at a later absolute time point.  

The model results also indicated that differences in interfragmentary strain due 

to fracture geometry can significantly change the time to union. Overall, OTA/AO type 

B (wedge) and C (complex) fractures healed more slowly than type A (simple) 

fractures, even when all fuzzy logic parameters were kept constant in both loading 

cases. After 100 iteration days (~3 months), all simple (A) fractures were approaching 

𝑅𝑡𝑜𝑟 = 100%, whereas the wedge (B) and complex (C) fracture models, all of which 

had at least one floating bone fragment, were at 80% or less recovery according to 

Figure 13.  
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Besides virtual torsional rigidity test (Figure 13), overall healing simulation 

results of nine geometry were indicated by measuring Young’s Modulus (Figure 14) 

and volume fraction of different tissue types (Figure 15) in the fracture site at the 100th 

iteration (final healing statue).  

Figure 14 shows that the Young’s Modulus of the fracture under loading case II 

were to some extent greater than the one under loading case I. This is not surprising 

that multiaxial loading would stimulate more area within the callus region to recover, 

which in turn leads to a slightly better mechanical performance in the virtual rigidity 

test at later stage shown in Figure 13. 

 

Figure 15: Distribution of elemental Young’s modulus for all 9 geometries at 100 

times of iteration. 
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Figure 15 shows the volume fraction of woven bone, cartilage and connective 

tissue for all 9 geometries under two loading case during the iterations. Even when the 

volume fraction of bone did not reached 100%, the bone had already processed with 

the similar mechanical properties to resist loading moment resembling patients’ daily 

bearing. Figure 15 also validates the conclusion from Figure 13 that the healing was 

delayed under the loading case II for all geometries. The progression of volume fraction 

of woven bone (red dash line in Figure 15) showed a plateau at the early period of 

healing for all nine models under the loading case II which means the tissue went 

through the Endochondral Ossification instead of Intramembranous Ossification. 

Notably, more cartilage tissues would produce under loading case II than under loading 

case 1. 
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Figure 16: Progression of volume fraction of woven bone, cartilage, and connective 

tissue for all 9 geometries under two loading case during the early healing period. 

The models were meshed with Tet10 elements. To verify that the FE model 

predictions were independent of the FE mesh size, a mesh convergence analysis was 

performed. Three different sizes of max face size factors were set (2.4 mm, 1.2 mm, 0.6 

mm) to find a suitable mesh size corresponding to the gap between cortical bone (Figure 

16). 
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Figure 17: Three different mesh sizes which depends on the layer of mesh that 

generated at the gap region of the cortical bone for model A1. 

The axial loading was applied to these three different mesh sizes and the 

Progression of callus torsional rigidity curves are shown in Figure 17.  

 

 

Figure 18. Progression of callus torsional rigidity for different mesh size. 
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Figure 17 shows that the results from the coarsest mesh size has a larger error 

compared to the others. Although the results accuracy improves as the mesh size 

becomes finer, the element number increased significantly, from 35098 to 211369, 

which in turn increased the time consuming of the 100 iterations from 8 hours to 21 

hours. Based on this study, it was determined that the 1.2 mm mesh size is fine enough 

and less time consuming to complete the simulation.  
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4. Discussion 

Overall, healing outcome in Figure 13 shows that even when all other factors 

were held constant (choice of implant, patient weight bearing, soft tissue injury and 

perfusion), the geometry of the fracture was also correlated with the interfragmentary 

strain, and thus can influence the healing outcome. 

The results of this study also suggested that previously published fuzzy logic 

models for bone healing may require some parameter optimization to allow application 

in realistic fracture geometries with clinically relevant implant mechanics. The 

traditional fuzzy rules for distortional shear destructive cutoff (upper tissue formation 

limit) do not predict union with realistic geometries when torsion is applied, despite the 

fact that clinical nonunions are relatively rare in well-reduced, closed, simple (A) 

fractures [9]. One potential explanation for the predicted nonunions with the unadjusted 

mechanoregulation models is that this numerical modeling technique was originally 

developed and validated using axisymmetric models that were tuned by comparison to 

2D histology sections and therefore may not adequately consider shear in a 3D 

environment. With our clinically relevant 3D geometries, replicating these simpler 

mechanical conditions by imposing no torsional load produced timely progress of 

healing, even in the unmodified model.  

Notably, this is not the first study to incorporate torsional loading in a 

mechanoregulation model, but it is the first to demonstrate the difficulties we have 

observed pertaining to the cutoff for destructive distortional shear strain. One possible 
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explanation for this is that other investigators have modeled implant mechanics 

assuming external fixation, not intramedullary nailing, for the purposes of comparing 

predicted healing curves to existing in vivo datasets [33], [34]. In contrast, we have 

modeled implant mechanics based on direct test data from clinical nailing constructs 

because nailing is considered the gold standard method of fixation for diaphyseal tibial 

fractures in humans. The spurious nonunions that were predicted using the unadjusted 

mechanoregulation model would not have been observed without including free play 

arising from screw-hole dimensional clearances. The presence of a neutral zone or free-

movement plateau in nailing constructs has been reported before [35], but rarely, with 

near ubiquitous reference to overall construct stiffness instead, which may have 

reinforced the acceptance of relatively low thresholds for destructive distortional shear 

throughout the literature.  

The results presented here may have significant implications for 

mechanoregulation modeling of fracture healing processes. Specifically, this data 

suggests that in vivo bone healing may be somewhat less sensitive to distortional shear 

than the traditional models would predict. In this work, a higher upper boundary for the 

threshold of destruction of bone and cartilage during tissue differentiation was used in 

our fuzzy model to avoid spurious nonunion. However, this upper threshold for 

destruction was chosen to be arbitrarily high, rather than tuned to specific set point. A 

preponderance of preclinical and clinical evidence suggests that torsional instability 

should delay fracture healing and the models presented here do broadly concur with 

this conclusion, although the effect of torsion would likely be stronger if a valid new 
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distortion-mediated destructive shear threshold could be established. In this regard, 

continued reliance on model parameter tuning from ovine studies with external fixators 

is not likely to be fruitful and alternative clinical validation strategies, for example 

mechanical modeling from CT scan data [36] may be required. 

This work also showed definitively—for the first time—that the rate of fracture 

healing depends on interfragmentary mechanics and is controlled in part by the fracture 

morphology, independent of all other factors. In these simulations, when all of the fuzzy 

rules were kept constant, changes in the fracture geometry produced different healing 

outcomes. These models represent a virtual experiment that is impossible to achieve 

clinically, in that the model parameters representing the choice of implant, patient 

weight bearing, and perfusion related to soft tissue injury were all controllable and 

constant. The results suggest that reported differences in the risk of clinical 

complications such as reoperation and nonunion in different to OTA/AO classification 

groups may actually reflect, at least in part, the underlying mechanical state of the 

interfragmentary healing zone.  

Furthermore, this data confirms that torsional instability interferes with healing 

for all fracture geometries. Animal experimental data has repeatedly shown that healing 

is deficient with torsional instability compared to torsional rigidity. For example, use 

of an angle-stable tibial nail can help to reduce interfragmentary movements in vivo and 

thus lead to superior bone healing compared with standard tibial nailing [14]. 

Consequently, some decrease in healing rate with torsion should be expected, which 
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agrees well with our observation that torsional instability delays healing in 

mechanoregulated healing models across every AO/OTA fracture type considered.  

This study and the results reported are subject to some important limitations:  

I. The fracture healing process is a complex biological process that is 

regulated by both mechanical factors and biochemical factors. In this 

study, we only consider the regulatory role of mechanical stimuli on 

fracture healing. Biochemical factors, such as growth factors and 

perfusion change, also influent the healing process, are not considered 

in this model. Therefore, it will be an improvement for the current model 

to take the influence of biomechanical factors into account. 

II. It is a numerical study which is accompanied with several modeling 

assumptions and experience data: One thing is that the load we applied 

was a simplified, and averaged loading scenario which cannot reflect the 

details of the patients’ moving. The other thing is that in the fuzzy logic 

rules and functions. the simplest is the triangular membership function 

were used to model the fuzzy area of tissue destruction. The width of the 

fuzzy areas was also unvalidated by experiment data.  

Finally, it is worth noting that a rule of mixtures was used in our model to 

calculate the Young’s modulus and Poison’s ratio for each of the finite elements. There 

are mainly two types of mixture rules in the published models: linear function or cubic 

function [24], [37], [38]. In the case of the elastic modulus, a linear rules of mixture is 
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known as the upper-bound modulus, and corresponds to loading parallel to the fiber 

tissues. In our model, we assumed that the newly generated tissue is stress oriented, 

which supports this linear mixture rule. Also, the rationale for cubic relation is weak, 

given that it is extrapolated from density-modulus regression relations in trabecular 

bone [38], rather than data specifically relevant to bone fracture callus. Nevertheless, 

the use of the cubic mixture rule mitigates the contribution of small bone percentages 

to the increase in local tissue stiffness, which would have the effect of delaying the 

decrease in strain that leads to favorable conditions for rapid bone formation. This may 

effectively delay healing in the simulation, which would in turn influence the 

optimization of tissue formation rates in previous papers [21], [24], leading to selection 

of rate constants that may be too fast to reflect realistic healing. Based on the above, we 

used linear rules in our model. 
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5. Conclusions 

In summary, this is the first study of its kind to consider both fracture geometry 

and multi-axial loading (axial weight bearing with/without torsion) as relevant factors 

in the mechanoregulated bone healing processes. Compared to other models that used 

only transverse osteotomy fracture geometries, we used more realistic fracture 

geometries and showed that all types of fractures experience slower healing with 

torsional instability and may therefore benefit from increased torsional stability in 

fracture fixation when possible. Furthermore, we showed that mechanoregulation 

simulations are highly sensitive to distortional strain arising from torsional loading 

conditions and that previously published thresholds for destructive strain may be too 

low to predict healing in clinically realistic scenarios. Clinical fracture fixation by 

intramedullary nailing always includes some torsional instability, which has not been 

adequately represented in previous fuzzy logic models. To make these types of 

simulations more relevant, fuzzy rules need to be adapted to avoid predicting a 

nonunion that would not be expected in clinical practice. 

 

 

 

 

 



48 
 

Bibliography 

[1] M. B. Harris, “Rockwood and Green’s fractures in adults, fifth edition,” Arthrosc. 

J. Arthrosc. Relat. Surg., vol. 18, no. 6, pp. 676–677, Jul. 2002. 

[2] R. Marsell and T. A. Einhorn, “The biology of fracture healing,” Injury. 2011. 

[3] P. J. Prendergast, R. Huiskes, and K. Søballe, “Biophysical stimuli on cells 

during tissue differentiation at implant interfaces,” J. Biomech., 1997. 

[4] J. A. Bishop, A. A. Palanca, M. J. Bellino, and D. W. Lowenberg, “Assessment 

of Compromised Fracture Healing,” J. Am. Acad. Orthop. Surg., vol. 20, no. 5, 

pp. 273–282, May 2012. 

[5] E. Antonova, T. K. Le, R. Burge, and J. Mershon, “Tibia shaft fractures: costly 

burden of nonunions,” BMC Musculoskelet. Disord., vol. 14, no. 1, p. 42, Dec. 

2013. 

[6] W.-H. Tay, R. de Steiger, M. Richardson, R. Gruen, and Z. J. Balogh, “Health 

outcomes of delayed union and nonunion of femoral and tibial shaft fractures,” 

Injury, vol. 45, no. 10, pp. 1653–1658, Oct. 2014. 

[7] E. J. MacKenzie et al., “Return to work following injury: the role of economic, 

social, and job-related factors.,” Am. J. Public Health, vol. 88, no. 11, pp. 1630–

1637, Nov. 1998. 

[8] K. Fong et al., “Predictors of nonunion and reoperation in patients with fractures 

of the tibia: an observational study,” BMC Musculoskelet. Disord., vol. 14, no. 1, 

p. 103, Dec. 2013. 

[9] H. L. Dailey, K. A. Wu, P.-S. Wu, M. M. McQueen, and C. M. Court-Brown, 

“Tibial Fracture Nonunion and Time to Healing After Reamed Intramedullary 

Nailing,” J. Orthop. Trauma, vol. 32, no. 7, pp. e263–e269, Jul. 2018. 

[10] K. O’Halloran et al., “Will My Tibial Fracture Heal? Predicting Nonunion at the 

Time of Definitive Fixation Based on Commonly Available Variables,” Clin. 

Orthop. Relat. Res., vol. 474, no. 6, pp. 1385–1395, Jun. 2016. 

[11] D. R. Epari, J. P. Kassi, H. Schell, and G. N. Duda, “Timely fracture-healing 

requires optimization of axial fixation stability,” J. Bone Jt. Surg. - Ser. A, vol. 

89, no. 7, pp. 1575–1585, 2007. 

[12] H. Schell, D. R. Epari, J. P. Kassi, H. Bragulla, H. J. Bail, and G. N. Duda, “The 

course of bone healing is influenced by the initial shear fixation stability,” J. 

Orthop. Res., vol. 23, no. 5, pp. 1022–1028, Sep. 2005. 



49 
 

[13] P. Augat, J. Burger, S. Schorlemmer, T. Henke, M. Peraus, and L. Claes, “Shear 

movement at the fracture site delays healing in a diaphyseal fracture model,” J. 

Orthop. Res., vol. 21, no. 6, pp. 1011–1017, Nov. 2003. 

[14] K. Kaspar et al., “Angle stable locking reduces interfragmentary movements and 

promotes healing after unreamed nailing: Study of a displaced osteotomy model 

in sheep tibiae,” J. Bone Jt. Surg. - Ser. A, vol. 87, no. 9 I, pp. 2028–2037, 2005. 

[15] J. F. Kellam, E. G. Meinberg, J. Agel, M. D. Karam, and C. S. Roberts, 

“Introduction,” J. Orthop. Trauma, vol. 32, no. 1, pp. S1–S10, 2018. 

[16] L. E. Claes and C. A. Heigele, “Magnitudes of local stress and strain along bony 

surfaces predict the course and type of fracture healing,” J. Biomech., vol. 32, 

no. 3, pp. 255–266, 1999. 

[17] C. Ament and E. P. Hofer, “A fuzzy logic model of fracture healing,” J. Biomech., 

vol. 33, no. 8, pp. 961–968, 2000. 

[18] D. Lacroix and P. J. Prendergast, “A mechano-regulation model for tissue 

differentiation during fracture healing: Analysis of gap size and loading,” J. 

Biomech., vol. 35, no. 9, pp. 1163–1171, 2002. 

[19] H. Isaksson, C. C. van Donkelaar, R. Huiskes, and K. Ito, “Corroboration of 

mechanoregulatory algorithms for tissue differentiation during fracture healing: 

comparison with in vivo results,” J. Orthop. Res., vol. 24, no. 5, pp. 898–907, 

Mar. 2006. 

[20] L. Claes, P. Augat, G. Suger, and H. J. Wilke, “Influence of size and stability of 

the osteotomy gap on the success of fracture healing,” J. Orthop. Res., vol. 15, 

no. 4, pp. 577–584, 1997. 

[21] U. Simon, P. Augat, M. Utz, and L. Claes, “A numerical model of the fracture 

healing process that describes tissue development and revascularisation,” 

Comput. Methods Biomech. Biomed. Engin., vol. 14, no. 1, pp. 79–93, 2011. 

[22] M. Steiner, L. Claes, A. Ignatius, U. Simon, and T. Wehner, “Numerical 

simulation of callus healing for optimization of fracture fixation stiffness,” PLoS 

One, vol. 9, no. 7, pp. 1–11, 2014. 

[23] H. L. Dailey, D. Ph, C. J. Daly, and A. Glass-hardenbergh, “Mechanical Origins 

of Fracture Nonunion : Implant Tests and Finite Element Models of Callus 

Strains,” 2015, p. 2. 

[24] M. Wang and N. Yang, “Three-dimensional computational model simulating the 

fracture healing process with both biphasic poroelastic finite element analysis 

and fuzzy logic control,” Sci. Rep., no. April, pp. 1–13, 2018. 



50 
 

[25] E. N. Kubiak, M. J. Beebe, K. North, R. Hitchcock, and M. Q. Potter, “Early 

Weight Bearing After Lower Extremity Fractures in Adults,” J. Am. Acad. 

Orthop. Surg., vol. 21, no. 12, pp. 727–738, 2013. 

[26] S. C. Gross, D. K. Galos, D. P. Taormina, A. Crespo, K. A. Egol, and N. C. 

Tejwani, “Can tibial shaft fractures bear weight after intramedullary nailing? A 

randomized controlled trial,” Journal of Orthopaedic Trauma, vol. 30, no. 7. pp. 

370–375, 2016. 

[27] T. Wehner, L. Claes, and U. Simon, “Internal loads in the human tibia during 

gait,” Clin. Biomech., vol. 24, no. 3, pp. 299–302, 2009. 

[28] S. J. Shefelbine, P. Augat, L. Claes, and U. Simon, “Trabecular bone fracture 

healing simulation with finite element analysis and fuzzy logic,” J. Biomech., 

vol. 38, no. 12, pp. 2440–2450, 2005. 

[29] F. W. Rhinelander, “Tibial Blood Supply in Relation to Fracture Healing,” Clin. 

Orthop. Relat. Res., vol. 105, no. 1, p. 34???81, Nov. 1974. 

[30] H. Isaksson, “Recent advances in mechanobiological modeling of bone 

regeneration,” Mechanics Research Communications, vol. 42. pp. 22–31, 2012. 

[31] M. Bottlang et al., “Dynamic stabilization with active locking plates delivers 

faster, stronger, and more symmetric fracture-healing,” J. Bone Jt. Surg. - Am. 

Vol., vol. 98, no. 6, pp. 466–474, 2016. 

[32] P. Augat, L. Claes, and K. Eckert-h, “The effect of mechanical stability on local 

vascularization and tissue differentiation in callus healing,” J. Orthop. Res., vol. 

20, no. 5, pp. 1099–1105, 2002. 

[33] M. Steiner, L. Claes, A. Ignatius, F. Niemeyer, U. Simon, and T. Wehner, 

“Prediction of fracture healing under axial loading, shear loading and bending is 

possible using distortional and dilatational strains as determining mechanical 

stimuli,” J. R. Soc. Interface, vol. 10, no. 86, pp. 20130389–20130389, 2013. 

[34] M. Steiner, L. Claes, A. Ignatius, U. Simon, and T. Wehner, “Disadvantages of 

interfragmentary shear on fracture healing - Mechanical insights through 

numerical simulation,” J. Orthop. Res., vol. 32, no. 7, pp. 865–872, 2014. 

[35] R. Attal et al., “The influence of distal locking on the need for fibular plating in 

intramedullary nailing of distal metaphyseal tibiofibular fractures,” Bone Jt. J., 

vol. 96 B, no. 3, pp. 385–389, 2014. 

[36] P. Schwarzenberg, M. M. Maher, J. A. Harty, and H. L. Dailey, “Virtual structural 

analysis of tibial fracture healing from low-dose clinical CT scans,” J. Biomech., 

Nov. 2018. 



51 
 

[37] T. Wehner, M. Steiner, A. Ignatius, L. Claes, and C. M. Aegerter, “Prediction of 

the time course of callus stiffness as a function of mechanical parameters in 

experimental rat fracture healing studies - A numerical study,” PLoS One, vol. 9, 

no. 12, pp. 1–16, 2014. 

[38] H. W. Carter DR, “The Compressive Behaviour of Bone as a Two-Phase Porous 

Structure.” J Bone Joint Surg Am, 1977. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

Vita: 

Tianyi Ren was born in Hefei, Anhui, PRC and grow up in Nanjing, Jiangsu, PRC. He 

enrolled at Southwest Jiaotong University in 2011 and completed his bachelor’s degree 

in Mechanical Engineering in 2015. Tianyi was admitted in Lehigh University for 

graduate school. 

 


