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Abstract 

This work investigates, both experimentally and computationally the cyclic behavior of stainless 

steel 316 under uniaxial loading at room temperature. Elastoplastic investigations of SS 316 are important 

in the development of an understanding of the possible behavior and their contribution to the material 

performance under cyclic loading. Cyclic plasticity can occur in an SS 316 component or structure 

depending on the loading conditions. Therefore, it is vital that the cyclic behavior of SS 316 is recognized 

and understood. In particular SS316 cylindrical rods specimens were tested under uniaxial cyclic loading. 

The experimental results show that ratchetting behavior regimes exist under the conditions presented. In 

order to simulate the experiments, an elastoplastic material model based on the Chaboche model is 

utilized in the commercial finite element (FE)-software ABAQUS. The Chaboche constitutive model 

utilized for cyclic loading, which includes nonlinear kinematic and isotropic hardening is discussed in 

detail. The kinematic and isotropic hardening parameters for the Chaboche model are also identified. The 

kinematic hardening parameters are calibrated using experimental data from the first half-cycle of 

loading, and the isotropic hardening parameters are defined by using cyclic experimental data from a test 

with symmetric strain (up to 1%). A 2D axisymmetric model is created in ABAQUS, where the same 

geometry, boundary conditions and loading cases are applied as those recorded experimentally. A mesh 

sensitivity study is also carried out. The error between simulation and experimental results is calculated 

and sources for the error are discussed. One strategy to decrease the numerical error is applied and 

evaluated. This work provides evidence that the Chaboche model can predict the cyclic behavior of 

stainless steel 316. However, there remain significant questions about the accuracy of the model 

parameters identified as they lead to errors in the predicted plastic strain at large cycle numbers. It is 
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concluded that an improved method for calibrating the parameters or a more complex constitutive model 

is needed to better predict the cyclic behavior of stainless steel 316. 
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Chapter 1 

Introduction 

 

Stainless steel (SS) 316 is an austenitic chrome-nickel stainless steel that is heat-resistant and 

offers superior corrosion resistance over other chromium-nickel steels when exposed to a wide range of 

chemical etchants and marine environments [1]. It is considered the second most common grade of steel 

in the stainless steel family after SS 304. SS 316 stainless steel is also known as marine grade stainless; 

the alloy addition of molybdenum gives corrosion resistance in reducing acids and against pitting attack 

in chloride solutions. Stainless steel’s resistance to corrosion and staining make it an ideal material for 

many applications.  

As SS 316 is used widely in all types of structures, its fatigue strength must be considered during 

design [2-4]. Due to complex loading conditions, cyclic plasticity can occur in machined SS 316 due to 

external discontinuities such as holes and notches and internal defects such as pores, as well as near 

cracks [5]. Therefore, a deep understanding of the elastoplastic performance of SS 316 under cyclic 

loading is required for accurate design and structural integrity. 

Inelastic material behavior in closed and repeated loading paths is known as cyclic plasticity [6]. 

When a material is subjected to cyclic loading (loading followed by unloading and subsequent reloading, 

for example earthquake loading), the material response also changes cyclically until it saturates (Figure 

1.1). A number of related phenomena have been observed by experiment, such as the Bauschinger effect, 

cyclic hardening/softening and mean stress relaxation and ratchetting [6]. Cyclic hardening or softening is 
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one of the most significant characteristics in cyclic plasticity, and extensive research has been carried out 

to better understanding the low-cycle fatigue and the plastic behavior of metals under cyclic loading [7]. 

Accurately simulating cycling inelasticity is an important consideration in the fatigue design since it can 

significantly affect fatigue life [9]. Phenomena like ratchetting (strain accumulation under stress-

controlled cyclic loading with non-zero mean stress), can cause additional damage, resulting in shorter 

fatigue life [10]. 

 

Figure 1.1: Different responses of a structure to complex cyclic loading [13] 

 

In addition, for detailed plastic analysis of materials under cyclic loading, we need a constitutive 

model which can accurately describe and predict the cyclic behavior of structural components [8]. 

Various models have been created for simulating the cyclic behavior of materials. Prager [11] proposed a 

model to predict the translation of the yield surface. Another popular nonlinear kinematic hardening 

model, the Armstrong and Frederick model, has been successful in predicting the multiaxial Bauschinger 

effect associated and ratchetting strains [12]. The Armstrong and Frederick model is used extensively by 

Chaboche, wherein a dynamic recoil term is introduced [13]. The Chaboche model is widely available in 

FINITE ELEMENT (FE) software codes and it often shows an excellent correlation with experimental 

results for monotonic and cyclic loading [1]. 

The Chaboche model is one of the most widely used plasticity models for metals under cyclic 

loading. In reference [1], the Chaboche model was used to simulate the cyclic behavior of SS 316L (low 

carbon). It is concluded that the simulation with the Chaboche model only provides a very limited 
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description of the material behavior under cyclic loading. In reference [6], they applied Chaboche model 

to simulate behavior of SS 316 under strain-controlled loading conditions, and the simulation matches the 

experimental data very well. In this thesis, we apply Chaboche model to predict the cyclic behavior of SS 

316 under stress-controlled test and assess this model’s ability to capture the cyclic ratchetting behavior 

of SS 316 under ambient uniaxial loading conditions. 

The rest of the thesis is organized as follows. Chapter 2 gives the experimental data for SS 316 

under different cyclic loading conditions. In Chapter 3, the Chaboche Nonlinear Kinematic Hardening 

material model is explained, the parameters in this model are identified, and the method for calibrating the 

parameters is described. In Chapter 4, we focus on simulation. We firstly create an axisymmetric 2D 

model in ABAQUS, and apply the same geometry, boundary conditions and loading cases as in the 

experiments. Then the identified parameters are used in the constitutive model in ABAQUS. A mesh 

sensitivity study is also carried out. The simulations and experimental results are compared and directions 

for model improvement are identified and discussed. Finally, Chapter 5 continues discussion of the 

findings and open questions in this thesis and ends with conclusions and future directions. 
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Chapter 2 

Experimental Results 

2.1 Test Samples 

The material used in the experiments performed was Stainless Steel 316 with properties shown in 

Table 2.1. The test specimen geometry is given in Figure 2.1. 

 

  

Young’s 

Modulus, GPa 

Tensile 

Strength, MPa 

Yield Stress, 

MPa 

Elongation 

% 

Hardness, 

Rockwell B 

Hardness, 

Brinell Max 

82.2 483 170 40 95 217 

Table 2.1 Mechanical properties of SS 316[1] 

 

 

 

 

 

 
 

Figure 2.1 Stainless Steel 316 test sample geometry (cylindrical rod) 
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2.2 Loading Cases 

A MTS servohydraulic test machine was used to perform uniaxial mechanical testing under 

tensile (monotonic) and cyclic loading conditions (stress-controlled). 

Tensile tests were performed to characterize the monotonic behavior of Stainless Steel 316, and 

the stress-strain curve of these tensile tests is the foundation for calculating the parameters in the 

constitutive model described in Chapter 3.  

In a strain-controlled test, the test is conducted in such a way that the strain increases at a given 

rate. Generally, the specimen is tested at a uniform strain rate (0.4% per second). For this thesis, 

symmetric strain-controlled tests at 1% strain were conducted. The results were used to record the 

hysteretic stress–strain response and to assess the degree of cyclic hardening or softening in the tested 

specimens. 

In stress-controlled tests, the force is increased at a given rate. Usually, the rate of increase of the 

force is maintained constant. For this thesis, asymmetric stress-controlled tests were conducted. The loads 

applied to the specimen in the stress-controlled tests are outlined in Table 2.2, with the following 

definitions: 

1) 𝜎𝑚𝑖𝑛 is the minimum stress. 

2) 𝜎𝑚𝑎𝑥 is the maximum stress. 

3) 𝜎𝛼 is the stress amplitude, given by 

 𝜎𝛼 =
|𝜎𝑚𝑎𝑥|+|𝜎𝑚𝑖𝑛|

2
 , (2.1) 

4) 𝜎𝑚 is the mean stress, given by 

 𝜎𝑚 =
|𝜎𝑚𝑎𝑥|−|𝜎𝑚𝑖𝑛|

2
 , (2.2) 

 

𝜎𝑚𝑖𝑛  𝜎𝑚𝑎𝑥  𝜎𝛼 𝜎𝑚 

-170.1 230.1 200.1 30  

Table 2.2 Load cases used in the asymmetric stress-controlled tests 
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2.3 Mechanical Testing Results 

Here we present three tests: (i) a tensile test, (ii) a strain-controlled test and (iii) a stress-

controlled test. The data from the tensile test is used to calculate Chaboche kinematic hardening 

parameters and the data from the strain-controlled test is applied to calculate Chaboche isotropic 

hardening parameters, which will be defined and discussed in Chapter 3. These parameters are part of the 

constitutive model in ABAQUS that we use to simulate the stress-controlled test with the same loading 

conditions as in the experiment. Then we compare the stress-controlled experimental loading cases with 

our simulations (using the parameters found from the strain-controlled tests) to assess the utility of the 

Chaboche model. 

2.3.1 Tensile Test 

The SS 316 material properties determined from the tensile test are presented in Figure 2.2, where 

E is the Young’s modulus and 𝜎𝑦 is the 0.2% proof stress. The value of the 0.2% proof stress is set at 

0.2% plastic strain and it will be used to calculate the parameters in the constitutive model (Chapter 3).  

 

Figure 2.2 Tensile properties of SS 316, determined experimentally 
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2.3.2 Symmetric Strain-Controlled Test 

The stress-strain data for the symmetric strain-controlled load case is presented in Figure 2.3. In 

this experiment, 200 cycles were performed. 

 

 

Figure 2.3 Hysteresis loops for the SS316 symmetric strain-controlled  

2.3.3 Asymmetric Stress-Controlled Test 

Figure 2.4 presents the changing shape of the hysteresis loops at various cycle counts. The 

ratchetting (strain accumulation) phenomena can be clearly distinguished in this graph after the 180th 

cycle. The ratchetting strains obtained from the stress-controlled test are also presented in Figure 2.5. 
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Figure 2.4 Experimental data for SS316 showing the hysteresis loop progression 

 

 

Figure 2.5 Ratchetting strain curve (points correspond to strain at the peak of each loading cycle) 

We can note that the hysteresis loops before the 184th cycle are nearly stable and the total strain 

does not change until the 184th cycle. As ratchetting is a significant phenomenon for asymmetrical stress 

cycling, it is important in designing structural components [14]. Thus to focus on ratchetting, we focus on 
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the cycles from 184th to 200th. Figure 2.6 shows the ratchetting strain curve between the 184th cycle and 

200th cycle.  

 

Figure 2.6 Ratchetting strain curve after the 180th cycle 

From Figure 2.6 we can see that the total strain increases and the rate of accumulation decreases 

after the 188th cycle (the increasing of total strain from 194th to 200th is only 3%). The stabilization of the 

maximum strain per cycle in the results presented in Figure 2.6 provides evidence of alternating plasticity 

behavior. Alternating plasticity behavior is one in which the steady state is a closed elastic-plastic loop, 

with no net accumulation of plastic deformation. The plastic strain increment obtained during the first half 

of each loading cycle is followed by a plastic strain increment of equal magnitude but opposite sign 

during the second half. The saturation of ratchetting strain is very important especially when it comes to 

fatigue calculation.  
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Chapter 3 

Constitutive Model 

 

Many elastoplastic material models are proposed to simulate and predict the cyclic loading 

behavior of metals. The Prager model, proposed in 1956, often over-predicts ratchetting responses at the 

beginning of cycling, which can be followed by shakedown upon further cycling [15]. The nonlinear 

kinematic hardening model of Armstrong and Frederick (1966) also over predicts ratchetting strains for 

uniaxial loading, which is mentioned in their study [15]. However, it has been found and reported in the 

literature that other nonlinear kinematic models like the Chaboche model are well suited for cyclic 

loading, especially for showing ratchetting behavior. This is because the Chaboche model is better able to 

capture yield surface translation during cyclic loading. 

In this Chapter, the Chaboche constitutive model for cyclic loading, which includes both 

nonlinear kinematic and isotropic hardening, is discussed in detail (Figure 3.1). In general, a kinematic 

hardening rule can use a translating yield surface to capture transient cyclic phenomena, whereas isotropic 

hardening rules attempt to use expansion of the yield surface to model cyclic hardening or softening [9]. 

 



13 

 

 

Figure 3.1: Yield surface modification with plastic deformation in the principal stress space. Isotropic, 

kinematic and combined hardening [16] 

 

 

 

3.1 Mathematical Formulation  

 

The Chaboche model is formulated starting from the assumption of additive decomposition of the 

strain tensor (𝜀):  

 𝜀 = (𝜀𝑒 + 𝜀𝑝), (3.1) 

Here 𝜀 is the total strain, and 𝜀𝑒 and 𝜀𝑝 are the elastic and plastic parts respectively. Hooke’s law (the 

linear elastic relationship between stress and strain) can then be written: 

 𝜎 = 𝐷: (𝜀 − 𝜀𝑝), (3.2) 

where 𝜎 is the true stress and D is the 4th order elastic stiffness tensor and taken to be the Young’s 

modulus (E) for the material. The yield function used in the current model is a von Mises yield function. 

The yield function F is a function of the back stress 𝛼 (location of the center of the yield surface), s (the 

deviatoric component of the stress tensor), and 𝜎0 (current yield stress). It can be written: 

 𝐹 = √
3

2
(𝑠 − 𝛼)(𝑠 − 𝛼) − 𝜎0 = 0, (3.3) 

The associated flow rule is:  

 𝜆 = |𝜀̇𝑝| = √
2

3
𝑑𝜀𝑝: 𝑑𝜀𝑝, (3.4) 

where 𝝀 is the plastic strain evolution and 𝑑𝜀𝑝 is the plastic strain increment.  
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Next, the hardening rule should be considered. At the continuum level, hardening is presented as 

the change of the yield surface location in stress space as the plastic strain increasing [17]. There are two 

types of hardening rules, isotropic hardening and kinematic hardening. This model includes a combined 

isotropic-kinematic hardening formulation, which was first introduced by Armstrong and Frederick, and 

then modified by Chaboche. For the kinematic hardening, the hardening law is:  

 �̇� = ∑ �̇�𝑖
𝑛
𝑖=1 = ∑ (

2

3
𝐶𝑖𝑑𝜀𝑝 − 𝛾𝑖𝛼𝑖𝜆)𝑛

𝑖=1 , (3.5) 

where n is the number of backstresses, 𝛼 is the backstress, (which represents the displacement of the 

center of the yield surface), and C and γ are material parameters that must be calibrated from cyclic test 

data(the details for this calibration are presented in Chapter 3.2). In particular, C is the initial kinematic 

hardening moduli, and γ determines the rate at which the kinematic hardening moduli decrease with 

increasing plastic deformation. 

For isotropic hardening, the exponential Voce’s formula is introduced: 

 𝜎0 = 𝜎0 + 𝑄∞(1 − 𝑒−𝑏�̅�𝑝𝑙
), (3.6) 

where 𝜎0 represents the evolution of the yield surface size, 𝜎0 is the yield stress at zero plastic strain, 𝜀̅𝑝𝑙 

is the equivalent plastic strain (we will explain how to calculate it later), 𝑄∞ is the maximum change in 

the size of the yield surface, and b defines the rate at which the size of the yield surface changes as plastic 

straining develops, both of which can be calculated from experimental data.  

From the above equations, a set of parameters needs to be determined when nonlinear kinematic 

hardening and isotropic hardening are considered. The unknown parameters are: 

𝜎0 = initial yield stress 

 𝐶𝑖 and 𝛾𝑖 = kinematic hardening parameters 

𝑄∞ and b = isotropic hardening parameters 

These parameters must be calibrated and imported into ABAQUS for simulations. 
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3.2 Parameter Identification 

 

3.2.1 Defining the Isotropic Hardening Component 

 

Isotropic hardening can be introduced by specifying the equivalent stress defining the size of the 

yield surface, 𝜎0, as a tabular function of the equivalent plastic strain [22]. The simplest way to obtain 

this data is to conduct a symmetric strain-controlled cyclic experiment with a strain range ∆𝜀 (Figure 3.2). 

Since the material's elastic modulus is large compared to its hardening modulus, this experiment can be 

interpreted approximately as repeated cycles over the same plastic strain range: 

 ∆𝜀𝑝𝑙 ≈ ∆𝜀 − 2𝜎1
𝑡/𝐸, (3.7) 

where E is the Young’s modulus, and 𝜎1
𝑡 is the peak tensile stress in the first cycle. 

 
Figure 3.2: Schematic of symmetric strain cycle experiment used to find model parameters 

 

The equivalent stress defining the size of the yield surface is 𝜎0 at zero equivalent plastic strain; 

for the peak tensile stress points, the equivalent stress is obtained by isolating the kinematic component 

from the yield stress: 

 𝜎𝑖
0 = 𝜎𝑖

𝑡 − 𝛼𝑖, (3.8) 

Since the model predicts approximately the same backstress value in each cycle at a particular strain 

level, the backstress 𝛼𝑖 for each cycle i is: 

 𝛼𝑖 ≈ (𝜎1
𝑡 + 𝜎1

𝑐)/2, (3.9) 
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The equivalent plastic strain corresponding to 𝜎𝑖
0 is: 

 𝜀�̅�
𝑝𝑙 =

1

2
(4𝑖 − 3)∆𝜀𝑝𝑙 (3.10) 

Data pairs (𝜎𝑖
0, �̅�𝑖

𝑝𝑙
), including the value 𝜎0 at zero equivalent plastic strain, are specified in tabulated 

form. The tabulated values defining the size of the yield surface should be provided for the entire 

equivalent plastic strain range to which the material may be subjected [18]. 

In this thesis, we choose a strain range of ±1%, and by using the method above we can get 7 

pairs of (𝜎𝑖
0, �̅�𝑖

𝑝𝑙
) as below: 

𝜎𝑖
0 �̅�𝑖

𝑝𝑙
 

169.3930454 0 

169.689769 0.007895863 

171.4695261 0.071062771 

172.3110744 0.134229678 

172.8697252 0.22898004 

173.170717 0.292146947 

173.7091448 0.513231123 

173.9414349 0.702731845 
                               Table 3.1 Input for isotropic parameters calculations 

Now that we have equation 3.6 and the data in Table 3.1 above, we can apply a curve fit function 

in Matlab (Figure 3.3) to obtain the Parameters 𝑄∞ and b. 

 
Figure 3.3 Curve Fit for isotropic parameters 
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The result is: 

𝑄∞ = 3.355 

𝑏 = 12.04 

 

3.2.2 Defining the Kinematic Hardening Component 

C and 𝛾 can be based on the stress-strain data obtained from the first half cycle of a unidirectional 

tension or compression experiment. The monotonic stress–strain curve is the basis for the calibration 

process. First, we need to translate the true stress and strain to engineering stress and strain by: 

 𝜀 = exp(𝜀𝑡𝑟𝑢𝑒) − 1 (3.11) 

 𝜎 = 𝜎𝑡𝑟𝑢𝑒/(1 + 𝜀) (3.12) 

 

The stress strain curve up to 1% total strain is shown in Figure 3.4. The calibration is most 

effective when limited to the strain regime that is anticipated in the application (e.g. 5%) and this avoids 

the necessity to perform curve fitting of the backstress beyond that strain regime [19]. Furthermore, many 

standards (ASME [21], etc.) determine that the maximum allowable plastic strain accumulation should be 

less than 5%.  

 
Figure3.4 Stress-strain curve up to 1% strain 
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The backstress and the kinematic parameters are based on the stress-plastic strain curve. To get 

the calibration curve in Figure 3.5, the elastic limit and yield stress were first determined. The elastic limit 

for stainless steel is difficult to determine since it depends on the accuracy of the instrumentation (strain 

gauge, digital extensometer, etc.). Therefore, it is recommended that the average 0.2% proof stress ( Rp0.2) 

or the calculated yield stress by the 0.2% offset method (σy) be multiplied by a factor of 0.55 [19]. For 

this analysis the average of the 0.2% proof stress and the uniaxial yield stress (0.2% offset) have to be 

assumed. This is due to the fact that when ratchetting analysis was performed using the 0.2% offset stress, 

no increase in plastic strain accumulation was seen (i.e. shakedown), while when using the Rp0.2 value for 

yield stress, strain accumulation was over-predicted by the model.  

Therefore the yield stress chosen was σ0 = (σy + Rp0.2)/2. At σ0 plastic strain is set to zero. To 

generate the true stress-plastic strain curve needed, the offset strain at σ0 is determined to be 0.000211. 

Using this strain offset, we then determine the plastic strain using the relation: 

 𝜀𝑝 = 𝜀 − (
𝜎

𝐸
+ 0.00005108) (3.13) 

 
Figure 3.5 Stress-Plastic Strain curve for SS316 
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Next, the backstress was determined. Backstress (location of the center of the yield surface in 

stress space) is the vital parameter in the nonlinear kinematic (NLK) calibration process. For a one-

dimensional representative of an NLK model, the backstress is determined using: 

 𝛼 = 𝜎 − 𝜎0 (3.14) 

where σ is the uniaxial stress state and σ0 is the initial yield stress at the elastic limit. This backstress is 

included in Fig. 3.6. 

 
Figure 3.6 Backstress curve 

Once the stress-plastic strain curve is known, the 𝛼 backstress curve is also known. From 

equation 3.5 and the backstress curve, we can determine the parameters of the Chaboche non-linear 

kinematic model by one of two options. The first option is the manual method. It can be performed 

without any help from outside software. The details of this method are given in [19]. The second option is 

performed via ABAQUS automated calculation. In this second case, once the input (the stress-plastic 

strain data in Figure3.5) for calibration is determined, an ABAQUS input file is used to automatically 

calibrate the Chaboche components which are shown in Table 3.2. Material parameters for our SS 316 

test specimens were specified by using the following input file lines [20], (also shown in Figure 3.7). 
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*PLASTIC, HARDENING=COMBINED,  

DATATYPE=HALFCYCLE, NUMBER BACKSTRESSES=2, 

 
Figure3.7 Input file for material parameters claculations 

This line is followed by the tabulated data from Figure 3.5.  ABAQUS then calculates the 

parameters, 𝐶𝑘 and 𝛾𝑘. Two backstress components were used and they are listed in Table 3.2. 

 

Initial Yield     163.53 (MPa)  

Chaboche component  𝐶𝑘 𝛾𝑘   

 1         49706          461.88 

 2        234195          3736.1 

Table 3.2 Chaboche parameters determined 

Now that we have both kinematic hardening parameters and isotropic parameters, we can apply 

these parameters to create a model in ABAQUS to simulate the different phenomena observed 

experimentally. With good experimental agreement, the model may then be modified to investigate more 

complex loading scenarios (such as multiaxial loading or thermomechanical loading) or other similar 
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materials systems to help design additional experimental programs and understand the elastoplastic 

behavior. Comparison between experiments and simulations is presented in Chapter 4.  
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Chapter 4 

Numerical Simulations in ABAQUS 

The ABAQUS finite element software [18] was used to simulate the experimental conditions. In 

this example, deformation of a SS 316 specimen subject to cyclic loading is studied. Static analyses are 

performed. Taking advantage of the axial symmetry of the specimen, axisymmetric elements are used. 

4.1 Geometry of the Model 

The 2D axisymmetric sketch of this model, which is the same as the experimental specimens, is 

shown in Figure 4.1. The shape of the testing specimen is a cylindrical rod shape. All dimensions are 

specified in the figure in mm.  The diameter at the middle is a half inch (12.7mm) which is the same size 

as the test samples, and the diameter at the gripping ends is one inch (25.4mm). 

 

 
Figure 4.1 Sketch of the model 
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4.2 Boundary Conditions and Loading 

The specimen is constrained at the bottom in the longitudinal (Y) direction, and a load is applied 

to the top surface. In ABAQUS, we partition the bottom part and set the bottom part as ENCASTRE (see 

the boundary condition settings of Figure 4.2).  

 
Figure 4.2 Model’s boundary condition in ABAQUS 

 

For the loading, we set the type of the loading as uniform pressure. Since the cross-sectional area 

in the center is one quarter of the top surface, the magnitude of the pressure should be multiplied by 0.25. 

The cyclic loading of 𝜎𝑚 = −170.1𝑀𝑃𝑎 and 𝜎𝛼 = 230.1𝑀𝑃𝑎 is applied to the top surface of the model. 

The loading case from the experiment is shown in Figure 4.3. The stress versus time is a sine or cosine 
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function, so we choose 20 points in each cycle to create a smooth tabular amplitude to simulate the same 

loading conditions. 

 

 
Figure 4.3 Experimental Loading versus time 

4.3 Mesh Sensitivity Study 

The model specimen is meshed with CAX4R and CAX3 elements. To ensure accuracy, a mesh 

sensitivity study is carried out. Four different sizes of approximate global seeds (shown in Figure 4.4) are 

applied to find a suitable mesh size (the approximate global size factors are 16, 8, 4, and 2). The four 

different meshes are shown in Figure 4.4.  
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Figure 4.4 Four different mesh sizes 

The monotonic loading case is applied to these four different mesh sizes and the stress-strain 

curve is shown in Figure 4.5.  

 
Figure 4.5 Stress-strain curve for different mesh sizes 
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From Figure 4.5, we can see that the results from the coarsest mesh size are very different from 

the other three mesh results. As the mesh size becomes finer, the stress-strain curve begins to converge 

and the last two curves are nearly overlapping. Based on this study, it is determined that the 3rd mesh size 

(approximate global size factor 4 – with CAX4R elements through the center diameter) is fine enough to 

complete the simulation. 

4.4 Simulation Results and Discussion 

First we compare the FE simulation results with experimental data under the monotonic loading 

case in Figure 4.6. It can be seen that the results from the FE simulation match the experiment result very 

well (within 3% error at most). 

 
Figure 4.6 FEM and Experiment results under monotonic loading 

 

Second, as the hysteresis loops from the cyclic loading case (see Figure 2.5) before the 184th 

cycle are stable and then ratchetting behavior appears after the 184th cycle. To focus on capturing 

ratchetting behavior, we focus on the cycles between the 184th and 200th cycle. The simulation (black) and 

experimental (blue) results are presented in Figure 4.7. The element positioned at the center of the model 

(the red point shown in Figure 4.8) is chosen to compute the stresses and strains. 



27 

 

 
Figure 4.7 Stress-strain curve under cyclic loading 

 
Figure 4.8 The element chosen to be analyzed 

The simulation results agree with the experimental data during the first cycle, but they over-

predict the strain as the number of cycles increases. The peak strain (maximum axial strain) at each cycle 

is reported in Figure 4.8 to better compare these results. 
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Figure 4.9 Maximum axial strain versus number of cycle 

From Figure 4.9, the model shows a good prediction of the accumulated plastic strain for a small 

number of cycles (cycle 1 through 4). The error at the 188th cycle is only 6%. However, as the cycles 

continue (after the 190th cycle), the over-prediction of the accumulated strain becomes very large. The 

error at the 200th cycle is nearly 30%. 

The transition from good agreement to large over-prediction occurs around the 188th cycle. The 

rate of accumulation decreases after cycle 188 and this trend is not captured by the ABAQUS simulations. 

The absence of the trend as the number of cycles increases may be due to the isotropic component of the 

NLK (related to the expansion or contraction of the yield surface in stress space). The isotropic 

component should be defined by specifying the equivalent stress at zero plastic strain and the evolution of 

the equivalent stress as a function of equivalent plastic strain as mentioned before. If this component is 

not defined accurately, the size of the yield surface is not well matched during cycling.  

Typically, the isotropic hardening properties are more sensitive to loading conditions than 

kinematic hardening properties [18]. By using the method in Chapter 3, the parameters we determined 

were not accurate enough. This is because the actual stress versus plastic strain curve in the strain-

controlled test does not look like Figure 3.2. It is very hard to find the peak compression points. The 

curve should be very smooth and we can only choose an approximate point to replace it. This could be 
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one source of error in the simulations. To investigate this potential source of error, we next modify the 

value of the isotropic parameters, 𝑄∞ and b. For example, if the value of 𝑄∞ is changed to 280, the results 

are shown in Figure 4.9.  

 
Figure 4.10 Maximum axial strain versus number of cycle with modified parameter 𝑄∞ 

The blue curve is the FE results with the modified parameters 𝑄∞ and original b. The new curve 

has nearly the same shape as the previous one but it agrees better with (although still over predicts) the 

experimental results. The error at the 200th cycle decreases to 27%, but it is still very high. By comparing 

these two FE simulation results, we can note that we could get better agreement at higher loading cycles if 

an alternative method or justification for determining 𝑄∞ (that gives a bigger value) can be found. 

Furthermore, it might be necessary to recalibrate the isotropic component of the Chaboche model during 

cyclic loading.  
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Chapter 5 

Conclusion and Future Work 

This work studies the elastoplastic behavior of stainless steel 316 under asymmetric cyclic 

loading. SS 316 exhibits low strain accumulation (ratchetting) and then tends to achieve shakedown upon 

further cycling. In order to further understand and simulate the elastoplastic behavior of this material, 

ABAQUS finite element analysis using the NLK material model was performed. The model was 

calibrated using monotonic data via a user input file according to the method described in [22]. For the 

loading cycles from the 1th to the 188th, the FE model closely matches the experimental data. However, as 

the number of cycles increases, decreasing of the rate of total strain accumulation does not occur and 

leads to large over-prediction of the ratchetting strain.  

The Chaboche model used in this work can predict the cyclic behavior of stainless steel 316. 

However, further attention must be paid to determining suitable model parameters in order to avoid the 

over-prediction and nearly 30% error at the 200th cycle found in this study. It is expected that the problem 

lies in the model calibration—in particular, difficulties were encountered in determining the transition 

from elastic to plastic behavior and the experimental stress-strain response was not as straightforward as 

presented in the directions according to the Chaboche model for parameter determination. It is difficult to 

find peak compression points as expected in Figure 3.2. Within this work, the evolution of the yield 

surface was determined in a coarse manner using experimental data. So further calibration of the isotropic 

component parameters of the Chaboche model may also be needed to better match experimental data. For 

future work, it remains to explore other accurate methods of calculating the parameters in the Chaboche 
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model and to better predict the cyclic behavior of stainless steel 316. One of the ways to calibrate 

parameters accurately is through parametric optimization. Given an initial value of parameters: 𝐶𝑘, 𝛾𝑘, 

𝑄∞ and b, we could systematically vary and compare FE results, until the FE results match the 

experimental data to within a specified level. Lastly, study of the microstructural features of the stainless 

steel specimen would benefit in determining changing deformation mechanisms during cycling. 

Alternatives to the Chaboche model that allow for more complex behavior (and more complex 

experiments for model calibration) may also be needed.  
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