
Lehigh University
Lehigh Preserve

Theses and Dissertations

5-1-2018

Design and Manufacturing of a High Performance
Indoor Quadcopter
Guangyi Liu
Lehigh University, bitcax1u@hotmail.com

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Liu, Guangyi, "Design and Manufacturing of a High Performance Indoor Quadcopter" (2018). Theses and Dissertations. 4304.
https://preserve.lehigh.edu/etd/4304

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F4304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4304?utm_source=preserve.lehigh.edu%2Fetd%2F4304&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

i

Design and Manufacturing of

a High Performance Indoor Quadcopter

by

Guangyi Liu

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of Master of Science

in Mechanical Engineering

Lehigh University

May 2018

ii

 This thesis is accepted and approved in partial fulfillment of the requirements

for the Master of Science.

 Date

Nader Motee, Advisor

 D. Gary Harlow, Chairperson

Department of Mechanical Engineering and Mechanics

iii

Contents

1 Introduction and related work...2

1.1 Background ...2

1.2 Flight controllers ...3

1.3 IMUs..7

1.4 Frames ...8

1.5 Motors and ESCs ...9

1.6 The total price of quadcopter ..10

2 Manufacturing the quadcopter ..13

2.1 Programming ESP ...13

2.2 Connecting MPU with ESP32 ...15

2.2.1 Get the raw reading from MPU ... 15

2.2.2 Calibrating MPU ... 15

2.2.3 Digital Motion Processor .. 17

2.2.4 Magnetometer Calibration .. 20

2.3 Wi-Fi Connection ..25

2.4 Calibrating the ESCs ...27

3 The model of the drone ...28

4 Basic algorithm for quadcopter system ..34

5 Tuning the PID controller for attitude ..37

5.1 Basic idea ..37

5.2 Equipment of tuning the PID ..38

5.3 Design of online tuning system ...39

5.4 Tuning the inner loop ..40

5.4.1 Pinner ... 40

5.4.2 Iinner .. 41

5.4.3 Dinner ... 41

5.5 Tuning the outer loop ..42

5.5.1 Pouter ... 42

5.5.2 Iouter .. 44

iv

5.5.3 Douter ... 44

6 Tuning the PID controller for altitude ..46

6.1 Using barometer ..46

6.2 Using sonar ..47

6.3 Tuning PID ..48

6.3.1 P .. 48

6.3.2 I ... 50

6.3.3 D .. 50

7 Test Flight ...52

8 Conclusion ..55

9 Biography ...60

v

List of figures

Figure 1.1 The schematic of our current project ... 3

Figure 1.2 CX-20 quadcopter (left) and APM 2.8 flight controller (right)............. 4

Figure 1.3 Pixhawk (left) and Pixhawk2 (right) ... 5

Figure 1.4 Espressif ESP32 core chip ... 5

Figure 1.5 GY-87 developing board with MPU6050 ... 7

Figure 1.6 F330 quadcopter frame .. 8

Figure 1.7 Turnigy L2210A-1650 Brushless Motor ... 10

Figure 1.8 Turnigy MultiStar 32bit ESC .. 10

Figure 1.9 Prototype of the new quadcopter ... 12

Figure 2.1 Development board of ESP32 .. 14

Figure 2.2 The pin map of ESP32 ... 14

Figure 2.3 Algorithm of MPU calibration .. 17

Figure 2.4 Raw magnetometer reading before calibration 22

Figure 2.5 The result of scaling .. 24

Figure 2.6 Average loop time for UDP and TCP.. 26

Figure 2.7 The Wi-Fi communication .. 27

Figure 3.1 Definitions of coordinates ... 28

Figure 3.2 Changing motion with motor speed .. 29

Figure 4.1 Basic algorithm of quadcopter ... 36

Figure 5.1 PID controller for angle ... 37

vi

Figure 5.2 Cascade PID controller .. 38

Figure 5.3 Tuning Kit ... 39

Figure 5.4 Output of Pitch angle when P=0.1 ... 42

Figure 5.5 Output of Pitch angle with P=0.3 .. 43

Figure 5.6 Output of Pitch angle with P=0.22 .. 43

Figure 5.7 Output of Pitch angle with P=0.22, I=0.02 .. 44

Figure 5.8 The output of Pitch with well-tuned PID .. 45

Figure 6.1Bosch Sensortec BMP 180 ... 46

Figure 6.2 HC-SR04 ... 47

Figure 6.3 Output of height with P=0.1 .. 48

Figure 6.4 Output of height with P=0.5 .. 49

Figure 6.5 Output of height with P=0.375 .. 49

Figure 6.6 Output of height after 𝐼𝑎 is applied ... 50

Figure 6.7 Output of height of a well-tuned PID controller 51

Figure 7.1 Altitude test result.. 53

Figure 7.2 Pitch angle test result ... 53

Figure 7.3 Roll angle test result .. 54

vii

List of tables

Table 1.1 Market price of different flight controllers ... 6

Table 1.2 Build specifications and total price of different quadcopters 12

Table 2.1 Pin usage of ESP32 ... 13

Table 2.2 Tasks of Wi-Fi .. 25

Table 4.1 Frequencies of tasks .. 34

Table 4.2 Flight Modes ... 35

viii

Acknowledgements

First of all, I would like to extend my sincere gratitude to my advisor Prof. Nader

Motee, for having me in the research group and offering me the opportunity to

complete my thesis. His instructive advice and useful suggestions helped me get

over all the obstacles I have met when I was writing the thesis. I am deeply

grateful of his help during my pursuit of my master’s degree.

I would also like to thank Yaser Ghaedsharaf, Arash Amini, Milad Habibi, Alan

Bebout, Komel Merchant and Dr. Babak Shirmohammadi for helping me through

the entire research and providing great ideas.

Finally, I would like to thank my family for supporting me throughout my

education and having great confidence in me all through these years.

1

Abstract

In DCDS (Distributed Control and Dynamical Systems) laboratory, we are using

quadcopter flying inside the building with motion capture system. In the quadcopter

base, we are designing a new flight controller which has a high-speed processor

and fast Wi-Fi communication. And the price is affordable in case of crashes during

the research.

The IMU used on the quadcopter is MPU6050 and HMC5883L magnetometer, they

provide accurate Euler angle, angular velocity and heading at 200Hz. The controller

used for attitude is cascade PID controller which controls the angle and the angular

velocity at the same time, it’s robust and reliable. And the controller used for

altitude is a PID controller with the feedback from sonar.

The new quadcopter can perform a stable hover, safe takeoff and landing, it’s

currently not as good as commercial flight controllers in flight performance, but it

has a great potential of modification and capable of handling a lot of future

additional task.

With the feedback form Motion Capture system in the future, we will have a more

accurate heading and altitude. Motion Capture system will recognize the markers

attached on the frame and send the position and configuration of the object back to

the ground station. By measuring the relative distance from markers to cameras,

position and configuration information will be more accurate which makes the

performance better.

2

1 Introduction and related work

1.1 Background

The drone testing base is equipped with a high-precision motion capture system, a

central server, a wireless communication network, and custom software tools. Our

team is developing design methodologies to optimize drone size, flight controller

and on-board sensors by integrating and co-designing control and navigation

algorithms. As the demand of the research, we need to build a quadcopter which

has a powerful processor, support Wi-Fi communication and the cost of itself is not

too much.

As shown in the Figure 1.1, our quadcopter is recognized by the Motion Capture

system with markers attached on the frame. Motion Capture will send the flight

information (altitude, velocity, etc.) to the server, and the server will spread it out

with Wi-Fi. The quadcopter will receive the information through a Wi-Fi chip

called ESP8266. And the information from Motion Capture system will be sent to

the flight controller and then feed to the controller.

3

Figure 1.1 The schematic of our current project

1.2 Flight controllers

We started with Cheerson CX-20 quadcopter for a better understanding of how the

system of a quadcopter looks like. It has a stable outdoor flight performance, but it

is not suitable for the indoor flight for research and it doesn’t support the

communication with the Motion Capture system for the future tasks.

4

We then switched to APM flight controller which runs Arducopter, an opensource

flight control firmware onboard. The hardware onboard allows quadcopter to

communicate with the ground station or radio controller. The processor inside is

Atmel's ATMEGA2560 (16MHz), this processor it not capable of handling too

much tasks and carrying Wi-Fi communication.

Figure 1.2 CX-20 quadcopter (left) and APM 2.8 flight controller (right)

The next choice is Pixhawk flight controller which share the same firmware

Arducopter with APM but it has a more powerful processor and a SPI/I2C

communication port. Pixhawk doesn’t have the Wi-Fi module imbedded inside so

our solution is connecting it with a Wi-Fi router Espressif ESP8266. This module

has a Wi-Fi chip onboard and it can communicate with Pixhawk through SPI (Serial

Peripheral Interface Bus) port. But the serial SPI communication has a delay of

10ms for the communication loop which will affect the quality of the controller.

5

Figure 1.3 Pixhawk (left) and Pixhawk2 (right)

We then decided to choose Espressif ESP32 as a flight controller which was

released on September 6, 2016, it has a due core processor and the Wi-Fi module

is imbedded within the chip. This substitution will cut down the delay of the serial

SPI communication.

Figure 1.4 Espressif ESP32 core chip

ESP32 is capable of functioning reliably in industrial environments, with an

operating temperature ranging from -40°C to +125°C. Powered by advanced

6

calibration circuitries, ESP32 can dynamically remove external circuit

imperfections and adapt to changes in external conditions. This feature will ensure

the reliable performance of our quadcopter in the extreme conditions.

The most applications of ESP32 is about Internet of Things (IoT) and smart home

devices for its excellent Wi-Fi function, and it only has the processor and Wi-Fi

chip onboard without any inertial measurement unit (IMU). We will need to attach

external IMU to the ESP32 to build the quadcopter.

As shown in Table 1.1, the price of a ESP32 chip is acceptable for research use and

it is affordable for us if there is any hardware lost during the quadcopter crash. It’s

1/24 of the price of the newest Pixhawk 2.1 and has a better processor than it.

Name of

the flight

controller

CX-20

(including the

whole

quadcopter)

Ardupilot

APM 2.8

RadioLink

Pixhawk

PX4

Pixhawk

2.1 (The

Cube)

Espressif

ESP32

Market

price

$165.50 $29.99 $109.99 $238.00 $9.95

Table 1.1 Market price of different flight controllers

7

1.3 IMUs

There are a lot of IMUs available in the market and two low price IMU came into

our sight. One is MPU 6050 and another is MPU6500, they are both from

InvenSense company, containing a 3-axis accelerometer and a 3-axis gyroscope,

but MPU6500 allows a 32kHz gyro sampling rate compares to the 8kHz sampling

rate of MPU6050. In the practice, the high sampling rate of MPU6500 makes it

extreme sensitive to the small vibration of the quadcopter frame. Since the motor

is always spinning during the flight, all the unneeded vibration will be detected by

MPU6500. Additional filter will be acquired for MPU6500 to filter out the

redundant data, and there will be a high possibility that this filter will cause a

remarkable delay to the data. MPU6050 is just the half of the price of the MPU6500

and the 8kHz sampling rate is fast enough for indoor quadcopter research.

Figure 1.5 GY-87 developing board with MPU6050

8

1.4 Frames

We started with F450 quadcopter frame with the diagonal length (motor to motor)

of 450mm and equipped with 178mm propellers, this one can generate the total

thrust of 2040g on full throttle. The scale of this frame will drain the battery too

fast and the propeller of this size may cause serious injury when crashed.

We then switched to F330 with the diagonal length (motor to motor) of 330mm and

equipped with propellers of 130mm. This frame will ensure a longer battery life

and a safer testing environment for research members.

Figure 1.6 F330 quadcopter frame

9

1.5 Motors and ESCs

The motor we are using is Turnigy L2210A-1650 Brushless Motor, with the max

power of 180W and 1650 rpm per Volt. The specifications can be found in

Appendix C.

The speed of the brushless DC motor can be controlled by adjusting the timing of

pulses of current delivered to the several windings of the motor, but the flight

controller can only generate the PWM (pulse-width modulation) signals. The ESC

(Electronic speed control) will receive the PWM signals from flight controller and

then transform them into pulses of current and control the speed of the motor.

10

Figure 1.7 Turnigy L2210A-1650 Brushless Motor

Figure 1.8 Turnigy MultiStar 32bit ESC

The ESC unit we are using is Turnigy MultiStar 32bit ESC which support a 480Hz

refresh rates and 20A current. This fits well with the motor we have selected. The

specifications can be found in Appendix D.

1.6 The total price of quadcopter

Table 1.2 is showing the price specifications about different quadcopters, the total price of

the quadcopter can be reduced to $100 if using ESP32. It keeps the same IMU but has a

faster processor and Wi-Fi communication.

11

Name of

the flight

controller

CX-20

(including the

whole

quadcopter)

Ardupilot APM

2.8 ($29.99)

RadioLink

Pixhawk

PX4

($109.99)

Pixhawk

2.1

($238.00)

Espressif ESP32

($9.95)

Processor 32bit

microcontroller

Atmel's

ATMEGA2560

168 MHz

Cortex

M4F CPU

32-bit

ARM

Cortex M4

core with

FPU

240 MHz

Xtensa dual-

core 32-bit LX6

microprocessor

IMU MPU6050

(included)

MPU6050

(included)

MPU6050

(included)

MPU6050

(included)

MPU6050

($10.41)

ESC Included MultiStar 32bit

ESC ($12.03)

*4

MultiStar

32bit ESC

($12.03) *4

MultiStar

32bit ESC

($12.03)

*4

MultiStar 32bit

ESC ($12.03)

*4

Motor Included L2210A-1650

Brushless Motor

($12.00) * 4

L2210A-

1650

Brushless

Motor

($12.00) *

4

L2210A-

1650

Brushless

Motor

($12.00) *

4

L2210A-1650

Brushless Motor

($12.00) * 4

12

Table 1.2 Build specifications and total price of different quadcopters

Figure 1.9 Prototype of the new quadcopter

Wi-Fi

Module

Not supported Not supported ESP 8266

($6.00)

ESP 8266

($6.00)

Included

Frame Included F330 ($10.22) F330

($10.22)

F330

($10.22)

F330 ($10.22)

Total

price

$165.50 $126.11 $212.11 $340.12 $106.07

13

2 Manufacturing the quadcopter

2.1 Programming ESP

The development board of ESP32 (Figure 2.1) is available in the market, it can be

programmed by Arduino IDE and the support of the hardware is opensource. The

Arduino library supports the full function of Wi-Fi and the PWM generating in

ESP32. Power supply for ESP32 can be get from the power module which is

connected with the LiPo battery. And power for MPU6050 will be supplied from

ESP32.

The pin usage can be specified in Table 2.1, and the pin map of ESP32 can be found

in Figure 2.2:

Name of the component The pin used by the component

GY-87 (MPU6050) GPIO 21, GPIO22, 3.3V and GND

4 ESCs GPIO 16~ GPIO 19 and GND

Power Module 5V and GND

Table 2.1 Pin usage of ESP32

14

Figure 2.1 Development board of ESP32

Figure 2.2 The pin map of ESP32

15

2.2 Connecting MPU with ESP32

2.2.1 Get the raw reading from MPU

The MPU6050 is designed to communicate with the processor through I2C Bus,

which needs a SCL pin and a SDA pin connected with the I2C ports of ESP32

which is GPIO port 21 and 22.

The library of MPU6050 and I2C interface is designed by (name of the guy) and it

is based on regular Arduino board. Since the I2C structure of ESP32 is different

from the regular Arduino board, we need to remove TWBR=24 in the code to allow

the function of I2C bus.

The basic function of a MPU6050 is sending back raw readings from gyroscope

and accelerometer. These reading could be very noisy and unstable when MPU is

not calibrated.

2.2.2 Calibrating MPU

The basic idea of calibrating MPU6050 is to specify the position of the horizontal

plane and tell the processor which plane is horizontal and what value for gyroscope

raw reading should be 0. The algorithm can be found in Figure 2.3.

First station the MPU on a horizontal surface with z axis point up and perpendicular

to the plane. Exclude all potential source of vibration and movement of the plane.

16

The ideal reading at this situation will be zero for all 3-axis of gyroscope, zero for

x, y axis of accelerometer and 1g for z axis of accelerometer since z axis is sensing

the gravity. Gather adequate raw data (at least 2000 sets of data) from all axis and

calculate a mean value of those data for each axis. These mean values are offsets of

each axis accordingly.

For z axis of accelerometer, the offset should be mean value minus 1g. Store all the

offsets in the flight controller program and send them to MPU6050 during the

initialization of it. Thus, MPU6050 will apply these offsets before send the data

back to flight controller. This calibration needed to be done occasionally to make

sure the data is accurate.

17

Figure 2.3 Algorithm of MPU calibration

2.2.3 Digital Motion Processor

The raw data are still noisy even after the calibration, the rotation of the motors will

create vibrations to the frame and it will lead to a noisy data. Some filter is needed

to be applied to the data to have a more accurate reading.

18

The raw data from gyroscope will be the angular rate of each axis and the current

Euler angle will be the integration of the changing rate. The relation between

gyroscope reading and angular velocity can be defined as following:

𝑔𝑦𝑟𝑜𝑥 = 𝑝 + 𝑔𝑒𝑥, 𝑔𝑦𝑟𝑜𝑦 = 𝑞 + 𝑔𝑒𝑦, 𝑔𝑦𝑟𝑜𝑧 = 𝑟 + 𝑔𝑒𝑧

𝜙𝑔𝑦𝑟𝑜 = ∫𝑔𝑦𝑟𝑜𝑥 = ∫𝑝 + ∫𝑔𝑒𝑥

As shown in the equation above, the gyroscope reading are the summation of actual

angular velocity and sensor error. We can take roll angle for example, the integral

of 𝑔𝑦𝑟𝑜𝑥 will be the roll angle as the output from gyroscope. Since the existence

of 𝑔𝑒𝑥 , the error will accumulate during the integration and it will not be canceled

by any means. This will make the roll angle reading from MPU6050 continuing to

increase or decrease even quadcopter is stationed on the ground. This drifting will

happen to all 3-axis.

2.2.3.1 How accelerometer works

Accelerometer is sensing the accelerations on 3-axis, the equation can be defined

as following:

𝑎𝑐𝑐𝑒𝑙𝑥 = 𝑎𝑡𝑟𝑢𝑒𝑥 + 𝑎𝑒𝑥, 𝑎𝑐𝑐𝑒𝑙𝑦 = 𝑎𝑡𝑟𝑢𝑒𝑦 + 𝑎𝑒𝑦,

𝑎𝑐𝑐𝑒𝑙𝑧 = 𝑎𝑡𝑟𝑢𝑒𝑧 + 𝑎𝑒𝑧

19

𝑎𝑡𝑢𝑟𝑒𝑖 is actual acceleration on 𝑖𝑡ℎ axis, 𝑎𝑒𝑖 is error of sensor on 𝑖𝑡ℎ axis and

𝑎𝑐𝑐𝑒𝑙𝑖 is reading of accelerometer on 𝑖𝑡ℎ axis. Since 𝑎𝑒𝑖 ≪ 𝑎𝑡𝑟𝑢𝑒𝑖 and errors

from accelerometer will not accumulate with time, readings of accelerometer can

be regard as reliable and accurate.

With the readings from accelerometer, the drift of gyroscope can be compensated

easily for pitch and roll angle. We can calculate pitch and roll angles from

accelerometer reading when there are no other accelerations than the gravity, and

this will not be drifting with time. Accelerometer will provide a more accurate angle

reading when quadcopter is not rotating. Gyroscope will provide a more accurate

angular velocity reading when quadcopter is rotating since the error of angular

velocity is not accumulating with time. A kind of data fusion is needed for pitch

and roll angle. The basic idea is trust the gyroscope more for the angular velocity

and trust accel more when there is no more movement.

But the accelerometer can’t provide any information about yaw angle since the

direction of the gravity is parallel to the direction of z-axis, we will need the

magnetometer or Motion Capture system to compensate the drift of yaw.

After compensated the drift, the raw data are still noisy since the vibration of the

frame will still create errors to the readings. Then we will need a filter applied to

raw readings to get the accurate values.

20

2.2.3.2 Using the DMP

InvenSense has also built a Digital Motion Processor (DMP) inside the MPU6050

and released it to the public. DMP will fuse all the data together as an output of

quaternions or Euler angles. It will support an output at a sampling rate of 200Hz.

DMP will not lay any burden on the main processor and it saves remarkable time

of transforming raw gyro and accel data in to quaternion or Euler angles. The pitch

and roll angle output of DMP is accurate and stable but the yaw output is still

drifting since there is no standard for yaw. DMP doesn’t fuse magnetometer data

with yaw readings and this fusion must be done by the processor.

2.2.3.3 Get rid of interruption

DMP data is also transported through I2C bus, and it will pull the interrupt pin to

HIGH on the MPU6050 to inform the mainboard what buffer size of the data is.

This is not stable and some time it will give out FIFO overflow. Thus, we let the

program to measure the buffer size and decide when to cut the buffer and read the

data.

2.2.4 Magnetometer Calibration

The magnetometer will sense the strength of the earth’s magnetic field and generate

a vector which is pointing the current heading direction based on the reading on

21

each axis. And this vector will be distorted by hard-iron effect, soft-iron effect and

magnetic declination.

The Hard-iron distortion is generated by materials which can produce the constant

magnetic field to the environment such as permanent magnet. The magnetic field it

generated will be added to the earth’s magnetic field and the value of each axis

from magnetometer will be added with a constant value. Once the orientation of the

hard-iron source is fixed, the additional magnetic field will also be constant. Hard-

iron distortion will make the magnetic sphere away from the origin of coordinates.

Cellphones, laptops, and the current on the quadcopter would be the origin of hard-

iron distortion.

The soft-iron distortion is the result of material that does not generate the magnetic

field. This kind of material will influence the surrounding magnetic field and distort

the orientation of the reading of the electronic compass. The soft-iron distortion

22

will make the set of magnetic reading vectors from a sphere to an ellipsoid, and the

reading will not be accurate. It will be more common in the indoor environment

since all the cables and metal structures will be the origin of the soft-iron distortion.

Figure 2.4 Raw magnetometer reading before calibration

As shown in Figure 2.4, the raw magnetic vector set is not forming a sphere due to the

hard-iron and soft-iron distortion.

Magnetic declination is the angle on the horizontal plane between magnetic north

and true north. The heading from magnetometer will show the angle between the

head and magnetic north if magnetic declination is not applied.

The general procedure of calibrating an electronic compass will be as following:

Point the magnetometer to every direction as much as possible to form a sphere of

the reading. The reading vector should form an ellipsoid with long axis pointing

random direction and the center is out of origin of coordinates. Our calibration

program will find the approximate starting and ending point of the long axis, and

the coordinate of middle point of the long axis will be the offset value of the hard-

iron distortion. After applying this offset to the raw data, the ellipsoid will be

located at the origin of coordinates.

We need to rotate the ellipsoid back to the right orientation and then perform the

scaling. The rotation matrix can be defined by the z axis vector and the long axis

23

vector, and the scaling will be applied to each axis parameter according to the

ellipsoid function.

And the scaling procedure can be defined as an optimize problem:

min∑(𝑟𝑖 − 𝑑)2

𝑛

𝑖=1

𝑠. 𝑡. 𝑟𝑖 = √(𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2)

𝑟𝑖 is the 𝑖𝑡ℎ mode of the magnetic vector, 𝑥, 𝑦, 𝑧 are coordinate of 𝑖𝑡ℎ magnetic

vector, 𝑛 is the total number of the magnetic vectors.

We can solve the problem with Matlab, and the result is shown in Figure 2.5. It’s

obvious that the set of vectors has finally form a sphere.

24

Figure 2.5 The result of scaling

The magnetic declination value can be found on the website of National Centers for

Environmental Information (https://www.ngdc.noaa.gov/), it is 12° 9' W at

Allentown, PA.

After that the program will print out the rotation matrix and the scaling parameters

for the quadcopter. And every magnetic data will be processed with offset first and

then rotate, scale and rotate back. Then apply magnetic declination, the output of

the magnetometer will be the actual heading of the sensor.

25

2.3 Wi-Fi Connection

We are using Wi-Fi for communication with the quadcopter, it will take the

following tasks:

Receiving Tasks Sending Tasks

• Commands from ground stations

• Flight coefficients from ground station

• Flight information from Motion

Capture system

• Flight status to ground

station

Table 2.2 Tasks of Wi-Fi

TCP and UDP are both available for the communication but TCP is using more

steps of communication and this will cause remarkable delay for the response loop

of the quadcopter.

We tested the different protocol with measuring the response time for sending a 32

Bytes packet to ESP32 and send back a 32 Bytes packet from ESP32 when the first

packet arrives. As shown in Figure 2.6, TCP is using 2 times of time as much as

UDP.

26

Figure 2.6 Average loop time for UDP and TCP

The structure of the communication is shown in Figure 2.7. There will be a Wi-Fi

router at 2.4GHz in the base and both ESP32 and ground station will start a UDP

server under the Wi-Fi network, UDP server on the quadcopter and ground station

will have distinct IP addresses and same port number. Every packet been sent will

have a destination to certain IP address and port number. Thus, they could

communicate under the same Wi-Fi network as UDP servers.

27

Figure 2.7 The Wi-Fi communication

2.4 Calibrating the ESCs

The ESP32 can generate PWM signals for all GPIO pins on the board, the

quadcopter will need 4 pins to send 4 different PWM signals to ESCs. The ESC

will enter calibration mode if the throttle is set to max before connected to the power.

And after that it will recognize the next PWM signal as the zero throttle. We set the

full throttle as 900 PWM and the zero throttle is 500PWM, this throttle resolution

is good enough for the quadcopter motors.

This calibration needed to be done before the first run, and we let the processor to

send zero throttle before the flight to make sure the ESC will enter the correct mode.

28

3 The model of the drone

Quadcopter can perform a 6 degrees of freedom motion by adjusting the rotation

speed of four motors, we can set the coordinates as shown in the figure, all the

motions can be classified as moving along 𝑥, 𝑦, 𝑧 axis, rotating around 𝑥, 𝑦, 𝑧 axis

(also defined as roll, pitch, and yaw). The definitions of axis and Euler angles is

shown in Figure 3.1.

Figure 3.1 Definitions of coordinates

The roll, pitch, yaw and altitude changing motion can be accomplished as shown in

Figure 3.2.

29

Figure 3.2 Changing motion with motor speed

To build the model of the quadcopter, we are going to make following assumptions

first:

a) Assume the quadcopter as a rigid body, ignore all the deformation of the

frame during the flight.

b) The shape and mass distribution of quadcopter are symmetric.

c) Ignore the ground effect, vibration of the motor and the influence of air

flows between each propeller.

d) The mass and the inertia doesn’t change during the flight.

And the rotation matrix will be needed the ground coordinates and the body

coordinates of the quadcopter. It can be defined as following:

30

𝑎𝐵 = 𝑅𝐺
𝑏𝐴𝐺 = 𝑅(𝜙)𝑅(𝜃)𝑅(𝜑)𝐴𝐺

𝑅(𝜑) = [
cos(𝜑) sin(𝜑) 0

− sin(𝜑) cos(𝜑) 0
0 0 1

] , 𝑅(𝜃) = [
cos(𝜃) 0 sin(𝜃)

0 1 0
sin(𝜃) 0 cos(𝜃)

],

 𝑅(𝜙) = [

1 0 0
0 cos(𝜙) sin(𝜙)

0 − sin(𝜙) cos(𝜙)
]

𝑅𝐺
𝑏

= [

cos(𝜓) cos(θ) sin(𝜓) cos(𝜃) − sin(θ)

cos(𝜓) sin(𝜙) sin(𝜃) − cos(𝜙) sin(𝜓) sin(𝜙) sin(𝜓) sin(𝜃) + cos(𝜓) cos(𝜙) cos(𝜃) sin(𝜙)

cos(𝜙) cos(𝜓) sin(𝜃) + sin(𝜙) sin(𝜓) cos(𝜙) sin(𝜓) sin(𝜃) − cos(𝜓) sin(𝜙) cos(𝜙) cos(𝜃)
]

𝐴𝐺 = 𝑅𝑏
𝐺𝑎𝑏 = 𝑅(𝜙)𝑇𝑅(𝜃)𝑇𝑅(𝜑)𝑇𝑎𝑏 = (𝑅𝐺

𝑏)
𝑇
𝑎𝑏

𝑅𝑏
𝐺

= [

cos(φ) cos(θ) cos(𝜑) sin(𝜙) sin(𝜃) − cos(𝜙) sin(𝜑) cos(𝜙) cos(𝜑) sin(𝜃) + sin(𝜙) sin(𝜑)

sin(𝜑) cos(𝜃) sin(𝜙) sin(𝜑) sin(𝜃) + cos(𝜑) cos(𝜙) cos(𝜙) sin(𝜑) sin(𝜃) − cos(𝜑) sin(𝜙)

− sin(θ) cos(𝜃) sin(𝜙) cos(𝜙) cos(𝜃)
]

𝑎𝑏 is body coordinate, 𝐴𝐺 is ground coordinate, 𝑅𝐺
𝑏 is the rotation matrix from

ground coordinate to body coordinate, 𝑅𝑏
𝐺 is the rotation matrix from body

coordinate to ground coordinate.

Since the angular velocity is defined in the body coordinates and the Euler is

defined in the ground coordinates, we can derive the transformation between the

angular velocity and the Euler angle rate as following:

31

𝜔 = [
𝑝
𝑞
𝑟
] = 𝑅(𝜙)𝑅(𝜃) [

0
0
�̇�

] + 𝑅(𝜙) [
0
�̇�
0
] + [

�̇�
0
0

]

 𝜔 = [
𝑝
𝑞
𝑟
] = [

1 0 sin(𝜃)

0 cos(𝜙) sin(𝜙) cos(𝜃)

0 − sin(𝜙) cos(𝜙) cos(𝜃)
] [

�̇�

�̇�
�̇�

] = 𝑊 [

�̇�

�̇�
�̇�

]

𝑊−1 =

[

1 sin(𝜙) tan(𝜃) cos(𝜙) tan(𝜃)

0 cos(𝜙) − sin(𝜙)

0
sin(𝜙)

cos(𝜃)

cos(𝜙)

cos(𝜃)]

[

�̇�

�̇�
�̇�

] =

[

1 sin(𝜙) tan(𝜃) cos(𝜙) tan(𝜃)

0 cos(𝜙) − sin(𝜙)

0
sin(𝜙)

cos(𝜃)

cos(𝜙)

cos(𝜃)]

[
𝑝
𝑞
𝑟
]

If the Euler angle is small enough (around 0 degrees), matrix 𝑊 will be an identity

matrix, thus the angular rate will equal to Euler angle rate.

The equation of movement can be defined as following:

𝑚�̈�𝐺 = 𝐹𝑔 − 𝐹𝑇
𝐺 − 𝐹𝑑

�̈�𝐺 = [
�̈�𝐺

�̈�𝐺

�̈�𝐺

] 𝑎𝑛𝑑 𝐹𝑔 = [
0
0

𝑚𝑔
]

𝐹𝑑 = [

𝐾𝑑𝑥 0 0
0 𝐾𝑑𝑦 0

0 0 𝐾𝑑𝑧

] [
𝑋�̇�

𝑌�̇�

𝑍�̇�

]

32

𝐹𝑇
𝐺 = 𝑅𝑏

𝐺 𝐹𝑇
𝑏

𝐹𝑇
𝑏 = ∑𝐹𝑖

4

𝑖=1

𝐹𝑇
𝐺 = 𝑅𝑏

𝐺 ∑𝐹𝑖

4

𝑖=1

=

[

0
0

𝐾𝑇 ∑𝜔𝑖
2

4

𝑖=1]

The equation of rotation can be defined as following:

𝐽𝑏�̇� = 𝜏𝑚 − 𝜏𝑔 − (𝜔 ∗ 𝐽𝑏𝜔)

𝐽𝑏 = [

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

] �̇� = [

�̈�

�̈�
�̈�

] (𝜔 ∗ 𝐽𝑏𝜔) =

�̇��̇�(𝐽𝑥 − 𝐽𝑦)

�̇��̇�(𝐽𝑧 − 𝐽𝑥)

�̇��̇�(𝐽𝑦 − 𝐽𝑧)

𝐽𝑚 �̇� = 𝜏𝑚 − 𝜏𝜓

𝐴𝑡 ℎ𝑜𝑣𝑒𝑟 𝑠𝑡𝑎𝑡𝑒, �̇� = 0 𝑠𝑜 𝜏𝜓 = 𝜏𝐷

𝜏𝐷 = (
1

2
)𝑅𝜌𝐶𝐷𝐴(𝜔𝑅)2 = 𝐾𝑑𝜔2

𝜏𝜓 = 𝜏𝐷 = (−1)𝑖+1𝐾𝑑𝜔𝑖
2 = 𝐾𝑑(𝜔1

2 − 𝜔2
2 + 𝜔3

2 − 𝜔4
2)

𝜏𝜙,𝜃 = ∑𝑟 ∗ 𝑇

33

𝜏𝜙 = 𝑙𝐾𝑇(𝜔4
2 − 𝜔2

2)

𝜏𝜃 = 𝑙𝐾𝑇(𝜔1
2 − 𝜔3

2)

𝜏𝑚 = [

𝜏𝜙

𝜏𝜃

𝜏𝜓

] = [

𝑙𝐾𝑇(𝜔4
2 − 𝜔2

2)

𝑙𝐾𝑇(𝜔1
2 − 𝜔3

2)

𝐾𝑑(𝜔1
2 − 𝜔2

2 + 𝜔3
2 − 𝜔4

2)

]

𝜏𝑔 = 𝜔 ∗ 𝐺𝑧 ∑𝐽𝜏𝜔𝑖

4

𝑖=1

𝜏𝑔 = [
�̇�

−�̇�
0

] 𝐽𝜏 ∑(−1)𝑖+1𝜔𝑖

4

𝑖=1

= [
𝐽𝜏�̇�(𝜔1 − 𝜔2 + 𝜔3 − 𝜔4)

−𝐽𝜏�̇�(𝜔1 − 𝜔2 + 𝜔3 − 𝜔4)
0

]

𝜔 is the angular velocity, �̇� is the angular accelerations, 𝐽𝑏 is the body moment of

inertia, 𝐽𝑚 is the motor moment of inertia, 𝐽𝑖 is the moment of inertia in 𝑖 axis, 𝜏𝑚

is the body torques from motors, 𝜏𝑔 is gyroscopic effect torques.

𝑅 is the radius of propeller, 𝐴 is cross-section of propeller, 𝜌 is air density and 𝑙 is

length of the quadcopter arms.

34

4 Basic algorithm for quadcopter system

We are running a real time operating system (Free RTOS) on the ESP32 and it will

allow the system to run different function at the same time and doesn’t interfere

with each other.

We assigned the frequency of each task and the max running time, if the task got

trapped in a task over the max running time, the processor will kill the task and go

to the next one. And if the task doesn’t as much time as defined by the frequency,

the task will wait for it. And we will also make sure that the key functions will

always have the highest priority. The frequency of each task is defined in Table 4.1:

Name of the task Frequency of the Task

MPU 200Hz

Motors 400Hz

Wi-Fi 200Hz

Status_check 100Hz

Flight_Mode 10Hz

Table 4.1 Frequencies of tasks

The ESP32 has a dual core processor and the certain task in the RTOS can be

assigned to different cores. We will assign the MPU task to core1 and assign

MOTOR and Wi-Fi tasks to core 0.

35

As shown in Figure 4.1, the first task of the system will be the initialization, it will

initiate the MPU6050, ESCs and Wi-Fi, a system error flag will be set if there is

any part of the system that is not running, and it will send the error message through

the Wi-Fi. After the initialization and the system check the quadcopter will be ready

for the flight and sending the status to the ground station through the Wi-Fi.

The command from the ground station will determine the flight mode (Table 4.2) of

quadcopter and the quadcopter will start.

Name of the flight

mode

Function of the flight mode

Takeoff Raise the quadcopter to a certain height, go to Hover

mode automatically when reached the desired height

Hover Hold the altitude in the hover state.

Landing Set the desired altitude to 0, stop all motors when

reached the ground.

Table 4.2 Flight Modes

MPU loop will always feed attitude data to the motor loop. The stabilize controller

inside the motor loop will process the current data with the desired attitude to and

generate the PWM signals to the ESC. At the meantime, the MPU loop will also

send the flight data to the Wi-Fi loop to give the feedback to the ground station.

36

Figure 4.1 Basic algorithm of quadcopter

37

5 Tuning the PID controller for attitude

5.1 Basic idea

To control the attitude of the quadcopter, we will need to apply a PID controller to

it. The first thing we are doing is using a single PID controller for Euler angle. As

shown in Figure 5.1, input for the controller will be the error between the current

attitude and the desired attitude. This error will be fed to the PID controller and

the PWM for each motor will be the output. The IMU will gather the data of the

quadcopter as a real-time feed back to the PID controller.

Figure 5.1 PID controller for angle

Only controlling the Euler angle is not enough, to add a damper to the system, we

will apply a cascade PID controller. As shown in Figure 5.2, the outer loop is angle

controller and the inner loop is the angular rate controller. The outer loop will have

the error of desired Euler angle and the current Euler angle as the input, and the

output will be the desired angular rate. The inner loop will take the error of current

38

angular rate and the output from the inner loop as the input of the inner loop. This

controller has a better performance in the practice and it is easier for tuning.

Figure 5.2 Cascade PID controller

5.2 Equipment of tuning the PID

Since the quadcopter can’t perform a safe flight before the controller is well tuned,

we must tune the controller before the flight. We started tuning controller on single

axis with our tuning kit (Figure 5.3).

39

Figure 5.3 Tuning Kit

With this tuning kit, we can attach the quadcopter on the stick, and then put the

stick inside two rings on the rack. The quadcopter will only have one degree of

freedom in this situation and it is safe even the controller goes crazy. We started

with tuning

5.3 Design of online tuning system

Using ESP32 as the flight controller also enabled the online tuning feature since we

can have the entire control of the communication with ground station. We must set

the PID coefficients before the flight in Pixhawk (Ardupilot), and those coefficients

40

are fixed during the flight. Each upload of the firmware will take at least 40 seconds

to compile and upload. Since tuning the PID controller is a time-consuming task,

the design of online tuning system will save remarkable time.

In the online tuning system, PID coefficients can be changed during the flight. The

ground station will send all the coefficients to quadcopter at 100Hz and the

quadcopter will update coefficients if there is any change.

5.4 Tuning the inner loop

The inner loop is controlling the angular velocity of the quadcopter. We can set P

gain to a certain value, and because the PID coefficients are all zero for the outer

loop, the desired angular velocity will be zero in the inner loop, the ideal result will

be that the quadcopter will be stable at any angle. On the quadcopter testing rack,

the motors will only provide torque on a certain axis, thus, the quadcopter should

balance itself at any angle.

5.4.1 𝑷𝒊𝒏𝒏𝒆𝒓

We changed the 𝑃𝑖𝑛𝑛𝑒𝑟 from 0, with the 𝑃𝑖𝑛𝑛𝑒𝑟 goes higher, it is easy to observe

that it’s getting harder to change the roll angle of the quadcopter. If 𝑃𝑖𝑛𝑛𝑒𝑟 is too

much, we can observe the overshoot of the inner loop, there will be oscillation if a

41

disturb is applied. The quadcopter will slightly turn around the stick because of the

existence of steady-state error of inner loop. In that way the angular velocity will

not be zero and quadcopter will turn around.

5.4.2 𝑰𝒊𝒏𝒏𝒆𝒓

Then we need to add 𝐼𝑖𝑛𝑛𝑒𝑟 to compensate the stead-state error of inner loop. With

ranging from 0, quadcopter will gradually hold the position. If the 𝐼𝑖𝑛𝑛𝑒𝑟 is too

much, the rotation of the quadcopter will diverge under a small disturb. With

𝑃𝑖𝑛𝑛𝑒𝑟 = 0.12, 𝐼𝑖𝑛𝑛𝑒𝑟 = 0.03, the quadcopter could stable itself at any angle on the

rack.

5.4.3 𝑫𝒊𝒏𝒏𝒆𝒓

The 𝐷𝑖𝑛𝑛𝑒𝑟 comes from the difference between the difference of this error and last

error. The derivative of angular velocity is angular acceleration, the vibration of the

quadcopter itself if very strong and this will lead to the a very high noise to the gyro

readings and the angular acceleration will be remarkable. We can apply some filter

to the data. The increase of 𝐷𝑖𝑛𝑛𝑒𝑟 will not change the dynamic of the quadcopter

too much, it’s easier to observe that it’s getting smoother when going towards the

target. The D part of the inner loop is just a supplemental thing, and if the vibration

of the frame is too much, we can cancel the 𝐷𝑖𝑛𝑛𝑒𝑟.

42

5.5 Tuning the outer loop

5.5.1 𝑷𝒐𝒖𝒕𝒆𝒓

Increase the 𝑃𝑜𝑢𝑡𝑒𝑟 from zero and we can observe that quadcopter is going back to

the middle. If we put the quadcopter to some angle, it will start to go back. The

response time will get shorter if 𝑃𝑜𝑢𝑡𝑒𝑟 goes higher. If 𝑃𝑖𝑛𝑛𝑒𝑟 is too much, the

oscillation will start to diverge.

Figure 5.4 Output of Pitch angle when P=0.1

43

Figure 5.5 Output of Pitch angle with P=0.3

Figure 5.6 Output of Pitch angle with P=0.22

44

5.5.2 𝑰𝒐𝒖𝒕𝒆𝒓

𝐼𝑜𝑢𝑡𝑒𝑟 will eliminate the steady-state error of the equilibrium state of the quadcopter.

And the oscillation will diverge if the 𝐼𝑜𝑢𝑡𝑒𝑟 is too much. As shown in Figure 5.7,

the controller will compensate the steady-state error when 𝐼𝑜𝑢𝑡𝑒𝑟 = 0.02 is applied.

Figure 5.7 Output of Pitch angle with P=0.22, I=0.02

5.5.3 𝑫𝒐𝒖𝒕𝒆𝒓

As shown in Figure 5.8, the controller will have a shorter response time and less

overshoot if 𝐷𝑜𝑢𝑡𝑒𝑟 is applied.

45

Figure 5.8 The output of Pitch with well-tuned PID

46

6 Tuning the PID controller for altitude

6.1 Using barometer

The altitude of the quadcopter can be measured by the barometer attached with the

GY-87 board. It’s a Bosch Sensortec BMP 180.

Figure 6.1Bosch Sensortec BMP 180

The barometer is measuring the altitude by comparing the air pressure of the current

and compare with the local standard air pressure to calculate the altitude. This

works fine in outside, but it will be affect a lot by the temperature and the weather.

47

The reading indoor is too inaccurate because the temperature and the moisture is

changing a lot. There is an error about 30cm when stationed and the reading is

drifting all the time.

6.2 Using sonar

The other approach is using the sonar HC-SR04, and Milad Habibi helped with

most of the work of sonar. The sonar is working by emitting sound pulses and

detecting or measuring their return after being reflected.

Figure 6.2 HC-SR04

This economical sensor provides 2cm to 400cm of non-contact measurement

functionality with a ranging accuracy that can reach up to 3mm. The detecting range

is good enough for the indoor flight. Thus, we can use the sonar for the altitude

measurement.

48

6.3 Tuning PID

6.3.1 P

Increase 𝑃𝑎 from 0, by holding it with hands first, only power up the flight controller

and the motor will not spin. Set the target altitude as 20 cm above the ground for

safety. We can see that PWM outputs from flight controller is changing with height.

Set the target as 1 meter above the ground, with the increase of the 𝑃𝑎. If 𝑃𝑎 is too

small, the quadcopter will never reach the 1-meter height, and if the 𝑃𝑎 is too large,

the quadcopter is oscillating around the 1-meter level.

Figure 6.3 Output of height with P=0.1

49

Figure 6.4 Output of height with P=0.5

Figure 6.5 Output of height with P=0.375

50

6.3.2 I

Compare Figure 6.6 with Figure 6.5, quadcopter is not exact 1 meter high, even the

𝑃𝑎 is good enough, there are steady-state errors of the altitude controller. With the

increase of 𝐼𝑎 the quadcopter will be gently ended up at reaching the height of 1

meter. If the 𝐼𝑎 goes higher, the controller will diverge.

Figure 6.6 Output of height after 𝐼𝑎 is applied

6.3.3 D

By increasing the value of 𝐷𝑎 , the approaching motion will be smoother. And as

shown in Figure 6.7, it compensates out the overshoot and shorten the response time.

51

Figure 6.7 Output of height of a well-tuned PID controller

52

7 Test Flight

After tuning all the controllers onboard, we started several test flights, about 50%

of the test didn’t start because some hardware is not initialized when powered up.

And about 20% of the flight tests crashed for unstable heading. About 30% of the

test went well and finished the following task:

a) Takeoff to the height of 1 meter;

b) Hover until 13 seconds after takeoff;

c) Land to the ground;

The desired pitch and roll angle and angular velocity are all set to 0, the

quadcopter should perform a straight takeoff, hover in the certain level and then

land to the ground.

As shown in Figure 7.1, the altitude controller has some overshoot when taking

off, this is due to the battery voltage level is decreasing, the gain of the controller

should be changing with the voltage level instead of being fixed. The response

time is about 1.7 seconds, this problem can be fixed in the future if add a battery

monitor to the quadcopter to measure the voltage level.

The pitch and roll angle are oscillating around 0.01 rad in the real flight as shown

in Figure 7.2 and Figure 7.3, this might due to the vibration of motors and the low

frequency of the MPU loop. We could reach a 400 Hz MPU sampling frequency

53

if use Motion Capture system or use our own filter instead of using DMP. Both of

them will increase the quality of the controller with a high sampling rate.

Figure 7.1 Altitude test result

Figure 7.2 Pitch angle test result

54

Figure 7.3 Roll angle test result

There is another problem during the test flight is that the yaw angle is not fixed.

The quadcopter will perform yaw movement during the hovering. Since the

indoor magnetic field is complex and variant, the heading reading form

HMC5883L is not accurate enough. And this is the main reason for the crashes

during the test.

55

8 Conclusion

Our new quadcopter was manufactured and tested. It has the cheapest price in the

range of research use and variety of potential modification in the future. Taking-

off, hovering and landing are performed very well in several tests.

There are still some problems to be solved, the reliability of hardware is still too

weak for the regular research use and the reading of yaw angle is not stable for the

indoor flight since the magnetometer is not accurate inside.

We are now working on enabling Motion Capture system with this new

quadcopter through Wi-Fi communication, this feature will fix the yaw reading of

the quadcopter and provide attitude information at a higher sampling rate which

will lead to a better flight performance of the new quadcopter.

56

Appendix A

Specifications of ESP32

Categories Items Specifications

Wi-Fi Protocols 802.11 b/g/n (802.11n up to 150 Mbps)

A-MPDU and A-MSDU aggregation and

0.4 µs guard interval support

Frequency range 2.4 GHz ~ 2.5 GHz

Hardware Operating

voltage/Power supply

2.7 ~ 3.6V

Operating current Average: 80 mA

Operating temperature

range

-40°C ~ +85°C

Package size 18±0.2 mm x 25.5±0.2 mm x 3.1±0.15

mm

57

Appendix B

Specifications of F330 quadcopter frame

Model F330

Frame arm size (mm) 150x20x30

Diagonal Wheelbase (Motor to Motor) (mm) 330

Total weight (g) 156.00

58

Appendix C

Specifications of Motors

SKU L2210A-1650 Brand Turnigy

Shipping Weight(g) 92.00 Length(mm) 95.00

Height(mm) 55.00 Kv(rpm/V) 1650

Max Currents (A) 17.50 Power (W) 180.00

Length B (mm) 25.00 Can Length D(mm) 12.00

Max Voltage(V) 11.00 Shaft A(mm) 3.00

Unit Weight (g) 49 Diameter C(mm) 28.00

Total Length E(mm) 44.00 Resistance (mΩ)) 0.00

59

Appendix D

Specifications of ESC

Constant Current (A) 20A

Input Voltage (V) 12 (2-4 cell Lipos)

BEC OPTO

MCU Arm Cortex-M0

Weight (g) 6

PCB Size (mm) 22 x 12

60

9 Biography

Guangyi Liu

Education

Department of Mechanical Engineering, Lehigh University

M.S., Mechanical Engineering 09.2016-06.2018

School of Aerospace Engineering, Beijing Institute of Technology

B.E., Aerocraft Design and Engineering 09.2012-06.2016

Exchange Student, Technische Universitaet München 02.2016-06.2016

Research& Project Experiences

✓ Indoor UAV research in Lehigh Distributed Control and Dynamical Systems

Laboratory

Research Assistant, Advisor Prof: Nader Motee and Babak Shirmohammadi 02.2017-

Now

This project builds our DIY quadcopters with Motion capture system to accomplish the indoor

and high accuracy flight.

⚫ Fixed the onboard sensor drift caused by complex indoor magnetic field.

⚫ Built our own flight controller after studying and modifying Arducopter firmware.

⚫ Took part in building communication between ground station and quadcopters through

Wifi modules.

⚫ Took part in building Motion Capture system in the lab and hardware communication

debugging.

✓ Bachelor Thesis done at Technische Universitaet München

Advisor Prof: Mirko Hornung and Gilbert Tay 02.2016-06.2016

Title: Network Analysis and Geographical Evaluation of Air Transportation Systems and Pre-

Defined Aircraft Clusters

⚫ Analyzed the robustness of air transportation system in China, Europe, South East Asia

and United States and the reason of the system failure.

⚫ Analyzed the performance and efficiency on each airport in the region included above and

the network features of different pre-defined aircraft clusters.

✓ Design of Fireworks System (Funded by the Chinese Outstanding Engineers Training

Program)

Research Assistant, Advisor Prof: Wen li 07.2015-09.2015

This project is to design the automatic launch system and conduct dynamic simulation of the

whole process including emission, ignition, releasing the parachute, and landing.

⚫ Took part in the writing of classes including igniter and the simulation of flight

61

environment.

⚫ Completed the design of whole structure, writing of general program code, skillfully

grasped the numerical computation solving differential equations and interpolation fitting.

✓ Course Project of Flight Dynamics Advisor Prof: Hai Lin

Lateral Stability Analysis of Aircraft 05.2015-08.2015

⚫ Studied coupled mode of Dutch roll and coupled modal space control for the coupling

characteristics of transverse side direction movement.

⚫ Built the five-freedom coupling dynamic model and analyzed the principle of generation

of aerodynamic coupling, control coupling, kinematic coupling and inertia coupling.

⚫ Established the small perturbation model of aircraft with linear method, further analyzed

the influence factor of control derivative.

Design of Guiding Laws 04.2015-05.2015

⚫ Studied the principle, composition of guidance control system, investigated the

proportional navigation and multi-model composite homing guidance.

⚫ Designed the algorithm with C based on the composite mode of radar and infrared seeker.

Internship

Taiyuan Mining Machinery Group CO. Ltd. 06.2015-09.2015

Assistant Engineer Mentor: Jianhua Su

⚫ Studied the structure and working principle of crawler travel mechanism, and conducted

the theoretical calculation of running resistance to determine the external load for

dynamics simulation.

⚫ Investigated the reliability failure analysis, and found out the main failure points of

continual coal winning machine.

⚫ Explored to build the virtual prototype model based on the dynamic theory of multibody

system.

Technical Skills

⚫ Programming Languages: C, C++

⚫ Proficient in Matlab, AutoCAD, Gephi and embedded programming with Arduino

