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Abstract 

In DCDS (Distributed Control and Dynamical Systems) laboratory, we are using 

quadcopter flying inside the building with motion capture system. In the quadcopter 

base, we are designing a new flight controller which has a high-speed processor 

and fast Wi-Fi communication. And the price is affordable in case of crashes during 

the research.  

The IMU used on the quadcopter is MPU6050 and HMC5883L magnetometer, they 

provide accurate Euler angle, angular velocity and heading at 200Hz. The controller 

used for attitude is cascade PID controller which controls the angle and the angular 

velocity at the same time, it’s robust and reliable. And the controller used for 

altitude is a PID controller with the feedback from sonar. 

The new quadcopter can perform a stable hover, safe takeoff and landing, it’s 

currently not as good as commercial flight controllers in flight performance, but it 

has a great potential of modification and capable of handling a lot of future 

additional task. 

With the feedback form Motion Capture system in the future, we will have a more 

accurate heading and altitude. Motion Capture system will recognize the markers 

attached on the frame and send the position and configuration of the object back to 

the ground station. By measuring the relative distance from markers to cameras, 

position and configuration information will be more accurate which makes the 

performance better. 
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1 Introduction and related work 

1.1 Background 

The drone testing base is equipped with a high-precision motion capture system, a 

central server, a wireless communication network, and custom software tools. Our 

team is developing design methodologies to optimize drone size, flight controller 

and on-board sensors by integrating and co-designing control and navigation 

algorithms. As the demand of the research, we need to build a quadcopter which 

has a powerful processor, support Wi-Fi communication and the cost of itself is not 

too much. 

As shown in the Figure 1.1, our quadcopter is recognized by the Motion Capture 

system with markers attached on the frame. Motion Capture will send the flight 

information (altitude, velocity, etc.) to the server, and the server will spread it out 

with Wi-Fi. The quadcopter will receive the information through a Wi-Fi chip 

called ESP8266. And the information from Motion Capture system will be sent to 

the flight controller and then feed to the controller. 
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Figure 1.1 The schematic of our current project 

 

1.2 Flight controllers 

We started with Cheerson CX-20 quadcopter for a better understanding of how the 

system of a quadcopter looks like. It has a stable outdoor flight performance, but it 

is not suitable for the indoor flight for research and it doesn’t support the 

communication with the Motion Capture system for the future tasks. 
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We then switched to APM flight controller which runs Arducopter, an opensource 

flight control firmware onboard. The hardware onboard allows quadcopter to 

communicate with the ground station or radio controller. The processor inside is 

Atmel's ATMEGA2560 (16MHz), this processor it not capable of handling too 

much tasks and carrying Wi-Fi communication. 

Figure 1.2 CX-20 quadcopter (left) and APM 2.8 flight controller (right) 

The next choice is Pixhawk flight controller which share the same firmware 

Arducopter with APM but it has a more powerful processor and a SPI/I2C 

communication port. Pixhawk doesn’t have the Wi-Fi module imbedded inside so 

our solution is connecting it with a Wi-Fi router Espressif ESP8266. This module 

has a Wi-Fi chip onboard and it can communicate with Pixhawk through SPI (Serial 

Peripheral Interface Bus) port. But the serial SPI communication has a delay of 

10ms for the communication loop which will affect the quality of the controller.   
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Figure 1.3 Pixhawk (left) and Pixhawk2 (right) 

 

We then decided to choose Espressif ESP32 as a flight controller which was 

released on September 6, 2016, it has a due core processor and the Wi-Fi module 

is imbedded within the chip. This substitution will cut down the delay of the serial 

SPI communication. 

Figure 1.4 Espressif ESP32 core chip 

ESP32 is capable of functioning reliably in industrial environments, with an 

operating temperature ranging from -40°C to +125°C. Powered by advanced 



6 
 

calibration circuitries, ESP32 can dynamically remove external circuit 

imperfections and adapt to changes in external conditions. This feature will ensure 

the reliable performance of our quadcopter in the extreme conditions. 

The most applications of ESP32 is about Internet of Things (IoT) and smart home 

devices for its excellent Wi-Fi function, and it only has the processor and Wi-Fi 

chip onboard without any inertial measurement unit (IMU). We will need to attach 

external IMU to the ESP32 to build the quadcopter. 

As shown in Table 1.1, the price of a ESP32 chip is acceptable for research use and 

it is affordable for us if there is any hardware lost during the quadcopter crash. It’s 

1/24 of the price of the newest Pixhawk 2.1 and has a better processor than it. 

Name of 

the flight 

controller 

CX-20 

(including the 

whole 

quadcopter) 

Ardupilot 

APM 2.8 

RadioLink 

Pixhawk 

PX4 

Pixhawk 

2.1 (The 

Cube) 

Espressif 

ESP32 

Market 

price 

$165.50 $29.99 $109.99 $238.00 $9.95 

Table 1.1 Market price of different flight controllers 
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1.3 IMUs 

There are a lot of IMUs available in the market and two low price IMU came into 

our sight. One is MPU 6050 and another is MPU6500, they are both from 

InvenSense company, containing a 3-axis accelerometer and a 3-axis gyroscope, 

but MPU6500 allows a 32kHz gyro sampling rate compares to the 8kHz sampling 

rate of MPU6050. In the practice, the high sampling rate of MPU6500 makes it 

extreme sensitive to the small vibration of the quadcopter frame. Since the motor 

is always spinning during the flight, all the unneeded vibration will be detected by 

MPU6500. Additional filter will be acquired for MPU6500 to filter out the 

redundant data, and there will be a high possibility that this filter will cause a 

remarkable delay to the data. MPU6050 is just the half of the price of the MPU6500 

and the 8kHz sampling rate is fast enough for indoor quadcopter research. 

Figure 1.5 GY-87 developing board with MPU6050 
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1.4 Frames 

We started with F450 quadcopter frame with the diagonal length (motor to motor) 

of 450mm and equipped with 178mm propellers, this one can generate the total 

thrust of 2040g on full throttle. The scale of this frame will drain the battery too 

fast and the propeller of this size may cause serious injury when crashed. 

We then switched to F330 with the diagonal length (motor to motor) of 330mm and 

equipped with propellers of 130mm. This frame will ensure a longer battery life 

and a safer testing environment for research members. 

Figure 1.6 F330 quadcopter frame 
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1.5 Motors and ESCs 

The motor we are using is Turnigy L2210A-1650 Brushless Motor, with the max 

power of 180W and 1650 rpm per Volt. The specifications can be found in 

Appendix C. 

The speed of the brushless DC motor can be controlled by adjusting the timing of 

pulses of current delivered to the several windings of the motor, but the flight 

controller can only generate the PWM (pulse-width modulation) signals. The ESC 

(Electronic speed control) will receive the PWM signals from flight controller and 

then transform them into pulses of current and control the speed of the motor. 
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Figure 1.7 Turnigy L2210A-1650 Brushless Motor 

Figure 1.8   Turnigy MultiStar 32bit ESC 

The ESC unit we are using is Turnigy MultiStar 32bit ESC which support a 480Hz 

refresh rates and 20A current. This fits well with the motor we have selected. The 

specifications can be found in Appendix D. 

 

1.6 The total price of quadcopter 

Table 1.2 is showing the price specifications about different quadcopters, the total price of 

the quadcopter can be reduced to $100 if using ESP32. It keeps the same IMU but has a 

faster processor and Wi-Fi communication.  
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Name of 

the flight 

controller 

CX-20 

(including the 

whole 

quadcopter) 

Ardupilot APM 

2.8 ($29.99) 

RadioLink 

Pixhawk 

PX4 

($109.99) 

Pixhawk 

2.1 

($238.00) 

Espressif ESP32 

($9.95) 

Processor 32bit 

microcontroller 

Atmel's 

ATMEGA2560 

168 MHz 

Cortex 

M4F CPU 

32-bit 

ARM 

Cortex M4 

core with 

FPU 

240 MHz 

Xtensa dual-

core 32-bit LX6 

microprocessor 

IMU MPU6050 

(included) 

MPU6050 

(included) 

MPU6050 

(included) 

MPU6050 

(included) 

MPU6050 

($10.41) 

ESC Included MultiStar 32bit 

ESC ($12.03) 

*4 

MultiStar 

32bit ESC 

($12.03) *4 

MultiStar 

32bit ESC 

($12.03) 

*4 

MultiStar 32bit 

ESC ($12.03) 

*4 

Motor Included L2210A-1650 

Brushless Motor 

($12.00) * 4 

L2210A-

1650 

Brushless 

Motor 

($12.00) * 

4 

L2210A-

1650 

Brushless 

Motor 

($12.00) * 

4 

L2210A-1650 

Brushless Motor 

($12.00) * 4 
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Table 1.2 Build specifications and total price of different quadcopters 

 

Figure 1.9 Prototype of the new quadcopter 

  

Wi-Fi 

Module 

Not supported Not supported ESP 8266 

($6.00) 

ESP 8266 

($6.00) 

Included 

Frame Included F330 ($10.22) F330 

($10.22) 

F330 

($10.22) 

F330 ($10.22) 

Total 

price 

$165.50 $126.11 $212.11 $340.12 $106.07 
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2 Manufacturing the quadcopter 

2.1 Programming ESP  

The development board of ESP32 (Figure 2.1) is available in the market, it can be 

programmed by Arduino IDE and the support of the hardware is opensource. The 

Arduino library supports the full function of Wi-Fi and the PWM generating in 

ESP32. Power supply for ESP32 can be get from the power module which is 

connected with the LiPo battery. And power for MPU6050 will be supplied from 

ESP32.  

The pin usage can be specified in Table 2.1, and the pin map of ESP32 can be found 

in Figure 2.2: 

Name of the component  The pin used by the component 

GY-87 (MPU6050) GPIO 21, GPIO22, 3.3V and GND 

4 ESCs GPIO 16~ GPIO 19 and GND 

Power Module  5V and GND 

Table 2.1 Pin usage of ESP32 
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Figure 2.1  Development board of ESP32 

Figure 2.2 The pin map of ESP32 
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2.2 Connecting MPU with ESP32 

2.2.1 Get the raw reading from MPU 

The MPU6050 is designed to communicate with the processor through I2C Bus, 

which needs a SCL pin and a SDA pin connected with the I2C ports of ESP32 

which is GPIO port 21 and 22. 

The library of MPU6050 and I2C interface is designed by (name of the guy) and it 

is based on regular Arduino board. Since the I2C structure of ESP32 is different 

from the regular Arduino board, we need to remove TWBR=24 in the code to allow 

the function of I2C bus.  

The basic function of a MPU6050 is sending back raw readings from gyroscope 

and accelerometer. These reading could be very noisy and unstable when MPU is 

not calibrated. 

2.2.2 Calibrating MPU 

The basic idea of calibrating MPU6050 is to specify the position of the horizontal 

plane and tell the processor which plane is horizontal and what value for gyroscope 

raw reading should be 0. The algorithm can be found in Figure 2.3. 

First station the MPU on a horizontal surface with z axis point up and perpendicular 

to the plane. Exclude all potential source of vibration and movement of the plane. 
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The ideal reading at this situation will be zero for all 3-axis of gyroscope, zero for 

x, y axis of accelerometer and 1g for z axis of accelerometer since z axis is sensing 

the gravity. Gather adequate raw data (at least 2000 sets of data) from all axis and 

calculate a mean value of those data for each axis. These mean values are offsets of 

each axis accordingly.  

For z axis of accelerometer, the offset should be mean value minus 1g. Store all the 

offsets in the flight controller program and send them to MPU6050 during the 

initialization of it. Thus, MPU6050 will apply these offsets before send the data 

back to flight controller. This calibration needed to be done occasionally to make 

sure the data is accurate. 
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Figure 2.3 Algorithm of MPU calibration 

 

2.2.3 Digital Motion Processor  

The raw data are still noisy even after the calibration, the rotation of the motors will 

create vibrations to the frame and it will lead to a noisy data. Some filter is needed 

to be applied to the data to have a more accurate reading.  
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The raw data from gyroscope will be the angular rate of each axis and the current 

Euler angle will be the integration of the changing rate. The relation between 

gyroscope reading and angular velocity can be defined as following: 

𝑔𝑦𝑟𝑜𝑥 = 𝑝 + 𝑔𝑒𝑥, 𝑔𝑦𝑟𝑜𝑦 = 𝑞 + 𝑔𝑒𝑦, 𝑔𝑦𝑟𝑜𝑧 = 𝑟 + 𝑔𝑒𝑧 

𝜙𝑔𝑦𝑟𝑜 = ∫𝑔𝑦𝑟𝑜𝑥 = ∫𝑝 + ∫𝑔𝑒𝑥 

As shown in the equation above, the gyroscope reading are the summation of actual 

angular velocity and sensor error. We can take roll angle for example, the integral 

of 𝑔𝑦𝑟𝑜𝑥 will be the roll angle as the output from gyroscope. Since the existence 

of 𝑔𝑒𝑥 , the error will accumulate during the integration and it will not be canceled 

by any means. This will make the roll angle reading from MPU6050 continuing to 

increase or decrease even quadcopter is stationed on the ground. This drifting will 

happen to all 3-axis. 

2.2.3.1 How accelerometer works 

Accelerometer is sensing the accelerations on 3-axis, the equation can be defined 

as following: 

𝑎𝑐𝑐𝑒𝑙𝑥 = 𝑎𝑡𝑟𝑢𝑒𝑥 + 𝑎𝑒𝑥, 𝑎𝑐𝑐𝑒𝑙𝑦 = 𝑎𝑡𝑟𝑢𝑒𝑦 + 𝑎𝑒𝑦,

𝑎𝑐𝑐𝑒𝑙𝑧 = 𝑎𝑡𝑟𝑢𝑒𝑧 + 𝑎𝑒𝑧 
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𝑎𝑡𝑢𝑟𝑒𝑖  is actual acceleration on 𝑖𝑡ℎ axis, 𝑎𝑒𝑖  is error of sensor on 𝑖𝑡ℎ axis and 

𝑎𝑐𝑐𝑒𝑙𝑖  is reading of accelerometer on 𝑖𝑡ℎ  axis. Since 𝑎𝑒𝑖  ≪ 𝑎𝑡𝑟𝑢𝑒𝑖  and errors 

from accelerometer will not accumulate with time, readings of accelerometer can 

be regard as reliable and accurate. 

With the readings from accelerometer, the drift of gyroscope can be compensated 

easily for pitch and roll angle. We can calculate pitch and roll angles from 

accelerometer reading when there are no other accelerations than the gravity, and 

this will not be drifting with time. Accelerometer will provide a more accurate angle 

reading when quadcopter is not rotating. Gyroscope will provide a more accurate 

angular velocity reading when quadcopter is rotating since the error of angular 

velocity is not accumulating with time. A kind of data fusion is needed for pitch 

and roll angle. The basic idea is trust the gyroscope more for the angular velocity 

and trust accel more when there is no more movement. 

But the accelerometer can’t provide any information about yaw angle since the 

direction of the gravity is parallel to the direction of z-axis, we will need the 

magnetometer or Motion Capture system to compensate the drift of yaw. 

After compensated the drift, the raw data are still noisy since the vibration of the 

frame will still create errors to the readings. Then we will need a filter applied to 

raw readings to get the accurate values. 
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2.2.3.2 Using the DMP 

InvenSense has also built a Digital Motion Processor (DMP) inside the MPU6050 

and released it to the public. DMP will fuse all the data together as an output of 

quaternions or Euler angles. It will support an output at a sampling rate of 200Hz. 

DMP will not lay any burden on the main processor and it saves remarkable time 

of transforming raw gyro and accel data in to quaternion or Euler angles. The pitch 

and roll angle output of DMP is accurate and stable but the yaw output is still 

drifting since there is no standard for yaw. DMP doesn’t fuse magnetometer data 

with yaw readings and this fusion must be done by the processor. 

2.2.3.3 Get rid of interruption  

DMP data is also transported through I2C bus, and it will pull the interrupt pin to 

HIGH on the MPU6050 to inform the mainboard what buffer size of the data is. 

This is not stable and some time it will give out FIFO overflow. Thus, we let the 

program to measure the buffer size and decide when to cut the buffer and read the 

data. 

 

2.2.4 Magnetometer Calibration 

The magnetometer will sense the strength of the earth’s magnetic field and generate 

a vector which is pointing the current heading direction based on the reading on 
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each axis. And this vector will be distorted by hard-iron effect, soft-iron effect and 

magnetic declination. 

The Hard-iron distortion is generated by materials which can produce the constant 

magnetic field to the environment such as permanent magnet. The magnetic field it 

generated will be added to the earth’s magnetic field and the value of each axis 

from magnetometer will be added with a constant value. Once the orientation of the 

hard-iron source is fixed, the additional magnetic field will also be constant. Hard-

iron distortion will make the magnetic sphere away from the origin of coordinates. 

Cellphones, laptops, and the current on the quadcopter would be the origin of hard-

iron distortion. 

The soft-iron distortion is the result of material that does not generate the magnetic 

field. This kind of material will influence the surrounding magnetic field and distort 

the orientation of the reading of the electronic compass. The soft-iron distortion 



22 
 

will make the set of magnetic reading vectors from a sphere to an ellipsoid, and the 

reading will not be accurate. It will be more common in the indoor environment 

since all the cables and metal structures will be the origin of the soft-iron distortion. 

Figure 2.4 Raw magnetometer reading before calibration 

As shown in Figure 2.4, the raw magnetic vector set is not forming a sphere due to the 

hard-iron and soft-iron distortion. 

Magnetic declination is the angle on the horizontal plane between magnetic north 

and true north. The heading from magnetometer will show the angle between the 

head and magnetic north if magnetic declination is not applied.  

The general procedure of calibrating an electronic compass will be as following: 

Point the magnetometer to every direction as much as possible to form a sphere of 

the reading. The reading vector should form an ellipsoid with long axis pointing 

random direction and the center is out of origin of coordinates. Our calibration 

program will find the approximate starting and ending point of the long axis, and 

the coordinate of middle point of the long axis will be the offset value of the hard-

iron distortion. After applying this offset to the raw data, the ellipsoid will be 

located at the origin of coordinates.  

We need to rotate the ellipsoid back to the right orientation and then perform the 

scaling. The rotation matrix can be defined by the z axis vector and the long axis 
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vector, and the scaling will be applied to each axis parameter according to the 

ellipsoid function. 

And the scaling procedure can be defined as an optimize problem: 

min∑(𝑟𝑖 − 𝑑)2

𝑛

𝑖=1

 

𝑠. 𝑡.      𝑟𝑖 = √(𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2) 

𝑟𝑖  is the 𝑖𝑡ℎ mode of the magnetic vector, 𝑥, 𝑦, 𝑧 are coordinate of 𝑖𝑡ℎ magnetic 

vector, 𝑛 is the total number of the magnetic vectors. 

We can solve the problem with Matlab, and the result is shown in Figure 2.5. It’s 

obvious that the set of vectors has finally form a sphere. 
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Figure 2.5 The result of scaling 

The magnetic declination value can be found on the website of National Centers for 

Environmental Information (https://www.ngdc.noaa.gov/), it is 12° 9' W at 

Allentown, PA. 

After that the program will print out the rotation matrix and the scaling parameters 

for the quadcopter. And every magnetic data will be processed with offset first and 

then rotate, scale and rotate back. Then apply magnetic declination, the output of 

the magnetometer will be the actual heading of the sensor. 
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2.3 Wi-Fi Connection 

We are using Wi-Fi for communication with the quadcopter, it will take the 

following tasks: 

Receiving Tasks Sending Tasks 

• Commands from ground stations 

• Flight coefficients from ground station 

• Flight information from Motion 

Capture system 

• Flight status to ground 

station 

Table 2.2 Tasks of Wi-Fi 

TCP and UDP are both available for the communication but TCP is using more 

steps of communication and this will cause remarkable delay for the response loop 

of the quadcopter. 

We tested the different protocol with measuring the response time for sending a 32 

Bytes packet to ESP32 and send back a 32 Bytes packet from ESP32 when the first 

packet arrives. As shown in Figure 2.6, TCP is using 2 times of time as much as 

UDP. 
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Figure 2.6 Average loop time for UDP and TCP 

The structure of the communication is shown in Figure 2.7. There will be a Wi-Fi 

router at 2.4GHz in the base and both ESP32 and ground station will start a UDP 

server under the Wi-Fi network, UDP server on the quadcopter and ground station 

will have distinct IP addresses and same port number. Every packet been sent will 

have a destination to certain IP address and port number. Thus, they could 

communicate under the same Wi-Fi network as UDP servers. 
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Figure 2.7 The Wi-Fi communication 

 

2.4 Calibrating the ESCs 

The ESP32 can generate PWM signals for all GPIO pins on the board, the 

quadcopter will need 4 pins to send 4 different PWM signals to ESCs. The ESC 

will enter calibration mode if the throttle is set to max before connected to the power. 

And after that it will recognize the next PWM signal as the zero throttle. We set the 

full throttle as 900 PWM and the zero throttle is 500PWM, this throttle resolution 

is good enough for the quadcopter motors. 

This calibration needed to be done before the first run, and we let the processor to 

send zero throttle before the flight to make sure the ESC will enter the correct mode.  
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3 The model of the drone  

Quadcopter can perform a 6 degrees of freedom motion by adjusting the rotation 

speed of four motors, we can set the coordinates as shown in the figure, all the 

motions can be classified as moving along 𝑥, 𝑦, 𝑧 axis, rotating around 𝑥, 𝑦, 𝑧 axis 

(also defined as roll, pitch, and yaw). The definitions of axis and Euler angles is 

shown in Figure 3.1. 

 

Figure 3.1 Definitions of coordinates 

The roll, pitch, yaw and altitude changing motion can be accomplished as shown in 

Figure 3.2. 
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Figure 3.2 Changing motion with motor speed 

To build the model of the quadcopter, we are going to make following assumptions 

first: 

a) Assume the quadcopter as a rigid body, ignore all the deformation of the 

frame during the flight. 

b) The shape and mass distribution of quadcopter are symmetric. 

c) Ignore the ground effect, vibration of the motor and the influence of air 

flows between each propeller. 

d) The mass and the inertia doesn’t change during the flight. 

And the rotation matrix will be needed the ground coordinates and the body 

coordinates of the quadcopter. It can be defined as following: 
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𝑎𝐵 = 𝑅𝐺
𝑏𝐴𝐺 = 𝑅(𝜙)𝑅(𝜃)𝑅(𝜑)𝐴𝐺  

𝑅(𝜑) = [
cos(𝜑) sin(𝜑) 0

− sin(𝜑) cos(𝜑) 0
0 0 1

] , 𝑅(𝜃) = [
cos(𝜃) 0 sin(𝜃)

0 1 0
sin(𝜃) 0 cos(𝜃)

], 

 𝑅(𝜙) = [

1 0 0
0 cos(𝜙) sin(𝜙)

0 − sin(𝜙) cos(𝜙)
]  

𝑅𝐺
𝑏

= [

cos(𝜓) cos(θ) sin(𝜓) cos(𝜃) − sin(θ)

cos(𝜓) sin(𝜙) sin(𝜃) − cos(𝜙) sin(𝜓) sin(𝜙) sin(𝜓) sin(𝜃) + cos(𝜓) cos(𝜙) cos(𝜃) sin(𝜙)

cos(𝜙) cos(𝜓) sin(𝜃) + sin(𝜙) sin(𝜓) cos(𝜙) sin(𝜓) sin(𝜃) − cos(𝜓) sin(𝜙) cos(𝜙) cos(𝜃)
]  

𝐴𝐺 = 𝑅𝑏
𝐺𝑎𝑏 = 𝑅(𝜙)𝑇𝑅(𝜃)𝑇𝑅(𝜑)𝑇𝑎𝑏 = (𝑅𝐺

𝑏)
𝑇
𝑎𝑏 

𝑅𝑏
𝐺

= [

cos(φ) cos(θ) cos(𝜑) sin(𝜙) sin(𝜃) − cos(𝜙) sin(𝜑) cos(𝜙) cos(𝜑) sin(𝜃) + sin(𝜙) sin(𝜑)

sin(𝜑) cos(𝜃) sin(𝜙) sin(𝜑) sin(𝜃) + cos(𝜑) cos(𝜙) cos(𝜙) sin(𝜑) sin(𝜃) − cos(𝜑) sin(𝜙)

− sin(θ) cos(𝜃) sin(𝜙) cos(𝜙) cos(𝜃)
]  

𝑎𝑏  is body coordinate, 𝐴𝐺  is ground coordinate, 𝑅𝐺
𝑏  is the rotation matrix from 

ground coordinate to body coordinate, 𝑅𝑏
𝐺  is the rotation matrix from body 

coordinate to ground coordinate. 

Since the angular velocity is defined in the body coordinates and the Euler is 

defined in the ground coordinates, we can derive the transformation between the 

angular velocity and the Euler angle rate as following: 
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𝜔 = [
𝑝
𝑞
𝑟
] = 𝑅(𝜙)𝑅(𝜃) [

0
0
�̇�

] + 𝑅(𝜙) [
0
�̇�
0
] + [

�̇�
0
0

] 

 𝜔 = [
𝑝
𝑞
𝑟
] = [

1 0 sin(𝜃)

0 cos(𝜙) sin(𝜙) cos(𝜃)

0 − sin(𝜙) cos(𝜙) cos(𝜃)
] [

�̇�

�̇�
�̇�

] = 𝑊 [

�̇�

�̇�
�̇�

] 

𝑊−1 =

[
 
 
 
1 sin(𝜙) tan(𝜃) cos(𝜙) tan(𝜃)

0 cos(𝜙) − sin(𝜙)

0
sin(𝜙)

cos(𝜃)

cos(𝜙)

cos(𝜃) ]
 
 
 

 

[

�̇�

�̇�
�̇�

] =

[
 
 
 
1 sin(𝜙) tan(𝜃) cos(𝜙) tan(𝜃)

0 cos(𝜙) − sin(𝜙)

0
sin(𝜙)

cos(𝜃)

cos(𝜙)

cos(𝜃) ]
 
 
 

[
𝑝
𝑞
𝑟
] 

If the Euler angle is small enough (around 0 degrees), matrix 𝑊 will be an identity 

matrix, thus the angular rate will equal to Euler angle rate. 

The equation of movement can be defined as following: 

𝑚�̈�𝐺 = 𝐹𝑔 − 𝐹𝑇
𝐺 − 𝐹𝑑 

�̈�𝐺 = [
�̈�𝐺

�̈�𝐺

�̈�𝐺

]  𝑎𝑛𝑑  𝐹𝑔 = [
0
0

𝑚𝑔
] 

𝐹𝑑 = [

𝐾𝑑𝑥 0 0
0 𝐾𝑑𝑦 0

0 0 𝐾𝑑𝑧

] [
𝑋�̇�

𝑌�̇�

𝑍�̇�

] 
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𝐹𝑇
𝐺 = 𝑅𝑏

𝐺 𝐹𝑇
𝑏 

𝐹𝑇
𝑏 = ∑𝐹𝑖

4

𝑖=1

 

𝐹𝑇
𝐺 = 𝑅𝑏

𝐺 ∑𝐹𝑖

4

𝑖=1

=

[
 
 
 
 

0
0

𝐾𝑇 ∑𝜔𝑖
2

4

𝑖=1 ]
 
 
 
 

 

The equation of rotation can be defined as following: 

𝐽𝑏�̇� = 𝜏𝑚 − 𝜏𝑔 − (𝜔 ∗ 𝐽𝑏𝜔) 

𝐽𝑏 = [

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

] �̇� = [

�̈�

�̈�
�̈�

] (𝜔 ∗ 𝐽𝑏𝜔) =

�̇��̇�(𝐽𝑥 − 𝐽𝑦)

�̇��̇�(𝐽𝑧 − 𝐽𝑥)

�̇��̇�(𝐽𝑦 − 𝐽𝑧)

 

𝐽𝑚 �̇� = 𝜏𝑚 − 𝜏𝜓 

𝐴𝑡 ℎ𝑜𝑣𝑒𝑟 𝑠𝑡𝑎𝑡𝑒, �̇� = 0 𝑠𝑜 𝜏𝜓 = 𝜏𝐷 

𝜏𝐷 = (
1

2
)𝑅𝜌𝐶𝐷𝐴(𝜔𝑅)2 = 𝐾𝑑𝜔2  

𝜏𝜓 = 𝜏𝐷 = (−1)𝑖+1𝐾𝑑𝜔𝑖
2 = 𝐾𝑑(𝜔1

2 − 𝜔2
2 + 𝜔3

2 − 𝜔4
2) 

𝜏𝜙,𝜃 = ∑𝑟 ∗ 𝑇 
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𝜏𝜙 = 𝑙𝐾𝑇(𝜔4
2 − 𝜔2

2) 

𝜏𝜃 = 𝑙𝐾𝑇(𝜔1
2 − 𝜔3

2) 

𝜏𝑚 = [

𝜏𝜙

𝜏𝜃

𝜏𝜓

] = [

𝑙𝐾𝑇(𝜔4
2 − 𝜔2

2)

𝑙𝐾𝑇(𝜔1
2 − 𝜔3

2)

𝐾𝑑(𝜔1
2 − 𝜔2

2 + 𝜔3
2 − 𝜔4

2)

] 

𝜏𝑔 = 𝜔 ∗ 𝐺𝑧 ∑𝐽𝜏𝜔𝑖

4

𝑖=1

 

𝜏𝑔 = [
�̇�

−�̇�
0

] 𝐽𝜏 ∑(−1)𝑖+1𝜔𝑖

4

𝑖=1

= [
𝐽𝜏�̇�(𝜔1 − 𝜔2 + 𝜔3 − 𝜔4)

−𝐽𝜏�̇�(𝜔1 − 𝜔2 + 𝜔3 − 𝜔4)
0

] 

𝜔 is the angular velocity, �̇� is the angular accelerations,  𝐽𝑏 is the body moment of 

inertia, 𝐽𝑚 is the motor moment of inertia, 𝐽𝑖 is the moment of inertia in 𝑖 axis, 𝜏𝑚 

is the body torques from motors, 𝜏𝑔 is gyroscopic effect torques.  

𝑅 is the radius of propeller, 𝐴 is cross-section of propeller, 𝜌 is air density and 𝑙 is 

length of the quadcopter arms. 

 

  



34 
 

4 Basic algorithm for quadcopter system  

We are running a real time operating system (Free RTOS) on the ESP32 and it will 

allow the system to run different function at the same time and doesn’t interfere 

with each other.  

We assigned the frequency of each task and the max running time, if the task got 

trapped in a task over the max running time, the processor will kill the task and go 

to the next one. And if the task doesn’t as much time as defined by the frequency, 

the task will wait for it. And we will also make sure that the key functions will 

always have the highest priority. The frequency of each task is defined in Table 4.1: 

Name of the task Frequency of the Task 

MPU 200Hz 

Motors 400Hz 

Wi-Fi 200Hz 

Status_check 100Hz 

Flight_Mode 10Hz 

Table 4.1 Frequencies of tasks 

The ESP32 has a dual core processor and the certain task in the RTOS can be 

assigned to different cores. We will assign the MPU task to core1 and assign 

MOTOR and Wi-Fi tasks to core 0. 
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As shown in Figure 4.1, the first task of the system will be the initialization, it will 

initiate the MPU6050, ESCs and Wi-Fi, a system error flag will be set if there is 

any part of the system that is not running, and it will send the error message through 

the Wi-Fi. After the initialization and the system check the quadcopter will be ready 

for the flight and sending the status to the ground station through the Wi-Fi. 

The command from the ground station will determine the flight mode (Table 4.2) of 

quadcopter and the quadcopter will start. 

Name of the flight 

mode 

Function of the flight mode 

Takeoff Raise the quadcopter to a certain height, go to Hover 

mode automatically when reached the desired height 

Hover Hold the altitude in the hover state. 

Landing Set the desired altitude to 0, stop all motors when 

reached the ground. 

Table 4.2 Flight Modes 

MPU loop will always feed attitude data to the motor loop. The stabilize controller 

inside the motor loop will process the current data with the desired attitude to and 

generate the PWM signals to the ESC. At the meantime, the MPU loop will also 

send the flight data to the Wi-Fi loop to give the feedback to the ground station. 
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Figure 4.1 Basic algorithm of quadcopter 
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5 Tuning the PID controller for attitude  

5.1 Basic idea 

To control the attitude of the quadcopter, we will need to apply a PID controller to 

it. The first thing we are doing is using a single PID controller for Euler angle. As 

shown in Figure 5.1, input for the controller will be the error between the current 

attitude and the desired attitude. This error will be fed to the PID controller and 

the PWM for each motor will be the output. The IMU will gather the data of the 

quadcopter as a real-time feed back to the PID controller. 

 

Figure 5.1 PID controller for angle 

Only controlling the Euler angle is not enough, to add a damper to the system, we 

will apply a cascade PID controller. As shown in Figure 5.2, the outer loop is angle 

controller and the inner loop is the angular rate controller. The outer loop will have 

the error of desired Euler angle and the current Euler angle as the input, and the 

output will be the desired angular rate. The inner loop will take the error of current 
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angular rate and the output from the inner loop as the input of the inner loop. This 

controller has a better performance in the practice and it is easier for tuning. 

 

Figure 5.2 Cascade PID controller 

 

5.2 Equipment of tuning the PID 

Since the quadcopter can’t perform a safe flight before the controller is well tuned, 

we must tune the controller before the flight. We started tuning controller on single 

axis with our tuning kit (Figure 5.3). 
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Figure 5.3 Tuning Kit 

With this tuning kit, we can attach the quadcopter on the stick, and then put the 

stick inside two rings on the rack. The quadcopter will only have one degree of 

freedom in this situation and it is safe even the controller goes crazy. We started 

with tuning  

5.3 Design of online tuning system 

Using ESP32 as the flight controller also enabled the online tuning feature since we 

can have the entire control of the communication with ground station. We must set 

the PID coefficients before the flight in Pixhawk (Ardupilot), and those coefficients 
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are fixed during the flight. Each upload of the firmware will take at least 40 seconds 

to compile and upload. Since tuning the PID controller is a time-consuming task, 

the design of online tuning system will save remarkable time. 

In the online tuning system, PID coefficients can be changed during the flight. The 

ground station will send all the coefficients to quadcopter at 100Hz and the 

quadcopter will update coefficients if there is any change. 

 

5.4 Tuning the inner loop 

The inner loop is controlling the angular velocity of the quadcopter. We can set P 

gain to a certain value, and because the PID coefficients are all zero for the outer 

loop, the desired angular velocity will be zero in the inner loop, the ideal result will 

be that the quadcopter will be stable at any angle. On the quadcopter testing rack, 

the motors will only provide torque on a certain axis, thus, the quadcopter should 

balance itself at any angle. 

5.4.1 𝑷𝒊𝒏𝒏𝒆𝒓 

We changed the 𝑃𝑖𝑛𝑛𝑒𝑟 from 0, with the 𝑃𝑖𝑛𝑛𝑒𝑟 goes higher, it is easy to observe 

that it’s getting harder to change the roll angle of the quadcopter. If 𝑃𝑖𝑛𝑛𝑒𝑟 is too 

much, we can observe the overshoot of the inner loop, there will be oscillation if a 



41 
 

disturb is applied. The quadcopter will slightly turn around the stick because of the 

existence of steady-state error of inner loop. In that way the angular velocity will 

not be zero and quadcopter will turn around. 

5.4.2 𝑰𝒊𝒏𝒏𝒆𝒓 

Then we need to add 𝐼𝑖𝑛𝑛𝑒𝑟 to compensate the stead-state error of inner loop. With 

ranging from 0, quadcopter will gradually hold the position. If the 𝐼𝑖𝑛𝑛𝑒𝑟  is too 

much, the rotation of the quadcopter will diverge under a small disturb. With 

𝑃𝑖𝑛𝑛𝑒𝑟 = 0.12, 𝐼𝑖𝑛𝑛𝑒𝑟 = 0.03, the quadcopter could stable itself at any angle on the 

rack. 

5.4.3 𝑫𝒊𝒏𝒏𝒆𝒓 

The 𝐷𝑖𝑛𝑛𝑒𝑟 comes from the difference between the difference of this error and last 

error. The derivative of angular velocity is angular acceleration, the vibration of the 

quadcopter itself if very strong and this will lead to the a very high noise to the gyro 

readings and the angular acceleration will be remarkable. We can apply some filter 

to the data. The increase of 𝐷𝑖𝑛𝑛𝑒𝑟 will not change the dynamic of the quadcopter 

too much, it’s easier to observe that it’s getting smoother when going towards the 

target. The D part of the inner loop is just a supplemental thing, and if the vibration 

of the frame is too much, we can cancel the 𝐷𝑖𝑛𝑛𝑒𝑟. 
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5.5 Tuning the outer loop 

5.5.1 𝑷𝒐𝒖𝒕𝒆𝒓 

Increase the 𝑃𝑜𝑢𝑡𝑒𝑟 from zero and we can observe that quadcopter is going back to 

the middle. If we put the quadcopter to some angle, it will start to go back. The 

response time will get shorter if 𝑃𝑜𝑢𝑡𝑒𝑟 goes higher. If 𝑃𝑖𝑛𝑛𝑒𝑟 is too much, the 

oscillation will start to diverge. 

 

Figure 5.4 Output of Pitch angle when P=0.1 
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Figure 5.5 Output of Pitch angle with P=0.3 

 

Figure 5.6 Output of Pitch angle with P=0.22 
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5.5.2 𝑰𝒐𝒖𝒕𝒆𝒓 

𝐼𝑜𝑢𝑡𝑒𝑟 will eliminate the steady-state error of the equilibrium state of the quadcopter. 

And the oscillation will diverge if the 𝐼𝑜𝑢𝑡𝑒𝑟 is too much. As shown in Figure 5.7, 

the controller will compensate the steady-state error when 𝐼𝑜𝑢𝑡𝑒𝑟 = 0.02 is applied. 

 

Figure 5.7 Output of Pitch angle with P=0.22, I=0.02 

 

5.5.3 𝑫𝒐𝒖𝒕𝒆𝒓 

As shown in Figure 5.8, the controller will have a shorter response time and less 

overshoot if 𝐷𝑜𝑢𝑡𝑒𝑟 is applied. 
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Figure 5.8 The output of Pitch with well-tuned PID 
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6 Tuning the PID controller for altitude 

6.1 Using barometer 

The altitude of the quadcopter can be measured by the barometer attached with the 

GY-87 board. It’s a Bosch Sensortec BMP 180. 

Figure 6.1Bosch Sensortec BMP 180 

The barometer is measuring the altitude by comparing the air pressure of the current 

and compare with the local standard air pressure to calculate the altitude. This 

works fine in outside, but it will be affect a lot by the temperature and the weather.  
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The reading indoor is too inaccurate because the temperature and the moisture is 

changing a lot. There is an error about 30cm when stationed and the reading is 

drifting all the time. 

6.2 Using sonar 

The other approach is using the sonar HC-SR04, and Milad Habibi helped with 

most of the work of sonar. The sonar is working by emitting sound pulses and 

detecting or measuring their return after being reflected. 

Figure 6.2 HC-SR04 

This economical sensor provides 2cm to 400cm of non-contact measurement 

functionality with a ranging accuracy that can reach up to 3mm. The detecting range 

is good enough for the indoor flight. Thus, we can use the sonar for the altitude 

measurement. 
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6.3 Tuning PID 

6.3.1 P 

Increase 𝑃𝑎  from 0, by holding it with hands first, only power up the flight controller 

and the motor will not spin. Set the target altitude as 20 cm above the ground for 

safety. We can see that PWM outputs from flight controller is changing with height. 

Set the target as 1 meter above the ground, with the increase of the 𝑃𝑎. If 𝑃𝑎 is too 

small, the quadcopter will never reach the 1-meter height, and if the 𝑃𝑎 is too large, 

the quadcopter is oscillating around the 1-meter level. 

 

Figure 6.3 Output of height with P=0.1 
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Figure 6.4 Output of height with P=0.5 

 

Figure 6.5 Output of height with P=0.375 
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6.3.2 I 

Compare Figure 6.6 with Figure 6.5, quadcopter is not exact 1 meter high, even the 

𝑃𝑎 is good enough, there are steady-state errors of the altitude controller. With the 

increase of 𝐼𝑎 the quadcopter will be gently ended up at reaching the height of 1 

meter. If the 𝐼𝑎 goes higher, the controller will diverge. 

 

Figure 6.6 Output of height after 𝐼𝑎 is applied 

6.3.3 D 

By increasing the value of 𝐷𝑎 , the approaching motion will be smoother. And as 

shown in Figure 6.7, it compensates out the overshoot and shorten the response time. 
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Figure 6.7 Output of height of a well-tuned PID controller 
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7 Test Flight 

 

After tuning all the controllers onboard, we started several test flights, about 50% 

of the test didn’t start because some hardware is not initialized when powered up. 

And about 20% of the flight tests crashed for unstable heading. About 30% of the 

test went well and finished the following task: 

a) Takeoff to the height of 1 meter; 

b) Hover until 13 seconds after takeoff; 

c) Land to the ground; 

The desired pitch and roll angle and angular velocity are all set to 0, the 

quadcopter should perform a straight takeoff, hover in the certain level and then 

land to the ground. 

As shown in Figure 7.1, the altitude controller has some overshoot when taking 

off, this is due to the battery voltage level is decreasing, the gain of the controller 

should be changing with the voltage level instead of being fixed. The response 

time is about 1.7 seconds, this problem can be fixed in the future if add a battery 

monitor to the quadcopter to measure the voltage level. 

The pitch and roll angle are oscillating around 0.01 rad in the real flight as shown 

in Figure 7.2 and Figure 7.3, this might due to the vibration of motors and the low 

frequency of the MPU loop. We could reach a 400 Hz MPU sampling frequency 
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if use Motion Capture system or use our own filter instead of using DMP. Both of 

them will increase the quality of the controller with a high sampling rate. 

 

Figure 7.1 Altitude test result 

 

Figure 7.2 Pitch angle test result 
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Figure 7.3 Roll angle test result  

There is another problem during the test flight is that the yaw angle is not fixed. 

The quadcopter will perform yaw movement during the hovering. Since the 

indoor magnetic field is complex and variant, the heading reading form 

HMC5883L is not accurate enough. And this is the main reason for the crashes 

during the test. 
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8 Conclusion 

 

Our new quadcopter was manufactured and tested. It has the cheapest price in the 

range of research use and variety of potential modification in the future. Taking-

off, hovering and landing are performed very well in several tests. 

There are still some problems to be solved, the reliability of hardware is still too 

weak for the regular research use and the reading of yaw angle is not stable for the 

indoor flight since the magnetometer is not accurate inside. 

We are now working on enabling Motion Capture system with this new 

quadcopter through Wi-Fi communication, this feature will fix the yaw reading of 

the quadcopter and provide attitude information at a higher sampling rate which 

will lead to a better flight performance of the new quadcopter.  

  



56 
 

 

Appendix A 

Specifications of ESP32 

Categories Items Specifications 

Wi-Fi Protocols 802.11 b/g/n (802.11n up to 150 Mbps) 

A-MPDU and A-MSDU aggregation and 

0.4 µs guard interval support 

Frequency range 2.4 GHz ~ 2.5 GHz 

Hardware Operating 

voltage/Power supply 

2.7 ~ 3.6V 

Operating current Average: 80 mA 

Operating temperature 

range 

-40°C ~ +85°C 

Package size 18±0.2 mm x 25.5±0.2 mm x 3.1±0.15 

mm 
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Appendix B 

Specifications of F330 quadcopter frame 

Model F330 

Frame arm size (mm) 150x20x30 

Diagonal Wheelbase (Motor to Motor) (mm) 330 

Total weight (g) 156.00 
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Appendix C 

Specifications of Motors 

SKU L2210A-1650 Brand Turnigy 

Shipping Weight(g) 92.00 Length(mm) 95.00 

Height(mm) 55.00 Kv(rpm/V) 1650 

Max Currents (A) 17.50 Power (W) 180.00 

Length B (mm) 25.00 Can Length D(mm) 12.00 

Max Voltage(V) 11.00 Shaft A(mm) 3.00 

Unit Weight (g) 49 Diameter C(mm) 28.00 

Total Length E(mm) 44.00 Resistance (mΩ )) 0.00 
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Appendix D 

Specifications of ESC 

Constant Current (A) 20A 

Input Voltage (V) 12 (2-4 cell Lipos) 

BEC OPTO 

MCU Arm Cortex-M0 

Weight (g) 6 

PCB Size (mm) 22 x 12 
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