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Abstract

Unmanned Aerial Vehicles (UAVs) have been widely used in scientific, industrial and mil-

itary applications. Rotorcrafts, such as quadcopters, are agile and versatile in their appli-

cations. However one of the biggest challenges with such UAVs is their limited battery life

that make the flight time for a typical UAVs limited to twenty to thirty minutes for most

practical purposes. A solution to this problem lies in the use of cables that tether the UAV

to a power outlet for constant power supply. However, the cable needs to be controlled

effectively in order to avoid obstacles or other UAVs. In this thesis, we develop methods for

controlling the shape of a cable using actuation at one or both ends. We propose a discrete

model for the spatial cable and derive the equations governing the cable dynamics for both

force controlled system and position controlled system. We design a controller to control

the shape of the cable to attain the desired shape and perform simulations under different

conditions. Finally, we propose a quasi-static model for the spatial cable and discuss the

stability of this system and the proposed controller.
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Chapter 1

Introduction

1.1 Background

As the technology of Unmanned Aerial Vehicles (UAVs) develops at a rapid pace, the

applications of UAVs are greatly diversifying. Nowadays, the applications of UAV have

expanded to commercial, scientific, agricultural and other areas. It plays an important role

in aerial photography, surveillance, agriculture and so on.

Rotorcrafts, such as quadcopters are agile, can hover in place and can operate in clut-

tered environments. Such UAVs are usually battery powered, and due to the high power

consumption, the flight time of a typical UAV is limited to a less than an hour. Thus, for

some applications it is desirable that the UAVs be tethered to a base using a wire or a cable

for power supply and high-speed communication (Figure 1.1(a)). The wired UAVs do have

longer battery life and can work for longer time, which is a big advantage. However the

cable limits the motion of the UAV. When obstacles appear, the cable may be blocked by

the obstacles restricting the UAV’s motion. Adjusting the position of UAV manually is a

slow and ineffective way to let the cable dodge the obstacles. Instead, it may be desirable

to control the shape of the cable using motion of the UAV that would allow it to dodge the

obstacles.

Motivated by this application, we develop a method for controlling the shape and posi-
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(a) An UAV tethered to a base.

• 1

•
1

Z

Y

X

Fixed Point

Free Point

(b) The cable in three dimensions.

Figure 1.1: Tethered UAV.

tion of the cable using the motion of the UAV attached to it. One end of the cable is fixed

at a base (e.g. a power outlet or communication base) and the other end is connected to

the UAV ((Figure 1.1(b)). The cable deforms under the effects of gravity and UAV adjusts

the position of cable by applying forces or adjusting the position of the end of the cable

that it is connected to.

In this thesis, we develop a discrete model of a cable in order to simplify the problem.

Then we develop a dynamic model and simulation with force and position control at the

free end of the cable. We then develop a shape controller for the cable using the motion of

the UAV as the input and evaluate the proposed controller both theoretically and through

simulations.

1.2 Literature Review

Thee has been little to no prior research in tethered UAVs. However, there has been multiple

studies on the modeling and simulation of a cable, none of which however explicitly consider

the problem of controlling its scape.

Goriely and McMillen (2002) conducted a study on the shape of a cracking whip [1].

They built a dynamical model for the propagation and acceleration of waves in the motion

of whips. Also, the respective contributions of tension, tapering, and boundary conditions

3



in the acceleration of an initial impulse are studied theoretically and numerically. Jimenez,

Hernandez, Campos and Del-Valle (2005) studied the motion of a rope falling from a ta-

ble [2]. They used Newtonian and canonical methods to analyze the problem.

Matsuno, Takayuki (2006) described configurations of ropes using a topological models

and knot theory [3]. They also proposed a method to reconstruct the structure of a rope

from sensor information through CCD cameras when a robot manipulates a rope and used

that to perform slow manipulation experiments. In this thesis, we however consider highly

dynamic rope shape manipulation, although we do not consider topological complexities

such as knots.

Fritzkowski and Kaminski (2008) conducted two studies about modeling a rope as a

rigid multibody system. In their first paper they considered the discrete model of a rope

as a scleronomic and a rheonomic system [4]. They also performed numerical experiments

and discussed the advantages of the applied algorithm on the basis of energy conservation.

In their later study, Fritzkowski and Kaminski (2011) presented a discrete model of a rope

to simulate the plane motion of the rope fixed at one end [5]. They presented two systems,

whose members are rigid but non-ideal joints involve elasticity or dissipation.

Most of the above mentioned research deals with representation and modeling of ropes to

understand their physics better with little or no consideration for control of the shape of the

rope. Bhattacharya, Heidarsson, Sukhatme and Kumar (2011) studied the problem of shape

control of a planar cable using robots attached to its two ends in context of oil skimming

and cleanup operations [6]. They built a discrete model for the rope and simulated in 2

dimensions, where drag forces were considered. Additionally, they studied a quasi-static

model and developed a shape controller based on it. In this thesis, we develop on the work

of Bhattacharya et al. and extend the model to three spatial dimensions and thus propose

shape controller for a highly dynamic model (as opposed to a quasi-static model). We use

a quasi-static model for theoretical analysis though.

4



1.3 Preliminaries

1.3.1 Lagrangian Mechanics

Lagrangian mechanics is a reformulation of classical mechanics. Lagrangian mechanics is a

convenient method that is widely used to solve dynamic problems. It allows one to choose

a convenient set of generalized coordinates to simplify the problems and solve the equations

of motion. In Newtonian mechanics, the equations of motion are given by Newton’s second

laws,

∑
F = m

d2r

dt2
(1.1)

However, instead of forces, Lagrangian mechanics uses the energies in the system. The

central quantity of Lagrangian mechanics is the Lagrangian. Lagrangian is a function of

the generalized coordinates, their time derivatives, and time, and contains the information

about the dynamics of the system.

Definition 1.3.1. Lagrangian is defined as

L = T − V (1.2)

where T is the total kinetic energy and V is the total potential energy of the system.

If the system has one or more holonomic constraints, at any instant of time, the co-

ordinates of a constrained particle are coupled and not independent. In this case, using

variational principles we can derive the Lagrange’s equations of the first kind [7].

Definition 1.3.2. Lagrange’s equations of the first kind is defined as

d

dt

(
∂L
∂q̇l

)
− ∂L
∂ql
−

C∑
i=1

λi
∂fi
∂ql
−Qql = 0 (1.3)

where ql are the chosen generalized coordinates, C is the number of the constraint equations,

λi are the Lagrange multiplier for each constraint equation fi, and Qql are the external
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generalized forces.

Also, if we have total N generalized coordinates which are not independent, we can

eliminate C coordinates in the equations to get N − C independent coordinates using the

constraint equations. We can transform each equation to a common set of this N − C

generalized coordinates and get the equations that do not include constraint forces at all.

In this case, we can derive the Lagrange’s equations of the second kind [7].

Definition 1.3.3. Lagrange’s equations of the second kind (Euler - Lagrange equa-

tions) is defined as

d

dt

(
∂L
∂q̇l

)
− ∂L
∂ql
−Qql = 0 (1.4)

where ql are the generalized coordinates we choose, Qql are the external generalized forces.

We can simplify the Lagrange equations to get equations of motion to describe the

behavior of a physical system in terms of its motion as a function of time. With appro-

priate initial conditions and configurations, we can simulate this dynamic system by those

equations.

1.3.2 Linear System

A linear system is a mathematical model of a system based on the use of a linear operator.

Linear systems typically exhibit features and properties that are much simpler than the

nonlinear case. A continuous-time state-space linear system is defined by the following two

equations[8]:

ẋ(t) = A(t)x(t) +B(t)u(t), u ∈ Rk, x ∈ Rn

y(t) = C(t)x(t) +D(t)u(t), y ∈ Rm
(1.5)

The signal

u : [0,∞)→ Rk, x : [0,∞)→ Rn, y : [0,∞)→ Rm (1.6)

are called the input, state, and output of the system respectively. Equations (1.5) express

an input-output relationship between the input signal u(·) and the output signal y(·). For

6



a given input u(·), we need to solve the state equation to determine the state x(·) and then

replace it in the output equation to obtain the output y(·).

A discrete-time state-space linear system is defined by the following two equations:

x(t+ 1) = A(t)x(t) +B(t)u(t), u ∈ Rk, x ∈ Rn

y(t) = C(t)x(t) +D(t)u(t), y ∈ Rm
(1.7)

All the terminology introduced for continuous-time systems also applies to discrete time,

except that now the domain of the signals is N := {0, 1, 2, · · · }, instead of the interval [0,∞).

In discrete-time systems, the state equation is a difference equation, instead of a first-

order differential equation. However, the input-output relationship between input and out-

put is analogous. For a given input u(·), we need to solve the state (difference) equation

to determine the state x(·) and then replace it in the output equation to obtain the output

y(·).

1.3.3 The Moore-Penrose Pseudoinverse

A the Moore-Penrose pseudoinverse, A+, of a matrix A is a generalization of the inverse

matrix that can be computed for a matrix A that is not necessarily full rank nor square. It

can be computed using the singular value decomposition. If matrix A is square, nonsingular,

the inverse A−1 of matrix A is the same as the pseudoinverse A+ [9].

Definition 1.3.4. The pseudoinverse A+ of a matrix A satisfies all of the following four

criteria:

1.AA+A = A

2.A+AA+ = A+

3.
(
AA+

)∗
= AA+

4.
(
A+A

)∗
= A+A

(1.8)

Given the equation Ax = b, with x ∈ Rn, b ∈ Rm, A ∈ Rn×m, it may not have a solution or

an unique solution in general. In that case x = A+b is the vector that minimizes ‖Ax− b‖2.

7



Chapter 2

Discrete Dynamic Model

2.1 Force Controlled System

We propose an approximate discrete model. The cable is represented by n rigid cylindrical

segments connected to each other by spherical joints. One end of the cable is attached to a

fixed base, while the other end is controlled.

In this section, we assume that external input quantities are the forces applied at the

free end of the cable, respectively donated by


fx

fy

fz

. This system has 2n degrees of freedom.

As shown in Figure 2.1, We choose the generalized coordinates as the angles made by each

of n segments with the positive X axis in the XY -plane, θi, i = 1, 2, · · · , n, and the angles

made by each of the n segments with the positive Z axis, φi, i = 1, 2, · · · , n, all with respect

to a global inertial frame of reference.

Assuming that one end of the cable is fixed at


0

0

0

 , the position of the center of mass

8



1

2
…

(xf , yf , zf)··

(a) A discrete dynamic model consisting of n rigid
segments.

• 1

•
1

Z

Y

X

• 1

• 1

• 1 ( )

(b) The ith segment.

Figure 2.1: A discrete dynamic model.

of the ith segment is given by,

pi =
i−1∑
j=1

Lj


cos(θj) · sin(φj)

sin(θj) · sin(φj)

cos(φj)

+
Li
2


cos(θi) · sin(φi)

sin(θi) · sin(φi)

cos(φi)

 (2.1)

where Li is the length of the ith segment.

Thus the velocity of the center of mass of the ith segment is given by,

vi = ṗi =
dpi
dt

(2.2)

The velocity of a point, ri(s), at a distance s from its center, pi(s), (Figure 2.1(b)) is

given by,

ṙi(s) =
d

dt

pi + s


cos(θj) · sin(φj)

sin(θj) · sin(φj)

cos(φj)


 (2.3)

If we consider the drag force, the net external force and torque due to drag on the ith

9



segment is thus given by,

F i =


Fi,x

Fi,y

Fi,z

 = −
∫ Li

2

−Li
2

Cd · ṙi(s)ds

τi = −
∫ Li

2

−Li
2

ṙi(s)× (Cd · ṙi(s)) ds

(2.4)

where Cd is an coefficient of the frag force. We assume Cd = 0.003.

The angular velocity of the ith segment is given by,

ωi = θ̇i


0

0

1

+ φ̇i


− sin(θi)

cos(θi)

0

 (2.5)

We can define the free end of the cable in terms of the generalized coordinates as,


xf

yf

zf

 =

n∑
i=1

Li


cos(θi) · sin(φi)

sin(θi) · sin(φi)

cos(φi)

 (2.6)

10



Thus, we can define the 2n generalized forces,

Qθi =


fx

fy

fz

 ·
∂


xf

yf

zf


∂θi

+
n∑
j=1

F i ·
∂pj
∂θi

+
n∑
j=1

τi ·
∂ωj

∂θ̇i

= −fxLi sin(θi) sin(φi) + fyLi cos(θi) sin(φi)

+
n∑
j=1

F i ·
∂pj
∂θi

+
n∑
j=1

τi ·
∂ωj

∂θ̇i

Qφi =


fx

fy

fz

 ·
∂


xf

yf

zf


∂φi

+
n∑
j=1

F i ·
∂pj
∂φi

+
n∑
j=1

τi ·
∂ωj

∂φ̇i

= fxLi cos(θi) cos(φi) + fyLi sin(θi) cos(φi)

− fzLi sin(φi) +
n∑
j=1

F i ·
∂pj
∂φi

+
n∑
j=1

τi ·
∂ωj

∂φ̇i

∀i = 1, 2, · · · , n

(2.7)

where mi is the mass of the ith segment, g is the gravitational acceleration, k̂ is


0

0

1

.

The Kinetic Energy of the system is given by,

K =

n∑
i=1

(
1

2
mi|ṗi|

2 +
1

2

miLi
2

12
|ωi|2

)
(2.8)

The Potential Energy is given by,

V =

n∑
i=1

migk̂ · pi (2.9)

11



Thus, Lagrangian is given by,

L = K − V (2.10)

The Lagrange equations of motion for the system is given by,

d

dt

(
∂L
∂q̇l

)
− ∂L
∂ql
−Qql = 0

∀ql ∈ {θ1, θ2, · · · , θn, φ1, φ2, · · · , φn}
(2.11)

The equations (2.11) consist of 2n second order ordinary differential equations in the

quantities {θ1, θ2, · · · , θn, φ1, φ2, · · · , φn}. Moreover they are affine in
{
θ̈1, θ̈2, · · · , θ̈n, φ̈1, φ̈2, · · · , φ̈n

}
.

Thus for a given initial values of {θ1, θ2, · · · , θn, φ1, φ2, · · · , φn} and
{
θ̇1, θ̇2, · · · , θ̇n, φ̇1, φ̇2, · · · , φ̇n

}
at t = 0, and given the external force profiles, {fx, fy, fz} as function of t, we can numerically

integrate these equations to obtain the complete dynamics of the system.

2.2 Position Controlled System

In this section, we need to slightly re-formulate the equations of motion, (2.11). In position

controlled system, {fx, fy, fz} are unknown and {xf , yf , zf} are the specified variables.

Thus, we still need 2n generalized coordinates, {θ1, θ2, · · · , θn, φ1, φ2, · · · , φn}. Equa-

tions and the expression for the generalized forces, (2.7), kinetic energy, (2.8), and potential

energy, (2.9), still remain the same. We still have 2n Lagrange equations of motion. However

now we have 2n+ 3 unknown.

Taking time derivative of the configuration constraint equations, (2.6), we obtain the

12



velocity constraint equations,


ẋf

ẏf

żf

−
n∑
i=1

Li

(
θ̇i


− sin(θi) · sin(φi)

cos(θi) · sin(φi)

0



+φ̇i


cos(θi) · cos(φi)

sin(θi) · cos(φi)

− sin(φi)


)

= 0

(2.12)

And we differentiating it for a second time we obtain the acceleration constraint equa-

tions,


ẍf

ÿf

z̈f

−
n∑
i=1

Li

(
θ̇2i


− cos(θi) · sin(φi)

− sin(θi) · sin(φi)

0



+ φ̇2i


− cos(θi) · sin(φi)

− sin(θi) · sin(φi)

− cos(φi)

+ θ̇iφ̇i


−2 sin(θi) · cos(φi)

2 cos(θi) · cos(φi)

0



+ θ̈i


− sin(θi) · sin(φi)

cos(θi) · sin(φi)

0

+ φ̈i


cos(θi) · cos(φi)

sin(θi) · cos(φi)

− sin(φi)


)

= 0

(2.13)

Equations (2.11) and (2.13) together form 2n+ 3 equations, which are corresponding to

2n + 3 unknowns,
{
fx, fy, fz, θ̈1, θ̈2, · · · , θ̈n, φ̈1, φ̈2, · · · , φ̈n

}
. Thus, for given trajectories of

the free end of the cable (i.e. given {xf , yf , zf} and their derivatives as a function of time),

and an initial configuration {θ1, θ2, · · · , θn, φ1, φ2, · · · , φn} that satisfy the shape constraint

equations, and an initial set of angular velocities
{
θ̇1, θ̇2, · · · , θ̇n, φ̇1, φ̇2, · · · , φ̇n

}
that satisfy

the velocity constraint equations at t = 0, we can integrate and solve the Equations (2.11)

and (2.13) for {fx, fy, fz, θ1, θ2, · · · , θn, φ1, φ2, · · · , φn}.
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2.3 Simulations and Results

2.3.1 Force Controlled System

For simulating the system, we used Mathematica to simplify the Equations (2.11) to obtain

the ODEs and the coefficients of the second derivatives in the equations. The equations

were numerically integrated by MATLAB. Figure 2.2(a)- 2.2(d) shows an example of the

force controlled system simulation.

2.3.2 Position Controlled System

For simulating the system, we used Mathematica to simplify the Equations (2.11) and (2.13)

to obtain the ODEs and the coefficients of the second derivatives in the equations. The

equations were numerically integrated by MATLAB. Figure 2.3(a)- 2.3(b) shows an example

of the position controlled system simulation.
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Figure 2.2: Traces of complete dynamic simulations of a cable showing screenshots from a
force controlled simulation and demonstrates a swing due to gravity (8-segment system).
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Figure 2.3: Traces of complete dynamic simulations of a cable showing screenshots from a
position controlled simulation and demonstrates a circular motion of the free end (6-segment
system).

16



Chapter 3

Shape Control of the Cable

3.1 The Design of Controller

The governing equations of the system is given by Equations (2.11). We have a total of 2n

equations. These equations involve the 2n+3 variables, {fx, fy, fz, θ1, θ2, · · · , θn, φ1, φ2, · · · , φn},

and their derivatives. The governing equations can be written as

M2n×2n

Θ̈

Φ̈

+N2n×1

(
Θ,Φ, Θ̇, Φ̇

)
+Q2n×3 (Θ,Φ)


fx

fy

fz

 = 0 (3.1)

where, Θ = [θ1, θ2, · · · , θn]T, Φ = [φ1, φ2, · · · , φn]T, Θ̇ = [θ̇1, θ̇2, · · · , θ̇n]T, Φ̇ = [φ̇1, φ̇2, · · · , φ̇n]T,

Θ̈ = [θ̈1, θ̈2, · · · , θ̈n]T, Φ̈ = [φ̈1, φ̈2, · · · , φ̈n]T, N is a function of Θ, Φ, Θ̇, Φ̇, Q is a function

of Θ, Φ.

We can substitute Θ̇ into p, Φ̇ into q such that Θ̈ = ṗ, Φ̈ = q̇. Thus the governing

equations can be written as

M

ṗ
q̇

+N +Q


fx

fy

fz

 = 0 (3.2)
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We propose the control law


fx

fy

fz

 = −Q+

(
M

ṗ
q̇

+N

)
(3.3)

where, (·)+ is the Moore-Penrose pseudoinverse.

Denote the desired shape of the discrete model by ΘD = [θD1 , θ
D
2 , · · · , θDn ]T and ΦD =

[φD1 , φ
D
2 , · · · , φDn ]T. Then we assume that

pD
qD

 =

Θ̇

Φ̇

 = K1

(ΘD

ΦD

−
Θ

Φ

) (3.4)

ṗ
q̇

 = K2

(pD
qD

−
p
q

) (3.5)

where, K1 and K2 are n× n gain matrices.

Then the control law can be written as
fx

fy

fz

 = −Q+

[
MK2

(pD
qD

−
p
q

)+N

]

= −Q+

{
MK2

[
K1

(ΘD

ΦD

−
Θ

Φ

)−
p
q

]+N

} (3.6)

Thus for a given desired shape of the discrete model, an initial configuration that satisfy

the shape constraint equations and an initial set of angular velocity that satisfy the velocity

constraint equations, we can solve Equations (3.6) for {fx, fy, fz}. Though we do not have

full controllability of the system, with {fx, fy, fz} we can use the force controlled system to

control the shape of cable and achieve an approximation of the desired shape.
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Figure 3.1: Shape control example: Desired shape is a straight line.

3.2 Simulation Results of Shape Control

3.2.1 Simulations With Gravity and Without Darg Force

Figure 3.1 shows an attempt to control the shape of a 8-segment model, where the desired

shape is a straight line. As shown in Figure 3.1(b), the controller was able to achieve an

approximation of the desired shape.

Figure 3.2 shows an attempt to control the end of a 8-segment cable model doing a

circular motion. The desired shape is a function of time. As shown in Figure 3.2(b), the

controller was able to do a approximation of the desired motion.

3.2.2 Simulations Without Gravity and Drag Force

In some occasions, the control forces applied on the end of the cable are much greater than

gravity. Then the control forces are dominant during the simulation. In order to simplify the

simulation, we can ignore the gravity during the simulation when control forces dominant

over gravity. Under this condition, the gravity acceleration is simplified to

g = 0 (3.7)
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Figure 3.2: Shape control example: Desired shape is a function of time (The end of the
cable moving in circular motion).

For example, if we want to reverse an arch from opening up to opening down, we expect

to exert a tremendous force upward then downward at the end of the cable in a short

time. In this case, the control force at the end of the cable is much greater than gravity and

dominant over gravity. Therefore, simulating this case without gravity is reasonable. Figure

3.3 shows the initial shape and desired shape for this case (8-segment). The desired shape

used is ΘD = [0, 0, 0, 0, 0, 0, 0, 0]T and ΦD = [0.52, 0.79, 1.05, 1.31, 1.83, 2.10, 2.36, 2.62]T and

gain matrix used is K = 0.7I.

Figure 3.4 shows the simulation result by MATLAB. We note that when t = 2.95s the

shape of the cable approximated the arch which is opening down.

We define the error of the simulation is

Error =

∑n
i=1

(
θCi − θDi

)2
+
∑n

i=1

(
φCi − φDi

)2
2n

(3.8)

where n is the number of segments, θCi and φCi are current angles during the simulation,

θDi and φDi are the desired angles.

Figure 3.5 shows the graphs of forces and error of the simulation. From the force graph

(Figure 3.5(a)), we note that the control force was upward in a sudden at the beginning

20



0 1 2 3 4 5 6
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

(a) Initial shape.

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

(b) Disired shape.

Figure 3.3: Shape control example: Initial shape and desired shape for reversing an arch
(8-segment).

and then went downward in a short time. This result is in line with our expectation. From

the error graph (Figure 3.5(b)), we note that the error decreased over time until t = 3s and

when t = 3s the error was nearly smallest which means the shape of the cable approximated

the desired shape best. When t > 3s, the error increases because of the inertia.

According to the simulation result above, the controller was able to achieve a satisfactory

approximation of the desired shape in this case. However, our control law is based on the

Moore-Penrose pseudoinverse and definitely not guaranteed to achieve the desired shape

exactly no matter what n is. Nevertheless, we note that the smaller the number of segments

is, the more accurate the simulation will be. We can have a better simulation result if we

use smaller number of segments n.

Figure 3.6 shows the initial shape and desired shape for the 3-segment system. The

desired shape used is ΘD = [0, 0, 0]T and ΦD = [0.79, 1.57, 2.36]T and gain matrix used is

K = 0.6I.

Figure 3.7 shows the simulation result by MATLAB. We note that when t = 3.95s the

shape of the cable was nearly the same as the desired shape. Apparently, the simulation

result of 3-segment system is much better than the result of 8-segment system.

Figure 3.8 shows the graphs of forces and error of the simulation of the 3-segment system.
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Figure 3.4: Shape control example: Simulations for reversing an arch (8-segment).
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Figure 3.5: Shape control example: The graphs of forces and error for the simulation of
reversing an arch (8-segment).
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Figure 3.6: Shape control example: Initial shape and desired shape for reversing an arch
(3-segment).
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Figure 3.7: Shape control example: Simulations for reversing an arch (3-segment).
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Figure 3.8: Shape control example: The graphs of forces and error for the simulation of
reversing an arch (3-segment).

The force graph (Figure 3.8(a)) of 3-segment system is consistent with the forces graph of

8-segment system (Figure 3.5(a)). From the error graph (Figure 3.8(b)), we note that the

error was minimum when t approximately equals to 3.9s. The minimum error of 3-segment

system is much smaller than the minimum error of 8-segment system. It proved that the

smaller number of segments will lead a better approximation of the desired shape, which

means it is easier to control with a smaller n.

Though the shape of the cable can be controlled to attain the desired shape at an instant,

it cannot keep the desired shape for a long time due to inertia and gravity. Consequently,

the controller should be capable to correct to the desired shape continuously.

Figure 3.9 shows the simulation result of 3-segment system for a longer time. Though

the shape of the cable started to deviate the desired shape after t = 3s, the controller

managed to achieve the desired shape again when t = 20s and t = 33.5s (Figure 3.9(a)

and Figure 3.9(b)). Also from the error graph (Figure 3.9(c)), we can see that the error

increased and decreased periodically, which means the shape of cable achieved and deviated

the desired shape periodically. The controller kept trying to correct the shape of the cable

to the desired shape. According to the simulation result, this controller has the capability

to control the shape of the cable continuously.
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Figure 3.9: The simulation of reversing an arch (3-segment) for a longer time (only the best
matches with the desired shape shown).
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Figure 3.10: Shape control example with drag force: Initial shape and desired shape (5-
segment).

3.2.3 Simulations With Drag Force and Without Gravity

In some conditions, the cable moves in a high speed and the air resistance plays a significant

role during the simulations. If we still ignore the drag force, the cable may lose control and

can never be controlled back to the desired shape. In this condition, we need to consider

the drag force. Figure 3.10 below shows the initial shape and desired shape for this case

(5-segment).

Figure 3.11 shows the simulation result by MATLAB. We note that when t > 5s the

shape of the cable approximated the desired shape and then cable moved in a very slow

26



0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
t=0s

(a) t = 0s.

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
t=5s

(b) t = 5s.

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
t=10s

(c) t = 10s.

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
t=15s

(d) t = 15s.

Figure 3.11: Shape control example: Simulations with drag force (5-segment).
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Figure 3.12: Shape control example: The graphs of forces and error for the simulation with
drag force (5-segment).

velocity and its shape nearly kept constant due to the drag force.

Figure 3.12 shows the graphs of forces and error of the simulation. From the force graph

(Figure 3.12(a)), we note that the control force was very small when t > 5s due to the shape

was very close to the desired shape. From the error graph (Figure 3.12(b)), we note that

the error decreased rapidly until t = 5s and then the error decreased in a very low rate due

to the drag force, which means cable kept deforming to the desired shape in a low rate.
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Chapter 4

Stability of the Shape Control

Problem

4.1 The Quasi-Static Model

The controller we designed in the last chapter is a linearized controller for a nonlinear

system, and hence complicated for long-term stability analysis. Thus, we need to simplify

the discrete segment model in order to obtain the state error function. In some occasions, we

can ignore the inertial forces if the drag forces dominate over inertial forces. For examples,

a slow-moving light cable in spaceship is justified for the quasi-static model because there

is no gravity in space and air resistance exists in the spaceship. In addition, a detector

connected to a submarine is also a reasonable example if the buoyancy of the detector

and cable equals gravity allowing us to ignore the gravity in water. The water resistance

dominated over inertial forces for the detector in a very low speed. Under this condition,

the equations that govern this system simplify to

Qθi = 0

Qφi = 0

∀i = 1, 2, · · · , n

(4.1)

29



where Qθi and Qφi are given by Equations (2.7).

We note that the external forces, F i, and torques, τi are linear in the speeds
{
θ̇1, θ̇2, · · · , θ̇n,

φ̇1, φ̇2, · · · , φ̇n
}

. Thus theQθi andQφi are linear in
{
θ̇1, θ̇2, · · · , θ̇n, φ̇1, φ̇2, · · · , φ̇n, fx, fy, fz

}
.

Consequently, the equations of the quasi-static model can be written as

A2n×2n

Θ̇

Φ̇

+B2n×3


fx

fy

fz

 = 0 (4.2)

where Θ̇ = [θ̇1, θ̇2, · · · , θ̇n]T and Φ̇ = [φ̇1, φ̇2, · · · , φ̇n]T.

Then we rewrite the controller for the quasi-static model.


fx

fy

fz

 = −B+AK


ΘD

ΦD

−
Θ

Φ


 (4.3)

where (·)+ is the Moore-Penrose pseudoinverse and K is an 2n× 2n gain matrix.

Take the force controller back into Equations (4.2), we have

A

Θ̇

Φ̇

+B

−B+AK


ΘD

ΦD

−
Θ

Φ



 = 0 (4.4)

Define the Error between the current shape of cable and the desired shape of cable as

e(t) =

ΘD

ΦD

−
Θ

Φ

 (4.5)

Take time derivatives on both sides of Equation (4.5).

ė(t) = −

Θ̇

Φ̇

 (4.6)
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Take Equations (4.5) and (4.6) back to Equation (4.4).

A (−ė(t)) +B
[
−B+AKe(t)

]
= 0 (4.7)

Then we can write the state error function as

ė(t) = −CKe(t) (4.8)

where matrix C = A+BB+A.

Note that if all Re {λi (−CK)} (i.e. the real parts of the eigenvalues of the matrix

−CK) are negative, then e(t) tends to be zero as t→ 0. However, matrix C is not full rank

(the rank of matrix C should be 3 actually). The eigenvalues of matrix C contains zeros.

Thus we can only control the system to be marginally stable by setting Re {λi (−CK)}

non-positive.

If square matrix C2n×2n is diagonalizable [10], then matrix C can be factorized as

C = UΛU−1 (4.9)

where U is the square (2n × 2n) matrix whose ith column is the eigenvector qi of C and

Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues. Let

K = UΛ+U−1, where Λ+ is the pseudoinverse of matrix Λ. Then

CK = UΛU−1UΛ+U−1 = UΛΛ+U−1 (4.10)

Note that matrix ΛΛ+ is a diagonal matrix whose diagonal elements are only 0 or 1.

Thus Re {λi (−CK)} becomes all non-positive (only 0 and 1) and this system is marginally

stable. Though the error may not be zero as t → 0. The cable will eventually reach an

approximation of the desired shape after enough long time, though it may not reach the

exact desired shape.
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Figure 4.1: Shape control example: Simulation result to achieve a sine curve with controlled
gain matrix (5-segment).

4.2 Simulation Results

Figure 4.1(a) and 4.1(b) shows the initial shape and desired shape. As shown in Figure

4.1(c), the simulation result shows that the cable was not able to reach the exact desired

shape (Sine Curve) but an approximation after a long time. Compared with Figure 3.12(b),

the error curve shows in Figure 4.1(d) had less oscillations obviously. In addition, the error

decreased in a faster rate and reached a smaller value (less than 0.1), which means the final

shape is closer to the desired shape. These results confirmed that we could have a better

performance on shape control by controlling the gain matrix.
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Chapter 5

Conclusion

In this thesis, we have demonstrated a method for controlling the shape of a cable using

force and position control of one of its ends. The motivation for such a system arises from

tethered UAVs that get uninterrupted power supply trough a wired source. We simulate

the wire in three dimensions and control the shape of wire with applying forces at the end

of the wire. Moving forward, we would like to look into more effective simulation methods

and control methods on the problem of shape control of a cable.

In Chapter 2, we have proposed a discrete model in three dimensions in order to obtain

solutions numerically. Then we have derived the dynamic model of the cable in three

dimensions from Lagrange’s equations in this discrete model. Both force controlled system

and position controlled system were developed to meet the needs in practice. We also

conducted simulations to verify this dynamic model can achieve a good approximation to

a real cable.

In Chapter 3, we have developed a controller to control the shape of the cable. This

controller is based on the dynamic model in Chapter 3. With pseudoinverse, we can obtain

the force we want to apply at the end of the cable to reach the desired shape. We have done

the shape control simulation with gravity and without gravity. We have also considered the

drag forces due to air in the simulation to find a more stable result of the shape control of

the cable. All those simulations can verify that this controller could control the cable to
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reach a satisfactory approximation to the desired shape.

In Chapter 4, we discussed the stability of the shape control problem. We have proposed

the quasi-static discrete model to simplify the problem. We have derived the state error

function and tried to find a gain matrix to marginally stabilize this system. By adjusting

the gain matrix, we can have a better performance on shape control.

Under these efforts, we can apply this method to solve problems of shape control of a

cable in some ideal and limited conditions. However, there are many practical challenges

waiting for us to solve to improve the performance of this model and the proposed con-

troller. In future, we plan to make further refinements to the proposed controller using

novel methods, which can control the cable more precisely to attain a better approximation

of the desired shape. We also plan to use a continuous dynamic model, which is more

realistic but more complex than the discrete model. In addition, more factors need to be

considered in the simulation and controller design, such as the friction, elasticity and the

presence of physical obstacles in the environment. We also plan to perform shape control

of a cable using two or more UAVs.
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