
Lehigh University
Lehigh Preserve

Theses and Dissertations

2018

Upstream Influence of Axisymmetric Bodies on
Trailing Line Vortices
Tanya Sarah Johnson
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Johnson, Tanya Sarah, "Upstream Influence of Axisymmetric Bodies on Trailing Line Vortices" (2018). Theses and Dissertations. 2986.
https://preserve.lehigh.edu/etd/2986

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2986&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F2986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/2986?utm_source=preserve.lehigh.edu%2Fetd%2F2986&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


Upstream Influence of Axisymmetric Bodies

on Trailing Line Vortices

by

Tanya S. Johnson

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Mechanical Engineering and Mechanics

Lehigh University

December 2017



c© Copyright by Tanya S. Johnson 2017

All Rights Reserved

ii



This thesis is accepted and approved in partial fulfilment of the requirements for the

degree of Master of Science in Mechanical Engineering.

Date

Dr. Justin W. Jaworski, Thesis Advisor

Prof. D. Gary Harlow, Chairperson of
Department of Mechanical Engineering and Mechanics

iii



Acknowledgements

First and foremost, I would like to thank my adviser, Professor Justin W. Jaworski, with-

out whom this research would not have been possible. His guidance, support, and patience

has been instrumental in the completion of this work and my success at Lehigh.

Valuable insight and help with the research was given by Dr. Daniel Garmann, Dr. Miguel

Visbal, and Dr. Caleb Barnes at the Air Force Research Lab, as well as Dr. Donald

Rockwell and Greg Fishman at Lehigh University. I would also like to thank Dr. Douglas

Smith and the Air Force Office of Scientific Research for their financial support under the

FA9550-15-1-0148 grant.

Finally, I would like to thank my parents and my brother, without their endless sup-

port none of this would have been possible. I am eternally grateful for all of the guidance

and help they have given me over the years as well as for their seemingly endless patience

while I have been pursuing my graduate degrees.

iv



Contents

Acknowledgements iv

List of Figures vii

Abstract 1

1 Introduction 2

2 Literature Review 4

2.1 Trailing Line-Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Swirl Parameter and Vortex Stability . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Vortex-Body Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Vortex-Ring–Wall Interactions . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Vortex–Rotor-Blade Interactions . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Vortex–Fin Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.4 Vortex–Wing Interactions . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Problem Statement 13

4 Mathematical Model 15

4.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Axial Velocity Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Pressure Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.1 Constant and Linear Background Pressure Gradients . . . . . . . . . 19

v



4.3.2 Pressure Gradient Produced by a Sphere . . . . . . . . . . . . . . . 19

4.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Results 22

5.1 Uberoi Results and Verification . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Centerline Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Constant and Linear Background Pressure Gradients . . . . . . . . . 26

5.2.2 Pressure Gradient Produced by a Sphere . . . . . . . . . . . . . . . 28

6 Conclusions and Future Directions 30

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 32

A Pressure Field Induced by a Sphere 35

B Coordinate Transformations 39

Biography 41

vi



List of Figures

2.1 Schematic of the vortex-body system. . . . . . . . . . . . . . . . . . . . . . 5

4.1 Exact evaluation and asymptotic matching of the modified Bessel function . 21

5.1 Verification of self-induced pressure with Batchelor results. . . . . . . . . . 23

5.2 Verification of self-induced pressure derivative with Uberoi et al. results. . . 23

5.3 Verification of centerline axial velocity deficit with Uberoi et al. results. . . 25

5.4 Verification of radial velocity deficit with Uberoi et al. results. . . . . . . . 25

5.5 Centerline axial velocity of a vortex with an externally applied pressure

gradient, ∂pext/∂z = A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.6 Centerline axial velocity of a vortex with an externally applied pressure

gradient, ∂pext/∂z = Az. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.7 Centerline axial velocity of a vortex impinging upon an in-line, axisymmetric

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.1 Superposition of a uniform flow with a three-dimensional doublet. . . . . . 36

B.1 Transformation of spherical coordinate system to cylindrical coordinate sys-

tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



Abstract

In formation flight, the wings of a leader aircraft generate trailing vortices that travel

downstream and interact with the wings of a follower aircraft. The pressure field of the

follower wing can effect the trajectory and stability of these trailing vortices prior to their

direct impingement. This upstream influence is examined here by analytical and numerical

means using the boundary layer approximation of the incompressible Navier-Stokes equa-

tions. Under these slenderness assumptions, the classical Batchelor q-vortex is evolved

over a finite domain with a prescribed axisymmetric background pressure gradient using

a Green’s function approach. The presented analysis is restricted by the linearity of the

boundary approximations and the requirement that the vortex and axisymmetric imposed

pressure gradient are aligned. Results are presented for constant and linear pressure gradi-

ents, as well as for pressure fields representative of canonical axisymmetric follower bodies.

This work may be extended and applied to the stability analysis of streamwise finite-core

vortices arising in formation flight.
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Chapter 1

Introduction

The interaction between columnar vortices and a surface can be broken into three distinct

classes: (1) parallel, (2) normal, and (3) streamwise vortex-body interactions [1]. The

interaction of vortices and surfaces (e.g. cylinders, foils, or wings) can lead to unsteady

hydrodynamic loading, which can destabilize the vortex. While the dynamics of the parallel

and normal vortex-body interactions has been examined in-depth, streamwise vortex-body

interactions have received less attention. Streamwise vortex-body interactions are the

enabling fluid dynamic phenomenon of formation flight, due to the benefits to aerodynamic

performances. If the follower wing is positioned properly in relation to the leader wing, the

follower can capture the upwash from the leader’s tip vortex system. This upwash can allow

for an increased lift and reduced drag, leading to the significant savings in aerodynamic

efficiency and fuel burn [2].

The purpose of the present work is to determine the effects of a downstream body on

the mechanics of a Batchelor trailing vortex [3]. Downstream, axisymmetric solid bodies

are represented as pressure fields in the region immediately upstream of the body that it

impinges upon. The present analysis is restricted to changes in the axial direction rather

than changes in the radial direction. By making this restriction, the azimuthal and radial

velocities are the same as the velocities formulated by Batchelor [3] in order to keep the

self-induced pressure field of the vortex constant. The axial velocity is the only changing

component of the flow field.
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This thesis is structured to first explore previous work that has been done to theo-

retically, numerically, and experimentally model the evolution of a trailing line vortex in

Chapter 2. This is followed by a description of the research problem in Chapter 3 and an

in-depth description of the mathematical model used in Chapter 4. Results are presented

for verification of various portions of the numerical integration scheme and and modified

centerline axial velocity of the vortex due to an imposed pressure field in Chapter 5. Chap-

ter 6 concludes the report with a brief overview of the the report, concluding thoughts, and

future expansion of the work. In-depth mathematical analysis of the pressure field induced

by the sphere and coordinate system conversions are attached at the end of the report in

the specified appendices.
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Chapter 2

Literature Review

The literature review is broken down into three sections: (1) an overview of the Batchelor q-

vortex solution [3] and the Heaton et al. [4] approximation of the solution; (2) a discussion of

the swirl parameter found by Leibovich and Stewartson [5]; (3) an overview of Vortex-Body

interactions [1]. The vortex-body interactions are discussed for four cases: vortex-ring–wall,

vortex–rotor-blade, vortex-fin, and vortex-wing interactions.

2.1 Trailing Line-Vortex

Batchelor’s so-called q-vortex solution [3] forms the basis for most analytical and numerical

modeling efforts for the trailing vortex. This analysis determined a relationship between

the azimuthal and axial components of the velocity via the self-induced pressure field

of the vortex. The Batchelor vortex models the steady, trailing-line vortex that is shed

from one side of a wing that may have a strong axial excess or deficit near its axis. The

fluid flow is assumed to be steady, incompressible, and axisymmetric about the vortex

axis. Batchelor used cylindrical coordinates, (r, θ, z), as seen in Fig. 2.1, and boundary

layer approximations in order to determine the velocity field of the vortex, (ur, uθ, uz).

Batchelor accounts for the viscous effects upon the trailing line-vortex by allowing for a

diffusive increase of the vortex radius that is proportional to the square-root of the axial

distance,
√
z. Due to the diffusive nature of the vortex, the azimuthal velocity will gradually

4



Figure 2.1: Schematic of an axisymmetric, trailing line vortex upstream of an in-line virtual
body. Finite-core vortex has a radius, δ, that grows in the downstream direction due to
the self-induced and imposed center pressure fields, pself and pext, respectively. The vortex
state is specified at an initial location, z0, and evolves downstream over a finite distance,
L. The global coordinate system is (r, θ, z).

slow down and lead to an increased pressure in the core of the vortex. These effects are

accounted for by use of a similarity solution in order to obtain an asymptotic solution for

large distances in the axial direction (z →∞):

uz(r, z) = u0 −
Γ2

0

8νz
log
(u0z

ν

)
e−η +

Γ2
0

8νz

[
e−η (log η + ei (η)− 0.807)

+2ei (η)− 2ei (2η)
]
−W u2

0

8νz
e−η,

(2.1)

ur(r, z) = 0, (2.2)

uθ(r, z) =
Γ0

r

(
1− e−η

)
, (2.3)

η =
u0r

2

4νz
, (2.4)

ei(η) =

∫ ∞
η

e−ζ

ζ
dζ. (2.5)

The axial velocity component of the Batchelor vortex is generally simplified down to:

uz(r, z) = u0 −
Γ2

0

8νz
log
(u0z

ν

)
e−η (2.6)

when

Γ2
0

8νz

(
log
(u0z

ν

)
− 0.13

)
+W

u2
0

8νz
� u0 (2.7)
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where Γ0 is the non-zero value of circulation (Γ) that can be determined at large radial

distance from the vortex, ν is the kinematic viscosity, u0 is the free-stream velocity, and

W accounts for an initial velocity defect that is induced by the circulation and from the

slowing down of the azimuthal velocity due to viscous effects. W can be related to the

drag associated with the core of the vortex, Dc:

Dc

ρ
= −1

2
πλΓ2

0 +
1

2
πWu2

0 (2.8)

where λ is a positive number far from unity, which allows for (2.1) to be written as:

uz = u0 −
1

8
e−η

[
2

π

Dc

ρ
+ Γ2

0

(
λ+ log

(u0z

ν

))]
+

Γ2
0

8νz
[e−η(log η + ei(η)− 0.807) + 2ei(η)− 2ei(2η)].

(2.9)

Heaton et al. [4] simplified the results of Batchelor (2.1)-(2.6) to a two-term asymptotic

solution for the axial velocity as z →∞:

uz

u0
∼ 1− α(z)e−r

2/δ(z)2 (2.10)

ur

u0
∼ 0 (2.11)

uθ
u0
∼ Γ0

r

(
1− e−r2/δ(z)2

)
(2.12)

α(z) = Γ2
0

Re log(z/Re)

8z
(2.13)

δ(z) = 2
√
z/Re (2.14)

where the Reynolds number is defined using the free-stream velocity and the chord of the

wing, C: Re = u0C/ν.

2.2 Swirl Parameter and Vortex Stability

A stability criterion for the swirl parameter was developed by Leibovich and Stewartson [5]

for the Batchelor vortex. The q parameter is used to define the Batchelor vortex for

6



numerical and experimental analysis. Barnes et al. [6] defines the swirl parameter as:

q =
Γ

2πr∆u
≈ 1.567

max (uθ)

∆u
, (2.15)

where ∆u is the axial velocity deficit in the vortex core and q can be used to define the

velocity flow field of the vortex as shown by Garmann and Visbal [2]:

ur(r) = 0, (2.16)

uθ(r) =
q∆u

r/r0

(
1− e−(r/r0)2

)
, (2.17)

uz(r) = 1−∆ue−(r/r0)2 , (2.18)

and r0 is the initial vortex core radius.

This ratio relates the stability of the vortex to the maximum azimuthal velocity and the

maximum axial velocity defect which generally occurs along the centerline of the vortex. q

was originally derived by Leibovich and Stewartson [5] as a way to quantify the stability of

the vortex. The criterion was derived in order to find a threshold to avoid the amplification

of small-wave perturbations in the radial direction. They gave the criterion as:

σ2 =
2uθ(ru

′
θ − uθ)(u2

θ/r
2 − u′2θ − u′2z )

(ruθ − uθ)2 + (ru)2
< 0 (2.19)

And by substituting the Batchelor velocity field given in (2.2) and (2.6) into (2.19) will yield

a stability parameter, q ≥
√

2. When q ≥
√

2 the Batchelor vortex remains stable to small-

wave perturbations and when q <
√

2 the vortex is easily destabilized by perturbations in

the flow. Thus, by setting q in (2.17) the vortex can be set to a forced initial stability and

the stability of the vortex over the course of an experimental or numerical analysis can be

found.
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2.3 Vortex-Body Interactions

Interaction between streamwise-oriented vortices with downstream bodies (e.g. fins, blades,

or wings) are a critical type of flow-structure interaction in both unsteady and steady

loading cases. Examples of this interaction include the buffeting of a fin or aircraft tail due

to a vortex generated from an upstream body; steady and unsteady loading of rotating

blades interacting with a tip-vortex generated from an upstream rotating blade in series;

the modification of the lift and drag of a follower wing in formation flight [7]. In the

specific case of formation flight, the induced drag on a follower wing can be decreased

by an impinging upstream trailing-line vortex being shed from a leader wing, however

this can also lead to unintended consequences in the form of unsteady buffeting. This

phenomenon has been seen for aircraft and wings of varying sizes, thus it is not restricted

to formation flight of large vehicles and can be expanded to micro-air vehicles as shown in

work by Kroo [8]. An extensive review of previous work done in the field of vortex-body

interactions was performed by Rockwell [1].

This section will discuss the specific interactions between vortex rings and walls as well

as the vortex-wing interaction that drives the research discussed in this work. A brief

discussion of vortex-fin and vortex-rotor interactions is included.

2.3.1 Vortex-Ring–Wall Interactions

The discussion of vortex-body interactions began with work done by Walker et al. [9].

Walker et al. worked to further the understanding of the fundamental limitations of inviscid

theory upon the ability to model the vortex-ring interactions with a wall. This created a

foundation for further theoretical, computational, and experimental works in the field of

vortex-body impingement. However, there were limitations to the theoretical analysis done

by Walker et al. due to it relying heavily upon the initial conditions and circulation results

from the experimental analysis. The model that was found by Walker et al., however, only

partially describes the results that were seen and the Navier-Stokes analysis that was done

by Orlandi and Verzicco [10] allowed for a more accurate solution given that, as briefly

8



discussed by [9], the boundary layer develops to a chaotic and turbulent state. Due to

the turbulence within the boundary layer, it may be prudent to use a more complicated

vortex model, such as a hairpin vortex, within the viscous layer near the wall to obtain

more accurate results.

Orlandi and Verzicco [10] further expand upon the work done by Walker et al. [9] in

order to understand the effects of azimuthal instabilities which occur in three-dimensional

models and occur due to the interaction of the secondary vortex with the primary vortex.

The azimuthal instabilities appear to be associated with the compression of the secondary

vortex as it enters the interior of the primary vortex [9–11]. Vortex-rings impacting a flat

wall with normal-incidence have been studied in-depth, with more recent work by Cheng

et al. [11] focusing on vortex-rings impacting at an angle of incidence, θ, between 0 and 40.

The effect of θ upon the structure of the vortex is of extreme interest as it can suppress

the growth of tertiary rings and introduce a helical instability. Orlandi and Verzicco [10]

confirms the results found previously, and have the hallmarks of the axisymmetric case

such as (1) vortex stretching, (2) formation of a secondary ring that interacts with the

primary, decelerating the radial expansion of the primary ring, (3) the development of

azimuthal instabilities, and (4) for sufficiently large values of the Reynolds number, that

the interaction between the primary and the secondary vortices results in a tertiary ring

being formed.

The work by Cheng et al. [11] is in agreement with the experimental results seen by

Lin [12]. It is shown that for rings approaching a wall on an angle that an asymmetric

shear boundary layer is formed; as the ring is stretched the vorticity of the core increases

and a non-uniform vorticity distribution is seen in the core. It should be noted that for

small values of θ that the overall vortex structure is not significantly affected. However,

for larger values of θ, the secondary ring engulfs the primary ring and a helical structure

is developed; the interacting vortices rebound away from the wall which does not allow

tertiary rings to develop.

9



2.3.2 Vortex–Rotor-Blade Interactions

As discussed and sourced in Rockwell [1], the interaction of a streamwise vortex with a

blade can lead to unsteady loading of the surface. The streamwise vortex-body interactions

have some unifying, identical physical features: (1) displacement of the vortex trajectory

in the spanwise direction due to image effects, (2) generation of a separation zone locally

on the surface of the blade, and (3) vortex breakdown near the maximum thickness of

the blade or directly upstream of the stagnation point. The vortex-blade interaction is

confined a fraction of the blade span, which is true for all cases of streamwise vortex-body

interaction unlike with parallel vortex-body interactions.

The occurrence of vortex breakdown in these situations is sensitive to the axial pressure

gradient, and a complicating factor in the onset of the breakdown is coupled with local

modifications of the flow along the surface of the blade. Similarly, the interaction of the

vortex with a blade, or wing, is linked to the occurrence of local separation and stall.

Wittmer and Devenport [13,14] and Wittmer et al. [15] showed that in the near wake of a

blade that rapid changes occur in the structure of the streamwise vortex; the vortex rapidly

decays within the wake region as well.

2.3.3 Vortex–Fin Interaction

When a streamwise vortex interacts with a fin, flexible thin plate, or tail, the primary region

of interest is between the unsteadiness of the vortex and distribution of loading on the

fin [1]. The interaction of the two is complicated, as with the vortex-blade interaction, by

the occurrence of vortex breakdown upstream of the leading edge of the plate; unsteady flow

phenomenon also plays a role due to the displacement of the core and instabilities arising

the breakdown flow field. It has been shown, both experimentally and numerically, that

the incident vortex breaks down prior to the leading edge, but that there is a reformation

of the vortex on the underside of the wing. This was specifically seen by Patel and Hancock

[16] in experiments involving vortex interaction with flat plates and airfoils, as well as in

computational work done by Gordnier and Visbal [17].

10



2.3.4 Vortex–Wing Interactions

Theoretical examination of formation flight using classical aerodynamic theory by Hum-

mel [18, 19] examined the streamwise vortex-wing interaction and found that there are

significant benefits to aerodynamics performance. With proper positioning the follower

wing is capable of capturing the upwash from the tip vortex shed by the leader wing,

which allows for an increase in lift and reduction of the induced drag, leading to energy

savings [20]. More recent work done by Ning et al. [21] used computational methods to

examine the feasibility and benefits of extended formation flight when aircraft are sepa-

rated by more than ten spans in the streamwise direction. They found that there was

significant reduction in drag, but other factors needed to be taken into account specifically

wake roll-up, the size of the vortex core, decay of the vortex, as well as gust effects.

Recent work by McKenna and Rockwell [22] and McKenna et al. [7] explored experi-

mentally the leader-follower wing interaction and the effect of the impinging vortex upon

the downstream body, as well as the effect of the follower wing upon the evolution of the

trailing vortex being shed by the leader wing. Similar work has been done performed Gar-

mann and Visbal [2] and Barnes et al. [6], as well as previous works cited therein, using

high fidelity computations. The series of high fidelity computational studies of streamwise

vortices interacting with follower wings has allowed for further insight into the flow physics

of the formation flight problem and associated unsteady and steady loading scenarios.

Specifically, the work done by Garmann and Visbal [2] examined the interaction between

a streamwise vortex and a wing; this interaction was found to be controlled by the location

of the incident vortex in relation to the tip of the follower wing. As the incident vortex

moves from outboard to inboard of the wing, the effects upon the tip vortex generated

vary significantly and cases of a wing without an impinging vortex were performed and

the formation of the tip vortex was seen. However with an outboard positioning of the

vortex, a dipole is seen and the tip vortex is enhanced due to mutual induction without

a noticeable decay. For the tip-aligned case, both the incident and tip vortices remain

distinct; at stations progressing downstream of the wing the structures co-mingle with a

11



loss of strength and coherency due to their interaction. This co-mingling and mixing of

the vortices also appears in ring-wall interactions. Finally, the inboard positioning of the

vortex is examined, the incident vortex is bifurcated upon impingement of the wing and

the tip vortex is suppressed while the incident vortex is dissipated as it moves downstream

from the wing.

Similarly, McKenna et al. [7] examined the streamwise vortex-wing interaction exper-

imentally and found similar results. It was found that the vortex-wing interaction is not

confined to a region local to the leading edge of the follower wing; there was a region of ef-

fect of approximately one chord length upstream of the follower wing and when the trailing

vortex was outboard of the follower wing, a region of upstream influence is still detected.

The strength of the velocity deficit, ∆u = 1− (uz/u0), of the vortex is dependent upon the

location of impingement and leads to a change in the swirl parameter, q. By examining

the swirl parameter, the stability of the vortex can be determined as previously discussed

in this work. The swirl parameter allows for an analysis of the stability of the vortex and

allows for an examination of instabilities that arise in specific configurations of formation

flight, specifically with regards to the sensitivity of the vortex to small-wavelength instabil-

ities. Results from Garmann and Visbal [2,23] shows the growth of an instantaneous helical

instability about the exterior of the vortex, which were not easily seen in the experimental

work, but the swirl parameter q did fall to a value that would allow for the growth of the

instabilities to be seen.
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Chapter 3

Problem Statement

The solution of the asymptotic trailing vortex using the analysis of Batchelor [3] with the

Green’s function approach of Uberoi et al. [24] is employed to understand the effect of an

external pressure gradients upon the dynamics of the Batchelor q-vortex. The q-vortex

was originally derived by Batchelor to approximate a steady, trailing line vortex being

shed from a wing and is assumed to be axisymmetric and laminar in nature. In order to

approximate this vortex, Batchelor assumed the following:

∂

∂z
� ∂

∂r
, ur � uz, |uz − u0| � u0, (3.1)

which allows for the formulation of governing equations to define the trailing-edge vortex

and intrinsically links the axial velocity to the self-induced pressure field of the vortex.

The self-induced field is dependent upon changes in the swirl velocity with distance in the

axial direction [3].

The assumptions shown in (3.1) allow for the flow region of interest to be restricted

to flow fields in which axial gradients are of small magnitude when compared with radial

gradients. Similarly, the flow field restricts the motion to the z-direction, which forces the

radial velocity to be significantly smaller than the axial velocity. |uz − u0| � u0 forces the

change between the axial velocity and the free-stream velocity to be sufficiently small so

that there is an axial velocity deceleration in the core of the fluid [3].

13



The boundary-layer form of the Navier-Stokes equations in the z-direction equation

can be simplified to an approximate form of a cylinder heat conduction equation which

was solved by Uberoi et al. [24] using analytic Green’s function techniques. This solution

technique is the basis for examining the impact of external pressure fields upon the axial

velocity with a specific focus on the centerline velocity defect and the radial velocity defect.

First the effects of constant and linear pressure gradients are examined followed by the

effect of a q-vortex impinging upon an in-line, downstream sphere. A schematic of q-vortex

interacting with an in-line, axisymmetric virtual body can be seen in Fig. 2.1.
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Chapter 4

Mathematical Model

4.1 Governing Equations

Cylindrical coordinates, (r, θ, z), are employed with the corresponding velocity components,

(ur, uθ, uz). The interaction of a q-vortex with a downstream body can be described by use

of the axisymmetric, incompressible, steady-state forms of the Navier-Stokes equations as

seen in (4.1) - (4.5).

1

r

∂

∂r
(rur) +

∂uz

∂z
= 0 (4.1)

uz
∂uz

∂z
+ ur

∂uz

∂r
= −1

ρ

∂p

∂z
+ ν∇2uz (4.2)

uz
∂ur

∂z
+ ur

∂ur

∂r
−
u2
θ

r
= −1

ρ

∂p

∂r
+ ν

(
∇2ur −

ur

r2

)
(4.3)

uz
∂uθ
∂z

+ ur
∂uθ
∂r

+
uθur

r
= ν

(
∇2uθ −

uθ
r2

)
(4.4)

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
(4.5)

As described in Batchelor’s work [3], the flow field of interest can be approximated

using boundary-layer type approximations. The boundary-layer formulation assumes that

the axial gradients in the flow are small related to radial gradients, and the radial velocity is

small when compared to the axial velocity. Similarly, when comparing the axial velocity of

the vortex to the free-stream, axial velocity the difference between the two is a sufficiently
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small as discussed in Chapter 3 and shown in (3.1).

Employing the governing Navier-Stokes equations and the Boundary Layer assumptions

formulated by Batchelor [3], the flow field of interest is described by the linear Boundary

Layer equations for an axisymmetric, steady-state trailing-edge line vortex. The governing

equations are shown in (4.6)-(4.8).

u0
∂uz

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2uz

∂r2
+

1

r

∂uz

∂r

)
(4.6)

u2
θ

r
=

1

ρ

∂p

∂r
(4.7)

u0
∂uθ
∂z

= ν

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

)
(4.8)

4.2 Axial Velocity Formulation

Equation (4.8) governs the θ-direction velocity, uθ, and can be simplified by use of the

relationship between the circulation of the flow and the θ-direction velocity: Γ = ruθ.

Substituting it into (4.8) and simplifying, the θ-direction vortex equation can be likened

to viscous decay of circulation in two-dimensional motion. Utilizing a similarity variable,

η, and known asymptotic solutions of the equation form the azimuthal velocity as z →∞

can be written as:

uθ =
Γ0

2πr

(
1− e−η

)
, (4.9)

η =
u0r

2

4νz
, (4.10)

where Γ0 is the free-stream circulation of the fluid.

From (4.9), Batchelor [3] determined the self-induced pressure of the vortex, shown in

(4.12). However, a total pressure field must be found to examine in order to examine the

effect of an external pressure field upon the vortex. The pressure of the system, ptotal,

was assumed to be a linear combination of the self-induced pressure field, pself , as well as

an external pressure field, pext. The equation for the total pressure field for the system

is shown in (4.13). The axial pressure gradient found by Batchelor [3] and confirmed by
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Uberoi et al. [24] and is shown in (4.14).

p− p0

ρ
=

∫ ∞
r

u2
θ

r
dr (4.11)

pself(η) =

∫ ∞
η

(1− e−ζ)2

ζ2
dx =

(1− e−η)2

η
+ 2ei(η)− 2ei(2η) (4.12)

ptotal(r, θ, z) = pself(η) + pext(r, θ, z) (4.13)

1

ρ

∂pself

∂z
=

(
Γ0

2π

)2 u0

8νz2
(pselfη)′ (4.14)

In order to determine the axial component velocity, the z-direction boundary layer

equation needs to be arranged to a form that is analogous to the transient, one-dimensional

heat conduction equation:

u0
∂uz

∂z
− ν

(
∂2uz

∂r2
+

1

r

∂uz

∂r

)
= −1

ρ

∂ptotal

∂z
. (4.15)

The axial component of the velocity can be found by using the re-arranged form of the

linearized z-direction equation of motion, (4.15). Utilizing the Green’s function technique

demonstrated by Luikov [25] and implemented by Uberoi et al. [24]. The axial velocity,

uz, was found by treating the axial pressure gradient, ∂ptotal/∂z, as a source term of the

equation. By doing so, an equation for the axial velocity, uz,p as a function of the total

pressure was found:

uz,p(r, z)

u0
= − 1

64π2

(
Γ0

ν

)2 ∫ t

t0

∫ ∞
0

1

ρ

∂ptotal

∂t

e
−
(

s2+s′2
4(t−t′)

)
(t− t′)

I0

(
ss′

2(t− t′)

)
s′ds′dt′ , (4.16)

s =
u0r

ν
, (4.17)

t =
u0z

ν
, (4.18)

η =
s2

4t
, (4.19)

where (s, t) are the non-dimensional radial and axial directions, u0 is the free-stream axial

velocity, and I0 is the modified Bessel function of the zeroth order.

However, the total axial velocity, uz, is a function of both the pressure term and the
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evolution of the vortex inflow condition, u∗z(s, t0). The axial velocity as a function of the

initial condition, uz,i, is shown in (4.20) and the total axial velocity, uz is shown in (4.22):

uz,i(r, z)

u0
=

1

2

∫ ∞
0

u∗z(s, t0)
e
−( s2+s′2

4(t−t0
)
)

t− t0
I0

(
ss′

2(t− t0)

)
s′ds′, (4.20)

t0 =
u0z0

ν
, (4.21)

uz(r, z) = uz,p(r, z) + uz,i(r, z), (4.22)

where t0 and z0 are the non-dimensional and dimensional initial positions of the vortex,

respectively.

4.3 Pressure Gradients

The analysis of the effect of an external pressure field upon the dynamics of a q-vortex is

performed for three cases: (1) constant background pressure gradient, (2) linear background

pressure gradient, and (3) an in-line sphere placed downstream of the vortex. The pressure

field for the system is assumed to be a linear combination of the self-induced pressure field,

pself , and an external pressure field, pext, as shown in (4.23). The self-induced pressure field

was originally derived by Batchelor and can be seen in (4.12) and the external pressure

field derivations are discussed in this section of the work [3].

ptotal(r, θ, z) = pself(η) + pext(r, θ, z) (4.23)

The total pressure gradient can be converted to non-dimensional form to be substituted

into the z-direction BL Navier-Stokes equation:

−
(
ν

u2
0

)
∂ptotal

∂t
= −

(
Γ0

πν

)2 u0

32

[
1

t2
d

dη
(ηpself) +

(
πν

Γ0u0

)2 32

ρ

∂pext

∂t

]
. (4.24)
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4.3.1 Constant and Linear Background Pressure Gradients

Two of the special cases examined are for constant and linear axially applied pressure

gradients, which disregard any radial effects. The form of the axial pressure gradient is

taken to be:

∂pext
∂z

(r, θ, z) = ρ(Az +B), (4.25)

where A, B are positive constants which are varied for the simulations run. For the constant

background pressure gradient, A = 0; linear background pressure gradients, B = 0.

The expression for the axial pressure gradient in (4.25) can be converted to the non-

dimensional coordinate, t:

1

ρ

∂pext
∂t

=

(
ν

u0

)2

At+

(
ν

u0

)
B (4.26)

4.3.2 Pressure Gradient Produced by a Sphere

The pressure gradient induced by a sphere was determined by use of potential flow analysis

in spherical coordinates and a subsequent transform the local, spherical coordinates of the

sphere to the global, cylindrical coordinates of the vortex. The pressure derivation and the

coordinate system transformation are detailed in Appendices A and B, respectively. The

dimensional form of the axial pressure gradient of a sphere is:

1

ρ

∂pext

∂z
= 3u2

0

(
R3

S

z4
+
R6

S

z7

)
, (4.27)

where RS is the radius of the sphere. (4.27) was non-dimensionalized and transformed to

the global coordinate system to get the final form of the pressure field:

1

ρ

∂pext

∂t
= 3u2

0

[
I3

(t−H)4
+

I6

(t−H)7

]
, (4.28)

I =
u0RS

ν
, (4.29)

H =
u0(z0 + L+RS)

ν
, (4.30)
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where L is the distance between the initial position of the vortex, z0, and the front of the

sphere.

The numerical calculations were performed for specific ratios of Rs/δ0. δ0 is the initial

radius of the vortex core and was calculated using (4.31) [4].

δ = f(z) =

√
4νz

u0
, δ0 = f(z0), (4.31)

where z is the axial distance and z0 is the initial position of the vortex.

4.4 Numerical Simulations

The equations describing the axial velocity cannot be integrated analytically in terms of

known functions, thus numerical integration schemes must be employed. The numerical

integration code was written in Python script and makes use of built-in SciPy integration

schemes. Numerical integration errors occurred due to the divergent nature of the modified

Bessel function, I0, as it diverges to ∞ as x→∞ causing divergence errors to occur when

numerically integrating (4.16) for non-centerline cases, or r 6= 0. When r = 0, I0 = 1

which avoids the issue. However, in order to avoid problems caused by divergence, the

asymptotic form of I0 for large arguments is utilized. The asymptotic form utilized is from

Abramowitz and Stegun [26]:

I0 ∼
ex√
2πx

+ O(x−1), x→∞, (4.32)

x =
ss′

2(t− t′)
, (4.33)

the asymptotic form of I0 is valid as x→∞, and is not valid for small values of x.

For calculations where r 6= 0, the Python script makes use of both the exact and

asymptotic forms of I0. In order to implement this, the code was specifically focused on

the value of x and bounding it to an upper limit that would trigger the switch between

the exact and asymptotic forms. At each location in the radial direction, x is calculated

compared to a maximum value, n, and if x ≥ n, then (4.32) is utilized. The value of n was
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Figure 4.1: Graphical comparison of the accuracy of the first order, asymptotic approxi-
mation of the modified Bessel function compared to the Python scripted modified Bessel
function.

found through iterative testing of the code and calculations of I0. A graphical comparison

of the accuracy of the asymptotic approximation and the exact, Python scripted I0 is shown

in Fig. 4.1.
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Chapter 5

Results

The results presented in this chapter are broken down into two main sections: (1) a dis-

cussion of the verification of the code against a corrected version of the results obtained by

Uberoi et al. [24] and (2) the centerline axial velocity for imposed pressure gradients. Two

special cases are presented for the imposed gradient to ensure that the code was functioning

in the manner expected; a third case presented is for a pressure field induced by an in-line,

axisymmetric sphere.

5.1 Uberoi Results and Verification

In order to ensure that the codes used to calculate the centerline and radial velocity defects

were functioning properly, both codes were first run with pext = 0 to test a purely self-

induced case and compare the results found with the results obtained with Uberoi et al. [24].

The self-induced pressure was also compared with the results obtained by Batchelor [3] to

ensure the proper implementation.

The initial pressure profile found by Batchelor [3] is compared to computational results

in Fig. 5.1. The self-induced pressure field of the vortex is seen to decay to zero as η

increases. Similarly, the results obtained by Uberoi et al. [24] for the pressure derivative is

compared to the computational results to ensure the accuracy of the source term for the

integration and can be seen in Fig. 5.2.
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Figure 5.1: Numerical replication of the results obtained by Batchelor [3] for the self-
induced pressure field, (4.12), of a trailing edge vortex.

Figure 5.2: Numerical replication of the results obtained by Uberoi et al. [24] for the
derivative of the self-induced pressure field, (4.14), of a trailing edge vortex.
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Of importance, however, is the comparison of the numerical computations of the cen-

terline and radial velocity defects to the results found by Uberoi, et al [24]. The centerline

velocity defect for q-vortex is shown in Fig. 5.3. The centerline velocity is shown to begin

at the initial prescribed position, z0 = 1m before having a significant spike in axial veloc-

ity prior to the velocity decaying. The results of the numerical integration were found to

match the results obtained by Uberoi et al., which validated the code.

However, while the results found by Uberoi et al. [24] were verified by the code further

work done on the problem yielded an issue with the results obtained analytically to results

seen in other works that have previously been discussed. The discrepancies were specifically

seen in Fig. 5.3, where the results were significantly larger than realistic results that were

obtained. The issue was resolved by transforming the upper and lower integration bounds

of (4.16) from the dimensional values in z to non-dimensional values in t. Once this

modification was made, the results obtained in lieu of the results shown in Fig. 5.3 are

more accurate than the results however the results are not comparable to the results that

were found by Uberoi et al. While the shape remains the same, the magnitude of the

velocity is decreased significantly, with the self-induced velocity falling in the range of the

free-stream velocity.

Figure 5.4 shows the results of the calculated radial velocity defect at a location of

Z = z/Z0 = 10 with the results of Uberoi et al. [24] as well as an exponential decay. The

results of the calculation match up well with the results obtained by Uberoi et al., and

show the exponential decay of the velocity defect as the value of r increases. It should be

noted that there is an erroneous point that appears at η ≈ 0.025. It is currently believed

that the inaccuracy of this value is due to the changing of the definition of I0 and is an

artifact of the numerical approach taken here.

5.2 Centerline Velocity

The centerline velocity, uz(z, 0), of the vortex undergoing applied external pressure gradi-

ents is shown in Figs. 5.5 and 5.6. The centerline velocity has been non-dimensionalized by
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Figure 5.3: Numerical replication of the centerline velocity defect obtained by Uberoi et
al. [24] for an unmodified q-vortex induced at a location, z0 = 1m with z/Z0 being the
non-dimensional distance downstream.

Figure 5.4: Numerical replication of the radial velocity defect obtained by Uberoi et al.
for an unmodified q-vortex induced at a location z0 = 1m at a fixed axial position, Z =
z/Z0 = 10. The similarity variable, η, is proportional to r2.
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the free-stream velocity, u0, and the axial distance, z, is non-dimensionalized by the initial

positions z0,

Z =
z

z0
. (5.1)

Values for the free-stream velocity, circulation, and chord of the upstream wing were

taken by work done by Fishman et al. [27] setting the ReΓ = Γ/ν = 2300 and ReC =

u0C/ν = 16000. For the constant and sphere-induced external pressure gradients the initial

position of the vortex is z0 = 0.01m, and has an initial core radius, δ0 = 5.04975x10−4m.

For the linear external pressure gradient, the initial position of the vortex is z0 = 0.1m,

and it has an initial core radius, δ0 = 1.59687x10−3m.

The centerline velocity presented in this section is the total axial velocity calculated

from the pressure sources in (4.16) and from the evolution of the initial condition in (4.20).

For all of the cases presented the vortex is initialized as a uniform vortex. Due to this

assumption the initial centerline velocity of the vortex is forced to: uz(r, z0) = u0. Once the

vortex is initializes, the centerline velocity begins to decay due to the self-induced pressure

field of the vortex. Once the self-induced pressure field decays to zero as shown in Fig. 5.1,

the centerline velocity trends back towards u0. This trend shows that the strength of the

vortex is beginning to decay and that the finite-core vortex is beginning to dissipate. If

the vortex is initialized differently (e.g. uz(r, z0) 6= u0), it may remove the initial period of

adjustment from the analysis.

5.2.1 Constant and Linear Background Pressure Gradients

Figure 5.5 shows the results of a constant, applied external pressure gradient (see (4.25))

where B is varied between 0 and 1.0; A is set equal to 0. The initial position of the vortex

is z0 = 0.01m and Z is varied between 0 and 10. As B is increased, the axial velocity

decreases, however the effects of the external gradient only begins to dominate after the

self-induced pressure gradient dies out. The transition between the self-induced pressure

dominated regime and the external pressure dominated regimes, this transition occurs at

roughly Z ≈ 2 for all cases. At Z = 1, there is a numerical overshoot that exceeds the
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Figure 5.5: Centerline axial velocity of a trailing line vortex of initial radius, δ0, undergoing
an externally applied, constant pressure gradient. The initial position of the vortex is at
z0 = 0.01m.

ratio of uz(0, Z)/u0 = 1 which is due to a numerical integration issues.

Fig. 5.6 shows the results of a linear, applied external pressure gradient where A is

varied between 0 and 0.10; B is set equal to 0. Similar to the results seen for the constant

linear gradient, there is a region of self-induced pressure domination before transitioning

to a region of external pressure gradient domination. The region of self-induced pressure

domination is the smallest of the three cases examined in this paper, due to the explicit

dependency of the external pressure gradient upon the axial position, or as the distance

downstream increases the stronger the externally applied pressure gradient becomes with

the strength being dependent upon the value of A. Similarly, the region of effect of the

external pressure gradient increases with the value of A; the peak of uz(0, Z)/u0 decreases

slightly with an increase in A.

It should be noted that the self-induced results obtained for the linear gradient differ

from the results obtained for both the constant and sphere-induced pressure gradients.

This may be due to the initial position used (z0 = 0.1m versus z0 = 0.01m, respectively)

or due to a coding error for that specific test case.
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Figure 5.6: Centerline axial velocity of a trailing line vortex of initial radius, δ0, undergoing
an externally applied, linear pressure gradient. The initial position of the vortex is at
z0 = 0.1m.

5.2.2 Pressure Gradient Produced by a Sphere

Figure 5.7 shows the effects of an axisymmetric, in-line sphere upon the evolution of the

centerline axial velocity, uz(0, Z)/u0. The presented results are dependent upon the ratio

of the sphere radius, RS to the initial vortex core radius, δ0. For ratios of RS/δ0 ≤ 1, the

velocity field is insensitive to the presence of the sphere and has the same velocity profile

as the self-induced pressure field; as RS/δ0 → ∞ the centerline axial velocity collapses to

a single line, with the exception of Z ≈ 10 which is discussed later in this section. As with

the other cases discussed, the flow can be broken up into two regions: (1) a self-induced

pressure dominated and (2) sphere pressure dominated regions. The transition between

the regions occurs at Z ≈ 5 for all cases, though as RS/δ0 increases the region of sphere

pressure domination increases, which is also seen for the other two cases discussed.

The front of the sphere is located at Z = 10, so a stagnation point where uz(0, Z)/u0 = 0

should be occurring at at Z = 10. The velocity is not decaying to the proper value, which

implies that there is an issue with the analysis in the flow region immediately upstream

of the sphere. There may be viscous effects in that region that are not presently being
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Figure 5.7: Centerline axial velocity of a trailing line vortex of initial radius, δ0, impinging
upon a downstream, in-line sphere of radius, RS. The initial position of the vortex is at
z0 = 0.01m.

accounted for. Further analysis in this region is necessary and will be performed in order

to better understand the physics of the region. However, it should be noted that for all

of the flows impinging upon a downstream sphere, the velocities do stagnate to a final

velocity, uz(0, Z)/u0 ≈ 0.75. The discrepancy may be due to the presence of the evolution

of the initial vortex condition as it evolves downstream as it does not decay to zero, but

rather has a finite value, whereas the contributions of (4.16) and the pressure terms decays

to zero as Z → 10.

29



Chapter 6

Conclusions and Future Directions

This work studies the effect of applied external pressure gradients upon the evolution of

a trailing-line vortex. A review of the current literature and existing theory that models

the trailing-line vortex, as well as surveying current work in the field of vortex-body in-

teractions. This thesis lays out a methodology for establishing the base vortex flow from

Batchelor [3] and a set of modifications that make it possible to model the effects of exter-

nal pressure gradients upon the evolution of the axial velocity. The proposed model makes

use of Green’s functions and allows for the axial velocity of the vortex to be broken down

into two components: (1) the velocity due to pressure terms; and (2) the evolution of the

axial velocity at the initial position. However, the methodology in this thesis is restricted

to axis-aligned axisymmetric solid bodies as well as axial pressure gradients. Any modifi-

cation in the radial direction will change the base flow and self-induced pressure gradient

which invalidates the axisymmetric model. Verifications of the numerical code against the

original results found by Uberoi et al. [24] were made and new results were presented for

three external gradient cases: (1) constant, (2) linear, and (3) sphere-induced pressure

gradients.
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6.1 Future Work

Future work on this topic will include an analysis of the swirl parameter, q. Determining

the appropriate swirl parameter for the problem at hand will allow for the stability of

the vortex to be examined and allow for an ease of comparison of the results obtained

to current experimental and computational results found in literature. Once the swirl

parameter and stability analysis has been performed, the framework laid out in this report

will be expanded to non-axisymmetric cases. This expansion will allow for the exploration

of effects due to out-of-line, as well as for non-axisymmetric bodies, to be performed.
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Appendix A

Pressure Field Induced by a

Sphere

The velocity field produced by a sphere can be considered analytically by utilizing a three-

dimensional doublet and superimposing a uniform velocity field with a magnitude, u0. A

diagram of this system is shown in Fig. A.1. Examining this figure the spherical coordinates

of the combined free-stream and doublet flow can be written as [28]:

uκ = −
(
u0 −

µ

2πκ3

)
cosα, (A.1)

uα =
(
u0 +

µ

2πκ3

)
sinα, (A.2)

uβ = 0, (A.3)

where µ is the strength of the doublet.

Equations (A.1)-(A.3) can be recast in terms of a sphere radius, RS, by use of the

stagnation point at the stagnation velocity: (uκ, uα, uβ) = (0, 0, 0). From (A.2), uα = 0

gives sin(α) = 0, thus the stagnation points are at α = 0, π. Similarly, (A.1) can be used:

uκ = 0 = u0 −
µ

2πR3
S

(A.4)

RS =

(
µ

2πu0

)1/3

(A.5)
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Figure A.1: Superposition of a uniform flow with a three-dimensional doublet.

Inserting the solution from (A.5) into (A.1) and (A.2), the total velocity field for the

sphere is found:

uκ = −u0

(
1−

R3
S

κ3

)
cosα, (A.6)

uα = u0

(
1 +

R3
S

κ3

)
sinα, (A.7)

The region of focus for the problem is along the axial direction, z, so the equations

found for the velocity potential can be transformed by setting α = 0 and β = 0, which

collapses the κ-direction to the negative z-direction. These assumptions reduces (A.6) and

(A.7) to:

uκ = −u0

(
1−

R3
S

κ3

)
(A.8)

uα = 0 (A.9)

Using the final velocity field shown in (A.8) and (A.9), the pressure gradient in the
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κ-direction can be found:

pext = p+
1

2
ρV2, (A.10)

∂

∂κ

[
pext = ps +

1

2
ρV2

]
, (A.11)

0 =
dp

dκ
+ ρV

dV

dκ
, (A.12)

dp

dκ
= −ρVdV

dκ
, (A.13)

V = uκêκ + uαêα + uβ êβ,= uκêκ, (A.14)

dp

dκ
= −ρ

[
−u0

(
1−

R3
S

κ3

)]
d

dκ

[
−u0 + u0

R3
S

κ3

]
, (A.15)

dp

dκ
= ρu0

(
1−

R3
S

κ3

)[
0 + u0(−3)

R3
S

κ4

]
, (A.16)

dp

dκ
= −3ρu2

0

(
R3

S

κ4
−
R6

S

κ7

)
. (A.17)

In order to transform κ to z, the previous simplifications allows for the κ-direction to

be collapsed to the negative Z-direction, or κ = −Z:

dp

d(−Z)
= −3ρu2

0

(
R3

S

(−Z)4
−

R6
S

(−Z)7

)
, (A.18)

−dp

dZ
= −3ρu2

0

(
R3

S

Z4
+
R6

S

Z7

)
, (A.19)

dp

dZ
= 3ρu2

0

(
R3

S

Z4
+
R6

S
7

)
. (A.20)

Therefore the dimensional, axial pressure gradient induced by a sphere that is used to

define the total axial pressure gradient is:

1

ρ

∂pext

∂Z
= 3u2

0

(
R3

S

Z4
+
R6

S

Z7

)
, (A.21)

where Z is the local axial coordinate for the sphere. Utilizing the transformations in
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Appendix B, (A.21) can be transformed to the global coordinate system:

1

ρ

dpext

dz
= 3u2

0

(
R3

S

(z −K)4
+

R6
S

(z −K)7

)
, (A.22)

K = z0 + L+RS, (A.23)

where z0 is the initial position of the vortex and L is the finite distance between the initial

position and the front of the sphere. The final non-dimensional form of the axial pressure

gradient induced by a sphere is:

z =
νt

u0
, (A.24)

R =
νI

u0
, (A.25)

K =
νH

u0
, (A.26)

1

ρ

∂pext

∂t
= 3u2

0

[
I3

(t−H)4
+

I6

(t−H)7

]
. (A.27)
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Appendix B

Coordinate Transformations

Figure B.1 shows the two coordinate systems being used in the spherical pressure field.

As previously discussed in Appendix A, the coordinate transform from spherical, (κ, α, β),

coordinates to cylindrical, (R,Θ, Z), coordinates is fairly simple. Due to the reliance on the

purely axial gradients, with no variation in the radial direction the following assumptions

were made:

α = 0, (B.1)

β = 0, (B.2)

Figure B.1: Transformation of local, sphere coordinate system (R,Θ, Z) to the global,
vortex coordinate system (r, θ, z).
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which allows for the κ-direction to project onto the negative Z-direction, or

κ = −Z. (B.3)

The final coordinate transformation becomes:

K = z0 + L+RS, (B.4)

Z = z +K, dZ = dz, (B.5)

R = r, (B.6)

Θ = θ. (B.7)
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