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ABSTRACT 

Origami and its related fields of paper art are known to map to mechanisms, 

permitting kinematic analysis. Many origami folds have been studied in the context of 

engineering applications, but a sufficient foundation of principles of the underlying class of 

mechanism has not been developed. In this work, the mechanisms underlying paper art are 

identified as “spherical system linkages” and are studied in the context of generic mobility 

analysis with the goal of establishing a foundation upon which future work can develop. 

Spherical systems consist of coupled spherical and planar loops, and they motivate a 

reclassification of mechanisms based on the Chebyshev-Grübler-Kutzbach framework. 

Spherical systems are capable of complex, closed-loop motion in 3D space despite the 

mobility calculation treating the links as constrained to a single 2D surface. This property 

permits generalization of some multi-loop planar mechanisms, such as the Watt mechanism, 

to a generalized 3D form with equal mobility. A minimal connectivity graph representation 

of spherical systems is developed, and generic mobility equations are identified.  

Spherical system linkages are generalized further into spherical/spatial hybrid 

mechanisms which may have any combination of spherical, planar, and spatial loops. These 

are represented and analyzed with a polyhedron model. The connectivity graph is modified 

for this case and appropriate generic mobility equations are identified and adapted. 

The generic analyses developed for spherical system linkages are sufficient to inform 

an exhaustive type synthesis process. Generation of all configurations of a paper art inspired 

mechanism subject to constraints is discussed, and a case study generates all configurations 

of a spatial chain using specified link types. This design process is enabled by the developed 

notation and analyses, which are used to identify, depict, and classify kinematic paper art 

inspired mechanisms. 
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1 INTRODUCTION 

 CONTEXT AND MOTIVATION 

1.1.1 Perspective on Origami and Paper Art 

Origami is the art of sculpting paper into a spatial geometry using folding and creases. 

The roots of the Japanese word are ori (“fold”) and kami (“paper”). Generally, an origami piece 

is developed from a square piece of paper and does not allow cutting or fastening (e.g. gluing, 

taping) [1]. Rigid origami is a subset of origami in which the only deformations of the paper 

are the creases such that the panels remain perfectly rigid and flat [2], whereas compliant 

origami relies on deformation or curvature of panels in addition to the creases. Kinematic 

origami is a subset of origami in which the final form promotes some motion rather than 

remaining a static structure [3]. Origami and its variants have existed for centuries, and its 

cultural prevalence and geometric complexity has motivated extensive mathematical and 

engineering analysis [4]. Figure 1 depicts origami cranes, a well-known introductory origami 

fold. One crane has compliant features due to a crushing construction step, whereas the other 

has all rigid panels. 
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Figure 1. Origami cranes with compliant features (left) and rigid features (right) 

    

  

Figure 2. A pop-up book (top, left), a decorative, kirigami-inspired carton (top, right), and a paper model (bottom) 
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Paper art is an umbrella term which encapsulates all products whose creation utilizes 

the foldability of paper, paperboard, cardboard, and other comparable materials. These 

products share the fundamental characteristic of being a spatial form sculpted from flat 

material stock. Non-origami examples which are constructed by cutting, folding, and 

sometimes fastening are as follows: kirigami is a variation of paper folding art which involves 

cutting the paper (kiru means “cut”) [2], pop-ups are three-dimensional paper features in 

books and cards which reveal upon opening and flatten upon closing [5], cartons are boxes 

and containers of varying geometry which are generally manufactured from a single, flat 

piece of cardboard [6], paper models are generally decorative sculptures which are 

assembled from flat templates [7]. Examples of each are depicted in Figure 2. There is 

intersection between most subfields of paper art [5], so these classifications are used very 

loosely to illustrate practical applications. Origami is often used as the quintessential example 

of paper art, and the characteristics of rigid origami and kinematic origami can both be 

generalized to all paper art. Rigid kinematic paper art is a term which describes most 

examples in this paper. 

The purpose of paper art varies. Origami, kirigami, pop-ups, and paper models are 

generally decorative and fun, whereas cartons often serve a utilitarian purpose for 

transportation or storage. As a result, development in the first group is traditionally done by 

artists, whereas development in cartons is often done by engineers [8]. The union of the 

subfields into the broad classification of “paper art” allows research in each subfield to be 

combined, bringing together perspectives of origamists (origami artists), kinematicians 

(mechanism engineers), mathematicians, and packaging industry engineers in the study of 

paper art.  
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1.1.2 Deconstructing Creativity 

1.1.2.1 Mapping Domains 

Artmimetics is the utilization of art as inspiration for a solution in the context of 

conceptual design [9]; orimimetics is the subset of artmimetics in which the art source is 

origami [2]. It has been determined in the academic literature that there is a mapping 

between rigid paper art and mechanisms based on the equivalence between an ideal crease 

and a revolute joint and between an ideal rigid panel and a rigid link [10] as depicted in Figure 

3. Consequently, recognition that development in origami is traditionally isolated from 

development in mechanism design suggests that paper art-mimetics is a fertile area for new 

mechanism design techniques. The motivation of the research in this paper is to explore ways 

in which origami and paper art can inform mechanism analysis and design. 

Origamists, a subset of artists, are experimentally creative within their domain (i.e. 

the paper art domain). Origami’s existence over centuries has allowed the art to develop 

incrementally as each artist inherits the status quo and then experiments, tweaks, and adds 

to the existing body of knowledge. Furthermore, the strict limitations imposed on origami 

(i.e. the use of a single square piece of paper with no folding or fastening) provides constraints 

which test origamists’ creative capacity even further. The resulting trial-and-error 

development is inherent to origami, and it is akin to a genetic optimization algorithm 

involving random “mutations” over many iterations. 

Kinematicians, a subset of engineers, are typically methodical within their domain 

(i.e. the mechanism domain). Modern mechanism synthesis is not the result of 

experimentation or serendipity but rather methodical, exhaustive techniques such as type 

synthesis methods which generate all combinations of link-joint connectivities and 

dimension synthesis methods which use closed form equations or optimization algorithms to 
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trace a desired path or function [11]. Ideal implementation of these methodologies remove 

the need for human creativity or trial-and-error techniques and often generate a quantifiably 

optimal solution. 

The contrasting methodologies of origami and mechanism design parallel the open-

ended, artistic nature of origami vs. the utilitarian, product design-driven nature of 

mechanisms. Due to the mapping between the domains, these differences can be leveraged 

such that an origamist’s approach could be utilized to develop mechanisms and vice versa 

[5]. This mentality anticipates radical new mechanism design techniques inspired by 

kinematic paper art which can flourish once a proper foundation of rules is established. 
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Figure 3. Process of mapping a mechanism between domains (top) with an example of a partially assembled carton 

in the paper art domain (bottom, left) and mechanism domain (bottom, right) 
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1.1.2.2 Developing a Foundation 

Upon review of the academic literature in the subfields of paper art, it was determined 

that publications on the mapping between the paper art and mechanism domains generally 

consist of two major areas of development. The first area establishes the low-level, basic rules 

about the correspondence of panels and creases to links and joints, respectively. The second 

area consists of specific examples of individual mechanisms and their analyses. What is 

lacking in the literature is a complete foundation of fundamental principles which eliminates 

the reliance on experimentation but instead fuels a methodical approach in design. In other 

words, a foundation of general rules developed from artmimetic studies would allow 

kinematicians to bypass the need to mimic specific examples. 

Due to the artmimetics field’s reliance on mimicking individual examples of paper art, 

kinematicians tend to map the specific geometric features of single cases rather than 

generalizing to a broader class of cases. Characteristics inherent to many examples of paper 

art include special geometric features such as symmetry, right angles, supplementary angles, 

regular polygons, and link planarity. These features are prevalent in paper art for a variety of 

aesthetic and practical reasons, but their characteristics often fail to provide insight into a 

generalized class of mechanism. Developing a broad foundation of analysis principles would 

require generalizing mappings such that there is no reliance on special dimensional 

properties. 
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 Figure 4. A highly symmetric fold (top) and its generalized analogue (bottom)   

 

 

Figure 5. Process to determine the generic mechanism from a specific paper art piece 
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Generalization of dimensions with the goal of eliminating special geometric 

dimensions in effect removes the proportions of lengths and angles which typically gives a 

piece of art its aesthetic appeal. Symmetric pieces become asymmetric, and planar, polygonal 

panels become distorted in an effectively random way as demonstrated in the generalization 

of the highly symmetric fold in  Figure 4. This deconstruction of art into a generic, 

representative form is called de-aestheticization. In the case of paper art, de-aestheticization 

removes all dimensional relations but maintains the salient features of the piece, which are 

the connectivity of panels by creases and the intersection of creases at vertices. In the 

mechanism domain, this corresponds to the link-joint connectivity and joint axes’ 

intersections. The minimal representation of just these salient features is this class of 

mechanism’s generic representation, which is defined exclusively by the mechanism 

connectivity without regard for geometric dimensions. 

It is important to establish fundamental principles using the generic representations 

of paper art and their equivalent mechanisms because mapping the cases with special 

geometries may exhibit kinematic properties which are caused by the dimensional relations 

rather than the connectivity relations. As a result, the special cases would be a specific case 

of the generalized mappings as depicted in Figure 5. To establish a proper foundation for 

paper art-mimetic techniques, one must first establish a representation of the salient features 

of a generalized piece, then proceed to develop analyses of the generic representation, and 

then incorporate special cases. From that broad foundation, further in-depth analyses and 

methodical design techniques can be developed. 
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 LITERATURE REVIEW 

1.2.1 Paper Art Literature 

1.2.1.1 Identification and Representation of Paper Art as Mechanisms 

The literature which identifies paper art as mechanisms generally provide a 

foundation for the mapping between domains and begin preliminary analysis of the graphs 

developed. Dai and Jones map cartons to mechanisms treating creases as ideal revolute joints 

and panels as rigid links and use graphs to represent these mechanisms [10]. Winder et al. 

examine pop-up mechanisms, identify planar and spherical mechanisms, use PRBM to 

represent paper’s compliance with modified rigid links, and map common features and 

equivalent joints in the two domains including designing a RSSR pop-up mechanism [5]. 

Greenberg et al. provide a review of the mapping between kinetic origami and mechanisms, 

use link-joint graphs as a tool to map domains, and perform basic analysis using the graphs 

[2]. Bowen et al. identify kinematic origami as a system of spherical mechanisms and present 

a vertex-edge graph which is used to classify various origami folds [3]. Much of this literature 

lacks a comprehensive graph scheme for depiction of all salient features of paper art 

mechanisms and as a result fails to generalize the representation of its paper art subfield to 

a broader class of mechanisms. 

1.2.1.2 Analysis of Generic Mobility in Paper Art 

The literature which analyzes the generic mobility of mechanisms in the paper art 

domain generally utilize a non-traditional mobility analysis approach in the context of the 

analysis of a specific fold. Dai and Jones develop an adapted Kutzbach criterion for cartons 

using screw theory as a foundation [6]. Beatini and Korkmaz extrapolate Grübler’s equation 

to develop a “two-strip” condition for mechanism addenda and develop a term for 

overconstraint in the study of Miura-ori meshes [12]. Yellowhorse and Howell employ a 
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polyhedron model [13] to discuss the changes in mobility of paper art introduced by various 

modifications [14]. Each of these works employ generic mobility techniques which are 

valuable in the context of their domain of paper art, but few attempt to generalize a generic 

mobility formulation technique over a broader class of non-paper art mechanisms. 

1.2.1.3 Analysis of Specific Mobility in Paper Art (Closure Equations, Screw Theory) 

Much of the literature in the field of paper art applies closure equation analysis to a 

specific mechanism taken from the paper art domain. Balkcom et al. analyze the paper 

shopping bag using its graph and dihedral angle analysis [15]. Tachi develops a program 

which simulates rigid origami using Jacobian matrices at instantaneous positions to calculate 

loop closures [16]. Wei and Dai examine a specific novel eight-bar mechanism developed 

from a carton using screw theory and comment on the use of an adapted Kutzbach criterion 

to calculate its mobility [9] and later evolve it into a different novel mechanism which is again 

analyzed with screw theory [17]. Bowen et al. extend the earlier identification of origami as 

systems of spherical mechanisms and proceed to perform position calculation of specific, 

simple folds representing coupled spherical mechanisms using spherical trigonometry and 

symmetry [18]. The literature which analyzes individual mechanisms in the domain of paper 

art provide examples of appropriate analysis techniques for those pieces, but the closure 

equations used only apply to the specific mechanism rather than presenting a generalized 

analysis which may apply to a broader class of mechanisms and be used in the conceptual 

design stage. 

1.2.1.4 Analysis of Mobile Overconstrained Patterns 

This section of the literature examines well-known mobile overconstrained origami 

folds whose special geometric conditions such as symmetry, angular relations, and 
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tessellation permit mobility despite a predicted generic mobility of zero. Tachi presents 

numerous papers on the topic. Tachi presents rigid cylinders developed from the 

overconstrained Miura-ori fold, generalizes the design process to a broader class of cross 

sectional shape, and analyzes the use of thick panels in its construction [19]. Next, Tachi 

analyzes geometric conditions for rigid mobility in meshes using dihedral angle and 

polyhedron analysis to present a generalization of overconstrained patterns which can be 

designed using optimization processes [20]. Tachi and Miura expand the application of the 

Miura-ori cell in cylinders and meshes to 3D cellular structures based on their symmetry 

properties [21]. Evans et al. provide a review of tessellating meshes and the generalizations 

of the properties which permit mobile overconstraint [22]. This area of the literature is a very 

specific subfield of paper art, and it has been generalized fairly well within its domain. 

1.2.1.5 Paper Art Reference 

This area of literature provides basic background information related to the domain 

of paper art. Demaine and O’Rourke review classical and modern problems and algorithms 

which involve folding, overlapping with the fields of linkages, origami, and polyhedra [4]. 

Dureisseix introduces origami background, basic properties, and observations on 

overconstrained mechanisms [1]. Massarwi et al. discusses the definition and develops a 

design algorithm for papercraft models [7]. 

1.2.2 Non-Paper Art Systems of Spherical Linkages 

This area of literature explores systems of spherical linkages in the kinematic domain 

without direct inspiration or application to paper art. Makhsudyan et al. identify a novel 

linkage described as serially connected spherical mechanisms and perform position analysis 

[23]. Dzhavakhyan et al. perform analysis which demonstrates the favorability of spherical 
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linkage pressure angles to planar linkage pressure angles [24]. Wilding et al. explore 

spherical lamina emergent mechanisms and include examples of serially connected spherical 

mechanisms [25]. This section of the literature is fairly sparse, which suggests that paper art 

provides a significant inspiration for the design of systems of spherical mechanisms. 

1.2.3 Generic Mobility Formulation 

Literature on the mobility calculation of mechanisms is incredibly extensive, but 

literature on the generic mobility calculation of systems of spherical mechanisms is fairly 

sparse. Gogu provides a review of numerous generic mobility calculation techniques 

including recognition of conditions in which generic mobility may be calculated for common 

cases of systems of spherical mechanisms [26]. Wampler et al. provides a fresh perspective 

on mobility using salient features of a mechanism expressed as vertices and edges of a 

polyhedron to calculate the generic mobility of spherical/spatial hybrid mechanisms [13]. 

Shai and Müller modify the connectivity graph representation of a mechanism and provide a 

robust generic mobility calculation through the pebble game algorithm [27]. This section of 

the literature provides sufficient evidence to develop multiple generic mobility formulae 

appropriate to systems of spherical mechanisms and spherical/spatial hybrid mechanisms. 

The analysis developed by Wampler et al. is the most robust of these in the context of paper 

art. 

1.2.4 Reference 

This area of the literature provides fundamental, traditional background on 

kinematics. Sandor and Erdman establish traditional mechanism analysis including generic 

mobility and degree of freedom definitions [28]. Erdman presents a review of traditional, 
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computational kinematics development techniques [11]. Norton provides an alternative 

mobility formulation and definitions of kinematics terms [29]. 

 TERMINOLOGY, NOTATION, AND ASSUMPTIONS 

1.3.1 Mechanism Domain Assumptions and Terminology 

The terms “linkage” and “mechanism” interchangeably refer to a combination of links 

and joints. The terms “link” and “body” interchangeably refers to an entity in the mechanism 

whose position and mobility can be defined in space relative to an absolute reference point. 

Mechanisms are assumed to have all rigid links unless otherwise specified. The term “joint” 

refers to an entity in the mechanism which connects links and provides some specific 

degree(s) of freedom between the connected links. Revolute, prismatic, universal, and 

spherical joints can be abbreviated as R, P, U, and S joints, respectively. The term “spherical 

center” refers to the exact point of intersection of all revolute joint axes in a spherical loop 

within a mechanism. Mechanisms are assumed to have unspecified, generic dimensions 

unless otherwise specified. Mechanisms with specified dimensions are assumed to have 

mathematically perfect dimensions, angles, axes, and intersections. Mobility refers to the 

capability of motion within a finite range of angles about the current position. The range of 

angles in neither infinitesimal nor global due to mechanisms generally reaching some 

singular positions and/or self-intersecting. 

1.3.2 Paper Art Domain Assumptions and Terminology 

The terms “piece” and “fold” interchangeably refer to paper art entities in the context 

of their physical implementations. The terms “linkage” and “mechanism” interchangeably 

refer to paper art entities in the context of their kinematic representation. The terms “panel” 

and “link” interchangeably refer to a paper face. Panels are assumed to be perfect, ideal, rigid 
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planes in the kinematic representation unless otherwise specified. The terms “crease,” 

“edge,” and “joint” refer to the intersections of paper faces in the context of a physical paper 

art piece. Creases are assumed to be perfect, ideal, one-dimensional revolute joints in the 

kinematic representation. The only creases considered in a piece are those which mate 

panels, not those used in the construction of the piece which have been flattened. The term 

“vertex” refers to the intersection of edges into a point in the context of a physical paper art 

piece. Vertices are assumed to be perfect, ideal, zero-dimensional points and can serve as 

spherical centers of a loop. 

  



17 

2 IDENTIFICATION OF SPHERICAL SYSTEM LINKAGES 

 PROPERTIES OF TRADITIONAL LINKAGES 

2.1.1 Degrees of Freedom and Classification 

In mechanism analysis, a fundamental property is a mechanism’s mobility, or its 

degrees of freedom (DOF). This quantity represents the number of inputs required to 

completely define the positioning of all links in the system based on the dependencies 

established by the link-joint connectivity. The calculation of mobility of a linkage depends on 

the degrees of freedom available in the constraint space of the mechanism, which is defined 

by how each body, or link, is constrained to move. Typical constraint spaces which are well-

studied are planar, spherical, and spatial spaces, which each correspond to those classes of 

mechanism [28]. 

Planar mechanisms typically consist of rigid links whose translations are constrained 

to a plane with two degrees of translational freedom {𝑥, 𝑦}  and one degree of rotational 

freedom normal to the plane of constraint {𝜃𝑧} for a total of three degrees of freedom {𝑥, 𝑦, 𝜃𝑧} 

as depicted in Figure 6, top. Spherical mechanisms typically consist of rigid links constrained 

to a sphere with a specified center and of fixed radius with two degrees of freedom of rotation 

about the spherical center analogous to translation over the sphere surface {𝜃𝑥, 𝜃𝑦} and one 

degree of rotational freedom normal to the sphere of constraint {𝜃𝑧}  for a total of three 

degrees of freedom {𝜃𝑥, 𝜃𝑦, 𝜃𝑧} as depicted in Figure 6, bottom. It can be shown that as the 

radius of curvature of the sphere approaches infinity, the spherical mechanism can be 

represented as a planar mechanism, i.e. a planar mechanism is a special case of a spherical 

mechanism with the spherical center located an infinite distance away [13]. Spatial 

mechanisms consist of rigid links with three degrees of translational freedom {𝑥, 𝑦, 𝑧} and 
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with three degrees of rotational freedom {𝜃𝑥, 𝜃𝑦, 𝜃𝑧} for a total of six degrees of freedom 

{𝑥, 𝑦, 𝑧, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧} as depicted in Figure 7. 

To constrain link motion relative to each other, joints are used to connect links. 

Common joints are revolute and prismatic joints, which permit one degree of relative 

freedom between two bodies by rotation or translation, respectively. The relative degree of 

freedom between two links permitted by a revolute joint is depicted in Figure 8. Spatial 

mechanisms also often include joints that permit higher mobility including cylindrical, 

spherical, and planar joints which permit two, three, and three degrees of relative freedom, 

respectively. The number of degrees of relative freedom of each joint is a crucial parameter 

for determining the overall mobility of a mechanism [28]. 

  



19 

 

 

Figure 6. Diagram of planar (top) and spherical (bottom) degrees of freedom 
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Figure 7. Diagram of spatial degrees of freedom 

 

Figure 8. Diagram of the degree of freedom between two bodies permitted by a revolute joint 
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2.1.2 Traditional Chebyshev-Grübler-Kutzbach Equation 

The traditional Chebyshev-Grübler-Kutzbach (C-G-K) equation (Eqn. 1) provides a 

formulation to predict the number of degrees of freedom of the generic representation of a 

planar, spherical, or spatial mechanism (i.e. traditional mechanisms) when one link is taken 

to be grounded, or fixed in space [28]. The generic representation of a mechanism only 

considers the connectivity of links and joints without regard for geometric dimensions. This 

formula is a simple function of the number of rigid links, the number of joints, and the degrees 

of freedom provided by each joint. An extra parameter in this equation considers the degrees 

of freedom of the constraint space of the mechanism, which is equal to 3 DOF for planar and 

spherical mechanisms and 6 DOF for spatial mechanisms. The C-G-K equation does not 

depend on the arrangement of link-joint connectivity or geometric dimensions, so the output 

is called the generic mobility for a mechanism of arbitrary connectivity and dimension. There 

are often cases in which a special combination of dimensions and connectivity will produce a 

mechanism with a higher number of degrees of freedom than predicted by the C-G-K 

equation, which is called a mobile overconstrained mechanism. There are techniques to 

predict the existence and mobility of these overconstrained mechanisms, but in general the 

generic mobility is sufficient as it covers nearly every geometric configuration. 

𝑀 = 𝜆 (𝑁 − 𝐽 − 1) + ∑𝑓𝑖  
 
𝑀 = 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 
𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠; 𝐽 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡𝑠 
𝑓𝑖 = 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 𝑜𝑓 𝑖𝑡ℎ𝑗𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝐽 
𝜆 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑠𝑝𝑎𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
 λ = 6  for spatial constraint space 
 λ = 3 for planar/spherical constraint space 

(Eqn. 1) 

 

 

An example of the C-G-K equation’s use is depicted in Table 1 where it is used to 

calculate the mobility of three mechanisms composed of six rigid links and six revolute joints 

forming a loop (𝑁 = 6, 𝐽 = 6, 𝑓𝑖 = 1). In each case, the orientation of the joints decide the 
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constraint space parameter 𝜆 , and the mobility 𝑀  is calculated using C-G-K. The planar 

mechanism is identified by recognizing that all of its joints are parallel; the spherical 

mechanism is identified by recognizing that all of its joints intersect in a common point 

(depicted explicitly in the diagram); the spatial mechanism is identified by recognizing that 

it is neither planar nor spherical due to skew axes. Both the planar and spatial mechanism 

have 3 DOF, meaning three relational inputs must be established to fully define the position 

of the linkage. The spatial mechanism has 0 DOF, meaning its position is already fully defined 

and it cannot move. 

  



23 

Class Diagram 𝝀 𝑴 

Planar 

 

3 3 

Spherical 

 

3 3 

Spatial 

 

6 0 

Table 1. Calculation of mobility of six-bar loops 
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 PROPERTIES OF SPHERICAL SYSTEM LINKAGES 

2.2.1 Identification of Spherical System Linkages 

While the C-G-K equation generally correctly predicts the generic mobility of 

planar/spherical and spatial mechanisms, it is also applicable to another class of mechanisms.  

This class is composed of linkages that are systems of coupled spherical mechanisms that 

consist of all revolute joints. Spherical system linkages (spherical systems) are characterized 

by having all of the revolute joint axes of each loop closure meet at a spherical center, and all 

of the loop closures may have non-coincident spherical centers. This class of linkages 

describes the underlying mechanism of most kinematic paper art [3]. This contrasts with 

strict spherical mechanisms in which the joint axes of all loop closures meet at a single 

spherical center. An example spherical system is shown in  Figure 9 which has two loops 

with two unique spherical centers. Upon attempting traditional C-G-K analysis, one 

determines that spherical systems don’t meet the definition of a spherical or planar 

mechanism, and as a result one would attempt use the spatial mechanism constraint space 

parameter (6 DOF) in the C-G-K equation; however, using this parameter fails to properly 

predict the generic mobility of spherical systems. This problem is rectified in the literature 

by recognition of a little-used property of the C-G-K equation for multi-loop systems, 

permitting modification of the C-G-K equation. 
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 Figure 9. Diagram of a two-loop spherical system linkage  
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2.2.2 Modified Chebyshev-Grübler-Kutzbach Equation 

In the literature, evidence for the validity of the C-G-K equation for spherical systems 

is sparse but extant. Gogu states Hochman’s recognition that the generic mobility formulation 

applies to any mechanism with the same constraint space parameter in each independent 

loop, and the equation will properly predict the overall mechanism’s generic mobility using 

that parameter [26]. Wampler et al. conjecture that the C-G-K equation with a spherical 

constraint space parameter accounts for the generic mobility of spherical systems with only 

revolute joints [13]. Lastly, Wei and Dai use screw theory to analyze a specific carton-derived 

spherical system mechanism, but they also recognize that the constraint space parameter of 

each loop is the same, and therefore it can be used in the overall mechanism C-G-K equation, 

which is used to corroborate their screw equation results [9]. Each of these cases agrees that 

the C-G-K equation can be modified for use in the case of a mechanism with all revolute joints 

in which each mechanism loop has an identical constraint space parameter. 

In the case of revolute-only spherical systems, each loop has a spherical constraint 

space, and therefore the spherical constraint space parameter is appropriate for the modified 

C-G-K equation for spherical system linkages. Therefore, revolute-only spherical systems is 

recognized as a class of mechanisms properly described by the C-G-K equation, and the C-G-

K constraint space parameter list can be modified to account for spherical systems (Eqn. 2). 

This is notable because spherical system mechanism links may have complex motion in three-

dimensional space, but the constraint space parameter is only 3 DOF. Traditionally, the 3 DOF 

constraint is associated with all mechanism links constrained to a two-dimensional surface 

(i.e. a plane or sphere). It should be noted that spherical mechanisms themselves are a special 

subset of spherical system mechanisms in which each loop closure’s spherical center is 

coincident, and furthermore planar mechanisms are a doubly special subset of spherical 
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systems in which each loop closure’s spherical center is coincident and is located an infinite 

distance away [13]. From this, the traditional classes of planar and spherical mechanisms can 

be generalized into the single class of spherical system mechanisms with the defining 

characteristic of a 3 DOF constraint space. This unifies the classification of all 3 DOF 

constraint space mechanisms in contrast to spatial, 6 DOF constraint space mechanisms, and 

the modified C-G-K constraint space parameter definition is generalized to reflect this. 

𝑀 = 𝜆 (𝑁 − 𝐽 − 1) + ∑𝑓𝑖  
 
𝑀 = 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 
𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠; 𝐽 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡𝑠 
𝑓𝑖 = 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 𝑜𝑓 𝑖𝑡ℎ𝑗𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝐽 
𝜆 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑠𝑝𝑎𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
 λ = 6  for spatial constraint space 
 λ = 3 for spherical system constraint space 

(Eqn. 2) 

2.2.3 Reclassification of Mechanisms 

The hierarchy depicted in Figure 10 visualizes the relationship of each class of 

mechanism based on recognition of the generalized spherical system class. The hierarchy 

first differentiates spatial mechanisms and spherical systems by their constraint space 

parameter. It then acknowledges single-centered spherical mechanisms as a special case of 

spherical systems in contrast to general, multiple-centered spherical systems. Within the 

spherical mechanism category it then acknowledges planar mechanisms as a special case of 

spherical mechanisms in contrast to general finite-centered spherical mechanisms. Finally, 

the general spherical system branch notes that most kinematic paper art is contained in this 

category and that it is a relatively unexplored class of mechanism compared to the 

planar/spherical subsets. 
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Figure 10. Classification of mechanisms by constraint space (landscape) 
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This modified version of the C-G-K equation and reconstructed mechanism 

classification scheme motivates development of generalized notation which encodes the 

salient features of spherical system linkages. The traditional notation is limited to the specific 

cases of planar/spherical and spatial mechanisms which do not require indication of multiple 

non-coincident spherical centers in a single mechanism as is required by spherical systems. 

Spherical system mechanism notation and depiction requires placing emphasis on the 

quantity and relations of spherical centers in each loop to allow classification and analysis. 

 ANALOGOUS PHYSICAL REPRESENTATIONS OF SPHERICAL SYSTEMS 
The mapping between the paper art and mechanism domains relies on the 

equivalence of kinematic features of the underlying spherical system linkages [3]. The 

representations of these features in each domain vary in geometry and appearance, and 

therefore a specific mechanism can be depicted in multiple equivalent ways; an example of 

this is the eight-bar spherical system mechanism depicted in Figure 11, Figure 12, and Figure 

13. These different geometries motivate different dimensional generalizations and inform 

different mobility analyses, so interchanging between the models is a necessary tool. These 

interchangeable representations are valid for spherical system mechanisms with all revolute 

joints [13]. 

2.3.1 Rigid Linkage Model  

The rigid linkage model is the typical kinematic representation of a mechanism. An 

example is depicted in Figure 11. Rigid links are represented by bars or polygons whose 

dimensions are stated for a specific geometry or are left arbitrary for the generic case. These 

links are connected by revolute joints with a specified orientation such that the intersection 

of joint axes (i.e. spherical centers) of a loop are known and should be depicted explicitly with 
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dots or spheres. This information is required for determining the constraint space of each 

loop. Loops with all intersecting joint axes are spherical loops, loops with all parallel joint 

axes are planar loops, and loops with skew joint axes are spatial loops. In the most generic 

representation of a mechanism, the joint intersections (or parallelism) must be known to 

assess the mechanism class, but the specific dimensional features such as axis angles and 

spherical center locations do not need to be known specifically. 

2.3.2 Rigid Panel Model 

The rigid panel model is the typical paper art representation of a mechanism. An 

example is depicted in Figure 12. Rigid panels are represented by infinitely thin polygons [2] 

whose dimensions are stated for a specific geometry or are left arbitrary for the generic case. 

These links are connected by creases represented by one-dimensional edges. Intersecting 

creases create a vertex, which is often represented explicitly in the geometry; however, any 

known crease axis intersections of a loop which are not explicitly represented by a vertex 

should be depicted explicitly by a spherical center as in the rigid linkage model. The sets of 

vertices and spherical centers internal to the loops need to be known to assess the mechanism 

class. 
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Figure 11. Rigid linkage representation of a three-loop eight-bar  

 

Figure 12. Rigid panel representation of a three-loop eight-bar 



32 

2.3.3 Polyhedron Model 

The polyhedron model introduced by Wampler et al. takes a different kinematic 

approach to the representation of mechanisms [13]. An example is depicted in Figure 13. All 

vertices formed by joint intersections are represented explicitly by spherical joints, and they 

are connected by rigid rods which correspond to one-dimensional joint axes, or edges. Rigid 

link analogues are developed by vertex-edge (i.e. sphere-rod) combinations; the simplest 

rigid body is represented by a triangular truss of three edges and three vertices. Polygons 

with 𝑛 sides are constructed by connecting a loop of 𝑛 vertices with 𝑛 external edges in a 

plane, then adding 2𝑛 − 6  internal edges between non-adjacent vertices to ensure link 

rigidity [13]. Links are connected by sharing two vertices and one edge, where the shared 

edge serves a crease, or revolute joint axis. Rigid links in the polyhedron model resemble a 

skeleton of the panels in the rigid panel model with external edges corresponding to the rigid 

panel’s perimeter. An example of a six-sided rigid link is depicted in Figure 14 with six 

external edges connecting six vertices as well as six internal edges to ensure link rigidity. In 

this model, link dimensions are stated for a specific geometry or are left arbitrary for the 

generic case, and any known edge axis intersections of a loop which are not explicitly 

represented by a vertex should be depicted explicitly by a spherical center.  The sets of 

vertices and spherical centers internal to the loops need to be known to assess the mechanism 

class. 

  



33 

 

Figure 13. Polyhedron representation of a three-loop eight-bar 

 

 

Figure 14. Rigid, six-sided polyhedron link 
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In the polyhedron model, the planarity of polygonal links is not maintained in the 

most generic representation of a mechanism; polygons can be generalized to non-planar, 

rigid polyhedral skeletons (polyhedra). The generalized polyhedron link maintains 

connectivity of the 𝑛  vertices by a loop of 𝑛  external edges, but it does not constrain the 

vertices to a plane as a polygon does. Thus, a planar polygon can be generalized in this model 

by randomly perturbing each vertex in three dimensions and re-dimensioning the edges 

appropriately; the 3𝑛 − 6  total edges will maintain link rigidity. The most generic 

representation of a polyhedron will have no planarity, axis intersection, or parallel relations 

between non-adjacent external edges, and thus all non-adjacent edges are skew. An example 

of this is the generalization of the rigid, planar quadrilateral panel at the center of the 

mechanism in Figure 12 to the rigid, skew tetrahedron link at the center of the equivalent 

mechanism in Figure 13. A generalized rigid polyhedron’s geometry is described by its 

number of external edges (or equivalently, by their number of vertices), e.g. the link depicted 

in Figure 14 is called a six-sided polyhedron. 

The polyhedron model’s capability of generalization expands beyond eliminating 

planarity from a polygonal panel; it can also remove special geometric features to ensure a 

linkage is represented in its most generic form. An example of a special geometric relation is 

the coincidence of the edge connecting link 2 and 3 with the plane of link 2 in the rigid panel 

linkage depicted in Figure 15. Generalization is accomplished by identifying vertices, 

developing a polyhedron link from them, and then perturbing the vertices to eliminate the 

special dimensions. To develop the polyhedron link, the number vertices must be accounted 

for by counting two vertices for each shared edge and adding any other vertices found in the 

geometry. For each link, the 𝑛 vertices are connected by 𝑛 external edges and 2𝑛 − 6 internal 

edges. In the case of the linkage in Figure 15, three vertices are identified in link 1 (two on 
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the shared edge and one polygon vertex), five vertices are identified on link 2 (two for each 

shared edge and one polygon vertex), and three vertices are identified on link 3 (two on the 

shared edge and one polygon vertex). Thus, link 2 is generalized from a rigid, planar 

triangular panel to a polyhedron with five vertices, five external edges, and four internal 

edges to maintain rigidity. Perturbation of the vertices ensures all edges of link 2 are skew to 

develop its most generic form. Thus, the generalized polyhedron model linkage in Figure 15 

maintains all of the salient vertices and connectivity of the original linkage while eliminating 

all special geometric features. 
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Figure 15. Rigid panel linkage with edge-plane coincidence (top) and its generic polyhedron form (bottom) with 

corresponding links numbered 
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2.3.4 Comparison of Representations 

The three models each have merits and drawbacks in their use of depicting spherical 

system mechanisms. The rigid linkage model visualizes a kinematic representation of a 

mechanism in terms of links and joints, which may appeal to kinematicians. The rigid panel 

model visualizes the equivalent mechanism as though constructed from panels and creases 

as in paper art, which may appeal to non-kinematicians. On the other hand, the polyhedron 

model abstracts the geometry of an equivalent mechanism to vertices and edges and requires 

supplementary features such as internal edges to correctly depict a mechanism, which 

complicates its visualization. However, the generalized, richer vertex-edge connectivity 

information of the polyhedron model allows for a more robust mechanism analysis scheme, 

which will be explored later. Furthermore, whereas the rigid panel model represents 

kinematic paper art directly, the polyhedron model generalizes the planar links to polyhedra, 

which represents a broader class of spherical system mechanisms of which kinematic paper 

art is a subset. The properties of each model are compared for quick reference in Figure 16. 

As a result of these properties, the rigid panel model is often used for visualization of 

a spherical system mechanism in this analysis. The rigid linkage model is used 

interchangeably in some cases for kinematic visualization. The rigid panel model is often 

converted to the polyhedron model for the purposes of analysis by converting each 𝑛-sided 

rigid polygon to a generalized 𝑛-sided polyhedron while maintaining link connectivity. The 

least obvious aspect of the conversion from panel to polyhedron is the introduction of 2𝑛 − 6 

internal edges to ensure link rigidity. The conversions between models are simplified by the 

introduction of connectivity graph schemes that are capable of encoding all salient 

information of each physical representation model. 
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Figure 16. Comparison of physical model characteristics 
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3 SPHERICAL SYSTEM CONNECTIVITY GRAPHS 

 LINK-JOINT CONNECTIVITY GRAPHS FOR TRADITIONAL MECHANISMS 
Connectivity graphs have been used to represent generic planar mechanisms since 

the birth of computational mechanism synthesis [11]. These graphs simply use vertices to 

represent links and edges to represent joints. The edges connecting vertices on the graph 

correspond to the joints connecting the associated links in the mechanism as depicted in the 

planar mechanism and its link-joint graph in Figure 17. This connectivity graph scheme 

encodes sufficient information to encode link-joint connectivity as well as calculate generic 

mobility in a given constraint space using the traditional C-G-K equation. However, these 

graphs don’t encode any spherical center information associated with loops as that data is 

not needed in the generic analysis of traditional mechanisms. The missing information 

prevents this connectivity graph scheme from effectively generalizing to spherical systems 

linkages which require spherical center data to identify and analyze. This shortcoming of 

traditional connectivity graphs motivates the development of a generalized graph 

representation of spherical systems. 
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Figure 17. Planar six-bar (top) and its link-joint connectivity graph (bottom) 

 

 

 

Figure 18. Spherical system six-bar (top) and its link-joint connectivity graph (bottom) 
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 LINK-JOINT AND VERTEX-EDGE CONNECTIVITY GRAPHS FOR SPHERICAL 

SYSTEMS 
It has been presented in the paper art literature that cartons and origami can be 

represented by traditional link-joint graphs based on the mechanisms’ construction of rigid 

links connected by revolute joints [10] [2] as depicted in Figure 18. However, these simple 

connectivity graphs still do not encode the spherical center information associated with each 

loop which permits spherical system linkage identification and analysis, and the graphs are 

ambiguous about the joint orientation in the physical representation of the mechanism. On 

the other hand, Greenberg et al. note that in a simple rigid panel case with all explicit vertices, 

the connectivity graph is the dual of the crease graph of a mechanism [2], which implies that 

each loop of the link-joint graph surrounds an explicit vertex as depicted in Figure 19. This 

knowledge informs the necessary spherical center information in the simple, all-explicit 

vertex spherical system case, but this data is still not explicitly depicted in the graph. 

Another graph scheme for spherical systems uses graph vertices to represent 

physical vertices, or spherical centers, and graph edges to represent physical creases, or joint 

axes. The scheme utilizes dashed edges to indicate joint axes shared between spherical 

centers [3] as depicted in Figure 19. This representation is a pared-down representation of 

the crease graph of the rigid panel model, and as a result it is essentially the dual of the link-

joint connectivity graph. The vertices and edges in this graph scheme explicitly represent the 

spherical centers and creases, respectively, but as a result it leaves link information implicit 

as links are located between the open edges of the graph. The existence of important 

mechanism data left implicit in each of these graph schemes motivates the development of a 

new graph scheme to encode all salient spherical system information explicitly. It is apparent 

from the two insufficient graph schemes that information from both the link-joint graph and 

its dual vertex-edge graph is necessary to encode the salient spherical system linkage data. 
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Figure 19. Spherical system six-bar with its link-joint (Greenberg et al.) connectivity graph overlaid (top) and with 

its vertex-edge (Bowen et al.) connectivity graph overlaid (bottom) 
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 SPHERICAL CENTER (SC) CONNECTIVITY GRAPH 

3.3.1 Definition 

A new type of graph was developed to explicitly encode all salient information of the 

generic representation of a spherical system linkage. This data includes link-joint 

connectivity as well as any spherical centers shared by the joints in the loops. This graph 

format is valid for mechanisms with only revolute joints. The Spherical Center graph (SC 

graph) format uses vertices to represent links and edges to represent revolute joints as in the 

spherical system link-joint graph. To encode salient joint orientation information explicitly, 

if all joint axes of a loop are oriented to a single spherical center (or vertex), the loop formed 

by the associated edges in the graph will enclose an explicitly-represented spherical center 

symbol. The spherical center in the SC graph is represented with a circled dot (⨀), which 

represents any arbitrary spherical center in finite space as depicted by spherical centers a 

and b in Figure 20.  

When the SC graph is overlaid on the corresponding rigid panel model as in Figure 

21, the graph vertices lie on the physical panels they represent, and the graph edges intersect 

the physical creases they represent. The circled dot in each loop of the graph can be centered 

on the physical vertex or spherical center formed by the loop of intersecting crease axes that 

it represents. In interpreting the SC graph, it is known that all edges surrounding a circled dot 

in the graph represent physical joint axes oriented toward the corresponding spherical center 

in the mechanism. Any edge which is shared by two loops in the graph (such as the edge 

connecting the vertices 3 and 4 in the graphs of both Figure 20 and Figure 21) corresponds 

to a physical joint axis oriented toward the spherical centers of both loops, (i.e. spherical 

centers a and b). In a general spherical system mechanism, the spherical centers are not 

coincident, and the constraints on the physical joint axis shared between two loops fully 
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defines a line in space along which the joint axis must lie. In the case of Figure 20, the revolute 

joint axis connecting links 3 and 4 is aligned with the line through spherical centers a and b. 

In Figure 21, the joint axis connecting panels 3 and 4 is the crease connecting the physical 

vertices a and b. If the two spherical centers were coincident in space, which is a special case, 

the shared joint axis must simply pass through the single spherical center and may have any 

orientation. 

In the special case of a mechanism loop with parallel joint axes (a planar loop), the 

spherical center is located an infinite distance away [13], so the spherical center can be 

represented on the SC graph by an infinity symbol (∞) rather than a circled dot, which 

explicitly indicates a spherical center at an infinite distance. A mechanism with both a finite 

spherical center and an infinite spherical center is depicted in Figure 22. In generic analysis, 

the infinite center is interchanged for an arbitrary finite center to eliminate the special 

parallel dimensional relation. 
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Figure 20. Spherical system six-bar (top) and its SC graph (bottom) 

 

 

Figure 21. Spherical system six-bar with its SC graph overlaid 
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Figure 22. Spherical system six-bar with a planar loop (top) and its SC graph (bottom) 
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3.3.2 Application to Modified C-G-K for Spherical Systems 

 The data encoded in an SC graph contains sufficient information to apply the 

modified C-G-K equation for spherical system linkages. The graph encodes the number of 

links through its vertices, the number of joint through its edges, and the constraint space 

parameter by the existence of a spherical center in each loop. This contrasts with the 

traditional connectivity graph, which does not depict the spherical center data explicitly and 

fails to encode the constraint space parameter. 

The accounting rules for determining the number of each feature in the modified 
C-G-K equation for spherical systems from the SC graph are as follows: 

The number of links 𝑁 is equal to the number of vertices in the SC graph 

The number of joints 𝐽 is the number of edges in the SC graph 

The degree of freedom 𝑓𝑖 of each joint is 1 DOF as all joints are assumed to be revolute 

The constraint space parameter 𝜆 is 3 DOF if all loops have a spherical center 

3.3.3 Representation of Non-Spherical Systems 

The SC graph scheme accomplishes the same encoding of information as a 

conventional link-joint graph, but the additional explicit spherical center information can be 

used to assert that each loop has a spherical center such that spherical system properties 

apply to the mechanism, including the validity of the modified C-G-K equation for spherical 

systems. If any loop does not have a single spherical center to which all loop joint axes are 

oriented, the linkage is not a spherical system. A spatial or spherical/spatial hybrid 

mechanism can still be depicted with an SC graph that lacks a spherical center in all or some 

loops, respectively. An example of a multi-loop hybrid mechanism with one non-spherical 

loop is depicted in Figure 23. If the SC graph indicates no loops have a spherical center, the 

mechanism is fully spatial, and the modified C-G-K equation for spatial mechanisms may be 

used.  
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Figure 23. Spherical/spatial hybrid mechanism with two spherical loops and one spatial loop (top) and its SC graph 

(bottom) 
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3.3.4 Planar and Spherical System Analogues 

Special cases occur when the spherical centers of all loops of a spherical system are 

coincident in space creating a spherical mechanism, and when the spherical centers are all 

coincident at an infinite distance away creating a planar mechanism. This distinction has no 

effect on the use of the modified C-G-K equation for spherical systems as the SC graph is 

identical (other than possibly substituting the spherical center symbols ∞ and ⨀) and there 

is no change in the constraint space parameter. Because of this property, a general spherical 

system mechanism can be represented by its planar analogue, which is a planar mechanism 

with an equivalent SC graph and equal generic mobility created when the spherical centers 

of all loops of the SC graph are taken to be coincident at an infinite distance away. 

Furthermore, any planar or spherical mechanism can be represented by its spherical system 

analogue which represents its most generalized spherical system form with equal generic 

mobility created when each loop’s spherical center is taken to be non-coincident and at a 

finite distance. An example of a spherical system mechanism, its planar analogue, and their 

common SC graph is depicted in Figure 24. 
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Figure 24. Spherical system eight-bar linkage (top), its planar analogue (center), and their common SC graph 

(bottom) 
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3.3.5 Case Study: Watt and Stephenson Mechanism Analogues 

A benchmark example of a planar six-bar mechanism that can be generalized to a 

spherical system analogue with equivalent generic mobility is the planar Watt mechanism, 

which is depicted with its planar link-joint graph in Figure 17. A generalized Watt mechanism 

is developed by identifying the two loops in the graph and assigning them two arbitrary, non-

coincident, finite-distanced spherical centers to form a spherical system analogue of the Watt 

mechanism as depicted in Figure 25. The rigid linkage and SC graph depict two distinct 

spherical centers in the two loops. This generalized Watt mechanism has the same generic 

mobility as the planar Watt mechanism as no C-G-K parameters have changed. 

One can attempt to generalize the Stephenson mechanism, a similar benchmark 

planar six-bar mechanism, in the same way as the Watt mechanism. One first must identify 

the loops in the Stephenson graph, which is depicted as an SC graph in Figure 26. There are 

two loops in this graph so one would seek to assign two arbitrary, non-coincident, finite-

distanced spherical centers. However, the two loops share two edges in the graph, which 

correspond to two distinct joints. Because these two non-coincident joint axes must be 

oriented toward both spherical centers, the only way this can be achieved if the two spherical 

centers are coincident in space. Thus the most generalized form of the Stephenson 

mechanism is a spherical mechanism because the spherical centers of the two loops are 

coincident in space. This generalized Stephenson mechanism has the same generic mobility 

as the planar Stephenson mechanism as no C-G-K parameters have changed. 
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Figure 25. Spherical system analogue of a Watt mechanism (top) and its SC graph (bottom) 

 

  

 

Figure 26. Spherical system analogue of a Stephenson mechanism (top) and its SC graph (bottom) 
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3.3.6 Exceptional Case: Concentric Loops 

A very unique case occurs when two loops of an SC graph each having unique 

spherical centers have all graph vertices connected between loops. The resulting SC graph 

will appear as two interlocked, concentric loops as depicted in Figure 28, which has two 

interlocked, concentric eight-bar loops. The linkage depicted represents the upper section of 

the inflatable cube origami fold, depicted in Figure 27, which relies on the compliance of 

paper rather than rigid kinematics to be inflated to its open state. The inner loop of the SC 

graph represents the eight-bar loop of triangles (including link 1) forming the finite spherical 

center a, which is located at the intersection of the creases at the peak of the mechanism. The 

outer loop of the SC graph is the eight-bar loop of rectangles (including link 2) which have 

parallel axes creating a planar loop. This loop’s planarity is indicated by the ∞𝑜𝑢𝑡𝑒𝑟 symbol 

on the SC graph, which represents the spherical center that the outer loop “encloses.” 

The concentricity of the graph introduces difficulty in depicting the spherical centers 

enclosed by the loops, and the outer loop’s spherical center is thus depicted outside the loop 

rather than inside. Furthermore, the two eight-bar loops are connected link-to-link as in links 

1 and 2, which forms eight loops with spherical centers between the outer and inner eight-

bar loops. Application of the modified C-G-K equation for spherical systems fails in the 

presence of this type of concentricity, and the associated mechanism is observed to possess 

a high level of overconstraint. For these reason, concentric mechanisms will be considered an 

exceptional case of spherical systems which will not be pursued further in the analysis.  
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Figure 27. Inflatable cube fold with vertex highlighted 

  

 

Figure 28. Rigid panel representation of upper section of inflatable cube fold (top) and its SC graph (bottom) 
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3.3.7 Shortcomings 

The SC graph efficiently encodes the salient features of a spherical system linkage. 

However, the variety of geometries which may have equivalent SC graphs (evidenced in Table 

2) illustrates that the SC graph fails to fully encode the geometry of the links making up the 

spherical system, and as a result there is ambiguity when attempting to reconstruct a physical 

representation of the spherical system linkage from the SC graph. Furthermore, the SC graph 

only encodes data for use in spherical system or fully spatial mobility calculation through the 

modified C-G-K equation, but it does not inform analysis of hybrid mechanisms with both 

spherical and spatial loops. These shortcomings motivate the development of a connectivity 

graph scheme that allows for the complete reconstruction of the polyhedron model of a 

spherical system linkage from the graph representation and inform analysis of a larger class 

of mechanisms. 

 SPHERICAL CENTER AND DEGREE (SCD) CONNECTIVITY GRAPH 

3.4.1 Definition 

 An extension of the SC graph scheme was developed with the intention of 

explicitly describing the geometry of the links of which the mechanism is composed. Whereas 

the SC graph does not encode the link geometry, the Spherical Center and Degree graph (SCD 

graph) adds information about the generic polyhedron links to the SC graph through the 

explicit representation of vertex degree in the graph, which is the total number of edges 

attached to a vertex. This information can be used to reconstruct the polyhedron model of 

each link. All properties of the SC graph also apply to the SCD graph as the SC graph can be 

recovered from an SCD graph by the removal of the vertex degree information. 
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Figure 29. A six-sided rigid polyhedron link (top) and its SCD representation (bottom) 
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The SCD graph scheme is developed by modifying the definition of graph vertices 

representing links such that the edges emanating from a vertex in the graph correspond one-

to-one with the external polyhedron edges connecting the vertices of the rigid polyhedron 

link. A rigid polyhedron with 𝑛 external edges is represented in the SCD graph by a vertex 

with 𝑛  edges emanating from it, and adjacent polygon edges are represented by radially 

adjacent edges about the graph vertex as depicted Figure 29. As in the SC graph, edges 

connecting vertices in the SCD graph correspond to joints connecting rigid links; however in 

the SCD graph the edge connecting the vertices must correspond to the specific, 

corresponding edge of the rigid polyhedron. 

Open edges are unconnected edges emanating from a vertex in the SCD graph, and 

they represent external edges of a polyhedron which are not connected to another link. These 

open edges can be depicted external to a loop as in edges 1 and 2 in Figure 30 and edge 1 in 

Figure 31, representing exterior unconnected edges of the polyhedron facing away from a 

loop’s vertex or spherical center. Alternatively, open edges can be depicted internal to a loop 

as in edge 2 in Figure 31, representing interior unconnected edges of the polyhedron facing 

toward an implicit spherical center. 
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Figure 30. Spherical four-bar (top) with its SCD graph (bottom) indicating open edges external to the loop (1, 2) 

  

 

Figure 31. Spherical four-bar (top) with its SCD graph (bottom) indicating open edges external (1) and internal (2) 

to the loop 
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A rigid panel visualization of a multi-loop mechanism with its SCD graph overlaid as 

well as the same SCD graph redrawn with straight edges is depicted in Figure 32. This 

visualization reinforces that the SCD graph vertices correspond to panels, the connected 

edges intersect creases, and the circled dots correspond to vertices and implicit spherical 

centers as in the SC graph; the visualization also conveys that open edges on the SCD graph 

intersect unconnected panel edges. The vertex-edge portion of the SCD graph is essentially 

the dual of the graph formed by all creases and edges of the rigid panel model including the 

outer edges of the polygons. 

Encoding the degree of the SCD graph vertices and the location of the open edges 

relative to the connected edges in the graph fully defines the generic geometry and link 

connectivity in the polyhedron model. Furthermore, mechanisms with different geometries 

which would have identical SC graphs are differentiated in their SCD graphs based on the 

vertex degree and edge adjacency data encoding each link’s number of edges and edge 

connectivities. For example, removal of the open edges in the SCD graphs of the mechanisms 

in Figure 30 and Figure 31 demonstrates that their SC graphs are identical, whereas their 

differing SCD graphs encode each mechanism’s unique connectivity. 
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Figure 32. Multi-loop spherical system with its SCD graph overlaid (top) and its SCD graph redrawn (bottom) 
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3.4.2 Exceptional Case: Interior Sub-Loops 

In the SCD graph of a mechanism with open edges interior to a loop, additional links 

may connect these open edges, forming a sub-loop inside the initial loop. It is important to 

note that the joint axes of the sub-loop are not necessarily oriented toward the initial loop’s 

spherical center as the SCD graph may imply. An example is depicted in Figure 33 in which 

the joints of the outer loop are highlighted in both the mechanism and its SCD graph. Only 

these outer, highlighted joints are oriented toward the highlighted spherical center; the joints 

of the interior sub-loop are not, but they are oriented to the non-highlighted spherical center 

enclosed by the sub-loop. This is difficult to depict in a two-dimensional connectivity graph 

and will be considered an exceptional case of SCD graphs. 

3.4.3 Mechanism Reconstruction and Polyhedron Feature Counting 

The SCD graph informs the reconstruction of the mechanism geometry in the 

polyhedron model. This is because the polyhedron model is the most generic representation 

of a mechanism, and its generic geometric and connectivity information is fully encoded in 

the SCD graph. Specifically, each degree- 𝑛  vertex encodes a rigid link with 𝑛  vertices 

connected by 𝑛  external edges and 2𝑛 − 6 internal edges to maintain rigidity. The lowest 

possible SCD vertex degree is three, which represents a triangular truss. The external edges 

of the polyhedra that connect to the other links are specified by the ordering of the adjacent 

open and connected edges of the SCD graph vertices. Loops with no internal open edges that 

surround a circled dot connect at a single physical vertex, and loops with internal edges that 

surround a circled dot have an implicit spherical center to which the loop joints are oriented. 

As a result, all polyhedral mechanism configurations with unique geometry and connectivity 

are encoded by unique SCD graphs. 
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Figure 33. Spherical system mechanism with a sub-mechanism internal to a loop (top) and its SCD graph (bottom) 

 

 

 

Figure 34. Spherical four-bar (top) with its SCD graph (bottom) with vertex highlighted 
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Identifying polyhedron vertices which are not spherical centers of loops using the 

SCD graph requires an extra step of interpretation. Polyhedron vertices are associated with 

paths in the SCD graph connecting two adjacent open edges that are in the same loop or 

external to all loops. An example is visualized in Figure 34 in which the highlighted 

polyhedron vertex is associated with the path on the SCD graph created by the three colored 

edges. The orientation of the corresponding colored joints on the rigid panel model are all 

coincident with this vertex in the mechanism. There is a polyhedron vertex between each 

adjacent open edge pair when traversing around the outside of the SCD graph or inside a loop. 

A result of this property is the total number of polyhedron vertices which are not spherical 

centers is equal to the total number of open edges on the SCD graph. 

Based on the relation of the SCD graph to the polyhedron model due to their 

equivalent encoding of generic representation information, it is desirable to use the SCD 

graph to account for the number of vertices, implicit spherical centers, external edges, and 

internal edges of the polyhedron representation of a mechanism. This is analogous to the use 

of the SC graph to account for the number of links and joints in a mechanism and to identify 

the constraint space parameter. The variables extracted from the SCD graph can be used in a 

mobility formulation for the polyhedron model [13]. 

The accounting rules for determining the number of each feature in the 
polyhedron model of a mechanism from the SCD graph are as follows: 

The number of vertices 𝑉 is equal to the number of open edges in the SCD graph plus the 
number of circled dots in loops with no open edges internal to the loop 

The number of implicit spherical centers 𝐶 is equal to the number of circled dots in 
loops with open edges internal to the loop 

The number of external edges 𝐸𝑒𝑥𝑡 is the total number of edges of the SCD graph 

The number of internal edges 𝐸𝑖𝑛𝑡 requires identifying all vertices with degree 𝑛 greater 
than or equal to four and adding 2𝑛 − 6 internal edges for each 
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3.4.4 Explicit Polyhedron Mechanism Graph Reconstruction 

A direct method can be used to reconstruct the polyhedron model from an SCD graph. 

The process entails deriving a graph of the polyhedron vertices and edges visually from the 

SCD graph. An example is depicted in Figure 35. First, one draws all the polyhedron vertices 

associated with the pairs of open edges internal to each loop and external to all loops. Next, 

one draws all polyhedron vertices associated with spherical centers of loops with no internal 

edges. The union of these two sets of vertices are all of the polyhedron vertices, depicted as 

blue vertices in Figure 35. All external polyhedron edges can be identified and drawn such 

that each one intersects one SCD graph edge to connect adjacent polyhedron vertices. These 

edges are depicted as blue edges in Figure 35. Next, all spherical centers can be drawn as an 

open circle symbol (○) corresponding to circled dots in loops with internal open edges as 

depicted by the open circle in Figure 35. Finally, 2𝑛 − 6 internal edges are added to non-

adjacent vertices of each polyhedron developed from a vertex of degree 𝑛 (greater than or 

equal to four). The internal edges are depicted as light blue edges in the final polyhedron 

graph in Figure 35. The polyhedron model is constructed from the graph by treating edges as 

rigid bars and vertices as spherical joints, then generalizing the dimensions without 

invalidating specified joint orientations. The polyhedron linkage developed in Figure 35 is 

the generic equivalent of that in Figure 32 as expected based on the equivalence of the SCD 

graphs. 
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Figure 35. Explicit reconstruction of complete polyhedron model graph (bottom), developed from its SCD graph, 

overlaid (top) 
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 EXAMPLES OF SPHERICAL SYSTEM MECHANISMS AND THEIR CONNECTIVITY 

GRAPHS 
The following examples exemplify properties of the SC and SCD graph schemes using 

variations of mechanisms with comparable connectivities. 

3.5.1 SC Graphs of Watt Six-Bar Variations 

Variations of rigid panel six-bars which are all spherical system analogues of a Watt 

mechanism are presented in Table 2. The geometric variations demonstrate how the SC graph 

and the modified C-G-K parameter count does or does not change with modifications to the 

geometry. This can be contrasted to the SCD graph depictions of the comparable mechanisms 

in Table 3. 

3.5.2 SCD Graphs of Watt Six-Bar Variations 

Variations of rigid panel six-bars which are all spherical system analogues of a Watt 

mechanism are presented in Table 3. The geometric variations demonstrate how the SCD 

graph and the polyhedron feature count does or does not change with modifications to the 

geometry. This can be contrasted to the SC graph depictions of the comparable mechanisms 

in Table 2. 
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Rigid Linkage  Comment SC Graph Parameters 

 

The spherical 
centers of the two 
loops are both 
explicit vertices in 
the geometry 

 𝑁 = 6 
𝐽 = 7 
𝜆 = 3 

 

The spherical 
center of one loop 
is implicit in the 
geometry, but the 
graph is identical 

 

The connecting 
edges and vertex 
of two links has 
changed in the 
geometry, but the 
graph is identical 

 

The spherical 
center of the 
planar loop is an 
infinite distance 
away due to the 
parallel axes. This 
is depicted in the 
graph explicitly  

Table 2. Spherical system six-bars with varying geometry and SC graphs 
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Rigid Linkage  Comment SCD Graph Parameters 

 

The links are 
trusses so they 
are all degree 
three. Four 
links have one 
external open 
edge each  

𝑉 = 6 
𝐶 = 0 

𝐸𝑒𝑥𝑡 = 11 
𝐸𝑖𝑛𝑡 = 0 

 

One link has 
four edges, so 
its vertex is 
degree four, 
there is an 
additional 
external open 
edge, and there 
are two 
internal edges 
introduced 

 

𝑉 = 7 
𝐶 = 0 

𝐸𝑒𝑥𝑡 = 12 
𝐸𝑖𝑛𝑡 = 2 

 

One loop has 
an implicit 
spherical 
center rather 
than a vertex, 
so there are 
four internal 
open edges 
and four 
degree-4 
vertices 
introducing 
eight internal 
edges 

 𝑉 = 9 
𝐶 = 1 

𝐸𝑒𝑥𝑡 = 15 
𝐸𝑖𝑛𝑡 = 8 

 

The 
mechanism 
contains a sub-
loop attached 
to edges 
internal to the 
outer loop, but 
the feature 
count does not 
change 

 

Table 3. Spherical system six-bars with varying geometry and their SCD graphs 
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3.5.3 SC Graph Equivalent of Vertex-Edge Classification Graphs (Bowen et al.) 

Bowen et al. classify origami mechanisms using the characteristics of their vertex-

edge graph [3]. The classifications have been converted to SC graphs in Table 4 and Table 5 

to visualize the SC graphs associated with each classification type. The conversion is 

performed by converting the vertices of the vertex-edge graph to an SC graph spherical 

center, assigning the space between open edges on the vertex-edge graph vertices 

representing links on the SC graph, and connecting the SC graph vertices with edges which 

intersect the edges of the vertex-edge graph. The dashed edges on the vertex-edge graph 

correspond edges on the SC graph which belong to multiple loops. The SC graph is 

comparable to the dual of the vertex-edge graph but with the addition of the original vertices 

depicted explicitly. The patterns and periodicity with which Bowen et al. classify the systems 

are retained in the SC graph representation. 
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Table 4. Conversion of vertex-edge graph to SC graph for spherical system open chains 
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Table 5. Conversion of vertex-edge graph to SC graph for spherical system networks 
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3.5.4 Spherical System Six-Bar Pop-Up Element 

The source of inspiration for the identification and analysis of spherical system 

mechanisms is the prominence of the mechanism class in kinematic paper art. Element 1 

utilizes the paper art domain to present the reader with an interactive spherical system 

analogue of a Watt mechanism. Figure 36 depicts the equivalent mechanism’s SC graph, 

which indicates there is a planar loop associated with the parallel folds and a finite centered 

loop associated with the vertex developed by the intersection of creases on the pop-up strip. 

 

 

 

 

 

Figure 36. SC graph representation of six-bar pop-up element 

  

∞ ⨀ 

Panel 
A 

Panel 
B 
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Element 1. Spherical system six-bar pop-up element 

✁ 

Instructions: 

1. Photocopy and print this diagram on a 

new sheet of paper 

2. Cut along the solid black lines (don’t cut 

anywhere else) 

3. Crease the dashed lines ( – – – – – ) as 

valley folds, meaning the “peak” faces 

away from you 

4. Crease the dot-dash lines ( – · – · – ·) as 

mountain folds, meaning the “peak” 

faces toward you 

5. Make sure the creases between Panel A 

and Panel B extend to the edges of the 

paper 

6. Actuate the mechanism by changing the 

angle between Panel A and Panel B 

Panel A Panel B 

Crease to 
edge of 
paper 
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 VALUE OF SPHERICAL SYSTEM CONNECTIVITY GRAPHS 
The spherical system connectivity graph schemes proposed in this section address 

the shortcomings of the existing graph schemes by incorporating salient features of spherical 

systems which are not represented in traditional linkages. The ability to develop the graph 

stems from the recognition of spherical systems as a generalized class of mechanism, and the 

two schemes each encode specific information which may be leveraged depending on the 

analysis needed. The SC graph scheme simply encodes link-joint connectivity and spherical 

center orientation data. This scheme is the minimal, generic representation of a spherical 

system’s connectivity and informs analysis under the assumption that spherical system 

status is maintained in the linkage. On the other hand, the SCD graph scheme adds link 

geometry and specific joint connectivity which informs the polyhedron model, the most 

generalized physical representation of a linkage. This richer information can inform analysis 

of spherical systems, spherical/spatial hybrid mechanisms, and fully spatial mechanisms. The 

trade-off between to two schemes is the robustness of the analysis capability vs. the quantity 

of data that must be encoded. 
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4 SPHERICAL SYSTEM MOBILITY AND ADJUNCT ADDENDA 

 GENERIC MOBILITY EQUATIONS 

4.1.1 Spherical System Mobility Equation 

The modified C-G-K equation for spherical system mechanisms established in (Eqn. 

2) holds under the condition that all loops of a mechanism’s SC graph contain a spherical 

center with no concentric loops and where one link is taken to be grounded. It does not matter 

whether the spherical centers are all unique, some are coincident, or all are coincident. The 

equation is not valid if there are both spherical and spatial loops in a single mechanism, but 

the modified C-G-K equation for spatial mechanisms can be used to predict generic mobility 

if all loops are spatial. Applying the modified C-G-K equation to a subset of paper art-inspired 

spherical system mechanisms which meet certain connectivity criteria permits simplification 

of the equation to fewer parameters. 

The modified C-G-K equation for spherical systems can be reduced to fewer 

parameters under the assumptions that a mechanism has a spherical center for every loop in 

its SC graph and consists entirely of revolute joints, which is the case in most kinematic paper 

art. As a result of the spherical center condition, the constraint space parameter 𝜆 is fixed as 

3 DOF, and as a result of the all-revolute joint condition, the mobility of each joint 𝑓𝑖 is 1 DOF. 

Thus, the Modified C-G-K equation can be reduced to the spherical system mobility equation 

expressed in (Eqn. 3) [13]. Assuming the connectivity criteria are met, its parameters are 

completely informed simply by counting the relevant features of the SC graph. 
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𝑀 = 3𝑁 − 2𝐽 − 3  
 
𝑀 = 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑒, 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚  
𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠  
𝐽 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡𝑠  

(Eqn. 3) 

This equation only holds for the limited case of mechanisms that meet the strict 

definition of revolute-only spherical system linkages. The benefit derived from the limited 

utility of the equation is that it requires a very simple count of links and joints from an SC 

graph without the need to know any geometric properties assuming the connectivity criteria 

are met. On the other hand, generalized mechanisms which consist of both spherical and 

spatial loops (spherical/spatial hybrid mechanisms) require a more robust equation which 

account for specific connectivity and geometric features which are not encoded in the SC 

graph. The features of the polyhedron model and SCD graph are needed to develop a robust 

generic mobility equation for these mechanisms. 

4.1.2 Polyhedron Model Mobility Equation 

Along with the polyhedron representation of a mechanism, Wampler et al. develop a 

mobility equation utilizing the features of the polyhedron model which provides a 

generalized mobility formulation for spherical/spatial hybrid mechanisms [13]. The equation 

covers more connectivity cases than the modified C-G-K equation and spherical system 

equation as it does not require all loops to be all spherical or all spatial; thus, it can be used 

in spherical systems in which all loops contain a spherical center, in hybrid linkages with both 

spherical and spatial loops, and in spatial linkages with all spatial loops. The polyhedron 

equation as stated in (Eqn. 4) predicts the generic mobility in the cases where all joints are 

revolute and the loops may be any combination of spatial or spherical with no concentricity, 

assuming no additional special geometric features [13]. This covers all but the most 

exceptional configurations of kinematic paper art and its generalized class of 
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spherical/spatial hybrid mechanisms. The equation’s parameters are completely informed 

by counting the connectivity features of the polyhedron model, which can be done via the SCD 

graph. 

𝑀 = 3(𝑉 + 𝐶) − 𝐸 − 6  
 
𝑀 = 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑒 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙/  
 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ℎ𝑦𝑏𝑟𝑖𝑑 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚  
𝑉 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑜𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠  
𝐶 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟𝑠  
𝐸 = 𝐸𝑒𝑥𝑡 + 𝐸𝑖𝑛𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑜𝑛 𝑒𝑑𝑔𝑒𝑠  
 (𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)  
 

(Eqn. 4) 

 

The SCD graph provides a shortcut to encode the number of each relevant feature in 

the polyhedron model, and therefore the SCD graph is sufficient information to calculate the 

mechanism mobility. Because the polyhedron mobility equation covers a much more general 

class of mechanisms than the spherical system mobility equation, the SCD graph is shown to 

be valuable for the analysis of mechanisms with any combination of spherical and spatial 

loops. The cost of the SCD graph’s robustness is the need to encode the extra 

geometric/connectivity information and implement a more complex counting process than 

that associated with the SC graph and the simple spherical system mobility equation.  

4.1.3 Comparison of Utility of Mobility Equations 

The three cases of all-revolute mechanisms which may be encountered in the context 

of mechanisms inspired by kinematic paper art are spherical system mechanisms, 

spherical/spatial hybrid mechanisms, and fully spatial mechanisms. For a spherical system 

mechanism, the strict constraints permit the use of the simpler spherical system mobility 

equation informed by parameters encoded in the simple SC graph as a sufficient means of 

calculating the generic mobility. For a fully spatial mechanism, the modified C-G-K equation 

for spatial mechanisms informed by parameters encoded in the simple SC graph is a sufficient 
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means of calculating the generic mobility. For a spherical/spatial hybrid mechanism, the 

polyhedron mobility equation informed by parameters encoded in the more complex SCD 

graph is the only means of calculating the generic mobility. The identification of a given 

mechanism as one of these classes permits identification of the simplest, sufficient means of 

encoding the mechanism in a graph and the simplest means of calculating the generic 

mobility, as summarized briefly in Figure 37. 

On the other hand, there is overlap in the connectivity classes which each analysis 

technique covers as summarized in Table 6. The traditional C-G-K equation only covers the 

cases where a mechanism is fully spherical/planar or fully spatial. The modified C-G-K 

equation generalization covers these cases as well as the broader class of spherical system 

mechanisms, thus overriding the utility of the traditional C-G-K equation. The spherical 

system mobility equation, in contrast, covers only a subset of mechanisms which meet the 

strict criteria of revolute-only spherical systems. Finally, the polyhedron mobility equation is 

sufficient to cover all cases because it includes hybrid mechanisms, and it is the most robust 

equation of all. The trade-off for this robustness is the need for the SCD graph of the 

mechanism which includes all polyhedron geometry information. Therefore, given an SCD 

graph, the polyhedron equation is the most reliable equation to use in any situation. Given an 

SC graph, the modified C-G-K equation is appropriate to use if the mechanism is every loop is 

spherical or every loop is spatial, and the spherical system equation is only appropriate to 

use for a mechanism that is known to be an all-revolute spherical system. 
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Figure 37. Summary of sufficient analysis technique for each mechanism class 

 

Mobility 
Equation 

Required 
Graph 

Spherical/Planar 
Mechanism 

Spherical 
System 

Mechanism 

Hybrid 
Mechanism 

Fully 
Spatial 

Mechanism 
Traditional 

C-G-K 
Equation 
(Eqn. 1) 

Link-Joint 
graph ✔   ✔ 

Modified 
C-G-K 

Equation 
(Eqn. 2) 

SC graph ✔ ✔  ✔ 

Spherical 
System 

Equation 
(Eqn. 3) 

SC graph ✔ ✔   

Polyhedron  
Model 

Equation 
(Eqn. 4) 

SCD 
graph ✔ ✔ ✔ ✔ 

Table 6. Summary of applicable mechanism classes for each analysis technique 

  

Spherical 
System 

Mechanism

Spherical 
System Mobility 

Equation  
sufficient

SC graph 
sufficient

Hybrid 
Mechanism

Polyhedron 
Mobility 
Equation 
sufficient

SCD graph 
sufficient

Fully Spatial 
Mechanism

Modified C-G-K 
Mobility 
Equation 
sufficient

SC graph 
sufficient
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4.1.4 Examples of Generic Mobility Calculation 

The following examples depict various paper art-mimetic mechanisms with their SC 

and/or SCD graphs as appropriate. The generic mechanism mobility is calculated using the 

spherical system mobility equation, the polyhedron mobility equation, and/or the modified 

C-G-K equation for fully spatial mechanisms as appropriate. 

4.1.4.1 Two Loop Six-bar Mobility 

Rigid Panel Linkage SC Graph SCD Graph 

   

Spherical system 

𝑁 = 6;  𝐽 = 7;  𝜆 = 3  

𝑀 = 3𝑁 − 2𝐽 − 3 = 1  

𝑀 = 1 𝐷𝑂𝐹   

Polyhedron 

𝑉 = 7;  𝐶 = 0;  𝐸 = (12)𝑒𝑥𝑡 + (2)𝑖𝑛𝑡 = 14 

𝑀 = 3(𝑉 + 𝐶) − 𝐸 − 6 = 1  

𝑀 = 1 𝐷𝑂𝐹   

4.1.4.2 Three Loop Eight-bar Mobility 

Rigid Panel Linkage SC Graph SCD Graph 

 
 

 

Spherical system 

𝑁 = 8;  𝐽 = 10;  𝜆 = 3  

𝑀 = 3𝑁 − 2𝐽 − 3 = 1  

𝑀 = 1 𝐷𝑂𝐹   

Polyhedron 

𝑉 = 8;  𝐶 = 0;  𝐸 = (15)𝑒𝑥𝑡 + (2)𝑖𝑛𝑡 = 17 

𝑀 = 3(𝑉 + 𝐶) − 𝐸 − 6 = 1  

𝑀 = 1 𝐷𝑂𝐹   

⨀ ⨀ ⨀ ⨀ 

⨀ 

⨀ 

⨀ ⨀ 

⨀ 

⨀ 
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4.1.4.3 Three Link Spatial Chain Mobility 

Rigid Panel Linkage SC Graph Polyhedron Linkage SCD Graph 

    

Spatial 

𝑁 = 3;  𝐽 = 2;  𝜆 = 6;  𝑓𝑖 = 1  

𝑀 = 𝜆(𝑁 − 𝐽 − 1) + ∑𝑓𝑖 = 2  

𝑀 = 2 𝐷𝑂𝐹   

Polyhedron 

𝑉 = 7;  𝐶 = 0;  𝐸 = (9)𝑒𝑥𝑡 + (4)𝑖𝑛𝑡 = 13 

𝑀 = 3(𝑉 + 𝐶) − 𝐸 − 6 = 2  

𝑀 = 2 𝐷𝑂𝐹   

4.1.4.4 Five Loop Eight-Bar (Fortune Teller) Mobility 

Rigid Panel Side View Rigid Panel Top View 

  

SC Graph SCD Graph 
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Spherical system 

𝑁 = 16;  𝐽 = 20;  𝜆 = 3 

𝑀 = 3𝑁 − 2𝐽 − 3 = 5  

𝑀 = 5 𝐷𝑂𝐹   

Polyhedron 

𝑉 = 13;  𝐶 = 0;   𝐸 = (28)𝑒𝑥𝑡 = 28  

𝑀 = 3(𝑉 + 𝐶) − 𝐸 − 6 = 5  

𝑀 = 5 𝐷𝑂𝐹   

4.1.4.5 Nine-Bar Mesh Mobility 

Rigid Panel Linkage SC Graph SCD Graph 

 
 

 

Spherical system 

𝑁 = 9;  𝐽 = 12;  𝜆 = 3  

𝑀 = 3𝑁 − 2𝐽 − 3 = 0  

𝑀 = 0 𝐷𝑂𝐹   

Polyhedron 

𝑉 = 16;  𝐶 = 0;   𝐸 = (24)𝑒𝑥𝑡 + (18)𝑖𝑛𝑡 = 42 

𝑀 = 3(𝑉 + 𝐶) − 𝐸 − 6 = 0  

𝑀 = 0 𝐷𝑂𝐹   

4.1.4.6 Two Loop Spherical/Spatial Hybrid Ten-bar Mobility 

Polyhedron Model SCD Graph 

 
 

Polyhedron 

𝑉 = 13;  𝐶 = 0;  𝐸 = (23)𝑒𝑥𝑡 + (8)𝑖𝑛𝑡 = 31  

𝑀 = 3(𝑉 + 𝐶) − 𝐸 − 6 = 2  

𝑀 = 2 𝐷𝑂𝐹   

⨀ ⨀ 

⨀ ⨀ 

⨀ ⨀ 

⨀ ⨀ 

⨀ 
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 RELATIVE MOBILITY EQUATIONS 

4.2.1 Mechanism Addenda and Modifications 

4.2.1.1 Bottom-Up Approach 

In the case where a mechanism has a known graph and mobility, the developed 

mobility equations can be adapted to account for a mechanism’s change in mobility resulting 

from additions to the original mechanism, called linkage addenda, or changes to the 

mechanism features, called linkage modifications. Addenda and modifications can be 

designed such that the overall generic mechanism mobility increases, decreases, or is not 

changed. This is accomplished by the net number of links and joints or vertices and edges 

introduced or removed by the change. The quantification of the change in mobility is called 

the relative mobility. The relation between the initial, relative, and final mobility is described 

in (Eqn. 5). 

𝑀 = 𝑀0 + Δ𝑀   
 
𝑀 = 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚  
𝑀0 = 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚  
Δ𝑀 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑑𝑑𝑒𝑛𝑑𝑢𝑚 𝑜𝑟 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  

(Eqn. 5) 

 

The framing of the relative mobility equation encourages the utility of a bottom-up 

design technique in which addenda expands a base mechanism. This process reflects the 

design techniques of pop-up books which often have one large driving mechanism with 

smaller addenda driven by the larger [5], often without changing the overall mobility. 

Generalizing the design methodology to spherical system mechanisms encourages 

connecting addenda such that a closed loop chain of linkages can be developed to perform 

complex actions while maintaining simple generic mobility and actuation inputs. 
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4.2.1.2 Relative Mobility Equations 

The relative mobility terms are derived by taking the differential of the spherical 

system and polyhedron mobility equations under the assumption that the connectivity 

characteristics which permit the use of each of the mobility equations are maintained. The 

change in mobility is given in terms of the change in the number of salient features of each 

equation. The relative mobility equations for spherical center and polyhedron analyses are 

stated in (Eqn. 6) and (Eqn. 7), respectively. 

Δ𝑀 = 3Δ𝑁 − 2Δ𝐽  
 
Δ𝑀 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑑𝑑𝑒𝑛𝑑𝑢𝑚 𝑜𝑟 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  
Δ𝑁 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠  
Δ𝐽 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡𝑠  

(Eqn. 6) 

 

 
Δ𝑀 = 3(Δ𝑉 + Δ𝐶) − Δ𝐸  
 
Δ𝑀 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑑𝑑𝑒𝑛𝑑𝑢𝑚 𝑜𝑟 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  
Δ𝑉 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠  
Δ𝐶 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟𝑠  
Δ𝐸 = Δ𝐸𝑒𝑥𝑡 + Δ𝐸𝑖𝑛𝑡 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑜𝑛  
 𝑒𝑑𝑔𝑒𝑠 (𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)  

(Eqn. 7) 

 

4.2.1.3 Addendum Connectivity Requirements 

For the relative mobility analyses to be valid, none of the conditions of the mobility 

equation used may be invalidated by the addition of the addendum features to the base. For 

example, loops may not be introduced which create a contradiction in joint orientation, and 

concentricity may not be introduced. As a result, the most straightforward way of developing 

an addendum loop which behaves well under spherical system analysis, for example, is by 

affixing it to two adjacent vertices on the SC graph such that the joint axis shared by those 

links is oriented to the new loop’s spherical center without changing any other orientation 

constraints. An example is depicted in Figure 38 where three links are appended to two 

adjacent links in the base mechanism forming a new spherical loop about vertex b without 
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impacting the spherical loop about vertex a. The equivalent SC graphs are depicted in Figure 

39. This method of appending generally maintains a mechanism’s status as a spherical system 

mechanism. 

In contrast, an addendum resulting in a hybrid mechanism does not need to maintain 

the closure properties of a spherical system as long as polyhedron mobility analysis is used 

and the SCD graph is known. If this is the case, the addendum can be spatial and significantly 

more complex due to the robustness of the polyhedron analysis. It is generally simpler to 

analyze addenda which maintain spherical system properties with the spherical system 

equations and SC graph if possible, but it is more comprehensive and robust to analyze 

addenda with the polyhedron equations and SCD graph if known. An example of a skew, 

spatial addendum loop which results in a spherical/spatial hybrid mechanism is depicted in 

Figure 40, and its equivalent SCD graph is depicted in Figure 41.  
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Figure 38. Rigid panel spherical six-bar base mechanism (top), with an addendum loop (bottom) 

 

  

Figure 39. Spherical six-bar base SC graph (left), with an addendum loop (right) 

  

⨀ 
a ⨀ 

⨀ 

a 

b 

a 

a 

b 
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Figure 40. Polyhedron spherical six-bar base mechanism (left), with a spatial addendum loop (right) 

 

   

Figure 41. Spherical six-bar base SCD graph (left), with a spatial addendum loop (right) 

  

⨀ ⨀ 
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4.2.2 Case Study: Introduction of Revolute Joints 

One fundamental application for the relative mobility equation is the introduction of 

revolute joints to a mechanism, which is equivalent to introducing creases to a panel between 

vertices (as depicted in Figure 42) without invalidating the spherical system constraints. 

Intuitively, adding one crease is equivalent to directly introducing one additional degree of 

freedom to a mechanism, which analysis corroborates. 

In the link-joint analysis of the introduction of one revolute joints to a mechanism, 

each crease turns one link into two and adds a joint between them. Thus the change in 

number of links and the change in number of joints terms both equal the number of revolute 

joints introduced. As a result, the change in mobility is equal to 1 DOF for each crease 

introduced. 

 Δ𝑁 = 1; Δ𝐽 = 1 

Δ𝑀 = 3Δ𝑁 − 2Δ𝐽 = 1   

Δ𝑀 = 1 𝐷𝑂𝐹 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑  

In the vertex-edge analysis of the introduction of one revolute joint to a mechanism, 

there are two geometric cases. Introducing a crease in a triangular truss adds one vertex and 

two edges to form two trusses with one shared edge. When introducing a crease in a 

polyhedron with more than three external edges, the change in the number internal edges 

must be accounted for. The revolute joint turns one rigid 𝑘-sided polyhedron into one 𝑛- and 

one 𝑚-sided rigid polyhedron connected by one edge between two shared vertices. This 

establishes the relationship that the sum of the number of sides in the subdivided polyhedra 

is 𝑘 + 2. The total number of vertices is not changed by the crease, but the new total number 

of edges is found by adding one external edge between the shared vertices, removing all the 

internal edges of the 𝑘-sided mechanism, and adding the appropriate number of internal 

edges to the newly established 𝑛- and 𝑚- sided polyhedra. Due to the relationship between 
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𝑛 , 𝑚 , and 𝑘 , the change in mobility is equal to 1 DOF for each crease introduced in all 

geometric cases. 

 𝑘 = 3 

 Δ𝑉 = 1; Δ𝐶 = 0; Δ𝐸 = Δ𝐸𝑒𝑥𝑡 + Δ𝐸𝑖𝑛𝑡 = (2)𝑒𝑥𝑡 = 2 
Δ𝑀 = 3(Δ𝑉 + Δ𝐶) − Δ𝐸 = 1  

 𝑘 > 3;   𝑛,𝑚 ≥ 3; 𝑛 + 𝑚 − 2 = 𝑘 

 Δ𝑉 = 0; Δ𝐶 = 0 

 Δ𝐸 = Δ𝐸𝑒𝑥𝑡 + Δ𝐸𝑖𝑛𝑡 = (1)𝑒𝑥𝑡 + (−(2𝑘 − 6) + (2𝑛 − 6) + (2𝑚 − 6))
𝑖𝑛𝑡

= −1 

Δ𝑀 = 3(Δ𝑉 + Δ𝐶) − Δ𝐸 = 1  

 Δ𝑀 = 1 𝐷𝑂𝐹 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑 
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Figure 42. Rigid panel (top), with revolute crease introduced (bottom) 

  



90 

4.2.3 Case Study: Interchangeability of Implicit Spherical Center and Vertex 

Another useful application of the relative mobility equations is demonstrating the 

interchangeability between a vertex and an implicit spherical center as depicted in Figure 43. 

This is accomplished in the polyhedron model by taking a polyhedron vertex of 𝑛 intersecting 

rigid polyhedra and converting it to an implicit spherical center surrounded by 𝑛  rigid 

polyhedra with the same joint alignment but with 𝑛 internal open edges introduced. 

The SCD graph equivalent of this is taking a loop of 𝑛 graph vertices with no internal 

open edges and introducing 𝑛 internal edges without making any other changes as depicted 

in Figure 44. This modification is accounted for by the removal of the loop vertex in favor of 

a spherical center, and the addition of 𝑛 vertices associated with the new internal open edges. 

The change in the number of edges is equal to the additional 𝑛 internal open edges plus an 

additional two internal edges per link to maintain rigidity in the 𝑛 polyhedra whose number 

of sides each increased by one. As a result of all of these modifications, the change in mobility 

is zero, indicating a vertex and an implicit spherical center have equal mobility and are 

interchangeable. 

Δ𝑉 = 𝑛 − 1; Δ𝐶 = 1; Δ𝐸 = Δ𝐸𝑒𝑥𝑡 + Δ𝐸𝑖𝑛𝑡 = (𝑛)𝑒𝑥𝑡 + (2𝑛)𝑖𝑛𝑡 = 3𝑛 

Δ𝑀 = 3(ΔV + ΔC) − ΔE = 3(𝑛 − 1 + 1) − 3𝑛 = 0 

Δ𝑀 = 0 𝐷𝑂𝐹 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑡𝑜 𝑎𝑛 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟  

  



91 

 

Figure 43. Rigid panel spherical four-bar with a vertex (top) and with an implicit spherical center (bottom) 

 

   

Figure 44. SCD graph of arbitrary spherical loop with a vertex (left) and with an implicit spherical center (right) 

  

⨀ ⨀ 
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4.2.4 Adjunct Addenda 

4.2.4.1 Definition 

Beatini and Korkmaz identify that a mechanism which features a “two-strip” 

addendum chain (depicted in Figure 45) maintains the original mobility of the base 

mechanism [12]. This observation is an example of what is dubbed an adjunct addendum to 

a mechanism, which is defined as an addendum to a base mechanism created out of a chain 

of simple addendum cells with zero relative mobility. Adjunct addenda have no impact on the 

overall mechanism mobility but may allow for complex motion in space along the chain of 

addenda when actuated. 

4.2.4.2 Ride-Along Addendum Definition 

To develop an adjunct addendum, one must first identify the simplest addendum 

which maintains zero relative mobility, which is the building block with which adjunct 

addenda are developed. It is found that when two links are appended to two extant links in a 

base mechanism such that the four links meet at a vertex or implicit spherical center without 

changing the joint orientation of the base mechanism, this is accomplished. The SC graph 

representation is depicted in Figure 46, and a rigid panel example is depicted in Figure 47. 

The simplest relative mobility calculation demonstrates that with an increase of links by two 

and an increase of joints by three, the relative mobility is zero in a spherical system. Their 

actuation is dependent only on the actuation between the links on the base mechanism to 

which they attach. These addenda are called ride-along addenda, as their presence does not 

impact the base mechanism and they are simply “along for the ride.”  The relative mobility of 

zero implies that any amount of these can be appended to any link pair of a mechanism as 

long as the spherical center criteria are met, and the overall mobility will not change. 
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Figure 45. Two-strip addendum chain (Beatini et al.) 

 

Figure 46. Ride-along addendum (highlighted) appended to a section of an arbitrary linkage 

 

Figure 47. A spherical four-bar (left), with a ride-along addendum attached (right) 

  

⨀ 
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4.2.4.3 Ride-Along Addendum Mobility Analysis 

In the link-joint analysis of a ride-along addendum to a spherical system mechanism, 

the addendum will not violate the spherical system constraints due to its requirement of 

connecting at a vertex or implicit spherical center. Two links are introduced with one joint 

between them and two joints connecting them to the base mechanism. As expected, there is 

no change in mobility.  

Δ𝑁 = 2; Δ𝐽 = 3  

Δ𝑀 = 3Δ𝑁 − 2Δ𝐽 = 0  

Δ𝑀 = 0 𝐷𝑂𝐹 𝑓𝑜𝑟 𝑎 𝑟𝑖𝑑𝑒 𝑎𝑙𝑜𝑛𝑔 𝑎𝑑𝑑𝑒𝑛𝑑𝑢𝑚  

In the vertex-edge analysis of the ride-along addendum, the two links are taken to be 

𝑛- and 𝑚-sided polyhedra connecting to the base mechanism at a vertex (although the vertex 

can be interchanged for an implicit spherical center with no change in mobility). The net 

change in vertices is the sum of the vertices in the addendum polyhedra minus the two shared 

vertices of the polyhedra minus the three shared vertices connecting the addendum to the 

base mechanism. The net change in edges is the sum of the external edges in the addendum 

polyhedra plus the number of internal edges in those polyhedra minus one shared edge 

between them minus two shared edges connecting the addendum to the base mechanism. As 

expected, there is no change in mobility. 

𝑛,𝑚 ≥ 3  

Δ𝑉 = 𝑛 + 𝑚 − 5;  Δ𝐸 = (3𝑛 − 6) + (3𝑚 − 6) − 3 = 3𝑛 + 3𝑚 − 15 

Δ𝑀 = 3(𝑛 + 𝑚 − 5) − 3𝑛 + 3𝑚 − 15 = 0 𝐷𝑂𝐹  

Δ𝑀 = 0 𝐷𝑂𝐹 𝑓𝑜𝑟 𝑎 𝑟𝑖𝑑𝑒 𝑎𝑙𝑜𝑛𝑔 𝑎𝑑𝑑𝑒𝑛𝑑𝑢𝑚  

4.2.4.4 Reduced Mobility Analysis 

Due to the zero relative mobility of ride-along addenda, if an isolated ride-along 

addendum is identified on an SC graph, the addendum can be eliminated with no impact on 

the mobility of that mechanism. As a result, a reduced graph can be used for mobility analysis 
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with equivalent generic mobility. A practical example of this reduction is drawn from the 

fortune teller origami fold depicted in Figure 48. The mechanism is a spherical eight-bar loop 

with flaps creating four ride-along addenda outside the eight-bar. Reducing the SC graph by 

eliminating the ride-along addenda leaves a single spherical eight-bar loop, a simpler 

mechanism with equal mobility to the fortune teller. 

4.2.4.5 Adjunct Linkages Construction 

Using the definition of ride-along addenda and leveraging their ability to be appended 

to any two adjacent links at a vertex, adjunct addenda are created by serially connected 

chains of ride-along addenda. This includes Beatini and Korkmaz’s “two-strip” addendum as 

well as all other chains which may be connected in a non-linear pattern such as the example 

depicted in Figure 49. Adjunct addenda do not impact the mobility of the mechanism, but they 

can undergo complex motion in three dimensions with fewer actuation inputs required by an 

open chain, which indicates their potential to be designed as complex, closed loop actuating 

elements in spherical system mechanisms. 
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Figure 48. Rigid panel mechanism (top), its SC graph with ride-along addenda highlighted (bottom, left), and its 

reduced SC graph with ride-along addenda eliminated (bottom, right) 

 

 

Figure 49. Example adjunct linkage (highlighted) developed from ride-along addenda and appended to a section of 

an arbitrary linkage 

⨀ 

⨀ 

⨀ ⨀ 

⨀ 
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4.2.5 Examples of Relative Mobility Calculation 

4.2.5.1 Spherical Loop Addendum 

The base mechanism is a spherical six-bar loop with a known mobility of 3 DOF. In 

the final mechanism, a spherical loop consisting of three new links (highlighted in the SC 

graph) is appended to two adjacent links of the base mechanism. 

Base Rigid Panel Mechanism Final Rigid Panel Mechanism 

  
Base SC Graph Final SC Graph 

 
 

 

Spherical system 

𝑀0 = 3 𝐷𝑂𝐹  

Δ𝑁 = 3; Δ𝐽 = 4;  𝜆 = 3 

Δ𝑀 = 3Δ𝑁 − 2Δ𝐽 = 1;  𝑀 = 𝑀0 + Δ𝑀  

Δ𝑀 = 1 𝐷𝑂𝐹;    𝑀 = 4 𝐷𝑂𝐹   

 

4.2.5.2 Spatial Loop Addendum 

The base mechanism is a spherical six-bar loop with a known mobility of 3 DOF. In 

the final mechanism, a spatial loop consisting of four skew, four-sided polyhedra (highlighted 

in the SC graph) is appended to two non-adjacent links of the base mechanism. 

  

⨀ 
⨀ 

⨀ 
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Base Polyhedron Mechanism Final Polyhedron Mechanism 

 

 
Base SCD Graph Final SCD Graph 

  
 

Polyhedron 

𝑀0 = 3 𝐷𝑂𝐹  

Δ𝑉 = 6; Δ𝐸 = Δ𝐸𝑒𝑥𝑡 + Δ𝐸𝑖𝑛𝑡 = (11)𝑒𝑥𝑡 + (8)𝑖𝑛𝑡 = 19 

Δ𝑀 = 3Δ𝑉 − 2Δ𝐸 = −1; 𝑀 = 𝑀0 + Δ𝑀  

Δ𝑀 = −1 𝐷𝑂𝐹;    𝑀 = 2 𝐷𝑂𝐹  

 

4.2.5.3 Ride-Along Reduction 

This mechanism is recognized to have a ride-along addendum (highlighted in the SC 

graph), which can be eliminated in the SC graph with no impact on mobility calculation. As a 

result, the mechanism mobility is equal to that of a spherical four-bar. 

⨀ ⨀ 
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Rigid Panel Linkage SC Graph Reduced SC Graph 

   
 

Spherical system 

𝑁 = 4; 𝐽 = 4; 𝜆 = 3  

𝑀 = 3𝑁 − 2𝐽 − 3 = 1  

𝑀 = 1 𝐷𝑂𝐹   

 

4.2.5.4 Adjunct Chain Reduction 

This mechanism is recognized to have a ride-along addendum (highlighted in the SC 

graph), which can be eliminated in the SC graph with no impact on mobility calculation. The 

resulting reduced SC graph is also recognized to have a ride-along addendum, which can also 

be eliminated. As a result, the mechanism mobility is equal to that of a spherical four-bar. 

Rigid Panel Linkage SC Graph 
Reduced SC 

Graph 
Fully Reduced 

SC Graph 

   
 

 

Spherical system 

𝑁 = 4; 𝐽 = 4; 𝜆 = 3  

𝑀 = 3𝑁 − 2𝐽 − 3 = 1  

𝑀 = 1 𝐷𝑂𝐹   

⨀ ⨀ ⨀ 

⨀ 

⨀ 

⨀ 

⨀ 

⨀ 

⨀ 
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4.2.5.5 Double-Strip Chain Reduction 

This mechanism is recognized to have a double-strip chain addendum developed 

from serially connected ride-along addenda (highlighted in the SC graph), which can be 

eliminated in the SC graph with no impact on mobility calculation. As a result, the mechanism 

mobility is equal to that of a spherical four-bar. 

Rigid Panel Linkage SC Graph Reduced SC Graph 

   
 

Spherical system 

𝑁 = 4; 𝐽 = 4; 𝜆 = 3  

𝑀 = 3𝑁 − 2𝐽 − 3 = 1  

𝑀 = 1 𝐷𝑂𝐹   

 

4.2.5.6 Fortune Teller Ride-Along Reduction 

This mechanism is recognized to have four ride-along addenda (highlighted in the SC 

graph), which can be eliminated in the SC graph with no impact on mobility calculation. As a 

result, the mechanism mobility is equal to that of a spherical eight-bar loop. 

  

⨀
 

⨀
 

⨀
 

⨀
 

⨀
 ⨀ 
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Rigid Panel Linkage SC Graph Reduced SC Graph 

   
 

Spherical system 

𝑁 = 8; 𝐽 = 8; 𝜆 = 3  
𝑀 = 3𝑁 − 2𝐽 − 3 = 5  

𝑀 = 5 𝐷𝑂𝐹   
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5 ORIGAMI-INSPIRED N DOF SPATIAL CHAIN 

 MAPPING JOINTS 

5.1.1 Motivation 

In paper art inspired kinematics, all joints are taken to be revolute due to the direct 

mapping to a crease. Other joints such as prismatic sliders and cylindrical joints can be 

developed in the paper art domain [5] and the polyhedron domain [13], but these joints do 

not map as simply as creases to revolute joints. Thus, it is desirable to develop a framework 

for the conversion of certain joint combinations to all-revolute equivalents. A useful 

application of this process is in open chain manipulators. 

5.1.2 Mappings 

5.1.2.1 Equivalent Joints 

An all-revolute, rigid panel 3 DOF spherical (S) joint has been identified by Winder et 

al. [5] as two isosceles right triangular panels connected at the right angled vertices sharing 

one edge and affixed to two rigid bodies by the open edges which connect to the vertex. 

Rotation about the three orthogonal axes intersecting at the vertex provide the {𝜃𝑥 , 𝜃𝑦, 𝜃𝑧} 

degrees of freedom associated with a spherical joint. The spatial and rigid panel spherical 

joints are depicted in Figure 50. Similarly, an all-revolute, rigid panel 2 DOF universal (U) 

joint can be developed with a single right triangle connecting two bodies on the edges which 

connect to the vertex. Rotation about the two orthogonal axes intersecting at the vertex 

provide the {𝜃𝑥, 𝜃𝑦} degrees of freedom associated with the universal joint. The spatial and 

rigid panel universal joints are depicted in Figure 51. 
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Figure 50. Spherical joint (top) and its rigid panel representation (bottom) 

 

 

 

Figure 51. Universal joint (top) and its rigid panel representation (bottom) 
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A prismatic slider cannot be directly mapped from revolute joints, however, a 

revolute-prismatic-revolute (RPR) chain (assuming parallel revolute joints) can be simulated 

with two identical rectangular panels connected at a crease where each rectangle connects a 

rigid body at the edge opposite the shared edge. The spatial and rigid panel RPR chains are 

depicted in Figure 52. The outer edges connecting the rectangles to the bodies map to the 

parallel revolute joints. The edge connecting the rectangular panels simulates a prismatic 

slider as its actuation controls the distance between the rigid bodies with one degree of 

freedom, simulating linear actuation. The range of distances the prismatic analogue can 

achieve is established by the lengths of the rectangles. Assuming the rectangle lengths are 

both equal to 𝑙, the maximum distance between rigid bodies is 2𝑙 when the angle between 

rectangles is 180°, and the minimum distance is 0 when the angle between rectangles is 0°. 

5.1.2.2 Rigid Panel Notation 

A specific rigid panel notation is established for the case where a rigid panel chain 

consists of combinations of right triangles connected by the edges which connect to the right 

angled vertex and rectangles connected by their opposite, parallel edges. In this notation 

scheme, a chain of rectangles and right triangles is described by a string of characters from 

the set {𝑅,−}. A string of “𝑅𝑅 …𝑅” is used to describe a chain of right triangles connected at 

the right angled vertex (i.e. a chain of revolute joints connected orthogonally with a common 

spherical center) where inner 𝑅s represent the connected revolute edges in the chain and the 

two outer 𝑅s represent the available right triangle edges which intersect the vertex. An 

example is depicted in Figure 53. A string of “𝑅 − 𝑅 …− 𝑅” is used to describe a chain of 

rectangles connected at opposite edges with parallel orientation (i.e. a chain of revolute joints 

connected with parallel orientation) where inner 𝑅s represent the connected revolute edges 

in the chain, each “−“ corresponds to the face of a rectangle, and the two outer 𝑅s represent 
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the two available rectangle edges with parallel orientation. An example is depicted in Figure 

53. When any two rigid panel chains are combined, one outer 𝑅 from each chain are merged 

into a single 𝑅, representing a shared edge, and the remainder of the strings are concatenated 

in the appropriate order to represent the combined mechanism chain. 
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Figure 52. Revolute-prismatic-revolute chain (top) and its rigid panel equivalent (bottom) 

 

    

Figure 53. Rigid panel 𝑅𝑅𝑅 chain (left) and 𝑅 − 𝑅 − 𝑅 chain (right) 
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 DEVELOPMENT OF 6 DOF SPATIAL CHAIN 

5.2.1 Motivation 

It is desirable to develop a rigid panel mechanism which is equivalent to an open 

chain manipulator with six degrees of freedom. Proper implementation of this chain would 

have the capability of connecting any two edges at any relative orientation in space as its 

degrees of freedom permit it to actuate its open edges into any relative position and 

orientation in a 6 DOF spatial constraint space. 

5.2.2 Identification of UPS Chain 

A simple, traditional 6 DOF spatial mechanism which is capable of connecting two 

bodies in space at any relative position and orientation is a universal-prismatic-spherical 

(UPS) joint chain. The joints provide two, one, and three degrees of freedom, respectively 

[28], and the sum of these degrees of freedom is six if there is no loop closure. The physical 

representation of the degrees of freedom between the bodies this chain connects can be 

visualized as a vector with 3 DOF {𝑥, 𝑦, 𝑧} that establishes the relative position between the 

bodies and a rotation with 3 DOF {𝜃𝑥, 𝜃𝑦, 𝜃𝑧 } which establishes the relative orientation 

between the bodies. The two degrees of freedom of the universal joint establish the direction 

of the position vector, the one degree of freedom of the prismatic joint establishes the length 

of the position vector, and the three degrees of freedom in the spherical joint establish the 

relative orientation. The degrees of freedom account for all six degrees of freedom in the 

spatial constraint space {𝑥, 𝑦, 𝑧, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧}. A spatial mechanism representation of the UPS 

chain is depicted in Figure 54. 
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Figure 54. Spatial universal-prismatic-spherical chain connecting two rigid bodies 

 

 

Figure 55. Rigid panel universal-prismatic-spherical chain (𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅) connecting two rigid bodies 
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5.2.3 Conversion to Rigid Panel 

5.2.3.1 Rigid Panel UPS Chain 

By concatenating the rigid panel equivalents of the universal joint, the revolute-

prismatic-revolute chain, and the spherical joint, one develops a rigid panel equivalent of the 

6 DOF UPS chain. Representation of this mechanism requires use of the rigid panel notation 

with the character set {𝑅,−}. From the notation definitions, a universal joint is represented 

by the string 𝑅𝑅 as it is just one right triangle with two available edges. A spherical joint is 

represented by the string 𝑅𝑅𝑅  as it is two right triangles with one shared edge and two 

available edges. A revolute-prismatic-revolute joint is represented by the string 𝑅 − 𝑅 − 𝑅 as 

it is two rectangles with one shared edge and two available edges. Concatenating these strings 

and merging outer edges into shared edges represents the UPS mechanism with the string 

𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅 , which is the rigid panel 6 DOF spatial chain, depicted in Figure 55. This 

mechanism is capable of establishing relative position and orientation between any two rigid 

bodies (within the distance constraint established by the rectangle dimensions) using the 

same degrees of freedom as the original UPS mechanism. 

5.2.3.2 Enumeration of Rigid Panel 6 DOF Spatial Chains 

The UPS mechanism utilized to develop the 𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅  mechanism was 

specifically selected to easily visualize of the six degrees of freedom in terms of a position 

vector and relative orientation. It is recognized that the six degrees of freedom are not 

dependent on the specific ordering of the components and that any permutation of the 𝑅𝑅 −

𝑅 − 𝑅𝑅𝑅  string which obeys certain constraints would provide the same 6 DOF mobility. 

These chains are found by permuting the ordering of the string within certain bounds. 

The constraints on the permutations are as follows. The number of each character 

must remain the same because the number and types of links do not change. The outer 
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characters of the string must remain 𝑅  as there must be available outer edges. Two “−“ 

characters must be separated by at least one 𝑅  as two adjacent rectangles must share a 

revolute edge. A chain of triangles can be at most three (𝑅𝑅𝑅) at a single vertex (i.e. in 

between “−“ characters) as all possible rotational degrees of freedom at a single vertex are 

accounted for with three orthogonal edges. Strings which are equal when one is reversed are 

not considered unique. The constraints and the permutation algorithm are encoded in 

Appendix B:  N DOF Spatial Chain Matlab Code. 

The resulting valid permutations which represent 6 DOF spatial chains are listed 

below. Each of these chains is capable of establishing relative position and orientation 

between any two rigid bodies within the distance constraint established by the rectangle 

dimensions. 

𝑅 − 𝑅𝑅 − 𝑅𝑅𝑅  

𝑅 − 𝑅𝑅𝑅 − 𝑅𝑅  

𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅  

𝑅𝑅 − 𝑅𝑅 − 𝑅𝑅  

5.2.3.3 Modes 

Connecting right triangles to each other does not allow for choice in connection 

orientation because the right angled vertices must be coincident. However, affixing the right 

triangles to the rectangles permits a choice of rectangular vertex to attach the right angled 

vertex because either orientation maintains the parallel orientation of the connecting edges 

across the rectangle. When right triangles are connected on either side of a chain of 

rectangles, the right angle vertices may connect to vertices on the same side of the rectangle 

or diagonally across the rectangle. These different connectivities result in different modes of 

connection of the mechanism. All unique modes of each 6 DOF spatial chains are depicted in 

Table 7 based on the combinations of vertex pairs spanning a rectangle’s diagonal. 
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𝑹 − 𝑹𝑹 − 𝑹𝑹𝑹 
I II 

 

 

𝑹 − 𝑹𝑹𝑹 − 𝑹𝑹 
I II 

  

𝑹𝑹 − 𝑹 − 𝑹𝑹𝑹 
I II 

  
𝑹𝑹 − 𝑹𝑹 − 𝑹𝑹 

I II III 

  
 

Table 7. Unique modes of each rigid panel 6 DOF spatial chain 
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5.2.4 Degrees of Freedom Analysis 

5.2.4.1 Spatial Mechanism Analysis 

The 𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅 spatial chain can be depicted with an SC graph (equivalent to a 

spatial link-joint graph because of the lack of a closed loop), in which the five links and six 

edges are connected to two arbitrary rigid bodies as depicted in Figure 56. The total number 

of each feature in the spatial constraint space permits calculation of the degrees of freedom 

between the two rigid bodies using the modified C-G-K equation for spatial mechanisms. As 

expected, the mobility is 6 DOF. 

 𝜆 = 6; 𝑁 = 7; 𝐽 = 6; 𝑓𝑖 = 1 

𝑀 = 𝜆(𝑁 − 𝐽 − 1) + ∑𝑓𝑖 = 6(0) + 6 = 6  

𝑀 = 6 𝐷𝑂𝐹   

5.2.4.2 Polyhedron Model Analysis 

The 𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅 spatial chain can be depicted with an SCD graph (which encodes 

the linkage geometry) where the number of sides in a link is indicated by the vertex degree. 

The spatial chain connects arbitrary 𝑛- and 𝑚- sided rigid polyhedra as depicted in Figure 57. 

The counting for the polyhedron mobility formula is more involved. The number of vertices 

is the number of open edges, which is seven from the chain and 𝑛 − 1 and 𝑚 − 1 from the two 

rigid bodies. The number of external edges is 𝑛 + 𝑚  from the rigid bodies and eleven 

accounted for by the chain. The number of internal edges is 2𝑛 − 6 and 2𝑚 − 6 from the rigid 

bodies and four total from the two rectangles in the chain. As expected, the mobility is 6 DOF. 

𝑛,𝑚 ≥ 3  

 𝑉 = (𝑛 − 1) + (𝑚 − 1) + 7 = 𝑛 + 𝑚 + 5; 𝐶 = 0  

𝐸 = 𝐸𝑒𝑥𝑡 + 𝐸𝑖𝑛𝑡 = (𝑛 + 𝑚 + 11)𝑒𝑥𝑡 + ((2𝑛 − 6) + (2𝑚 − 6) + 4)𝑖𝑛𝑡 = 3𝑛 + 3𝑚 + 3;  

𝑀 = 3(𝑉 + 𝐶) − 𝐸 − 6 = 3(𝑛 + 𝑚 + 5) − (3𝑛 + 3𝑚 + 3) − 6 = 6  

𝑀 = 6 𝐷𝑂𝐹   
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Figure 56. SC graph of 𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅 chain connecting two arbitrary rigid bodies 

 

 

Figure 57. SCD graph of 𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅 chain connecting two arbitrary rigid bodies 
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5.2.5 6 DOF Spatial Chain Pop-Up Element 

The purpose of the development of the rigid panel 6 DOF spatial chain is presenting a 

useful spatial mechanism and its mapping to the kinematic paper art domain. Element 2 

utilizes the paper art domain to present the reader with an interactive 𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅 rigid 

panel spatial chain capable of 6 DOF. Manipulation of this element tangibly demonstrates its 

spatial degrees of freedom. 
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Element 2. 6 DOF spatial chain pop-up element 

Instructions: 

1. Photocopy and print 

this diagram on a new 

sheet of paper 

2. Cut along the solid 

black lines (don’t cut 

anywhere else) 

3. Crease the dashed 

lines thoroughly such 

that they can be 

folded back and forth  

4. Hold Rigid Body B and 

position it relative to 

Rigid Body A without 

allowing the links to 

curve 

5. Observe how any 

position and 

orientation of Rigid 

Body B can be 

achieved with the 

appropriate crease 

angles in the chain 

Rigid 

Body B 

Rigid 

Body A 

✁
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 DEVELOPMENT OF N DOF SPATIAL CHAIN 

5.3.1 Top-Down Design Approach 

5.3.1.1 Motivation 

Using the same rigid panel links, notation, and constraints as the 6 DOF spatial chain 

case, the methodology to find the 6 DOF permutations can be generalized to find all valid 𝑁 

DOF permutations of a spatial chain, where 𝑁 ≤ 6 . The results of this analysis are all 

meaningful combinations of the rectangular and right triangular panels with mobilities 

ranging from 1 DOF to 6 DOF. 

5.3.1.2 Algorithm 

The algorithm was refined from the 6 DOF case such that the number of “𝑅” and “−“ 

characters in a string could be reduced from the initial quantities taken from the UPS 

mapping. This represents determining all combinations of removed and rearranged links to 

methodically suppress all combinations of degrees of freedom without breaking the 

constraint rules. This method enumerates the valid combinations of the specified links into 

chains which have one to six degrees of freedom. The algorithm is encoded in Appendix B:  N 

DOF Spatial Chain Matlab Code. 

5.3.2 Enumeration of Rigid Panel N DOF Spatial Chains 

The output of the algorithm was compiled into Table 8 and analyzed. The mobility of 

the mechanism is equal to the number of 𝑅s in the string by inspection of the modified C-G-K 

equation for spatial mechanisms. Whether the distance constraint between rigid bodies is 

coincident, fixed, or variable is determined by whether there are zero, one, or two rectangular 

panels, respectively. The variable distance is permitted by the prismatic joint analogue of two 

rectangular panels. Determination of the equivalent spatial mechanism treats rectangles as 
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connecting links and translates an isolated 𝑅  to a revolute joint (R), an isolated 𝑅𝑅  to a 

universal joint (U), and an isolated 𝑅𝑅𝑅 to a spherical joint (S) per the rigid panel definitions 

of these joints. It is notable that the output permutations include the definitions of revolute, 

universal, and spherical joints as well as all 6 DOF spatial chains. Finally, the output includes 

the SS mechanism established by Winder et al. [5], which has six degrees of freedom, but one 

of which is degenerate rotation of the link between the spherical joints. The SS mechanism as 

presented by Winder et al. is a mode of the 𝑅𝑅𝑅 − 𝑅𝑅𝑅 class in which the spherical vertices 

are attached diagonally across the rectangular panel. 
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DOF 
Distance 

Constraint 
Panel Notation 
Representation 

Spatial 
Mechanism 

Comment 

1 Coincident 𝑅 R Revolute joint 

2 
Coincident 𝑅𝑅 U Universal joint 
Fixed 𝑅 − 𝑅 RR Note: all revolute joints parallel 

3 
Coincident 𝑅𝑅𝑅 S Spherical joint 
Fixed 𝑅 − 𝑅𝑅 RU — 
Variable 𝑅 − 𝑅 − 𝑅 RPR Note: all revolute joints parallel 

4 
Fixed 

𝑅 − 𝑅𝑅𝑅 RS 
— 

𝑅𝑅 − 𝑅𝑅 UU 

Variable 
𝑅 − 𝑅 − 𝑅𝑅 RPU 

— 
𝑅 − 𝑅𝑅 − 𝑅 RUR 

5 

Fixed 𝑅𝑅 − 𝑅𝑅𝑅 US — 

Variable 

𝑅 − 𝑅 − 𝑅𝑅𝑅 RPS 
— 
 

𝑅 − 𝑅𝑅 − 𝑅𝑅 RUU 
𝑅 − 𝑅𝑅𝑅 − 𝑅 RSR 
𝑅𝑅 − 𝑅 − 𝑅𝑅 UPU 

6 

Fixed 𝑅𝑅𝑅 − 𝑅𝑅𝑅 SS 
Winder et al. SS mechanism; 
extraneous DOF 

Variable 

𝑅 − 𝑅𝑅 − 𝑅𝑅𝑅 RUS 

6 DOF spatial chains 
𝑅 − 𝑅𝑅𝑅 − 𝑅𝑅 RSU 
𝑅𝑅 − 𝑅 − 𝑅𝑅𝑅 UPS 
𝑅𝑅 − 𝑅𝑅 − 𝑅𝑅 UUU 

Table 8. Enumeration of rigid panel N DOF spatial chains 
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6 MISCELLANEOUS OBSERVATIONS ON PAPER ART 

 MOBILE OVERCONSTRAINT 

6.1.1 Identification of Overconstraint 

6.1.1.1 Definition 

Overconstraint is a property of a mechanism connectivity in which the predicted 

generic mobility is zero (or negative). This implies that the mechanism’s position is fully 

defined with no degrees of freedom, so the mechanism is a structure. In the case of a mobile 

overconstrained mechanism, the generic mobility equation does not output the actual value 

of the mechanism’s mobility; the mobility equation predicts zero degrees of freedom, but the 

actual mechanism has positive mobility due to a combination of special geometric 

characteristics such as symmetry, special angle relationships, or other unique properties 

[30]. Often the identification of a mobile overconstrained mechanism is dependent on 

experimental observation rather than a methodical analysis approach. Some mobile 

overconstrained mechanisms are well known in the origami domain, and these are used to 

inform a preliminary study of the characteristics which permit mobility in overconstrained 

mechanisms. 

Specific dimensions of links are the source of mobile overconstraint in mechanisms, 

so it is critical to note that this requires mathematically perfect geometry. Any variation in 

the dimensions through, for example, machining with a high tolerance removes the mobile 

overconstraint, creating an overconstrained mechanism which has no mobility. This 

sensitivity to dimensional error introduces a challenge in physically implementing 

overconstrained mechanisms. Conversely, high degrees of precision, symmetry, and other 

aesthetic features in an implemented design may introduce mobility when immobile 
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overconstraint is expected; this may lead to safety issues in design spaces such as 

architecture if a structure is expected but the bodies have unexpected, overconstrained 

mobility [31]. 

6.1.1.2 Mobile Overconstraint Quantification 

Beatini and Korkmaz address the quantification of overconstraint in a mobile 

overconstrained mechanism using a term which accounts for the difference between the 

predicted and observed mobility [12] as stated in (Eqn. 8). 

𝑀𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑀 + ℎ𝑔𝑒𝑜𝑚  (Eqn. 8) 

The overconstraint term is the number of degrees of freedom which are accounted 

for by geometric properties rather than the mechanism connectivity. This value can also be 

interpreted as the number of 1 DOF revolute folds that need to be introduced to allow 

mobility in the generic mechanism. 

6.1.2 Miura-Ori Analysis 

A famous mobile overconstrained origami fold is the Miura-ori [21], which is a 

specific variation of a mesh of quadrilaterals in which each panel is an identical parallelogram 

and the orientation of the panels are such that there are parallel planes of symmetry along 

the edges of each row of parallelograms and tessellation of the parallelograms along the 

planes, forming the specific mesh depicted in Figure 59. The simplest mesh is a single four-

bar cell of parallelograms with a central plane of symmetry as depicted in Figure 58, and a 

larger mesh can be developed by tessellation of this cell. Typically mechanisms with meshing 

exhibit overconstraint and are structures; however, the special dimensions of the Miura-ori 

(i.e. the parallel edges and supplementary angles of the parallelogram) permit one degree of 

freedom in the mesh. 
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Figure 58. Miura-ori four-bar cell 

 

    

Figure 59. Mobile Miura-ori mesh (left) and tube element (right) 
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An analysis of the Miura-ori cell was undertaken to identify the source of mobility. A 

single four-bar cell of the tessellation was further reduced by symmetry [32] into a two-bar 

mechanism with edges constrained to a homokinetic plane about which there is reflective 

symmetry to form the other two links. The motion of the simplified two-bar model is fully 

defined by three dimensions of the parallelogram (the two side lengths and the angle between 

them) and the homokinetic 𝑥𝑦  plane constraint as depicted in Figure 60. From these 

parameters, vector analysis determines the parameterized motion of the mechanism (see 

Appendix A:  Miura-Ori Vector Analysis). The analysis illustrates that the edges which 

emanate from the homokinetic 𝑥𝑦  plane are constrained to be parallel to the 𝑥𝑧  plane, 

perpendicular to the homokinetic plane. This permits tessellation of the Miura cell by 

translation over the 𝑥𝑧 plane. This property allows for the mating of any number of four-bar 

cells to form a two-dimensional mesh as depicted in Figure 59 while maintaining the same 

mobility of 1 DOF of the initial four-bar cell. The cell can also be reflected over the plane to 

form a tube shape as depicted in Figure 59, which can be further tessellated into a three-

dimensional tube or cellular tessellation [21]. 

The Miura-ori can be depicted with an SC graph representing the connectivity of the 

parallelograms, and spherical system mobility analysis can be employed to calculate the 

generic mobility. Because the true mobility is known to be one, the overconstraint parameter 

of the Miura-ori can be calculated in terms of the SC graph mesh size. 
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Figure 60. Miura-ori vector definition (top) and coordinate diagram (bottom) 

 

 

Figure 61. Miura-ori mesh SC graph of arbitrary mesh size 
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Figure 61 describes an arbitrary Miura-ori mesh consisting of 𝑖 by 𝑗 parallelograms. 

Because this is a spherical system with a known mobile overconstraint property and known 

actual mobility, spherical system mobility analysis can be used to quantify the degree of 

overconstraint in the mesh. The calculated quantity, (𝑖 − 2)(𝑗 − 2) indicates that if 𝑖 or 𝑗 is 

two, there is a two-strip mechanism with no overconstraint and 1 DOF. Furthermore, in the 

corresponding mesh of polyhedra of arbitrary dimension, if (𝑖 − 2)(𝑗 − 2)  creases are 

introduced to the same number of panels, the resulting linkage will have 1 DOF. 

𝑁 = 𝑖𝑗;  𝐽 = (𝑖 − 1)𝑗 + (𝑗 − 1)𝑖 = 2𝑖𝑗 − 𝑖 − 𝑗  

𝑀 = 1 = 3𝑁 − 2𝐽 − 3 + ℎ𝑔𝑒𝑜𝑚  

𝑀 = 1 = 3(𝑖𝑗) − 2(2𝑖𝑗 − 𝑖 − 𝑗) − 3 + ℎ𝑔𝑒𝑜𝑚  

ℎ𝑔𝑒𝑜𝑚 = 𝑖𝑗 − 2(𝑖 + 𝑗) + 4  

ℎ𝑔𝑒𝑜𝑚 = (𝑖 − 2)(𝑗 − 2)  

6.1.3 Square Twist Analysis 

Another well-recognized mobile overconstrained fold is the square twist fold [18], 

depicted in Figure 62. This mechanism is also a quadrilateral mesh which has a predicted 

generic mobility of zero, but the mechanism is observed to have one actual degree of freedom. 

A qualitative analysis can be employed to identify special dimensions which contribute to the 

mobility using the identified Miura-ori special dimensions as a base to compare. In the 

trapezoidal quadrilaterals in the mesh, adjacent angle pairs are supplementary, which asserts 

the opposite crease axes are parallel; furthermore, the angles of the corner rectangles are all 

right, which asserts orthogonal pairs of parallel crease axes. This permits the planes of the 

rectangular corner panels to all remain parallel to each other. Furthermore, the radial 

symmetry of the mechanism allows the tessellation to form a loop about the center square. 
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Figure 62. Square twist fold (top) and its SC graph (bottom) 
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6.1.4 Exceptional Closure Cases 

Some linkages are single closed loops which do not have a single spherical center or 

have otherwise skew joint axes but which exhibit mobile overconstraint. A well-known 

example which maps readily to the rigid panel model is the Sarrus mechanism [33] depicted 

in Figure 63 which features two chains with all parallel joints connecting two parallel planar 

rigid bodies. This mechanism exhibits 1 DOF of vertical displacement between the parallel 

panels. Other mechanisms in this class include Bennett and Bricard mechanisms [33], [34], 

which can be represented by polyhedra with specific dimensional relationships. The 

geometric dimensions which permit the mobile overconstraint in this general class of 

mechanisms is not as obvious as in the spherical system cases of the Miura-ori and square 

twist. It is anticipated that the special geometric feature permitting mobility is the 

intersection of some combination joint axes of the loop to multiple distinct, moving spherical 

centers and/or infinite spherical centers with different axis directions. Wampler et al. identify 

a loop with similar exceptional properties and develop notation to address it [13] but still 

rely on mechanism observation to inform the overconstraint term. If a generalized property 

which permits this mobility is determined, the SCD graph scheme should be modified to 

incorporate it. 
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Figure 63. Rigid panel Sarrus mechanism (top) and its SCD graph (bottom) 
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 ACTIVATING COMPLIANCE 

6.2.1 Definition 

Paper is inherently compliant due to its typical geometric properties. The ability to 

deform paper by hand is the reason for its use in origami. In rigid paper art, the paper links 

are treated as rigid bodies with ideal joints. Because paper does not consist of truly ideal 

joints in actuality, the mechanism equivalent actually has a stiffness associated with it [5] 

which is a nonlinear function that may change due to plastic deformation and other factors. 

Furthermore, in reality, paper’s thin geometry permits deformation of the surface under 

small forces. The curvature of paper under compliant bending can be modeled with the PRBM 

model as a rigid joint with some stiffness [5]. A crucial observation regarding the nature of a 

joint with stiffness or PRBM representation is that the “spring” force has an equilibrium point 

in which the net force is zero and the system seeks to maintain, although due to complicated 

material properties and geometry of paper, the spring force may be highly nonlinear and the 

equilibrium position may change due to plastic deformation. 

These properties inform characteristics of the various classes of compliant 

mechanisms. In the analysis of compliant mechanisms, various states of mechanisms are 

recognized based on their compliance properties and generic mobility properties. 

Transitions from one state to another define various classes of compliant mechanisms. 

6.2.2 Classification 

Two properties of a mechanism which can be combined in different ways are the 

compliance behaviors of the links and the mobility of the mechanism. The compliance of a 

link is “activated” when it is displaced from its equilibrium state by some force; if a compliant 

link remains in its equilibrium, it can be considered a rigid link. The mobility of the 

mechanism is the predicted generic mobility when all links are treated as rigid (i.e. compliant 
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links maintain equilibrium). These two binary properties can be combined into a matrix 

(Figure 64) that describes the state of a mechanism. Compliant mechanisms are capable of 

jumping between states by the activation or deactivation of compliance. Compliant 

mechanisms can be classified by the manner in which they transition through the states. 

Preliminary examples of common behaviors are described in the examples that follow. 
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Figure 64. Matrix of mechanism's compliance and mobility properties 
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6.2.2.1 Compliant Mechanism 

In this class of mechanism, the initial state is taken to be an immobile mechanism in 

which a compliant member behaves rigidly in its equilibrium, such as the truss featuring a 

compliant member in equilibrium in Figure 66, left. The compliance of the member is then 

activated which allows mobility, as depicted by the stretching of the compliant link 

permitting motion in Figure 66, right. This class of behavior is summarized in Figure 65. 

6.2.2.2 Compliant Locking 

In this class of mechanism, the initial state is taken to be mobile mechanism due to a 

member behaving compliantly, such as the two links connected by a compliant string in 

Figure 68, left. A limiting position of the compliant member is then reached, which locks the 

mechanism in some direction, such as the string’s fully tensioned position in Figure 68, right. 

This class of behavior is summarized in Figure 67. 

6.2.2.3 Variable Mobility Mechanism 

In this class of mechanism, the initial state is taken to be rigid, mobile mechanism in 

which a compliant member behaves rigidly in its equilibrium state, such as the four-bar with 

its compliant member in equilibrium in Figure 70, left. The compliance of the member is then 

activated, which permits an additional degree of freedom, such as four-bar with the 

stretching compliant link in Figure 70, right. This class of behavior is summarized in Figure 

69. 
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Figure 65. Compliant mechanism states 

 

    

Figure 66. Compliant mechanism in its rigid, immobile state (left) and its compliant, mobile state (right) with its 

compliant member highlighted and mobility indicated with arrows 
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Figure 67. Compliant locking states 

 

    

Figure 68. Compliant locking example in its compliant, mobile state (left) and its compliant, immobile state (right) 

with its compliant member highlighted and mobility indicated with arrows 
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Figure 69. Variable mobility mechanism states 

 

    

Figure 70. Variable mobility mechanism in its rigid, mobile state (left) and its compliant, mobile state (right) with 

its compliant member highlighted and mobility indicated with arrows 
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6.2.3 Compliance in Practice 

6.2.3.1 Dynamical Modes 

Because the PRBM model introduces spring dynamics which have stiffnesses and 

equilibria associated with them, the dynamical motion of paper art as compliant mechanisms 

may be considered. Mechanisms with multiple degrees of freedom with stiffnesses associated 

with creases and compliant action will have a net mechanism equilibrium as well as 

dynamical modes associated with each degree of freedom. An example of this property is 

found in the fortune teller fold, which is a spherical eight-bar with four ride-along 

mechanisms associated with it with a total of five degrees of freedom. The relative positions 

of links serve as inputs and outputs to the dynamical system and the stiffness of the creases 

determine the system response to inputs. The ride-along addenda further influence the net 

stiffnesses of the creases and can be designed to influence the modes of motion. 

6.2.3.2 Neglecting Compliance 

In the discussion of rigidity vs. compliance, a binary relationship was established 

between the two. In reality, all materials have compliance as there is always some material 

elasticity. Rigid links refer to materials with stiffnesses which are orders of magnitude larger 

than the forces that they will typically experience and whose elastic deformations are 

negligible. On the other hand, compliance arises when a material’s stiffness is in a comparable 

order of magnitude of the forces. The “activation of compliance” occurs when the forces reach 

the range in which compliant deformation becomes significant. An example of a rigid material 

is a metal of sufficient thickness that cannot be bent by human hands alone in comparison to 

piece of cardboard that can be bent by human hands with low effort. The binary relationship 

of rigidity and compliance assumes a large enough gap between the stiffness and typical 

forces. 
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 ACTIVATING CONSTRAINT 

6.3.1 Discussion 

Constraint is defined as the removal of a degree of freedom from a joint. Constraint 

can be evaluated in the generic case, where it is simply known that a joint’s degree of freedom 

is eliminated, or in a specific case, where specific geometric characteristics are known which 

remove the degree of freedom. In a rigid linkage such as the four-bar in Figure 71, a critical 

constraining geometry is created when two adjacent links connected by a revolute joint 

become collinear or coplanar with some force keeping outward tension between them as in 

Figure 72, left. In this case, the revolute joints do not actuate along the rotational degree of 

freedom and are fixed at 180°. The removal of the revolute joint’s degree of freedom 

constrains the joint, and no relative motion is permitted between the two links. In contrast, 

when the same singular, coplanar link relation occurs with some force applying inward 

compression between, the two links will tend to buckle at the joint and permit motion as in 

Figure 72, right. 

The characteristic of links in a singular position constraining a revolute joint under 

tension and buckling under compression is analogous to the behavior of paper when treated 

as compliant. Due to paper’s material and geometry properties, it is capable of bearing 

tension along its plane, however, it is not capable of bearing compression along its plane and 

will buckle very easily. The curvature of paper under compliant bending can be modeled with 

the PRBM model as a rigid joint with some stiffness [5]. By converting a sheet to a PRBM 

linkage, it is evident that a compliant paper link behaves as a rigid link in a singular position 

in both tension and compression. 
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Figure 71. Four-bar mechanism with no constraining geometry 

 

    

Figure 72. Four-bar mechanism with constraint in tension (left), at the onset of buckling in compression (right) 

with its direction of motion indicated by the arrows  
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6.3.2 Locking Ride-Along Addendum 

Constraint can be represented on an SC graph by merging two vertices connected by 

an edge into a single vertex, representing the loss of the actuation of the joint between the 

bodies as depicted in Figure 73. This introduces a relative mobility of  −1 due to the loss of 

the single degree of freedom of the revolute joint. 

Δ𝑁 = −1;  Δ𝐽 = −1 

Δ𝑀 = 3Δ𝑁 − 2Δ𝐽 = 3(−1) − 2(−1) = −1  

Δ𝑀 = −1 𝐷𝑂𝐹 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑  

An application of singular constraint in spherical system mechanisms including 

kinematic paper art is a locking feature which enforces an acceptable range of angles between 

links. This can be implemented by adding a ride-along mechanism to two adjacent links in a 

loop such that the ride-along becomes constrained in tension (as depicted in Figure 73) when 

a specific angle between links is established. This prevents motion beyond this angle due to 

the singularity, but it allows for motion within the range because the singularity will buckle. 

Furthermore, because compliant paper can be interchanged for two links with a 

PRBM joint between them, a compliant ride-along mechanism may be introduced as a single 

piece of paper whose compliance is capable of actuating in the same motion that a rigid, 

jointed ride-along would provide. The compliant paper ride-along mechanism would also 

achieve locking singularity in tension due to the properties of paper.  

6.3.3 Design Example: Radially Deployable Cylinder 

A case study was introduced which implements a locking ride-along scheme to limit 

the angles of adjacent links. The motivating concept was the development of a deployable 

hand tool handle which is capable of collapsing to reduce storage space while exhibiting 

strength sufficient to apply torque. The design consists of radially symmetric panels each 

attached adjacently with a ride-along mechanism which reaches a singular position 
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corresponding to the angle which permits the outer links to open the full 360°, depicted in 

Figure 74. The locking ride-along addendum could be rigid or compliant. If the outer links are 

affixed to each other in the deployed position, the tension in the locked singular ride-along 

addenda ensure structural strength when torque is applied. 
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Figure 73. Activation of joint constraint converting a ride-along addendum (left) to a locked truss (right) by 

merging vertices (center) in SC graph notation 

 

    

Figure 74. Radially deployable cylinder cardboard mock-up, collapsed (left) and deployed (right) 

  

⨀ ⨀ ⨀ 
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 CONCLUSIONS DRAWN FROM THE STUDY OF KINEMATIC PAPER ART 

This study of kinematic paper art was inspired by the recognition that paper art can 

be mapped to the mechanism domain and that the work of those who develop paper art can 

be mapped, studied, and generalized to develop a foundation for analysis of the broader class 

of mechanisms of which paper art is a subset. This was accomplished with the principles of 

de-aestheticization and generic analysis. 

The goal of generalization of paper art in the mechanism domain was accomplished 

in two ways. The first was using properties of common paper art as the inspiration to classify 

the underlying mechanism class, the spherical system. The definition of spherical systems 

encompasses most kinematic paper art as well as traditional spherical and planar 

mechanisms as special cases, which motivated a reformulation of the Chebyshev-Grübler-

Kutzbach generic mobility equation. Appropriate physical representations, connectivity 

graph representations, and C-G-K-based generic mobility analyses were developed for 

spherical system mechanisms based on the salient characteristics of the mechanism class. 

The second level of generalization of paper art was identifying and analyzing 

spherical/spatial hybrid mechanisms, an overarching class of mechanism which includes 

spherical system mechanisms, fully spatial mechanisms, and combinations of the two. This 

class of mechanism is uncommon in kinematic paper art, but it is the broadest class of 

mechanism of which all kinematic paper art is a subset. Appropriate physical representations, 

connectivity graph representations, and polyhedron-based generic mobility analyses were 

adapted from Wampler et al. for spherical/spatial hybrid mechanisms based on the salient 

characteristics of the mechanism class. 

The generic analyses which were developed rely only on the salient link connectivity 

properties encoded in the connectivity graphs to assess generic mobility. This basic analysis 
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uses minimal information about the mechanism to determine its fundamental properties and 

generic behavior. This analysis is insufficient for dimensional synthesis of a specific 

mechanism, but it informs the type synthesis process in which linkage connectivities can be 

synthesized exhaustively using an automated process with simple calculation of mobility. The 

connectivity graphs proposed encode all salient information for this process in the context of 

pure spherical systems and spherical/spatial hybrids. 

In contrast with the generic approach, design of specific mechanisms in the spherical 

system domain can be informed by existing origami techniques. Whereas the generic analysis 

assumes de-aestheticized geometry, many mechanism applications are anticipated to require 

symmetry, rectilinear angles, planarity, and other special geometric features. Adapting the 

work of origamists to the mechanism domain is anticipated to be fruitful, and the generic 

foundation established in this analysis permits specific geometries as subsets of the 

generalized classes. 

It is expected that the potential of spherical system mechanisms can be realized once 

the foundation for notation and analysis is further developed. There is a lot of potential for 

applications because the class of mechanisms exhibit motion in three-dimensional space 

while having an overall 3 DOF mobility constraint space, which means the mobility analysis 

is the same as a planar or spherical mechanism, but the final motion is not constrained to 

these surfaces. A simple example presented was the generalization of the Watt mechanism 

from a planar mechanism to a spherical system, which exhibits complex motion of the links 

the three-dimensional space. Further work which will allow for methodical design of 

spherical systems involves the development of robust multi-loop position analyses to 

develop synthesis techniques. 
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APPENDICES 

APPENDIX A:  MIURA-ORI VECTOR ANALYSIS 

  

Known:   length 𝐴, length 𝐵, angle 𝜃 between 𝐴 and �⃑⃑� 

Constraint:  𝐴, 𝐴’ constrained to 𝑥𝑦 plane 

Input:   angle 𝜙 between 𝑥-axis and 𝐴 

Unknown:  orientation of �⃑⃑� defined by azimuth angle 𝛼 and elevation angle 𝛽 

Vector definitions: 

𝐴 = 𝐴 [
cos𝜙
sin𝜙

0

]; 𝐴′ = 𝐴 [
cos𝜙

− sin𝜙
0

]; �⃑⃑� = 𝐵 [

cos𝛽 cos 𝛼
sin 𝛽

cos 𝛽 sin 𝛼
]; 𝐶 = 𝐴 + �⃑⃑�; �⃑⃑⃑� = 𝐴′ − �⃑⃑� 

 

By vector geometry: 

𝐴 ∙ �⃑⃑� = 𝐴𝐵 cos 𝜃 (A1) 

𝐴𝐵 cos𝜙 cos 𝛽 cos 𝛼 + 𝐴𝐵 sin 𝜙 sin 𝛽 = 𝐴𝐵 cos 𝜃  

𝐴′ ∙ �⃑⃑� = 𝐴𝐵 cos 𝜃 (A2) 

𝐴𝐵 cos𝜙 cos 𝛽 cos 𝛼 − 𝐴𝐵 sin 𝜙 sin 𝛽 = 𝐴𝐵 cos 𝜃  

Subtracting: 

2𝐴𝐵 sin𝜙 sin 𝛽 = 0 (A3) 

sin𝜙 ≠ 0, generally 

∴ sin 𝛽 = 0 

∴ 𝛽 = 𝑛𝜋 (let integer 𝑛 = 0) 

∴ 𝛽 = 0 

∴ �⃑⃑� is parallel to the 𝑥𝑧 plane 

Substituting and simplifying: 

cos 𝜙 cos 𝛼 = cos 𝜃 (A4) 

∴ 𝛼 = arccos (
cos𝜃

cos𝜙
)  

Constraint: 

(
cos 𝜃

cos𝜙
) ≤ 1 (A5) 

∴ cos 𝜃 ≤ cos𝜙  

∴ 𝜙𝑚𝑎𝑥 = 𝜃  

�⃑⃑�(𝜙) = 𝐵

[
 
 
 
 (

cos 𝜃

cos𝜙
)

0

√1 − (
cos𝜃

cos 𝜙
)

2

]
 
 
 
 

 (A6) 

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝜙 ≤ 𝜃  

𝑪 

𝑨 

𝑩 

𝑨′ 

𝑫 

𝑥 

𝑦 

𝑧 
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APPENDIX B:  N DOF SPATIAL CHAIN MATLAB CODE 

Output 

DOF = 1 

R 

 

DOF = 2 

RR 

R-R 

 

DOF = 3 

RRR 

R-RR 

R-R-R 

 

DOF = 4 

R-RRR 

RR-RR 

R-R-RR 

R-RR-R

DOF = 5 

RR-RRR 

R-R-RRR 

R-RR-RR 

R-RRR-R 

RR-R-RR 

 

DOF = 6 

RRR-RRR 

R-RR-RRR 

R-RRR-RR 

RR-R-RRR 

RR-RR-RR 

 

 

Source Code 

% N DOF Spatial Chain 

% Marc Wiener 

clc; close all; 

  

global L1 L2 L3 L4 L5 L6 

  

L1 = []; L2 = []; L3 = []; 

L4 = []; L5 = []; L6 = []; 

mech = zeros(3,1); 

  

for size = 1:6 

     

    minNodes = ceil(size/3); 

    maxNodes = min(size,3); 

     

    for nodes = minNodes:maxNodes 

        if nodes == 1 

            for R1 = 1:3 

                if R1 == size 

                    mech = [R1; 0; 0]; 

                    addToList(mech); 

                end 

            end 

        elseif nodes == 2 

            for R1 = 1:3 

                for R2 = 1:3 

                    if R1+R2 == size 

                        mech = [R1; R2; 0]; 

                        addToList(mech); 

                    end 

                end 

            end 

        elseif nodes == 3 

            for R1 = 1:3 

                for R2 = 1:3 

                    for R3 = 1:3 

                        if R1+R2+R3 == size 
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                            mech = [R1; R2; R3]; 

                            addToList(mech); 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

fprintf('\nDOF = 1\n') 

printList(L1) 

fprintf('\nDOF = 2\n') 

printList(L2) 

fprintf('\nDOF = 3\n') 

printList(L3) 

fprintf('\nDOF = 4\n') 

printList(L4) 

fprintf('\nDOF = 5\n') 

printList(L5) 

fprintf('\nDOF = 6\n') 

printList(L6) 

fprintf('\n') 

 

 

function [] = addToList(mech) 

  

    global L1 L2 L3 L4 L5 L6 

    n = sum(mech); 

     

    if n == 1 

        if ~isDup(L1, mech) 

            L1 = [L1 mech]; 

        end  

    elseif n == 2  

        if ~isDup(L2, mech) 

            L2 = [L2 mech]; 

        end  

    elseif n == 3  

        if ~isDup(L3, mech) 

            L3 = [L3 mech]; 

        end  

    elseif n == 4  

        if ~isDup(L4, mech) 

            L4 = [L4 mech]; 

        end  

    elseif n == 5  

        if ~isDup(L5, mech) 

            L5 = [L5 mech]; 

        end  

    elseif n == 6  

        if ~isDup(L6, mech) 

            L6 = [L6 mech]; 

        end  

    end 

end 

 

 

function dup = isDup(list, mech) 

  

    dup = 0; 

         

    for i=1:size(list,2) 

        if mech(2)==0 && mech(3)==0 

  

            % Compare 1 to 1 

            if list(1,i)==mech(1) 

                dup = 1; 
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            end 

        elseif mech(3)==0 

  

            % Compare 1,2 to 2,1 

            if list(1,i)==mech(2) && list(2,i)==mech(1) 

                dup = 1; 

            end 

        else 

  

            % Compare 1,2,3 to 3,2,1 

            if list(1,i)==mech(3) && list(2,i)==mech(2) && list(3,i)==mech(1) 

                dup = 1; 

            end 

        end 

    end 

end 

 

 

function [] = printList(list) 

  

    for i=1:size(list,2)  

        printMech(list(:,i));         

    end 

end 

 

 

function [] = printMech(mech) 

  

    for i=1:mech(1) 

        fprintf('R'); 

    end 

     

    if mech(2) > 0 

     

        fprintf('-'); 

  

        for i=1:mech(2) 

            fprintf('R'); 

        end 

         

        if mech(3) > 0 

  

            fprintf('-'); 

  

            for i=1:mech(3) 

                fprintf('R'); 

            end             

        end 

    end 

     

    fprintf('\n'); 

end 
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