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Nomenclature 

A area, m2   Greek Symbols 
B channel width, m  β relative angle, ° 
c damping resistance, 1/m  λ tip speed ratio 
D diameter, m  μ dynamic viscosity, Pa-s 
d depth, m  ν kinematic viscosity, m2/s 
F forces, N  ρ density, kg/m3 
Fr Froude number  ω angular velocity, 1/s 
g gravity, m/s2  𝜔�  normalized vorticity 
m meridional length, m    
�̇�  mass flow, kg/s   Subscripts 
P pressure, Pa    

Re Reynolds number  B blades 
s cylinder cross section width, m  D drag 
t time, s  L lift 
T thrust, N  m at the mean value 
U velocity, m/s  max maximum value 
𝑈�  normalized velocity  m at the mean value 
V volume, m3  max maximum value 
�̇� power, W  max maximum value 
   T turbulent / thrust 
   t at the tip 
   ∞  freestream 
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Abstract 

 Hydrokinetic technology has a long history as a viable long term renewable 

energy. It has outpaced wind energy production in the U.S. due to the largely 

unpredictable and inconsistent nature of wind while most hydrokinetic technology 

operates in near constant flow conditions. These conditions are created through the 

construction of massive dams, causing intense and mostly irreversible damage to the 

surrounding area. Submerged hydrokinetic turbine systems are an alternative that has the 

potential to produce smaller quantities of electricity in far more locations. 

Energy production systems that produce less than 100kW are considered micro-

hydrokinetic systems. This level of production is ideal for isolated supplementary, 

emergency, and off-grid power generation. The design focus was to create a micro-

hydrokinetic turbine system to generate 250W of continuous power that could be 

transported by a small team.  

  As numerical models and optimization techniques were applied to the turbine 

design, the design necessitated a shift towards increasing manufacturability while 

maintaining peak performance.  By analyzing the CFD and optimization data of ideal 

conditions, critical and noncritical design locations can be determined. These critical and 

non critical locations were used to ultimately determine the way in which each 

component was to be manufactured. These modifications and manufacturing methods 

were imposed in the final design of the prototype and the influence of each was compared 

with ideal geometric conditions of the turbine. 

  



 

4 

  



 

5 

Chapter 1: Introduction 

Motivation 

In 2014 the U.S. produced 722 GWhrs of hydroelectric power, accounting for 

25% of the renewable energy produced and 2.5% of total energy produced in the U.S. 

that year [1]. Much of that power is harvested from large hydroelectric facilities that have 

massive local environmental impact.  Micro-hydrokinetic devices are a far less 

detrimental alternative to large scale hydroelectric energy production. For this design, an 

optimal flow speed of 1.5m/s with a depth of at least 2m is needed for the ideal 

conditions in which it was tested. While ideal locations for large hydroelectric facilities 

are scarce, there are an estimated 40,000 suitable sites in the U.S. that could be outfitted 

with a system of similar design [2]. Determining an economical solution for most micro-

hydrokinetic turbine applications remains a barrier to market. This design provides a 

proof of concept for the targeted suitable application sites in the U.S.   

Components of a Hydrokinetic Turbine 

 The hydrokinetic turbine consists of five critical design components that have a 

large effect on the overall power produced by a specific turbine geometry. The first 

design component is the runner. In general, the runner consists of blades connected to a 

central hub that ultimately provides the shaft to transmit torque to the system. The 

diffuser design needs to be carefully considered due to the effect is has on both power 

efficiency and downstream thrust generated. This implies that there is an optimum design 

for a given flow rate, or a maximum increase in power efficiency with minimal increases 

in thrust. The structural integrity of the diffuser is as important as the performance 
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implications because it is the only structural member connecting the leading components 

(nose, supports, front shaft of runner hub etc.) with the trailing components (nacelle, rear 

supports, fixture/mooring supports). 

 

Figure 1: Exploded view of hydeokinetic turbine assembly [3] 
 

The diffuser is the key design component for the entire system due to the 

performance and structural implications of the diffuser design combined with the 

difficulty of manufacture.  

The nacelle contributes to a large portion of the surface area of the system while 

both housing the gearbox/generator and acting as the main support member of the system. 

Thus, although simple in design, it is of chief concern for analyzing the flow through the 

system. The gearbox and generator specifications are determined by the numerical results 

and theoretical torque estimations.  

Objectives and Outline of Thesis Work 

 The four chapters of this Thesis aim to explain methods used to produce a 

functional prototype that produced the predicted results in [3, 4]. Chapter 1 provides an 

overview to the general hydrokinetic theory applied to the design of the prototype. 
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Chapter 2 consists of a brief explanation of the numerical methods and optimization 

techniques used with the design specifications to determine a runner and diffuser 

geometry. In Chapter 3, each critical component is analyzed and the design of each is 

refocused on manufacturability. The comparative advantages and disadvantages of each 

method are also detailed relating to cost, prototype assembly, and scalability. Finding an 

economical approach is of chief concern to the research of this particular micro-

hydrokinetic turbine and is as valuable as the results obtained by the prototype. The 

impact of each method on the performance of the turbine is analyzed in Chapter 4 while 

Chapter 5 explains the testing procedure in detail along with the conclusive results 

obtained in the final experiment.  

Chapter 2: Numerical Methods and Theory 

Reynolds Averaged Navier-Stokes Flow Model 

 The hydrokinetic device investigated operates in the presence of turbulence 

effects present within the flow field as well as those resulting from operation. Therefore, 

in order to accurately tabulate the both forms of turbulence in the turbine, an appropriate 

model must be implemented. The following highlights the derivations to allow for 

effective, efficient modeling of the unit in three dimensions. 

 The Reynolds Averaged Navier-Stokes (RANS) equation derived in this chapter 

is for the relative, rotational reference frame. The relative frame relates to the rotation 

speed applied to the turbine blade. Through this extension of the RANS equation, three 

dimensional simulations may be conducted using steady state analysis with the rotational 

frame. Each equation was formulated assuming incompressible flow. Reynolds 
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decomposition is used to separate velocity components of the Navier-Stokes equation 

into two separate components: a time-averaged term denoted by 𝑈 and a fluctuation term 

denoted by 𝑢′. The velocity term and the time-average term are as follows: 

𝑢𝑖(𝑥𝑖, 𝑡) = 𝑈𝑖(𝑥𝑖) + 𝑢′(𝑥𝑖, 𝑡) (1) 

𝑈𝑖(𝑥𝑖, 𝑡) =
1
∆𝑡
� 𝑢𝑖(𝑥, 𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
,∆𝑡1 ≪ ∆𝑡 ≪ ∆𝑡2 (2) 

where 𝑢𝑖(𝑥𝑖, 𝑡) is the velocity term variable in both time and space, ∆𝑡 is the time scale 

over which the time-averaging occurs, and the terms ∆𝑡2 and ∆𝑡1 are the upper and lower 

bounds of the time scale used for averaging. [5]. 

Rotational Reference Frame 

 Solving the equations for the rotational rotor in the absolute reference frame 

becomes increasingly difficult. Therefore, the steady, non-inertial frame of reference is 

used. The inclusion of centrifugal and Coriolis forces is necessary to transform the 

transport equations from inertial to non-inertial reference frames. The conservation of 

mass and momentum in the non-inertial frame of reference are listed below: 

𝜕𝑤𝑖

𝜕𝑥𝑖
= 0 (3) 

𝜕𝑤𝑖

𝜕𝑡
+ 𝑤𝑗

𝜕𝑤𝑖

𝜕𝑥𝑗
= −

1
𝜌
𝜕𝜕
𝜕𝑥𝑖

− 2𝜖𝑖𝑖𝑖𝛺𝑖𝑤𝑖 − 𝜖𝑖𝑖𝑖𝜖𝑖𝑙𝑡𝛺𝑖𝛺𝑙𝑥𝑡 + 𝜈
𝜕2𝑤𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
 (4) 

In equations (3) and (4), relative velocity w, permutation symbol 𝜖 and angular velocity 

of the reference frame 𝛺 are represented.  

𝜕𝑊𝑖

𝜕𝑥𝑖
= 0 (5) 



 

9 

𝜕𝑊𝑖

𝜕𝑡
+
𝜕�𝑊𝑖𝑊𝑗�
𝜕𝑥𝑗

+
𝜕�𝑤𝚤′𝑤𝚥′��������
𝜕𝑥𝑗

 

= −
1
𝜌
𝜕𝜕
𝜕𝑥𝑖

− 2𝜖𝑖𝑖𝑖𝛺𝑖𝑊𝑖 − 𝜖𝑖𝑖𝑖𝜖𝑖𝑙𝑡𝛺𝑖𝛺𝑙𝑥𝑡 + 𝜈
𝜕2𝑊𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
 

(6) 

where W is the time averaged relative velocity and the 𝑤𝚤′𝑤𝚥′������� is the time averaged 

fluctuation term. 

Turbulence Modeling 

 The time averaged fluctuation transfer term  −𝑢𝚤′𝑢𝚥′������ introduces six unknowns, 

creating an open system. Turbulence modeling is used to derive relations for the six 

unknowns and solve the system of equations. 

 The Boussinesq eddy-viscosity approximation [6] can be used to generate 

additional relationships. Assuming a linear relationship between the stress and strain 

within the flow, the specific Reynolds stress tensor and mean strain-rate tensor are 

determined. To define the Reynolds stresses: 

𝑘 =
1
2
𝑢𝚤′𝑢𝚥′������ (7) 

𝜏𝑖𝑗 =
2
3
𝑘𝛿𝑖𝑗 − 𝜈𝑇 �

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑢𝑖

� (8) 

where k is the turbulent kinetic energy, 𝛿𝑖𝑗 is the Kronecker delta, and 𝜈𝑇 is the kinetic 

eddy-viscosity. Introducing two dissipation terms: 

𝜀 = 𝑐𝐷𝑘3 2⁄ 𝑙 = 𝛽∗𝜔𝑘⁄  (9) 

where 𝑐𝐷 and 𝛽∗ are closure coefficients, l is the turbulence length scale, 𝜀 is the 

turbulent dissipation rate, and 𝜔 is the specific turbulent dissipation rate. The k-ω Shear 

Stress Transport (k-ω SST) developed by Menter [7, 8] is a turbulence model based on 
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the Boussinesq eddy-viscosity approximation. The equations for kinematic eddy 

viscosity, turbulent kinetic energy, and specific dissipation rate are included below: 

𝜈𝑇 =
𝛼1𝑘

max (𝛼1𝜔, 𝑆𝐹2)
 (10) 

𝜕𝑘
𝜕𝑡

+ 𝑈𝑗
𝜕𝑘
𝜕𝑥𝑗

= 𝜏𝑖𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝛽∗𝑘𝜔 +
𝜕
𝜕𝑥𝑗

�(𝜈 + 𝜎𝑖𝜈𝑇)
𝜕𝑘
𝜕𝑥𝑗

� (11) 

𝜕𝜔
𝜕𝑡

+ 𝑈𝑗
𝜕𝜔
𝜕𝑥𝑗

= 𝛼𝑆2 − 𝛽𝜔2 +
𝜕
𝜕𝑥𝑗

�(𝜈 + 𝜎𝜔𝜈𝑇)
𝜕𝜔
𝜕𝑥𝑗

�

+ 2(1 − 𝐹1)𝜎𝜔2
1
𝜔
𝜕𝑘
𝜕𝑥𝑖

𝜕𝜔
𝜕𝑥𝑖

 

(12) 

where 𝜈𝑇 is the turbulent eddy viscosity, 𝜈 is the kinematic viscosity, 𝑘 is the turbulent 

kinetic energy, 𝜔 is the specific dissipation rate, 𝛼1is a closure coefficient, 𝛽 is a closure 

coefficient, 𝑆 is the mean rate-of-strain tensor, and 𝐹1 and 𝐹2 are blending functions. The 

blending functions of the original SST model are not included amongst equations (10) 

through (12). The blending functions, closure coefficient values, and derivations may be 

obtained from Wilcox [5]. 

Numerical Method 

 The finite volume method and the finite difference method are utilized in the 

numerical methods to follow. In finite differencing, the partial differential equations are 

discretized. In the finite volume approach, the integral form of the equation is discretized. 

Finite volume discretization is increasingly advantageous with increasing complexity of 

the target geometry. The finite volume discretization utilizes control volumes. 
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 The fundamental basis of the finite volume method is the control volume 

integration with Gauss’ divergence theorem. The divergence theorem states that the net 

flow is equal to the sum of all source terms minus the sum of all sink terms. 

� �∇ ∙ �⃗��
𝑉

𝑑𝑑 = � ��⃗� ∙ 𝑛�⃗ �
𝑆

𝑑𝑆 (13) 

where V is volume, S is surface, �⃗� is a vector field, and 𝑛�⃗  is the outward pointing unit 

normal vector. Applying equation (13) to generic flow variable, ϕ, in the x-direction, the 

change of variable ϕ in the x-direction can be approximated as: 

𝜕𝜕
𝜕𝑥

=
1
∆∀

�
𝜕𝜕
𝜕𝑥

∀

𝑑∀=
1
∆∀

�𝜕𝑑𝐴𝑥
𝑆

≈
1
∆∀

�𝜕𝑖𝐴𝑖,𝑥

𝑁

𝑖=1

 (14) 

where ∀ is the discretized volume, 𝐴𝑖,𝑥 is the x-direction projection of the ith face of the 

discretized volume, and N is the number of closed surfaces existing on the discretized 

volume. Equation (14) provides the fundamental basis for solving partial differential 

equations of flow variables in three-dimensional geometry. 

Finite Volume Methods Implemented 

Coupled [9] pressure-velocity solvers were implemented to obtain the steady state 

predictions of flow field conditions and performance characteristics of the turbine unit. 

Skewness corrections were also applied to account for cells to reduce convergence 

difficulties present where cells may experience distortion resulting in issues with mass 

flux values between adjacent cell faces. In steady-state simulations a Coupled solver was 

used to determine the resulting flow field. The Coupled algorithm is more accurate than 

Semi-Implicit Method for Pressure Linked Equations (SIMPLE) solvers for steady-state 
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simulations. It also is more efficient when solving the continuity and momentum 

equations in single-phase simulations. 

Boundary Conditions 

 Simulations were comprised of a rectilinear or semi-cylindrical channel 

comprised of two separate subdomains. The first region represented the river domain and 

turbine domain. Figure 2 includes the isometric view of the two-domain setup, along with 

the cross sectional view and an example turbine geometry.  

 

Figure 2. General boundary condition setup for RANS-CFD analysis [10]. 

 For single phase, steady state analysis, the turbine domain from Velocity was 

specified at the inlet and a zero pressure gradient, constant gauge pressure condition was 

applied at the outlet. No slip boundary conditions were applied to the turbine rotor and 
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the river bed. The turbulent boundary conditions at the inlet and outlet were specified 

using the following: 

𝐼 = 0.16�𝑅𝑅𝐷𝐻�
−1 8⁄

 (15) 

𝑙 = 0.07𝐷𝐻 = 0.07 �
4𝐴
𝜕𝑤
� (16) 

Where I is turbulent intensity, DH is hydraulic diameter, 𝑅𝑅𝐷𝐻 is the Reynolds number 

based on the hydraulic diameter, and 𝜕𝑤 is the wetted perimeter of the channel.  

TurboGrid 

 TurboGrid was used to formulate the grid structure about the blade surface, the 

hub, and the outer shroud of the blade tip. This is of particular advantageous in areas 

where turbulence and adverse pressure gradients are more likely to exist. The ability to 

control the grid size and structure facilitates capturing the boundary layer and flow 

separation. Figure 3 and Figure 4 shows an example of the mesh produced in an axial 

view and the inflation layer along the hub and outward away from the blade.  
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Figure 3. Turbine domain axial grid structure [3] 
 

 

Figure 4. Boundary layer inflation along the blade and hub [3] 

  



 

15 

Chapter 3: Design Considerations 

Motivation 

 While the numerical methods used in [11, 12, 4, 3] contribute greatly to the 

theoretical implications of the design, the exact geometry is not easily reproducible for a 

physical experiment. The design was revisited in order to facilitate the production of a 

functioning full scale prototype while mitigating the effects on performance relative to 

the ideal optimized geometry of both the blade and the diffuser.  

A major design consideration for this prototype was structural integrity. 

Preventing any mode of structural failure was imperative due the testing conditions. The 

prototype was tested in the CWC at David Taylor Model Basin where a structural failure 

could cause costly or irreparable damage.  With axial thrust calculations for individual 

components readily available from [12, 3], worst-case estimations can be made on most 

of the critical design components. Structural rigidity must also be considered. A 

rotational imbalance in the blade or vibration of the system under load during flow 

conditions could also cause failure. 

A minor design specification driving the design of each component was a 

requirement that no one component weighed more than 80lbs. This specification 

theoretically allows each component to be carried by a team member responsible for 

deploying the system. In the next phase of design, each component would be further 

optimized for portability, encompassing ease of transportation and ability to pack and 

hold on to individual components.  

  



 

16 

Runner 

 The final blade geometry was optimized by Scheicher et al. [10] using the rapid 

CFD processes that were reviewed in Chapter 2. The geometry optimized for a flow 

speed of 1.5m/s, a flow rate determined to be the average of the most accessible sites 

within the performance criteria from available river data [2].  There are two parameters 

critical to the successful manufacture of the runner; the tolerance stack up on blade 

assembly and the strength of the shaft.  

The tolerance stack up on the blades needs to be considered to ensure a radially 

symmetric part. The center of mass must be as close as possible to the central axis of the 

runner to avoid a rotational imbalance. The tolerance is determined by the manufacturing 

process. The blades will be made separately and welded to the central hub. The hub was 

turned down from solid bulk aluminum. Standard turning operations above 6.0in in 

diameter have a diametrical tolerance of +/-0.003in and +/-0.001in on operations below 

6.0in diameter[machinery’s]. The blades were machined on a 4 axis machine that can 

achieve a tolerance of +/-0.005in on the complex surfaces of the blade. Assuming worst-

case conditions for the turning operation, the hub can be a maximum of 0.0015 off center. 

At optimal blade rotation speed of 115 rpm, the maximum imbalance for caused by the 

hub is negligible (0.145N). Since the hub accounts for 70% of the mass and the symmetry 

of the three blades offsets any major imbalances due to the distance of the center of mass 

of the blade from the center axis of rotation, the tolerance on the blades would need to be 

many magnitudes higher than that of the hub. This is not the case. Thus, a force caused 

by an imbalance due to tolerance stack up is negligible.  



 

17 

More analysis is needed to analyze the stress and deflection of the blades when in 

operation at ideal conditions.  

 

Figure 5. Blade design (a) front view and (b) top view [12]. 
 

 
Figure 6: Assembly of runner 
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Diffuser 

 The diffuser is the key component to the system’s performance and structural 

integrity. The design of the diffuser was chosen from [4] and optimized for 1.5 m/s flow 

conditions. There are three parameters that control the performance of the diffuser; area 

ratio, length, and flange length. As shown in Table 1, the power production is not 

sensitive to the flange length, meaning it is not an essential component of the design in 

the diffuser. The performance response of the initial optimization of the diffuser is shown 

in Figure 7.The optimization output for maximum power is shown in Table 2 [3]. The 

angle is a direct representation of the area ratio of the inlet and outlet of the turbine. Both 

the power and diffuser thrust are significantly affected by the area ratio. Therefore, 

maintaining the area ratio is of chief importance when fabricating the diffuser.  
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Figure 7:Performance response for diffuser optimation (2m/s) [4] 

 
Table 1: Sensitivity at Peak Performance [13] 
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Table 2: Peak Performance Parameters [13] 
Parameters Maximum Power 
T (m) 0.0789 0.0846 0.0247 
θ (°) 10.4 10.8 9.6 
L (m) 0.912 0.839 0.771 
Power (W)  425.0 422.9 418.4 
Thrust Diffuser (N)  1221.0 1281.6 590.8 
Thrust Turbine (N)  344.2 341.6 334.5 

 

 The initial optimizations on the diffuser were a conical geometry. The optimal 

area ratio was chosen in [14, 3], then a curve was added to better maintain the desired 

flow properties through the majority of the meridional length while providing a smooth 

transition to the increased outlet diameter. While this geometry proved to be effective in 

the CFD simulations, the difficulty of fabrication was greatly increased. To lower cost 

and time frame of manufacture, the design was altered.  

 

Figure 8: Optimized diffuser geometry [4] 
 

The objective of the alteration was to drastically facilitate the fabrication of the 

diffuser while mitigating potential power losses. It was shown in the CFD simulations 
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that the smoothness of the curve did not heavily influence the power production. The 

change in design is represented in Figure 8 and 9.  

 

Figure 9: Redesigned diffuser geometry to facilitate manufacture 
 

This minor change had negligible effects on the performance of the prototype 

while significantly increase the manufacturability. The two components of the diffuser 

were fabricated with precise rolling operations and seam welded along the circumference 

of their joining edges. To assure that the diffuser was structurally stable, 304 stainless 

steel plate with a thickness of 0.313” was chosen. This thickness is important as the 

strength and thickness of this material are critical parameters in rolling operations. The 

flat blank of the detail is shown in Figure 10. The conical portion of the diffuser was 

fabricated by controlling the feed direction. The feed direction must remain tangent to the 

perimeter of the crescent shaped flat pattern. The tolerance on the diffuser is very critical 

to the functionality of the entire system. The front and back supports provide locating 

features for the runner assembly. The alignment of the central axis is important for 

reducing vibration and providing a sufficient seal between the shaft of the runner and the 
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nacelle housing the electrical components. The tolerance achieved on both the cylindrical 

and conical portion of the diffuser were specified at +/-0.005. This is tight enough to 

ensure a clean assembly, well within the performance of the rolling operations with 

multiple passes, and a negligible misalignment over the length of the runner assembly 

between leading and trailing components.  

 
Figure 10: Flat pattern of conical diffuser component, designed for rolling operation 

 

Nacelle and Elliptical Supports 

 The nacelle and supports are key structural components to the system. The 

supports provide the only connection between the runner, diffuser and the rest of the 

assembly. The supports are chiefly responsible for axial stability at optimum flow 

conditions. Although an individual support is unlikely to cause critical failure, the rigidity 

provided by the combination of supports was critical to the successful results of the 

prototype. The elliptical cross section was chosen to both reduce drag and increase 
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bending resistance from axial loading. A tube of elliptical cross section, 14ga 304 

stainless steel was used, shown in Figure 11.  

 

Figure 11: Cross section of elliptical tube, 2” and 1” major and minor axis, respectively 
 

The distributed load on each support can be estimated using worst-case 

assumptions. |𝑈| is calculated using the tip speed of the blade:  

|𝑈| = �𝑈∞2 + �
𝜔𝐷

2
�
2

 (1) 

 Using equation (1) to determine the distributed load, a comparison can be made 

between the circular (CD = 1.17) and elliptical cross section (CD = 0.4) using the Moody 

Diagram. The distributed load on the circular and elliptical supports was estimated to be 
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198.55N and 67.88N, respectively. Both loads are negligible when considering the 

structural strength of tube, but have a differing impact on the thrust associated with the 

system.  

The elliptical supports were purchased as a tube extrusion. The tolerance along 

the axis of the tube is +/-0.010in, however this is not critical to the design. Each tube end 

was then machined in a 5 axis CNC mill (tolerance of +/-0.005in) to create the necessary 

radius and angled cuts for a secure fit to the diffuser, leading cone, and body of the 

nacelle. The supports, when secured to the diffuser during assembly, provide the only 

locating features for both the leading nose and the nacelle. The tolerance stack up of the 

diffuser and support combine for a worst-case fit of +/-0.010in. This was combated on the 

leading nose by extending the length of the supports by 0.005in and machining a slot of 

0.015in slots in the leading nose. This would provide enough room to align the assembly 

before welding without creating weld gaps, decreasing the instances of potential critical 

failure points. The supports leading to the nacelle were offset from the surface of the 

nacelle by 0.010in. This ensured that the alignment of the nacelle could be compensated 

in all directions when assembling the shaft seal, nacelle front cap, gearbox, and generator. 

With these components installed, the trailing supports could be secured to the diffuser 

then welded to the nacelle. Each support was marked with a corresponding location on 

the diffuser to ensure the fit was maintained through various reinstallations throughout 

the prototyping process.  

The nacelle is also responsible for absorbing the torque of the runner assembly. 

The torque generated by the runner must be transfer through a gearbox to a generator, 

which is to remain fixed within the nacelle.  
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Figure 12: Providing a structure to fix the generator within the nacelle 
  

This was achieved through the use of stabilizing rings and rods running the length of the 

gearbox. The torque predicted in [12] was estimated to be 32Nm. This torque will be 

realized by the structure comprised of the rings and rods connected to the faceplate of the 

generator and gearbox. The rings are 0.5in plain carbon steel and the rods are 0.375in 

diameter plain carbon steel. A cross section of the set up is shown in Figure 13. With an 

estimated torque of 32Nm, each shaft experiences a load of 31.47 lbs. Without the central 

ring shown in Figure 12, this would translate to an angle of twist along the length of the 

gearbox equal to 6.4 degrees. With the central ring, the angle of twist along the length of 

the gearbox is reduced to 0.5 degrees, an order of magnitude smaller than the structure 

without the additional stabilizing ring. This torque is transferred to the front face plate of 

the nacelle, to the tabs welded to the inside on the nacelle, to the fixture assembly which 
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is fixed to a point above the surface of the water. Therefore the nacelle is both 

responsible for keeping the generator fixed relative to the rotation of the blade as well 

keeping the assembly axially aligned with the flow throughout testing. The fixture is 

discussed in greater detail in Chapter 4.  

 

Figure 13: Axial Ring Structure Cross Section 
  

The trailing cap of the nacelle was originally designed and simulated as a tapered 

cone to reduce thrust generated by the nacelle geometry. The cost savings of replacing 

the tapered cone with a disk cap far outweighed the reduced thrust due to the tapered 
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trailing cone. The estimated increase in thrust was determined negligible when comparing 

the anticipate results of the simulations and the final results obtained in full scale testing. 

Generator and Gearbox Selection 

According to the optimization data obtained by Schleicher [12, 3], the estimated 

power generated by the turbine was 431.4 W of mechanical power at 1.5m/s. The 

generator selected for the prototype was a 10 A, continuous DC permanent magnet 

generator made by Windstream LLC. At 48V, the generator was capable of producing 

between 250 and 1000 watts continuously without causing permanent damage to the 

generator. According to the optimization data, the shaft rotation speed at 1.5m/s will be 

115rpm. To hit our target power production with the generator, a gear ratio of 10:1 was 

used to produce an input shaft speed of 1150 rpm, corresponding to just over 400 W.  
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Figure 14: RPM vs DC AmpsOutput [3] 
  

Chapter 4: Prototype Assembly and Test Prep 

Prototyping and Mooring 

The process of assembling the prototype had significant design implications on 

the turbine. For example, the design of the internal support structure for the generator and 

gearbox assembly had to be installed after runner assembly, shaft seals, bearings and 

front plate of the nacelle. Considerations mentioned earlier about the alignment of the 

shaft axis with the gearbox and generator were realized during the assembly of the 

diffuser, supports, and nacelle. The alignment was maintained through each weldment.  
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The mooring fixture was design in favor of stability compared to standard types 

of mooring such as chains or ropes. Mooring chains provide only enough resistance to 

fight the thrust generated by the turbine and do very little to aid in axial stability. For this 

reason, the solid beam fixture was designed. The assembly in Figure 15 shows the final 

design implemented for the full scale test. 

 

Figure 15: Fixture assembly 
 

 The fixture assembly is comprised of two steel rectangular tubes welded in along 

the length of the nacelle, a 5.5ft beam, and a fixture plate used to fasten the prototype to a 

fixed mounting plate above the surface of the water. The rectangular tubes welded along 

the nacelle provide a very strong base for the beam. The beam is placed into the large 
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rectangular tube and fastened with 1/2in bolts. The tube is 4”x2” and 0.125” thick. The 

vertical portion was drilled out using a Bridgeport Mill. The horizontal and vertical tubes 

were then arc welded to the nacelle. Stainless steel filler wire of 0.035 inch diameter with 

an argon, helium, and C02 shielding gas mixture was used with constant voltage 

parameters. GMAW welding techniques were used on the connection between the trailing 

supports and nacelle. GTAW welding techniques were used by a certified welder on the 

trailing cap of the nacelle to ensure a water tight fit. A gasket was placed between the two 

flat surfaces prior to welding.  

 The fixture plate in Figure 16 is then fastened to the top of the beam. The two 

long brackets were waterjet cut from 0.5” plain carbon steel. Each plate had the bolt 

pattern shown on a Bridgeport mill and then fastened to the beam. The beam and bracket 

plates were placed on the mounting plate and clamped in position to be welded on the 

outside edges. The inside edges were not welded because the fillet created would cause 

interference when inserting the beam into the bracket for fastening. 
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Figure 16: Mounting plate and bracket 
 

The beam was composed of two 1.5” square 0.25in thick tubes welded together 

along the length of the tube. The ideal depth of the water channel testing was 4.5ft from 

the bottom of the fixture plate location above the surface. The beam was design to 

withstand the moment generated by the axial thrust produced by the generator. An 

estimated 224.3 lbs of thrust is generated at a flow speed of 1.5m/s. Using a cantilever 

beam equation and estimated moment of inertia of the beam, the total deflection is 

estimated to be only 0.32in.  Yielding of the fixture occurs at a flow speed of 4.8m/s 

according to estimated thrust data.  

The fixture plate and bolts must withstand a moment of 1009.4 ft lb about the 

bottom edge of the plate and shear load of 287 lbs, or the weight of the entire assembly. 

Worst-case scenario is 100% load on the bolt closest to the edge of the plate fixture 

shown in Figure 17.  
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Figure 17: Worst-case single bolt scenario 
  

Assuming only one bolt, the maximum shear force experience by this bolt is 4840 

lbs and a shear stress of 24,700 psi. The 0.5” grade 8 bolts used are rated for shear 

strength of 90,000 psi. Therefore, the worst-case scenario is not negligible but safe 

nonetheless. The same worst-case scenario can be applied to both the bolts used to fix the 

plate to the fixture above the surface and the fixture at the base of the nacelle. In the case 

of the plate fixture, the six 7/8” grade 8 bolts  are used to fix the plate to the mounting 

plate of the bridge at the CWC. Since the bolts are the same in number, larger, and further 

away from the center of rotation, it is reasonable to assume that the assembly is capable 

of withstanding the load. For fixture at the lower portion of the beam connecting the 

beam to the turbine assembly, the bolts experience far less force thus it is reasonable to 

assume that the use of the same bolts will provide a stable fixture. 
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To prevent leakage into the nacelle, there are many locations that must be sealed 

appropriately. The shaft seal is the most critical of these. The shaft seal selected was 

double lipped spring loaded seal shown in Figure 13.  

 

Figure 18: Shaft Seal 
  

The seal is rated for a maximum pressure differential of 10psi for applications less 

than 1000rpm. The hydrostatic pressure due to depth is 2.3 psi.  An enclosure was placed 

around the shaft seal. The tapered surface created between the blade hub and diameter of 

the nacelle by the enclosure diverts flow away from the shaft seal. Thus the dynamic 

pressure near the front face of the shaft seal is assumed to be negligible. Directly 

following the shaft seal is a needle bearing. The needle bearing was chosen because the 

addition axial length provides increased stability during rotation. It also carries the weight 

of the runner assembly via the trailing shaft. The leading shaft of the runner assembly is 

held in place by the leading nose and a solid composite bearing designed for submerged 

use. The cross section of the assembly components near the shaft seal, bearing, and 

coupling mechanism of the gearbox is shown in Figure 19.  
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Figure 19: Cross section of shaft components 
 

Other leakage points are shown in Figure 20. Location 1 was the last area sealed 

before testing because the nacelle is slid over the generator assembly and fastened to the 

nacelle’s front face plate during the last step of assembly. Once sealed, the prototype 

cannot be disassembled without breaking this seal. The seal was created by chamfering 

the leading edge of the nacelle and trailing edge of the face plate to create more surface 

area for an o-ring and sealant. The sealant chosen was standard heavy duty RTV 

automotive sealant. It not only creates a water tight seal, but also remains mildly flexible 

to compensate for any minor vibrations or displacements that occur during testing. 
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Figure 20: Critical sealing locations 
 

 Location 2 represents all of the screws and washers used to attached the generator 

support components. All of these screws and washers were also sealed with the RTV 

sealant as a precautionary measure. Location 4 represents and tube which accesses the 

surface. This is used to carry the electrical wiring of the generator to the surface. A 

sealing grommet, commonly used on composite boat hulls, designed for cable and hosing 

was fastened and seal with RTV to the trailing face plate of the nacelle and coated with 

RTV.  
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Chapter 5: Prototype Predictions and Performance 

Initial Numerical Analysis 

 An approximation for the mechanical power produced by the turbine was 

determined to obtain torque estimations. These torque calculations were used in the 

selection of the generator. The results from characterizing the performance of these 

geometries are presented in Figure 23 and Figure 24. The power coefficient is presented 

in Figure 23 and thrust coefficient in Figure 24 as a function of tip-speed ratio. Results 

were obtained from the rapid CFD optimization process and therefore an error of 10% is 

expected. The final overall system efficiency is generated  

𝐶𝑃,𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = 𝐶𝑃𝜂𝑐𝑜𝑐𝜂𝑔𝑜𝑐𝜂𝑔𝑜𝑜𝑜 
(17) 

Where 𝜂𝑐𝑜𝑐 is the efficiency of the DC/DC converter, 𝜂𝑔𝑜𝑐 is the efficiency of the 

generator, and 𝜂𝑔𝑜𝑜𝑜 is the efficiency of the gear box. 
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Figure 21. Prototype power coefficient predictions as a function of tip speed ratio [13] 

 

Figure 22. Prototype thrust coefficient predictions as a function of tip speed ratio [13] 
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 Preliminary results of Schleicher’s benchmark design [15] are shown. The results 

are obtained at a flow speed of 2.25 m/s. A 37.2% increase in power is realized with the 

inclusion of the diffuser. The results in Figure 23 only take into consideration the blade 

and diffuser geometries i.e. the leading cone, nacelle, supports and fixture and mounting 

components are not included [13]. 

 

Figure 23. Power coefficient as a function of tip speed ratio from rapid CFD results [13] 
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Figure 24. Coefficient of thrust as a function of tip speed ratio [13] 

Experimental Results 

 Experiments were conducted at the Circulating Water Channel (CWC) at the 

Naval Surface Warfare Center, Carderock Division [16]. . Two, 14-gage copper wires 

were led from the generator to electrical monitoring and data acquisition equipment. Two 

primary experiments were conducted. The first experiment held a constant current to 

control the load on the generator for 2 minute intervals, increasing the current upon 

completion of each interval. The power produced was measure by a data logger each 

second during the time intervals. The second setup used a capacitor in conjunction with a 

Solar Charging Converter (SCC) to trickle charge a battery bank. The channel was 

operated at flow speeds ranging from 1.0 m/s to 1.7 m/s to determine the power 

production of the prototype. 
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 Both numerical and experimental results yield approximately the same 

performance under peak conditions. The prototype was designed to operate around a tip 

speed ratio of 2.5. At tip speed ratios exceeding 2.5, the experimental results show a steep 

drop from predictions. The drop-off in power production can be attributed to the very 

steep power curve of the generator. This is only magnified by the 10:1 gear ratio selected 

for this application.  The generator only functions properly at a small range of rotation 

rates due to the gear ratio optimized for flow rates of 1.5m/s.  

 Performance terms, including power, thrust (𝑇), drag (D) and lift (L), of the 

modeled hydrokinetic turbine designs are normalized based on swept area (A), fluid 

properties, and upstream velocity. Performance and normalized terms are included below: 

𝜕 = 𝜏𝛺 (18) 

𝐶𝑃 =
𝜕

1
2𝜌𝐴𝑈

3
 

(19) 

𝐶𝑇 =
𝑇

1
2𝜌𝐴𝑈

2
 

(20) 

𝐶𝐷 =
𝐷

1
2𝜌𝐴𝑈

2
 

(21) 

𝐶𝐿 =
𝐿

1
2𝜌𝐴𝑈

2
 

(22) 

𝜆 =
𝛺𝑅
𝑈

 
(23) 

 

Here: 𝐶𝑇 is the thrust coefficient, 𝐶𝐷 is the drag coefficient, and 𝐶𝐿 is the lift coefficient, 

and λ is the tip speed ratio.  
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Figure 25 : Power coefficient as a function of tip speed ratio at various flow speeds [13] 
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Chapter 5: Conclusion 

 Key performance parameters of turbine units were introduced, including tip speed 

ratio, power coefficient, and thrust coefficient. These were the parameters used to 

optimize the blade geometry and diffuser geometry using numerical modeling techniques 

highlighted in Chapter 2. To verify the findings in [], a prototype was produce. The 

fabrication of the prototype required critical design changes and precautions due to the 

scale and location of testing.  

The ideal operational conditions for each design parameter were experimentally 

explored. A tip speed ratio of 2.5, torque of 37.6 Nm, input RPM of 1150 via the gearbox 

to the generator, power generation of 244W, flow speed of 1.5 m/s, and power efficiency 

of 44% [3] were predicted for the given runner and diffuser geometry, not accounting for 

mechanical losses introduced by the fixture and electrical losses introduced by the test set 

up. At peak performance of the experimental results of a flow speed of 1.5m/s and tip 

speed ratio of 2.5, the turbine produced 221.4W with an overall efficiency of 36% [13]. 

Considering the combination of error associated with the numerical methods imposed, 

mechanical losses due to minor structural instabilities, bearing friction, electrical losses 

due to the data logging set up and error associated with data acquisition equipment, 

simulation and analysis of this hydrokinetic device was verified.  

Various manufacturing and design techniques were utilized to maintain the 

overall performance of the turbine while mitigating cost and ensuring both stability and 

functionality. The meaningful data obtained in simulations is only valuable if it can be 

realized experimentally. Moreover, the experimental data is only valuable if it can be 
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applied in an economical manner. The barrier to entry in most hydrokinetic markets is 

more often than not an economical concern. Therefore, the ability to effectively apply 

design for manufacture principles is inherently as valuable to furthering the capabilities 

of hydrokinetic technology as theoretical advances in the field. 

  



 

44 

References 

 
[1]  D. R. Dunn, B. T. Fichman, S. Kaplan and P. Smith, "Primary Energy Production by 

Source November 2015," U.S. Energy Information Administration, Washington, 
D.C., 2015. 

[2]  P. Jacobson, "Assessment and Mapping of the Riverrine Hydrokinetic Resource in 
the Continental United States," Electric Power Research Institute (EPRI), Palo Alto, 
CA, 2012. 

[3]  J. Riglin, C. Daskiran, N. Oblas, W. Schleicher and A. Oztekin, "Design and 
Characteristics of a Micro-Hydrokinetic Turbine System," in Proceedings of the 
International Mechanical Engineering & Exposition (IMECE2015), Houston, TX, 
2015.  

[4]  J. Riglin, W. C. Schleicher and A. Oztekin, "Diffuser Optimization for a Micro-
Hydrokinetic Turbine," in ASME 2014 International Mechanical Engineering 
Congress and Exposition, Montreal, Quebec, Canada, 2014.  

[5]  D. C. Wilcox, Turbulence Modeling for CFD, La Canada, California: DCW 
Industries, Inc., 2010.  

[6]  J. Boussinesq, "Theorie de l'Ecoulement Tourbillant," Mem. Presentes par Divers 
Savants Acad. Sci. Inst. Fr., vol. 23, pp. 46-50, 1877.  

[7]  F. R. Menter, "Zonal Two-Equation k-ω Turbulence Models for Aerodynamic 
Flows," AIAA Paper 93-2906.  

[8]  F. R. Menter, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering 
Applications," AIAA Journal, vol. 32, no. 8, pp. 1598-1605, 1994.  

[9]  R. Issa, "Solution of Implicitly Discretized Fluid Flow Equations by Operator 
Splitting.," J. Comput. Phys., vol. 62, pp. 40-65, 1986.  

[10]  W. C. Schleicher, "Design Optimization of a Portable, Micro-hydrokinetic Turbine," 
Bethlehem, PA, 2014. 

[11]  J. Riglin, W. Schleicher, I. Liu and A. Oztekin, "Characterization of a micro-
hydrokinetic turbine in close proximity to the free surface," Ocean Engineering, vol. 
110, pp. 270-280, 1 December 2015.  

[12]  J. Riglin, W. C. Schleicher and A. Oztekin, "Numerical Analysis of a Shrouded 
Micro-Hydrokinetic Turbine Unit," Journal of Hydraulic Research, vol. 53, no. 4, 
pp. 525-531, 12 July 2015.  

[13]  J. Riglin, "Design, Modeling, and Prototyping of a Hydrokinetic Turbine Unit for 
River Application," Lehigh University, Bethlehem, PA, 2015. 

[14]  T. Matsushima, S. Takagi and S. Muroyama, "Characteristics of a highly efficient 
propeller type small wind turbine with a diffuserq," Renewable Energy, vol. 31, pp. 
1343-1354, 2006.  

[15]  W. Schleicher, J. Riglin and A. Oztekin, "Numerical Characterization of a 
Preliminary Portable Micro-hydrokinetic Turbine Rotor Design," Renewable 



 

45 

Energy, vol. 76, pp. 234-241, 2015.  
[16]  H. Saunders and C. Hubbard, "The Circulating Water Channel of the David W. 

Taylor Model Basin," SNAME Transactions, vol. 52, 1944.  
[17]  W. Schleicher, J. Riglin and A. Oztekin, "Numerical Optimization of a Portable 

Hydrokinetic Turbine," in Marine Energy Technology Symposium, Seattle, WA, 
2014.  

 
 
  



 

46 

Appendix A: Generator Specs and Dimensions 
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Appendix B: GAM PE-W Series Gearbox 
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