
Lehigh University
Lehigh Preserve

Theses and Dissertations

2016

An Investigation of Multi-Variable Optimization
Applied to the Hospitality Industry
Peng Gao
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Gao, Peng, "An Investigation of Multi-Variable Optimization Applied to the Hospitality Industry" (2016). Theses and Dissertations.
2597.
http://preserve.lehigh.edu/etd/2597

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F2597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2597?utm_source=preserve.lehigh.edu%2Fetd%2F2597&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

An Investigation of Multi-Variable Optimization Applied to the Hospitality Industry

by

Peng GAO

A Thesis

Presented to the Graduate and Research Committee of Lehigh University in Candidacy

for the Degree of Master of Science

in

Mechanical Engineering

Lehigh University

05/2016

ii

Copyright by Peng GAO

2016

iii

This thesis is accepted and approved in partial fulfillment of the

requirements for the Master of Science.

Date

Thesis Advisor

Chairperson of Department

Table of Content

1 Introduction and objectives

1.1 Complex multi-variable optimization problems…………………………………………..2

1.2 Hospitality industry example……………………………………………………………………….3

1.3 Specified application……………………………………………………………………………………6

1.4 Research goals and objectives…………………………………………………….……………..13

1.5 Research approach and structure of the thesis…………......………………………….14

2 Related scientific development

2.1 State of the art…………………………………………………………………………….…………….15

2.2 Software basis……………………………………………………………………………………………21

3 Scientific approach……………………………………………………………………………………………..22

4 Getting reservation data……………………………………………………………………………….…….24

5 Reservation assignment with equalization of nights stayed……………………..…….……28

6 Reservation assignment with equalization of income and the conventional

group…………………………………………………………………………………………….…………………….34

7 Analysis and discussion………………………………………………………………….………………..…..44

8 Reservation assignment with an added human decision maker ………..…………....…..54

9 Optimization result based on different configuration variables………….………………...57

10 Conclusion and future recommendation……………………………………………..……………….75

1

Abstract
 This thesis focused on a complex multi-variable multi-objective optimization

problem applied to the hospitality industry. Unlike running a normal hotel, running a

condo hotel needs to make both the guests and the unit owners satisfied. To make

guests happy, hotel operators try the best to fulfill requests of the guests. On the other

hand, making owners happy requires that those same operators provide a transparent

and balanced income summary for each owner. Opproprately balancing, these often

conflicting objectives is crucial in condo hotel management. Unfortunately, even

though current commercial packages claimed to contain equalization method, the

result using them is negative. This thesis introduced an engineering optimization

method to this problem. Several optimization methods were considered, and one that

was selected as most appropriate was developed and tested with sample potential

input information. The result demonstrated a marked increase in performance once

optimization method was applied.

Key words: multi-variable multi-object opitimization, condo hotel management,
equanlization method, greedy algorithm.

2

1 Introduction and objectives

1.1 Complex multi-variable multi-objective optimization problems

In mathematics, computer science and operations research,

mathematical optimization (alternatively, optimization or mathematical

programming) is the selection of a best element (with regard to some criteria)

from some set of available alternatives. An optimization problem is the problem

of finding the best solution from all feasible solutions. An optimization problem

often includes multiple variables and adds more than one objective. This kind of

optimization problem is called multi-variable multi-objective optimization.

Multi-objective optimization (also known as multi-objective

programming, vector optimization, multicriteria optimization, multiattribute

optimization or Pareto optimization) is an area of multiple criteria decision

making, that is concerned with mathematical optimization problems involving

more than one objective function to be optimized simultaneously. Multi-

objective optimization has been applied in many fields of science, including

engineering, economics and logistics where optimal decisions need to be taken

in the presence of trade-offs between two or more conflicting objectives. There

are examples of multi-objective optimization applications in many fields of study.

In finance, a common problem is to choose a portfolio when there are two

conflicting objectives, the desire to have the expected value of portfolio returns

be as high as possible, and the desire to have risk, often measured by the

3

standard deviation of portfolio returns, be as low as possible. In engineering,

many problems involve multiple objectives which are not describable as the-

more-the-better or the-less-the-better; instead, there is an ideal target value for

each objective, and the desire is to get as close as possible to the desired value

of each objective. For example, energy systems typically have a trade-off

between performance and cost or one might want to adjust a rocket's fuel usage

and orientation so that it arrives both at a specified place and at a specified time.

One of the best examples of a complex multi-variable optimization

problems lies in the hospitality industry.

1.2 Hospitality problem description

A condo hotel, also known as a hotel-condo or a Condotel, is a building,

or multi-building facility that is legally a condominium but which is operated as

a hotel, offering short term rentals, and which maintains a front desk.

Condo hotels are typically high-rise buildings developed and operated

as luxury hotels, usually in major cities and resorts [1]. These hotels have

condominium units which allow someone to own a full-service vacation home.

When they are not using this home, they can leverage the marketing and

management done by the hotel chain to rent and manage the condo unit as it

4

would any other hotel room.

Starting in Europe in the 1970s, condo hotels have been a big success

across the world. According to WTO research, over 150,000 families held condo

hotel properties over 500 vacation resorts worldwide in 1980[2]. By the end of

1995, 350,000 families bought their unit in over 5000 condo hotels in over 81

countries. At that time, the total sale of condo hotels worldwide was 4 billion

dollars. But in 2001, the number increased to 8 billion dollars and has kept a 15%

annual growth rate. In 2004, the number hit 30 billion dollars worldwide [3].

The reason for this successful and dramatic growth is that a condo hotel,

if operated correctly, benefits both the owners and the guests. Different with

homestay, where the owners have to list their properties on a website for rent,

a condo hotel is operated by a management team hired by the owner’s

leadership board. Running like a regular hotel, owners don’t have to contact

guests, offer and recover keys; do the cleaning before a guest comes and after

the guest leaves. The management team will take care of those businesses. Like

a regular hotel, a condo hotel is often equipped with pools, spas, fitness rooms

and other facilities that regular hotels have. Owners are usually allowed to use

those amenities for free during their stay at the hotel [4]. For guests, a condo

hotel room is more like an apartment unit fully equipped with a kitchen and all

modern conveniences. Guests can enjoy a more leisured stay in such a unit. In

5

addition, a condo hotel unit is often more carefully decorated than a regular

hotel room, which makes the stay more enjoyable.

Different from a regular hotel, a condo hotel is owned by different

owners and operated by a management company hired by the owner’s board [5].

The financial distribution is different too. In a condo hotel, after paying the

management team, each owner’s income is often determined by how many

nights his/her room is rent. Two owners holding rooms of the same type can

theoretically end up with quite different levels of annual income.

The goal of running a successful condo hotel is to make both the

customers and unit owners satisfied. To make the guests happy, the

management team should run the hotel without having the guests realize this is

anything other than a normal hotel, which means providing high quality services

and accommodations as a normal hotel to best fulfill customers’ demands. To

make unit owners happy, management team needs to assure a fair distribution

of the collective income to each owner and try to balance every owner’s income

regarding how they use their own room.

The reservation requests presented by customers provide the input

variables in this problem. Each reservation contains a reservation date, desired

unit type, check-in date and check-out date. In addition, however, it might

6

contain extra information such as, is this reservation made by the owner or does

the guest have special room request. In most hotels, guests are often given the

chance to specify preferences or to choose their favorite among the rooms

available in the hotel. Rooms with following characteristics would most likely to

be reserved more. Those located closer to elevators, or those with good sunlight

coming in might get more. For a beach resort hotel, oceanfront rooms with a

balcony usually get more reservations than the others. So, fulfilling guests’

requests and balancing the income for owners might be conflicting. So

managing reservations for a condo hotel is a perfect example of a complex multi-

variable, multi-objective optimization problem.

The remainder of this thesis concentrates on this problem and tries to

solve it using a secience-based engineering approach.

1.3 Specified application

The investigation started with an evaluation of 3 condo hotels as

examples starting with the case of the Flanders Hotel. The hotel was built in

1922 in Ocean City New Jersey. It was originally designed to serve as one of the

best hotels in America to provide an oceanfront resort for successful

businessmen and their families. The hotel operated as a very successful luxury

7

resort destination for decades. In 1996, the building was completely removed

into a collection of individually owned condo units. In 2010, The Flanders

Condominium Association acquired the 2nd floor banquet center, offices,

conference rooms and adjacent parking lot. The acquisition marked an exciting

return to the fundamental concept behind this historic grand hotel. The

purchase reunited all of the Flanders’ stunning facilities under common

ownership, and restored seamless cohesion to the operation of the hotel’s wide

array of services. The hotel has undergone many modifications since it opened,

and the millions of dollars invested in the building over the recent years have

completely refreshed the hotel’s striking interior and exterior, modernizing and

beautifying the guest suites, pool and deck [6].

8

Figure 1 one bedroom deluxe suite of the Flanders Hotel

Picture taken from Flanders Hotel website, http://theflandershotel.com/

The Flanders Hotel contains approximately 100 one bedroom suites,

that are held by different owners and collectively participate in a common rental

program. The hotel also holds two bedroom suites, three bedroom suites and

even five bedroom suites.

The second condo we studied is also located at a beach resort. Churchill

Suites Monte Carlo is located in Miami Beach Florida, one of the major beach

resorts in the southeast of the USA. This 13-floor building is a combination of a

residential apartment facility and a condo hotel. The 36 suites running as a

condo hotel are located on the floors 6, 7, 12 and 16. All of these 36 suites

include one bedroom, a living room with an ocean view, a full kitchen and a

modern bathroom. The deluxe suites also have a balcony with a good view.

9

Figure 2 outside of the Churchill Suites Monte Carlo Miami Beach

Picture taken from the Churchill Suites Monte Carlo Miami Beach website,

http://churchillsuites.com

10

Figure 3 one bedroom suite of Churchill Suites Monte Carlo Miami Beach

Picture taken from the Churchill Suites Monte Carlo Miami Beach website,

http://churchillsuites.com

11

Figure 4 Balcony of one bedroom oceanfront suite of Churchill Suites Monte

Carlo Miami beach

Picture taken from the Churchill Suites Monte Carlo Miami Beach website,

http://churchillsuites.com

The last example is Trump International Hotel in Las Vegas Nevada. This

modern condo hotel run by the Trump International Hotel company, is

considered one of the finest hotels in the world. This condo hotel holds 1282

different suites, from one bedroom to three bedrooms, providing different

views of the city of Las Vegas. Every room is equipped with a massage tub, a

living room and a full kitchen. This hotel also features an on-site spa with 9

12

treatment rooms and an outdoor pool.

Figure 5 outside of Trump International Hotel in Las Vegas

 Picture taken from Trump International Hotel Las Vegas website,

https://www.trumphotelcollection.com/las-vegas/

Figure 6 one bedroom city view suite of Trump International Hotel in Las Vegas

 Picture taken from Trump International Hotel Las Vegas website,

13

https://www.trumphotelcollection.com/las-vegas/

Figure 7 treatment room of Trump International Hotel in Las Vegas

 Picture taken from Trump International Hotel Las Vegas website,

https://www.trumphotelcollection.com/las-vegas/

All the three of these example hotels are operated by a central

management unit, but the rooms are held by different owners. That means

balancing the income for different owners while getting the maximum income

for the whole hotel is very crucial.

1.4 Research goals and objectives

Our primary goal is to build software using a method considering

14

equalization between owners and test it with real data and analyze the result.

But unfortunately, we were not able to get actual complete reservation data for

any condo hotel. With that in mind, a random but very relevant set of data was

created for utilization in this study.

The process of creating and applying a reservation assignment method

is divided in to the following steps:

a) Develop a numerial program that creates a set of random reservation data

including reservation date, check-in date, check-out date and etc.

b) Develop a program algorithm that arranges the reservations using a

method with equalization.

c) Develop a program that arranges the reservations using a method without

equalization as conventional result.

d) Analyze and compare the results.

1.5 Research approach and structure of the thesis

Before starting programming, in chapter 2, we dig deeper into the case

of the Flanders Hotel example to see how the current software is working and

how the management team is solving the balancing problem. Then we introduce

our method with equalization in chapter 3 and introduce the variables and logic

15

for programming.

For programming, we will first introduce a new kind of reservation and

build a project that creates the random set of reservation data. This part will be

demonstrated in chapter 4. We then build a project using a method with

equalization to arrange the set of data, to prove the method is correct and the

software is helping. This part is demonstrated in chapter 5. We then introduce

another type of reservation, and rebuild the project for the final version of data,

and rebuild the project for reservation arrangement including rate for each night.

We can get the annual income report for the random data using the method

with equalization. Then we build a conventional project using a method without

equalization that current software is using to arrange the random data. This part

is demonstrated in chapter 6. In chapters 7 and 8 we compare the results and

analyze the two methods. In chapter 9 we introduce human involvement to this

program to give the management team some freedom running the condo hotel

with the equalized method. Finally, in chapter 10, we make conclusions and

discuss the future improvement of the program.

16

2 Related scientific development

2.1 State of the art

Hotel management in recent days is mostly operated by commercial

software. The software differs from each other but can all help run a traditional

non-condo hotel perfectly. Naming a few, InnRoad is built for managing small

size or medium size hotel. InnRoad contains a PC to mobile reservation system,

and can be operated on Window, Apple and Linux systems. InnRoad is favored

by small business users for its reasonable price.

 ` Figure 8 InnRoad software tape chart module. Picture taken from

 http://www.softwareadvice.com/hotel-management/innroad-profile/

17

One of the most widely used software package is the Infor Hospitality

Suite. It is used to manage properties around the globe, specifically over 20,000

hotels in more than 100 countries. The software is suitable for many types of

properties but is typically recommended to hotel chains, campgrounds, resorts,

cruise lines, casinos, and government lodges. The system offers integrated

hospitality management applications including front desk & property

management, central reservations, housekeeping, CRM, financials, business

intelligence, and maintenance management. Comparing to InnRoad, Infor

Hospitality Suite is suitable for small to large size hotels, and contains a module

of saving guests profile and comments. This module helps large hotel managers

to contact guests more often to get feedback and provide discounts for such

guests.

Figure 9 Infor Hospitality Suite software guest management module. Picture

taken from

18

http://www.softwareadvice.com/hotel-management/inforhotel-profile/

But when it comes to condo hotel management software, there are just

a few choices. There are some widely used software, like RDP (resort data

processing), TimeShareWare and Guest Tracker. Guest Tracker has been used for

over 15 years [7]. It is designed for regular hotels and doesn’t consider the

equalization at all. TimeShareWare allows manager to set a rotation rule to be

fair [8]. But I didn’t get a demo version of the software, so I don’t know how it

works. RDP provides two versions, one for regular hotels and one for condo

hotels. The description for condo hotel version says “RDP software helps

equalize rental revenue for all owners and takes into account reservation length,

seasons, property type, property location, owner use, guest of owner, and

reservation cancellations. Various reports are available to show revenue per

unit each month and year-to-date. Available units are displayed in "turn to be

rented order" but still allow reservationists to select any available unit based on

guest preferences to keep guests happy.” According to the aompany’s website,

the RDP rental equalization logic is time tested, as it has now been in use for 26

years. Long standing RDP customers have analyzed the results and determined

rental revenues fall within a few percentage points for similar units, while still

allowing flexibility to select units based on guest preferences.” [9]

19

Figure 10 Modules for ResortDataProcessing(RDP). Picture taken from RDP

website, http://sales.resortdata.com/CondoHotel.htm

The Flanders Hotel is using RDP to arrange the reservations. After

hearing from the management team for the Flanders Hotel, I learned that the

software apparently builds a rotation list by the room numbers from 1 to 100.

When a reservation comes, the software checks the availability for each room

according to such order and puts the reservation into the first available room

and puts the room to the bottom of the list. This methology contains no

20

equalization.

In this case, a human decision maker (DM) is involved. It is very normal

to introduce DM into a multi-object optimization problem, because the objects

are conflicting to each other. But what the management team does to help

improve the imbalance brought on by the RDP software is to check the total

income for each room every two weeks. When they find that a particular unit is

falling far behind, they manually put more reservations into that room until it

catches up.

This method helps improve the situation to some extent. But there are

two major problems in such a method. Firstly, as we all know, the room rate for

a beach resort hotel varies during the year. Rates will be higher in summer while

lower during the rest of the year. At the same time, guests tend to reserve more

during the summer compared to other seasons. In this case, if a room gets no

or little reservations during the summer session and falls behind, it requires

many more reservations to be assigned in the rest of the year to catch up. And

sometimes it will never catch up because the difference is too magnificent or

there are simply not enough reservations in autumn and winter. Secondly,

sometimes an owner falls behind because he or she is over using his or her own

unit. In this case, the management team would also allow this owner to catch

up during the rest of the year if they did not realize the root causes problem. So

21

in the end of the year, an owner who uses his or her room more could end up

with equal income to that of an owner that does not use the room at all during

the year.

So we need to build a mathematical method to help decrease human

involvement, and improve the situation.

2.2 Software basis

To improve this situation, I decided to build a project to arrange the

reservation using a method with equalization. The project should be able to

handle reservation data, and provide detailed information about how each

reservation is handled, and provide annual income reports. Instead of providing

a visual interface, I decided to use C++ to build the project and use Microsoft

Excel as the final output.

22

3 Scientific approach

By communicating with the management team of the Flanders Hotel,

we know that there are 4 types of reservations. They are regular reservations,

owners’ reservations, reservations requiring a certain room, and other

reservations.

A regular reservation is a reservation made by a paying guest, and can

be assigned to any unit that is available. The unit taking such reservation gets

the full payment.

An owner’s reservation is a reservation made by owner to stay in

his/her own property to host family and/or friends for vacation. In a condo hotel,

the leadership boards often allow owners to use their unit to a certain extent

with no income penalty. If an owner uses more than that number, he/she is

defined as “over using”, and his/her income should be influenced.

A reservation requiring or requsting a certain room is a reservation

made by a paying guest who asks for a certain unit. This would most likely

happen with returning customers. If a guest has stayed in the hotel before and

enjoyed the stay in a certain room, the guest would more likely ask for the same

23

room the next time. For this situation, the hotel will try to put the reservation

into the room required. But if it is not available, any room taking such

reservation gets the full payment.

There are still more kinds of reservations. For example, at times certain

guests stay at the hotel for free for advertising purposes. These reservations can

be assigned to any room available but the owner makes no income. Since this

does not occur too frequently, such reservations are not included in this thesis.

24

4 Getting reservation data

For simplicity it was assumed that there are 100 one-bedroom units of

the same size and condition in a subject property. Our goal is to equalize the

income for those 100 owners. It is also assumed that the condo hotel is busier

during May to Semptember, as would be the case for a U.S. based beach resort.

August is always fully booked while in the other months, each room is booked

for around 23 nights per month. From October to April, the hotel is much less

booked for about 13 nights per month for each room. During the summer

vacation for students (June, July and August), guests tend to stay longer in the

hotel to enjoy the vacation at the beach, while for the other months, most

guests just come to stay for a weekend. Accordingly, we assume a distribution

of the reservations as followed.

 Jan Feb Mar Apr May Jun Ju

l

Aug Sep Oct Nov Dec

Nights

booked

13 13 13 13 23 23 23 28 23 13 13 13

1-night

reservati

on

35% 5% 35%

2-nights 35% 30% 35%

3-nights 20% 30% 20%

4-nights 7% 15% 7%

5-nihgts 1% 10% 1%

6-nights 1% 5% 1%

7+nights 1% 5% 1%

Table 1 distribution of the reservations

25

Owners’ reservations take 5% of total reservations, and the owners can

only book their own rooms.

Each reservation should contain the following information: reservation

date, check-in date, check-out date, owner’s reservation flag and room number.

The output is a Microsoft Excel file containing 5 columns. In the “Is house owner”

column, 1 means the reservation is made by owner, 0 means the reservation is

made by a paying guest. And in the “Room number” column, -1 means the

reservation can be put into any available room; all other numbers mean that the

reservation can only be arranged in the room number shown.

For example:

26

Table 2 an example of reservations

For this set of data, we can read out that the reservation on the first

row is made by the unit owner, the unit number is 1. The reservation is made on

January 23rd, and check-in is on the 23rd, check-out on the 25th. The second

27

reservation is made by a paying guest on January 22nd. At this time, I didn’t

include the reservations requiring a certain room for simplification.

A C++ program is develpoed to get a random set of data. The

reservation period is a 365-days year. Check-in date starts on January 1st, and

ends on December 31st. The code can be found in Appendix 1.

By running this project, we can get a set of reservation data. This set

contains 8605 reservations including 443 owners’ reservations. We will use this

set of data in the following chapter to check the reservation assignment project.

28

5 Reservation assignment project with equalization of nights stayed

The optimization method that was selected is fairly simple. We creating

a unit list containing the following information: up to now, how many nights are

reserved for this room and which dates are already booked. As each reservation

comes, we update the room list to check availability. For all available rooms, we

put the reservation in the room that is booked for the least nights. If there is

more than one room booked for the same number of nights, we check the last

check-out date, and arrange the reservation in the room booked least recently.

We also keep record of owner’s reservation and calculate the total occupancy

time for each owner.

To accomplish the equalized result, we consult the greedy algorithm. A

greedy algorithm is an algorithm that follows the problem solving heuristic of

making the locally optimal choice at each stage with the hope of finding a global

optimum [10]. In many problems, a greedy strategy does not in general produce

an optimal solution, but nonetheless a greedy heuristic may yield locally optimal

solutions that approximate a global optimal solution in a reasonable time [11].

In this case, guests are checking-in and checking-out while reservations

are being made, so we will never get a global optimum. A global optimum could

29

only be found when we get a reservation data for the whole year and try to

arrange the reservations by check-in date. This would lead to a situation where

an earlier available reservation is abandoned to leave space for a later

reservation. In real hotel management, this should not happen. So, we arrange

the reservation by reservation date. The process is as followed.

i) Form a room list of 100 rooms and pair room number with total

occupancy time and owner’s occupancy time.

ii) Sort the reservation data by reservation date.

iii) Set the initial conditions: all room available for all date, occupancy

time=0, last visit time=0, owner’s occupancy time=0.

iv) When a reservation comes, check availability for all rooms from the

start time until the end time for this reservation, and pick up all

available rooms. If there is no room available, abandon the

reservation and mark the reservation as not assigned.

v) Check if it is an owner’s reservation.

a) If it is, check the availability for the room required. If it is available,

assign the reservation. Set availability to false for this room from

the start date to end date, update the last visit time=end time,

update occupancy time for this room and owner’s occupancy time,

set this reservation as arranged. If it not available, simply abandon

this reservation and mark the reservation as not assigned.

30

b) If it is not an owner’s reservation, sort all the available rooms by

occupancy time, and arrange this reservation in the room with the

least occupancy time, then update the last visit time=end time,

update occupancy time for this room, and mark this reservation as

assigned. If there are more than one room available having the

least occupancy time, we arrange the reservation in the room with

the least last visit time (lease recently booked).

vi) Update the room list and consider the next reservation.

We repeat steps iv) through vi) for all reservations, we can get a locally

optimized result using the greedy algorithm.

We build “reservation.h” to give definition to variables, use “main.cpp”

to build the final room list and write files, use the file “reservation.cpp” to

complete the assignment process shown above. The three files are shown in

Appendix 2.

By running main.cpp we can get two files. One is the room list, it

provides total occupancy time and owner’s occupancy time for each unit. The

other file is a reservation list, it provides reservation date, check-in date, check-

out date, owners reservation flag and if this reservation is assigned.

31

The room list file is shown below.

Room

Number

Occupancy

time

Owner

Occupancy

time

1 130 7

2 131 8

3 131 5

4 131 8

5 130 9

6 131 11

7 131 2

8 130 5

9 131 3

10 130 0

11 130 4

12 130 4

13 130 13

14 130 10

15 130 10

16 132 6

17 130 4

18 130 10

19 131 17

20 130 7

21 133 10

22 130 1

23 129 5

24 130 8

25 132 8

26 131 2

27 132 1

28 132 5

29 129 18

30 132 6

31 131 17

32 130 6

33 130 6

34 131 0

35 130 2

32

36 131 7

37 132 5

38 129 0

39 130 1

40 131 2

41 130 10

42 130 1

43 130 2

44 130 10

45 130 7

46 131 2

47 131 3

48 130 7

49 131 9

50 134 7

51 132 4

52 130 7

53 131 12

54 130 17

55 132 4

56 130 7

57 129 2

58 130 7

59 133 2

60 131 9

61 129 1

62 131 7

63 130 2

64 135 0

65 131 8

66 131 2

67 129 7

68 130 8

69 130 6

70 130 14

71 130 9

72 130 5

73 131 13

74 132 4

75 133 9

33

76 129 14

77 130 9

78 130 4

79 130 2

80 131 7

81 130 7

82 130 2

83 130 5

84 131 4

85 133 5

86 131 4

87 130 8

88 133 7

89 133 8

90 130 10

91 130 4

92 132 2

93 130 5

94 132 10

95 130 11

96 131 9

97 131 5

98 131 3

99 130 4

100 131 7

Table 3 reservations and owner’s usage for each room

In this case, the average of total occupancy time turned out to be

130.7 and the standard deviation was 1.1237. The result is well equalized. The

method is proved.

By this method and this program, we successfully balanced total

nights reserved for each unit. We can apply the same method to balance the

34

total income for each room after we introduce the rate. Details will be

demonstrated in the next chapter.

35

6 Reservation arrangement with equalization of income and the conventional

group

After comparing the three condo hotels mentioned in chapter 2, we

found that the rate changes thoughout the year. Basically, rates during

summer (June, July, and August) will be higher and special requirements such

as a minimum of two nights is required for each stay. The rate for the rest of

the year is cheaper, and there might be special events or discounts to attract

guests. Based on this fact, it is acceptable to use the rate from one of the three

hotels to build our program.

Firstly, we introduce the rate for the Flanders Hotel. The rates for 1-

bedroom units for 2016 are shown below.

Figure 11 rate for the Flanders Hotel of 2016

The rates are always changing during the year. To get a combined rate

for a reservation, or total cost for a reservation, we introduce 7 moneysplits,

which show the date the rate changes. These splitting points are counted from

36

January 1st, in a 365-day calendar year. The 7 splitting points end up at 103,

145,197, 247, 264, 299 and 364. If a reservation is across a money split date,

the combined rate for the reservation should be calculate as

𝑟𝑎𝑡𝑒1 × (𝑚𝑜𝑛𝑒𝑦𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒) + 𝑟𝑎𝑡𝑒2 × (𝑒𝑛𝑑𝑡𝑖𝑚𝑒 −

𝑚𝑜𝑛𝑒𝑦𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑚𝑒). By applying these conditions to our program, we can

calculate the total income for each room after reading the reservation data.

We then introduce our third type of reservation mentioned in chapter

3. A reservation requiring a certain room is a reservation made by paying guest

that requests a certain unit to stay in. Guests might ask for rooms located near

elevators, closer to a dining hall, or on a higher floor for a better view of the

ocean. Dealing with this type of reservation, we first try to fulfill the guest’s

request, and arrange the reservation in the room demanded. If the room is

unavailable, we arrange it as a regular reservation which can be assigned to

any available room. We modify the project for getting random reservation data

to add this type of reservation. The code is shown in Appendix 3.

By running this project, we get a random set of data containing 8653

reservations.

Here is a brief view of the set of data.

37

Table 4 brief view of random data

The “Arranged number” column determines if a reservation comes

with requirements. If the number is not -1, that means the reservation

requires a certain room number, and the number shown in that column is the

number of the room requested. So, the three kinds of reservations are marked

as followed in the data set.

38

a) Regular reservation’s column D is marked as 0 and column E,G

marked as -1

b) For an owner’s reservation, column D is marked as 1 and column

E, G show the owner’s room number.

c) For a reservation requesting a certain room, column D is marked

as 0, column E is marked as -1, and column G shows the room number

required.

Regarding to the data shown above, row 28 is an owner’s reservation

by the owner of room number 63. Rows 14, 16, 29 and 31 are reservations

requesting certain rooms. The room numbers requisted are 45, 9, 34 and 71.

The rest are normal reservations.

Speaking of equalization of total income, owners’ over use of their

rooms should be considered. We assume that an owner can use their room

with no penalty for 10 nights per year. Any more owners’ reservations beyond

that should influence the owners’ income. By solving that problem, we

introduce two variables: “moneyearn” and “moneyvirtual”. The variable

“moneyearn” shows the real income for each owner and it is shown on the

final result form. On the other hand, “moneyvirtual” is introduced for the

“owner’s over using”. If this owner has reserved 10 nights or more already, his

next owner’s reservation taken would add to “moneyvirtual” but not to

39

“moneyearn” as a result. If this owner has reserved less than 10 nights, his

next owner’s reservation would not add to any of these variables which means

he/she is reserving with no income penalty. Second, for a regular reservation,

we can put that reservation into any room that is available. Any rooms that are

free during the reservation daters are available. If there is no room available,

we discard the reservation and marked it as “not taken”. A regular reservation

taken would add to both of “moneyvirtual” and “moneyearn” if it is taken. We

check “moneyvirtual” for all the available rooms, and pick up the smallest

number to take this reservation. Finally, for a reservation with a unit number

request, we first check the requested unit. If it is possible, we put the

reservation into that room and add the rate to both “moneyvirtual” and

“moneyearn” variables. If the room reqested is not available, we consider such

reservation as a regular one.

The arranging process is as followed:

i) Form a room list of 100 rooms and pair room number with total

occupancy time, owner’s occupancy time, moneyearn and

moenyvirtual.

ii) Sort the reservation data by reservation date.

iii) Set the initial conditions: all rooms available for all dates, occupancy

time=0, last visit time=0, owner’s occupancy time=0, moneyearn=0

and moneyvirtual=0.

40

iv) When a reservation comes, check availability for all rooms from the

start time till end time for this reservation, and pick up all available

rooms. If there is no room available, abandon the reservation and

mark the reservation as not assigned.

v) Check if it is an owner’s reservation.

a) If it is, check the availability for the room required. If it is available,

arrange the reservation. Set availability to false for this room from

the start date to end date, update the last visit time=end time,

update occupancy time for this room and owner’s occupancy time,

set this reservation as arranged. If taken, check if the owner has

already booked over 10 nights.

i. If not over 10 nights, moneyearn and moneyvirtual should be

0 for this reservation, update moneyearn and moneyvirtual.

ii. If owner has booked over 10 nights, moneyearn should be 0

and moneyvirtual should be the combined rates for this

reservation. Update moneyearn and moneyvirtual

If it not available, simply abandon this reservation and mark the

reservation as not arranged.

b) If it is not an owner’s reservation, check if it is a reservation

requesting a certain room.

i. If it is such a reservation, check the availability for the room

requested. If it is available, assign the reservation to that room

41

and update the occupancy time, last visit time, moneyearn and

moneyvirtual with the combined rates for this reservation.

Mark the reservation as arranged.

c) If the room required is not available or it is just a regular

reservation, sort all the available room by moneyvirtual, and

arrange this reservation in the room with least moneyvirtual, then

update the last visit time=end time, update occupancy time,

moneyearn and moneyvirtual with the combined rates for this

reservation, and mark this reservation as arranged. If there are

more than one room available having the least moneyvirtual, we

arrange the reservation in the room with the least occupancy time.

vi) Update the room list and consider the next reservation.

We repeat steps iv) thoughout vi) for all reservations. We then can get

a room list showing room number, occupancy time, owner’s occupancy time,

total income for each room. We can also get an update to the set of reservation

data, including how each reservation is arranged.

For the conventional group, we use the assumed method traditional

unit assignment in chapter 2. Simply arrange the reservations by room number.

The process is as follows.

42

i) Form a room list of 100 rooms and pair room number with total

occupancy time, owner’s occupancy time, moneyearn.

ii) Sort the reservation data by reservation date.

iii) Set the initial conditions: all room available for all date, occupancy

time=0, last visit time=0, owner’s occupancy time=0, moneyearn=0.

iv) Form a room order sorted by room number.

v) When a reservation comes, check availability for all rooms from the

start time till end time for this reservation, and pick up all available

rooms. If there is no room available, abandon the reservation and

mark the reservation as not arranged.

vi) Check if it is an owner’s reservation.

a) If it is, check the availability for the room required. If it is available,

arrange the reservation. Set availability to false for this room from

the start date to end date, update the last visit time=end time,

update occupancy time for this room, owner’s occupancy time and

moneyearn, then set this reservation as arranged. Put this room

number to the bottom of the room order.

b) If it is not an owner’s reservation, check if it is a reservation

requires a certain room.

c) If it is such reservation, check the availability for the room required.

If it is available, arrange the reservation to that room and update

the occupancy time, last visit time, moneyearn with the combined

43

rates for this reservation. Mark the reservation as arranged. Put

this room number to the bottom of the room order.

d) If the room required is not available or it is just a regular

reservation, sort all the available room by room order, and arrange

this reservation in the first available room in the room order, then

update the last visit time=end time, update occupancy time,

moneyearn with the combined rates for this reservation, and mark

this reservation as arranged. Put this room number to the bottom

of the room order.

vii) Update the room list and consider the next reservation.

We can get our conventional results by repeating steps iv) to vi).

We build “reservation.h” to give definition to variables, use “main.cpp”

to build the final room list and write files, use the file “reservation.cpp” to

complete the arranging process shown above. The code can be found in

Appendix 3.

We will demonstrate the results in the next chapter.

44

7 Analysis and discussion

By using the equalized method, we took 8618 reservations out of the

8653 original reservations. The average income was $29,338.73 while the

standard deviation was $670.53. More detailed results are shown below.

Room

Number

Occupancy

time

 Owner

Occupancy

time

 Income Difference

1 197 0 29403 64.627

2 199 12 29651 312.627

3 198 6 29502 163.627

4 199 1 29821 482.627

5 193 16 28757 -581.373

6 199 0 29971 632.627

7 192 13 28928 -410.373

8 193 15 28807 -531.373

9 201 9 30439 1100.627

10 199 9 29701 362.627

11 197 6 29723 384.627

12 202 11 30638 1299.627

13 198 7 29992 653.627

14 201 7 30069 730.627

15 194 6 28906 -432.373

16 197 7 29403 64.627

17 197 11 29403 64.627

18 184 23 27586 -1752.37

19 199 6 29651 312.627

20 197 12 29353 14.627

21 200 7 30290 951.627

22 195 13 29055 -283.373

23 198 12 29792 453.627

24 200 13 30340 1001.627

25 187 21 27913 -1425.37

26 201 9 30269 930.627

27 196 12 29254 -84.373

28 197 6 29523 184.627

29 199 3 30091 752.627

45

30 190 11 28480 -858.373

31 192 17 28978 -360.373

32 189 20 28281 -1057.37

33 194 17 28906 -432.373

34 196 1 29204 -134.373

35 187 21 27863 -1475.37

36 189 19 28211 -1127.37

37 198 9 29942 603.627

38 188 17 28332 -1006.37

39 187 20 28183 -1155.37

40 197 4 29523 184.627

41 199 11 30091 752.627

42 189 19 28161 -1177.37

43 198 13 29672 333.627

44 199 2 29651 312.627

45 192 16 28928 -410.373

46 198 10 29872 533.627

47 197 9 29403 64.627

48 197 9 29653 314.627

49 195 13 29055 -283.373

50 194 16 29396 57.627

51 197 11 29353 14.627

52 199 6 30141 802.627

53 199 8 29651 312.627

54 194 7 29396 57.627

55 197 10 29653 314.627

56 196 5 29374 35.627

57 196 4 29404 65.627

58 190 15 28800 -538.373

59 197 12 29353 14.627

60 185 23 27685 -1653.37

61 200 10 29970 631.627

62 197 4 29403 64.627

63 195 12 29105 -233.373

64 196 11 29254 -84.373

65 195 10 29475 136.627

66 198 5 29502 163.627

67 197 10 29523 184.627

68 196 9 29424 85.627

69 192 18 28778 -560.373

46

70 198 2 29872 533.627

71 200 5 30290 951.627

72 193 14 29197 -141.373

73 197 7 29523 184.627

74 197 10 29403 64.627

75 182 23 27458 -1880.37

76 195 14 29375 36.627

77 200 7 29800 461.627

78 186 20 28134 -1204.37

79 192 15 28728 -610.373

80 198 0 29822 483.627

81 199 6 30141 802.627

82 194 13 29446 107.627

83 198 6 29872 533.627

84 184 22 27786 -1552.37

85 194 14 28956 -382.373

86 199 3 30021 682.627

87 194 13 29076 -262.373

88 198 7 29552 213.627

89 198 8 29622 283.627

90 195 6 29395 56.627

91 195 1 29545 206.627

92 200 4 30290 951.627

93 201 10 29949 610.627

94 193 14 28877 -461.373

95 200 4 30170 831.627

96 194 12 29226 -112.373

97 198 7 29502 163.627

98 193 15 28757 -581.373

99 195 12 29425 86.627

100 197 9 29403 64.627

 Average 29338.73

 Stdev.s 670.5314

Table 5 income for each room, average income and standard deviation using the

method with equalization

47

By using the method without equalization, we took 8607 reservations

out of the 8653 original reservations. The average income turned out to be

$29,250.82 while the standard deviation was 1,305.33. More detailed results are

shown below:

Room

Number

Occupancy

time

 Owner

Occupancy

time

 Income difference

1 214 0 31936 2685.18

2 213 12 32177 2926.18

3 171 6 25479 -3771.82

4 200 1 30170 919.18

5 193 16 28857 -393.82

6 195 0 29395 144.18

7 192 13 28728 -522.82

8 202 15 30468 1217.18

9 184 9 27856 -1394.82

10 204 9 30396 1145.18

11 197 6 29523 272.18

12 177 11 26743 -2507.82

13 196 7 29204 -46.82

14 202 7 30468 1217.18

15 198 6 29602 351.18

16 198 7 29992 741.18

17 202 11 30588 1337.18

18 189 23 28581 -669.82

19 185 6 27565 -1685.82

20 193 12 28927 -323.82

21 195 7 29225 -25.82

22 192 13 28728 -522.82

23 194 12 28956 -294.82

24 195 13 29155 -95.82

25 200 21 29970 719.18

26 193 9 29127 -123.82

27 189 12 28531 -719.82

28 198 6 29992 741.18

48

29 200 3 30050 799.18

30 199 11 30071 820.18

31 182 17 27118 -2132.82

32 186 20 28154 -1096.82

33 186 17 27714 -1536.82

34 201 1 30439 1188.18

35 189 21 28601 -649.82

36 195 19 29055 -195.82

37 183 9 27437 -1813.82

38 204 17 30936 1685.18

39 189 20 28481 -769.82

40 180 4 26990 -2260.82

41 194 11 29276 25.18

42 201 19 30069 818.18

43 194 13 29226 -24.82

44 198 2 30042 791.18

45 181 16 26969 -2281.82

46 210 10 31660 2409.18

47 214 9 32086 2835.18

48 210 9 31580 2329.18

49 200 13 29920 669.18

50 200 16 30290 1039.18

51 188 11 28062 -1188.82

52 197 6 29353 102.18

53 205 8 30545 1294.18

54 204 7 30766 1515.18

55 195 10 29105 -145.82

56 193 5 29197 -53.82

57 201 4 30119 868.18

58 188 15 28012 -1238.82

59 197 12 29553 302.18

60 194 23 29026 -224.82

61 203 10 30617 1366.18

62 198 4 29922 671.18

63 204 12 30516 1265.18

64 195 11 29055 -195.82

65 191 10 28579 -671.82

66 194 5 29146 -104.82

67 180 10 26870 -2380.82

68 194 9 29276 25.18

49

69 187 18 28183 -1067.82

70 188 2 28062 -1188.82

71 206 5 30744 1493.18

72 191 14 28459 -791.82

73 207 7 31213 1962.18

74 194 10 29226 -24.82

75 200 23 29920 669.18

76 188 14 28012 -1238.82

77 208 7 31162 1911.18

78 200 20 30120 869.18

79 193 15 28807 -443.82

80 190 0 28310 -940.82

81 187 6 28353 -897.82

82 193 13 28927 -323.82

83 195 6 29105 -145.82

84 187 22 28403 -847.82

85 176 14 26544 -2706.82

86 202 3 30148 897.18

87 199 13 29651 400.18

88 191 7 28459 -791.82

89 179 8 26671 -2579.82

90 208 6 31042 1791.18

91 203 1 30417 1166.18

92 180 4 26990 -2260.82

93 195 10 29105 -145.82

94 185 14 27935 -1315.82

95 189 4 28331 -919.82

96 204 12 30566 1315.18

97 198 7 29552 301.18

98 198 15 29822 571.18

99 193 12 28977 -273.82

100 196 9 29644 393.18

 Average: 29250.82

 Stdev.s 1305.329

Table 6 income for each room, average income and standard deviation using the

method without equalization

50

From the results we can see that the difference in standard deviation

between the two methods is huge. The equalization method worked very well.

Let’s take a closer look at the results using the equalization method.

Room 75 earned the least for the owner has booked for him/herself for 22 nights.

Remember there will be punishment for those who book their own rooms over

10 nights. It is pretty fair that this owner earned the least.

Reservation

Date

 Check-

in Date

 Check-

out

Date

 Is

House

Owner

 Whether

Arranged

 Room

Number

1--3 1--5 1--7 0 1 75

1--21 1--24 1--25 0 1 75

1--31 2--4 2--11 1 1 75

2--4 2--12 2--13 0 1 75

2--7 2--11 2--12 0 1 75

2--9 2--13 2--14 0 1 75

2--12 2--20 2--21 0 1 75

2--12 2--21 2--24 1 1 75

2--14 2--14 2--18 0 1 75

2--23 2--28 3--3 0 1 75

3--1 3--3 3--6 0 1 75

3--7 3--15 3--16 0 1 75

3--9 3--18 3--20 0 1 75

3--14 3--21 3--23 0 1 75

3--15 3--17 3--18 1 1 75

3--20 3--24 3--26 0 1 75

3--24 3--27 3--29 0 1 75

3--29 4--6 4--7 0 1 75

3--31 4--7 4--8 0 1 75

51

4--3 4--11 4--13 0 1 75

4--7 4--14 4--15 0 1 75

4--11 4--16 4--18 0 1 75

4--15 4--24 4--26 0 1 75

4--19 4--19 4--20 0 1 75

4--21 4--21 4--22 0 1 75

4--24 4--27 4--28 0 1 75

4--26 4--28 4--30 0 1 75

4--29 5--1 5--4 0 1 75

5--4 5--6 5--9 0 1 75

5--8 5--10 5--12 0 1 75

5--10 5--15 5--16 1 1 75

5--11 5--13 5--14 0 1 75

5--13 5--17 5--20 0 1 75

5--17 5--25 5--26 0 1 75

5--18 5--21 5--23 0 1 75

5--22 5--26 5--28 0 1 75

5--25 5--28 6--1 0 1 75

6--2 6--7 6--11 0 1 75

6--14 6--17 6--20 0 1 75

6--17 6--23 6--26 0 1 75

6--17 6--21 6--23 0 1 75

6--20 6--26 6--29 0 1 75

6--24 6--29 7--3 0 1 75

6--29 7--8 7--12 0 1 75

7--5 7--5 7--7 0 1 75

7--8 7--13 7--15 0 1 75

7--11 7--18 7--22 0 1 75

7--17 7--17 7--18 0 1 75

7--18 7--25 7--28 0 1 75

7--22 7--28 8--1 1 1 75

7--23 7--23 7--24 0 1 75

7--23 8--1 8--8 0 1 75

8--2 8--10 8--12 0 1 75

8--5 8--8 8--10 0 1 75

8--8 8--15 8--19 0 1 75

8--13 8--19 8--21 0 1 75

8--15 8--22 8--25 0 1 75

8--22 8--31 9--3 0 1 75

8--23 8--25 8--27 0 1 75

52

8--25 8--27 8--31 1 1 75

8--26 9--3 9--4 0 1 75

8--27 9--5 9--10 0 1 75

9--2 9--4 9--5 0 1 75

9--4 9--11 9--12 0 1 75

9--4 9--12 9--14 0 1 75

9--7 9--16 9--17 0 1 75

9--8 9--10 9--11 0 1 75

9--9 9--14 9--16 1 1 75

9--10 9--18 9--21 0 1 75

9--14 9--17 9--18 0 1 75

9--16 9--25 9--27 0 1 75

9--17 9--21 9--22 1 1 75

9--18 9--22 9--24 0 1 75

9--21 9--29 10--1 0 1 75

9--24 9--24 9--25 0 1 75

9--25 9--27 9--29 0 1 75

9--30 10--1 10--3 0 1 75

10--6 10--11 10--13 0 1 75

10--13 10--15 10--16 0 1 75

10--15 10--21 10--24 0 1 75

10--23 10--30 11--1 0 1 75

10--29 11--3 11--10 0 1 75

11--14 11--23 11--24 0 1 75

11--17 11--19 11--21 0 1 75

11--21 11--24 11--26 0 1 75

11--25 11--29 11--30 0 1 75

11--28 11--28 11--29 0 1 75

11--30 12--3 12--5 0 1 75

12--5 12--12 12--15 0 1 75

12--28 1--2 1--4 0 1 75

12--28 12--28 12--30 0 1 75

12--28 12--31 1--2 0 1 75

Table 7 arrangement detail for room 75 using the method with equalization

method

Let’s take another look at room 12, who led with the income of $30,638.

53

Even though this owner is 1 night beyond the “10-night rule”, his room was

requested for a whole week in August which gave him/her the huge lead.

Reservation

Date

 Check-

in Date

 Check-

out Date

 Is

House

Owner

 Room

Number

 Is

Arranged

Arranged

Number

1--21 1--22 1--23 1 12 0 12

3--30 3--31 4--2 1 12 0 12

4--30 5--6 5--8 0 -1 0 12

6--15 6--15 6--20 1 12 0 12

7--3 7--10 7--12 0 -1 0 12

8--12 8--12 8--19 0 -1 0 12

8--27 8--30 9--1 1 12 0 12

9--18 9--18 9--19 1 12 0 12

Table 8 arrangement detail for room 12 using the method with equalization

method

54

8 Reservation assignment with an added human decision maker

As it is mentioned in chapter 1 and chapter 2, human involvement is

crucial in such circumstances. In this chapter, we will try to modify our program

to give the management team some freedom to adjust the rules of running the

hotel.

In chapter 6, we set the rules running the hotel as follows:

a) Owners can use their room for 10 nights per year without harming their

income. Those who use over 10 nights will lose 100% of the rate of the

date they stayed for each additional night.

b) When a guest requires a certain room, the management team will first try

to fulfill the guest’s requirement and assign the reservation to the room

asked for. If that room is not available, they then treat it as a normal

reservation and assign it to any available room.

But in some cases, owners are welcome if the condo hotel is not as

busy even if they went beyond the 10-nights limit. Or management team should

charge less punishment for the nights owners over stayed to keep the owners

happy and keep them in the leasing program. More commonly, a certain room

might be requested a lot during summer session and makes it too difficult for

others to catch up. In such circumstances, the management team might ignore

the requirement from the guests and balance the income for different owners.

55

To achieve such function, we make some change to the program and

introduce a configuration file to set the rules of running the hotel. The

configuration file contains four basic variables.

Owner_Max_Occupancy_Days decides how many nights the

management team would like the owner to use without harming their income.

This variable can be given an integer from 0 to 365. If the number is given 0, that

means every night that the owner stays would harm the income. If it is given

365, that means owner can use the room for 365 days per year without harming

the income, which is basically, no punishment for over staying.

Owner_Occupancy_Penalty is a variable that decides how much it

influence the income if an owner is over using his or her room. This variable can

be given a number from 0 to 1.0. If the number is 0, it means that the owner is

not punished for over using the room, while if this number is 1.0, it means that

the owner will lose 100% of the rate of the date they stayed for each additional

night as it is mentioned in chapter 6.

Owner_Panalty_Flag decides if the management team would like to

punish owners for over staying. This variable can be given 0 or 1. 0 means the

owner is not punished for over staying while 1 means the opposite.

56

The final variable is called Considering_Custom_Room_Number_Flag.

This variable decides if the management team would consider guests’ requests

to assign the reservations to the rooms requested. This variable can be given 0

or 1. 0 means the management team do not consider guests’ request and treat

those reservations as normal reservations, while 1 means the managers would

assign the reservations to the rooms requested if they are available.

By modifying this configuration file before running the project, the

management team is given freedom to change the rules that they run the hotel

by. And different rules would bring different optimization results. We will

demonstrate 5 groups of results based on different configuration variables.

The code can be found in Appendix 4 and the configuration file can be

found in Appendix 5.

57

9 Optimization results based on different configuration variables

Group 1

The results shown in chapter 7 were based on the configuration

variables below.

Owner_Max_Occupancy_Days 10

Owner_Occupancy_Penalty 1.0

Owner_Penalty_Flag 1

Considering_Custom_Room_Number_Flag 1

Group 2

Owner_Max_Occupancy_Days 10

Owner_Occupancy_Penalty 1.0

Owner_Penalty_Flag 0

Considering_Custom_Room_Number_Flag 1

This set of variables means that the managers would not penalize

owners for using their rooms. And the result is shown below.

Room

Number

Occupancy

time

 Owner

Occupancy

time

 Income Difference

1 198 0 30042 709.23

2 195 12 29055 -277.77

3 198 6 29502 169.23

4 196 1 29424 91.23

58

5 196 16 29254 -78.77

6 197 0 29353 20.23

7 197 13 29843 510.23

8 196 15 29574 241.23

9 195 9 29425 92.23

10 197 9 29893 560.23

11 195 6 29055 -277.77

12 197 11 29573 240.23

13 195 7 29055 -277.77

14 196 7 29574 241.23

15 195 6 29055 -277.77

16 195 7 29375 42.23

17 195 11 29225 -107.77

18 194 23 29076 -256.77

19 199 6 29651 318.23

20 197 12 29793 460.23

21 195 7 29055 -277.77

22 195 13 29055 -277.77

23 195 12 29375 42.23

24 195 13 29055 -277.77

25 195 21 29225 -107.77

26 194 9 29146 -186.77

27 194 12 29026 -306.77

28 194 6 29076 -256.77

29 198 3 29502 169.23

30 195 11 29055 -277.77

31 196 17 29524 191.23

32 198 20 29872 539.23

33 198 17 29502 169.23

34 196 1 29204 -128.77

35 194 21 29196 -136.77

36 195 19 29175 -157.77

37 196 9 29254 -78.77

38 195 17 29055 -277.77

39 195 20 29105 -227.77

40 196 4 29204 -128.77

41 195 11 29225 -107.77

42 194 19 29206 -126.77

43 196 13 29204 -128.77

44 193 2 29127 -205.77

59

45 194 16 29026 -306.77

46 192 10 28978 -354.77

47 198 9 29502 169.23

48 197 9 29773 440.23

49 196 13 29254 -78.77

50 198 16 29502 169.23

51 201 11 30489 1156.23

52 193 6 29127 -205.77

53 196 8 29204 -128.77

54 196 7 29204 -128.77

55 193 10 29097 -235.77

56 194 5 29156 -176.77

57 195 4 29055 -277.77

58 195 15 29545 212.23

59 195 12 29055 -277.77

60 197 23 29353 20.23

61 195 10 29225 -107.77

62 192 4 28608 -724.77

63 201 12 30489 1156.23

64 195 11 29055 -277.77

65 196 10 29204 -128.77

66 194 5 29076 -256.77

67 195 10 29055 -277.77

68 193 9 29177 -155.77

69 195 18 29495 162.23

70 194 2 29346 13.23

71 196 5 29644 311.23

72 195 14 29175 -157.77

73 194 7 29326 -6.77

74 194 10 29106 -226.77

75 193 23 29247 -85.77

76 192 14 29028 -304.77

77 196 7 29694 361.23

78 197 20 29353 20.23

79 198 15 29992 659.23

80 196 0 29204 -128.77

81 196 6 29254 -78.77

82 195 13 29495 162.23

83 194 6 29076 -256.77

84 194 22 29076 -256.77

60

85 194 14 29446 113.23

86 195 3 29225 -107.77

87 197 13 29723 390.23

88 195 7 29105 -227.77

89 195 8 29475 142.23

90 196 6 29694 361.23

91 197 1 29723 390.23

92 195 4 29275 -57.77

93 197 10 29723 390.23

94 195 14 29545 212.23

95 194 4 29226 -106.77

96 196 12 29324 -8.77

97 196 7 29374 41.23

98 194 15 29276 -56.77

99 192 12 29148 -184.77

100 195 9 29055 -277.77

 Average 29332.77

 Stdev.s 308.4995

 Table 9 Arrangement result with 2nd group configuration file

8616 out of the 8653 reservations are taken. And the average income

of all owners was $29,332.77 while the standard deviation was $308.4995.

We found out the standard deviation decreased because the

moneyvritual and moneyearn are the same for each owner under such rule. So

the difference between each owner decreased. But under such rule one might

still earn more even an owner uses the room very often. Take room number 62

as an example, even though the owner just used for 4 nights, that particular

room did the worst.

61

Group 3

Owner_Max_Occupancy_Days 10

Owner_Occupancy_Penalty 1.0

Owner_Penalty_Flag 1

Considering_Custom_Room_Number_Flag 0

 This set of configuration variables means the management

team would not consider the guest’s request when arranging the

reservations. The arrangement result is shown below.

Room

Number

Occupancy

time

 Owner

Occupancy

time

 Income Difference

1 199 0 29701 393.56

2 195 12 29175 -132.44

3 200 6 30170 862.56

4 200 1 30290 982.56

5 192 16 28658 -649.44

6 199 0 29651 343.56

7 193 13 29077 -230.44

8 193 15 29077 -230.44

9 197 9 29353 45.56

10 199 9 29821 513.56

11 197 6 29723 415.56

12 197 11 29353 45.56

13 197 7 29573 265.56

14 197 7 29353 45.56

15 197 6 29593 285.56

62

16 198 7 29942 634.56

17 198 11 29792 484.56

18 184 23 27536 -1771.44

19 199 6 29651 343.56

20 196 12 29204 -103.44

21 198 7 29872 564.56

22 193 13 28927 -380.44

23 195 12 29055 -252.44

24 195 13 29055 -252.44

25 188 21 28382 -925.44

26 197 9 29353 45.56

27 195 12 29155 -152.44

28 197 6 29353 45.56

29 196 3 29404 96.56

30 195 11 29225 -82.44

31 192 17 28608 -699.44

32 187 20 28033 -1274.44

33 192 17 28608 -699.44

34 197 1 29673 365.56

35 187 21 28233 -1074.44

36 189 19 28481 -826.44

37 199 9 29651 343.56

38 187 17 28353 -954.44

39 189 20 28161 -1146.44

40 198 4 29502 194.56

41 200 11 29800 492.56

42 190 19 28510 -797.44

43 199 13 29651 343.56

44 199 2 30021 713.56

45 191 16 28629 -678.44

46 201 10 30439 1131.56

47 198 9 29602 294.56

48 195 9 29475 167.56

49 194 13 29226 -81.44

50 192 16 28978 -329.44

51 196 11 29204 -103.44

52 197 6 29523 215.56

53 197 8 29403 95.56

54 195 7 29425 117.56

55 197 10 29473 165.56

63

56 198 5 29622 314.56

57 198 4 29922 614.56

58 193 15 28807 -500.44

59 195 12 29055 -252.44

60 183 23 27437 -1870.44

61 198 10 29502 194.56

62 200 4 29800 492.56

63 196 12 29574 266.56

64 197 11 29353 45.56

65 200 10 30290 982.56

66 195 5 29595 287.56

67 198 10 29672 364.56

68 195 9 29475 167.56

69 190 18 28750 -557.44

70 198 2 29552 244.56

71 197 5 29793 485.56

72 194 14 28906 -401.44

73 197 7 29403 95.56

74 199 10 30071 763.56

75 183 23 27557 -1750.44

76 193 14 28927 -380.44

77 203 7 30787 1479.56

78 188 20 28382 -925.44

79 194 15 28956 -351.44

80 199 0 30141 833.56

81 196 6 29574 266.56

82 195 13 29345 37.56

83 197 6 29523 215.56

84 182 22 27608 -1699.44

85 196 14 29494 186.56

86 197 3 29353 45.56

87 195 13 29375 67.56

88 197 7 29523 215.56

89 194 8 29396 88.56

90 196 6 29694 386.56

91 195 1 29495 187.56

92 197 4 29403 95.56

93 196 10 29424 116.56

94 199 14 30191 883.56

95 198 4 29502 194.56

64

96 195 12 29305 -2.44

97 199 7 30141 833.56

98 193 15 28757 -550.44

99 195 12 29105 -202.44

100 199 9 30071 763.56

 Average 29307.44

 Stdev.s 628.3798

Table 10 Arrangement result with 3rd group configuration file

 We then try to do some modification to the rule of penalizing owners

for over using. Introducing the next configuration file:

Group 4

 Owner_Max_Occupancy_Days 10

Owner_Occupancy_Penalty 0.85

Owner_Penalty_Flag 1

Considering_Custom_Room_Number_Flag 1

Comparing to the first group, this set of variable charges 85% of the

rate for each night an owner reserved beyond 10 free nights. Decreasing this

percentage would satisfy the owners and keep them in the condo program.

The result is shown below.

65

Room

Number

Occupancy

time

 Owner

Occupancy

time

 Income Difference

1 197 0 29403 88.11

2 196 12 29204 -110.89

3 199 6 30141 826.11

4 197 1 29353 38.11

5 192 16 28608 -706.89

6 196 0 29574 259.11

7 195 13 29225 -89.89

8 195 15 29105 -209.89

9 197 9 29403 88.11

10 195 9 29495 180.11

11 199 6 29651 336.11

12 196 11 29374 59.11

13 195 7 29425 110.11

14 198 7 29502 187.11

15 192 6 28928 -386.89

16 198 7 29552 237.11

17 198 11 30042 727.11

18 186 23 27714 -1600.89

19 198 6 29502 187.11

20 195 12 29225 -89.89

21 197 7 29453 138.11

22 195 13 29175 -139.89

23 194 12 29276 -38.89

24 194 13 29026 -288.89

25 187 21 28233 -1081.89

26 199 9 30091 776.11

27 197 12 29553 238.11

28 197 6 29353 38.11

29 197 3 29693 378.11

30 196 11 29324 9.11

31 191 17 28509 -805.89

32 188 20 28382 -932.89

33 196 17 29204 -110.89

34 197 1 29353 38.11

35 187 21 28033 -1281.89

36 189 19 28211 -1103.89

37 197 9 29353 38.11

66

38 191 17 28629 -685.89

39 188 20 28332 -982.89

40 198 4 29942 627.11

41 196 11 29374 59.11

42 192 19 29098 -216.89

43 196 13 29204 -110.89

44 197 2 29353 38.11

45 192 16 28778 -536.89

46 196 10 29624 309.11

47 197 9 29673 358.11

48 197 9 29403 88.11

49 194 13 28956 -358.89

50 192 16 28608 -706.89

51 197 11 29353 38.11

52 198 6 29552 237.11

53 197 8 29473 158.11

54 194 7 29396 81.11

55 197 10 29723 408.11

56 197 5 29473 158.11

57 199 4 29651 336.11

58 195 15 29225 -89.89

59 195 12 29105 -209.89

60 188 23 28232 -1082.89

61 198 10 29822 507.11

62 199 4 30091 776.11

63 198 12 29992 677.11

64 196 11 29204 -110.89

65 195 10 29425 110.11

66 198 5 29502 187.11

67 197 10 29523 208.11

68 196 9 29524 209.11

69 192 18 28778 -536.89

70 197 2 29353 38.11

71 198 5 29552 237.11

72 194 14 29076 -238.89

73 197 7 29523 208.11

74 195 10 29495 180.11

75 182 23 27658 -1656.89

76 199 14 30191 876.11

77 198 7 29502 187.11

67

78 189 20 28161 -1153.89

79 196 15 29694 379.11

80 198 0 29502 187.11

81 198 6 29822 507.11

82 194 13 29126 -188.89

83 197 6 29673 358.11

84 189 22 28531 -783.89

85 194 14 29276 -38.89

86 196 3 29374 59.11

87 193 13 29097 -217.89

88 198 7 29502 187.11

89 197 8 29793 478.11

90 197 6 29523 208.11

91 198 1 29872 557.11

92 199 4 30071 756.11

93 199 10 30021 706.11

94 192 14 28808 -506.89

95 199 4 30021 706.11

96 201 12 30489 1174.11

97 193 7 29297 -17.89

98 196 15 29374 59.11

99 196 12 29574 259.11

100 198 9 29872 557.11

 Average 29314.89

 Stdev.s 534.7979

Table 11 Arrangement result with 4th group configuration file

Take a closer look at room number 75. This owner did the worst as well

with the first group configuration variables. But he made $200 more comparing

to group 1. So this set of variables would make this owner happier.

We can also find that the one who did the best is room number 96

comparing to room number 12 by group 1. This is caused by the change of

68

moneyvirtual when decreasing the penalty percentage, and lead to the change

to the rotation of the rooms. We pick out the reservation details for room

number 96 and find out that this room is also greatly preferred by the guests.

This room is requested by guests 7 times for 18 nights, and 7 of them are among

May and July.

Reservation

Date

 Check-

in Date

 Check-

out

Date

 Is

House

Owner

 Room

Number

 Is

Arranged

Arranged

Number

1--11 1--13 1--15 0 -1 0 96

2--14 2--19 2--22 1 96 0 96

3--27 3--29 4--1 1 96 0 96

3--30 4--7 4--10 0 -1 0 96

5--18 5--20 5--23 1 96 0 96

4--29 5--5 5--7 0 -1 0 96

5--28 5--28 5--29 0 -1 0 96

5--1 5--1 5--5 0 -1 0 96

7--11 7--11 7--13 0 -1 0 96

9--24 10--3 10--4 1 96 0 96

12--22 12--22 12--24 1 96 0 96

11--28 12--3 12--7 0 -1 0 96

Table 12 Reservation detail for room 96 with 4th group configuration file

Reservation

Date

 Check-

in Date

 Check-

out

Date

 Is

House

Owner

 Whether

Arranged

 Room

Number

1--3 1--9 1--11 0 1 96

1--7 1--13 1--15 0 1 96

1--11 1--17 1--20 0 1 96

1--18 1--27 1--28 0 1 96

1--20 1--23 1--24 0 1 96

1--22 1--24 1--25 0 1 96

1--25 1--31 2--4 0 1 96

2--2 2--8 2--10 0 1 96

2--6 2--11 2--14 0 1 96

69

2--13 2--14 2--16 0 1 96

2--14 2--19 2--22 1 1 96

2--17 2--23 2--24 0 1 96

2--19 2--27 3--2 0 1 96

2--25 3--4 3--6 0 1 96

3--2 3--8 3--11 0 1 96

3--22 3--26 3--28 0 1 96

3--22 3--22 3--24 0 1 96

3--22 3--25 3--26 0 1 96

3--23 3--24 3--25 0 1 96

3--23 4--1 4--2 0 1 96

3--26 4--2 4--4 0 1 96

3--27 3--29 4--1 1 1 96

3--30 4--7 4--10 0 1 96

3--30 4--5 4--7 0 1 96

4--12 4--19 4--22 0 1 96

4--19 4--23 4--24 0 1 96

4--21 4--26 4--29 0 1 96

4--27 5--6 5--8 0 1 96

5--1 5--1 5--3 0 1 96

5--4 5--8 5--12 0 1 96

5--9 5--12 5--15 0 1 96

5--14 5--16 5--19 0 1 96

5--18 5--20 5--23 1 1 96

5--19 5--27 5--28 0 1 96

5--20 5--23 5--26 0 1 96

5--25 5--30 5--31 0 1 96

5--26 6--1 6--5 0 1 96

5--28 5--28 5--29 0 1 96

6--3 6--5 6--11 0 1 96

6--13 6--16 6--19 0 1 96

6--18 6--25 6--27 0 1 96

6--20 6--20 6--24 0 1 96

6--26 7--4 7--7 0 1 96

6--29 6--29 7--3 0 1 96

7--6 7--8 7--10 0 1 96

7--9 7--18 7--23 0 1 96

7--11 7--11 7--13 0 1 96

7--16 7--24 7--27 0 1 96

7--23 7--23 7--24 0 1 96

70

7--24 7--28 7--31 0 1 96

7--29 7--31 8--2 0 1 96

7--31 8--3 8--6 0 1 96

8--4 8--10 8--12 0 1 96

8--8 8--8 8--10 0 1 96

8--9 8--16 8--19 0 1 96

8--13 8--19 8--26 0 1 96

8--23 8--26 8--29 0 1 96

8--27 9--2 9--4 0 1 96

8--29 8--29 9--2 0 1 96

9--2 9--5 9--6 0 1 96

9--4 9--7 9--10 0 1 96

9--8 9--11 9--14 0 1 96

9--13 9--20 9--22 0 1 96

9--15 9--15 9--17 0 1 96

9--18 9--26 9--27 0 1 96

9--19 9--22 9--25 0 1 96

9--23 9--28 10--1 0 1 96

9--24 10--3 10--4 1 1 96

9--30 10--4 10--6 0 1 96

10--6 10--11 10--13 0 1 96

10--12 10--19 10--23 0 1 96

10--23 10--30 10--31 0 1 96

10--26 10--31 11--3 0 1 96

11--2 11--10 11--11 0 1 96

11--4 11--7 11--9 0 1 96

11--9 11--18 11--22 0 1 96

11--19 11--22 11--23 0 1 96

11--21 11--23 11--25 0 1 96

11--25 11--25 12--2 0 1 96

11--28 12--3 12--7 0 1 96

12--12 12--15 12--18 0 1 96

12--22 12--22 12--24 1 1 96

12--31 1--1 1--7 0 1 96

Table 13 Arrangement summary of room 96 with 4th group configuration file

 Group 5

71

Owner_Max_Occupancy_Days 15

Owner_Occupancy_Penalty 1.0

Owner_Penalty_Flag 1

Considering_Custom_Room_Number_Flag 1

 In this case, the total nights an owner can use without harming the total

income increased to 15 comparing to group 1. This would also make the owners

happy.

 The result is shown below.

Room

Number

Occupancy

time

 Owner

Occupancy

time

 Income Difference

1 197 0 29723 373.84

2 196 12 29204 -145.16

3 196 6 29574 224.84

4 195 1 29255 -94.16

5 199 16 30021 671.84

6 187 0 27863 -1486.16

7 196 13 29374 24.84

8 193 15 29247 -102.16

9 196 9 29574 224.84

10 198 9 30042 692.84

11 199 6 29651 301.84

12 195 11 29155 -194.16

13 196 7 29204 -145.16

14 199 7 29651 301.84

15 193 6 28757 -592.16

16 196 7 29204 -145.16

17 195 11 29175 -174.16

18 187 23 28033 -1316.16

19 198 6 29502 152.84

72

20 196 12 29204 -145.16

21 196 7 29424 74.84

22 197 13 29403 53.84

23 195 12 29225 -124.16

24 198 13 29872 522.84

25 192 21 28978 -371.16

26 199 9 29971 621.84

27 196 12 29404 54.84

28 196 6 29204 -145.16

29 198 3 30042 692.84

30 196 11 29694 344.84

31 191 17 28949 -400.16

32 191 20 28899 -450.16

33 197 17 29353 3.84

34 197 1 29353 3.84

35 189 21 28331 -1018.16

36 196 19 29204 -145.16

37 197 9 29403 53.84

38 193 17 29177 -172.16

39 191 20 28459 -890.16

40 196 4 29524 174.84

41 197 11 29403 53.84

42 192 19 28608 -741.16

43 195 13 29225 -124.16

44 197 2 29843 493.84

45 195 16 29055 -294.16

46 195 10 29475 125.84

47 196 9 29374 24.84

48 196 9 29624 274.84

49 195 13 29375 25.84

50 195 16 29055 -294.16

51 199 11 30021 671.84

52 194 6 29346 -3.16

53 196 8 29374 24.84

54 197 7 29403 53.84

55 195 10 29225 -124.16

56 196 5 29524 174.84

57 197 4 29353 3.84

58 194 15 29276 -73.16

59 195 12 29255 -94.16

73

60 189 23 28211 -1138.16

61 196 10 29254 -95.16

62 197 4 29403 53.84

63 198 12 29942 592.84

64 196 11 29204 -145.16

65 196 10 29204 -145.16

66 194 5 29126 -223.16

67 198 10 29872 522.84

68 196 9 29254 -95.16

69 194 18 28906 -443.16

70 202 2 30638 1288.84

71 197 5 29403 53.84

72 196 14 29204 -145.16

73 198 7 29992 642.84

74 197 10 29523 173.84

75 187 23 28033 -1316.16

76 195 14 29225 -124.16

77 197 7 29723 373.84

78 189 20 28401 -948.16

79 199 15 29651 301.84

80 197 0 29693 343.84

81 193 6 29297 -52.16

82 196 13 29374 24.84

83 198 6 29672 322.84

84 187 22 28233 -1116.16

85 197 14 29793 443.84

86 196 3 29374 24.84

87 195 13 29175 -174.16

88 202 7 30638 1288.84

89 196 8 29324 -25.16

90 195 6 29345 -4.16

91 197 1 29723 373.84

92 196 4 29524 174.84

93 198 10 29672 322.84

94 199 14 29821 471.84

95 196 4 29524 174.84

96 195 12 29225 -124.16

97 194 7 29226 -123.16

98 197 15 29673 323.84

99 196 12 29204 -145.16

74

100 199 9 30141 791.84

 Average 29349.16

 Stdev.s 482.6593

Table 12 Arrangement result with 4th group configuration file

 By introducing the configuration file, we give the management team

some freedom while running this program and applying the equalization

method. Adjusting the configuration variables cleverly would help satisfy both

the owners and guests.

75

10 Conclusion and future recommendation

In conclusion, both the method and the program worked well for this

case. By the set of data provided in chapter 6, even though the two groups

showed similar average number, which means they both took almost all

reservations provided; the difference between standard deviation is significant.

The equalization method helped a lot in balancing the total income for all

owners. We can foresee that if condo hotels use software using this kind of

method, the management should be much easier. Owners will not be

complaining about getting unfair income.

And in chapter 9, we introduced human involvement. Unlike the

human involvement of manually putting more reservations into those who fell

behind, we provided variables to give the management team freedom to rum

the condo hotel with different rules but still stick to the method with

equalization. The result is positive. Comparing to the result using the method

without equalization, the standard deviation decreased for all 5 groups, which

means a more balanced arrangement result is formed by using different rules

with the equalized method.

This technique can also be applied into many other industrial fields. For

example, a manufacturing company holds several machines that can process the

76

same material into a final product in the same amount of time. There are orders

for such product coming in all the time. We can use this method and this

program to arrange the work flow to balance the wear and tear for all machines

and try to maximize the income.

For further improvement of this program, I am looking forward to a real

set of reservation data. With a real set of data, we can study how the condo is

handling with the reservations currently and work out the average income and

standard deviation. Then we apply this set of data into the program and analyze

the result. A real set of data is more realistic and convincible. Secondly, as we

mentioned in chapter 3, we can introduce more reservation categories based on

how the condo is running.

Besides, in chapter 9, we give the management team some freedom

running the program. We can also provide a real-time modifier and allow the

management team changes the variables and run the condo with different rules

in different seasons. For example, during summer, owners are given less nights

without penalty because the summer session is much busier. In the winter,

owners would get more freedom to come and stay in their room for there is less

guests coming and the condo hotel is almost empty.

In the future, this program should provide a GUI (graphical user

77

interface) that allows manager to modify the variables in a much easier way

instead of reading and changing the configuration file.

78

References
[1] Michael Corkery, Condo Hotels: The Latest Twist In Buying a Vacation Residence[N]
The Wall Street Journal Online. February 28, 2006
[2] Chin, Calvin. "Guide to Condo Hotels - Part 2: Financial Analysis"[J] . Halogen Guides.
Retrieved 2007-11-13.
[3] John E. Czarnecki, Building boom in hotel-condo combinations [J]. Architectural
record. 2005, 193(11)
[4] Mary Scoviak, Condo-hotels: boom or bust? [J] Hotels. 2006, 40(9)
[5] Peterson, Tara (2007-05-23). "Condo Hotels: A Conceptual Overview".[J] Premium
Condo Hotels. Retrieved 2008-03-20
[6] http://theflandershotel.com/history/
[7] http://www.guesttracker.com/products.htm
[8] http://www.ssctech.com/timeshareware/Solutions/OwnerMemberServices.aspx
[9] http://sales.resortdata.com/Vacationrental.htm#Equalize
[10] Cormen, Leiserson, Rivest. Introduction to Algorithms1990 [M], Chapter 17 "Greedy
Algorithms" p. 329.
[11] G. Bendall and F. Margot, Greedy Type Resistance of Combinatorial Problems,[J]
Discrete Optimization 3 (2006), 288–298.

79

Appendix 1
// main.cpp
// Reservation
//
// Created by Video on 7/7/15.
// Copyright (c) 2015 Video. All rights reserved.
//

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include "time.h"

using namespace std;
//percentage of rental period
static int summerRate[] = {5,30,30,15,10,5,5};
static int winterRate[] = {35,35,20,7,1,1,1};
//Is summer or not
static const bool summerFlag[] =
{false,false,false,false,false,true,true,
 true,false,false,false,false};
//average rental period for each month
static int rentDays[] = {13,13,13,13,23,23,23,28,23,13,13,13};
//static int rentDays[] = {13,13,13,13,13,13,13,13,13,13,13,13};
static int daysInMonth[] =
{31,28,31,30,31,30,31,31,30,31,30,31};
//number of rooms
static const int roomNumber = 100;
static const int monthNumber = 12;
//percentage of owner's reservations.
static const int owner_percent = 5;

int getPeriod(int *rate, int randNumber);

struct reservationData {
 string reservationDate;
 string startDate;
 string endDate;
 bool ownerFlag;
 int ownerRoom;
};

bool writeList(string file_name, vector<reservationData> data);

int main(int argc, const char * argv[])

80

{
 vector<reservationData> reservationList;

 srand((unsigned int)time(NULL));
 for(int i = 0;i<monthNumber; i++){
 int offset = rand()%5-3;
 rentDays[i] = rentDays[i] + offset;
 }

 for(int i = 1;i<7;i++) {
 summerRate[i] = summerRate[i] + summerRate[i-1];
 winterRate[i] = winterRate[i] + winterRate[i-1];
 }

 for(int i = 0; i<monthNumber; i++) {
 int *rate;
 if(summerFlag[i]){
 rate = summerRate;
 }
 else{
 rate = winterRate;
 }

 for(int day = 0; day< rentDays[i]*roomNumber;){
 //get period by random number
 int period = getPeriod(rate,rand()%100);
 day = day+period;
 stringstream reservation_str;
 stringstream start_str;
 stringstream end_str;

 if(day>rentDays[i]*roomNumber){
 period = day-rentDays[i]*roomNumber;
 if(period==0){
 break;
 }
 }

 int start_date = rand()%daysInMonth[i];

 //calculate reservation date.
 if(reserve_date<0){
 if(i==0){
 temp_month = 11;
 }
 else{

81

 temp_month = (i-1)%12;
 }
 temp_day = daysInMonth[temp_month]+reserve_date+1;
 }
 else{
 temp_month = i;
 temp_day = reserve_date+1;
 }
 temp_month = temp_month+1;
 reservation_str<<temp_month<<"--"<<temp_day;
 reservation_str>>tempReservation.reservationDate;

 //check-in date
 temp_month = i;
 temp_day = start_date+1;
 temp_month = temp_month+1;
 start_str<<temp_month<<"--"<<temp_day;
 start_str>>tempReservation.startDate;

 //check-out date
 if(end_date>=daysInMonth[i]){
 temp_month = (i+1)%12;
 temp_day = end_date-daysInMonth[temp_month]+1;
 }
 else{
 temp_month = i;
 temp_day = end_date+1;
 }
 temp_month = temp_month+1;
 end_str<<temp_month<<"--"<<temp_day;
 end_str>>tempReservation.endDate;
 //whether is an owner's reservation
 tempReservation.ownerFlag =
(rand()%100<owner_percent);
 if(tempReservation.ownerFlag){
 tempReservation.ownerRoom = rand()%roomNumber+1;
 }
 else{
 tempReservation.ownerRoom = -1;
 }
 reservationList.push_back(tempReservation);
 }
 }
 writeList("reservation_short_new.csv", reservationList);
 return 0;
}

82

bool writeList(string file_name, vector<reservationData> data) {
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Reservation Date, Check-in Date, Check-out Date, Is
House Owner, Room Number"<<endl;

 for(int i = 0;i<data.size();i++){

fout<<data[i].reservationDate<<","<<data[i].startDate<<","<<data
[i].endDate<<","<<data[i].ownerFlag<<","<<data[i].ownerRoom<<end
l;
 }
 return true;
}

int getPeriod(int *rate, int randNumber) {
 int days = 0;
 for(int i = 0;i<7;i++)
 {
 if(randNumber<rate[i]){
 days = i+1;
 break;
 }
 }
 return days;
}

83

Appendix 2
Reservation.h

#ifndef RESERVATION_H
#define RESERVATION_H

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include "time.h"

using namespace std;
static int daysInMonth[] =
{31,28,31,30,31,30,31,31,30,31,30,31};

int getPeriod(int *rate, int randNumber);

int dateToTime(string date);

class reservationData {
public:

reservationData():ownerFlag(false),arrangeFlag(false),canInsertF
lag(false),arrangeRoom(rand()%100){}
 string reservationDate;
 string startDate;
 string endDate;
 int reservationTime;
 int startTime;
 int endTime;
 bool ownerFlag;
 int ownerRoom;
 bool arrangeFlag;
 bool canInsertFlag;
 int arrangeRoom;
};

class Room{
public:
 Room();
 bool checkAvailable(int startTime, int endTime);
 bool insertReservation(int startTime, int endTime);
 bool insertOwnReservation(int startTime, int endTime);

84

 vector<bool> available;
 int lastVisitTime;
 int livingTime;
 int ownerLivingTime;
 int index;
};

class Reservation{
public:
 Reservation(int roomNumber);
 void insertReservation(reservationData &r);
 bool writeRoomList(string file_name);
private:
 vector<Room> roomList;
 vector<pair<int,int> > sortedList;
};

bool loadList(string file_name, vector<reservationData> &data);

bool writeList(string file_name, vector<reservationData> &data);

bool writeArrangedList(string file_name, vector<reservationData>
&data);

bool compareReservationDataByStart(reservationData r1,
reservationData r2);

bool compareReservationDataByReservation(reservationData r1,
reservationData r2);

bool compareRoomByLiving(Room r1, Room r2);

bool compareRoomByLastVisit(Room r1, Room r2);

#endif

85

Main.cpp
// main.cpp
// Reservation
//
// Created by Video on 7/7/15.
// Copyright (c) 2015 Video. All rights reserved.
//

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <algorithm>
#include "time.h"
#include "reservation.h"

using namespace std;
//percentage of rental period

static const int roomNumber = 100;

int main(int argc, const char * argv[])
{

 Reservation myRes(roomNumber);
 vector<reservationData> reservationList;

 loadList("../data/reservation_short_new.csv",
reservationList);

sort(reservationList.begin(),reservationList.end(),&compareReser
vationDataByStart);

 for(auto &s:reservationList){
 if(s.ownerFlag){
 myRes.insertReservation(s);
 }
 }

 for(auto &s:reservationList){
 if(!s.arrangeFlag){
 myRes.insertReservation(s);
 }
 }

86

 writeArrangedList("../data/Arranged_Reservation_new.csv",
reservationList);
 myRes.writeRoomList("../data/room_List_new.csv");
 return 0;
}

87

Reservation.cpp
// main.cpp
// Reservation
//
// Created by Video on 7/7/15.
// Copyright (c) 2015 Video. All rights reserved.
//
#include "reservation.h"
#include <algorithm>
//initial conditions and build room list
Room::Room(){
 available = vector<bool> (365+30,true);
 lastVisitTime = 0;
 livingTime = 0;
 ownerLivingTime = 0;
}
//check availability
bool Room::checkAvailable(int startTime, int endTime){
 for(int i = startTime;i<endTime;i++){
 if(!available[i]){
 return false;
 }
 }
 return true;
}
//arrange reservation and update room list
bool Room::insertReservation(int startTime, int endTime){
 if(!checkAvailable(startTime,endTime)){
 return false;
 }

 for(int i = startTime;i<endTime;i++){
 available[i] = false;
 }

 lastVisitTime = max(lastVisitTime, endTime);
 livingTime = livingTime + endTime - startTime;
 return true;
}
//pair room number with living time and owner living time
Reservation::Reservation(int roomNumber){
 roomList = vector<Room>(roomNumber,Room());
 int index = 0;
 for(auto &s:roomList){
 s.index = index+1;
 pair<int,int> indexPair(index,s.livingTime);

88

 sortedList.push_back(indexPair);
 index++;
 }
}

bool comparePair(pair<int,int> a, pair<int,int> b){
 return a.second<b.second;
}
//owner's reservation?
void Reservation::insertReservation(reservationData &r){
 if(r.arrangeFlag){
 return;
 }
 bool flag = false;
 if(r.ownerFlag){
 if(roomList[r.ownerRoom-
1].insertOwnReservation(r.startTime, r.endTime)){
 r.canInsertFlag = true;
 }
 else{
 r.canInsertFlag = false;
 }
 r.arrangeFlag = true;
 }
 else{
 sort(sortedList.begin(),sortedList.end(),&comparePair);
 for(int i = 0;i<sortedList.size();i++){

if(roomList[sortedList[i].first].insertReservation(r.startTime,
r.endTime)){
 r.arrangeRoom =
roomList[sortedList[i].first].index;
 flag = true;
 r.canInsertFlag = true;
 sortedList[i].second =
roomList[sortedList[i].first].livingTime;
 break;
 }
 }
 r.arrangeFlag = true;
 if(!flag){
 r.canInsertFlag = false;
 r.arrangeRoom = -1;
 }
 }
}

89

//read reservation data
bool Room::insertOwnReservation(int startTime, int endTime){
 if(!checkAvailable(startTime,endTime)){
 return false;
 }

 for(int i = startTime;i<endTime;i++){
 available[i] = false;
 }
 ownerLivingTime = ownerLivingTime + endTime - startTime;
 return true;
}

bool loadList(string file_name, vector<reservationData> &data) {
 data.clear();
 ifstream fin(file_name);
 if(!fin.is_open()){
 cout<<"Can't load file"<<endl;
 return false;
 }

 string tempStr;
 getline(fin,tempStr);
 while(getline(fin,tempStr)){
 reservationData tempData;
 size_t prePos = -1;
 size_t pos = tempStr.find(",",prePos+1);

tempData.reservationDate.assign(tempStr.begin()+prePos+1,tempStr
.begin()+pos);
 tempData.reservationTime =
dateToTime(tempData.reservationDate);

 prePos = pos;
 pos = tempStr.find(",",prePos+1);

tempData.startDate.assign(tempStr.begin()+prePos+1,tempStr.begin
()+pos);
 tempData.startTime = dateToTime(tempData.startDate);

 prePos = pos;
 pos = tempStr.find(",",prePos+1);

tempData.endDate.assign(tempStr.begin()+prePos+1,tempStr.begin()
+pos);
 tempData.endTime = dateToTime(tempData.endDate);

90

 //cross year
 if(tempData.endTime<tempData.startTime){
 tempData.endTime = tempData.endTime+365;
 }

 string str;
 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 str.assign(tempStr.begin()+prePos+1,tempStr.end());
 tempData.ownerFlag = atoi(str.c_str());

 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 if(pos==string::npos){
 str.assign(tempStr.begin()+prePos+1,tempStr.end());
 tempData.ownerRoom = atoi(str.c_str());
 }
 else{

str.assign(tempStr.begin()+prePos+1,tempStr.begin()+pos);
 tempData.ownerRoom = atoi(str.c_str());

 prePos = pos;
 pos = tempStr.find(",",prePos+1);

str.assign(tempStr.begin()+prePos+1,tempStr.begin()+pos);
 tempData.arrangeFlag = atoi(str.c_str());

 prePos = pos;
 str.assign(tempStr.begin()+prePos+1,tempStr.end()-1);
 tempData.arrangeRoom = atoi(str.c_str());
 }
 data.push_back(tempData);
 }
 return true;
}

bool compareReservationDataByStart(reservationData r1,
reservationData r2){
 return r1.startTime<r2.startTime;
}

bool compareReservationDataByReservation(reservationData r1,
reservationData r2){
 return r1.reservationTime<r2.reservationTime;
}

91

bool compareRoomByLiving(Room r1, Room r2){
 return r1.livingTime<r2.livingTime;
}

bool compareRoomByLastVisit(Room r1, Room r2){
 return r1.lastVisitTime<r2.lastVisitTime;
}

bool writeList(string file_name, vector<reservationData> data) {
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Reservation Date, Check-in Date, Check-out Date, Is
House Owner"<<endl;

 for(int i = 0;i<data.size();i++){

fout<<data[i].reservationDate<<","<<data[i].startDate<<","<<data
[i].endDate<<","<<data[i].ownerFlag<<endl;
 }

 return true;
}

bool Reservation::writeRoomList(string file_name){
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Room Number, Living Time, Owner Living Time"<<endl;
 for(auto &r:roomList){

fout<<r.index<<","<<r.livingTime<<","<<r.ownerLivingTime<<endl;
 }

 return true;
}

bool writeArrangedList(string file_name, vector<reservationData>
&data){

92

 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Reservation Date, Check-in Date, Check-out Date, Is
House Owner, Whether Arranged, Room Number"<<endl;
 for(int i = 0;i<data.size();i++){

fout<<data[i].reservationDate<<","<<data[i].startDate<<","<<data
[i].endDate<<","<<data[i].ownerFlag<<","<<data[i].canInsertFlag<
<","<<data[i].arrangeRoom<<endl;
 }

 return true;
}
//tranform date to time
int dateToTime(string date){
 int month;
 int day;
 int time = 0;
 sscanf(date.c_str(), "%d--%d", &month, &day);

 for(int i = 0;i<month-1;i++){
 time = time+daysInMonth[i];
 }

 time = time+day-1;
 return time;
}

int getPeriod(int *rate, int randNumber) {
 int days = 0;
 for(int i = 0;i<7;i++)
 {
 if(randNumber<rate[i]){
 days = i+1;
 break;
 }
 }
 return days;
}

93

Appendix 3
/
// main.cpp
// Reservation
// Created by Video on 7/7/15.
// Copyright (c) 2015 Video. All rights reserved.
//

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include "time.h"

using namespace std;
//percentage of rental period
static int summerRate[] = {5,30,30,15,10,5,5};
static int winterRate[] = {35,35,20,7,1,1,1};
//Is summer or not
static const bool summerFlag[] =
{false,false,false,false,false,true,true,
 true,false,false,false,false};
//average rental period for each month
static int rentDays[] = {13,13,13,13,23,23,23,28,23,13,13,13};
//static int rentDays[] = {13,13,13,13,13,13,13,13,13,13,13,13};
static int daysInMonth[] =
{31,28,31,30,31,30,31,31,30,31,30,31};
//number of rooms
static const int roomNumber = 100;
static const int monthNumber = 12;
//percentage of owner's reservations.
static const int owner_percent = 5;
static const int number_percent = 5;

int getPeriod(int *rate, int randNumber);

/*struct reservationData {
 string reservationDate;
 string startDate;
 string endDate;
 bool ownerFlag;
 int ownerRoom;
};*/

class reservationData {
public:

94

 string reservationDate;
 string startDate;
 string endDate;
 int reservationTime;
 int startTime;
 int endTime;
 bool ownerFlag;
 int ownerRoom;
 bool arrangeFlag;
 int arrangeRoom;
};

bool writeList(string file_name, vector<reservationData> data);

int main(int argc, const char * argv[])
{
 vector<reservationData> reservationList;

 srand((unsigned int)time(NULL));
 for(int i = 0;i<monthNumber; i++){
 int offset = rand()%5-3;
 rentDays[i] = rentDays[i] + offset;
 }

 for(int i = 1;i<7;i++) {
 summerRate[i] = summerRate[i] + summerRate[i-1];
 winterRate[i] = winterRate[i] + winterRate[i-1];
 }

 for(int i = 0; i<monthNumber; i++) {
 int *rate;
 if(summerFlag[i]){
 rate = summerRate;
 }
 else{
 rate = winterRate;
 }

 for(int day = 0; day< rentDays[i]*roomNumber;){
 //get period by random number
 int period = getPeriod(rate,rand()%100);
 day = day+period;
 stringstream reservation_str;
 stringstream start_str;
 stringstream end_str;

95

 if(day>rentDays[i]*roomNumber){
 period = day-rentDays[i]*roomNumber;
 if(period==0){
 break;
 }
 }

 int start_date = rand()%daysInMonth[i];

 //calculate reservation date.
 if(reserve_date<0){
 if(i==0){
 temp_month = 11;
 }
 else{
 temp_month = (i-1)%12;
 }
 temp_day = daysInMonth[temp_month]+reserve_date+1;
 }
 else{
 temp_month = i;
 temp_day = reserve_date+1;
 }
 temp_month = temp_month+1;
 reservation_str<<temp_month<<"--"<<temp_day;
 reservation_str>>tempReservation.reservationDate;

 //check-in date
 temp_month = i;
 temp_day = start_date+1;
 temp_month = temp_month+1;
 start_str<<temp_month<<"--"<<temp_day;
 start_str>>tempReservation.startDate;

 //check-out date
 if(end_date>=daysInMonth[i]){
 temp_month = (i+1)%12;
 temp_day = end_date-daysInMonth[i]+1;
 }
 else{
 temp_month = i;
 temp_day = end_date+1;
 }
 temp_month = temp_month+1;
 end_str<<temp_month<<"--"<<temp_day;

96

 end_str>>tempReservation.endDate;
 //whether is an owner's reservation
 tempReservation.ownerFlag =
(rand()%100<owner_percent);
 tempReservation.arrangeFlag = false;
 tempReservation.arrangeRoom = -1;
 if(tempReservation.ownerFlag){
 tempReservation.ownerRoom = rand()%roomNumber+1;
 tempReservation.arrangeRoom =
tempReservation.ownerRoom;
 }
 else{
 tempReservation.ownerRoom = -1;
 if(rand()%100<number_percent){
 tempReservation.arrangeRoom =
rand()%roomNumber+1;
 }
 else{
 tempReservation.arrangeRoom = -1;
 }
 }
 reservationList.push_back(tempReservation);
 }
 }
 writeList("../../data/reservation.csv", reservationList);
 return 0;
}

bool writeList(string file_name, vector<reservationData> data) {
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Reservation Date, Check-in Date, Check-out Date, Is
House Owner, Room Number, Is Arranged, Arranged Number"<<endl;

 for(int i = 0;i<data.size();i++){

fout<<data[i].reservationDate<<","<<data[i].startDate<<","

<<data[i].endDate<<","<<data[i].ownerFlag<<","<<data[i].ownerRoo
m<<","
 <<data[i].arrangeFlag<<","<<data[i].arrangeRoom<<endl;
 }

97

 return true;
}

int getPeriod(int *rate, int randNumber) {
 int days = 0;
 for(int i = 0;i<7;i++)
 {
 if(randNumber<rate[i]){
 days = i+1;
 break;
 }
 }
 return days;
}

98

Appendix 4
Reservation.h
#ifndef RESERVATION_H
#define RESERVATION_H

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include "time.h"

using namespace std;
static int daysInMonth[] =
{31,28,31,30,31,30,31,31,30,31,30,31};

static int dateSpilt[] = {103,145,197,247,264,299,364};
static int moneySplit[] = {149,199,269,349,269,199,149};

int getPeriod(int *rate, int randNumber);

int dateToTime(string date);

class reservationData {
public:

reservationData():ownerFlag(false),arrangeFlag(false),canInsertF
lag(false),arrangeRoom(-1){}//arrangeRoom(rand()%100)
 string reservationDate;
 string startDate;
 string endDate;
 int reservationTime;
 int startTime;
 int endTime;
 bool ownerFlag;
 int ownerRoom;
 bool arrangeFlag;
 bool canInsertFlag;
 int arrangeRoom;
};

class Room{
public:
 Room();
 bool checkAvailable(int startTime, int endTime);
 bool insertReservation(int startTime, int endTime);
 bool insertReservation(int startTime, int endTime, int

99

roomIndex);
 bool insertOwnReservation(int startTime, int endTime);

 vector<bool> available;
 int lastVisitTime;
 int livingTime;
 int moneyEarn;
 int moneyVirtual;
 int ownerLivingTime;
 int index;
};

class Reservation{
public:
 Reservation(int roomNumber);
 void insertReservation(reservationData &r);
 void insertReservation_Conventional(reservationData &r);
 bool writeRoomList(string file_name);
private:
 vector<Room> roomList;
 vector<pair<int,int> > sortedList;
};

bool loadList(string file_name, vector<reservationData> &data);

bool writeList(string file_name, vector<reservationData> &data);

bool writeArrangedList(string file_name, vector<reservationData>
&data);

bool compareReservationDataByStart(reservationData r1,
reservationData r2);

bool compareReservationDataByReservation(reservationData r1,
reservationData r2);

bool compareRoomByLiving(Room r1, Room r2);

bool compareRoomByLastVisit(Room r1, Room r2);

int calculateMoney(int startTime, int endTime);

int calculateMoneyOwn(int startTime, int endTime, int
livedDays);
#endif

100

// main.cpp
// Reservation
//
// Created by Video on 7/7/15.
// Copyright (c) 2015 Video. All rights reserved.
//

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include "time.h"

#include "reservation.h"

using namespace std;
//percentage of rental period

static const int roomNumber = 100;

int main(int argc, const char * argv[])
{

 Reservation myRes(roomNumber);
 vector<reservationData> reservationList;

 loadList("../../data/reservation.csv", reservationList);

sort(reservationList.begin(),reservationList.end(),&compareReser
vationDataByReservation);

 for(auto &s:reservationList){
 if(s.ownerFlag){
 //myRes.insertReservation(s);
 myRes.insertReservation_Conventional(s);
 }
 }

 for(auto &s:reservationList){
 if(!s.arrangeFlag){
 //myRes.insertReservation(s);
 myRes.insertReservation_Conventional(s);
 }
 }

101

writeArrangedList("../../data/Arranged_Reservation_Conventional.
csv", reservationList);
 myRes.writeRoomList("../../data/room_List_Conventional.csv");
 /*string dateList[] = {"4--14","5--26","7--17","9--5","9--
22","10--27","12--31"};
 for (int i = 0;i<7;i++){
 cout<<dateToTime(dateList[i])<<endl;
 }*/

 return 0;
}

102

// reservation.cpp
// Reservation
//
// Created by Video on 7/7/15.
// Copyright (c) 2015 Video. All rights reserved.
//
#include "reservation.h"

Room::Room(){
 available = vector<bool> (365+30,true);
 lastVisitTime = 0;
 livingTime = 0;
 ownerLivingTime = 0;
 moneyEarn = 0;
 moneyVirtual = 0;
}

bool Room::checkAvailable(int startTime, int endTime){
 for(int i = startTime;i<endTime;i++){
 if(!available[i]){
 return false;
 }
 }
 return true;
}

bool Room::insertReservation(int startTime, int endTime){
 if(!checkAvailable(startTime,endTime)){
 return false;
 }

 for(int i = startTime;i<endTime;i++){
 available[i] = false;
 }

 lastVisitTime = max(lastVisitTime, endTime);
 livingTime = livingTime + endTime - startTime;
 moneyEarn = moneyEarn + calculateMoney(startTime, endTime);
 moneyVirtual = moneyVirtual + calculateMoney(startTime,
endTime);
 return true;
}

bool Room::insertOwnReservation(int startTime, int endTime){
 if(!checkAvailable(startTime,endTime)){
 return false;

103

 }

 for(int i = startTime;i<endTime;i++){
 available[i] = false;
 }

 moneyVirtual = moneyVirtual + calculateMoneyOwn(startTime,
endTime, ownerLivingTime);
 ownerLivingTime = ownerLivingTime + endTime - startTime;

 return true;
}

Reservation::Reservation(int roomNumber){
 roomList = vector<Room>(roomNumber,Room());
 int index = 0;
 for(auto &s:roomList){
 s.index = index+1;
 pair<int,int> indexPair(index,s.moneyVirtual);
 sortedList.push_back(indexPair);
 index++;
 }
}

bool comparePair(pair<int,int> a, pair<int,int> b){
 return a.second<b.second;
}

void Reservation::insertReservation_Conventional(reservationData
&r){
 if(r.arrangeFlag){
 return;
 }
 bool flag = false;
 if(r.ownerFlag){
 if(roomList[r.ownerRoom-
1].insertOwnReservation(r.startTime, r.endTime)){
 r.canInsertFlag = true;
 flag = true;
 r.arrangeRoom = r.ownerRoom;
 }
 else{
 r.canInsertFlag = false;
 r.arrangeRoom = -1;
 }

104

 r.arrangeFlag = true;
 }
 else{
 if(r.arrangeRoom!=-1){
 if(roomList[r.arrangeRoom-
1].insertReservation(r.startTime, r.endTime)){
 r.arrangeRoom = roomList[r.arrangeRoom-1].index;
 flag = true;
 r.canInsertFlag = true;
 for(auto &s:sortedList){
 if(s.first==r.arrangeRoom){
 s.second = roomList[r.arrangeRoom-
1].moneyVirtual;
 break;
 }
 }
 }
 }

 if(!flag){
 for(int i = 0;i<sortedList.size();i++){

if(roomList[sortedList[i].first].insertReservation(r.startTime,
r.endTime)){
 r.arrangeRoom =
roomList[sortedList[i].first].index;
 flag = true;
 r.canInsertFlag = true;
 pair<int,int> indexTemp = sortedList[i];
 sortedList.erase(sortedList.begin()+i);
 sortedList.push_back(indexTemp);
 break;
 }
 }
 }

 r.arrangeFlag = true;
 if(!flag){
 r.canInsertFlag = false;
 r.arrangeRoom = -1;
 }
 }
}

void Reservation::insertReservation(reservationData &r){

105

 if(r.arrangeFlag){
 return;
 }
 bool flag = false;
 if(r.ownerFlag){
 if(roomList[r.ownerRoom-
1].insertOwnReservation(r.startTime, r.endTime)){
 r.canInsertFlag = true;
 r.arrangeRoom = r.ownerRoom;
 flag = true;
 for(auto &s:sortedList){
 if(s.first==r.arrangeRoom){
 s.second = roomList[r.arrangeRoom-
1].moneyVirtual;
 break;
 }
 }
 }
 else{
 r.canInsertFlag = false;
 r.arrangeRoom = -1;
 }
 r.arrangeFlag = true;
 }
 else{
 if(r.arrangeRoom!=-1){
 if(roomList[r.arrangeRoom-
1].insertReservation(r.startTime, r.endTime)){
 r.arrangeRoom = roomList[r.arrangeRoom-1].index;
 flag = true;
 r.canInsertFlag = true;
 for(auto &s:sortedList){
 if(s.first==r.arrangeRoom){
 s.second = roomList[r.arrangeRoom-
1].moneyVirtual;
 break;
 }
 }
 }
 }

 if(!flag){

sort(sortedList.begin(),sortedList.end(),&comparePair);
 for(int i = 0;i<sortedList.size();i++){

106

if(roomList[sortedList[i].first].insertReservation(r.startTime,
r.endTime)){
 r.arrangeRoom =
roomList[sortedList[i].first].index;
 flag = true;
 r.canInsertFlag = true;
 sortedList[i].second =
roomList[sortedList[i].first].moneyVirtual;
 break;
 }
 }
 }

 r.arrangeFlag = true;
 if(!flag){
 r.canInsertFlag = false;
 r.arrangeRoom = -1;
 }
 }
}

bool loadList(string file_name, vector<reservationData> &data) {
 data.clear();
 ifstream fin(file_name);
 if(!fin.is_open()){
 cout<<"Can't load file"<<endl;
 return false;
 }

 string tempStr;
 getline(fin,tempStr);
 while(getline(fin,tempStr)){
 reservationData tempData;
 int prePos = -1;
 size_t pos = tempStr.find(",",prePos+1);

tempData.reservationDate.assign(tempStr.begin()+prePos+1,tempStr
.begin()+pos);
 tempData.reservationTime =
dateToTime(tempData.reservationDate);

 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 tempData.startDate.assign(tempStr,prePos+1,pos-
(prePos+1));
 tempData.startTime = dateToTime(tempData.startDate);

107

 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 tempData.endDate.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.endTime = dateToTime(tempData.endDate);
 //cross year
 if(tempData.endTime<tempData.startTime){
 tempData.endTime = tempData.endTime+365;
 }

 string str;
 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.ownerFlag = atoi(str.c_str());

 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 if(pos==string::npos){
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.ownerRoom = atoi(str.c_str());
 }
 else{
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.ownerRoom = atoi(str.c_str());

 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.arrangeFlag = atoi(str.c_str());

 prePos = pos;
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.arrangeRoom = atoi(str.c_str());
 }
 data.push_back(tempData);
 }
 return true;
}

bool compareReservationDataByStart(reservationData r1,
reservationData r2){
 return r1.startTime<r2.startTime;
}

bool compareReservationDataByReservation(reservationData r1,

108

reservationData r2){
 return r1.reservationTime<r2.reservationTime;
}

bool compareRoomByLiving(Room r1, Room r2){
 return r1.livingTime<r2.livingTime;
}

bool compareRoomByLastVisit(Room r1, Room r2){
 return r1.lastVisitTime<r2.lastVisitTime;
}

bool writeList(string file_name, vector<reservationData> data) {
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Reservation Date, Check-in Date, Check-out Date, Is
House Owner"<<endl;

 for(int i = 0;i<data.size();i++){

fout<<data[i].reservationDate<<","<<data[i].startDate<<","<<data
[i].endDate<<","<<data[i].ownerFlag<<endl;
 }

 return true;
}

bool Reservation::writeRoomList(string file_name){
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Room Number, Living Time, Owner Living Time,
Income"<<endl;
 for(auto &r:roomList){

fout<<r.index<<","<<r.livingTime<<","<<r.ownerLivingTime<<","<<r
.moneyEarn<<endl;
 }

109

 return true;
}

bool writeArrangedList(string file_name, vector<reservationData>
&data){
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Reservation Date, Check-in Date, Check-out Date, Is
House Owner, Whether Arranged, Room Number"<<endl;
 for(int i = 0;i<data.size();i++){

fout<<data[i].reservationDate<<","<<data[i].startDate<<","<<data
[i].endDate<<","

<<data[i].ownerFlag<<","<<data[i].canInsertFlag<<","<<data[i].ar
rangeRoom<<endl;
 }

 return true;
}

int dateToTime(string date){
 int month;
 int day;
 int time = 0;
 sscanf(date.c_str(), "%d--%d", &month, &day);

 for(int i = 0;i<month-1;i++){
 time = time+daysInMonth[i];
 }

 time = time+day-1;
 return time;
}

int getPeriod(int *rate, int randNumber) {
 int days = 0;
 for(int i = 0;i<7;i++)
 {
 if(randNumber<rate[i]){
 days = i+1;

110

 break;
 }
 }
 return days;
}

int calculateMoney(int startTime, int endTime){
 int sum = 0;
 for(int i = startTime; i<endTime; i++){
 int cur = moneySplit[0];
 for(int r = 0;r<7;r++){
 if(i<=r){
 cur = moneySplit[r];
 break;
 }
 }
 sum = sum+cur;
 }
 return sum;

}

int calculateMoneyOwn(int startTime, int endTime, int
livedDays){
 int sum = 0;
 for(int i = startTime; i<endTime; i++){
 if(livedDays<10){
 livedDays++;
 continue;
 }
 else{
 int cur = moneySplit[0];
 for(int r = 0;r<7;r++){
 if(i<=r){
 cur = moneySplit[r];
 break;
 }
 }
 sum = sum+cur;
 livedDays++;
 }
 }
 return sum;
}

111

Appendix 4
Main.cpp
//
// main.cpp
// Reservation
//
// Created by Video on 7/7/15.
// Copyright (c) 2015 Video. All rights reserved.
//

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include "time.h"

#include "reservation.h"

using namespace std;
//percentage of rental period

static const int roomNumber = 100;

int main(int argc, const char * argv[])
{

 Reservation myRes(roomNumber);
 vector<reservationData> reservationList;
 readParameter("../../data/config.txt");
 loadList("../../data/reservation.csv", reservationList);

sort(reservationList.begin(),reservationList.end(),&compareReser
vationDataByReservation);

 for(auto &s:reservationList){
 if(s.ownerFlag){
 myRes.insertReservation(s);
 //myRes.insertReservation_Conventional(s);
 }
 }

 for(auto &s:reservationList){
 if(!s.arrangeFlag){
 myRes.insertReservation(s);
 //myRes.insertReservation_Conventional(s);

112

 }
 }

 writeArrangedList("../../data/Arranged_Reservation_1.csv",
reservationList);
 myRes.writeRoomList("../../data/room_List_1.csv");

 return 0;
}

113

Reservation.cpp
//
// main.cpp
// Reservation
//
// Created by Video on 7/7/15.
// Copyright (c) 2015 Video. All rights reserved.
//
#include "reservation.h"

Room::Room(){
 available = vector<bool> (365+30,true);
 lastVisitTime = 0;
 livingTime = 0;
 ownerLivingTime = 0;
 moneyEarn = 0;
 moneyVirtual = 0;
}

bool Room::checkAvailable(int startTime, int endTime){
 for(int i = startTime;i<endTime;i++){
 if(!available[i]){
 return false;
 }
 }
 return true;
}

bool Room::insertReservation(int startTime, int endTime){
 if(!checkAvailable(startTime,endTime)){
 return false;
 }

 for(int i = startTime;i<endTime;i++){
 available[i] = false;
 }

 lastVisitTime = max(lastVisitTime, endTime);
 livingTime = livingTime + endTime - startTime;
 moneyEarn = moneyEarn + calculateMoney(startTime, endTime);
 moneyVirtual = moneyVirtual + calculateMoney(startTime,
endTime);
 return true;
}

bool Room::insertOwnReservation(int startTime, int endTime){

114

 if(!checkAvailable(startTime,endTime)){
 return false;
 }

 for(int i = startTime;i<endTime;i++){
 available[i] = false;
 }

 moneyVirtual = moneyVirtual + calculateMoneyOwn(startTime,
endTime, ownerLivingTime);
 ownerLivingTime = ownerLivingTime + endTime - startTime;

 return true;
}

Reservation::Reservation(int roomNumber){
 roomList = vector<Room>(roomNumber,Room());
 int index = 0;
 for(auto &s:roomList){
 s.index = index+1;
 pair<int,int> indexPair(index,s.moneyVirtual);
 sortedList.push_back(indexPair);
 index++;
 }
}

bool comparePair(pair<int,int> a, pair<int,int> b){
 return a.second<b.second;
}

void Reservation::insertReservation_Conventional(reservationData
&r){
 if(r.arrangeFlag){
 return;
 }
 bool flag = false;
 if(r.ownerFlag){
 if(roomList[r.ownerRoom-
1].insertOwnReservation(r.startTime, r.endTime)){
 r.canInsertFlag = true;
 flag = true;
 r.arrangeRoom = r.ownerRoom;
 }
 else{
 r.canInsertFlag = false;

115

 r.arrangeRoom = -1;
 }
 r.arrangeFlag = true;
 }
 else{
 if(consideringCustomRoomNumber){
 if(r.arrangeRoom!=-1){
 if(roomList[r.arrangeRoom-
1].insertReservation(r.startTime, r.endTime)){
 r.arrangeRoom = roomList[r.arrangeRoom-
1].index;
 flag = true;
 r.canInsertFlag = true;
 for(auto &s:sortedList){
 if(s.first==r.arrangeRoom){
 s.second = roomList[r.arrangeRoom-
1].moneyVirtual;
 break;
 }
 }
 }
 }
 }

 if(!flag){
 for(int i = 0;i<sortedList.size();i++){

if(roomList[sortedList[i].first].insertReservation(r.startTime,
r.endTime)){
 r.arrangeRoom =
roomList[sortedList[i].first].index;
 flag = true;
 r.canInsertFlag = true;
 pair<int,int> indexTemp = sortedList[i];
 sortedList.erase(sortedList.begin()+i);
 sortedList.push_back(indexTemp);
 break;
 }
 }
 }

 r.arrangeFlag = true;
 if(!flag){
 r.canInsertFlag = false;
 r.arrangeRoom = -1;
 }

116

 }
}

void Reservation::insertReservation(reservationData &r){
 if(r.arrangeFlag){
 return;
 }
 bool flag = false;
 if(r.ownerFlag){
 if(roomList[r.ownerRoom-
1].insertOwnReservation(r.startTime, r.endTime)){
 r.canInsertFlag = true;
 r.arrangeRoom = r.ownerRoom;
 flag = true;
 for(auto &s:sortedList){
 if(s.first==r.arrangeRoom){
 s.second = roomList[r.arrangeRoom-
1].moneyVirtual;
 break;
 }
 }
 }
 else{
 r.canInsertFlag = false;
 r.arrangeRoom = -1;
 }
 r.arrangeFlag = true;
 }
 else{
 //add such flag
 if(consideringCustomRoomNumber){
 if(r.arrangeRoom!=-1){
 if(roomList[r.arrangeRoom-
1].insertReservation(r.startTime, r.endTime)){
 r.arrangeRoom = roomList[r.arrangeRoom-
1].index;
 flag = true;
 r.canInsertFlag = true;
 for(auto &s:sortedList){
 if(s.first==r.arrangeRoom){
 s.second = roomList[r.arrangeRoom-
1].moneyVirtual;
 break;
 }
 }

117

 }
 }
 }

 if(!flag){

sort(sortedList.begin(),sortedList.end(),&comparePair);
 for(int i = 0;i<sortedList.size();i++){

if(roomList[sortedList[i].first].insertReservation(r.startTime,
r.endTime)){
 r.arrangeRoom =
roomList[sortedList[i].first].index;
 flag = true;
 r.canInsertFlag = true;
 sortedList[i].second =
roomList[sortedList[i].first].moneyVirtual;
 break;
 }
 }
 }

 r.arrangeFlag = true;
 if(!flag){
 r.canInsertFlag = false;
 r.arrangeRoom = -1;
 }
 }
}

bool loadList(string file_name, vector<reservationData> &data) {
 data.clear();
 ifstream fin(file_name);
 if(!fin.is_open()){
 cout<<"Can't load file"<<endl;
 return false;
 }

 string tempStr;
 getline(fin,tempStr);
 while(getline(fin,tempStr)){
 reservationData tempData;
 int prePos = -1;
 size_t pos = tempStr.find(",",prePos+1);

tempData.reservationDate.assign(tempStr.begin()+prePos+1,tempStr

118

.begin()+pos);
 tempData.reservationTime =
dateToTime(tempData.reservationDate);

 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 tempData.startDate.assign(tempStr,prePos+1,pos-
(prePos+1));
 tempData.startTime = dateToTime(tempData.startDate);

 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 tempData.endDate.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.endTime = dateToTime(tempData.endDate);
 //cross year
 if(tempData.endTime<tempData.startTime){
 tempData.endTime = tempData.endTime+365;
 }

 string str;
 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.ownerFlag = atoi(str.c_str());

 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 if(pos==string::npos){
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.ownerRoom = atoi(str.c_str());
 }
 else{
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.ownerRoom = atoi(str.c_str());

 prePos = pos;
 pos = tempStr.find(",",prePos+1);
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.arrangeFlag = atoi(str.c_str());

 prePos = pos;
 str.assign(tempStr,prePos+1,pos-(prePos+1));
 tempData.arrangeRoom = atoi(str.c_str());
 }
 data.push_back(tempData);
 }

119

 return true;
}

bool compareReservationDataByStart(reservationData r1,
reservationData r2){
 return r1.startTime<r2.startTime;
}

bool compareReservationDataByReservation(reservationData r1,
reservationData r2){
 return r1.reservationTime<r2.reservationTime;
}

bool compareRoomByLiving(Room r1, Room r2){
 return r1.livingTime<r2.livingTime;
}

bool compareRoomByLastVisit(Room r1, Room r2){
 return r1.lastVisitTime<r2.lastVisitTime;
}

bool writeList(string file_name, vector<reservationData> data) {
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Reservation Date, Check-in Date, Check-out Date, Is
House Owner"<<endl;

 for(int i = 0;i<data.size();i++){

fout<<data[i].reservationDate<<","<<data[i].startDate<<","<<data
[i].endDate<<","<<data[i].ownerFlag<<endl;
 }

 return true;
}

bool Reservation::writeRoomList(string file_name){
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

120

 fout<<"Room Number, Living Time, Owner Living Time,
Income"<<endl;
 for(auto &r:roomList){

fout<<r.index<<","<<r.livingTime<<","<<r.ownerLivingTime<<","<<r
.moneyEarn<<endl;
 }

 return true;
}

bool writeArrangedList(string file_name, vector<reservationData>
&data){
 ofstream fout(file_name);
 if(!fout.is_open()){
 cout<<"Can't write file"<<endl;
 return false;
 }

 fout<<"Reservation Date, Check-in Date, Check-out Date, Is
House Owner, Whether Arranged, Room Number"<<endl;
 for(int i = 0;i<data.size();i++){

fout<<data[i].reservationDate<<","<<data[i].startDate<<","<<data
[i].endDate<<","

<<data[i].ownerFlag<<","<<data[i].canInsertFlag<<","<<data[i].ar
rangeRoom<<endl;
 }

 return true;
}

int dateToTime(string date){
 int month;
 int day;
 int time = 0;
 sscanf(date.c_str(), "%d--%d", &month, &day);

 for(int i = 0;i<month-1;i++){
 time = time+daysInMonth[i];
 }

 time = time+day-1;

121

 return time;
}

int getPeriod(int *rate, int randNumber) {
 int days = 0;
 for(int i = 0;i<7;i++)
 {
 if(randNumber<rate[i]){
 days = i+1;
 break;
 }
 }
 return days;
}

int calculateMoney(int startTime, int endTime){
 int sum = 0;
 for(int i = startTime; i<endTime; i++){
 int cur = moneySplit[0];
 for(int r = 0;r<7;r++){
 if(i<=r){
 cur = moneySplit[r];
 break;
 }
 }
 sum = sum+cur;
 }
 return sum;

}

int calculateMoneyOwn(int startTime, int endTime, int
livedDays){
 int sum = 0;
 for(int i = startTime; i<endTime; i++){
 if(!ownerPunishmentFlag||livedDays<ownerMaxLivingDays){
 livedDays++;
 continue;
 }
 else{
 int cur = moneySplit[0];
 for(int r = 0;r<7;r++){
 if(i<=r){
 cur = moneySplit[r];
 break;
 }

122

 }
 sum = sum+cur*ownerLivingPunishment;
 livedDays++;
 }
 }
 return sum;
}

void readParameter(string file_name){
 ifstream fin(file_name);
 string s;
 char buf[200];
 if(!fin.is_open()){
 cout<<"Can't load configuration file! Press any key to
use default value."<<endl;
 cin>>s;
 return;
 }
 int val;
 getline(fin,s);
 sscanf(s.c_str(),"%s %d", buf,&ownerMaxLivingDays);
 getline(fin,s);
 sscanf(s.c_str(),"%s %lf", buf,&ownerLivingPunishment);
 getline(fin,s);
 sscanf(s.c_str(),"%s %d", buf,&val);
 ownerPunishmentFlag = (val==1);
 getline(fin,s);
 sscanf(s.c_str(),"%s %d", buf,&val);
 consideringCustomRoomNumber = (val==1);

}

123

Reservation.h
#ifndef RESERVATION_H
#define RESERVATION_H

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include "time.h"

using namespace std;
static int daysInMonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};

static int dateSpilt[] = {103,145,197,247,264,299,364};
static int moneySplit[] = {149,199,269,349,269,199,149};

int getPeriod(int *rate, int randNumber);

int dateToTime(string date);

static int ownerMaxLivingDays = 10;
static double ownerLivingPunishment = 1.0;
static bool ownerPunishmentFlag = true;
static bool consideringCustomRoomNumber = true;

class reservationData {
public:

reservationData():ownerFlag(false),arrangeFlag(false),canInsertFlag(false),arrangeRoom
(-1){}//arrangeRoom(rand()%100)
 string reservationDate;
 string startDate;
 string endDate;
 int reservationTime;
 int startTime;
 int endTime;
 bool ownerFlag;
 int ownerRoom;
 bool arrangeFlag;
 bool canInsertFlag;
 int arrangeRoom;
};

class Room{

124

public:
 Room();
 bool checkAvailable(int startTime, int endTime);
 bool insertReservation(int startTime, int endTime);
 bool insertReservation(int startTime, int endTime, int roomIndex);
 bool insertOwnReservation(int startTime, int endTime);

 vector<bool> available;
 int lastVisitTime;
 int livingTime;
 int moneyEarn;
 int moneyVirtual;
 int ownerLivingTime;
 int index;
};

class Reservation{
public:
 Reservation(int roomNumber);
 void insertReservation(reservationData &r);
 void insertReservation_Conventional(reservationData &r);
 bool writeRoomList(string file_name);
private:
 vector<Room> roomList;
 vector<pair<int,int> > sortedList;
};

bool loadList(string file_name, vector<reservationData> &data);

void readParameter(string file_name);

bool writeList(string file_name, vector<reservationData> &data);

bool writeArrangedList(string file_name, vector<reservationData> &data);

bool compareReservationDataByStart(reservationData r1, reservationData r2);

bool compareReservationDataByReservation(reservationData r1, reservationData r2);

bool compareRoomByLiving(Room r1, Room r2);

bool compareRoomByLastVisit(Room r1, Room r2);

125

int calculateMoney(int startTime, int endTime);

int calculateMoneyOwn(int startTime, int endTime, int livedDays);

#endif

126

Appendix 5
Group 1
Owner_Max_Occupancy_Days 10
Owner_Occupancy_Penalty 1.0
Owner_Penalty_Flag 1
Considering_Custom_Room_Number_Flag 1

127

Vita

Peng GAO

27 Memorial Dr W 223 Summit St.
Department of Mechanical Engineering Bethlehem, PA, 18015
Lehigh University
Bethlehem, PA, 18015
peg213@lehigh.edu (260)5640258

Personal Information

Born: 1990/04/27, in Beijing China
Citizenship: Chinese
Mother: Yukun QI
Citizenship: Chinese
Father: Xinglong GAO
Citizenship: Chinese

Education

B.S Tsinghua University, Department of Thermal Engineering, Beijing, China, 2008-2012
R.A Gas Turbine Research Institute of Department of Thermal Engineering, Tsinghua
University, 2012-2013

Research Experience

2011 Turbine blades through-flow partial Aerothermodynamic experiment and analysis
2011 Performance measurement experiments of large diameter hydraulic coupler

2010-2011 Research on compressor complex flow mechanism, modeling and control

2009 Gas turbine blade film cooling experiments, Student Research Training

.

Publications and Papers

Turbine blades through-flow partial Aerothermodynamic experiment and analysis, B.S
thesis
2010 Numerical simulation of film cooling plane cascade under different blow ratio,
Journal of Engineering Thermophysics

	Lehigh University
	Lehigh Preserve
	2016

	An Investigation of Multi-Variable Optimization Applied to the Hospitality Industry
	Peng Gao
	Recommended Citation

	An Investigation of multi-variable optimization applied to the hospitality industry

