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Abstract

The plasma electron temperature (Te) plays a critical role in a tokamak nu-

clear fusion reactor since temperatures on the order of 108K are required to achieve

fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are

modeled by partial differential equations (PDE’s) because they depend not only

on time but also on space. In particular, the dynamics of the electron tempera-

ture is governed by a PDE referred to as the Electron Heat Transport Equation

(EHTE). In this work, a numerical method is developed to solve the EHTE based

on a custom finite-difference technique. The solution of the EHTE is compared to

temperature profiles obtained by using TRANSP, a sophisticated plasma trans-

port code, for specific discharges from the DIII-D tokamak, located at the DIII-D

National Fusion Facility in San Diego, CA.

The thermal conductivity (also called thermal diffusivity) of the electrons (χe)

is a plasma parameter that plays a critical role in the EHTE since it indicates how

the electron temperature diffusion varies across the minor effective radius of the

tokamak. TRANSP approximates χe through a curve-fitting technique to match

experimentally measured electron temperature profiles. While complex physics-

based model have been proposed for χe, there is a lack of a simple mathematical

model for the thermal diffusivity that could be used for control design. In this

work, a model for χe is proposed based on a scaling law involving key plasma

variables such as the electron temperature (Te), the electron density (ne), and

the safety factor (q). An optimization algorithm is developed based on the Se-

quential Quadratic Programming (SQP) technique to optimize the scaling factors

appearing in the proposed model so that the predicted electron temperature and

magnetic flux profiles match predefined target profiles in the best possible way.

A simulation study summarizing the outcomes of the optimization procedure is

presented to illustrate the potential of the proposed modeling method.



Chapter 1

Introduction

1.1 Background to Fusion

In the past decades, nuclear fusion has risen as a viable alternative energy source

to fossil fuels, and has been theorized to be more efficient and practical than wind,

solar, and other forms of renewable energy. Particular advantages of nuclear fusion

include its sustainability with current resources, its operation in a clean and safe

manner, and its lack of dependency on favorable weather patterns.

Nuclear fusion is the process of combining two light atoms together to form

a heavier atom, the byproduct of which are energetic particles ejected from the

nucleus. The kinetic energy of these particles is captured and converted into

usable electrical energy through a conventional Rankine cycle [1]. The hydrogen

isotopes Deuterium (2
1H) and Tritium (3

1H) are typically the reactants due to their

higher probability of fusion. The products of this fusion reaction are an α particle

(4
2He) and an energetic neutron. In order to allow these reactants to fuse, the

isotopes must posess enough kinetic energy to overcome the Coulombic repulsion

force that exists between two positively charged nuclei. In a nuclear fusion reactor

this is achieved by heating the fuel gas to temperatures on the order of 108 K so

that the nuclei contain enough kinetic energy to fuse [1]. At these conditions, the

Deuterium and Tritium gases become ionized to form a plasma.
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Once in this plasma state, also know as the fourth state of matter, the chal-

lenge becomes confining the plasma within the reactor and sustaining the intense

temperatures and pressures required for fusion. Fortunately, due to the ioniza-

tion of its particles, the plasma can conduct electrical current and interact with

magnetic fields. Therefore, magnetic confinement arises as a viable mechanism for

containing the plasma within a given volume and preventing it from touching the

inner walls of the tokamak vessel. In magnetic confinement, externally generated

magnetic fields are generated to force the trajectories of both electrons and ions

within the plasma by exploiting the resulting Lorentz force.

This work focuses on tokamaks, one of the most promising magnetic confine-

ment devices where the magnetic field lines close in on themselves and form a

torus. In a tokamak, the magnetic field lines are configured so that they follow a

helical path through the torus, meaning they curve around in the poloidal direc-

tion (the poloidal angle is defined around the toroidal direction on a torus’ cross

section) as well as in the toroidal direction [1].
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1.2 Spatial Coordinates of the Tokamak

The helical magnetic field ( ~B) in a tokamak plasma is made up of a toroidal

component ( ~Bφ) and a poloidal component ( ~Bθ). Following any magnetic field

line a number of times around the torus a magnetic flux surface is mapped, which

marks points of constant poloidal magnetic flux (Ψ). A collection of such points

along the plasma radial coordinate is called the poloidal magnetic flux profile [2].

The poloidal magnetic flux is defined as

Ψ =

∫
~Bθ · d ~AZ (1.1)

where ~AZ corresponds to a disk of radius R that is perpendicular to a unit vector in

the z-direction [1]. Nested toroidal surfaces (as seen in Figure 1.1), called magnetic

flux surfaces, are defined by a constant poloidal magnetic flux.

Figure 1.1: Schematic of tokamak with axes [4].

The major radial direction, or the direction from the center of the torus

outwards, is defined as R, with the geometric major radius of the torus denoted as

R0. Due to the toroidal symmetry in the tokamak, we are interested in defining a

4



coordinate system for the two-dimensional poloidal cross section. Since the plasma

properties are constant on the nested magnetic flux surfaces, the two-dimensional

space can be reduced to a one-dimensional space by defining a spatial coordinate

indexing the magnetic flux surfaces. In this case, we choose the mean effective

minor radius ρ as the indexing variable, which is defined from the relationship

Φ = πBφ,0ρ
2, (1.2)

where Φ denote the toroidal magnetic flux and Bφ,0 represents the toroidal mag-

netic field strength on the magnetic axis. This spatial coordinate can be normal-

ized with respect to its value at the plasma boundary, i.e. the normalized mean

effective minor radius ρ̂ is defined as

ρ̂ =
ρ

ρb
(1.3)

where ρb is the mean effective minor radius of the last closed magnetic flux surface

(or boundary) [2].

A key property that is related to both the stability and performance of the

plasma is the safety factor profile (q-profile) [3], which is related to both the

poloidal magnetic flux in (1.1) and the toroidal magnetic flux in (1.2). The q-

profile is defined as

q(ρ̂, t) = −dΦ

dΨ
= −

B(φ,0)ρ
2
b ρ̂

∂ψ/∂ρ̂
(1.4)

where t is the time and ψ is the poloidal stream function, which is closely related

to the poloidal flux Ψ according to Ψ = 2πψ.

The time evolution of plasma magnetic variables such as the poloidal magnetic

flux Ψ and kinetic variables such as the electron temperature Te must be modeled

in tokamaks by using partial differential equations (PDE’s) since these plasma

properties depend not only on time but also on space. As explained above, these

PDEs are one-dimensional with the chosen spatial coordinate ρ̂.
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1.3 Magnetic Diffusion Equation (MDE)

The evolution of the poloidal magnetic flux profile in a tokamak is modeled by the

Magnetic (Flux) Diffusion Equation (MDE)

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)[jaux + jbs] (1.5)

where ψ(ρ̂, t) is the poloidal stream function, Te(ρ̂, t) is the electron temperature,

η(ρ̂, t) is the plasma resistivity profile, which is a function of Te(ρ̂, t). The geomet-

ric spatial factors F̂ (ρ̂, t), Ĝ(ρ̂, t), Ĥ(ρ̂, t) are related to the magnetic configuration

of a particular plasma MHD equilibrium [1] and µ0 is the vacuum permeability

(constant). The noninductive auxiliary current-drive and bootstrap current-drive

sources are denoted by jaux and jbs respectively. The boundary conditions for the

MDE are written as

∂Ψ

∂ρ̂
(0, t) = 0

∂Ψ

∂ρ̂
(1, t) = −kIpIp(t) (1.6)

where Ip(t) is the total plasma current and kIp is a geometric constant. The

boundary condition at (ρ̂ = 0) indicates symmetry with respect to the magnetic

axis.

1.4 Electron Heat Transport Equation (EHTE)

1.4.1 The EHTE

The electron kinetic energy at any spatial point and time can be modeled math-

ematically by a partial differential equation called the Electron Heat Transport

Equation (EHTE). The EHTE in a tokamak is defined as

3

2

∂

∂t
[neTe] =

1

ρ2
bĤ

1

ρ̂

∂

∂ρ̂
[ρ̂
ĜĤ2

F̂
(χene)

∂Te
∂ρ̂

] +Qe (1.7)
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with boundary conditions

∂Te
∂ρ̂

(0, t) = 0 Te(1, t) = Te,boundary (1.8)

where any variable with the subscript (e) denotes a characteristic of the plasma

electrons. According to standard nuclear fusion nomenclature, ne(ρ̂, t) represents

the electron density, Te(ρ̂, t) is the electron temperature, ρ̂ is the normalized ef-

fective minor radius, and ρb is the mean effective minor radius of the last closed

magnetic flux surface. The geometric factors F̂ (ρ̂, t), Ĝ(ρ̂, t), Ĥ(ρ̂, t) are profiles

associated with the shape of the plasma within the tokamak. Qe(ρ̂, t) is the total

heat added to the electrons, which is a combination of the electrocyclotron heating

(ECH), neutral beam injection (NBI), ohmic heating (OH), and another sources.

The variable χe in (1.7) denotes the thermal diffusivity.

1.4.2 Thermal Diffusivity χe

The location of the highest electron temperature and density occurs at the mag-

netic axis of the confined plasma. Very high temperature and density gradients de-

velop between the magnetic axis (ρ̂ = 0) and the boundary of the plasma (ρ̂ = 1).

In particular, the thermal diffusivity χe indicates how strongly the temperature

diffuses at each spatial location and point in time. The thermal diffusivity may

change dramatically through the duration of a discharge.

In analysis mode, sophisticated transport codes like TRANSP compute a χe

evolution consistent with the experimentally measured temperature evolution. In

predictive model, where experimental temperature measurements are not avail-

able, TRANSP uses complex theoretical models proposed for the thermal diffu-

sivity. There is a lack, however, of a model simple enough to be used in control

design.
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1.5 Objective

Previous work by members of the Lehigh University Plasma Control Group in-

cludes a numerical solver for the MDE based on a hybrid finite difference technique.

One of the goals of this thesis work is to extend this approach to the EHTE. By

combining both explicit and implicit finite-difference techniques, a hybrid numer-

ical solver is proposed for the EHTE in Chapter 2. The numerical solutions of the

EHTE at different instants of time are compared with TRANSP-computed elec-

tron temperature profiles based on experimental measurements from the DIII-D

shot 147634.

Another goal of this thesis work is the development of a control-oriented model

for the thermal diffusivity χe. In Chapter 3 and Chapter 4, χe is modeled as a time-

independent spatial function, while in Chapter 5 χe is modeled as a time-dependent

scaling law involving three plasmas states, namely the electron temperature (Te),

the electron density (ne), and the safety factor (q). The proposed model is written

as

χe = (Te)
α(ne)

β(q)γ (1.9)

The values of χe at selected spatial points in Chapter 3 and Chapter 4, and

the scaling factors α, β, and γ in Chapter 5, are determined by an optimization

algorithm based on the Sequential Quadratic Programming (SQP) technique.

8



Chapter 2

Custom Finite Difference

Solution to the EHTE

2.1 Finite Difference Techniques for Solving PDEs

2.1.1 Discrete System Indexing

As indicated before, the Electron Heat Transport Equation (EHTE) is a nonlinear

partial differential equation. Thus a variety of numerical approaches can be taken

to achieve its solution. Finite differentiation is an efficient method for the solution

of PDEs that has been extensively studied [5]. The basic principle behind finite

differentiation is to break down an infinite-dimensional system into a grid of both

spatial and temporal points. In a Cartesian finite difference grid for a length L,

the step size in the x-direction is ∆x, with the node number defined as i. Given a

total number of points N , we can identify the discretized nodes in the x-direction

x(i) = (i− 1)∆x where ∆x =
Total Length

Number of points
=

L

N − 1
(2.1)

9



Each individual location along the x coordinate will be

i = 1, x(1) = 0

i = 2, x(2) = ∆x

i = 3, x(3) = 2∆x

...

i = N, x(N) = (N − 1)∆x = (N − 1)
L

(N − 1)
= L

(2.2)

The exact same discretization can be applied in the Cartesian y-direction.

Substituting the length L for a height H and substituting N for M results in the

following nodes:

y(j) = (j − 1)∆y where ∆y =
Total Height

Number of points
=

H

M − 1
(2.3)

Individually, each location along the y coordinate will be

for j = 1, y(1) = 0

j = 2, y(2) = ∆y

j = 3, y(3) = 2∆y

...

j = M, y(M) = (M − 1)∆y = (M − 1)
H

(M − 1)
= H

(2.4)

The plasma dynamics can then be indexed according to these discrete vari-

ables (i, j), where ρ̂ plays the role of the x coordinate and t plays the role of the

y coordinate. Thus, the electron temperature Te(ρ̂i, tj) is equivalent to Te(i, j) in

the discrete system, ne(ρ̂i, tj) is equivalent to ne(i, j), and so forth. For simplicity,

the (e) subscript is dropped from now on and the temporal node indicated in the

superscript. Thus Te(i, j) is further reduced to T ji , where i denotes the nodal

location on the spatial axis and j is the nodal location on the temporal axis.
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2.1.2 Finite Difference Example

To illustrate the discretization process in a simplified example, we can examine the

unsteady heat-conduction equation in (2.5). Note that this equation is not directly

relevant to the solution of the EHTE, and is only being analyzed to demonstrate

possible finite difference approaches.

∂T

∂t
= κ

∂2T

∂x2
(2.5)

The equation above is known as the unsteady heat conduction equation, where

T is the temperature, t and x are the temporal and spatial variables respectively,

and κ is the thermal diffusivity of the material. Using the discrete index system

from (2.1-2.2), T ji denotes the temperature at the spatial node i and the temporal

node j. The equation can be forward discretized at the (i, j) point on the grid as

∂T

∂t

∣∣∣∣j
i

=
T j+1
i − T ji

∆t
+O(∆t)

∂2T

∂x2

∣∣∣∣j
i

=
T ji−1 − 2T ji + T ji+1

2∆x
+O(∆x2)

(2.6)

The terms O(∆t) and O(∆x2) are the error terms associated with the dis-

cretization, proportional to the time step and the square of the spatial step. As

previously stated, i and j are the node numbers in each discrete dimension. In-

serting (2.6) into (2.5) results in

T j+1
i − T ji

∆t
+O(∆t) = κ

(T ji−1 − 2T ji + T ji+1

2∆x

)
+O(∆x2) (2.7)

and rearranging for T j+1
i yields

T j+1
i ≈ κ∆t

(T ji−1 − 2T ji + T ji+1

2∆x

)
+ T ji (2.8)

which provides T at time j + 1 for the spatial node i as a function of T at time j

at different spatial nodes.
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The discrete finite difference technique employed in (2.8) is called the Explicit

Forward-Temporal Central-Spatial Method, or Explicit FTCS Method. According

to the Von Neumann stability analysis [6], the Explicit FTCS Method is condi-

tionally stable, proportional to the temporal step ∆t and inversely proportional

to the spatial step ∆x. While the FTCS Method is the simplest finite difference

technique to implement, it requires a small ∆t to maintain stability.

In an effort to reduce the dependency on the size of ∆t and ensure stability, an

implicit finite difference technique can be used. In the Implicit BTCS (Backwards-

Temporal Central-Spatial) or Laasonen method, the PDE (2.5) can be discretized

at time j + 1 as

∂T

∂t

∣∣∣∣j+1

i

= κ
∂2T

∂x2

∣∣∣∣j+1

i

(2.9)

Individually the components in (2.9) are discretized according the the BTCS

method and represented as

∂T

∂t

∣∣∣∣j+1

i

≈ T j+1
i − T ji

∆t

∂2T

∂x2

∣∣∣∣j+1

i

≈
T j+1
i−1 − 2T j+1

i + T j+1
i+1

2∆x

(2.10)

Replacing the expansions in (2.10) into (2.9) results in

T j+1
i − T ji

∆t
= κ

(T j+1
i−1 − 2T j+1

i + T j+1
i+1

2∆x

)
(2.11)

where T ji , κ, ∆t, and ∆x are known quantities. Note that unlike the explicit

scenario, where we were able to rearrange for the single unknown T j+1
i , the implicit

method requires a system of equations to isolate the T j+1
i component. Further

expanding (2.11) and rearranging for the T j+1 term yields

T j+1
i

(
1 +

κ∆t

∆x

)
− T j+1

i−1

(
κ∆t

∆x

)
− T j+1

i+1

(
κ∆t

∆x

)
= T ji (2.12)

Since the term κ∆t
∆x

is made up of all known variables, we can abbreviate the

12



constant as c1. Equation (2.12) then becomes

T j+1
i (1 + c1)− T j+1

i−1 (c1)− T j+1
i+1 (c1) = T ji (2.13)

By combining (2.13) for i = 1, . . . , N , together with the boundary conditions at

i = 1 and i = N , we obtain a system of equations of the general form Ax = b,

where

x =



T j+1
1

T j+1
2

...

T j+1
N


, b =



T j1

T j2
...

T jN


(2.14)

The Implicit BTCS method is unconditionally stable [6], however results in

a system of equations that must be computed. For the unsteady heat conduction

example, its solution is rather trivial because A is a constant matrix. However,

for equations where the matrix A is not constant but a function of the state,

computational requirements increase dramatically.

When a circumstance arises that requires the simplicity of the Explicit FTCS

method with the stability of the Implicit BTCS method, a hybrid finite difference

solution can be formulated. There is no preferred form when mathematically

developing a hybrid solution, and so the user can choose how to manipulate the

PDE depending on the data available and the desired simplicity of the model. For

generating a solution of the Electron Heat Transport Equation, a custom hybrid

finite difference solution is propose that combines the Implicit BTCS and Explicit

FTCS methods.
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2.2 Expanding the Electron Heat Transport Equa-

tion

The EHTE can be written as

3

2

∂

∂t
[nT ] =

1

ρ2
bĤ

1

ρ̂

∂

∂ρ̂
[ρ̂
ĜĤ2

F̂
(χn)

∂T

∂ρ̂
] +Q (2.15)

where the (e) subscripts has been removed for simplicity. The boundary conditions

are given by
∂T

∂ρ̂
= 0 at ρ̂ = 0

T = 0 at ρ̂ = 1

(2.16)

The EHTE from (2.15) needs to be fully expanded before the different finite

difference methods can be applied to the PDE. Equation (2.15) has two main

components that can be expanded via the chain rule - to ease the solution process

these two parts can be pulled out of the EHTE and expanded independently. The

terms to be expanded are:

3

2

∂

∂t
[nT ] (2.17)

and

∂

∂ρ̂
[ρ̂
ĜĤ2

F̂
(χn)

∂T

∂ρ̂
] (2.18)

Applying the chain rule to (2.17), we obtain

3

2

∂

∂t
[nT ] =

3

2

∂n

∂t
T +

3

2

∂T

∂t
n (2.19)

The expansion of (2.18) is more complex, but can be represented as

∂

∂ρ̂

[ ρ̂ĜĤ2χn

F̂

∂T

∂ρ̂

]
=

∂

∂ρ̂

[ ρ̂ĜĤ2χn

F̂

]
∗
[∂T
∂ρ̂

]
+
[∂2T

∂ρ̂2

]
∗
[ ρ̂ĜĤ2χn

F̂

]
(2.20)

Again the chain rule needs to be applied to the ∂
∂ρ̂

[
ρ̂ĜĤ2χn

F̂

]
term in (2.20), which
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is expanded as

∂

∂ρ̂

[ ρ̂ĜĤ2χn

F̂

]
=
[ĜĤ2χn

F̂
+

(
∂G

∂ρ̂

)
ρ̂Ĥ2χn

F̂
+

(
2∂Ĥ

∂ρ̂

)
ρ̂Ĝχn

F̂

+

(
∂χ

∂ρ̂

)
ρ̂ĜĤ2n

F̂
+

(
∂n

∂ρ̂

)
ρ̂ĜĤ2χ

F̂
−
(∂F
∂ρ̂

) ρ̂ĜĤ2χn

F̂ 2

] (2.21)

Plugging (2.21) back into (2.20), the result to the chain rule expansion of (2.18)

is expressed as

∂

∂ρ̂

[ ρ̂ĜĤ2χn

F̂

∂T

∂ρ̂

]
=
[ĜĤ2χn

F̂
+

(
∂G

∂ρ̂

)
ρ̂Ĥ2χn

F̂
+

(
2∂Ĥ

∂ρ̂

)
ρ̂Ĝχn

F̂
+

(
∂χ

∂ρ̂

)
ρ̂ĜĤ2n

F̂

+

(
∂n

∂ρ̂

)
ρ̂ĜĤ2χ

F̂
−
(∂F
∂ρ̂

) ρ̂ĜĤ2χn

F̂ 2

]
∗
[∂T
∂ρ̂

]
+
[ ρ̂ĜĤ2χn

F̂

]
∗
[∂2T

∂ρ̂2

]
(2.22)

Finally, we can bring the two expansions of (2.17) and (2.18) back into the EHTE

to obtain

3

2

∂n

∂t
T +

3

2

∂T

∂t
n =

1

ρ2
bĤρ̂

{[ĜĤ2χn

F̂
+

(
∂G

∂ρ̂

)
ρ̂Ĥ2χn

F̂
+

(
2∂Ĥ

∂ρ̂

)
ρ̂Ĝχn

F̂

+

(
∂χ

∂ρ̂

)
ρ̂ĜĤ2n

F̂
+

(
∂n

∂ρ̂

)
ρ̂ĜĤ2χ

F̂
−
(∂F
∂ρ̂

) ρ̂ĜĤ2χn

F̂ 2

]
∗
[∂T
∂ρ̂

]
+
[ ρ̂ĜĤ2χn

F̂

]
∗
[∂2T

∂ρ̂2

]}
+Q

(2.23)

By defining

f1 =
( ρ̂ĜĤ2χn

F̂

) 1

ρ2
bHρ̂

(2.24)

f2 =
1

ρ2
bĤρ̂

{[ĜĤ2χn

F̂
+
∂G

∂ρ̂

(
ρ̂Ĥ2χn

F̂

)
+

2∂Ĥ

∂ρ̂

(
ρ̂Ĝχn

F̂

)

+
∂χ

∂ρ̂

(
ρ̂ĜĤ2n

F̂

)
+
∂n

∂ρ̂

(
ρ̂ĜĤ2χ

F̂

)
− ∂F

∂ρ̂

(
ρ̂ĜĤ2χn

F̂ 2

)]} (2.25)

the EHTE can be rewritten simply as

3

2

∂n

∂t
T +

3

2

∂T

∂t
n = f1

∂2T

∂ρ̂2
+ f2

∂T

∂ρ̂
+Q (2.26)
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2.3 Explicit FTCS Solution to the EHTE

2.3.1 Discretizing the EHTE According to Explicit FCTS

Now that sufficient background has been given to finite difference methods using

the unsteady heat-conduction equation as an example, and the EHTE has been

properly expanded to a form that is readily available for finite differencing, the Ex-

plicit FTCS solution to the EHTE is developed. Note from Section 2.1.2 that the

Explicit FTCS method is only conditionally stable. In the Explicit FTCS method

for the Electron Heat Transport Equation, the PDE is evaluated at the current

time and solved to predict the future electron temperature. The components of

the EHTE are written at (i, j) as

∂T

∂t

∣∣∣∣j
i

=
T j+1
i − T ji

∆t
nji = nprof (ρi)un(tj)

∂n

∂t

∣∣∣∣j
i

= nprof (ρi)u̇n(tj)

∂T

∂ρ̂

∣∣∣∣j
i

=
T ji+1 − T

j
i−1

2∆ρ̂

∂2T

∂ρ̂2

∣∣∣∣j
i

=
T ji−1 − 2T ji + T ji+1

∆ρ̂2

∂χ

∂ρ̂

∣∣∣∣j
i

=
χji+1 − χ

j
i

∆ρ̂

∂F

∂ρ̂

∣∣∣∣j
i

=
F j
i+1 − F

j
i

∆ρ̂

∂G

∂ρ̂

∣∣∣∣j
i

=
Gj
i+1 −G

j
i

∆ρ̂

∂H

∂ρ̂

∣∣∣∣j
i

=
Hj
i+1 −H

j
i

∆ρ̂
(2.27)

Replacing the terms in (2.26) into the expanded EHTE (2.23), we arrive at the

general Explicit FTCS form of the EHTE, i.e.

3

2

∂n

∂t

∣∣∣∣j
i

T ji +
3nji
2

(T j+1
i − T ji

∆t

)
=

1

ρ2
bĤ

j
i ρ̂i

{[Ĝj
i Ĥ

j
i

2

χjin
j
i

F̂ j
i

+

(
∂G

∂ρ̂

)∣∣∣∣j
i

ρ̂iĤ
j
i

2

χjin
j
i

F̂ j
i

+

(
2∂Ĥ

∂ρ̂

)∣∣∣∣j
i

ρ̂iĜ
j
iχ

j
in

j
i

F̂ j
i

+

(
∂χ

∂ρ̂

)∣∣∣∣j
i

ρ̂iĜ
j
i Ĥ

j
i

2

nji

F̂ j
i

+

(
∂n

∂ρ̂

)∣∣∣∣j
i

ρ̂iĜ
j
i Ĥ

j
i

2

χji

F̂ j
i

−
(
∂F

∂ρ̂

)∣∣∣∣j
i

ρ̂iĜ
j
i Ĥ

j
i

2

χjin
j
i

F̂ j
i

2

]
∗
(T ji+1 − T

j
i−1

2∆ρ̂

)
+
[ ρ̂iĜj

i Ĥ
j
i

2

χjin
j
i

F̂ j
i

]

∗
(T ji−1 − 2T ji + T ji+1

∆ρ̂2

)}
+Qj

i

(2.28)

from which we can solve for T j+1
i . Recall that the time step ∆t has a significant

effect on the stability of the solution, so an appropriate ∆t must be selected.
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2.3.2 The CFL condition

The Courant-Friedrichs-Lewy (CFL) condition is used as a stability check for

explicit finite difference applications. The condition states that, given a space

discretization, a time step bigger than some computable quantity should not be

taken [7]. In essence this means that the time step must be kept small enough so

that information has enough time to propogate through the space discretization

[8]. The condition was developed by Richard Courant, Kurt Friedrichs, and Hans

Lewy in 1928. Specifically made for analyzing the solving potential of explicit finite

difference techniques, the equation assigns a constant to the relationship between

the chosen time step and the theoretical best-value time step [7]. Mathematically

this is represented by

CFL =
u∆t

∆x
≤ Cmax (2.29)

where Cmax is 1 for explicit methods. In (2.28), ∆x corresponds to the spatial grid

step, which in our case is ∆ρ̂. The term u refers to the magnitude of the velocity,

given in a length/time format.

2.3.3 Explicit Solution of the EHTE

The Explicit FTCS model for the Electron Heat Transport Equation was evaluated

with three different time steps: ∆t = 0.01s, ∆t = 0.001s, and ∆t = 0.0001s.

The explicit model was set up according to the finite difference solution for the

EHTE in (2.28), and data from DIII-D shot 147634 was used. This data included

time-varying profiles for the geometric factors, electron temperature, density, and

thermal diffusivity. The results of these simulations are displayed in Figure 2.1.
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Figure 2.1: Explicit finite difference solution of the EHTE with
(a) ∆t = 0.01s, (b) ∆t = 0.001s, and (c) ∆t = 0.0001s.
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From Figure 2.1 it appears that the high confinement H-mode pedestal, rep-

resented by the sharp drop in temperature near the plasma boundary, is only

properly displayed for a higher mesh refinement. Particularly for 0 ≤ t ≤ 3.0, the

shapes of the profiles differ more between ∆t = 0.01s and ∆t = 0.001s than from

∆t = 0.001s and ∆t = 0.0001s. Although not depicted, the EHTE was solved

with an even greater mesh refinement but produced no noticeable difference from

the results in Figure 2.1(c), denoting a convergence in accuracy.

2.4 Implicit BTCS Solution to the EHTE

As was shown in section 2.3, the Explicit FTCS method for the finite difference

of the EHTE is highly restricted by the time step. We now wish to explore

a technique that provides unconditional stability, regardless of temporal mesh

refinement. Following the process set forth in section 2.1 for implicit discretization,

we can apply the Implicit BTCS method to the Electron Heat Transport Equation.

By discretizing the PDE at time (j + 1), we can write

∂T

∂t

∣∣∣∣j+1

i

=
T j+1
i − T ji

∆t
nj+1
i = nprof (ρi)un(tj+1)

∂n

∂t

∣∣∣∣j+1

i

= nprof (ρi)u̇n(tj+1)

∂T

∂ρ̂

∣∣∣∣j+1

i

=
T j+1
i+1 − T

j+1
i−1

2∆ρ̂

∂2T

∂ρ̂2

∣∣∣∣j+1

i

=
T j+1
i−1 − 2T j+1

i + T j+1
i+1

∆ρ̂2

∂χ

∂ρ̂

∣∣∣∣j+1

i

=
χj+1
i+1 − χ

j+1
i

∆ρ̂

∂F

∂ρ̂

∣∣∣∣j+1

i

=
F j+1
i+1 − F

j+1
i

∆ρ̂

∂G

∂ρ̂

∣∣∣∣j+1

i

=
Gj+1
i+1 −G

j+1
i

∆ρ̂

∂H

∂ρ̂

∣∣∣∣j+1

i

=
Hj+1
i+1 −H

j+1
i

∆ρ̂
(2.30)
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which yields

3

2

∂n

∂t

∣∣∣∣j+1

i

T j+1
i +

3nj+1
i

2

(T j+1
i − T ji

∆t

)
=

1

ρ2
bĤ

j+1
i ρ̂i

{[(
ĜĤ2χn

F̂

)∣∣∣∣j+1

i

+
∂G

∂ρ̂

∣∣∣∣j+1

i

(
ρ̂Ĥ2χn

F̂

)∣∣∣∣j+1

i

+
2∂H

∂ρ̂

∣∣∣∣j+1

i

(
ρ̂Ĝχ n

F̂

)∣∣∣∣j+1

i

+
∂χ

∂ρ̂

∣∣∣∣j+1

i

(
ρ̂iĜĤ

2n

F̂

)∣∣∣∣j+1

i

+
∂n

∂ρ̂

∣∣∣∣j+1

i

(
ρ̂ĜĤ2χ

F̂

)∣∣∣∣j+1

i

− ∂F

∂ρ̂

∣∣∣∣j+1

i

(
ρ̂ĜĤ2χn

F̂ 2

)∣∣∣∣j+1

i

]
∗
(T j+1

i+1 − T
j+1
i−1

2∆ρ̂

)
+

(
ρ̂ĜĤ2χn

F̂

)∣∣∣∣j+1

i

∗
(T j+1

i−1 − 2T j+1
i + T j+1

i+1

∆ρ̂2

)}
+Qj+1

i

(2.31)

Equation (2.31) can be rewritten as

T j+1
i+1

(
−
f1

∣∣j+1

i

∆ρ̂2
−
f2

∣∣j+1

i

2∆ρ̂

)
+ T j+1

i−1

(
−
f1

∣∣j+1

i

∆ρ̂2
+
f2

∣∣j+1

i

2∆ρ̂

)
+ T j+1

i

(
3

2

nj+1
i

∆t
+

2f1

∣∣j+1

i

∆ρ̂2

)
= f3

∣∣j+1

i
T ji +Qj+1

i

(2.32)

where we have defined

f3 =
3

2

(
n

∆t
− ∂n

∂t

)
(2.33)

The solution of equation (2.32) for T j+1
i requires knowledge of F̂ , Ĝ, Ĥ, n (and

its time derivative), χ, and Q at time j + 1. However, this is not always the case.

To avoid requiring knowledge of these plasma parameters at the future time j+ 1,

we propose a hybrid method that retains the stability properties of the implicit

method while keeping the computation simplicity of the explicit method.

2.5 Custom Hybrid Finite Difference Solution to

the EHTE

Hybrid finite difference techniques are frequently implemented in engineering as

a solution to complex PDEs, whether in fluid dynamics, heat and mass transfer,
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or nuclear fusion. While standard hybrid equations such as the Crank-Nicolson

method are commonplace for simple PDEs, we propose a custom version for the

EHTE. For this hybrid model of the EHTE, we have chosen to implicitly discretize

the temperature terms, while evaluating the rest of components of the equation

at time j. Therefore, (2.32) is rewritten as

T j+1
i+1

(
−
f1

∣∣j
i

∆ρ̂2
−
f2

∣∣j
i

2∆ρ̂

)
+ T j+1

i−1

(
−
f1

∣∣j
i

∆ρ̂2
+
f2

∣∣j
i

2∆ρ̂

)
+ T j+1

i

(
3

2

nj+1
i

∆t
+

2f1

∣∣j
i

∆ρ̂2

)
= f3

∣∣j
i
T ji +Qj

i

(2.34)

By evaluating (2.34) at i = 2, . . . , N − 1, and incorporating the boundary

conditions at i = 1 and i = N , we obtain a linear system of equations. By

defining

ai−1 =
(
− f1

∆ρ̂2
+

f2

2∆ρ̂

)∣∣∣∣j
i

ai =
(3

2

n

∆t
+

2f1

∆ρ̂2

)∣∣∣∣j
i

ai+1 =
(
− f1

∆ρ̂2
− f2

2∆ρ̂

)∣∣∣∣j
i

(2.35)

for 2 ≤ i ≤ N − 1, the system of equations can be written as

[A]



T j+1
1

T j+1
2

T j+1
3

...

T j+1
N−2

T j+1
N−1

T j+1
N



=



0

f3

∣∣∣∣j
2

T j2 +Qj
2

f3

∣∣∣∣j
3

T j3 +Qj
3

...

f3

∣∣∣∣j
N−2

T jN−2 +Qj
N−2

f3

∣∣∣∣j
N−1

T jN−1 +Qj
N−1

0



(2.36)
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A =



−3 4 −1 ... 0 0 0

aj+1
1 aj+1

2 aj+1
3 ... 0 0 0

0 aj+1
2 aj+1

3 aj+1
4 ... 0 0

...
...

...
...

...
...

...

0 0 ... aj+1
n−3 aj+1

n−2 aj+1
n−1 0

0 0 0 ... aj+1
n−2 aj+1

n−1 aj+1
n

0 0 0 ... 0 0 1



(2.37)

The first and last rows of the matrix A come from the discretized version of the

boundary conditions, i.e.,

∂T

∂ρ̂

∣∣∣∣j+1

1

=
−3T j+1

1 + 4T j+1
2 − T j+1

3

2∆ρ̂
= 0

T j+1
N = 0

(2.38)

In the center of the plasma, where the plasma is most dense and the external

heat sources are focused, the temperature is the highest. In turn, any direction

away from this central peak will result in a negative gradient as the temperature

diffuses to the boundary wall. This is captured by the first line in (2.38). The

temperature at ρ̂ = 1 can be assumed to be zero or nearly zero. This is shown in

the second line of (2.38).

2.6 DIII-D Tokamak Shot Parameters

With the hybrid finite difference scheme developed and applied to the EHTE, its

prediction capability is now compared to TRANSP simulations. In order to carry

out the comparison, all plasma data (F̂ , Ĝ, Ĥ, n (and its time derivative), χ, Q)

was retrieved from TRANSP. This data corresponds to DIII-D shot 147634. The

geometric factors Ĝ, Ĥ, and F̂ from TRANSP are time varying profiles, as can be

seen in Figure 2.2. However, the magnitude of the profiles undergo little deviation

over the course of the shot, on the order of less than 10%.
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Figure 2.2: DIII-D tokamak geometric factors extracted from
TRANSP: (a) F̂ (ρ̂, t), (b) Ĝ(ρ̂, t), (c) Ĥ(ρ̂, t).
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The electron density has a similar shape to the temperature, with the peak

density located at the center of the plasma and a sharp drop near the boundary

from 0.8 ≤ ρ̂ ≤ 1. This electron density profile is exhibited in Figure 2.3.
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Figure 2.3: Electron density profiles at select times across the
minor tokamak radius. Total shot time is 5.5 seconds.

As the plasma moves away from the ρ̂ = 0 (the center), the plasma slowly

becomes less dense. However, an interesting phenomenom occurs near ρ̂ = 0.9

- the density plummets. This is known as the H-mode pedestal. “The high-

confinement (H-mode) temperature and density pedestal is produced by a trans-

port barrier characterized by a narrow, sharply defined region of steep temperature

and density gradients. This pedestal is located near the last closed magnetic flux

surface and typically extends over with a width of less that 5-10% of the plasma

minor radius” [9]. This implies that as the plasma crosses the final magnetic flux

surface, the temperature and density diffuse rapidly due to the massive gradients

at the boundary. The H-mode pedestal’s exclusive shape is characteristic only of

high-confinement modes, making it a good benchmark to compare the accuracy

of the EHTE solver since the pedestal must be present in our simulation results.

One of the greatest influences on the development of the electron temperature

profile in both magnitude and shape are the heating sources. The external and
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internal heating sources captured by the proposed model are the electrocyclotron

heating, the neutral beam injection heating, and the resistance ohmic heating.

This is represented by the equation in (2.39) below.

Qe = QNBIs +QECE +Qohmic (2.39)

Figure 2.4: Graphic of heating sources for ITER [11].

These sources are graphically represented in Figure 2.4. The external heating

is provided by two mechanisms. Electron Cyclotron Resonance Heating (ECRH)

heats the electrons in the plasma with high intensity electromagnetic waves at the

resonant frequency of the electrons. The electron cyclotron heating system is used

to deposit heat in very specific places in the plasma, as a mechanism to minimize

the build-up of certain instabilities that lead to cooling of the plasma [10]. The

neutral beam injectors (NBIs) shoot neutrally charged particles into the plasma.

Since these particles have no charge, they are not restricted by the magnetic field.

However, they do collide with electrons and protons in the mix, transferring their

kinetic energy and increasing the plasma temperature. The NBIs are positioned

around the plasma at 4 different positions in DIIII-D: 30L/R, 150L/R, 210L/R,
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330L/R. The number of the NBI corresponds to the orientation around the 360

degree tokamak that the NBI injectors are located at. The 210L/R location is ori-

ented against the rotational flow of the plasma for experimental reasons. However

for shot 147634, the 210L/R beams were not activated (QNBI210 = 0). The ECE

and NBI heat sources are represented by the profiles plotted in Figure 2.5. Since

both the EC and NBI heating systems are composed of several gyrotrons and in-

jectors, respectively, the profiles in Figure 2.5 show the sources summed together.

In other words, QECE = QEC1 + QEC2 + QEC3 + QEC4 + QEC5 + QEC6, QNBI =

Qnbi30L +Qnbi30R +Qnbi150L +Qnbi150R +Qnbi210L +Qnbi210R +Qnbi330L +Qnbi330R.
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Figure 2.5: External heating sources for shot 147634.
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While Figure 2.5 clearly displays the magnitude of the ECEs and NBIs, more

detail can be provided for the time-varying aspecst of the heat sources. In par-

ticular, the gyrotrons are not turned on until about 2 seconds in shot 147634.

This is better represented in Figure 2.6, where it is clear how the external heat

changes over the timespan of the shot. Due to the spike in the heat source after

2 seconds, we should expect to see that the electron temperature profiles grow

correspondingly.

In addition to the external heat sources QNBI and QECE, there is an internal

source of heat denoted by the third term of (2.42). An induced current is used to

provide the poloidal magnetic field in the reactor. The ionized plasma particles

act as a resistor, converting some of this induced electrical power into heat. In

tokamak nomeclature, this is known as ohmic heating (Qohmic). Ohmic heating

is limited by two factors: Firstly the plasma current is induced via transformer

action, which employs an increasing magnetic field. It is therefore pulsed and does

not allow continuous plasma operation. Secondly the electric resistance, which

produces the heat, decreases with the plasma temperature [12]. The time-varying

ohmic heating density profiles are represented in Figure 2.7.

The final plasma parameter necessary to test the EHTE solver is the thermal

diffusivity χe. As discussed in section 1.4.2, the thermal diffusivity in TRANSP

is calculated by curve-fitting the predictive temperature profile to experimental

data. The χe profile used in the simulations is shown in Figure 2.8. Note that

for the entire duration of the shot, there is a sharp drop and then rise at ρ̂ = 0.9.

This is evidence of the H-mode pedestal and is crucial to the development of the

electron temperature in our model.

27



X 10
5

10 

8 

E 

� 
>, 

6 

:!= 
Cl) 
C 

Q) 

0 4 
,._ 

Q) 

� 
0 

p normalized 1 0 time (s) 

6 

Electron Cyclotron Heating (QECE)

(a) ECE Heating Density Profiles for entire shot

(b) NBI Heating Density Profiles for entire shot

Figure 2.6: External heating sources for shot 147634.

28



; normalized (dimensionless)
0 0.2 0.4 0.6 0.8 1

O
hm

ic
 h

ea
tin

g 
po

w
er

 d
en

si
ty

 (
W

/m
3
)

#104

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
t=1s
t=2s
t=3s
t=4s
t=5s

Figure 2.7: Ohmic heating density profiles for shot 147634.
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Figure 2.8: Thermal diffusivity profiles for shot 147634.
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2.7 Comparison between Simulated Electron Tem-

peratures and TRANSP profiles

With the geometric factors (F̂ , Ĝ, Ĥ), the density (ne), heating inputs (Qe), and

thermal diffusivity (χe) all properly defined, the custom finite difference simu-

lation was performed to model the electron temperature evolution for all times

throughout the shot. Figures 2.9 and 2.10 display the results of this predictive

simulation at a few key times.

In comparing the simulated profiles, the profile shape is paramount. As shown

in Figure 2.10, the magnitude of the electron temperatures predicted by the EHTE

solver appears to be lower than those predicted by TRANSP. However both the

shape and the trend are consistent, in particular the exhibition of the H-mode

pedestal. From the figure it is also clear that the profiles satisfy the boundary

conditions, which state that the peak of the temperature is located at the center

of the plasma ρ̂ = 0, and that the temperature drops to near zero at the boundary

wall ρ̂ = 1. Clearly the simplified EHTE model proposed in this work is missing

some physics that TRANSP is effective at capturing. Since the magnitude gap is

consistent across the entire spatial domain, it is likely that additional heat that

we have not modeled are causing the deviation and could be included in future

developmental efforts of this model.
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Figure 2.9: Electron temperature profiles predicted by (a) the
custom hybrid finite difference solver of the EHTE and (b) the
corresponding TRANSP simulations.
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Figure 2.10: Electron temperature profiles predicted by the pro-
posed EHTE solver and TRANSP at (a) 1 second, (b) 2 seconds,
(c) 3 seconds, and (d) 4 seconds.
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Chapter 3

Optimizing χe Through Spatial

Interpolation

3.1 Modeling and Estimation of χe

The thermal conductivity (also called thermal diffusivity) of the electrons (χe) is

a plasma parameter that plays a critical role in the EHTE since it indicates how

the electron temperature diffusion varies across the minor effective radius of the

tokamak. Since the plasma thermal diffusivity cannot be measured via traditional

instrumentation, a model is necessary to be able to predict the evolution of the

electron temperature. While complex physics-based model have been proposed

for χe, there is a lack of a simple mathematical model for the thermal diffusivity

that could be used for control design.

Previous work in this area includes the estimation of the plasma transport

parameters using filtering theory. In [13], a general control-oriented transport

model was proposed for plasma dynamics prediction and a stochastic filtering

approach was developed based on an extended Kalman filter approach to provide

real-time estimates of the poorly known or totally unknown transport coefficients.

The work focused on time-constant to-be-estimated transport coefficients.
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In this chapter, a different approach is followed by implementing a sequential

quadratic programming (SQP) optimization method in order to estimate the ther-

mal diffusivity profile. The to-be-optimized thermal diffusivity profile is modeled

as a time-independent spatial profile reconstructed from values at seven spatial

locations via interpolation. The free parameters of the optimization algorithm are

the seven values from which the whole thermal diffusivity profile is reconstructed.

3.2 Basics to Sequential Quadratic Programming

When approaching nonlinearly constrained optimization problems, SQP is one of

the most efficient approaches for converging to an accurate solution. This tech-

nique is frequently implemented in software packages like Matlab and Mathcad.

SQP works off a Newtonian type optimization by calculating individual steps in

response to perturbations and minimizing corresponding deviations.

The primary characteristic of SQP (and what gives SQP its name) is the re-

placement of the objective function with a quadratic approximation. For example

let us consider the following nonlinear programming problem [14]:

minimize f(x)

subject to h(x) = 0

g(x) ≤ 0

(3.1)

where h(x) and g(x) are the constraint functions, and f(x) is the cost function to

be minimized. The basic idea of sequential quadratic programming is to model

a nonlinear programming problem at a given approximate solution, say xk, by

a quadratic programming subproblem, and then to use the solution to this sub-

problem to construct a better approximation xk+1 [14]. With enough iterations,

convergence is achieved and f(x) is successfully minimized. This minimization

method is extrapolated from the quasi-Newtonian method for constrained opti-

mization. As with the Newtonian solution and most iterative processes, initial
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conditions that are located near the desired solution converge more rapidly than

distant initial conditions.

When discussing Sequential Quadratic Programming, there are two classifi-

cations of convergence that heavily impact computational solving. “Local con-

vergence” assumes that the given initial conditions fall close to the solution x∗.

Using the proof of convergence of the classical Newton’s method, the conditions

generated for governing a local convergence ensure that the first order system of

equations for iterations remain close to the solution, denoting that the quadratic

subproblem is a good model for the nonlinear programming problem. If the start-

ing position for the problem is distant from the solution, the convergence is called

“global convergence”. The main differentiator between local and global conver-

gence is the introduction of a correct gradient and search direction, or merit func-

tion notated as ψ (this ψ is in no way related to the nuclear fusion term ψ, which

represents magnetic flux). With the merit function describing descent as the pri-

mary indicator of convergence, iterations are assured to closer align themselves

with the solution but do not force other local conditions such as the Hessian ap-

proximation [14]. Typically this means that local convergence is computationally

simple and preferred over global convergence.

Let us examine the scalar valued Lagrangian function for the optimization

problem (3.1), i.e.

L(x, u, v) = f(x) + uth(x) + vtg(x) (3.2)

where u and v are the multiplier vectors and x is the vector for the gradient of the

scalar-valued function ∇f(x). The vectors are all assumed to be column vectors

and the “t” superscript is used to denote the transpose. In the basic SQP method,

an approximation for x is chosen to be xk. At the approximation xk, the quadratic

subproblem will have the form

(rk)tdx +
1

2
dtxBxdx (3.3)
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subject to

∇h(xk)tdx + h(xk) = 0

∇g(xk)tdx + g(xk) ≤ 0

(3.4)

where rk is taken to be the gradient of f at xk, and Bk is the Hessian of the

function. In (3.3) and (3.4), dx = x − xk, where the SQP method is focused on

minimizing dx.

Given the initial approximations x0, u0, v0 and the merit function ψ, and

setting k = 0, the basic algorithm for sequential quadratic programming is shown

[14]:

1. Form and solve quadratic subproblem to obtain (dx, du, dv)

2. Choose steplength α so that ψ(xk + αdx) < ψ(xk)

3. Set xk+1 = xk + αdx uk+1 = uk + αdu vk+1 = vk + αdv

4. Stop if converged

5. Compute Bk+1

6. Set k := k + 1; go to 1

(3.5)

As an example, a visualization of the SQP process for the nonlinearly con-

strained Rosenbrock’s function is shown in Figure 3.1 [15]. Figure 3.1’s display of

the gradient lines shows how the descent direction of the convergence is applied

giving the corresponding remote starting location and constraint boundary.
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Figure 3.1: Plot detailing the SQP solving method for Rosen-
brock’s function, as supplied by Mathworks.

3.3 Predictive Model Used in Optimization

The EHTE numerical solver developed in previous chapters plays a key role in the

optimization work presented in this chapter. First, the EHTE solver is used to

generate the target profiles entering the to-be-minimized cost function. Second,

the EHTE solver is used by the optimization algorithm to predict the evolution

of the electron temperature profile for a given thermal diffusivity profile in each

iteration of the optimization process.

For simulation purposes, a time span of 0.6-3.0 seconds has been used with a

temporal step size of 0.02s, allocating a total of 121 temporal nodes. This allows us

to test the accuracy of the solver without an unnecessary increase in computational

time during the optimization process. Spatially, the minor axis was broken into 21

nodes, normalized by the variable ρ̂ and setting ρ̂ = 0 to be the direct geometric

center of the plasma and ρ̂ = 1 to be the edge of the plasma near the wall.
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3.3.1 Geometric Factors

Previously in section 2.6, the geometric factors for shot 147634 were introduced.

Since the magnitudes of these geometric factors deviate only slightly over time

(under 10%), constant profiles for the geometric factors are assumed for the pre-

dictive model used for the estimation of the thermal diffusivity profile. Figure 3.2

exhibits the shape of these profiles.

3.3.2 Heating Sources

Whereas in the previous chapter the individual time-varying profiles for the heat

deposition were shown, figures 3.3 and 3.4 consists of the combined heat sources

active during the 121 temporal nodes relevant to this simulation. Both 3D and

2D visualizations are depicted. Analyzing Figure 3.4, one can note that this is

the exact same total heating profile (Qe = QECE + QNBIs + Qohmic) presented in

Section 2.6. However, the time length of the span has been cut to only the relevant

temporal domain (0s - 3.0s). Prior to turning on the electrocycloton heating, only

the ohmic heating (as a result of the plasma induced current) and the NBI heating

contribute to the rise in temperature of the electrons. Thus it is expected that the

simulation results will show a significant rise in Te after temporal node 75 (2.1s).
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Figure 3.2: Time-averaged F (ρ̂), G(ρ̂), H(ρ̂) profiles for χe opti-
mization. Geometric factors extracted from TRANSP for DIII-D
shot 147634.
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3.3.3 Electron Density

Unlike in Chapter 2, the electron density to be used in the EHTE during the

optimization was not extracted from TRANSP, but modeled as

ne(ρ̂, t) = nprofe (ρ̂)un(t) (3.6)

where nprofe (ρ̂) is a reference profile and un(t) regulates the time evolution of the

electron density. Note that nprofe is obtained by evaluating the experimental or

simulated ne at a reference time trne , i.e., nprofe (ρ̂) = ne(ρ̂, trne) [16]. The electron

density profile is modeled as such in Figure 3.5.
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Figure 3.5: Modeled electron density profiles at select times.

3.3.4 Generation of Electron Temperature Target Profile

The goal of the SQP optimization algorithm developed in this chapter is to opti-

mize the thermal diffusivity χe in the proposed EHTE model so that the predicted

electron temperature matches a predefined target profile as closely as possible.

While in practice the target profile will be obtained from experimental measure-
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ments, in this work such profile is generated by simulations. Such simulations use

a time-averaged diffusivity profile denoted as χtargete and shown in Figure 3.6. This

profile was obtained by averaging over the time the χe evolution in shot 147634.

With the indicated assumptions for the geometric factors, heating sources, elec-

tron density and thermal diffusivity, the EHTE-predicted evolution of the electron

temperature profile, denoted as T targete hereafter, is displayed in Figure 3.7.
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Figure 3.6: Time-averaged thermal diffusivity profile from
TRANSP - used to predict T targete .
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Figure 3.7: Target electron temperature profile predicted from
the EHTE solution using TRANSP’s time-averaged χe, in the
form of (a) 2D plot at select times, and (b) 3D mesh of entire
temporal domain.

43



3.4 Optimization Problem Definition

Now that T targete has been defined as the electron temperature profile predicted by

the EHTE by using a time-averaged thermal diffusivity (χtargete ), the optimization

problem can be formally defined. The to-be-minimized cost function J is defined

as

J =

∫ tfinal

0

∫ 1

0

(
T targete (ρ̂, t)− T opte (ρ̂, t)

)2
dρ̂dt. (3.7)

The goal of the optimization algorithm is to modify (optimize) the initial guess for

the thermal diffusivity profile, denoted χinitiale , so that the electron-temperature-

profile prediction by the EHTE, denoted as T opte , based on the modified (optimized)

thermal diffusivity profile, denoted as χopte , matches T targete as closely as possible.

In this way, the cost function J is minimized.

The thermal diffusivity profile is modeled as a time-independent spatial pro-

file reconstructed from values at seven spatial locations via interpolation. This

parameterization of the to-be-optimized thermal diffusivity profile is necessary to

carry out the optimization, since it models an infinite-dimensional profile by a

finite number of to-be-optimized parameters. The free parameters of the opti-

mization algorithm are therefore the seven values from which the whole thermal

diffusivity profile is reconstructed. Thus, χtargete is indeed an approximated version

of TRANSP’s time-averaged diffusivity profile, as seen in Figure 3.8. The seven

spatial nodes are carefully chosen to capture the shape of the typical thermal dif-

fusivity profile in the most efficient possible manner. A series of spatial nodes

evenly spaced across ρ̂ may increase the difficulty of the optimizer to determine

which node changes have the largest impact. Therefore, χtargete was segmented

according to the following nodes and locations:

χtargete = [2.557, 2.564, 3.087, 2.932, 5.495, 2.518, 15.06]

ρ̂targetcrit = [0, 0.15, 0.25, 0.35, 0.8, 0.9, 1.0]

(3.8)

where ρ̂targetcrit is defined as the critical locations along ρ̂ that the corresponding
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χtargete points are located. The target diffusivity nodes are interpolated in Figure

3.8(b). The χinitiale and χopte profiles are also prescribed as a nodal approximation.
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Figure 3.8: (a) time-averaged TRANSP 21-node χtargete profile
and (b) 7-node χtargete approximation.
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3.5 Testing Optimization Algorithm Against Vary-

ing Initial Conditions

Test 1 (χinitiale = 1.4χtargete ): As the first test, the initial guess for the thermal

diffusivity profile (χinitiale ) is established as exactly 140% of the target profile, at

the same locations across the minor axis. The resulting array is described as

χinitiale = 1.4 ∗ [2.557, 2.564, 3.087, 2.932, 5.495, 2.518, 15.06]

= [3.580, 3.590, 4.322, 4.105, 6.293, 3.525, 21.084]

ρ̂crit = [0, 0.15, 0.25, 0.35, 0.8, 0.9, 1.0]

(3.9)

where the ρ̂crit array listed in (3.9) describes the critical locations chosen. The

converged solution to this profile optimizer can be seen in Figure 3.9. It is clear

that the optimizer succeeded in pulling down the critical nodes to match the target

diffusivity profile. The only distinct deviation from the target occurs within the

first 3 nodes. This is likely due to the fact that the electron temperature profile is

less sensitive to small variations of the value of the thermal diffusivity in the inner

part of the plasma, which implies that they contribute less to the cost function.

To determine within what accuracy the solution achieved, we can calculate

the error (δ) between χoptimizede and χtargete as

χtargete = [2.557, 2.564, 3.087, 2.932, 5.495, 2.518, 15.06]

χinitiale = [3.580, 3.590, 4.322, 4.105, 6.293, 3.525, 21.084]

χoptimizede = [2.9034, 2.8551, 2.6329, 3.1076, 5.5996, 2.4073, 14.556]

δχe

nodal = [13.55%, 11.35%,−14.71%, 5.99%, 1.90%, 4.40%, 3.35%]

(3.10)

From (3.10) we can see that the optimization algorithm is successful in generating

a profile that deviates only slightly from the target profile (on average less than

5%). However since the goal is to match electron temperature profiles, we can

plot the target and the optimized profiles in Figure 3.10(a) and (b), respectively.
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Figure 3.9: Compared χoptimizede and χtargete profiles, modeled
with χinitiale as 140% of the χtargete profile.

It appears that using the optimized thermal diffusivity profile, the optimized

electron temperature closely match the target temperature. This time we can

calculate the difference between T opte and T targete across all 21 spatial nodes. For

simplicity, the compared values in (3.11) are from t=3.0 seconds.

T opte − T targete = [−0.0028,−0.0028,−0.0002, 0.0038, 0.0031,−0.0038,−0.0053,

− 0.0007, 0.0028, 0.0045, 0.0035, 0.0004,−0.0038,−0.0059,

− 0.0049,−0.0034, 0.0044, 0.0038,−0.0006,−0.0004, 0]

δTenodal = [0.13%, 0.13%, 0.01%, 0.12%, 0.16%, 0.20%, 0.29%, 0.04%,

0.16%, 0.28%, 0.24%, 0.03%, 0.31%, 0.55%, 0.54%, 0.44%,

0.70%, 0.84%, 0.34%, 0.30%, 0.0%]

(3.11)

To have an average deviation from the target electron temperature profile of less

than 1% is a very promising result. This implies that even though the first few

nodes of the SQP optimized χe profile wandered from the target values, the pre-

diction of electron temperatures was not affected by this discrepancy.
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Figure 3.10: Comparison between (a) target electron tempera-
ture profiles and (b) optimized electron temperature profiles when
χinitiale = 1.4χtargete .
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Test 2 (χinitiale = 0.6χtargete ): Now that the ability of the solver to converge to

a target χe profile when prescribed a much higher initial profile has been proven,

we can be confident that the SQP optimizer accepts negative gradients and search

directions. The next test is to prescribe an initial profile that is beneath the target

curve to monitor the effects of a positive gradient and search direction. Identifying

the 60% initial conditions in a similar manner as (3.9):

χinitiale = 0.6 ∗ [2.557, 2.564, 3.087, 2.932, 5.495, 2.518, 15.06]

= [1.5342, 1.5384, 1.8522, 1.7592, 3.297, 1.5108, 9.036]

ρ̂crit = [0, 0.15, 0.25, 0.35, 0.8, 0.9, 1.0]

(3.12)
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Figure 3.11: Compared χopte and χtargete profiles, modeled with
χinitiale as 60% of the χtargete profile.

As shown in Figure 3.11, again the optimizer succeeds in closely matching all

nodes after ρ̂ = 0.25, but wanders from the target in the inner nodes, especially at
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the plasma center. From a strictly χe-matching perspective, the difference between

the optimized profile and the target can be calculated as in (3.10). But since the

cost function is concerned solely with the electron temperature matching, the more

appropriate comparison is in regards to the Te profiles. In Figure 3.12, the target

temperature profile lines are shown with the optimized temperatures displayed as

“x” markers. The comparison shows a very close match.
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Figure 3.12: Comparison between target and optimized tem-
perature profiles, with χinitiale as 60% of the χtargete profile.

From Figure 3.12 it is clear that the optimization algorithm has no issues

solving the SQP quadratic subfunctions and converging on the target temperatures

regardless of the fact that the initial condition for the thermal diffusivity is below

the target profile. To the naked eye the optimized profile at the nodes seems to

match the target perfectly. The deviation for this particular 60% initial condition
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optimization is given by

T opte − T targete = [0.0011, 0.0011,−0.0042,−0.0074,−0.0084,−0.0073,−0.0019,

0.0045, 0.0065, 0.0049, 0.0002,−0.0058,−0.0106,−0.0107,

− 0.0056, 0.0011, 0.0145, 0.0161,−0.0025,−0.0014, 0.0]

δTenodal = [0.05%, 0.05%, 0.20%, 0.36%, 0.42%, 0.38%, 0.10%, 0.25%,

0.38%, 0.31%, 0.01%, 0.43%, 0.87%, 1.01%, 0.62%, 0.14%,

2.30%, 3.53%, 1.36%, 1.09%, 0.0%]

(3.13)

Comparing the error to the first test, it is evident that the optimization results

are consistent between the two tests with separate χinitiale profiles. Before moving

on to refine the optimization procedure, we must test the ability of the algorithm

to minimize the electron-temperature matching error when the prescribed initial

condition that does not hold the same general shape of χtargete .

Test 3 (Flat Line as Initial Condition): Tests 1 and 2 showed that,

given a χinitiale profile resulting from multiplying the χtargete profile by constants

both smaller and greater than one, an SQP algorithm can be implemented that

predicts the electron temperatures from a hybrid finite difference method and

computes the appropriate cost function, minimizing the error and converging to

the target profile within a 1% error. But for both applications the input profile held

the major shape of the target profile that was simply translated vertically on the

graph. The final test for determining the capability of the optimization algorithm

is to ascertain whether a completely random χinitiale profile, with a general shape

that does not match the target profile, will still converge upon a χoptimizede that

predicts matching electron temperatures to the target. To do this, the initial

condition was described as a straight line, i.e.

χinitiale = [5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]

ρ̂crit = [0, 0.15, 0.25, 0.35, 0.8, 0.9, 1.0]

(3.14)
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With this initial condition case of a flat line χinitiale profile, the optimization

model was for a third time successful in identifying a χoptimizede profile that resulted

in closely matching electron temperatures. The optimized thermal diffusivity can

be seen in Figure 3.13, with the corresponding temperature predictions in Figure

3.14. Note in Figure 3.13 the rapid drop and following increase of slope after

ρ̂ = 0.8; this implies that the H-mode pedestal will be present in the electron

temperature profiles, which is confirmed in Figure 3.14. For ρ̂ ≤ 0.2, χopte shows

once again a relatively large deviation from χtargete ; however, as before, this has a

small effect on the predicted electron temperature, since in Figure 3.14 it is clear

that the matching is good. If Te profile does not depend heavily on the inner

values of the χe profile, the values can fluctuate around an average value while

still producing the correct Te profile.
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Figure 3.13: Compared χoptimizede and χtargete profiles, modeled
with χinitiale as a flat line profile.

52



0 0.2 0.4 0.6 0.8 1
;̂ (dimensionless)

0

0.5

1

1.5

2

2.5

E
le

ct
ro

n 
T

em
pe

ra
tu

re
 (

ke
V

)

T
e
 Profiles from @

e
target and @

e
opt

T
e
target at t=1.0s

t=1.4s
t=1.8s
t=2.2s
t=2.6s
t=3.0s

T
e
opt profiles

Figure 3.14: Compared target and optimized temperature pro-
files, with χinitiale as a flat line profile.

The deviation between T opte and T targete is given by

T opte − T targete = [0.0130, 0.0130, 0.0087,−0.0092,−0.0140,−0.0070, 0.0029,

0.0117, 0.0150, 0.0134, 0.0072,−0.0016,−0.0103,−0.0148,

− 0.0141,−0.0115,−0.0022, 0.0035, 0.0215, 0.0062, 0.0]

(3.15)

with the nodal error percentages calculated to be

δnodal = [0.62%, 0.62%, 0.42%, 0.45%, 0.71%, 0.36%, 0.16%, 0.66%, 0.88%,

0.84%, 0.48%, 0.12%, 0.85%, 1.40%, 1.55%, 1.50%, 0.34%, 0.78%,

11.65%, 4.71%, 0.0%]

(3.16)
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3.6 Conclusions

In this chapter, a Sequential Quadratic Programming (SQP) optimization algo-

rithm was implemented with the goal of identifying the thermal diffusivity profile,

which is part of the EHTE, so that the evolutions of the electron temperature pro-

file closely match predefined target profile evolutions. The to-be-minimized cost

function was defined as the spatial-temporal integral of the quadratic error between

predicted (by the numerical EHTE solver) and target electron temperature pro-

files. The target electron temperature profile was generated by the EHTE solver by

using a time-averaged thermal diffusivity profile and simplified models for the geo-

metric factors, electron density and heating sources. The to-be-optimized thermal

diffusivity profile was modeled as a time-independent spatial profile reconstructed

from values at seven spatial locations via interpolation. The free parameters of

the optimization algorithm were the seven values from which the whole thermal

diffusivity profile was reconstructed. The optimization algorithm was effective in

converging to a thermal diffusivity profile that predicted a temperature profile

evolution closely matching the target profile.
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Chapter 4

Optimizing χe Through Spatial

Interpolation (Augmented Cost)

4.1 Incorporating the Magnetic Flux Into the

Cost Function

In the previous chapter, the optimization algorithm converged to a χe profile based

on a cost function that was solely dependent on the electron temperature profile.

Recalling the magnetic diffusion equation previously described in Section 1.5, it

is clear that the electron temperature profile has a large impact on the magnetic

flux ψ, since the plasma resistivity is a function of the electron temperature.

Therefore, we are interested in finding a χe profile that minimizes both the electron

temperature and the magnetic flux matching errors. For this reason it is important

to alter the cost function to include the deviation in magnetic flux from the target

flux profile. To do this, the cost function (3.7) is modified as

J =

∫ tfinal

0

∫ 1

0

(
T targete (ρ̂, t)− T opte (ρ̂, t)

)2
+
(
ψtarget(ρ̂, t)− ψopt(ρ̂, t)

)2
dρ̂dt

(4.1)

The ψtarget profile is obtained in the same manner as T targete , i.e. the time-averaged

thermal diffusivity profile computed by TRANSP for DIIII-D shot 147634, referred
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to as χtargete , is inserted into the predictive model and the numerical solvers for

both the EHTE and MDE are used to produce simulated targets. Figure 4.1

displays the poloidal magnetic flux target profiles generated by this method.
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Figure 4.1: Target poloidal magnetic flux profiles at select
times.

To examine how this affects the product of the optimization, the same three

tests from the previous chapter are performed, but now with different results due

to the introduction of the matching error for ψ in the cost function. For this

chapter, some of the initial conditions are moved slightly to help distinguish these

results from the previous chapter’s.
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4.2 Testing Optimization Algorithm Against Vary-

ing Initial Conditions

Test 1 (χinitiale = 1.5χtargete ): Using an initial value of the χe profile equal to

1.5χtargete , the optimization algorithm is successful in converging upon a profile that

appears to more closely match the target χe profile, particularly in the inner nodes,

due to the added constraints in the cost function in terms of the magnetic flux

profile, as seen in Figure 4.2. With the introduction of the ψ matching error in the

cost function, an increase of the electron-temperature-profile matching error may

be expected because the algorithm looks for a thermal diffusivity that optimally

solve the tradeoff between matching errors now present in the cost function.
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Figure 4.2: Comparison of χopte and χtargete profiles, modeled
with χinitiale as 150% of the χtargete profile.

With the χopte attained for this test, we can compare the optimized electron-

temperature and magnetic-flux profiles to their targets, as seen in Figure 4.3.
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Figure 4.3: Compared target and simulated (a) temperature
profiles and (b) magnetic flux profiles, with χinitiale as 150% of the
χtargete profile.
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Repeating the analysis process from the previous chapter, we can examine

the resulting errors. For simplicity, only the average error is presented for the

electron temperature and the magnetic flux.

δχe

nodal = [13.84%, 3.85%, 7.09%, 9.82%, 2.03%, 2.84%, 4.96%]

δχe
ave = 6.35% δTeave = 0.182% δψave = 2.06%

(4.2)

As before, δχe

nodal is defined as the percent deviation between χtargete and χopte at

each spatial node, while δχe
ave, δ

Te
ave, and δψave are the average error percentages over

the spatial domain of the thermal diffusivity, electron temperature and magnetic

flux.

Graphically, the nodal errors can be displayed in order to identify which area

of the spatial domain carries the largest error. Figure 4.4 shows the deviation

for a few specific times of the optimized temperature and flux profiles from their

targets. From Figure 4.4, it is possible to note that even at peak error neither the

electron temperature nor the magnetic flux diverge more than 5% from the target

values. This is valid for all spatial locations and time within the simulation range.

For the center of the plasma, the error between optimized and target temperatures

and magnetic fluxes are very small. Larger deviations occur near the end of the

spatial domain at the plasma boundary for the electron temperature, and halfway

to the boundary (at ρ̂ = 0.5) for the magnetic flux. Comparing these observations

with the optimized profiles in Figure 4.3, this error is hardly noticed.
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Figure 4.4: Error analysis for (a) Te and (b) ψ, when χinitiale =
1.5 ∗ χtargete .
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Test 2 (χinitiale = 0.6χtargete ): As in the previous tests, the initial condition

is prescribed at exactly 60% the magnitude of χtargete . The resulting output is

shown in Figure 4.5, where χopte and χtargete are compared, and the average error

percentages have been identified as

δχe
ave = 11.61%

δTeave = 0.267%

δψave = 2.17%

(4.3)
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Figure 4.5: Comparison of χopte and χtargete profiles, modeled
with χinitiale as 60% of the χtargete profile.

The resulting χopte is then used to predict both T opte and ψopt, which are shown in

Figure 4.6.
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Figure 4.6: Compared target and simulated (a) temperature
profiles and (b) magnetic flux profiles, with χinitiale as 60% of the
χtargete profile.

As in Test 1, we can show the error changing along the spatial domain in

Figure 4.7, which exhibits a pattern similar to that in Test 1.
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Figure 4.7: Error analysis for Te (a) and ψ (b), when χinitiale =
0.6 ∗ χtargete .
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Test 3 (Flat Line as Initial Condition): Recalling from Chapter 3 the

flat line initial condition test, χinitiale is given a constant value of 5 in this test.

The resulting output is shown in Figure 4.8, where χopte and χtargete are compared,

and the average error percentages have been calculated as

δχe
ave = 7.70%

δTeave = 0.323%

δψave = 2.41%

(4.4)
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Figure 4.8: Comparison of χopte and χtargete profiles, modeled
with χinitiale as 60% of the χtargete profile.

The resulting χopte is then used to predict both T opte and ψopt, which are shown in

Figure 4.9.

64



0 0.2 0.4 0.6 0.8 1
;̂ (dimensionless)

0

0.5

1

1.5

2

2.5

E
le

ct
ro

n 
T

em
pe

ra
tu

re
 (

ke
V

)

T
e
 Profiles from @

e
target and @

e
opt

T
e
target at t=1.0s

t=1.4s
t=1.8s
t=2.2s
t=2.6s
t=3.0s

T
e
opt profiles

(a)

0 0.2 0.4 0.6 0.8 1
;̂ (dimensionless)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
ol

oi
da

l M
ag

ne
tic

 F
lu

x

A Profiles from @
e
target and @

e
opt

A
target at t=1.0s

t=1.4s
t=1.8s
t=2.2s
t=2.6s
t=3.0s

A
opt profiles

(b)

Figure 4.9: Compared target and simulated (a) temperature
profiles and (b) magnetic flux profiles, with χinitiale as a flat line
profile.

As in previous tests, we can show the error changing along the spatial domain

in Figure 4.10, which exhibits a pattern similar to those in previous tests.
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Figure 4.10: Error analysis for Te (a) and ψ (b), when χinitiale

= flat line.
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4.3 Conclusions

In this chapter, a Sequential Quadratic Programming (SQP) optimization algo-

rithm was once again implemented to estimate the thermal diffusivity profile. The

to-be-optimized thermal diffusivity profile was parameterized exactly in the same

way as in the previous chapter, i.e. it was modeled as a time-independent spa-

tial profile reconstructed from values at seven spatial locations via interpolation.

As a difference from the previous chapter, the to-be-minimized cost function was

defined as the spatial-temporal integral of not only the quadratic error between

predicted and target electron temperature profiles but also the quadratic error

between predicted and target magnetic flux profiles. To carry out the optimiza-

tion a numerical solver previously developed for the Magnetic Diffusion Equation

(MDE), which governs the dynamics of the magnetic flux, was combined with the

developed EHTE numerical solver. The to-be-matched electron temperature and

magnetic flux profiles (target profiles) were constructed by numerically solving the

EHTE and MDE using once again a time-averaged thermal diffusivity profile and

simplified models for the geometric factors, electron density and heating sources.

The optimization algorithm was effective in converging to a thermal diffusivity

profile that predicted temperature and flux profile evolutions closely matching the

target profiles. Comparing the error profiles for all three tests, it appears that

the initial thermal diffusivity profile has little effect on the ability of the SQP

optimization algorithm to converge to a χopte that minimizes matching errors for

both the electron temperature and the magnetic flux profiles. The δTeave error is

always below 1% and the δψave error fluctuates between 2-2.5%. This proves that

the optimization algorithm, coupled with EHTE and MDE models, accurately

identifies a χopte . However there is some room for improvement. Since the majority

of error between predicted and target temperature profiles, as well as between

predicted and target magnetic flux profiles, occurs in the range 0.5 ≤ ρ̂ ≤ 1,

additional critical points within this range could be added, and the deviation

after ρ̂ = 0.5 could be more heavily weighted in the cost function.
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Chapter 5

Optimizing χe Through Plasma

State Scaling

5.1 Modeling and Estimation of χe

In the previous chapters, the to-be-optimized thermal diffusivity profile was pa-

rameterized by its value at several points in space. More precisely, the thermal

diffusivity profile was modeled as a time-independent spatial profile and was recon-

structed from values at seven spatial locations via interpolation. In this chapter,

the thermal diffusivity profile is modeled as a time-dependent spatial function of

critical properties of the plasma state. In this case, the thermal diffusivity profile

is written as

χe = (Te)
α(ne)

β(q)γ (5.1)

where Te represents the electron temperature, ne denotes the electron density, and

q represents the safety factor. The scaling factors α, β, and γ are the free pa-

rameters to be optimized by the algorithm in order to minimize the cost function,

which is still defined as in (4.1). It is thus the goal of the SQP optimizer to con-

verge on values for α, β, and γ that produce electron temperature and magnetic

flux profiles matching their respective targets, which are generated as explained

in Chapter 4.
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5.2 Optimization Results

As with Chapters 3 and 4, we would like to find a χopte profile that minimizes the

error between target and predicted temperatures and magnetic fluxes. However, in

this case the thermal diffusivity is parameterized as in (5.1) in terms of 3 scaling

factors instead of in terms of values at 7 spatial nodes. To determine initial

guesses for the scaling factors α, β, and γ, it is important to examine the order of

magnitude of each one of these factors, which are given by

Te ∼ 100[keV ] ∗ 1.602 ∗ 10−16[J/keV ]

ne ∼ 1019[m−3]

q ∼ 100[dimensionless]

(5.2)

Since the EHTE solver predicts electron temperatures in keV, the temperature

units in (5.2) must be converted to Joules to achieve the [W/s2] units for χe.

According to (5.1) and (5.2), in order to arrive at a diffusivity profile that ranges

from 0 to 15, the electron density will have to be largely scaled down. Thus the

initial values for the scaling constants are chosen as

[α, β, γ] = [0.5, 0.005, 0.5] (5.3)

With the initial guess in (5.3), the optimization algorithm converged to the fol-

lowing values for the scaling factors (for reference, computational processing time

for this simulation was approximately 30 minutes):

[α, β, γ] = [−0.0369, 0.0302, 0.2427] (5.4)

Note that the sign for α was reversed, shifting the electron temperature factor to

a fractional value. Figures 5.1-5.4 exhibit the results of this optimization.
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Figure 5.2: Comparison between target and optimized profiles
for (a) electron temperatures and (b) magnetic flux, with χopte as
the novel, equation-based profile.
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Figure 5.3: Comparison between optimized and target temper-
ature profiles at (a) t=1.0s, (b) t=1.4s, (c) t=1.8s, (d) t=2.2s, (e)
t=2.6s, (f) t=3.0s.
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Figure 5.4: Comparison between optimized and target magnetic
flux profiles at (a) t=1.0s, (b) t=1.4s, (c) t=1.8s, (d) t=2.2s, (e)
t=2.6s, (f) t=3.0s.
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A major difference between the results generated from the equation-based

parameterization of χe in (5.1) and those in the previous chapters is that the

thermal diffusivity is now modeled as a time-dependent profile instead of a time-

constant profile. This better reflects actual conditions in a tokamak, where the

plasma thermal diffusivity does change along the duration of the shot. From figures

5.2-5.4, it is clear that both the electron temperature and magnetic flux profiles

try to match their target counterparts. However, the matching is probably not as

good as in previous chapters with a different parameterization of χe. Figure 5.1

shows that the optimized χe profiles are radically different from the actual profiles

(see Figure 2.8). Figure 5.5 displays the average χopte (Figure 5.1) compared against

the average χe computed by TRANSP (Figure 2.8), which was denoted as χtargete

in the previous chapters.
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the new equation-based model compared against the average ther-
mal diffusivity from TRANSP.
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The difference shown in Figure 5.5 is clearly a consequence of the constraints

imposed by the new parameterization. Where in the previous chapters the dif-

fusivity dipped first and then spiked near the plasma boundary, in this case the

diffusivity follows a smooth curve up to and through zone where a pedestal is

expected. While it is important to point out the differences in the shapes of these

two profiles, it should be noted that the goal of this work is not to match χopte with

χtargete , but to come up with a simple model for χe as in (5.1) that predicts elec-

tron temperature and magnetic flux profiles in an approximate fashion. Thus, by

analyzing the figures in 5.2 we can see that χopte satisfactorily approximates the Te

and ψ evolutions, but without capturing the pedestal near the plasma boundary

(Figure 5.3).

Besides the specific constraints imposed by the parameterization itself, an-

other reason for this discrepancy may reside on the equal spatial weighting assigned

to the cost function. Let us examine the spatial dependence of the mismatch be-

tween optimized and target temperatures (one of the squared terms in the cost

function). In (5.5), the difference between T opte and T targete is calculated for a

random time step (time index 60), i.e.

Error =(T opte (60, ρ̂)− T targete (60, ρ̂))2

=[0.0040, 0.0040, 0.0034, 0.0025, 0.0016, 0.0010, 0.0003,

0.0000, 0.0001, 0.0003, 0.0005, 0.0006, 0.0005, 0.0004,

0.0004, 0.0003, 0.0003, 0.0009, 0.0042, 0.0017, 0.0000]

(5.5)

which is graphically represented in Figure 5.6
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Figure 5.6: Squared difference between target and optimized
electron temperatures at time t=1.8s.

From examining Figure 5.6, the majority of the error occurs in the inner re-

gion of the plasma (from the center of the plasma to halfway the distance towards

the plasma boundary), with the exception of the spike occurring near the bound-

ary. The optimization algorithm focuses on reducing this error, and the results

is a neglected H-mode pedestal in the outer region of the plasma, as is clear in

both the diffusivity and temperature/flux plots in Figures 5.1.-5.3. Refining the

cost function by weighting more heavily the temperature mismatch at the spatial

location where the pedestal is expected may help to capture this phenomenon.

However, this corrective action may need to be accompanied by a different scaling

for χe that could take into account its dependence on other plasma states.
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5.3 Conclusions

In this chapter, a Sequential Quadratic Programming (SQP) optimization algo-

rithm was once again implemented to estimate the thermal diffusivity profile. As

a difference from previous chapters, the to-be-optimized thermal diffusivity profile

was parameterized in a complete different way, i.e. it was modeled as a scaling

law in terms of three critical properties of the plasma state, which results in a

time-dependent spatial profile. The to-be-minimized cost function was defined

as in Chapter 4, i.e. as the spatial-temporal integral of not only the quadratic

error between predicted and target electron temperature profiles but also the

quadratic error between predicted and target magnetic flux profiles. To carry

out the optimization a numerical solver previously developed for the Magnetic

Diffusion Equation (MDE), which governs the dynamics of the magnetic flux, was

combined with the developed EHTE numerical solver. The to-be-matched electron

temperature and magnetic flux profiles (target profiles) were constructed by nu-

merically solving the EHTE and MDE using once again a time-averaged thermal

diffusivity profile and simplified models for the geometric factors, electron density

and heating sources.

The optimization algorithm was effective in converging to a thermal diffusivity

profile that drives the temperature and flux profile evolutions close to their targets.

However, a more pronounced mismatch in both electron temperature and magnetic

flux profiles was observed in comparison with the results from previous chapters.

This indicates the need to revise, and possibly augment, the plasma states entering

the thermal diffusivity parameterization, which seems unable at the moment of

capturing the strong variation in the thermal diffusivity that is needed to predict

the temperature pedestal close to the plasma boundary. Nevertheless, the results

are very promising because they show the feasibility to produce a very simple

thermal diffusivity model that predicts electron-temperature and magnetic-flux

evolutions with enough accuracy for control design.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The dynamics of the plasma electron temperature in a nuclear fusion reactor is

governed by a partial differential equation called the Electron Heat Transport

Equation (EHTE). Finite difference methods are frequently utilized to numeri-

cally solve nonlinear partial differential equations. The stability of the numerical

solution depends on the type of finite difference technique implemented (implicit

or explicit). In this work, a custom hybrid finite difference approach, which com-

bines both implicit and explicit techniques, was developed to numerically solve

the EHTE. The numerical solution was compared with predictions by TRANSP,

a high-accuracy plasma transport code, to assess the ability of the developed nu-

merical method to predict the electron temperature evolution in fusion plasmas.

Once a numerical method for the solution of the EHTE was developed and

tested, a Sequential Quadratic Programming (SQP) optimization algorithm was

implemented with the goal of identifying a thermal diffusivity profile, which is part

of the EHTE, so that the evolutions of the electron temperature profile and the

magnetic flux profile best match predefined profile evolutions. To carry out the

optimization a numerical solver previously developed for the Magnetic Diffusion

Equation (MDE), which governs the dynamics of the magnetic flux, was combined
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with the developed EHTE numerical solver. The to-be-matched electron temper-

ature and magnetic flux profiles, denoted as target profiles, were constructed by

numerically solving the EHTE and MDE using the time-averaged thermal diffusiv-

ity profile over the duration of a specific discharge in DIII-D. The to-be-minimized

cost function was defined as the spatial-temporal integral of the quadratic error

between predicted (by the numerical solvers) and target electron temperature

profiles. In some cases the quadratic error between predicted (by the numerical

solvers) and target magnetic flux profiles was also included in the spatial-temporal

integral. Given an initial guess for the thermal diffusivity profile, the optimization

algorithm was capable of determining a profile minimizing the cost function.

The to-be-optimized thermal diffusivity profile was parameterized in two

different ways. First, the thermal diffusivity profile was modeled as a time-

independent spatial profile reconstructed from values at seven spatial locations

via interpolation. The free parameters of the optimization algorithm were the

seven values from which the whole thermal diffusivity profile was reconstructed.

Second, the thermal diffusivity profile was modeled as a time-dependent spatial

function of three critical properties of the plasma state, namely the electron tem-

perature Te, the electron density ne, and the safety factor q. In this case, the

thermal diffusivity profile was written as

χe = (Te)
α(ne)

β(q)γ, (6.1)

and the free parameters of the optimization algorithm were the scaling factors α,

β, and γ. A plasma-state-dependent parameterization as the one proposed in (6.1)

has the potential of producing a thermal diffusivity model valid for a larger range

of plasma dischargers, i.e. for a larger range of plasma conditions.
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6.2 Future Work

While the proposed optimization algorithm shows potential for modeling the ther-

mal diffusivity in the EHTE, extensive additional work is needed to generalize the

approach. First, since the model proposed in (6.1) has the capability of captur-

ing the time evolution of the thermal diffusivity profile, the target profiles for the

electron temperature and magnetic flux used in the to-be-minimized cost func-

tion should be generated using time-dependent thermal diffusivity profiles. These

target profiles could be also obtained directly from more sophisticated plasma

transport codes such as TRANSP. Second, the model parameterization obtained

from one plasma discharge should be tested not only in that specific discharge but

in other plasma discharges with similar magnetic geometries. These tests would

determine the need for model refinement and optimization improvement. Third,

in order to refine the proposed model, the need of incorporating additional prop-

erties of the plasma state in the parameterized model (6.1) should be assessed.

Other plasma properties such as the magnetic shear can have an important im-

pact on the evolution of the thermal diffusivity profile. As the number of plasma

states incorporated in the parameterization of the thermal diffusivity increases,

the number of scaling factors to be determined by the optimization algorithm also

increases. Finally, in order to improve the optimization, data from more than just

one discharge could be used to carry out the optimization. As more discharges are

included in the optimization, the likelihood of determining a thermal diffusivity

model with a large range of validity is increased.
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