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ABSTRACT 

The thesis studies about repositioning the spacecraft to obtain a moving target problem. We 

model the spacecraft as a rigid body with axis torque controlling N axial symmetry wheels, and 

kinematic parameters by ADCS. Reference trajectory represented a virtual space generated by 

the same actual spacecraft. 

Open loop reference posture, angular velocity and angular acceleration tracking order is 

constructed, making solar panels vector is perpendicular to the carrier tracking the movement of 

the sun. We developed a nonlinear feedback tracking control law, derived from the ADCS 

stability and control theory, the target tracking control torque. Asymptotic tracking controller 

make the main body frame, there are in the attitude and angular velocity error of initial reference 

movement. Spacecraft model, on the basis of resource manager in Tian Tuo-1 spacecraft, for 

demonstration in tracking the given target ADCS controller is effective. 
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Section 1 

Introduction 

Spacecraft formation flying, a developing technology has the potential ability to expand the 

future earth observation science missions. The development of small, low-cost spacecraft 

formation flying spacecraft has led several implementations of the idea of collaborative sensor. A 

form is defined as a set of coordinated motion of the vehicle, and it is very important of the 

vehicle’s the relative position of each other. 

The attitude tracking control is a kind of concept that as individual spacecraft control data 

collection, a target is selected, and the ship rigged so that the image sensor could track the place 

in the aim. The three main aspects of the attitude tracking control are fixed-point, angular 

velocity, and the desired attitude and tracking control. Airship orientation are needed to make it 

success in tracking control thereby the image sensor points being found directly, when it around 

its axis, to keep the sensor the same with the aim. 

Creating the motor torque for fulfilling this maneuvering is implemented by repositioning 

the desired attitude and expectation of angular velocity of the control law. The spacecraft is 

called a three-axis stabilized spacecraft, when it is in three perpendicular axis of space vehicle 

control.1 For three axis stability spacecraft, control torque also need to compensate for the 

environmental impact, such as air resistance, and gravity gradient torques to the direction of the 

spacecraft drift. These control torque can be generated from the outside, through the propeller, 

the internal momentum wheel, or by a combination of both. The purpose of this study is to 

develop the attitude tracking algorithm and control laws of three axis stabilized spacecraft to 
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view and track the target rotation of the earth. We first define for rigid spacecraft with 

momentum wheel system and the orbit model. Then we outlined the ideal posture, angular 

velocity, and the need to target and track the angular acceleration of the calculation of the open 

loop command. The target tracking trajectory by tracking the command of the sun also can make 

the solar cell array axis remain perpendicular to the direction of the sun, and sensor tracking 

target. Then, we use ADCS control theory of the development of the nonlinear feedback 

controller. The controller creates the necessary axial momentum wheel torque, and then makes 

the spacecraft body frame follow ideal open-loop trajectory by eliminating the initial tracking 

error tracking. Finally, the design results of ADCS are successful and suitable in using to the 

Tian Tuo-1. The results prove that feedback of control law drives the initial steps to zero of 

tracking error, and the controller can be linearized. 
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Section 2 

Research Review 

We present a brief overview of previous target tracking simulation and control investigations. 2.1 

of this section discusses attitude and tracking control research that has been done for formation 

flying. The rest of the section deals with the tracking control problem of a single three-axis 

stabilized spacecraft. Our research is an extension of the control work presented in Sections 2.2–

2.3. 

2.1 Study of Formation Flying Spacecraft 

Formation flight has not been widely studied in literature, but some simulation work in the past 

few years has been completed. Gramling etc.2 studied the formation of two satellites. They 

discussed the vehicle navigation system for the earth observing (EO - 1 )/ landsat -7 (L - 7) 

formation’s relative navigation. Gramling etc. also outlined the EO 1 / L - 7 formation 

configuration and ONS is discussed how to applying Onboard Navigation System, together with 

the Global Positioning System, and let the formation control autonomous .They showed how the 

Onboard Navigation System tracking measurements from the spacecraft to spacecraft crosslink 

carrier signal by the Doppler frequency shift. The Onboard Navigation System’s performance 

about tracking measurement type, quality, and frequency tracking was also investigated, and the 

formation of coplanar relative track geometry aspects was studied. The EO 1 / L - 7 mission’s 

simulation results with the Doppler measurement errors and forming track and cross track errors 

over time are introduced. 
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With the extension of Gramling et al. work by Folta and Quinn3 about the EO 1 / L - 7 

mission concept. They studied using documents referred to in the formation of three types of 

tasks formation control.4 Formation’s drills present in using an autonomous closed-loop triaxial 

navigation and control algorithm for EO-1/L-7. Controller allows the spacecraft autonomous to 

perform complex triaxial exercises. Using the algorithm and the autonomous spacecraft 

simulation software simulates the ground track and maneuvers of inclination. The algorithm is 

considered to be in the ground track, orbital transfer control and dip Angle. 

Other papers said this formation control algorithm was Ulbyshev’s research5 which involves 

feedback control by using a linear quadratic regulator for the position of the constellation keep. 

Then his derivation of the spacecraft equations’ work was done by using formula of Clohessy - 

Wiltshire. He then deduced a linear-quadratic regulator controller for formation-keeping and put 

forward a double satellite constellation analysis solution. A 12-satellite constellation was 

simulated using the linear-quadratic regulator controller. The Control was not independent of the 

constellations, and needed the required data from mission control center. He stated that the 

controller minimized the along tracking of the displacements between orbital period 

displacements during the circular orbit and spacecraft. 

2.2 Kinematics of Tracking Target 

Tracking target includes pointing to an object, then moving to keep with the target for a given 

length of time. And pointing to an object needs specific posture in alignment with the target 

aimed at instrument aiming axis. Then the spacecraft must generate angular velocity to track a 

target when it is moving in its orbit. Track the simplest case is where the target is inertial fixed, 

and the spacecraft is originally static, then eventually the hull rates are zero.6 
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From the study, we can know that Hablani7 developed the algorithm to generate reference 

trajectory as when the last angular velocity is not zero. And Hablani thought a rigid payload to 

connect to the spacecraft. For example, the sensor initially faces at the zenith direction. The 

payload direction’s tracking orders were based on a 2-1-3 Euler Angle sequence. Hablani applied 

this sequence due to the fact that each per orbit rotation is naturally compensated by the pitch 

rotation on the pitch axis, which is not any coupling from the subsequent roller rotation.8 

The spacecraft body triad 1 2 3
ˆ ˆ ˆ( , , )b b b  was initially aligned with the local-vertical-local-

horizontal triad 1 2 3
ˆ ˆ ˆ( , , )c c c  before target acquisition by defining the initial boresight direction to 

be along the zenith direction. The desired boresight orientation was defined as the negative yaw 

axis 3
ˆ( )b . The other two spacecraft body axes, 1b̂ and 2b̂ , were defined as the roll and pitch axis, 

respectively. Getting the target to the focal plane center of the instrument, the spacecraft is using 

a commanded pitch angle yc  to rotate about the 2ĉ  axis and then using a commanded roll angle 

xc  to rotate about the 1̂c  axis acquiring the target. Because of not affect target tracking of a 

rotation about the sensor boresight axis, the ‘3’ rotation was not needed. Just change the 

spacecraft’s attitude in the other two body axes. 

After that, the pitching roll Angle commands were showed by Hablani: 

 1

1 3
ˆ ˆtan (1 )/ (1 )yc c c       

The negative signs in the numerator and denominator of above equation were retained to 

determine the correct quadrant. 

 1

2
ˆsin (1 )/ 1xc c    

0zc   
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The yaw angle zc  and its rate 
zc  were zero since the target vector was aligned with the 

boresight axis. 

1 is from the spacecraft to the target’s line-of-sight vector. Also, Hablani noted that the roll 

command would always be / 2 / 2xc     .  

The position commands derived analogously the tracking angular velocity and acceleration 

commands. The details of these derivations could be search in reference 7 and 8. So the angular 

velocity commands: 

2
ˆ(1 )/ 1xc b    

1
ˆ( 1 )/ 1yc b     

Making use of the fact that the spacecraft has three desired angular rates, Hablani got the 

yaw component of the angular velocity: the mean motion of the spacecraft in a circular 

orbit 2
ˆ

cc , the pitch rate command 2
ˆ

ycc , and the roll rate command 1̂xcc . The yaw component 

of the angular velocity became: 

tanzc yc xc    

Then a second-order quantity even for a small roll angle was not found the inertial yaw 

rate zc . Meanwhile, the commanded angular acceleration was proved to be equal to: 

2
ˆ(1 2 )/ 1xc xc yc zcb l        

1
ˆ(1 2 )/ 1yc yc xc zcb l        

2tan seczc yc xc xc yc xc        
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l  is the rate of change in the line-of-sight vector in the body frame. Hablani also pointed 

out that the acceleration commands are useful for feedforward and/or determining the inertial 

resistance of the spacecraft when tracking a moving target. 

It is similar for the Euler 2-1-3 sequence to the position, rate, and acceleration commands, 

and Hablani also derived the tracking kinematics for an Euler 1-2-3 sequence. Thus, through the 

roll-pitch sequence to acquire the target, the boresight axis was initially facing nadir and the 

spacecraft was rotated. The roll-pitch sequence was not found to be as effective for target 

tracking because of it being singular at 90˚ pitch angle, and acquiring a near-earth target causes 

the pitch angle to cross 90˚. The rate and acceleration commands for the yaw axis are also more 

complicated than the previous definitions because the orbital rate ωo cannot be expressed as 

simply about the pitch axis 2ĉ  because it is for the pitch-roll sequence. Hablani stated that it was 

useful of the roll-pitch sequence, because when the pitch-roll commands are singular, the roll-

pitch sequence is not. We could find the results of the roll-pitch derivation in reference 6 and 7. 

In conclusion, Hablani7 presented a approach for deriving the perfect alignment and target 

tracking commands. Hablani’s approach’s problem is that these are ideal tracking commands 

which are constructed only for an Euler angle 2-1-3 sequence when the sensor axis initially 

facing the zenith direction. There is no flexibility in choosing attitude parameters or where the 

boresight axis is initially facing. And the algorithm didn’t contain sun tracking commands. So in 

section 4, for determining an attitude independent reference attitude from a rotation matrix, the 

thesis presents an algorithm that includes sun tracking commands. Greater flexibility in the 

choice of spacecraft attitude parameters is provided by constructing the attitude this way. 
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2.3 Attitude Control Theory Overview 

The section supplies a review about how the craft can be controlled following actions. The 

Attitude determination and control system (ADCS) is often used to those what are not easy 

modeled as linear systems in nonlinear system. This section provides a description of the ADCS 

method that is used to determine the stability of power system. 

2.3.1 ADCS Control Theory 

It is very important for the design of the controller to have a stability of the control system. 

Rouse’s method can be used to determine the stability for the linear and time invariant system9, 

if the system is nonlinear, or linear but the time is changing, then the stability of its type’s 

methods do not work. The ADCS, one direct method is frequently used for determining the 

stability of non-linear and/or time-varying systems.  

Attitude determination and control system (ADCS) plays in a satellite orbiting an 

indispensable part which may greatly affect the performance of the satellite. The development of 

micro- and nano - satellite need an attitude control system, and this system is cheap, light weight, 

small volume, and low power consumption. Thus, the electromagnetic coil and bias momentum 

wheel has been used as the most popular actuators. Three-axis magnetic coil with spacing bias 

momentum wheel is the popular way to realize three-axis stability control. By the momentum 

wheel, which is nominally spinning at a fixed rate in the pitch direction of the satellite, this 

method forces the attitude stabilization in roll and yaw directions. Many micro and nano satellite 

in orbit today by this control. 

2.3.2 Controllers for Spacecraft Target Tracking 

From this section, the thesis will introduce the algorithms which is using on TT - 1 to estimate 

and control of its attitude with the sensors and actuators. Firstly, we will introduce the satellite’s 
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attitude dynamics equations, and then we talk about attitude determination and control algorithm 

which are given respectively. 

2.3.2.1. Attitude Dynamics Analysis 

With fly wheels, the rigid spacecraft’s attitude dynamics could be described as 

( )x

bi bi bi cJ J H H T T         

bi bo bo oiA     

bi  is the angular velocity expressed in the body reference frame,  

J    the inertia matrix 

Td  external disturbance torque vector which imposed on the satellite 

Tc  the control torque vector which generated by actuators 

H   the momentum wheel’s angular momentum 

boA the transformation matrix from the orbit reference frame to the body reference frame 

x

bi  the matrix of symmetrical skew  

bo  the angular velocity relative to the orbit reference frame expressed in the body reference 

frame 

oi  the orbital angular velocity expressed in the orbit reference frame 

2.3.2.2. Attitude Determination Analysis 

Euler angles or a direction cosine matrix of a quaternion usually expresses Satellite attitude. 2 

And quaternion field is also a popular form to express their attitude. Researchers have proposed 

many methods to estimate the attitude and a variety of methods have been successfully used in 

the satellite mission. The TT - 1 task also have many attitude determination by different methods. 

After the separation released, the initial state was unknown. Therefore, attitude determination 
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used quaternion estimator (QUEST)7 algorithm. However, once applying into a three axis 

stabilized control mode satellite, the method of the QUEST will be changed by Unscented 

Falman Filtering (UKF) algorithm because the accuracy of the determination by QUEST was not 

reasonable. 

2.3.2.3. QUEST Algorithm Analysis 

It is the most commonly used deterministic algorithms of the QUEST algorithm and the three 

axis attitude determination (TRIAD) algorithm for attitude determination. They are both 

solutions to the Wahaba’s problem.10 The QUEST and TRIAD algorithm have been both utilized 

successfully on the nano-satellite. For example, The Cute - 1.7 + APD II11 through laboratory 

space systems in Tokyo institute of technology’s development utilized the QUEST algorithm 

onboard to estimate the attitude. Because of the QUEST’s low computation, TT - 1 adopted it to 

grab the initial attitude by magnetometer and sun sensors measuring. Note that once the two 

vectors are paralleling, at the end of the time interval of measurement will be preserved until get 

the unparallel carriers. 

2.3.2.4. UKF Algorithm Analysis 

UKF algorithm is used for determining attitude in three-axis stability phase. The State vector X-

combines attitude quaternion boq and bi , and the System state equation of kinematics and 

dynamics equations could be described as follows 

3 3 1

1

3 3 2

( ) / 2 0

( ( ) ) 0

bo

bi bi c d

q Q bo I v
X

J J H H T T I v



 



 



     
               

 

1 and 2 represent Gaussian white noise sequences.  

Also, the measurement model in sunlight is described as follows 
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( )

( )

bo bo bo oi ig g b

k

bo bo bo oi i s

B A q A A B v
Z

S A q A S v

     
       
     

 

The measurement model is set by magnetic field vector boB and sun vector boS .  

gB and 
iS  are the magnetic field and sun vector described in the geographic frame and the 

inertial frame respectively. 

bv and 
sv represent Gaussian white noise sequences. 

oiA : is the transformation matrix from the inertial frame to the orbit frame. 

igA  : is the transformation matrix from the geographic frame to the inertial frame.  

At this time, only the TAM can be obtained as the measurement vector. More details of UKF 

algorithm are presented in Refence 12. 
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Section 3 

Equations of Spacecraft Motion 

This section describes the motion equations to the spacecraft rigid body with momentum wheels. 

Euler’s rotational equations of the dynamics presents in Section 3.1. These equations are given 

for the actual spacecraft and generating a reference trajectory’s virtual space vehicles. The 

mathematical model of the spacecraft orbit and environmental impacts were described in Section 

3.2. 

3.1 Spacecraft System Model 

In this section, a system model is presented for use in developing tracking control algorithms. 

The equations of motion presented here follow the notation developed in Hughes13.We consider 

a rigid spacecraft P  which is shown on Figure 3.1, with N  rigid axisymmetric momentum wheels 

, 1, ,iR i N   

The wheels have an arbitrary, but fixed orientation with respect to the body. 
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Figure 3.1: N-Momentum Wheels’ Gyrostat Model  

bF  denotes the body frame with the origin at the center of mass of the system
1

i

N
P R

i



  

iF  denotes the inertial frame.  

When a rigid spacecraft has one or more rigid axisymmetric wheels spinning about their 

axes of symmetry, then the system is known as a gyrostat.14 

Make I on behalf of the moment of inertia of the system, including the momentum wheels, 

 1, ,s s sNI diag i I   denote the axial moments of inertia of the momentum wheels, and 

3 N matrix  1 NA a a  is on behalf of the wheel axial ja  vectors. We do not assume that bF  

is a principal frame. Therefore, I is not necessarily a diagonal matrix. As developed in reference 

10 and 14, we use all vectors and tensors in a platform-fixed, non-principal frame, designated as 

the “pseudo-principal” frame. Without loss of generality, we let bF  represent the pseudo-

principal frame, which is chosen so that the inertia-like matrix T

sJ I AI A  is diagonal. So the 

3 1 system angular momentum vector in bF is defined as  
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b b s sh I AI    

The angular velocities of the body and the wheels are the b  and 
s respectively. The 

matrix of the axial angular momenta of the wheels 
ah , which is defined for the N-wheel 

gyrostat as 

T

a s b s sh I A I    

The dynamics of the gyrostat are Euler’s rotational equations of motion which come from 

the following equation from analytical dynamics15 

v v    

v  represents any vector expressed in a frame with angular velocity . 

“ ” denotes differentiation of v  about a moving coordinate frame.  

Replacing v  with h  yields h , which is the rate of change of the angular momentum relative 

to bF , and h  which becomes the external torque acting on the system. Solving for the rate of 

change of the angular momentum in the body frame results in the form as 

b b b e

a a

h h g

h g

 


 

eg  is the column vector of external torques that act on the body representing the 1N  matrix of 

the internal axial control torques applied by the platform to the momentum wheels.  

b
  represents a skew-symmetric matrix form of a vector 
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b bh  is the matrix equivalent to b bh  . Using the definition for J, the angular 

momentum of the body could be written as 

 

So the body angular velocity can be expressed as: 

 

Substituting ωb into hb yields the final expressions for the equations of motion: 

1( )b b b a eh h J h Ah g     

a ah g  

eg are external torques, which are comprised of environmental torques, and possibly control 

torques by using thrusters or magnetic torque rods.  

ag are wheel torques, which are comprised of control torques applied by the motors, and possible 

friction torques.  

In this thesis, assuming the gravity gradient torques, which are the only environmental 

torques present, and the motor torques which are the only control torques used to manuever the 
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spacecraft. The next part presents how 1( )b b b a eh h J h Ah g     and a ah g  are used to define 

the fictitious spacecraft model and the reference control torque arg . 

The desired trajectory to be tracked comes from the trajectory generated by a “virtual” 

spacecraft in a reference coordinate frame. Let rF represent this reference frame which is fixed at 

the center of mass of this virtual spacecraft. In refence 11, the “virtual” spacecraft is assumed to 

be a rigid body. Here, we assume that the virtual spacecraft is a gyrostat, with the same 

properties as the real spacecraft. 

Because the virtual spacecraft has the same inertial and wheel parameters as the real 

spacecraft, the reference frame dynamics are the same as in Section 3.1, except that the subscript 

b is replaced with r  

1( )x

r r r ar eh h J h Ah g    

ar arh g  

We know that r r arh J Ah  . The external torque remains the same, but we need to solve 

for the virtual spacecraft’s axial torque arg  which is the torque that would generate the desired 

trajectory in the absence of initial condition errors.  

The torque arg  comes from first noting that rh   can also be expressed by differentiating 

rh to get 

r r ar r arh J Ah J Ag      

The above equations yield the following expression for the desired axial control torque 

1( )ar r r ar c rAg h J h Ah g J      

1( )r r arJ h Ah    is the desired angular velocity for target tracking. 
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3.2 Spacecraft Orbit Model 

For the sake of simplicity, we use two bodies motion equation to describe the circular orbit. 

Two bodies’ equation is the only approximate orbital dynamics, and for the actual simulation 

should not be used because information. For example, the earth's flattening d disturbance from 

other planets, aerodynamic drag a solar radiation stress torque will be lost. 

Two-body equation12 is derived from Newton's law of universal gravitation, and contains 

two objects in the system, or a planet and a spacecraft. Assuming that the earth is our system's 

main body and the spacecraft is secondary. By defining the gravitational constant Gm  , and 

m  is the mass of the earth, where the quality of the spacecraft is assuming to be spherical 

symmetry. As a result, both the earth and the spacecraft can be seen as a point of quality. In 

addition, there are no specific gravity forces along joint two institutions act as a no external or 

internal force on other systems. With these assumptions, the two bodies’ movement orbit 

equation is defined as: 

3s s

s

r r
r


  

sr  is the position vector from the center of the earth to the center of quality of the spacecraft in iF .  

Note that for near-earth spacecraft, the geocentric equatorial system serves as the inertial 

system, and for interplanetary spacecraft the heliocentric system is used as an inertial system. 

With changing the value of  and defining the inertial system to be referenced from the planet’s 

center, the two-body equation can also be used to describe satellite orbits around other planets.  

In defines the track equation of motion, we now turn our attention to the external torque 

eg .We assume that the only external torque at present in the equation 1( )b b b a eh h J h Ah g     

and 1( )ar r r ar c rAg h J h Ah g J     is not affected by gravity gradient torque control. The 
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consequent variations in the specific gravitational force over a spacecraft body leads, in general, 

to a torque about the body mass center.13 In contrast, if the gravitational field was uniform, then 

the center of mass would be at the same location as the center of gravity, and the gravitational 

torque about the quality of center will be zero. The following four assumptions13 greatly simplify 

the gravity gradient torque expression. 

(1) Only one object is mainly to be considered. 

(2) Its owner has a spherically symmetric distribution of quality. 

(3) Compared with the distance from the primary center of mass, a spacecraft is small. 

(4) Spacecraft is a single institution. 

Then with using these four assumptions, the gravity gradient torque over P, which is the 

center of mass shows: 

3
r R

e Rp
g dm       

r  is the vector from the spacecraft center of mass to dm   

R is the vector from the center of the earth to dm   

Expanding  
3e

p

r R
g dm

R



   and then applying the previous four assumptions, the 

vector form of the gravity gradient torque is found to be 

3 33
ˆ ˆ3e

s

g o Io
r

   

3ô  is a unit vector of the form 

3
ˆ s

s

r
o

r
  

And it is defined as a “nadir” vector which points to the location on the earth directly under 

the spacecraft.  
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The thesis has proposed equations of motion in using on circular orbit’s model on spacecraft 

attitude dynamics. Dynamic modeling is for an actual spacecraft, and its virtual counterpart, then 

let N axisymmetric momentum wheel and attitude control. With the gravity gradient torque, orbit 

used movement of two bodies’ equation as the only environment modeling. The two 

approximations are enough to produce the necessary space vehicle position and velocity vectors 

without the need of expensive calculation. Section 4 shows how in the aftermath of the orbital 

equation are used to determine the reference trajectory of virtual space vehicle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 21 
 

Section 4 

The Reference Trajectory 

To track the moving target need a bearing body allowing some instrument fixed to the main body 

in the target point, and the required rotation and translation of the body to keep on moving 

targets. Because we are dealing with a given mobile spacecraft in orbit, we only need to track 

target by pointing and rotating motor. 

In addition, we also ask the attitude to be constructed by the yaw control maneuver12 to meet 

the requirements of solar power on the axis of sensor. We define pointing gesture and angular 

velocity which let the spacecraft body reference frame rF   track the target and the "reference" 

path of the sun. The reference trajectory is computed with open loop mode from the known 

location of space vehicle, speed, sensor visual axis, solar panels, and the sun vectors. 

4.1 The Ideal Pointing Attitude Derivation 

To point at a target needs a specific attitude making the position vector from the target to the 

spacecraft collinear with the instrument boresight as showed in Figure 4.1. The instrument axis 

can be any unit vector fixed in bF . And it is defined to be the same in rF . So the thesis defines the 

instrument, or visual axis to be along the “1” direction in bF  and rF  

 1 0 0
T

b ra a   
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Figure 4.1: Reference attitude 

In Figure 4.1, it could easily be seen that the target position vector relating to the spacecraft, 

/t sr  can be written as: 

/t s t sr r r   

r  represents the position vector from the center of the earth to the spacecraft.  

sr  is assumed known from orbital data 

 iF expresses the target position vector as 

 cos( )cos( )cos( )sin( )sin( )
T

ti t GST t t GST t tr R L L        

t  and tL  are the latitude and longitude of the target 

GST is Greenwich sidereal time measured from a given epoch 

R   is the earth’s radius.  
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Form Figure 4.1 shows the coordinate frames that we know these vectors. Also from the 

algorithm, the sun vector s  is known when computes the sun unit vector in 
iF  from the true 

longitude and the obliquity of the ecliptic of date. 

 

Table 4.1: The vectors we know in deriving pointing attitude for use 

Solar panels vector is the rotating shaft. Yaw steering operation aims to the alignment to the 

solar panels of the vector normal by rotating around its axis panel. This makes solar cells to 

generate a maximum of power for spacecraft. However, we ignore the rotation of the panels, and 

assume they are fixed about p to simplify the structure of the attitude of the yaw steering 

operation and reference. On the contrary, we rotate the craft in order to meeting the demand for 

electricity. We also ignore on the system any dynamic effects of flexible solar arrays. Panel 

carrier defines bF  and rF  as any unit vector. 

Finding the required pointing attitude, we notice that tir  can also be written as 

ir

ti xi rr r R Da   

D  represents the range from the spacecraft to the target.  

irR yields the reference attitude, r  with respect to the inertial frame.  
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It is coordinate independent because the pointing attitude is in terms of a rotation matrix 

riR . Thus the attitude can be showed to use any set of attitude parameters. Then we need to 

determine riR .  Because oiR is known, the real problem is to determine roR while satisfying the 

yaw-steering condition: 

0TS P   

From Table 4.1, we know that not every vector is known in all of the coordinate frames. 

If
sr and

ra were both known in
rF and

oF , this suggests using the TRIAD algorithm17 to 

construct roR . 

The TRIAD algorithm is used to determine an approximation of the rotation matrix from 

one coordinate system to another by constructing a rotation matrix from vectors in different 

coordinate frames. Make 1xW and 2 xW on behalf of the column vectors in some coordinate 

system xF , and let 1yv and 2 yv denote the column vectors in some other coordinate frame yF . Also 

for constructing the base vectors for xF , the TRIAD algorithm becomes: 

1 1 1
ˆ /x x xr w w  

1 2
2

1 2

ˆ
ˆ

ˆ
x x

x

x x

r w
r

r w




  

3 1 2
ˆ ˆ ˆ

x x xr r r  

 1 2 3
ˆ ˆ ˆrx

x x xR r r r T  

For yF , the base unit vectors are 

1 1 1
ˆ /y y yr v v  

1 2

2

1 2

ˆ
ˆ

ˆ

y y

y

y y

r v
r

r v




  
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3 1 2
ˆ ˆ ˆ

y y yr r r  

1 2 3
ˆ ˆ ˆyr

y y yR r r r     

r  is a dummy variable on behalf of the base unit vectors in each frame. The rotation matrix 

R that transforms a vector from
1xF to yF is constructed as 

yx yr rxR R R  

The TRIAD algorithm provides a conceptually simple way of constructing the desired 

rotation matrix when two vectors are known in two coordinate frames. 

However, the TRIAD algorithm could not be used here to compute roR , or riR directly 

because sr  is not known in rF . Any two vectors, known both in rF and oF , could also be used in 

the TRIAD algorithm to construct roR . Table 4.1 shows that there are no two vectors in these two 

coordinate frames. The TRIAD method can be used to construct each component leading to the 

rotation matrix roR . As a result, two intermediate frames aF and cF  are defined below that allows 

us to use the TRIAD algorithm with the known vectors in Table 4.1. This leads to the 

construction of the rotation matrices aoR and rcR , which are used in determining roR . 

When roR is known, the target pointing attitude of the virtual spacecraft is then given by the 

product of the following rotation matrices: 

ri ro oiR R R  

oiR  is constructed from the known orbit of the spacecraft and hence the inertial position and 

velocity vectors, sir and siv  respectively. These vectors are used in the TRIAD algorithm to 

construct  1 2 3
ˆ ˆ ˆ

Toi

i i iR o o o as 
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 1 2 3
ˆ ˆ ˆ

Toi

i i iR o o o  
oiR can also be used for elliptical orbits, and we use oiR  to rotate the sun vector and 

boresight vector into the orbital frame. So we calculate a in the inertial frame using 

/

/

t si
i

t si

r
a

r
  

With using constructing aoR , this expression is then rotated into oF   

We must define the two intermediate frames aF and cF  before computing aoR . The 

coordinate frame, aF , is a "body carry" box in the center of the virtual spacecraft of the masses, 

which is relative to the center of the rotating track framework.  Frame “a” differs from F  

because 1â points at the target, whereas 1̂o  points in the direction of the spacecraft’s velocity 

vector. Through the sun vector, s , and the boresight axis, a  , frame “ a ” is related to orbital 

frame. We use them in the TRIAD method to construct aoR  because these two vectors are known 

in aF . This feature is used to simplify the yaw-steering maneuver which relates aF to cF . 
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Figure 4.3: “a” the Intermediate Reference Frame 

Centering at the virtual spacecraft’s center of mass, the frame cF is a body frame. 

Because cF is fixed relative to rF , it does not rotate with respect to rF . Since a is defined to lie 

along 1̂r , frame “c” differs from rF only by a rotation about the boresight axis a . So these two 

frames are related by the known vectors p and a . Figure 4.4 illustrates how p and a are defined 

in aF . Because in the case of the sun vector, p  also lies in the 1-2 plane of cF , which also 

simplifies the yaw-steering maneuver. 

Along with bF , iF , and oF , using aF and cF , allows us to use the TRIAD algorithm to 

construct the attitude in the following form: 

ro rc ca aoR R R R  
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Figure 4.4: “c” the Intermediate Reference Frame 

Knowing that the vectors a  and p  in rF  and s  and a in oF , we solve for riR  with 

approaching the expression in ro rc ca aoR R R R  from the right and the left side till we get caR . To 

begin on the right side, aoR is built in using left equations below: 

 

1 2
2

1 2

3 1 2

1 2 3

ˆ
ˆ

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

x x
x

x x

x x x

Trx

x x x

r w
r

r w

r r r

R r r r













                                          

 

1

3

2 3 1

1 2 3

ˆ

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

o o

o o
o

o o

o o o

Tao

o o o

a a

a s
a

a s

a a a

R a a a















 

Then proceed from the left side of Equation ro rc ca aoR R R R and construct the rotation 

matrix rcR  in the same way as aoR : 

 

1

3

2 3 1

1 2 3

r r

b r
r

r r

r r r

rc

r r r

c a

a p
c

a p

c c c

R c c c














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We now could know all of the rotation matrices in Eq. ro rc ca aoR R R R  up to caR . Use 

caR to perform the yaw-steering maneuver thereby the sun vector being perpendicular to the solar 

panel axis.  

Then use the prescribed orthogonality condition between the sun vector and the solar panel 

axis to determine the rotation matrix from
cF to aF .  

Equation 0Ts p   can be expressed as 

0T ac

as R p   

acR is not constructed using a the TRIAD method, but from a careful analysis of the kinematics 

that result from definition of cF and aF .  

acR is first defined as the dot product between the base unit vectors of aF and cF , which can be 

expressed as 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ac

a c a c a c

R a c a c a c

a c a c a c

   
    
 

    

 

Recall from Figures 4.3 and 4.4, we defined a   to lie along the “1” direction. Clearly, 

1â and 1̂c are the same vector; therefore 1 1
ˆ ˆ 1a c  . By definition, the unit vectors of 2â  and 3â  are 

perpendicular to 1â , so they are also perpendicular to 1̂c . The same is true for 1â , which is also 

perpendicular to 2ĉ and 3ĉ . As a result, acR  is a “1” rotation and Equation 0T ac

as R p   is 

1 0 0

0 cos sin

0 sin cos

ac

ac ac

ac ac

R  

 

 
 
 

  

 

So it could also be written as 
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1 0 0

0 cos sin 0

0 sin cos

T

a ac ac c

ac ac

s p 

 

 
  
 

  

 

Recall that we have defined aF Fa and cF so that 3as and 3cp are zero, and thus get the further 

expands as 

1 1 2 2 cos 0a c a c acs p s p    

The angle ac which satisfies the yaw-steering condition is 

1 1

2 2

cos a c
ac

a c

s p

s p
   

If 3as and 3cp were not zero, the above equation would be a transcendental equation 

involving both cos ac  and sin ac  terms. Solving this equation would require an iterative method, 

such as Newton-Rhaphson, to determine the yaw-steering angle. The rotation matrix acR  is then 

calculated by the Equation acR . The ideal target pointing attitude riR is then constructed by 

multiplying together the rotation matrices found in ri ro oiR R R . 

It seems that the yaw control conditions allow tracking target satisfy the requirement of the 

power of the solar cell array of fully automated method. However, this is the only true when the 

sensor axis is perpendicular to the panel P. For some panel orientations, equation 

1 1

2 2

cos a c
ac

a c

s p

s p
   has associated numerical singularity on it. The panel of vector could follow 

imaginary cone by yaw steering operation when the panel is not perpendicular to the optical axis 

vector. And when the carrier can’t be perpendicular to the conical surface, the singularity occurs. 

Obviously, the yaw-steering maneuver can’t be preformed when either s  or p  is aligned with 

a . 
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We examine 1 1

2 2

cos a c
ac

a c

s p

s p
   for the cases where 0 90  in Fig. 4.5 to determine 

when singularities occur. 

  

Figure 4.5: Yaw-Steering Maneuver of Graphical Illustration 

Obviously, with | cos | 1ac  , the limiting case is for 1 1

2 2

cos a c
ac

a c

s p

s p
  , and singularities 

appear when the right side of 1 1

2 2

cos a c
ac

a c

s p

s p
   exceeds this value. If the right hand side is less 

than unity, no singularities will happen: 

1 1

2 2

1 1a c

a c

s p

s p
  

It could also be written as 

1 1

2 2

a c

a c

s p

s p
  

In short, the yaw-steering maneuver can be preformed if either 1 2 1 2,a a c cs s p p  , or both 

are satisfied. The yaw-steering maneuver can always be preformed if the a  is perpendicular 

to p , which says that 1 0cp  . As a result, the yaw-steering maneuver is always a 90  rotation 

about the boresight axis. 



 

 32 
 

When we know
riR , we could determine the reference attitude r , using  

 

 The vectors in Table 4.1 can now be expressed in all of the coordinate frames. We continue 

in the next section to develop needed angular velocity which is necessary to use for development 

of rotation matrix per frame to track the target. 

4.2 The Ideal Angular Velocity 

By differentiating the attitude expressions in the previous section, we develop angular velocity 

commands and then calculating ri

r  from the vector sum of each intermediate angular velocity 

expression. 

So let us begin by differentiating /t s t sr r r   to get 

/t s t sr r r   

tr  is given by e tr ,  where e is the angular velocity of the earth 

sr is simply the known spacecraft velocity vector 

Then define the angular velocity of oF with respect to iF . Since we are assuming that the 

orbit is circular, the angular velocity is known, which is just the mean motion of the orbit 

expressed about the negative orbit normal ( 2ô ) as 

30 ( / )0
T

oi T

o s sw r r  
 

 

oi denotes the angular velocity of oF with respect to iF . 
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We need to calculate the angular velocity ao

a  because aF  and 
oF change with time. There is 

not difficult to show that ao

a can be calculated based on the differentiation of aoR as13 

ao ao oa ao

a a a oR R F F    

“ ” denotes differentiation with respect to a moving coordinate frame. The matrix aoR is 

found by first rewriting Equations 

1

3

2 3 1

ˆ

ˆ

ˆ ˆ ˆ

o o

o o
o

o o

o o o

a a

a s
a

a s

a a a













   as    

1 1 /

2 3 /

2 3 1

ˆ

ˆ

ˆ ˆ ˆ

o t so

o t so o

o o o

D a r

D a r s

a a a











 

1D  and 2D  are given by /t sor and /t so or s respectively.  

With respect to time differentiating, the above equations results in the following 

/ 1 1
1

1

2 3 1 3 1

/ 2 3
3

2

ˆ
ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ
ˆ

t so o
o

o o o o o

t so o o
o

r D a
a

D

a a a a a

r s D a
a

D

 




 




 

which have been simplified by assuming that the sun vector, slowly varies in the inertial frame, 

and can be considered constant in iF .  

So os  is zero. The rates of change of 1D and 2D are 

/ /
1

1

T

t so t sor r
D

D
  

/ /
2

2

( ) ( )T

t so o t so or s r S
D

D

 

  
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These derivatives have been computed with respect to
iF . We need the derivatives on behalf 

of the moving orbital frame, which we find using equation v v v   

 

and then  aoR with respect to
oF is simply 

 

Using ao ao oa

a R R   , the angular velocity ai

a is then found to be 

 

It can be seen from 

1 0 0

0 cos sin 0

0 sin cos

T

a ac ac c

ac ac

s p 

 

 
  
 

  

 

 that ca

a is simply 

 

And ac is found by taking a time derivative of 

1 0 0

0 cos sin 0

0 sin cos

T

a ac ac c

ac ac

s p 

 

 
  
 

  

 

to yield 
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The derivative of the sun vector on behalf of aF is given by 

 

cF has a fixed orientation with respect to
rF , so 0rc    

As a result, by adding ai ao ao oi

a a oR     and 0 0
T

ca

a ac      the desired tracking body 

rate vector ri

r  is constructed, and then rotating them into rF  

 

raR is the rotation matrix from aF to rF and is found from the previous section to be 

 

The target tracking trajectory with yaw-steering is known, when the ideal angular velocity is 

computed. Momentum wheels are used for maneuvering to make the virtual spacecraft follow 

this trajectory. The next section we talk about developing the angular acceleration commands 

which are used to determine the virtual spacecraft’s control torque. 

4.3 The Ideal Angular Acceleration 

We compute the desired angular accelerations when the angular velocities are known in each of 

the coordinate frames. The accelerations are needed to compute the reference axial wheel 

torque arg to generate the desired trajectory. The angular acceleration ri

r  is constructed 

analogously to the angular velocity ri

r . The acceleration commands are found by taking a time 

derivative of Equation 

/t s tr r r   
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In section 3 we define 
sr  is simply the two-body equation of motion. The inertial 

acceleration of the target tir is 

ti e tir r  

tir is zero because iF does not rotate. 

We start determining what the angular accelerations of the coordinate frames after defining 

the accelerations of the position vectors. The angular acceleration oi

o  is found by differentiating 

30 ( / ) 0
T

oi T

o s sr r   
 

 to  get 50 1.5( )( / ) 0
T

oi T T T

o s s s s s sr r r r r r   
 

 

Only when the orbit is elliptical, the equation is only true because sr varies when the 

spacecraft moves in an elliptical orbit. However, we use a circular orbit for this thesis, so the 

above equation is zero because sr  is constant. 

The next component that is needed is the angular acceleration of aF  with respect to oF . The 

angular acceleration ao

a is found by differentiating equation ao ao oa

a R R    which yields: 

ao ao ao oa ao oa

a a R R R R      

The second derivative of aoR  is found by differentiating  

 

to get 
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and the inertial derivatives of the unit vectors are found by differentiating  

/ 1 1
1

1

/ 2 3
3

2

ˆ
ˆ

ˆ
ˆ

t so o
o

t so o o
o

r D a
a

D

r s D a
a

D







 

so we get 

 

and then ai

a  becomes 

ai ao ao oi

a a oR     

Meanwhile,  ca

a  is found by differentiating the expression in 0 0
T

ca

a ac      where 

 

The acceleration of the sun vector on behalf of is given by 
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The desired angular acceleration becomes 

( )ri ra ca ai

a aR     

is the rotation matrix from aF  to rF . 

With 
rF  using

T
ra rc acR R R    , the desired acceleration vector ri is constructed from 

knowing ca

a  and ai

a . So when get ri riR  and ri , we can completely describe the desired 

trajectory that the real spacecraft needs to obtain in order to track a target. According to the next 

section, we show how this open loop reference trajectory is applied in the control law’s 

derivation that will asymptotic let any initial tracking errors be zero in the body frame. 
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Section 5 

Spacecraft Control Laws 

The thesis develops a nonlinear feedback control law to track a goal, which let the actual craft 

present a rotational motion in using momentum wheel track attitude and angular velocity 

proposed in section 4. To perform the tracking maneuver, the spacecraft uses momentum wheels 

generating control torques. Stability and control theory of the control law is derived with using 

the ADCS. The definitions of these errors in section 5.1 would be used with the equation of state 

in the development of the controller. In section 5.2 we study the ADCS’s some standard 

equations. The tracking errors in the attitude and angular velocity are stabilized by this controller 

asymptotically.  

5.1 The Error Kinematics Problem  

It is different to the actual body frame and the reference frame at the beginning of a rotational 

tracking maneuver. This difference is called the tracking error between the two frames. To track 

errors between bF and rF  could be calculated by the attitude, angular velocity, angular momenta, 

angular acceleration, and control torques. Thus, the thesis only considers the attitude error and 

the angular velocity error for the derivation of our control law. Construct the attitude tracking 

error from the rotation matrix which is assembled from the actual body frame attitude vector and 

the rotation matrix which is assembled from the ideal pointing attitude. The attitude error is 

( ) ( ) ( )br bi ir

b rR R R    

( )brR   is the rotation matrix from the reference frame rF to the body frame bF  
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   is the error in the attitude between the frames
bF and

rF  

The error in the angular velocity is simply the difference of the actual and virtual 

spacecraft’s angular velocities. The tracking error of the angular velocity is represented in 
bF as 

( )br

b rR      

Using ( )G    references from 11 and 18, for the error kinematics the differential 

equation becomes 

( )G    

In the actual implementation, the computing expenses are reduced by using 

( ) ( )br bi ir

rR R R   instead of ( )G    to determine  . 

5.2 The ADCS Controller 

5.2.1. Attitude Control 

Three magnetic coils with distance bias momentum wheel are joint design of satellite attitude 

control In TT - 1. In this section, both damping control and tri-axial stability control algorithm in 

detail. 

5.2.2. Control of Damping 

After separation, the satellite is assumed in the random initial state at large angular velocity. At 

this stage, only the magnetic force could be used as a sensor, and the magnetic coils are used for 

attitude damping control as the main actuators. The main purpose of this phase is to reduce the 

angular velocity and magnetic coils. 

 B - point method19 this stage is the most popular algorithms because of its fast convergence 

and low computational cost. However, in the method of point B  is seriously affected by the 
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magnetometer measurement noise. For improving the control precision, the angle between 

component vector in Y-axis and boB  is firstly defined as follows: 

2 2 2
arccos

y

y

x y z

B

B B B
 

 
 

The component vectors of boB  in X-axis, Y-axis and Z-axis respectively are xB , yB  and zB . 

The Magnetic measurement calculates time derivate of xy  at each sample time interval: 

1

1

( ) ( )
( )

y k y k

y k

k k

t t
t

t t

 
 







 

The damping control is divided into two phases. 

Stage 1: With magnetic coils in Y-axis, dump the angular velocity of X-axis and Y-axis, 

and establish the Y-Thomson steady state. Likewise, Y-axis is driven to the normal direction of 

orbit plane.  

The component vector of dipole moment M  in Y-axis is showed as follows: 

( ) ( )y k y y kM t k t   

yk  is the control gain 

Stage 2: Let us dump the angular velocity of Y-axis with Z-axis or X-axis magnetic coil to a 

reference angular velocity ref . So the component vector of M in X-axis or Z-axis is showed as 

follows: 

( )sgn( )

( )sgn( )

x x y ref z

z z y ref x

M k B

M k B

 

 

 


 
 

y  is the angular velocity of Y-axis 

xk  and zk  are the control gains 
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5.2.3. Control of Three-axis Stabilization  

After the stage of damping control, the proportional-derivative control law is adopted to adjust 

the satellite to the desired orientation. The control law of the magnetic coils is 

c p q boT K K     

pK , qK are coefficient matrix of the control gains 

 , ,
T

     represents the attitude angle 

  ,  and   represent respectively roll, pitch and yaw angle 

We know that the dipole moment M of magnetic coils interacts with geomagnetic field B  

to produce the control torque: 

cT M B   

Dictated by the magnetic coils, the constraint is that cT  only generates in the orthogonal 

direction with magnetic field B . Therefore on the magnetic dipole moment, the best control law 

applied is 

2( )/cM B T B   
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Section 6 

On-orbit Tracking Data Analysis   

In this section, by ground station, the data received is used to analyze the ADCS on-orbit TT-

1performance. With the altitude of 480 km, the satellite operates in a sun synchronous orbit, the 

eccentricity of 0.000454 and the inclination angle of 97.3˚. So we analyze respectively on the 

performances of damping phase and stabilization phase. So we could get the result that the nadir 

pointing accuracy could be limited within ±5˚ and the accuracy of three-axis control is about 

±10˚. 

6.1. Damping Phase Analysis 

This phase’s objective is to reduce the angular velocity by damping control strategy. From study 

other research we get the Figure 6.1 which clearly shows the attitude angular velocity after 

successful launch separation. Also from above Figure 6.1, we could see that the attitude angular 

velocity after separation was within 1.5 (˚)/s. So it is very clear that the separation design is very 

successful. After separation, the momentum wheel speeded up rapidly and steady at a fixed rate 

in10 s. Figure 6.2 shows the control state after separation. From Figure 6.2, from damping 

control to proportional-derivative control, it could be seen that the control mode was successfully 

changed. The damping control was from 07:19:52 to 07:20:13. It was lasted for 21s. Because of 

the small angular velocity after separation, the damping phase is short. Then the attitude control 

state turned into stabilization control. Figure 6.3 shows the attitude angular velocity in the second 

orbit.  Obviously, the attitude angular velocity had been constrained within 0.12 (˚)/s. Moreover, 
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the attitude angular velocity xx in X-axis and the attitude angular velocity xz in Z-axis had 

converged to the range of ±0.06 (˚)/s. This shows that it is suitable for TT-1 nano-satellite with 

the damping control algorithm. 

 

Figure 6.1: After separating, the changing of the attitude angular velocity (data from the 

website)20 

 

Figure 6.2: After separation, the changing of the control state (data from the website) 
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Figure 6.3: In the second orbit, the changing of the attitude angular velocity (data from website). 

6.2. Analysis of Three-axis Stabilization Phase 

When finishing the damp control phase, the satellite would turn into the three-axis 

stabilization control mode. First, we could analyze the performance of this phase in sunlight area.  

From Figure 6.4 to Figure 6.6 showing that the time period is from 06:50:18 to 06:54:29.  From 

Figure 6.4, when the pitch angle was constrained within 3˚, we could know that three-axis 

attitude angle had been constrained within ±6˚. Furthermore, it is clearly that the pitch angle was 

more stable than the roll angle and the yaw angle. Thus, the result is that the momentum wheel 

control in pitch axis is effective. From Figure 6.5, we could see that the attitude angular velocity 

of roll and yaw axis had converged to the range of ±0.06 (˚)/s, and the pitch angular velocity had 

been constrained within ±0.12 (˚)/s. At the same time, the wheel speed was steady at about 6100 

r/min shown in Figure 6.6. Therefore, we could know that the performance of ADCS is 

satisfying in sunlight area.  
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Figure 6.4: The changing of the attitude angle in sunlight (data from the website) 

 

Figure 6.5: The changing of the attitude angular velocity in sunlight (data from the website) 

 

Figure 6.6: The changing of the momentum wheel speed in sunlight (data from the website) 
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ADCS in Eclipse performance is shown in Figure 6.7 to Figure 6.9.The time period is from 

17:36:14 to 17:37:22.At that time, the satellite into space is more than 10 days. In eclipse, sun 

sensors cannot make effective response to determine attitude information, and could only get 

magnetic measurement vector. Therefore, in Eclipse ADCS performance will be worse than in 

the sunshine areas. From Figure 6.7 to Figure 6.9, it can show that all three position angle errors’ 

absolute value were limited in 20 ˚, and pitch attitude angle error was about 5 ˚ slowly changing. 

At the same time, the angular velocity of yawing and rolling shaft were limited in 0.1 (˚)/s, and 

the velocity of the pitch attitude was at the rate in 0.12(˚)/s. Therefore, we can conclude that the 

ADCS can also work effectively even if in Eclipse, and satellite is tri-axial stability. However, 

compared with the sunlight region performance, the control precision is much better than that in 

eclipse. 

 

Figure 6.7: The changing of the attitude angle in eclipse (data from the website) 



 

 48 
 

 

Figure 6.8: The changing of the attitude angular velocity in eclipse (data from the website) 

 

Figure 6.9: The changing of the momentum wheel speed in eclipse (data from the website) 
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Section 7  

Summary and Conclusions  

For computing a multi-axis target tracking trajectory, method is developed that also allows the 

solar panel vector to remain perpendicular to the sun vector during a tracking maneuver. The 

nano-satellite TT-1 spacecraft is made to track this reference trajectory through the ADCS 

control law driving the initial tracking errors asymptotically to zero. For tracking rotational 

maneuvers, the control law generates internal torques provided by momentum wheels. 

Because only known vectors are needed, constructing the reference trajectory in a TRIAD-

like manner is advantageous. We construct the reference motion only use the spacecraft position, 

velocity, sensor, panel, and sun vectors. The reference trajectory is unique for each tracking 

problem due to the fact that the position vectors are specific to a particular target. Also, the 

reference attitude is constructed in the form of rotation matrix, which makes it coordinate 

independent. It gives greater flexibility for spacecraft maneuver design by an attitude coordinate 

independent reference attitude. From the research, we could know that other authors have 

developed similar algorithms, but they were designed for a particular type of attitude parameters 

and rotational maneuver and lack flexibility for use in various mission situations. 

By differentiating the attitude to compute the benchmark angular velocity and acceleration 

is a direct way. However, it will involve some algebraic manipulation to compute the derivatives 

on behalf of the rotating coordinate frames. 

Moreover, we know that TT-1 has been on orbit for over one year which far exceeds one 

month lifespan, and it has accomplished all the missions successfully. As the first single-board 
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nano-satellite in China, TT-1 also verifies the single-board structure and actualizes no cable 

connection. 

 In the thesis, the design of ADCS subsystem is showed in detail and its on-orbit 

performance is analyzed. We can make a conclusion that the initial design of ADCS for TT-1 is 

feasible and suitable according to the original telemetry data. In sunlight area, the attitude nadir 

pointing accuracy is within 5˚ which is better than the designed accuracy of 10˚. In eclipse, 

ADCS can also work in expect.  

In the further study, according to the on-orbit performance analysis of TT-1 mission, we can 

get more useful suggestions and conclusions. Also, gaining a precise attitude control, variable 

speed momentum wheel should be considered. 
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