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ABSTRACT 
 

The High-Speed Planing Characteristics of A Rectangular Flat 

Plate Over A Wide Range of Trim and Draft 

Man Gao 

Lehigh University, 2016 

Director: Professor Joachim L. Grenestedt 

Numerical analyses of a flat planing plate in a towing tank were performed using the 

ANSYS Fluent software package. The flat plate represented a simple version of a 

sponson for a suspension boat. Analyses were performed for different trim angles, draft 

at the trailing edge, and speed. The results were compared to published experimental 

data. The agreement was in general fair (on the order of 10%).   
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Chapter 1  
 

Introduction 

 

There is presently extensive interest in so-called suspension boats, consisting of an 

airborne center hull connected via suspension links to multiple sponsons. The sponsons 

are planing on the water and provide lift to the boat. Lift and drag characteristics of the 

sponsons are of major importance. The goal of the present project was to estimate lift 

and drag forces of a simple planing surface using computational fluid dynamic (CFD) and 

to compare with published experimental data. The hope is to use CFD in the future to 

assist in the design of real sponsons for manned or unmanned suspension boats. 

 

The National Advisory Committee for Aeronautics, NACA, undertook an experimental 

investigation of high-speed planning characteristics for a series of prismatic surfaces [3]. 

The purpose of that investigation was to extend the available data to high speed, high 

trim and long wetted lengths. However, experimental methods are time consuming and 

expensive, in particular when it is desirable to study a wide range of geometries. It 

would be very beneficial if computational fluid dynamics (CFD) could be used to predict 

the planing characteristics of various sponson designs, rather than having to rely on 

making physical models and testing them in a tow tank.  
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1.1 Background 

 

Planing characteristics research has traditionally relied on model scale experiment in 

towing tanks. However, in the last few decades many numerical studies on planning 

hulls have been performed. Brizzolara and Serra [10] compared CFD simulation results 

of planning, hulls using the Savitsky method, with experimental data. There are many 

advantages to using Computational Fluid Dynamics (CFD) in the first phase when 

designing a hull, and consequently CFD has been widely accepted as a simulation and 

optimization tool in many industrial branches. When it comes to designing hulls, the 

most important aspects of using CFD techniques are the ability to handle complex 

geometry with relevant details, the efficient simulation process (from geometry to 

solution, parametric studies, optimization studies, user interface), the adequate models 

of turbulence and free-surface effects, the coupled simulation of flow and flow-induced 

motion. 

Recent studies show that CFD simulations of displacement hulls have been made with a 

precision that begins to approach the results of towing tank tests. In 2010, at the work 

shop on numerical Ship Hydrodynamics in Gothenburg, 33 groups performed 

simulations of three large displacement ships [14]. The results from all groups showed 

that the average error of the predictions in comparison to towing tank experiments was 

only 0.1% with a standard deviation of 2.1%. However the prediction of sinkage and trim 

were less accurate for the higher speed; the mean error was around 4%. 
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1.2 Purpose and Objectives 

 

The purpose of this study was to evaluate the accuracy of CFD using the commercially 

available software ANSYS (FLUENT), with the long term objective of  fully or partially 

replacing towing tank tests in planning hull design. This was implemented by calculating 

the drag and lift for given speed, draft and trim angle of a planing plate, and comparing 

the numerical results with the experimental data from NACA [3].   

 

1.3 Method 

 

The flow diagram shown below outlines the general work flow of the present CFD 

simulation. The simulation process begins by defining the computational fluid domain 

where analysis are performed, and then generates the computational meshes to 

separate the domain into cells. Models for the flow are chosen in the next step, and 

then boundary conditions are defined. Finally, the mathematical problem is solved. 

After the calculations have finished, the results were analyzed in the post processing 

step. These steps are made in an iterative process where the results are evaluated and 

further simulations are performed. 
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Figure 1.1: Work Flow of the CFD Simulation 
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Chapter 2  
 

Theory 

 

This chapter mainly provides the theoretical background that supports the remainder of 

the report. It starts with the introduction of the basic flow used in the report and 

continues with describing the mathematic models used in the simulation of the plate in 

motion. 

 

2.1 Basic Fluid Flow 

 

ANSYS FLUENT provides comprehensive modeling capabilities for a wide range of flow 

regimes, including incompressible and compressible flow as well as laminar and 

turbulent fluid flow problems. Steady or transient state analysis can also be performed. 

To perform the simulation in this case, we chose to use incompressible, turbulent and 

transient state flow model with gas-liquid transportation model. ANSYS FLUENT solves 

conservation equations for mass and momentum for all flows. This case was also solved 

based on the two basic conservation equations. The detailed equations are presented in 

Appendix A. In this section, the conservation equations for the flow in an inertial 

reference frame are stated.  
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2.1.1 The Mass Conservation Equation 

 

The appropriately simplified equation for conservation of mass, for the 3-D Cartesian 

coordinate system employed in this analysis in this case can be written as: 

                                             
�� !"# $ + ��& '"#&( + ��) !"#)$ = +,                                      (2.1) 

Where x, y, z are the Cartesian coordinates, and vx, vy, vz are components of velocity. 

Equation 2.1 is the form of the mass conservation equation applied in this study. The 

term Sm is the mass added to the continuous phase from the dispersed second phase 

(water) mass flow patched on to the primary phase (air).  

 

2.1.2 Momentum Conservation Equation 

 

Conservation of momentum in an inertial (non-accelerating) reference frame is 

described as [4]: 

                                     
��- !"#$ + ∇ ∙ !"##$ = −∇1 + ∇ ∙ '�̅( + "� + 2                             (2.2)                     

Where p is the static pressure, �̅ is the stress deviator tensor (described in Appendix A),  

"� is the gravitational body force and 2  is the force that arises from interaction with the 

dispersed phase [13].  
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2.2 Turbulence 

 

When the plate is moving through water at high speed, the flow around the plate is in a 

turbulent state. In this section, the governing equations applied to this model for 

turbulent flows are presented, and turbulence modeling is explained. 

 

2.2.1 Turbulence Flow 

 

Turbulence is characterized as a three-dimensional irregular flow where turbulent 

kinetic energy (set as 0.001 m2/s2 in the initialization) is dissipated from the largest to 

the smallest turbulent scales. On the smallest turbulent scales, which are called 

Kolmogorov scales, the energy is dissipated into heat due to viscous forces. Since 

turbulence is a dissipative phenomenon, energy must be continuously supplied in order 

to maintain a turbulent flow. 

 

The motion of a viscous fluid is governed by the Navier-Stokes equations, which can be 

used in both laminar and turbulent flow. As supposed in this case both phases are 

incompressible (the Mach number of air in this case is 0.036 which is lower than 0.3 so 

we make the assumption that the air is incompressible), Newtonian fluid in three 

dimensional space under the effect of gravitational field, the N-S equations are 

transformed according to the model as: 

                                          
�34�- + �5 �34� 6 = − 78 ��� 4 + 9 ��34� 6� 6 + ��                                  (2.3) 
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The equations are formulated using tensor notation. The indices i and j in the N-S 

equations run over the spatial coordinated x, y and z. In these equations, �� is the 

velocity component in direction i, :�  is the spatial coordinate in dimension i, t is time, " 

is the density, P is the pressure, 9 is the kinematic viscosity and �� is the gravitational 

acceleration. 

 

Analytical solutions of Navier-Stokes equations only exist for some very limited cases. 

For turbulent flows in real engineering applications, analytical solutions in general do 

not exist. The Navier-Stokes equation must then be solved by numerical methods.  

 

2.2.2 Turbulence Modeling 

 

The traditional method to resolve turbulent flow regime problems is to use turbulence 

models in which the features of turbulent flow are not solved in time. Through 

conducting Reynolds decomposition, the instantaneous velocity and pressure can be 

decomposed into two parts [5]: the time averaged quantities and the fluctuating parts 

(see Appendix A). By inserting the Reynolds decomposition into the N-S equations, the 

Reynolds averaged N-S (RANS) equations are obtained as follows: 

                                               �;� �3<���
� 6 = − 78 ���� 4 + 9 ��3<���

� 6� 6 − �=<=>������� 6 + ��                                (2.4) 

Where ���  and �� are the time averaged quantities while ��  and 1 are the fluctuating 

components of the velocities and the pressure. The RANS transform equations are 
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similar to N-S equations except for the additional term,  ���;�����, referred to as the 

Reynolds stress tensor. By modelling the Reynolds Stress tensor, the RANS equations 

describe the time averaged flow quantities which require substantially less 

computational resources than the DNS scenario. 

 

The approach used for modelling the Reynolds stress tensor of the RANS equations is to 

use the Boussinesq approximation (see Appendix A).  

 

By using a model to describe how the turbulent viscosity depends on the flow, the RANS 

equations can be solved. The two-equation turbulence models, such as the k-ε model 

and the k-? model, use two additional transport equations to describe the turbulent 

viscosity. They are referred to as complete models since they allow the turbulent 

velocity and length scales to be described independently [15]. 

 

2.2.2.1 The Standard k-ε Model 

 

The standard model in ANSYS FLUENT falls within this class of models and has become 

the workhorse of practical engineering flow calculations since it was proposed by 

Launder and Spalding. [5] The standard k-ε model is based on model transport 

equations for the turbulence kinetic energy (k) and its dissipation rate (ε). The equations 

are demonstrated in Appendix A. 
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The standard k- @ model is robust and works well in predicting free flows with small 

pressure gradients. It is based on the assumption that the flow is fully turbulent which 

means the applications are limited to high Reynolds number flows [11]. Over time, it has 

been provn that the standard k-@ model cannot be used to describe the wave behind 

moving hull in a satisfactory manner [11].  

 

2.2.2.2 The k-ω Model 

 

In the k-ω model described by Wilcox [6], the transport equations for the turbulent 

kinetic energy and its specific dissipation, ω, are used in a similar way as for the 

standard k- @ model. The specific dissipation is related to the dissipation according to 

                                                                   ? ∝  BC                                                        (2.5) 

The model equations for k and ? are demonstrated in Appendix A. 

The k-? model has the advantage that it is also valid close to walls and in regions of low 

turbulence which means that the transport equations can be used in the whole flow 

domain. A disadvantage of the k-? model is that the results are easily affected by the 

choice of boundary conditions and initial states. 
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2.2.2.3 The SST k-ω Model 

 

Menter [6] developed the shear stress transport (SST) model by combining the 

advantages of the k- @ and the k-ω models into one using blending functions. In this 

hybrid model, the k-ω model is used along the boundary layer while the k- @ model, 

formulated on k-ω form, is used in the open channel free flow. 

 

The SST k-ω model has been proven good performance in many types of complex flows, 

such as flows with adverse pressure gradients and separating flows. The flows using the 

k- @ or the k-ω models have given results that differ significantly from experimental 

data. It has been recognized for its good overall performance and it is the most 

commonly used turbulence model for simulations of hydrodynamics and was adopted in 

this case as well. 

 

2.2.3 Boundary Layers 

 

When a fluid flows along a surface, shear stresses give rise to a boundary layer in the 

vicinity of the surface. The schematic of a boundary layer near the edge of a fully 

submerged flat plate is illustrated in Fig 2.1 [8], where the incident flow has a uniform 

velocity profile with velocity  �D. When the flow reaches the plate, a laminar boundary 

layer starts to grow at the surface. After some distance, the boundary layer goes into a 
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transitional region after which a turbulent boundary layer is developed. The flow in the 

inner part of the turbulent boundary layer is developed.  

 

 

Figure 2.1: Schematic illustration of a boundary layer at a flat submerged plate [4] 

 

In the boundary layer, the gradients of the flow variables in the normal direction are 

generally very large in comparison to those of the free flow. This implies that a high 

spatial resolution is required by the solution method in order to capture the effects near 

the wall. A common alternative method used to circumvent the requirement of a high 

spatial resolution is to use wall functions, which are empirical models used to estimate 

the flow variables near walls.  

 

Standard wall functions are based on the assumption that the boundary layer can be 

described as a flat plate boundary layer. This means that the time-averaged velocity can 

be expressed as a function of the dimensionless wall distance. In the viscous sub-layer, it 

can be shown that the velocity parallel to the wall is proportional to y+. In the fully 
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developed turbulent sub-layer, the velocity follows the logarithm of y+. Between these 

sub-layers, in the buffer sub-layers, there is a transitional region from linear to 

logarithmic y^+ dependence. In order for a wall function to work properly, it should be 

used through the fully turbulent layer which corresponds to a value of y+ above 30.  

It is important that the mesh near the wall is properly sized to ensure accurate 

simulation of the flow field, a dimensionless wall distance �� is introduced to help 

determine the mesh size; a detailed description is provided in Appendix A. The desired 

��can be calculated by equations in Appendix A based on flow properties and initial 

velocity. Then proper wall distance y can be estimated which is an indicator if the mesh 

is able to resolve the boundary layer appropriately [11]. The exact y+ value can only be 

calculated after the CFD simulation, since the actual boundary layer profile is needed for 

this. 

 

2.3 Free Water Surface 

 

In order to simulate the planing plate in water, models should resolve the interface 

between the water and air. There are some different two-phase models available that 

either tracks the surface directly or tracks the different phases and then reconstructs 

the interface. The most frequently used method to capture the free surface in ship 

hydrodynamics appears to be the volume of fluid (VOF) method. In the VOF method, the 

different phases are tracked. 
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2.3.1 The Volume of Fluid Method 

 

In the VOF method, each phase is marked with a color function, E, which is the volume 

fraction of one of the phases. If only one phase is present, meaning that E is either 0 or 

1, the ordinary Navier-Stokes equations are solved. If 0<  E < 1, there is an interface 

present and the properties of the phases are averaged in order to get a single set of 

equations. The average density and viscosity are: 

                                                          " = E"7 + !1 − E$"G                                                (2.6)  

 9 = E97 + !1 − E$9G 

 

2.4 Non-Dimensional Coefficients 

 

For comparison of the speed, drag and lift, these quantities can be scaled by 

dimensionless numbers. The speed coefficient is defined as: 

                                                               CI =  �/���                                                                     (2.7) 

The lift coefficient based on the square of the beam is defined as: 

                                                              CJK = L��	�
�                                                                  (2.8) 

The drag coefficient based on square of the beam is defined as: 

                                                                CMK =  N��	�
�                                                               (2.9) 
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Where b (m) is the beam of the planing surface; R (N) is drag, L (N) is lift, ρ (kg/m3) is 

density of water, g (m/s2) is gravitational acceleration, and V (m/s) is velocity of the 

planing plate.  

Chapter 3  

Numerical Methods 
 

In this chapter, the numerical methods used for solving the mathematical models 

introduced in Chapter 2 are described. 

 

3.1 The Finite Volume Method 

 

The finite volume method (FVM) is a numerical method of discretizing a continuous 

partial differential equation (PDE) into a set of algebraic equations. The first step of the 

discretization is to divide the computational domain into a finite number of volumes, 

forming what is called a mesh. Next the PDE is integrated in each volume by using the 

divergence theorem, yielding an algebraic equation for each cell. In the centers of the 

cells, cell-averaged values of the flow variables are stored in so called nodes. This 

implies that the spatial resolution of the solution is limited by the cell size since the flow 

variables do not vary inside a cell. The FVM is conservative, meaning that the flux 

leaving a cell through one of its boundaries is equal to the flux entering the adjacent cell 



 

17 

through the same boundary. This property makes it advantageous for problems in fluid 

dynamics (see Appendix B). 

 

The discretization coefficients depend on the discretization schemes used to 

approximate the values of the flow variables on the cell boundaries, also known as cell 

faces. By using appropriate discretization schemes to determine the coefficients of 

equations, a set of algebraic equations for the cell values is obtained. 

 

3.2 VOF Discretization Schemes 

 

The convection and diffusion terms are discretized using different numerical schemes 

that estimate the face values of the flow variables. Most often, diffusion terms are 

discretized by using a central differencing scheme where the face values are calculated 

by interpolation between the closest cells. In order to discretize the convection terms, 

the flow direction has to be taken into account. The simplest way is to let the face value 

between two cells be equal to the value of the first upstream cell which is done in the 

first order upwind scheme. In the second order upwind scheme, the face value is 

calculated from the two closest upwind cells. 

 

It is often recommended to start a numerical simulation process with lower order 

schemes, such as the first order upwind scheme, to ensure stability [15]. However, the 

low accuracy of these schemes can lead to a high degree of unphysical diffusion in the 
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solution, known as numerical diffusion [15]. When the flow field has started to settle, 

higher order schemes should therefore be used to obtain more physically correct 

results. The second order upwind scheme is often considered as a suitable discretization 

scheme since it exhibits a good balance between numerical accuracy and stability [15].  

 

The main problem related to the VOF model is to discretize the convection term in the 

transport equation for the color function in order to achieve a sharp interface [16]. The 

color function, E, has to be between 0 and 1. Lower order numerical schemes are 

bounded but will smear out the interface due to numerical diffusion while higher order 

schemes are more accurate but less stable. A combination of higher and lower order of 

schemes is often used such as HRIC in FLUENT. 

 

3.2.1 Modified HRIC Scheme 

 

The high resolution interface capturing scheme (HRIC), described by Muzaferija [15], 

uses a combination of upwind and downwind interpolation. The binding of the scheme 

in each cell is a function of the volume fraction distribution over the neighboring cells. 

The value of the flow variables is then corrected by the local value of the Courant 

number [15], which is a measure of how much of one fluid that is available in the donor 

cell. This is done in order to prevent more fluid flowing out of a cell in one time step 

than what was available in the previous time step. In order to prevent this interface 

becomes aligned with the numerical grid. Another correction is introduced to account 
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for the relative position of the free surface to the cell face. This is done by calculating 

the angle between the normal to the interface and the cell face normal. 

 

This is used as the intermediate transient flow behavior is not the emphasis of this 

simulation, and the final steady-state solution is not affected by the initial flow 

conditions and there is a distinct inflow boundary for each phase [16]. 

 

3.2.2 Compressive Scheme 

 

The compressive scheme is a discretization scheme where the numerical order of 

accuracy can be varied by using a so called slope limiter in the range between 0 and 2. 

For low values of the slope limiter, first and second order schemes are used. For values 

above 1, higher order schemes are incorporated [15]. 

 

3.3 Convergence Criteria 

 

To be able to decide if a solution has reached a desirable level of convergence it is useful 

to monitor the residuals of the flow variables in each iteration. A residual is a measure 

of the imbalance between the left and right hand sides of a discretized transport 

equation. Convergence monitor using residual history was used [16]. An unscaled 

residual, O∅, of a solution can thereby be obtained by calculating the sum of the 

residuals in all cells (Appendix B). 
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Chapter 4  

CFD Simulation 
 

In this chapter, the methodology used in the CFD analysis is described. The procedure 

follows the steps in Fig 1.1, including the computational domain definition, mesh 

generation, model definition, boundary conditions, solution and post processing. At the 

end, a section presenting the simulated operating conditions is included. 

 

4.1 Computational Domain Definition  

 

A large domain was created in order to reduce the influence of the no-slip boundaries 

on the flow. The domain was defined as an open channel with water underneath and air 

above. The NACA experiment was conducted at Langley Aeronautical Laboratory [3]. 

The NACA towing tank has the following dimensions [6]: 890 m in length, 7.315m in 

width and 3.962 m in depth. Motivated by the blockage theory [1], the simulation 

domain of 30 meters in length, 3.962 meters in water depth, and 7.315 meters in width 

was chosen. An air layer of 1.524 meters thickness was added above the water. In Figure 

4.1, the computational domainwas illustrated. The horizontal distance between the inlet 

wall of the tank and the yz plane was 10Q, while the horizontal distance between the 

outlet wall of the tank and the yz plane was 20Q, which shows in the Fig 4.1. The height 

of the domain was 5.486m. The draft at the trailing edge of the plate was defined as the 



 

21 

vertically depth from undistributed water level to the trailing edge. The wetted length in 

the NACA experiment was defined as the length from the trailing edge of the model to 

the intersection of the heavy spray line with the planing bottom.  

 

 

Figure 4.1: Dimensions of the computational domain. The planing plate is at the origin; 

it is substantially smaller than the computational domain and thus not visible in this 

figure.  

 

The model of the plate with different trim angles was created in the SolidWorks CAD 

program. After the plate geometry had been imported to the ANSYS geometry software, 

it was rotated and translated in order to obtain the desired draft at the trailing edge and 

trim angle. The fluid domain was created by subtracting the plate's geometry from the 

initial fluid domain. The origin was positioned at the undisturbed free surface level and 

horizontally aligned with the center of gravity of the plate. 
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4.2 Mesh Generation 

 

The quality of the mesh plays a significant role in the accuracy and stability of the 

numerical computation. The main attributes associated with mesh quality are node 

point distribution, smoothness, and skewness [16]. To capture the important flow 

phenomena in the simulations, the mesh density was focused on certain regions of the 

domain.  

The meshing process was divided into two parts. First, a Cut Cell assembly meshing was 

applied on the whole domain. The water and the air in the tank were divided into cubic 

cells. The minimum size of cube cell edges was adjusted to 10STm and the maximum 

size was adjusted to 0.128m. The Proximity and Curvature advanced size function was 

turned on with high smoothing chosen to assure smooth connection between cells. The 

default proximity accuracy was used.  In Fig. 4.2 the mesh is shown. A total of 727687 

nodes and 682476 elements were generated in the fluid region. 

 

 

Figure 4.2: Illustration of mesh 



 

23 

Second, a sizing mesh control was added to six surfaces (shown in Fig. 4.4) of the plate 

to refine the meshing on the plate. The final simulation result would be greatly affected 

by the nodes and elements thickness near the plate. Fig. 4.3 illustrates the zoom in view 

of sizing control over the plate. The plate was named by selecting its six surfaces. The 

drag and lift forces were defined as the force components in the x and y directions of 

the plate.  

 

 

Figure 4.3: Sizing plate mesh 
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Figure 4.4: Named selections in mesh generation  

 

4.3 Model Definition and Properties 

 

This section describes the mathematical models and numerical methods used in the CFD 

simulations. Based on the theoretical background presented in Chapter 2, appropriate 

models were chosen for the simulations (Table 4.1). The VOF model was used for 

analyzing the two phase flow and the interaction between the flow and the plate. The 

turbulence was modelled using the time averaged RANS equations with the SST k- @ 

turbulence model. Standard wall functions were used in order to avoid resolving the 

whole boundary layer. The free surface was modelled and resolved with the VOF 

method. The fluid properties (Table 4.2) were set the same as in the model experiments, 
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[3], that were used to validate the results. Both the air and water were assumed to be 

incompressible, a simplification which appears reasonable due to the relatively low 

speeds (low Mach numbers). The primary phase was set as air while the secondary 

phase was set as water (Table 4.3). 

 

After the physical models had been chosen, numerical methods were selected in the 

software. When choosing spatial discretization schemes, the second order upwind 

scheme was chosen for all convection terms except for the volume fraction equation, 

where the Modified HRIC scheme was used in FLUENT [9]. The diffusion terms were 

discretized with the central difference scheme. Since the steady behavior of the plate 

was simulated and temporal accuracy was not important, the first order implicit scheme 

was chosen in the temporal discretization [6] (Table 4.1).  

Solver Implicit, Segregated 3D 

Scheme SIMPLE 

Gradient Green-Gauss Cell Based 

Pressure PRESTO! 

Momentum Second Order Upwind 

Volume Fraction Modified HRIC 

Turbulent Kinetic Energy First Order Upwind 

Specific Dissipation Rate First Order Upwind 

Intermittency First Order Upwind 

Momentum Thickness Re First Order Upwind 

Multiphase Model Volume of Fluid 

Near Wall Treatment Standard Wall Functions 

Table 4.1: Solver Settings 
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For Air 

Fluid Density 1.225 kg/m3 

Viscosity 1.7894e-05 kg/m·s 

For Water 

Fluid Density 998.2 kg/m3 

Viscosity 1.3678e-03 kg/m·s 

Table 4.2: Fluid Properties 

 

Primary Phase Air Phase 

Secondary Phase Water Phase 

Table 4.3: Phases 

 

4.4 Boundary Conditions 

 

The phase contour of the computational domain is illustrated in Figure 4.5. The blue 

part on the bottom was water and the red part on the top was air. The top of the 

domain was defined as free slip walls. The bottom and both sides of the domain should 

have been free slip walls, but were incorrectly defined as no slip walls. It was a mistake; 

however, the influence on the results is believed to be negligible due to the width of the 

tank being much larger than the size of the planing plate. The inlet boundary condition 

was specified at the front of the domain set as a constant mass flow. The FLUENT option 

"Open Channel Boundary Condition” was selected. The free surface level and the 

bottom level of the water were defined. Mass flow rates (kg/s) of air and water were set 

in the inlet boundary settings.  The velocity of the air was set the same as the water 

speed. The turbulent flow variables were set by specifying values of the turbulent 

intensity and turbulent viscosity ratio. The outlet, defined at the rear of the domain, was 
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set as a pressure outlet and the density interpolation method was set as neighboring 

cell volume fraction which levels were the same as the inlet boundary conditions.  

 

Figure 4.5: Phase contour of computational domain 

 

4.5 Solution 

 

The iterative procedure required that all solution variables are initialized before 

calculating a solution. Realistic guesses improves solution stability and accelerate 

convergence [16]. Initial x-direction velocity of air was applied on the air phase. 

Although a steady state solution was desired, transient simulations were run to increase 

the robustness of the solution [15]. The lift and drag oscillated for some time before 

settling down and converging to relatively steady values. The reported lift and drag are 

time averages towards the end of the simulations.  
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4.6 Post-Processing 

 

After results had been obtained from the simulations, they were analyzed and 

compared and new simulations were devised. In this iterative procedure, appropriate 

settings for the simulations were found. 

 

4.7 Operating Conditions 

 

The CFD simulations were performed for two different trim angles, 2° and 4°, under 

different initial draft and speed. Fig. 4.6 shows the sketch of 2° plate, the gravitational 

center of which was the origin of the Cartesian coordinate system. The different draft at 

the trailing edge of each case was adjusted through altering the free surface level and 

the marked water area patched after initializing. The time step size was set at 0.0015 s, 

which appeared sufficiently short to allow good convergence. A total of 1000 time steps 

were run during each calculation, resulting in each simulation corresponding to 1.5 s. 

This appeared sufficient to reach steady state. Fig. 4.7 shows the draft projection on a 

plate at 0.0956 s. The detailed operation conditions are demonstrated in the Table 4.4 

below. 
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Figure 4.6: The dimensions of the plate with 2° trim.  

 

 

Figure 4.7: Volume fraction contour of lm/b=3 at t=0.0956s 
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No. Trim τ [deg] Normalized Draft 

lm/b 

Velocity Coefficient 

 CV  

1 2° 1.5 12.5 

2 2° 3 12.5 

3 2° 4.5 12.5 

4 2° 6 12.5 

5 2° 7.5 12.5 

6 2° 3 21.7 

7 4° 1.5 12.5 

8 4° 3 12.5 

9 4° 4.5 12.5 

10 4° 6 12.5 

11 4° 7.5 12.5 

Table 4.4: Simulated cases operation conditions  
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Chapter 5  

Results and Discussion 
 

This chapter presents the results from the CFD simulations as described in Chapter 4. As 

a convergence criterion, residuals were set to be less than 1e-6. The iteration process 

converged well, as indicated by tracking the residuals through the iterations. The results 

were divided into two groups: a plate with 2° trim angle, and a plate with 4° trim angle; 

both with fixed draft at the trailing edge. The schematic flow pattern is shown in Fig. 

5.2. When the trim angle is low like the cases simulated in this thesis, water would pile 

up under the planing bottom, as shown in Fig. 5.2 (lm/b=4.5, Cv=12.5, t=1.5s). Drag and 

Lift coefficients (as defined in equations (2.8 and 2.9) and NACA [3]) on the plate were 

calculated from the forces from the simulations. Drag versus lift was plotted together 

with experimental data. The lowest drag for a given lift may be the optimal planing 

surface for a suspension boat.  

 

 

Figure 5.1: Flow pattern at low trims [3] 
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Figure 5.2: Flow pattern of plate with 4° trim (lm/b=4.5, Cv=12.5, t=1.5s)  

 

5.1 Planing Plate with 2° Trim Angle  

 

In this section, the results from the simulations in ANSYS FLUENT of the 2° trim angle 

plate with fixed initial draft at the trailing edge are presented and compared with the 

NACA experimental data [3]. The cases were performed under different operating 

conditions. Fig.5.4 shows the velocity contour of case No. 5 at t=0.088. The comparison 

between the ANSYS simulation results and NACA experimental data is presented in 
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Figure 5.4 and Table 5.1. NACA experiments were performed under two different water 

viscosities which were marked separately in Table 5.1. Fluent simulations were 

performed with the viscosity 0.0013678 kg/m·s. Figure 5.4 indicates that the 

experimental and computational values are closely matching. 

 

Figure 5.3: Contour of velocity at t=0.088s, CV=12.5, lm/b=1.5 
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Figure 5.4: Drag vs Lift for the plate with 2° Trim Angle. Comparison of NACA and Fluent data.  

 

Number τ lm/b CV 2°CDL  2°CDb 

1 2 1.5 12.5 0.0344 0.0106 

2 2 3 12.5 0.0434 0.0153 

3 2 4.5 12.5 0.0570 0.0193 

4 2 6 12.5 0.0584 0.0226 

5 2 7.5 12.5 0.0733 0.0273 

6 2 3 21.7 0.0656 0.0213 

Table 5.1: 2° ANSYS simulation Result 
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5.2 Planing Plate with 4° Trim Angle  

 

Five cases were simulated with 4 ° trim angle. A typical wave elevation contour is 

presented in Fig 5.4 which shows an iso-surface of the elevation of the water (at the 

volume fraction 0.5). The free surface was defined as the interface between water and 

air where the volume fraction  E is 0.5. A comparison between the ANSYS simulation 

results and NACA experimental data [3] is presented in Figure 5.6 and Table 5.2. NACA 

experiments were performed under two different water viscosities which are marked 

separately in Table 5.2. Fluent simulations were performed with the viscosity 0.0013678 

kg/m·s. The experimental and computational values are closely matching. 

 

 

Figure 5.5: Wave Elevation Contour at t=1.5s, CV=12.5, lm/b=1.5  
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Figure 5.6: 4° Trim Angle Drag vs Lift Coefficient, comparison between NACA and Fluent. 

 

 

Number τ lm/b CV 4°CDL 4°CDb 

1 4 1.5 12.5 0.0784 0.0126 

2 4 3 12.5 0.0810 0.0163 

3 4 4.5 12.5 0.1156 0.0238 

4 4 6 12.5 0.1325 0.0299 

5 4 7.5 12.5 0.1356 0.0306 

Table 5.2: 4° ANSYS simulation Result 
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Chapter 6  

Conclusion 
 

CFD predictions for drag and lift of a flat planing plate show good agreement with 

published experimental results. The study validated the used of CFD software to 

simulate free surface flow. However, more simulations would be suggested for the 

future to establish a better validation. 

 

In this case, the NACA experiment [3] used a setup of a model and towing gear to 

implement the experiment, as shown in Figure 6.1. For the CFD simulation only the plate 

was modeled. The lift and drag from the water should thus be modeled reasonably 

accurately, whereas the aerodynamic forces would be expected to be less accurate. 

Otherwise the geometry of the planing plate, the operating conditions and the viscosity 

of the water were accurately modeled in the CFD simulations. The main data of interest, 

i.e., lift and drag, obtained from the CFD simulations matched the experimental data 

quite well, as shown in Figures 5.4 and 5.6.  
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Figure 6.1: NACA Setup of model and towing gear [3] 
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Chapter 7  

Future Work 

 

Future work for this project would include performing more simulations under different 

operating conditions to see if the deviations are smaller. The mesh distribution is also a 

field that requires improvement. The plate in this case was set to be still which is not the 

real condition; rather a simulation in waves would be preferred. A dynamic mesh and 

control is suggested to be added in the simulation to get more practical results.  
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Appendix A 
 

The Mass Conservation Equation 

 

The equation for conservation of mass, or continuity equation, can be written as 

follows: 

U" UV + ∇ ∙ !"#$ = +, 

Equation 2.1 is the general form of the mass conservation equation and is valid for both 

incompressible and compressible flows. The term Sm refers to the mass added to the 

continuous phase from the dispersed second phase (for example, due to the 

vaporization of liquid droplets) and any user-defined sources. 

 

Momentum Conservation Equation 

 

Conservation of momentum in an inertial (non-accelerating) reference frame is 

described by Fluid Dynamics [4]. 

UUV !"#$ + ∇ ∙ !"##$ = −∇1 + ∇ ∙ '�̅( + "� + 2  

Where p is the static pressure, �̅ is the stress deviation tensor (described below), and "� 

and 2  are the gravitational body force and mass flux due to transportation (for example, 

that arise from interaction with the dispersed phase), respectively. 2  also contains other 

model-dependent source terms such as user-defined sources. 

The stress deviator tensor �̅ is given by 
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�̅ = W X!∇# + ∇#Y$ − 23 ∇ ∙ #[\ 

Where W is the molecular viscosity, I is the unit tensor, and the second term from the 

right hand side arises from the effect of volume dilation. 

Turbulence Modeling 

 

The most normal way to resolve turbulence questions is to use turbulence models in 

which the features of turbulent flow are not solved in time. Through conducting 

Reynolds decomposition, the instantaneous velocity and pressure can be decomposed 

as 

��! ],-$ = ��� ! ]$ + ��! ],-$ 

��� ! ]$ = limY→c
1d e ��! ],-$fVY

D  

� = �� + 1 

Where ���  and �� are the time averaged quantities while ��  and 1 are the fluctuating 

components of the velocities and the pressure. By inserting the Reynolds decomposition 

into the N-S equations, the Reynolds averaged N-S (RANS) equations are obtained as 

follows: 

U���U:� = 0 

�;� U���U:5 = − 1" U��U:� + 9 UG���U:5U:5 − U���;�����U:5 + ��  

The RANS transform equations are similar to N-S equations except for the additional 

term including ���;�����, referred to as the Reynolds stress tensor. If the Reynolds stress 
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term is modelled, the RANS equations describe the time averaged flow quantities which 

requires substantially less computational resources than doing DNS scenario. 

 

A common approach for modelling the Reynolds stress tensor of the RANS equations is 

to use the Boussinesq approximation. In this assumption, the Reynolds stress deviator 

tensor is modelled as a diffusion term by introducing a turbulent viscosity, 9-, according 

to: 

−���5 = 9- gU���U:5 + U�;�U:� h − 23 ij�5 

In this equation, j�5 is the Kronecker delta which assumes a value of 1 if i=j and 0 

otherwise, and k is the turbulent kinetic energy defined as:  

i = 12 ���;����� 

By using a model to describe how the turbulent viscosity depends on the flow, the RANS 

equations can be solved. The two-equation turbulence models, such as the k-ε model 

and the k-? model, use two additional transport equations to describe the turbulent 

viscosity. They are referred to as complete models since they allow the turbulent 

velocity and length scales to be described independently [15]. 

 

 The Standard k-ε Model 

 

The standard model in ANSYS FLUENT falls within this class of models and has become 

the workhorse of practical engineering flow calculations in the time since it was 
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proposed by Launder and Spalding.[5] The standard k-ε model is a model based on 

model transport equations for the turbulence kinetic energy (k) and its dissipation rate 

(ε). The equations are as follows: 

UiUV + UU:� !i��� $ = UU:5 kl9 + 9-mCn UiU:5o + �C − @ 

U@UV + UU:� !@��� $ = UU:5 kl9 + 9-mBn U@U:5o + @i !pB7�q − pBG@$ 

9- = pr iG
@  

Where mC, mB, pB7, pBG, and pr are model constants and �C is the production of turbulent 

kinetic energy. The latter is defined as: 

�q = −"���;����� U���U:5  

and is modelled using the Boussinesq approximation. 

 

The standard k- @ model is robust and works well in predicting free flows with small 

pressure gradients. It’s based on the assumption that the flow is fully turbulent which 

means the applications are limited to high Reynolds number flows.[11] Over time, it has 

been proved that the standard k-@ model cannot be used to describe the wave behind 

moving hull in a satisfactory manner.[12] 
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The k-ω Model 

 

In the k-ω model described by Wilcox [9], the transport equations for the turbulent 

kinetic energy and its specific dissipation, ω, are used in a similar way as for the 

standard k- @ model. The specific dissipation is related to the dissipation according to 

? ∝  @i 

The model equations for k and ? are 

UiUV + �� UiU:� = UU:5 k!9 + m∗9-$ UiU:5o + ��5 U��U:5 − s∗i? 

U?UV + �� U?U:� = UU:5 k!9 + m9-$ U?U:5o + t ?i ��5 U��U:5 − s?G 

9- = i? 

Where s,  s∗, mC�, m�, p�7 and p�G are model constants. 

 

The k-? model has the advantage that it is also valid close to walls and in regions of low 

turbulence which means that the transport equations can be used in the whole flow 

domain. A disadvantage of the k-? model is that the results are easily affected by the 

choice of boundary conditions and initial states. 
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The SST k-ω Model 

 

Menter [6] developed the shear stress transport (SST) model by combining the 

advantages of the k- @ and the k-ω models through the use of blending functions. In this 

hybrid model, the k-ω model is used along the boundary layer while the k- @ model, 

formulated on k-ω form, is used in the open channel free flow. 

 

The SST k-ω model has performed well in many types of complex flows, such as flows 

with adverse pressure gradients and separating flows, where the k- @ or the k-ω models 

have given results that differ significantly from experimental data. It has been 

recognized for its good overall performance and it is the most commonly used 

turbulence model for simulations of hydrodynamics. 

 

Boundary Layers 

 

To characterize the flow near a wall, a dimensionless wall distance is introduced: 

�� = �∗�9  

Where y is the distance to the wall and �∗ is a friction velocity. The friction velocity is 

defined as 

�∗ = u��"  

Where �� is the wall shear stress, pv is skin friction coefficient [8]. 
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�� = "9 U�U�w&xD = pv ∙ 12 "�vyzz{-yz|,G  

pv = [2 lg!O�$ − 0.65]SG.T   for Re < 10� 

In the boundary layer, the gradients of the flow variables in the all-normal direction are 

generally very large in comparison to those of the free flow. This implies that a high 

spatial resolution is required by the solution method in order to capture the effects near 

the wall. A common alternative method used to circumvent the requirement of a high 

spatial resolution is to use wall functions, which are empirical models used to estimate 

the flow variables near walls. Wall functions can also be applied when the turbulence 

model used in a simulation is not valid close to the wall, which for example is the case 

for the standard k- @ model. Althogh wall functions are undesired in computational 

hydrodynamics due to deviations for some types of flow, they often used for numerical 

reasons. Standard wall functions are based on the assumption that the boundary layer 

can be described as a flat plate boundary layer. This means that the time-averaged 

velocity can be expressed as a function of the dimensionless wall distance. In the viscous 

sub-layer, it can be shown that the velocity parallel to the wall is proportional to ��. In 

the fully developed turbulent sub-layer, the velocity follows the logarithm of ��. 

Between these sub-layers, in the buffer sub-layers, there is a transitional region from 

linear to logarithmic �� dependence. In order for a wall function to work properly, it 

should be used all the way to the fully turbulent layer which corresponds to a value of 

�� above 30. The all functions also estimate the turbulence quantities near the walls. 
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Appendix B 
 

The Finite Volume Method 

The stationary transport equation involving diffusion and convection of a general flow 

variable, ∅, can be written as: 

"�� U∅U:� = UU:� lΓ U∅U:�n + +!∅$ 

Where Γ is the diffusivity and S is a source term which may depend on ∅. It can be 

demonstrated that the equation in Chapter 2 governing the transport of ��� , k,@, ? and E 

are all written on this form. By using the FVM, this equation can be discretized as: 

��∅� = � ��
�

∅�
 + +3 

Where 

�� = � ��
�

− +� 

In these equations, where the summations run over all the nearest neighbors of each 

cell, ∅� is the value of the flow variable in the present cell and ∅�
 are the values of the 

flow variable in the neighboring cells. +3 and +� are the constant and flow variable 

depending parts of the source term, respectively. Furthermore,�� is the discretization 

coefficient associated to the present cell. And ��
  are discretization coefficients 

describing the interaction with its neighboring cells. The discretization coefficients 

depend on the discretization schemes used to approximate the values of the flow 

variables on the cell boundaries, also known as cell faces. By using appropriate 
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discretization schemes to determine the coefficients of equation, a set of algebraic 

equations for the cell values is obtained. 

 

Dimensionless Converge Criteria 

The value of this residual can vary between different variables. In order to compare the 

residuals and determine convergence, they must be related to some parameters. This 

can be done by scaling them with an appropriate factor to make the residuals into 

dimensionless numbers. In FLUENT, the residuals are scaled by a characteristic flow rate 

of the variable ∅ in the domain. This yields a globally scaled residual, defined as 

O∅,� = O∅∑ |��∅�|��x7  

Besides examining the residuals, the mass, momentum and energy imbalance in each 

cell can be checked. It is also important to monitor the solution of important variables to 

determine if they reach a steady value. 
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