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Abstract

In this dissertation we present a study of the B and Be star populations of the Double

Cluster h and χ Persei. Classical Be stars are best known for their circumstellar disks,

which are composed of material ejected off of the stellar surface during outburst

events. These open clusters present an optimal location for studying the physical

properties and variability of these disk structures, as upwards of 30% of the brightest

B-type stars in h and χ Per are known to be Be stars.

To begin our study, we first need to establish reliable measurements of basic phys-

ical parameters for each B-type and Be star in our sample. Blue optical spectroscopy

is used to first measure projected rotational velocity, V sin i, effective surface tem-

perature, Teff , and surface gravity, log g, for B-type sample stars, while available

Strömgren photometry is used to calculate Teff and log g for the Be stars showing

emission. Stellar masses and radii are then determined for each star via the evolu-

tionary tracks of Schaller et al. [1992].

With these measurements, the model B-type star spectral energy distributions of

Lanz & Hubeny [2007], and photometric observations in the optical, near- and mid-IR

wavelengths, we then use two independent means of determining the distance to each

star, and compare these to the established cluster distances from the study of Currie

et al. [2010]. This serves as a check of the reliability of our parameter determinations

and our ability to model the total stellar flux of these B-type stars.

Our study of the cluster Be stars is continued by examining the disk spectral

energy distributions via photometric observations from WEBDA, 2MASS, Spitzer,

AKARI, and WISE. Using the methods we have developed for modeling B star stellar

flux, we can now extract the Be disk contribution to the total system flux. We

also present multiple observations of Hα taken between 2009-2012 with the KPNO

Coudé Feed, KPNO 2.1m, and WIRO telescopes, used to monitor the presence of disk
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emission and its strength in our sample Be stars. We use the Hα equivalent width

model of Grundstrom & Gies [2006] and the infrared flux model of Touhami et al.

[2011] to constrain the disk masses, radii, and densities for our Be star sample. We

find that our sample Be stars have disks 10 − 100 R⊙ in size, have densities typical

of other observed Be disks, and that nearly all exhibit some level of variability in the

size and strength of their disks over the course of our observations.
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Chapter 1

Introduction

Usually, one thinks of stars as being constant. Always just over head, appearing after

every sunset, decorating a clear night sky with a comforting consistency. With thou-

sands of years of careful observation, we have slowly learned that these small points

of light are in fact changing in a multitude of different ways. What I have personally

always found fascinating is that we can actually watch some of these changes happen

over the course of many years, a few months, or within a few seconds. With lifetimes

of different stars spanning several thousands of years to older than the current age of

the universe, it is simply spectacular that there are significant short term changes in

these tiny points of light and that we have the tools to watch it happen, much like a

flip book.

Through this dissertation I hope to share the story of a particular type of star

that has caught my attention. Each time I’ve gone out to observe the clusters this

work centers on, I’m curious to see if and how each of the Be stars in my sample

and the disks they host have changed since I last checked in. These unique B-type

stars are 2–10 times the physical size of our Sun (which is roughly 100 times the

radius of Earth), and have disks of gaseous hydrogen material that are typically a

few times the the radius of the star in size. These Be disks have been observed to

change dramatically, even in the span of a few nights or weeks. Some even lose their

disks entirely at different times, which is not a trivial event for such a physically large

structure.

To start this story of Be stars in the Double Cluster h and χ Persei, we first

need to spend some time talking about the specific characteristics of stars, how they
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change over time, the physics governing their existence, and what questions we hope

to answer through the work detailed in the later chapters of this dissertation. We’ll

begin broadly by taking a look at what a B-type star is and how it compares to all

the other stars we see in the night sky.

1.1 Stellar Evolution

Even the earliest astronomers, using only their eyes, noticed that not all stars they

could see in the sky appeared to be the same. While their hypothesized reasons for

these differences were wrong, these early observers were correct that not all stars are

wrought from the same mold. In fact there is a veritable zoo of stars throughout the

universe ranging in size, mass, temperature, brightness, and composition. Stars also

undergo a number of physical changes over the course of their existence, some more

drastic than others, that ultimately change their size, temperature, brightness, and

composition over time.

All stars start life as dense clumps of gas and dust, condensing and slowly grow-

ing in mass from nebular clouds. As material is continually added (accreted) onto

the protostar, temperature, density, and pressure increase in the interior until they

become high enough for nuclear fusion to occur. At this point the star begins to

generate its own energy in its core, accretion stops, and the radiation pressure pro-

duced by the fusion of hydrogen into helium is able to halt the gravitational collapse

of material at the stellar surface. The star is now considered to be a main sequence

object.

How long a star lives and what evolutionary path it will take is predominantly

dependent upon its mass when it moves onto the main sequence. Along the main se-

quence effective temperature and luminosity (brightness) increase with mass. Modern

classification schemes group stars into spectral types, OBAFGKM, based upon their

temperatures, with O- and B-type stars being the hottest, most massive, and most

luminous. Each spectral class is further broken up into classes 0–9, such that a B0

star is hotter and more massive than a B5 star, which is then hotter and more massive

than a B9 star. These hot O- and B-type stars have very short lifetimes, on the order

of a few millions of years. Though they start out with a larger supply of material for

fusion, they must use their stores at very rapid rates in order to sustain themselves
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against gravitational collapse. Once a massive star depletes the available hydrogen

in its core, it will leave the main sequence and undergo a series of core contraction

and envelope expansion events. When this occurs, the star will evolve into a giant

or supergiant star. During these contractions the photosphere cools and expands in

radius, while the core temperature and density increases until the next stage of fusion

is able to occur, from helium up to nickel and iron in the most massive of O-type

stars. After reaching the limits of fusible material in their cores massive stars end

their lives spectacularly with a supernova explosion, leaving behind a neutron star or

stellar-mass black hole remnant.

Cooler stars, being less massive and less bright, are able to use their fusion fuel

supplies at a much slower rate, thus extending their lifetimes by several orders of

magnitude. Stars like our Sun will spend upwards of ten billion years on the main

sequence, evolve into red giants, and eventually end their lives as slowly cooling white

dwarfs after having blown away their remaining photospheres. The coolest M-type

stars have lifetimes on the order of the age of the Universe, and will slowly cool

and fade once they have completely exhausted the hydrogen they are composed of,

without ever evolving off of the main sequence.

During the various stages of any star’s evolution, it experiences significant changes

in its radius and surface temperature, which are strongly tied to the brightness of the

star. The Stefan-Boltzmann relation

L = 4πR
2
σT

4 (1.1)

illustrates the dependancies of luminosity on stellar radius and temperature. Measur-

ing temperature and luminosity for a sample of stars covering all spectral types, and

evolutionary stages, we can create a Hertzsprung-Russell diagram like the one shown

in Figure 1.1. In this figure main sequence stars are designated by plus symbols,

giants by asterisks, and supergiants by cross symbols. The solid track included in

this figure illustrates how a massive B-type star of 9 M⊙ moves across this diagram

over the various evolutionary phases of its life.
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Figure 1.1 Hertzsprung-Russell diagram utilizing the stellar data provided in Ap-
pendix G of Carroll & Ostlie [2007]. Main sequence (plus), giant (asterisks), and
supergiant (cross) star temperatures and luminosities are shown with a 9 M⊙ evolu-
tionary track from Schaller et al. [1992].

1.2 Observational Techniques:

Photometry vs. Spectroscopy

The advent of the telescope in the early 1600’s allowed early astronomers to begin

looking further and further out into the night sky, beyond the reach of the unaided

human eye. With the advances that have been made in the materials and technology

utilized in telescopes today, there are a multitude of different observing techniques

that are available to modern astronomers, providing the means to peer into birthplaces

of stars and out to the very edge of the observable universe. Two of the most widely

used and versatile observing techniques are spectroscopy and photometry.

Spectroscopy measures the intensity (amount) of radiation being emitted by an

object as a function of wavelength on a very fine wavelength scale, over a region of the

electromagnetic (EM) spectrum. To do this, light is first collected by a telescope and

then passed though a very narrow slit. The star light is then collimated by a mirror

and directed onto a diffraction grating, which is a very finely etched reflective surface
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which spreads the light out into its constituent wavelengths. After reflecting off of the

grating, the spectrum is focused onto a CCD detector and recored for use. Traditional

spectrographs can take data on only one star at a time, while newer instruments using

optical fibers are now able to simultaneously take spectra of up to 100 objects at a

time in a small region of the sky. A simple schematic of a spectrograph is shown in

Figure 1.2.
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Figure 1.2 Simplified schematic of a slit spectrograph.

Photometry also measures the intensity of radiation being emitted by an object

but does so on a much more coarse wavelength scale than spectroscopy. Light from

a region of the sky, like a cluster of stars, is collected and the image is focused by

a telescope, and then passed through a filter which only allows photons within a

specified wavelength range through. The light which makes it through the filter is

again focused and directed onto a CCD detector which essentially records how many

photons from each source passed through the filter. This measure of brightness of an

object through a specific filter is referred to as a “magnitude”, and when considered

with other magnitudes of the same object through other filters covering different

wavelength regions, allows for the investigation of a number of different physical

properties. Today there are a plethora of different photometric filters available in the

ultra-violet (UV), optical, and infrared (IR) spectral regions.

Though the techniques are somewhat similar, there are pros and cons to both
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spectroscopy and photometry. Spectroscopy provides extraordinarily detailed mea-

surements of the individual spectral lines of an object, and can be utilized for a

number of applications: measuring rotation, effective temperature, and surface grav-

ity of single stars, properties of binary systems, characteristics of events on the surface

of the star and its surrounding environment, physical composition and evolutionary

state to name a few. The detailed information provided by spectroscopy comes at

the cost of time and restricted wavelength coverage. Traditional telescope instru-

ments can only take one spectrum of one object at a time, and since the source light

is being significantly dispersed, longer exposures to collect enough light are needed.

Photometry provides excellent imaging capabilities and allows for quick magnitude

measurements of a large group of stars at a single time. En mass, it can provide a

look at the evolutionary state of a large sample or cluster of stars, track subtle varia-

tions in brightness over time, and allow for a first pass of a large group of stars when

looking for particular objects exhibiting atypical features effecting their brightness.

Obtaining many magnitude measurements covering the full UV to far-IR spectral

regions can also provide a look at the amount of light emitted by the star across the

EM spectrum, and is effectively a very low resolution spectrum covering a very wide

wavelength range. But the cost here is in the level of detail that can be obtained

about the physical properties of an individual star or its environment.

When used in complement, the broad measurements provided by photometry and

the detailed measurements of spectral lines yielded by spectroscopy allow for the

in-depth examination of the physical characteristics of a large sample of stars.

1.3 Statistical Mechanics

Even on the grandiose scale of stars, the details of atomic interactions still reign

supreme and are governed by the laws of statistical mechanics. Stars are, in the sim-

plest of terms, just large collections of gases composed of various atoms that interact

according to the temperatures, densities, and pressures they experience. To under-

stand the physical mechanisms underlying the modern stellar classification scheme,

which exploits the fact that stars of different temperatures exhibit different lines of

varied strength in their spectra, we have to consider the atomic conditions in the

stellar atmosphere. More specifically, in what energy levels (orbitals) are electrons
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most likely to be found within their host atoms, and what are the relative numbers of

atoms in various states of ionization? Ionization is a state in which an atom has lost

an electron. With the removal of one electron, an atom is said to be singly ionized,

remove a second and it is doubly ionized, and so forth. We will consider the questions

of energy level occupation and ionization state with regard to hydrogen atoms, and

an emphasis on massive O- and B-type stars.

As atoms in a gas move around they gain and lose energy by colliding with other

atoms. When an atom gains energy, the electrons it hosts are able to make transitions

from lower energy levels to higher energy levels. The loss of energy during a collision

results in one of these electrons in a higher energy state giving up a requisite amount

of energy and transitioning to a lower state. In general, the higher energy states in a

given atom are less likely to be occupied by electrons at any given time. The rate at

which these collisions occur, and the ratios of energy level occupations is intimately

related to the temperature of the gas under consideration. The Boltzmann equation,

which is used to describe the thermal population of the levels of a particular atom, is

given as a ratio of the number of atoms in each of two different states of excitation,

Na and Nb,
Nb

Na

=
gbe

−Eb/kT

gae
−Ea/kT

=
gb

ga

e
−(Eb−Ea)/kT

. (1.2)

Here ga and gb denote the degeneracies of excitation states a and b, Ea and Eb are

the energies of the states, and T is the gas temperature in Kelvin units.

Plugging in the appropriate degeneracies (gn = 2n2) and energies for the ground

(n = 1) and first excited (n = 2) states for hydrogen, we can determine the ratio of

N2/(N1 +N2) with respect to temperature, as shown in Figure 1.3. We find that this

ratio of N2/(N1 + N2) is 50% for a temperature of 85,400 K, which is several times

hotter than a typical B-type or even O-type star. This requires most all electrons in

hydrogen to be in the n = 1 ground state at normal stellar surface temperatures. Since

transitions upwards from and down to the n = 2 state in hydrogen are responsible

for producing the Balmer set of lines in the optical wavelength region, which are

the predominant spectral features in massive stars, this seems exorbitantly high. To

reconcile this theoretical occupation of energy states with observations, we must also

consider the ionization state of the hydrogen gas.

Much as the ratios of energy level occupations are governed by the temperature
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Figure 1.3 Relative occupancy of the n = 1 and n = 2 states of hydrogen with respect
to temperature.

of the gas in question, so is the ratio of states of ionization in the gas. The Saha

equation is given as a fraction of ionization levels, Ni+1 and Ni,

Ni+1

Ni

=
2Zi+1

neZi

�
2πmekT

h2

�3/2

e
−χi/kT

, (1.3)

for a mixture of gasses. In this expression ne designates the number density of free

electrons in the gas, me is the electron mass, T is the gas temperature, k is Boltz-

mann’s constant, h is Planck’s constant, and χi is the ionization energy of the ground

state of the atom. The partition function, Z, is given by

Z =
∞�

j=1

gje
−(Ej−E1)/kT

, (1.4)

where Ej is the energy of the jth energy state and gj is the degeneracy of that state.

The partition function is simply a weighted sum of all the possible ways the electrons

in an atom can be arranged with the same energy. Electron arrangements that are

more energetic, and therefore less likely to occur, are weighted less than less energetic

arrangements. The factor of two in Equation 1.3 accounts for the two possible spin

orientations (up or down) of the free electron.
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For most atoms, this must be solved as a coupled set of equations, however, the

situation for hydrogen can be simplified to provide a quick analytic solution. For a

mixture of pure hydrogen with most atoms in the ground state, the partition function

of neural hydrogen ZI is approximately equal to the ground state degeneracy gI = 2.

The partition function for ionized hydrogen (i.e. a proton) is then ZII = 1. We set

ne = 1020, which is a typical value in most stellar atmospheres, and χi = −13.6 eV

for hydrogen. Determining this ionization fraction y = NII/Ntotal with respect to T ,

as shown in Figure 1.4, we find that half of the available hydrogen is ionized (y =

0.5) at ∼ 9, 000 K.

Figure 1.4 Fraction of ionized hydrogen relative to temperature. At a temperature of
∼ 9, 000 K, the hydrogen is half ionized.

Combining the results of Equations 1.2 and 1.3, we can determine the strength

of the Balmer lines as a function of temperature. The overall strength of these lines

depends on the faction of all hydrogen atoms that are in the n = 2 excitation state.

This fraction is given as

N2

Ntotal

=

�
N2

N1 + N2

� �
NI

Ntotal

�
, (1.5)

and when considered as a function of T , results in the distribution shown Figure 1.5.

We see that fraction of hydrogen available to produce the Balmer lines increases from
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5, 000 K, peaks at ∼ 10, 000 K, and then quickly falls off with increasing temperature

as more of the hydrogen that can produce the Balmer lines becomes ionized. This

agrees well with observations, and provides an excellent physical means for classifying

stars.

Figure 1.5 Fraction of all hydrogen available in the n = 2 excitation state, contributing
to the strength of the hydrogen Balmer lines, with respect to temperature.

The entire lifetime of a star after formation is spent fighting off the force of gravity

which is trying to collapse it. Since gravity is an attractive force, there must be an

outward force produced in the stellar interior which counters it. This outward force

is produced by radiation pressure, which is generated by the fusion of hydrogen and

other materials in the stellar core. The more massive a star is, the larger its gravity

and thus the greater the pressure that must be generated by the interior at a given

time. For massive O- and B-type stars this results in the short lifetimes mentioned

in Section 1.1, and explains why they exhaust their fusible supplies at such a rapid

rate.

Assuming that the star is static and the acceleration at the surface is zero, the

condition for hydrostatic equilibrium is given by

dP

dr
= −G

Mrρ

r2
= −ρg, (1.6)
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where g = GMr/r
2 is the local acceleration of gravity at a radius r, or surface

gravity. From this expression we see that an interior pressure gradient, a change in

pressure with radius, is required for a star to balance the inward force of gravity and

maintain stability. The negative sign also indicates that this pressure must decrease

with increasing radius, such that the interior pressure is larger than near the stellar

surface. It is because stars are in hydrostatic equilibrium, that we can utilize the

Boltzmann and Saha equations to describe the atomic states of their atmospheres.

1.4 Sources of Continuum Opacity

When a beam of light produced in the interior of a star passes through gaseous

material, like the stellar photosphere, some of the photons from the beam will be

removed or have their paths diverted. In stellar photospheres the gaseous material

is typically comprised of atoms (predominantly hydrogen, helium), ions, and free

electrons. These disruptions to the paths of the escaping photons are caused by the

atomic processes of absorption and scattering. When photons are removed from the

beam on its way to an observer on Earth, the original intensity Iλ is diminished by

some amount dIλ over the path ds the beam travels

dIλ = −κλρIλds. (1.7)

In this expression we see that the decrease in intensity is dependent on the density

ρ of the material the beam is traveling through, as well as the opacity κλ. Opacity

defines the cross section within which absorption or scattering of photons can occur

per unit mass of gaseous material. This quantity is wavelength dependent and is a

function of the gas composition, density, and temperature. When a photon passes

within the cross-sectional area of a charged particle, there are a number of ways in

which the target particle can interact with the incident photon.

Closely related to opacity is optical depth τλ which is essentially a measure of

the number of scattering events a photon may undergo while passing through a gas

(photosphere, molecular cloud, ISM, etc.) as measured for a photon along a given

path.

dτλ = −κλρds. (1.8)
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With this definition, we can now express the change in intensity of a beam in terms

of the optical depth of the medium it is passing through

dIλ = Iλdτ. (1.9)

There are a myriad of different processes which contribute to the opacity of gas clouds,

dust, and the photospheres of stars, the most prominent of which will be discussed

in the remainder of this section.

In the case of bound-free absorption, otherwise known as photoionization, an

incident photon of high enough energy will ionize an atom. The photon wavelength

must be less than or equal to hc/χn, where χn is the ionization energy of the n
th atomic

energy level. Ionization is a process whereby an outer valence electron initially bound

to its atom is imparted enough energy by the incident photon that it is removed from

the atom and becomes a free electron. This process is a significant source of continuum

opacity in B- and A-type stars with the photoionization of neutral hydrogen, and to a

lesser extent helium. The inverse of this process, free-bound emission, occurs when a

free electron recombines with a nearby ion, emitting one or more photons in random

directions as a result.

Free-free absorption is a process in which a free electron in the presence of an

ion absorbs an incident photon. This absorption causes the speed of the electron to

increase and deflect its trajectory. Free-free absorption can occur for a continuous

range of wavelengths, and thus is another significant contributor to continuum opacity.

Similarly, an energetic free electron may pass by an ion, in which case the electron

gives up energy by emitting a photon and thus slows down (free-free emission). This

effect is particularly important for circumstellar disks, which will be discussed further

in Section1.5.3. These absorbing processes are also known as thermal bremsstrahlung.

Thompson scattering occurs when a photon is scattered, rather than absorbed,

by a free electron when the electron oscillates in the electromagnetic field of the

photon. The cross-section for this process is approximately 2×106 times smaller than

that of the photoionization of hydrogen. While this is very small, in electron-dense

environments this becomes a very effective means of scattering. In stellar interiors

and the photospheres of massive stars, where temperatures and ionization rates are

high, Thompson scattering is the dominant source of continuum opacity.
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Rayleigh scattering also involves the electromagnetic field of an incident photon

driving oscillations of an electron, but occurs for bound electrons. Because this occurs

for electrons bound within atoms, the cross-section for this process is even smaller

than for Thompson scattering and requires more energetic photons with shorter wave-

lengths. For photons of wavelengths shorter than the size of the atom, undergoing a

slightly different interaction, this process is referred to as Compton scattering. Opac-

ity contributions from Rayleigh scattering are negligible in most stellar atmospheres,

but are more significant in regard to interstellar dust and nebular clouds of gas.

The interstellar medium (ISM) is composed of large, very diffuse amounts of fine

dusty material that exists in the seemingly empty regions between stars. Giant clouds

of gas which may eventually condense to form stars are present, particularly in the

spiral arm and central regions of our galaxy. All of these gaseous materials tend to

absorb or scatter out starlight as it passes through, preferentially scattering shorter

wavelength photons via Compton scattering. Because more blue photons are removed

by this process, the starlight received by the observer appears to be more red overall,

hence this effect is often referred to as reddening.

As might be expected, reddening can have significant impacts on the continuum

observations of stars in particularly dusty regions of space, or where there is a sig-

nificant amount of absorbing material (ISM) along the line of sight. Correcting for

the effects of reddening requires careful measurement of the observed color excess of

an object in comparison to its expected or intrinsic color, which is determined by its

temperature. In astronomy, a “color” refers to a difference between two magnitudes,

such as the Johnson B and V filters, which are often used to measure the extinction

E(B − V ),

E(B− V) = (B− V)obs − (B− V)int (1.10)

along a line of sight to a particular object. As shown in the above expression, the

difference between these observed and intrinsic colors provide the necessary reddening

correction for observed deficiency in shorter wavelength continuum intensity. The

change in magnitude due to extinction is approximately equal to the optical depth τλ

along the line of sight, so Equation 1.8 can also be expressed as

dτ = nd(s)σλds, (1.11)

15



in terms of the number density nd(s) of the scattering dust grains along the line of

sight, and the scattering cross section σλ of the scattering material.

1.5 Line Profile Shapes

1.5.1 Bound-Bound Transitions

Bound-bound transitions are simply the excitations and de-excitations of atoms or

ions in a gas, and occur with the movement of an electron from one energy state to

another. These radiative transitions are the only source of discrete opacity, form-

ing the absorption and emission lines of stellar spectra. To make these transitions,

an electron must absorb (excitation) or emit (de-excitation) a photon of a discrete

wavelength, which is determined by the difference in energy of the initial and final

states.

Spontaneous emission, as indicated by its name, occurs when an electron in an

upper energy state spontaneously emits a photon of a specific wavelength. The photon

carries away energy and allows the electron to transition to a lower energy state.

Stimulated absorption is simply the absorption of a passing photon by an electron,

which is then able to transition upwards to a higher energy state. The last of these

bound-bound transitions, stimulated emission, occurs when an incident photon of a

specific energy interacts with an electron in a higher state, inducing the electron to

transition to a lower state and emit a second photon.

The overall shape of these absorption and emission lines found in spectra are

governed by a number of physical mechanisms, detailed below.

1.5.2 Spectral Line Broadening Mechanisms

The observed spectral lines we will measure are produced in the outer, less opaque

layers of the stellar atmosphere, known as the photosphere, and are due to transitions

between various energy levels of the atoms comprising the gas. If the atoms in the

gas were not perturbed in any way, one would expect very narrow, sharp lines at the

rest wavelength specific to each atomic transition. However, all spectral lines have

some observed width that is due to a variety of broadening mechanisms, which can
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allow us to determine other characteristics of the star (eg. rotation rate, temperature,

surface gravity).

Natural broadening is inherent to some degree in every spectral line, and is ul-

timately due to the Heisenberg uncertainty principle. Each atomic energy level has

an associated lifetime and energy, each with some degree of uncertainty. It is this

uncertainty in the energy for a given transition that produces an observable spread

in the absorption or emission wavelength of a spectral line.

Doppler thermal broadening is produced due to the random thermal motions of

atoms in the gas. Each atom has an associated velocity in a random direction that

is dependent upon the temperature of the gas. The orientation of this velocity with

respect to the line of sight of the observer will produce red (away from observer) or

blue (towards observer) shifted wavelengths of the emission or absorption lines. Gen-

erally speaking, higher temperatures will produce a broader distribution of Doppler

shifted frequencies, and thus a broader line profile shape. For massive O and B-type

stars, however, we see a trend opposite to this illustrated in Figure 1.6(a), which is

due to the ionization of more and more neutral hydrogen material at higher tempera-

tures. There is less material available to make the transitions producing the hydrogen

absorption line, resulting in a narrower line with increasing temperature.

Pressure or collisional broadening is due to the perturbation of atomic energy levels

in a gas by the electric fields of passing atoms and ions. Higher pressures, coupled

with higher densities and temperatures, increase the collisional rates for atoms in the

gas. The increasingly frequent interactions of these atoms result in a larger number of

atoms with perturbed energy states, leading to a spread of the wavelengths at which

atomic transitions occur. As discussed earlier in Section 1.3, the pressure gradient

in stellar interiors is closely related to the surface gravity of the star, demonstrated

by Equation 1.6. Higher surface gravity in a star will result in higher pressures and

densities in the photosphere, altering the shape of spectral line profiles as shown in

Figure 1.6(b).
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(a) Comparison of model spectra demonstrat-
ing the effect of Teff on line profile shape
due to changing ionization levels. Stacked
model spectra (TLUSTY BSTAR2006 Lanz &
Hubeny 2007) are shown for V sin i=50 km
s−1, log g=4.25, and varied Teff .

(b) Comparison of model spectra demonstrat-
ing the effect of log g on line profile shape.
Stacked model spectra (TLUSTY BSTAR2006
Lanz & Hubeny 2007) are shown for V sin i=50
km s−1, Teff=15000K, and varied log g.

(c) Comparison of model spectra demonstrat-
ing the effect of V sin i on line profile
shape. Stacked model spectra (TLUSTY
BSTAR2006 Lanz & Hubeny 2007) are shown
for Teff=15000K, log g=4.25, and varied V sin
i.

Figure 1.6 Effects of Teff , log g, and V sin i on overall line profile shape.
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Finally, Doppler rotational broadening is due to the bulk rotational motion of the

star. As the gas of the photosphere co-rotates with the star, photons produced by the

portion of the gas moving toward the observer’s line of sight will have their wavelength

blue-shifted, while those produced by gas moving away from the observer’s line of sight

will have their wavelength red-shifted. The overall effects of this broadening on line

profile shape are demonstrated in Figure 1.6(c).

For non-rotating stars, the predominant contributors to the overall line profile

shape are the natural, Doppler thermal, and pressure broadening mechanisms. Each

contribution to the line profile shape can be described by a mathematical function of

either Gaussian or Lorentzian form. Both natural and pressure broadening produce

Lorentzian profiles, as they are produced by the oscillations of charged particles,

while Doppler thermal broadening produces a Gaussian profile, as the distribution of

particle velocities is Maxwell-Boltzmann in nature. These shapes are combined via the

mathematical method of convolution, which is simply the multiplication of functions

in Fourier space. The total line profile shape produced when all relevant intrinsic

broadening mechanism contributions are combined is known as the Voigt profile.

Figure 1.7 illustrates the differences between Lorentzian and Gaussian profiles, as

well as how each contributes to the breadth and wings of the resultant Voigt profile

shape.

Figure 1.7 Normalized Gaussian, Lorentzian, and Voigt profile shapes.
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Another major contributor to the width and shape of stellar spectral lines is

the instrumentation used. As discussed in Section 1.2, spectroscopy utilizes a finely

etched or blazed grating to disperse the light from a star so that it’s intensity can

be measured across a fine wavelength scale. In dispersing the light the spectrograph

itself adds some additional broadening, as a function of wavelength, to the observed

spectrum which must be accounted for before the spectrum can be used.

Measuring this instrumental broadening requires calibration of the spectrum via

an emission lamp, which produce very narrow spectral lines. As the intrinsic widths

of these lines are significantly small relative to the instrumental broadening, they are

considered delta functions. The observed line width of this emission lamp spectrum

can then be taken as the instrumental broadening. Emission lamps containing CuAr,

HeNeAr, and ThAr are frequently used for this purpose in observational astronomy.

1.5.3 Physical Structures

While we often think of stars as being spherically symmetric, isolated, and that our

observation of them is unimpeded, this is often not the case. Though there are

numerous physical causes for the scattering or absorption of star light from our line

of sight and for asymmetry in the profiles of spectral lines, two of the primary culprits

are spherical outflows and rotating disk structures.

Spherical outflows are typical of more massive O- and early B-type stars on the

main sequence, as well as evolved giant and supergiant stars. This outflow is a very

strong, radiatively driven stellar wind which over time can carry away small fractions

of the star’s mass. The stellar wind is assumed to be spherically symmetric, with

more or less equal expansion of the outer stellar envelope in all radial directions as

illustrated by Figure 1.8. This envelope is composed of less dense, gaseous material

that is cooler than the hot, dense core which is producing the driving radiation.

The portion of this gaseous envelope that lies in front of the star, directly along

an observer’s line of sight will provide some absorption to the line profile, which is

also Doppler shifted to shorter wavelengths as the material is moving toward the

observer. The regions of the envelope that are to either side of the star contribute

a central emission component to the line profile as the gaseous material is not back

lit by the stellar core. The combined line profile observed is a readily recognizable
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Figure 1.8 Line profile shape components for a spherical outflow.

“S” or P Cygni shape, with the intensity of absorption and emission components

dependent upon the geometric size of the expanding envelope in comparison to the

stellar photosphere [Conti & Leep, 1974].

Rotating disk structures are present at multiple stages of a star’s evolution, and

are crucial to a star’s initial formation. For the purposes of this thesis, however,

we will focus on those which are unique to some main sequence B-type stars, which

are flattened, optically thin disks about the equatorial region of the star, composed

mostly of hydrogen expelled from the photosphere of the star. There is an obvious dis-

ruption to the usual spherical symmetry in these B-type stars, which in tern impacts

the overall shape of the hydrogen line profiles in these stars as illustrated in Figure

1.9. Along the observer’s line of sight, the visible portion of the stellar photosphere

contributes the expected hydrogen absorption, with some additional central absorp-

tion contributed by the front portion of the disk. Much like the case of a spherical

outflow, the portions of the disk on either side of the star will contribute emission
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Figure 1.9 Be star line profile shape components.

proportional to the physical size of the disk. However, since these disks co-rotate with

the central star, the contribution from the approaching side will be Doppler shifted to

shorter wavelengths and the emission from the receding side will be shifted to longer

wavelengths, splitting the emission component of the line. When all contributions are

combined, the resulting line profile shape consists of a central absorption core with

Doppler shifted emission peaks [Conti & Leep, 1974]. It should also be noted that

with the lack of spherical symmetry, the wide range of inclinations an individual star

+ disk may exhibit will drastically alter the observed line shape as more or less of

the disk surface area is visible to contribute emission.

1.6 Be Star Disk Structure

The modern working definition of a Be star is given as “a non-supergiant B star

whose spectrum has or had at some time, one or more Balmer lines in emission”
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[Porter & Rivinius, 2003]. While this general definition also encompasses objects such

as the well known Algol binary systems and Herbig Ae/Be stars, classical Be stars

are further delineated as having circumstellar line emission formed in an optically

thin equatorial disk, low-order line profile variations, and rapid rotation [Porter &

Rivinius, 2003]. These Be disks are comprised of warm gaseous material ejected from

the stellar surface during outburst events. The gas is then pulled into a gravitationally

bound orbit about the stellar equator.

It is well established that as a population, Be stars rotate faster than than their

non-emission, B-type counterparts [Huang et al., 2010, McSwain et al., 2008, Porter

& Rivinius, 2003]. Precisely why this is the case, however, is still debated. There are

three primary theories as to why Be stars are rapid rotators: they may have been

born as rapid rotators, spun up by mass transfer in a close binary system, or spun

up during the main sequence evolution of B-type stars. The observed rotation rates

of Be stars are ≥60–80% of their critical velocity [McSwain et al., 2008], at which

point the gravitational and centrifugal forces are balanced, although recent results

suggest that this threshold may be mass dependent [Huang et al., 2010]. The main

sequence lifetimes of these objects are likely extended as a direct result of their rapid

rotation, as this fosters rotational mixing of their stellar interiors and replenishes their

hydrogen cores [Meynet & Maeder, 2000]. However, rapid rotation alone is not enough

to spur the photospheric material of these stars to form the disk structures they host.

It is likely that other weaker processes, such as non-radial pulsations (NRPs), are

needed to provide the additional angular momentum necessary for this material to

leave the stellar surface [Cranmer, 2009, McSwain et al., 2008, Porter & Rivinius,

2003, Rivinius et al., 2001]. A growing number of Be stars have been identified to

exhibit NRPs (see Emilio et al. 2010, Rivinius et al. 2003).

While there is certainly some sort of temperature structure to the disks of Be

stars, models typically make the assumption that the disks are isothermal as there

is not yet a consensus as to what an appropriate profile should be. For investigating

the bulk physical properties of the disk this assumption is sufficient and most models

assume that the disk temperature Td can therefore be related to the effective stellar

temperature by Td = 0.6Teff [Carciofi & Bjorkman, 2006]. In the remainder of this

work, the disk model approach of Hummel & Vrancken [2000] is adopted. In this

model approach the disk is assumed to be axisymmetric (symmetric about the vertical
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axis), and centered over the stellar equator.

To derive an expression for the disk density, we follow the Be disk theory detailed

in Sigut et al. [2009]. A cylindrical coordinate system will be employed, where r and

z are the radial and vertical cylindrical coordinates, respectively, given in units of

stellar radii. We begin by assuming that at the equatorial plane (z = 0), the disk has

a density ρ0 which falls off with increasing radius as a power-law

ρ(r, 0) = ρ0(r)
−n

. (1.12)

Having established this definition of ρ with respect to radius, we now need to es-

tablish a similar definition with respect to the vertical coordinate in the disk, z. We

assume that at a position in the disk equatorial plane the gas is in vertical hydrostatic

equilibrium, and thus must satisfy the equation

dP

dz
= −ρgz, (1.13)

where the vertical component of the star’s gravitational acceleration is given by

gz = GM�

z

(r2 + z2)3/2
. (1.14)

Using the ideal gas law, we can then write Equation 1.13 in terms of density ρ.

Grouping the physical constants and disk temperature into the coefficient α0, which

is a constant given our assumption of an isothermal disk, Equation 1.13 becomes

1

ρ

dρ

dz
= −α0

z

(r2 + z2)3/2
. (1.15)

Integrating this expression out to large distances above and below the disk gives

log ρ = −α0

�
1

r
− 1√

r2 + z2

�
, (1.16)

the right-hand side of which can be further reduced by utilizing the small angle

approximation z/r � 1, and Taylor expanding the second term within brackets about

z/r. Exponentiating both sides of this expression finally yields the needed expression
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describing the vertical disk density

ρ(z) = ρ0 exp

�
−α0

z
2

2r3

�
= ρ0 exp

�
−

�
z

H

�2
�

, (1.17)

where the constants and radius r in the exponential term are collected to define the

disk scale height H(r)

H(r) =

�
2r3

α0
. (1.18)

Combining Equations 1.12 and 1.17, we arrive at an expression describing the

radial and vertical structure of the disk density

ρ(r, z) = ρ0r
−n exp

�
−1

2

�
z

H(r)

�2
�

(1.19)

The disk base density at the stellar equator is given by ρ0, n is the radial density

exponent, and H(r) is given by

H(r) =
cs

VK

r
3/2

, (1.20)

where VK is the Keplerian velocity at the stellar equator, and cs is the speed of

sound, which is dependent on the disk gas temperature. The radial density exponent

is usually set as n = 3 which is found to be typical of other observed Be star disks

[Gies et al., 2007]. The disks are assumed to be in hydrostatic equilibrium vertically

and horizontally. Generally speaking a scale height defines a distance over which a

relevant quantity decreases by a factor of e (≈ 2.71828). In Be stars this relevant

quantity is the disk density. An alternate means of expressing Be disk scale height is

given by

H(r) = H0

�
r

R�

�β

, (1.21)

where

H0 =
a

Vcrit

R�, (1.22)

a =

�
kT

µmH

, (1.23)
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and β = 1.5 for an isothermal disk [Bjorkman & Carciofi, 2005, Carciofi & Bjorkman,

2006]. Both expressions for disk scale height are physically the same, and commonly

used to model the exponential fall off of the disk density in the vertical direction.

A substantial amount of variability is often observed in Be stars. Short term vari-

ations on the order of hours to days are seen in the surface brightness due to NRPs,

and also in the line profiles as more dense clumps of material embedded in the disk

structure co-rotate with the star [Rivinius et al., 1998]. Some of these line profile

variations have been hypothesized to be large clumps of mass injected into the disk,

which are slowly diffused outward and drawn out into spiral like arms due to the Ke-

plerian rotation of the disk, termed “spiral density waves” [Porter & Rivinius 2003,

and references therein]. Longer term variations (on time scales of months to years)

are seen in the overall disk strength, and even the disk presence [eg. Grundstrom

et al. 2011, McSwain et al. 2009]. A number of Be stars have been observed to lose

their disks entirely for a period of time, and have them return later (termed transient

Be stars) [McSwain et al., 2008, Porter & Rivinius, 2003]. While there is much active

research being conducted in these areas, the driving mechanisms and physics behind

these variations is still not well understood.

1.7 The Double Cluster: h & χ Persei

NGC 869 and NGC 884 (h and χ Persei, respectively) are a well known double open

cluster, visible in the Northern hemisphere, and have been the focus of many studies

over the years. The early 1900’s saw a number of studies attempting to determine

cluster membership, positions, and radial velocities [Adams & VanMaanen, 1913,

Hertzsprung, 1922, Messow, 1913]. By the 1960’s more extensive studies, such as

that of Slettebak [1968], were being conducted to determine spectral types for the

cluster constituents. More recently an extensive study has been conducted by Currie

et al. [2010] in which they investigated the general properties and membership of

the clusters. Their results, in agreement with those of Bragg & Kenyon [2005] and

Slesnick et al. [2002], find that the clusters are incredibly similar, having common ages

of ∼13–14 Myrs, distance moduli dM = 11.8− 11.85 (∼ 2, 200 pc), and reddenings of

E(B − V ) ∼ 0.52 − 0.55. They also estimate a total mass of at least 20,000 M⊙ for

26



the clusters.

One of the prominent motivations for our study is that these young open clusters

are rich in Be stars. As early as the 1920’s, observational studies conducted by

Trumpler [1926] and others noted the presence of emission in the hydrogen lines

of many of the brightest B-type cluster members. Modern studies of the cluster

have shown that upwards of 30% of the brightest B-type stars are known to be Be

stars [Keller et al., 2001]. In a study conducted with Spitzer, Currie et al. [2008]

investigated the lower mass stellar population for mid-infrared excesses due to the

presence of protoplanetary disks. They also identified 57 Be stars and candidates

exhibiting excess emission at 24µm, which helped to motivate our study to follow up

these candidates and confirm their Be nature. Of their stars, 21 had previously been

identified as showing emission, and 20 of their stars are included in the present study.

1.8 Outline of Dissertation

Through this work we seek to characterize the B-type and Be star populations of the

Double Cluster, NGC 869 and NGC 884. Chapter 2 details the spectroscopic and

photometric observations used to conduct this study. The process of determining

physical parameters for these stellar populations is summarized in Chapter 3, along

with the results of our analysis. In Chapter 4 we describe our use of spectral energy

distributions (SEDs) as a check of our parameter determinations and to determine

distances to the stars in our sample. Chapter 5 details the processes for estimating

Be disk radius and density via Hα line strength, and predicting the infrared flux

contribution of the Be disk. Finally in Chapter 6, we draw our final conclusions from

this study and outline future work needed to further the results of this investigation.
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Chapter 2

Observations

In the following work, both photometric and spectroscopic data were used to inves-

tigate different physical aspects of the B-type and Be star samples. The following

section contains details regarding the different instrumentation used to collect data

for this work, and the methods by which the data were reduced to their final form.

2.1 Spectroscopy

We have obtained spectra for a total of 104 members of NGC 869 and NGC 884

during multiple observing runs: 2005 November using the Kitt Peak National Ob-

servatory (KPNO) Wisconsin Indiana Yale NOAO (WIYN) 3.5 m telescope with the

Hydra multifiber spectrograph; 2010 August using the Wyoming Infrared Observa-

tory (WIRO) 2.3 m telescope with the Long Slit spectrograph; 2011 November using

the KPNO 2.1 m telescope with the GoldCam spectrograph; and 2012 January using

the 0.9 m KPNO Coudé Feed (CF) telescope with the Coudé spectrograph. The UT

dates, wavelength range, resolving power, number of targets, and instrumental setup

details for all runs are summarized in Table 2.1.
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2.1.1 WIYN

The WIYN 3.5m telescope is a ground-based optical observatory located at KPNO,

outside of Tucson, AZ. It is equipped with the Hydra multi-fiber spectrograph, which

is capable of taking up to 100 simultaneous spectra of objects in a given field of

view. The telescope is owned and operated by the WIYN Consortium. All of the

spectra obtained at the WIYN 3.5 m with the Hydra spectrograph have been zero

corrected using standard routines in IRAF4, and have been flat-fielded, wavelength-

calibrated, and sky-subtracted in IRAF using the dohydra routine. The Hydra

observations obtained by M. Virginia McSwain in 2005 consist of 7 exposures of NGC

869, totaling 2.25 hrs, and 5 exposures of NGC 884, totaling 2 hrs. Each exposure

has been wavelength calibrated with a CuAr comparison spectrum both before and

after the cluster observations. For each of the two configurations, the exposures have

been transformed to a common heliocentric wavelength grid and co-added to produce

good signal-to-noise for each star. The spectra were rectified to a unit continuum by

fitting line-free regions.

2.1.2 WIRO

WIRO is a classical Cassegrain telescope with a 2.3m aperture that is optimized to

make ground based photometric and spectroscopic observations in the near-IR and

optical wavelength regions. The telescope is owned and operated by the University

of Wyoming and is located atop Mt. Jelm, outside of Laramie, WY. Before any re-

duction or calibration routines were applied to WIRO data, all spectra (object and

comparison) were corrected for bit-flip errors with the rfits routine in IRAF. These

errors are inherent to the CCD used in this instrument. A CuAr calibration lamp

source was used to obtain wavelength calibration spectra before and after every object

spectrum. The spectra were then zero-corrected, flat-fielded, wavelength-calibrated,

and rectified to a unit continuum using standard slit spectra routines in IRAF. Fainter

objects that required multiple exposures were co-added prior to continuum rectifica-

tion to improve signal-to-noise.

4IRAF is distributed by the National Optical Astronomy Observatory, which is operated by
AURA, Inc., under cooperative agreement with the NSF.
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2.1.3 KPNO 2.1m

The KPNO 2.1m Cassegrain telescope has been in operation since 1964, and was one

of the earliest telescopes at Kitt Peak. Both imaging and spectroscopic instruments

are available for public use in the optical and IR regimes. Spectra from the KPNO 2.1

m instrument have been zero-corrected, flat-fielded, and wavelength-calibrated using

the standard routines found in IRAF. Once wavelength calibrated via the HeNeAr

comparison lamp spectra, which were taken before and after every object spectrum,

the data were rectified to a unit continuum.

2.1.4 KPNO Coudé Feed

The KPNO CF telescope is a unique instrument. The room-sized spectrograph was

originally designed to be used in conjunction with the 2.1m telescope, but has since

been modified to be used as an independent instrument with a 0.9m aperture mirror

that is mounted on the roof of the spectrograph room. In a similar manner to the

data gathered with WIRO and the KPNO 2.1m, the spectra obtained with the KPNO

CF telescope have been zero-corrected, flat-fielded, and wavelength-calibrated using

the standard routines in IRAF. ThAr comparison spectra were taken every one to

two hours during the run. The data were then rectified to a unit continuum.

2.2 Photometry

We have also gathered photometry of NGC 869 and NGC 884 members via a num-

ber of publications and online databases. Details of all photometry we have used

are summarized in Table 2.2. The Strömgren photometric measurements are used

to determine Teff and log g for the cluster Be stars, while the remaining photometry

are used in our analysis of the Be star disk radii and masses via the SEDs of the

star+disk system. The reminder of this section details the process of converting the

reported instrumental magnitudes to fluxes and the specifics of each filter system.

A simple relationship between the apparent magnitude and flux of two objects is
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Table 2.2. Photometric Catalogs

Filter System Central Wavelengths Reference

Strömgren uvby 350/411/467/547 nm WEBDAa

Johnson UBV 364/442/540 nm WEBDAa

2MASS JHKs 1.25/1.65/2.15 µm Skrutskie et al. [2006]
WISE 3.4/4.6/12/22 µm Wright et al. [2010]
Spitzer IRAC 3.6/4.5/5.8 µm Currie et al. [2007]
Spitzer IRAC 8 µm Currie et al. [2008]
AKARI 8.61/18.39 µm Ishihara et al. [2010]
Spitzer MIPS 24 µm Currie et al. [2008]

ahttp://www.univie.ac.at/webda/navigation.html

given by the following expression,

m1 −m2 = −2.5 log
F1

F2
. (2.1)

Rearranging the above expression, we can determine the flux of a particular star

by comparison to a second object with a well established flux and magnitude in

a particular waveband, and measuring the unknown star’s magnitude in this same

waveband

F1 = F2 × 10−0.4(m1−m2)
. (2.2)

To standardize any of the many photometric systems, the flux of a theoretical object

with an apparent magnitude of 0 in each filter is taken as the zero-magnitude flux

density, Fλ,zero. Making these substitutions into Equation 2.2,

Fλ,obj = Fλ,zero × 10−0.4(mλ)
, (2.3)

the observed flux density of an unknown object, Fλ,obj, can be derived. The typical

units associated with Fλ are erg s−1 cm−2 Å−1 (cgs units). The reported values of

Fλ,zero and λcentral needed to make the above magnitude-to-flux conversion for the
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photometric systems used in our analysis are given in Table 2.3, along with the full-

width half-maximum (FWHM) (effective filter width) of each filter.

Table 2.3 Photometric Filter Specifications
λcentral FWHM Fλ,zero

Filter System Filter (Å) (Å) (erg s−1 cm−2 Å−1)
Strömgren u 3491 300 11.72× 10−9

v 4111 190 8.66× 10−9

b 4662 180 5.89× 10−9

y 5456 230 3.73× 10−9

Johnson U 3735 660 4.34× 10−9

B 4443 940 6.40× 10−9

V 5483 850 3.67× 10−9

2MASS J 12350 1620 3.129× 10−10

H 16620 2510 1.133× 10−10

Ks 21590 2620 4.283× 10−11

WISE 3.4 µm 33526 6600 8.17976× 10−12

4.6 µm 46028 10400 4.55190× 10−12

12 µm 115608 55100 7.74679× 10−13

22 µm 220883 41000 2.20947× 10−13

Spitzer IRAC 3.6 µm 35500 7500 6.68209× 10−12

4.5 µm 44930 10150 2.66865× 10−12

5.8 µm 57310 14250 1.04967× 10−12

8 µm 78720 29050 3.10247× 10−13

Spitzer MIPS 24 µm 2367580 47000 3.83492× 10−15

AKARI 9 µm 86100 41000 2.27515× 10−13

18 µm 183900 99700 1.06374× 10−14

2.2.1 Strömgren

The Strömgren photometric system includes narrow-band filters covering the optical

region of the electromagnetic spectrum. With such narrow bands, the Strömgren

system allows for photometric sampling of specific areas of a stellar spectrum. This

property will be utilized later in Chapter 3, as line-less continuum regions in the

spectra of massive stars are well sampled by the b and y bands.

Strömgren photometic observations are often reported as a set of indices (b-y, m1,
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and c1) and y magnitude. The indices m1 and c1 are given by

m1 = (v − b)− (b− y) (2.4)

c1 = (u− v)− (v − b). (2.5)

Using the expressions given in Equations 2.6 – 2.8, the remaining magnitudes can be

recovered.

b = y + (b− y) (2.6)

v = m1 + (b− y) + b (2.7)

u = c1 + 2(v − b) + b. (2.8)

The Hβ wide and narrow filters sample the second of the hydrogen Balmer lines,

centered at 4861 Å, and together yield the β index

β = mnarrow −mwide (2.9)

which provides an effective equivalent width of the Hβ line. In this expression mnarrow

designates the narrow band magnitude, and mwide designates the wide band magni-

tude.

Shown in Figure 2.1 are the normalized spectral response curves for a standard set

of uvby filters. Plotted above the response curves is a model spectrum of a Teff = 15000

K and log g = 3.80 dex B-type star, from the TLUSTY BSTAR2006 grid of model

spectra [Lanz & Hubeny, 2007], illustrating the specific spectral regions sampled by

each of the Strómgren filters.

2.2.2 Johnson

The Johnson photometric system includes wide-band filters in the near-ultra-violet

and optical spectral regions. The calibration of this system, as detailed by Colina et al.

[1996], is derived from setting the UBV magnitudes of Vega to zero. This calibration

reports errors in the determined zero-magnitude fluxes of order 5 − 6%. The UBV

magnitudes used in this work were gathered from the WEBDA database. As there

are multiple values reported for each band from several sources, we have averaged the

34



Figure 2.1 Strömgren uvby normalized spectral responses as determined for the 4”
x 4” Strömgren filters at KPNO. The binned spectrum of a model B-type star of
Teff = 15000 K and log g = 3.80 dex (TLUSTY BSTAR2006 Lanz & Hubeny 2007)
is plotted with the Strömgren filters, illustrating the regions each samples.

reported values together and removed any observations lying more than one standard

deviation outside of this mean value. Shown in Figure 2.2(a) are the calculated

normalized spectral response curves for a standard set of UBV filters. These curves

demonstrate the wide sampling regions of these filters, and their relative transmission

[Colina et al., 1996].

2.2.3 2MASS

The Two Micron All Sky Survey (2MASS) is an extensive ground-based near-infrared

(near-IR) photometric survey, conducted by the University of Massachusetts and the

Infrared Processing and Analysis center at JPL/Caltech. The survey was conducted

with two 1.3 m aperture automated telescopes, one in each the Northern and Southern

hemispheres, which scanned 99.998% of the sky in three near-IR bands between 1997

and 2001 [Skrutskie et al., 2006]. The complete all-sky data release can be accessed

and searched via the online NASA/IPAC Infrared Science Archive (IRSA). Further
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details of the survey data calibrations can be found in Cohen et al. [2003]. Shown

in Figure 2.2(b) are the normalized spectral response curves for the JHKs bands as

determined by the 2MASS calibration team.

2.2.4 Spitzer

Spitzer is a space-based infrared telescope, launched in 2003 and operated by NASA.

The mission consists of three primary instruments, the Infrared Array Camera (IRAC),

the Multi-Band Imaging Photometer for Spitzer (MIPS), and the Infrared Spectro-

graph (IRS). Both the IRAC and MIPS provide photometry covering the near- to

mid-IR spectral regions, while the IRS provides low resolution spectroscopy between

5.2 − 38 µm. At the time of the writing of this thesis Spitzer is still functioning

and taking observations. However, the cryogenic coolant onboard has been depleted,

leaving only the IRAC instrument available for continued use during the remain-

ing “warm” phase of the mission. As with 2MASS, Spitzer data is available for use

through the online IRSA database. Details regarding the calibration of IRAC data

can be found in Reach et al. [2005], and similar specifications for MIPS data can be

found in Rieke et al. [2008]. The Spitzer observations used in this work were gathered

from the Currie et al. [2007] (IRAC 3.6 µm, 4.5 µm, 5.8 µm) and Currie et al. [2008]

(IRAC 8 µm, MIPS 24 µm) surveys of NGC 869 and NGC 884. Shown in Figures

2.2(c) and 2.2(d) are the normalized spectral response curves for both the Spitzer

IRAC and MIPS filters used in this work.

2.2.5 WISE

The Wide-field Infrared Survey Explorer (WISE) is another space-based infrared tele-

scope operated by NASA, launched in late 2009. Further details regarding the cali-

bration of WISE data can be found in Wright et al. [2010]. The complete all-sky data

release can be accessed and searched via the online NASA/IPAC Infrared Science

Archive (IRSA). Shown in Figure 2.2(e) are the normalized spectral response curves

for the WISE filters. In our initial investigation of the WISE photometry, we found

the 22 µm band magnitudes to be systematically too high for those of our objects

observed by the mission, thus we have excluded them in our analysis.
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(a) Johnson UBV filter system. (b) 2MASS filter system.

(c) Spitzer IRAC 3.6/4.5/5.8/8 µm
filters.

(d) Spitzer MIPS 24 µm filter.

(e) WISE filter system. (f) AKARI 9 and 18 µm filters.

Figure 2.2 Normalized spectral response curves for the various filter systems used in
this work for SED fitting.
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2.2.6 AKARI

AKARI, much like Spitzer and WISE, is a space-based infrared telescope launched

and operated by the Japanese Space Agency. Over the course of 18 months, starting

in 2006 after its launch, AKARI surveyed 94% of the sky, observing across the near-,

mid-, and far-IR spectral regions. The satellite carries two instruments, the Infrared

Camera (IRC), and the Far-Infrared Surveyor (FIS). The all-sky survey conducted

by the satellite utilized the 9 µm and 18 µm filters of the IRC, and the 65 µm, 90

µm, 140 µm, and 160 µm filters of the FIS. For the remainder of this work, only the

9 µm and 18 µm bands will be utilized, and further details regarding the calibration

of these observations can be found in Ishihara et al. [2010].

2.3 Precision vs. Accuracy

With any experimentally measured quantity, both the precision and the accuracy

of a measurement must be determined in order to gauge it’s reliability. Often in

everyday conversation these two descriptors are used interchangeably, however, this

is incorrect. Precision and accuracy refer to two different measures of error in a

measurement. Generally speaking, precision is the repeatability of a measurement,

i.e. how close are the resulting numbers if you make the same measurement multiple

times. Accuracy is how close a measurement comes to the absolute or true value of a

measured quantity.

Determining the precision of different aspects of our analysis requires careful de-

termination of the error being contributed by each parameter in a fit, or possible

inaccuracy in a measurement device. In processing our raw data and preparing it for

use, we carefully remove erroneous “noise” added to our observations by the wave-

length dependent response the CCD detector and the underlying electronic current

that powers it. In our fitting routines, which will be described in detail in Chapter 3,

we must determine appropriate error bars that account for any imperfections in the fit

of our observed stellar spectral line to that produced by a comparable stellar model.

The error bars we report are derived by minimizing the χ
2 residual fit of our observa-

tions to the model. Our determination of V sin i requires a one parameter fit. This

means that an appropriate model is selected by Teff and log g, and different amounts
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of rotational broadening are incrementally applied to the stellar spectrum. At each

step the observed and model fluxes, Fλ,obs and Fλ,mod respectively, are compared and

normalized across the wavelength region being fit

χ
2 =

n�

λ=1

�
Fλ,obs − Fλ,mod

Fλ,mod

�2

, (2.10)

giving a measure of how well the data is fit by the model, χ
2. The value of V sin

i which gives the smallest χ
2 is taken as the resultant fit value, and the reported

errors are determined from the offset from this best fit value that increases the rms2

by 2.7rms2
/N , where N is the number of wavelength points within the fit region.

Similar two parameter χ
2 residual fits are used to simultaneously determine Teff and

log g. Similar incremental steps are taken to vary Teff and log g while honing in on a

minimum residual value and adequate error bars.

Gauging the accuracy of the various measurements we make in our analysis re-

quires us to compare them closely with analogous measurements by other studies,

or to re-measure the same parameters by different techniques. In our analysis we

utilize both of these stratagies as appropriate to determine the accuracy of our mea-

surements. There are two other studies which have measured physical parameters of

many of our sample B-type and Be stars. One uses a spectroscopic modeling technique

very similar to ours, but different model stellar atmospheres to determine V sin i, Teff ,

and log g for sample stars. The second uses photometry, rather than spectroscopy, to

derive Teff . Agreement between the resultant parameters for stars common to these

studies and our own lends further credence to our results being the “true” values of

V sin i, Teff , and log g for these stars, and the robustness of our methods. Any dis-

crepancies provide insight into physical differences between models and the stars they

represent, or assumptions made that may not be as correct as thought. In Chapter

4 we utilize two independent means of deriving distances to our sample stars, which

we then compare to the known distances to the clusters. While these derivations of

distance are not as precise as those used to determine the accepted cluster distances,

the agreement in the results again gives us confidence in our measurements.
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Chapter 3

Determination of Physical

Parameters

In order to dive into the details of the Be star disks in our sample, we must first deter-

mine what sort of stars we are considering in our sample. To determine the physical

characteristics of each star requires careful measurement of physical parameters like

V sin i, Teff , and log g. Determining these quantities for normal B-type stars will

provide a baseline for measuring the same for the stars hosting disks. By carefully

determining Teff and log g for our sample Be stars, we will be able to isolate the flux

contributions from the Be stars and their disks later in Chapter 5.

There is an on-going debate in the massive star community regarding the evolu-

tion of angular momentum of B-type stars. With their abundance of B-type stars, h

and χ Per are two of the many stellar clusters at the center of this debate. Strom

et al. [2005] find that the present-day rotation rates of these stars are set by envi-

ronmental characteristics of the natal clouds in which they formed, with little change

over the main sequence stellar lifetime. The work of Huang & Gies [2006a] and Huang

et al. [2010], however, indicates that the observed rotation rates of B-type stars are

due less to the initial birth-line rotational rates of the stars and more to evolution-

ary spin-down or mass transfer in binaries. Both studies also observe that B-type

stars in clusters have, on average, significantly higher rotation rates than field B-type

stars. Resolving the angular momentum problem also requires a new examination of

the stellar parameters and evolutionary states, which the analysis described in this

chapter endeavors to provide for the stars of h and χ Per. The analysis and results
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detailed in this chapter have been published in Marsh Boyer et al. [2012].

3.1 Spectral Model Fitting for B-type

and Non-emission Be Stars

The first component of our population study is to determine basic parameters for the

cluster constituents using a methodology devised by McSwain et al. [2008]. Using

ground based optical spectroscopy (4000–5200 Å) and model fitting techniques, we

can determine V sin i, Teff , and log g for each star. To obtain these measurements,

we compare our observed spectra to grids of model B-type stars, determining a best

fit to the data by minimizing the mean square of the deviations rms2.

Figure 3.1 Sample spectral line fits for NGC 869-90. Shown on the left is Hγ and on
the right is He I λ4378. The solid line is our observed spectrum while the dashed line
displays our model fit to the line, with the computed residual shown above, shifted
for clarity.

We begin our analysis by making a rough estimate of Teff and log g for a star,

and then we compare the He I λλ4387, 4471, 4713, and Mg II λ4481 lines with the

Kurucz ATLAS9 models [Kurucz, 1994] to determine V sin i. These lines are used

because their broadening is dominated by the effects of rotation, thus yielding a better

indication of V sin i. We then take a weighted average of the four values determined

from each of the lines to give our measured value of V sin i. The error, ∆V sin i,
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is determined by the offset from the measured best-fit value that increases the rms2

by 2.7rms2
/N . Here, N is the number of wavelength points within the fit region. A

sample fit determined for He I λ4387 in NGC 869–90 is shown in the right panel of

Figure 3.1. Our results for V sin i and its errors are listed in columns 2 and 3 of

Tables 3.1 and 3.2.

In Be stars it is possible that the He I lines may contain weak emission from the

circumstellar disk, which may partially fill the absorption features and narrow the

overall line profile. So while we have made measurements of V sin i where we can for

Be stars in our sample, these values should be considered as lower limits.

We measure a mean V sin i =157 km s−1 with a standard deviation of 89 km

s−1 for the normal B-type stars of both clusters, including binary systems. Assuming

an average inclination angle of i = 60o, this gives a mean Veq = 181 km s−1 for our

sample of B stars. For the Be stars we measure a mean V sin i = 205 ± 81 km s−1,

with a mean Veq = 237 km s−1. From this it is clear that the Be stars in these clusters

are, on average, rotating somewhat more rapidly than their B-type counterparts. In

comparison to other young open clusters (see McSwain et al. 2009, 2008), we find

that the Be star population of NGC 869 and NGC 884 are rotating surprisingly more

slowly that expected in comparison to their B-type counterparts. The cumulative V

sin i distributions for all Be and normal B-type stars in both NGC 869 and NGC 884

are shown in Figure 3.2. Using the two-sided Kolmogorov-Smirnov (K-S) statistical

test, we investigate the null hypothesis that the distributions of B-type and Be stars

differ. The K-S test indicates a 7.6% chance that the two populations are drawn from

the same sample.
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Using the values of mass, M�, and radius, R�, discussed below for all stars in our

sample, we can determine the critical velocity

Vcrit =

�
GM�

Re
(3.1)

for our stars. Vcrit is the rotational velocity at which the centripetal and gravitational

forces keeping the star together would become imbalanced, resulting in the destruction

of the star. For simplicity in this expression, we assume that the polar radius of the

star, Rp, is equal to R�, and that a rotationally distorted star has an equatorial radius

Re = 1.5Rp. With this, we find a mean Vcrit of 430 km s−1 for the B-type and Be

stars in these clusters.

Figure 3.2 Cumulative distribution function of V sin i for the Be stars (dashed line)
and the normal B-type stars (dotted line) of both NGC 869 and NGC 884.

Having determined values of V sin i for each star, we turn again to model spectral

fitting to determine values for Teff and log g from the Hγ line at 4340Å. The hydro-

gen Balmer lines are particularly sensitive to Teff and log g, making them ideal for

determining these quantities accurately. The method outlined here was employed for

normal B-type stars and Be stars with no emission present in our 2005 observations.
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For stars having Teff ≤ 15000 K we employ the methods of Huang & Gies [2006a], who

use Hγ line profiles generated by the line-blanketed, local thermodynamic equilibrium

(LTE) Kurucz ATLAS9 and SYNSPEC codes. The “virtual star” models produced

by their code simulate spherically symmetric stars with constant Teff and log g across

their surface, and the spectra of these model stars are then used to determine these

values and their errors for our observed spectra, similar to our procedure for V sin

i. The errors ∆Teff and ∆log g are determined from the quadratic sum of the V sin

i propagated errors and the errors due to the intrinsic noise in the observed spectra.

For hotter stars, LTE models should systematically underestimate Teff as non-LTE

effects alter the equivalent width of the Hγ line we are measuring. Hence for stars

having Teff ≥ 15000 K, we use instead the metal line-blanketed, non-LTE, plane-

parallel, hydrostatic TLUSTY BSTAR2006 model spectra [Lanz & Hubeny, 2007].

A sample fit of the Hγ line in NGC 869–90 is shown in the left panel of Figure 3.1.

The errors ∆Teff and ∆log g are determined from the values that produce an rms2

no more than 2.7rms2
/N greater than the minimum rms2. Our results for Teff , log g,

and their respective errors are shown in columns 4–7 of Table 3.1.

29% of the stars in our sample are rapid rotators, having measured values of V sin

i in excess of 200 km s−1. At such significant rotational velocities, the assumption of a

spherical shape for these stars is no longer plausible given the substantial centrifugal

forces distorting the stars into oblate spheroids. This rotational distortion produces

significant differences in both the temperatures and surface gravities at the polar and

equatorial regions. As the measured values of Teff and log g are averages across the

visible stellar hemisphere, these rotational effects produce lower values than expected,

a phenomenon known as gravitational darkening. As the rotation rate for a star

approaches its critical velocity, the equatorial radius may increase by as much as

50%, while the polar radius remains unchanged. For these reasons, we convert our

measured log g to log gpolar, as detailed in Huang & Gies [2006a]. The authors produce

detailed spectroscopic models to investigate the effects of such rotational distortions

and determine a statistical correction factor for log g. This factor is averaged over

all possible values of inclination angle, i, for a variety of stellar models. By bilinearly

interpolating between their models, we converted our measured value of log g to log

gpolar. This value of log gpolar is a better measure of the true surface gravity of the

star, untainted by the effects of rapid rotation, and provides us a more accurate means
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of comparison between slowly and rapidly rotating stars. The log gpolar correction is

therefore most significant for stars rotating more rapidly than 50% of Vcrit. We assume

that this conversion produces a negligible change to the value determined previously

for ∆log g. Our derived values of log gpolar are listed in column 8 of Table 3.1.

Once we have measured parameters for all of the B-type stars, we can then de-

termine M� and R� for each of them by interpolating values from the Schaller et al.

[1992] non-rotating evolutionary tracks, consistent with the slow rotation of most of

our targets. These evolutionary tracks are shown plotted with Teff and log gpolar in

Figure 3.3. The errors ∆M� and ∆R� correspond to our measured ∆Teff and ∆log

g. Additionally, we have compared our results with the rotating models of Ekström

et al. [2012], and we find agreement between the models to within 10%. The resulting

values of M�, R�, and their respective errors are listed in columns 9–12 of Tables 3.1

and 3.2. We have also checked the accuracy of our results by comparing the TLUSTY

BSTAR2006 model SEDs with the observed SEDs for our B-type sample stars, and

find excellent agreement between our derivations of distance and reddening with the

accepted values of Currie et al. [2010]. These results will be discussed further in

Chapter 4.

3.2 Strömgren Photometric Method for Emission

Be Stars

We note that star NGC 869–566 did not show any signs of emission in our initial

observations, but has since exhibited progressively stronger emission in our more

recent 2010 and 2012 observations; hence we include it among the non-emission Be

stars and have measured Teff and log g from the Hγ line in its 2005 blue spectrum.

Given the poorer resolution of 2009 and 2010 blue WIRO spectra, we cannot use

these data with our spectral fitting techniques. We therefore use only the blue and

red WIRO spectra from these observing runs to identify Be stars exhibiting emission

at the time of our observations.
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Figure 3.3 For both NGC 869 (top) and NGC 884 (bottom), Teff and log gpolar are
plotted with the evolutionary tracks of Schaller et al. (1992). The zero age main se-
quence (ZAMS) mass of each evolutionary track is labeled along the bottom. Normal
B-type stars are shown as open diamonds while Be stars are filled diamonds.
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For the other Be stars in our sample we cannot determine accurate values for

Teff and log g via the same model fitting technique, as hydrogen absorption line

profiles are altered by emission during disk phases of these stars. Instead we can

use Strömgren photometry available from the WEBDA5 database to correlate Teff

and log g for all of the B-type and Be stars in our sample. Non-emission B stars

with both available Strömgren photometry and spectral model fits were included as

calibration stars for the photometric technique. To this we add eight additional stars

from Napiwotzki et al. [1993] with well-known Teff and available Strömgren data. We

use ubvy magnitudes to first determine the Strömgren indices m1 and c1, given by

equations 2.4 and 2.5. The calculation of Teff determined by Balona [1984] requires

us to convert the c1 index to the dereddened index c via the expressions

E(b− y) = E(B − V )× 0.754 (3.2)

c0 = c1 − 0.19[E(b− y)] (3.3)

c = log(c0 + 0.200), (3.4)

which use the reddening values of the clusters, E(B−V ) = 0.55 and E(B−V ) = 0.52

for h and χ Per, respectively [Bragg & Kenyon, 2005, Currie et al., 2010]. Using these

indices and the Hβ line magnitude (β), we can then calculate Teff via the relationship

log TBalona =3.9036− 0.4816(c)− 0.5290(β)

− 0.1260(c)2 + 0.0924(β)(c)− 0.4013(β)2 (3.5)

given by Balona [1984].

McSwain et al. [2008] found that this calculated value, TBalona, slightly under-

estimates the true Teff of the B-type stars. Thus, we performed a linear fit to the

data, shown in Figure 3.4(a), and determined a correction factor that will bring the

two independent measurements into agreement. In this way, we are able to use the

B-type stars measured by both methods as a calibration to yield values of Teff for the

otherwise immeasurable Be stars. These Teff and our calculated errors are listed in

columns 4 and 5 of Table 3.2.

To determine log g, Balona [1984] advocate using β and c0. Given that β serves

5Available online at www.univie.ac.at/webda and maintained by Ernst Paunzen.
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as an indicator of log g via spectra line width, and c0 is an indicator of temperature

in hot stars, the relationship between these two values can serve as a Hertzsprung-

Russell diagram for the cluster providing a means for investigating the temperature

and evolutionary trends of the stellar population. In more evolved giant or supergiant

stars (luminosity classes III and I, respectively), the hydrogen lines are very narrow

due to the lower densities in the outer atmospheres of these stars, decreasing the col-

lisional rates that produce the pressure broadening mechanism. Main sequence stars

(luminosity class V), which host more dense atmospheres and thus higher collisional

rates and higher pressures, have broader hydrogen lines. In general, we do see that

the values of c0 and β for the B-type calibrators shown in Figure 3.4(b) agree with

the relations for class V and III stars of Balona & Shobbrook [1984]. However, the

circumstellar disks present in Be stars (shown as filled diamonds in Figure 3.4(b))

will artificially brighten the β magnitudes of these stars, contaminating the c0 − β

relation for these stars and our calculated values of log g. The spread in log g of

the B-type calibration stars prevents us from simply applying either of the c0 − β

relations shown in Figure 3.4(b) to the population. Instead, we perform a linear fit

to the calibration star data and obtain a corrected value of β which we then use to

correct our calculated TBalona and finalize our calibrated, calculated temperatures and

surface gravities for the Be stars exhibiting emission in our data. Since the clusters

are approximately the same age, this single fit is appropriate. Additional details re-

garding the method to determine Teff , log g, M�, R�, and their respective errors for

the Be stars can be found in McSwain et al. [2008]. We do not perform any further

correction to obtain log gpolar for the Be stars measured with this technique, given

the large scatter between the calibrators’ log gpolar and their Strömgren log g. The

final results for log g and ∆log g of the Be stars are listed in columns 6–7 of Table

3.2.
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Figure 3.4 (left): Teff measured for the B-type temperature calibration stars from

our work (diamonds) and from Napiwotzki et al. (1993; triangles) compared to their

calculated TBalona (Balona 1984). A linear fit of the two temperature scales (solid

line) and the 1:1 agreement (dotted line) are also shown. (right): Strömgren c0 index

and β magnitude are plotted with the c0 − β relations for luminosity class V and III

stars (Balona & Shobbrook 1984; dotted lines). The B-type temperature calibration

stars from this work (diamonds) are plotted with 18 Be stars (filled diamonds) to

demonstrate that the Be star β magnitudes are brightened due to the disk emission

present. A best fit line for the calibration stars is also shown (solid line).

We highlight our results regarding the Be star population in Table 3.2, and we note

that these Be stars were selected from the literature based on previous observations of

spectral line emission or via photometric surveys needing spectroscopic confirmation.

Presented within Table 3.2 are a total of 28 known or proposed Be stars within our

sample of 104 stars. For these objects we were able to examine the state of emission

from our observations, and then determine their stellar parameters by our spectral

modeling or Strömgren photometry methods as detailed earlier in this section. The

broad-band Strömgren indices used to derive their Teff and log g are not likely to be

affected by their rapid rotation. We do see evidence of emission in 22 of these Be stars.

Interestingly, we see evidence in our data for at least 8 “transient” Be stars [McSwain

et al., 2008]. The stars NGC 869–146, NGC 869–717, NGC 869–1268, and NGC 884–

2262 were observed as Be stars in the past [Bragg & Kenyon, 2002, Fabregat et al.,

1994, Keller et al., 2001, Slettebak, 1985], and the star NGC 884–2468 is a proposed
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candidate Be star [Currie et al., 2008]. However, we do not see evidence of emission

in our observations of these objects. As mentioned previously, the known Be star

NGC 869–566 was initially observed by us in 2005 and showed no sign of emission

in its spectrum. However, it has since developed increasingly stronger emission in

our 2010 and 2012 observations. For the other two transient Be stars (NGC 869–49,

NGC 884–1772), we do see emission in our spectra, however other authors have noted

them in non-emission phases in the past [Bragg & Kenyon, 2002, Keller et al., 2001,

Schild, 1966, Slettebak, 1985].

3.3 Comparison with Other Studies

Previous studies, such as Strom et al. [2005] and Huang & Gies [2006a], have inves-

tigated some of our B star targets to determine the same basic stellar parameters we

have, however their analyses employed LTE atmospheric models or quantitative cor-

rections to LTE model measurements to account for non-LTE effects. Between these

two studies there are clear discrepancies in their measurements and the conclusions

each draws regarding the natal rotation rates and angular momentum evolution of the

clusters’ massive stars. An accurate determination of a given star’s surface gravity is

essential to the evaluation of stellar radius and evolutionary state. As we show here,

non-LTE effects can contribute to significant errors in measurements of log g.

3.3.1 Huang & Gies 2006

Amongst the 54 stars common to our sample and to that of Huang & Gies [2006a],

we find some discrepancies between our respective results. As can be seen in Figure

3.5(a), there is very good agreement in our determinations of V sin i. This is to be

expected since we both used LTE models to fit the He I and Mg II lines to measure V

sin i. The differences at low V sin i may be due to a difference in spectral resolution

between our respective datasets.

However, differences in our measured temperatures for stars with Teff ≥ 15000 K

and in our measured log g values are clearly apparent in Figures 3.5(b) and 3.5(c),

respectively. Given that our general methodology for measuring Teff and log g is

the same as Huang & Gies [2006a], the source of these discrepancies lies partially
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in our use of different stellar models. While Huang & Gies [2006a] employ the LTE

Kurucz ATLAS9 models [Kurucz, 1994], we use the more recently available non-

LTE TLUSTY BSTAR2006 models of Lanz & Hubeny [2007] for those stars in our

sample with Teff ≥ 15000 K. In their analysis Huang & Gies [2006a] acknowledge that

their derived temperatures are likely to be slightly lower and gravities slightly higher

compared to measurements derived from non-LTE model atmospheres, as shown by

the comparative analysis of Lanz & Hubeny [2007].

Lanz & Hubeny [2007] find that in the non-LTE models the hydrogen Balmer lines

tend to be broader and stronger due to the overpopulation of the n = 2 energy state,

thus LTE models will yield overestimated surface gravities due to the altered shape of

the Balmer line wings. Przybilla et al. [2011] compared LTE ATLAS9 models to non-

LTE TLUSTY models for temperatures between 15000–35000 K. They found that

non-LTE effects are significant above 22,000 K, affecting both the cores and wings of

the Balmer lines. They find that LTE Balmer line profiles have equivalent widths up

to 30% lower than in non-LTE line profiles. This would cause a non-LTE model to

find a higher temperature for the same observed line, or conversely for an LTE model

to underestimate the temperature. Przybilla et al. [2011] also find that LTE models

of the Hγ line may overestimate log g by up to 0.2 dex.

While the expected temperature disagreement is opposite of the trend we find in

our comparison of our work with the results of Huang & Gies [2006a], several of our

common sample stars with temperatures greater than 24,000K are Be stars, some of

which we find to exhibit transient behavior. It is likely that emission has subtly filled

in or otherwise altered the Hγ line profile, which would result in the overestimation of

Teff for these stars by Huang & Gies [2006a]. We also find one proposed spectroscopic

binary among this common sample, so the Hγ line profiles may be further altered

by variable line blending effects. For the remaining B-type stars in this region it is

possible that our temperature discrepancy is due to variable emission in unknown

Be stars, unresolved binaries, clumping in the hot stellar wind, or differences in the

atomic species included in our respective atmospheric models that affect hydrogen

Stark broadening [Przybilla & Butler, 2004].

With the quantified disagreement in Teff and log g shown here, the anticipated

effect of non-LTE atmospheres on the measurement results is more significant than
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initially assumed by Huang & Gies [2006a]. The effects of these overestimated tem-

peratures and gravities also affect their determined stellar masses, their usage of log

g as an indicator of stellar evolutionary status, and their determined spin-down rates

of B and Be stars. We find that cluster members are more evolved than indicated

by Huang & Gies [2006a]. These B stars may spin down more slowly than the rates

observed by Huang & Gies [2006a] and Huang et al. [2010].

3.3.2 Strom et al. 2005

We also compare our results to those presented by Strom et al. [2005], who adopt the

Teff values derived from UBV photometry by Slesnick et al. [2002]. In their study they

find reasonable agreement between their measurements of V sin i and those of Huang

& Gies [2006a], though their results are systematically 5% smaller than the results

of Huang & Gies [2006a]. Comparing the results for the 26 stars common to our

two samples, we find a similar agreement and systematic underestimation of Strom

et al.’s V sin i values when compared to our measurements, as is expected given the

excellent agreement of our results with those of Huang & Gies [2006a]. Upon further

comparison of our results, we find that Strom et al. [2005] and Slesnick et al. [2002]

have overestimated Teff for hotter stars as well. We note that the two most discrepant

stars are both Be stars, suggesting that their Hβ emission contaminates the B-band

brightness used to derive Teff . Thus M� and R� for the Be stars as shown in Figure

3.5(d) are also likely overestimated.

Finally, we note that many of our Be stars were found to be possible spectroscopic

binaries by Huang & Gies [2006a] and Strom et al. [2005]. Since Huang & Gies

[2006a] did not present measurements of Teff or log g for many of their spectroscopic

binaries, not all of our measurements could be directly compared. Their classification

as binaries may be inaccurate due to variable emission in their spectral lines. Further

monitoring of their radial velocities as well as their emission will clarify their status.

3.4 Chapter Summary

We have determined V sin i, Teff , log gpolar, M�, and R� for 104 B-type and Be star

members of NGC 869 and NGC 884 using spectroscopic modeling techniques and
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Figure 3.5 Comparisons of the resultant V sin i (top left), Teff (top right), and log
g (bottom left) measurements from this work and Huang & Gies [2006a], as well as
a comparison of our V sin i results with those of Strom et al. [2005], and Slesnick
et al. [2002] (bottom right). NGC 869 cluster members are shown as open diamonds,
while NGC 884 members are shown as open triangles. Be stars are shown as filled
diamonds and triangles. Spectroscopic binaries, as noted in Tables 3.1 and 3.2, are
highlighted by double-sized symbols.

calculations from Strömgren photometry. Our determined values for V sin i are in

good agreement with the earlier results of Huang & Gies [2006a], though there is

some discrepancy in our measured temperatures and surface gravities due to our use

of the more recently available non-LTE BSTAR2006 stellar models of Lanz & Hubeny

[2007] and the possible contamination of Be stars and spectroscopic binaries. Because
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of the resulting over-estimation of log g, Huang & Gies [2006a] have underestimated

the retention of initial angular momentum by the cluster members.

We find that the cluster members are significantly more evolved than found by

previous measurements. We also identify 8 transient Be stars in h and χ Per. The Be

stars in these clusters are also rotating more slowly than expected based upon other

young open clusters. Further monitoring of the massive stellar constituents of these

clusters, and their rotation rates is well warranted.
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Chapter 4

Stellar Distances

With the reliable values for V sin i, Teff , log g, M�, and R� established in Chapter 3 for

our sample stars, we can now develop a means for separating the flux produced by our

sample stars and flux being contributed from other sources in the star’s environment.

These parameter measurements will now be utilized in conjunction with photometric

magnitudes gathered from several optical and IR surveys to examine the total flux

emitted by our B-type sample stars, and to the determine distance to each cluster.

4.1 Spectral Energy Distributions of B-type Stars

In general, an SED demonstrates the total flux being emitted by a source across the

electromagnetic spectrum. This flux can be modeled based upon the stellar temper-

ature and surface gravity, and observed by determining photometric magnitudes for

the source in the UV, optical, and IR regions of the spectrum.

In order to compare the flux of a model SED to that of an observed star, we must

take into account the observed angular size of our target star. The amount of flux

observed from a given star decreases with distance as an inverse square law,

Fobs =
L

4πr2
=

4πR
2
σT

4

4πr2
. (4.1)

In this expression R is the stellar radius, T is the stellar temperature, and r is the

distance to the star. As the distance between the star and observer increases, the flux

received by the observer decreases by a factor of r
2. Therefore, before using our model

60



flux we must normalize it to this same angular size we perceive our observed star to

have. In this way we can determine how much flux would be received from our model

star if it were sitting at the same location as our observed star, and make a direct

comparison between the model and observed SEDs. The relevant quantities for this

geometric calculation are shown in the Figure 4.1 schematic, and for our purposes we

define θc as half the angular diameter of the resolved stellar disk. Using the tangent

Figure 4.1 Illustration of the relevant geometric quantities for determining stellar
distance via angular diameter.

trigonometric relation and a small angle approximation, which is valid given the large

distances involved, it can be shown that the angular diameter is given by

θD = 2θc = 2

�
R

r

�
. (4.2)

To determine the total flux emitted by the star across all wavelengths, ie. the bolo-

metric flux, we integrate the observed flux over all frequencies

F =

�
Fνdν =

�
R

r

�2

σT
4
eff , (4.3)

where Teff is the effective surface temperature. Using this result, the angular diameter

of the star, θD, can now be expressed as

θD =
2R

r
= 2

��
Fνdν

σT
4
eff

�1/2

, (4.4)

which is in terms of the bolometric stellar flux observed here on Earth. Finally, inter-

stellar extinction must be taken into account in our calculation, as it will significantly

alter the flux observed at bluer wavelengths. To determine the actual stellar flux one
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needs to utilize model stellar atmospheres to yield the model flux distribution. In-

terstellar extinction is applied to the appropriate stellar model, giving the reddened

bolometric flux, Fred. In practice, the model continuum is then matched with the

observed SED so that the ratio, Fν,obs/Fν,mod, which is independent of ν, can be used

in our expression

θD =
2R

r
= 2

�
Fν,obs

Fν,mod

�1/2

. (4.5)

For our sample B-type stars with Teff ≥ 15000 K, stellar flux models are selected

from the TLUSTY BSTAR2006 grid of SED models [Lanz & Hubeny, 2007], based

on the values of Teff and log gpol determined in Chapter 3 for each star. Using the

reported E(B−V ) values from Currie et al. [2010], we applied the galactic reddening

model of Fitzpatrick [1999], with the ratio of total extinction in V to the selected ex-

tinction AV /E(B−V ) = 3.1, to our model flux. Recall from Chapter 1 that reddening

or extinction is the preferential scattering of bluer wavelengths of light by interstel-

lar material between observer and object, thus resulting in an object appearing to

emit fewer short wavelength photons that it truly does. The model SED flux is then

normalized to the angular size of the star, as described above, using the value of R�

determined in Chapter 3. After interpolating the reddened model flux, Fred, onto the

same wavelength scale as the observed flux points, the average of the ratio Fred/Fobs

gives the needed normalization factor. Shown in Figure 4.2 are the normalized red-

dened model flux and observed flux points for the B-type star NGC 869–864. The

dotted and dashed model SEDs illustrate the error in the reported E(B − V ) values,

and the effect this reddening has on an SED.

For B-type stars with Teff ≤ 15000 K, stellar flux models are selected from the

ATLAS9 SED models [Castelli & Kurucz, 2004], based on the Teff and log gpol deter-

mined in Chapter 3 for each star. The same method described above for the hotter

B star SEDs was utilized, however we found that the resultant distances were sys-

tematically too low for the observed fluxes for these stars, suggesting that they may

be foreground objects. These foreground stars simply lie along a similar line of sight

as h and χ Per, but are significantly closer to us and are not gravitationally bound

to the clusters (ie. not cluster members). For this reason we exclude the few cooler

stars in our sample from further analysis.
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Figure 4.2 Example SED of B-type star NGC 869 - 864.

4.2 Distance from Absolute Flux

After producing the normalized SEDs of the previous section, solving Equation 4.5

for r yields the distance to the star in question. Having calculated distances for all B-

type sample stars via their SEDs, the complied histograms for each cluster are shown

in Figure 4.3. The lighter histograms of each plot indicate the high and low distance

distributions utilizing the high and low values of E(B − V ) as determined by Currie

et al. [2010]. The distribution for each cluster has been fit with a Gaussian profile,

shown in the figure, for comparison. The distribution mean provides the measured

cluster distance, and the 1σ standard deviation of the histogram then provides a

measurement of the error for this method. The slight bimodality of these distributions

suggest that some of the stars in our sample may be foreground objects rather than

cluster members, but firm conclusions regarding their membership to either cluster

cannot be proposed with our small sample size.
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Figure 4.3 Histograms illustrating the distances determined for B-type cluster mem-
bers via the absolute flux method. Shown on the left is the distribution for NGC 869
(r = 2260± 426 pc), and the distribution for NGC 884 (r = 2239± 371 pc) is on the
right. Un-filled histograms illustrate the high and low distance distribution results
using the high and low errors of E(B − V ) from Currie et al. [2010]. The vertical
dashed line indicates the cluster distance reported by Currie et al. [2010].

4.3 Distance from Spectroscopic Parallax

A second method of determining stellar distance, utilizing luminosity and absolute

magnitude, will provide us with a means of checking the accuracy of our distance

measurements from absolute fluxes. Stellar luminosity, as discussed in Chapter 1, is

given by the expression

L = 4πR
2
σT

4
, (4.6)

where T is the stellar temperature, and R is the stellar radius. The luminosity of any

star can be related to that of the Sun, via the dimensionless ratio of L�/L⊙. Taking

the log of both sides of this expression gives

log

�
L�

L⊙

�
= 2 log R� + 4 log T� − 4 log T⊙ − 2 log R⊙. (4.7)
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The log(L�/L⊙) is then related to the absolute bolometric magnitudes of the star in

question and the Sun, via

Mbol,� −Mbol,⊙ = −2.5 log

�
L�

L⊙

�
. (4.8)

To determine the absolute V band magnitude needed for the following step, the

bolometric correction (BC) is applied,

MV = Mbol,� −BC. (4.9)

By substituting Equations 4.7 and 4.9 into our luminosity–absolute magnitude rela-

tion, we can now determine the distance modulus (DM)

DM = V −MV =5 log R� + 10 log T� − 10 log T⊙

−Mbol,⊙ + BC + V − 3.1[E(B − V )]. (4.10)

Finally, the distance modulus calculated above is used with the magnitude–distance

relation,

DM = 5 log

�
r

10pc

�
, (4.11)

where r is the stellar distance in units of parsecs.

To apply this method to our sample stars we utilize the values of Teff and R�

determined in Chapter 3, and the reported V magnitude from WEBDA for each of our

sample stars. We then interpolate a BC for each star from the TLUSTY BSTAR2006

grid of stellar models provided by Lanz & Hubeny [2007] based on our determined

values of Teff and log g. Using the reported E(B − V )’s from Currie et al. [2010], we

use the above equations to determine the distance to each star. The results of these

calculations are compiled for each cluster in Figure 4.4, which follows the same format

as Figure 4.3. The distribution of distances for each cluster has been again fit with a

Gaussian profile, shown in the figure for comparison. The distribution mean provides

the measure cluster distance, and the 1σ standard deviation of the histogram then

provides a measurement of the error for this method.

The resulting distance distributions from the spectroscopic parallax technique are

comparable to those achieved in Section 4.2 using absolute fluxes, with the results
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Figure 4.4 Histograms illustrating the distances determined for B-type cluster mem-
bers via the spectroscopic parallax method. Shown on the left is the distribution for
NGC 869 (r = 2246± 443 pc), and the distribution for NGC 884(r = 2357± 429 pc)
is on the right. Un-filled histograms illustrate the high and low distance distribution
results using the high and low errors of E(B − V ) from Currie et al. [2010]. The
vertical dashed line indicates the cluster distance reported by Currie et al. [2010].

for each cluster falling within the error bars of both techniques. The distributions

produced by both methods show a very similar slight bimodality, further suggesting

that some stars in our sample may not be true cluster members. These results are also

in good agreement with those of Currie et al. [2010], who find distances of 2290±87pc

for NGC 869, and 2344 ± 88 pc for NGC 884, giving us further confidence in our

physical parameter measurements and model SEDs.

4.4 Summary/Conclusions

We find our determined distances from both the absolute magnitude and spectroscopic

parallax methods to be consistent with the accepted cluster distances as determined

by Currie et al. [2010]. Additionally, with the excellent agreement of the model SEDs,

selected by our determined physical parameters, and the observed SEDs, we can be

confident in our ability to accurately model the stellar flux of our B-type stars. This

will allow us to further investigate the disks of our Be stars, as we can now extract

the stellar flux contribution and examine the contribution of the disks to the total

system flux.
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Chapter 5

Be Star Disk Models

With the ability to confidently model and remove the stellar contribution to the total

Be star flux, we can begin to look more closely at the Be star disks themselves.

Measuring the strength of Hα line emission present in Be stars provides a quick

measure of the relative strength and size of the disk present. When used in conjunction

with numerical disk structure models, we can place limits on the disk radius, density,

and mass. This chapter details the measured Hα strengths for multiple observations

of each of our sample Be stars, and the results we obtain from two different disk

models for the physical parameters of our sample Be disks.

5.1 Disk Variability

As discussed previously in Chapter 1, Be star disks exhibit a wide range of variability

over both short and long time scales. One means of tracing this variability over time

is monitoring of the Hα line strength. With a significant fraction of Be stars known in

NGC 869 and NGC 884, there is a wealth of observations in the literature quantifying

the strength of the Balmer lines in these stars. By compiling the results from a number

of these studies, we find evidence for longterm variability in a number of our sample

Be stars (denoted in column 11 of Table 3.2). To further investigate and quantify the

variability of these Be star disks, we have conducted a 4 year spectroscopic monitoring

campaign, in which we have repeatedly observed the hydrogen Balmer lines of our

sample stars using a variety of instruments, detailed in Chapter 2.

We use the Hα equivalent width (WHα) as a means of quantifying the strength
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of the Hα line and any emission present. Equivalent width is proportional to the

measured area contained within a spectral line, up to the continuum. The reported

value is given as the width of a rectangle, 0 to continuum, that contains the same

area as the spectral line, as illustrated by Figure 5.1. More formally, equivalent width

can be expressed as

Wλ =

�
Fc − Fλ

Fc

dλ, (5.1)

where Fλ is the intensity of the spectrum at a given wavelength and Fc is the contin-

uum intensity. For instances of emission, this yields a negative value for Wλ. In the

remainder of this work, we will employ the convention that a negative value of Wλ

indicates a line in emission, while a positive value indicates a line in absorption.

Figure 5.1 Integrating over a line profile to yield a measure of the line WHα, which
corresponds to the width of a rectangular box having the same area as the spectral
line.

We have measured WHα for our sample of Be stars from multiple observing runs:

2009 October, 2009 December, 2010 August, and 2012 August using WIRO; 2012

January using the KPNO CF. Details for these observations can be found in Table

2.1. The results of our measurements are compiled in Table 5.1. Shown in Figure 5.2

are compilations of Hα observations for NGC 884–1702 and NGC 884–1926. These

plots provide examples of the significant variability we have found in these cluster Be

stars. A complete set of Hα spectra for our sample Be stars is included in Appendix
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A.

Figure 5.2 Hα spectra of the stars NGC 884–1702 (left) and NGC 884–1926 (right)
are shown as examples of the variability of disk strengths observed.

To consider our results further, we combine stars from both clusters and deter-

mine their average and maximum WHα from all available observations. We also

compute the 1σ variance of WHα for each star, to be used as a measure of observed

variability. Shown in Figure 5.3 are the compilations of the combined results for

both clusters. These plots illustrate that most Be stars in our sample have disks of

moderate strength, and exhibit some level of variability. A few stars in our sample

have exceptionally strong disks and/or show large variations over the course of our

observations.

Given our relatively small sample size it is difficult to determine if any trend is

present in our data between Teff (ie. spectral type) and average WHα, maximum WHα,

or 1σ variance of WHα. In an effort to broaden our sample, we also include the results

of 29 Be stars from several southern open clusters observed by McSwain et al. [2009].

The plots of Figure 5.4 combine our NGC 869 and NGC 884 results with those of

McSwain et al. [2009]. Although it does appear that the hotter stars in our sample

have the largest disk structures, for the bulk of our sample and that of McSwain et al.

[2009] there is a wide range of disk sizes for a given spectral type. Overall, we find

no significant trends between average WHα, maximum WHα, or 1σ variance of WHα

and spectral type.
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(Å
)

N
G

C
8
6
9

49
12

2.
78

7
-2

1.
56

..
.

..
.

43
7.

75
1

-1
7.

42
87

2.
83

5
-1

0.
37

..
.

..
.

11
67

.6
53

-1
1.

51
14

6
..
.

..
.

..
.

..
.

43
7.

76
5

3.
39

..
.

..
.

92
8.

71
8

3.
22

11
67

.6
62

3.
18

30
9

..
.

..
.

..
.

..
.

43
7.

78
0

-4
3.

75
..
.

..
.

..
.

..
.

11
67

.6
79

-3
9.

70
51

7
12

1.
91

0
-4

.9
7

..
.

..
.

43
9.

73
3

-2
.1

4
..
.

..
.

93
0.

65
6

-7
.5

0
11

67
.6

88
-4

.5
7

56
6

12
1.

83
9

1.
20

..
.

..
.

43
7.

79
2

-0
.8

6
..
.

..
.

93
0.

64
0

-5
.2

0
11

67
.5

73
-2

.0
5

71
7

..
.

..
.

..
.

..
.

43
7.

83
2

3.
55

87
1.

83
2

2.
61

93
0.

69
4

2.
76

11
67

.5
88

3.
34

84
6

..
.

..
.

17
6.

60
8

-3
.8

5
43

7.
87

3
-4

.3
7

..
.

..
.

..
.

..
.

11
68

.6
03

-2
.2

7
84

7
12

2.
79

6
-4

.6
4

..
.

..
.

43
7.

85
3

-4
.6

1
87

1.
81

0
-5

.0
0

..
.

..
.

11
68

.5
85

-4
.2

1
99

2
..
.

..
.

..
.

..
.

43
7.

90
6

0.
71

..
.

..
.

..
.

..
.

11
68

.6
56

0.
45

10
57

..
.

..
.

..
.

..
.

43
7.

73
7

-0
.5

3
..
.

..
.

92
8.

74
7

-0
.1

3
11

67
.5

83
-0

.8
7

11
61

12
1.

89
2

-1
6.

15
..
.

..
.

44
0.

84
8

-1
5.

45
..
.

..
.

..
.

..
.

11
68

.6
44

-1
5.

83
12

61
12

2.
88

1
-6

7.
70

17
6.

58
8

-6
9.

43
43

7.
92

7
-6

8.
75

..
.

..
.

..
.

..
.

11
68

.6
30

-6
9.

35
12

68
..
.

..
.

..
.

..
.

43
7.

94
0

3.
18

..
.

..
.

93
2.

61
8

2.
48

11
68

.6
36

3.
15

12
78

..
.

..
.

17
6.

71
3

-4
.1

7
44

0.
90

2
-4

.9
2

..
.

..
.

..
.

..
.

11
69

.6
10

-1
.1

5
12

82
..
.

..
.

17
6.

64
4

-6
.6

0
44

0.
87

0
-1

0.
87

..
.

..
.

..
.

..
.

11
69

.5
84

-6
.9

3
N

G
C

8
8
4

17
02

12
2.

86
0

-5
.8

6
..
.

..
.

43
9.

78
4

2.
94

..
.

..
.

93
2.

64
5

0.
48

11
67

.5
96

-4
.9

0
17

72
..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

11
69

.6
43

-0
.6

0
19

26
12

1.
85

2
-4

8.
89

17
6.

84
6

-4
4.

77
..
.

..
.

..
.

..
.

..
.

..
.

11
67

.6
14

-4
3.

38
19

77
..
.

..
.

17
6.

78
2

-2
7.

19
..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

20
88

12
2.

83
7

-9
.2

2
..
.

..
.

43
9.

83
7

-5
.6

5
..
.

..
.

..
.

..
.

11
67

.6
20

-1
0.

57
20

91
..
.

..
.

17
6.

73
6

-2
6.

27
..
.

..
.

..
.

..
.

..
.

..
.

11
67

.6
34

-2
6.

07
21

38
12

2.
80

6
-2

2.
72

17
6.

83
7

-2
4.

64
43

9.
85

6
-2

3.
38

..
.

..
.

..
.

..
.

11
68

.6
77

-2
3.

80
21

65
12

1.
87

2
-1

1.
87

..
.

..
.

43
9.

87
6

-1
1.

44
..
.

..
.

93
4.

80
3

-1
6.

13
11

68
.6

80
-1

6.
50

22
62

..
.

..
.

..
.

..
.

44
0.

73
9

3.
19

..
.

..
.

..
.

..
.

11
69

.6
72

3.
27

22
84

12
1.

82
8

-7
2.

90
17

6.
59

8
-7

4.
96

43
9.

89
2

-7
6.

20
..
.

..
.

..
.

..
.

11
68

.6
91

-7
3.

22
25

63
12

3.
92

8
-4

9.
80

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

27
71

..
.

..
.

17
6.

85
8

-2
5.

12
..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

70



Figure 5.3 Histograms illustrating the average WHα, maximum WHα, and 1σ variance
of WHα of Be star disks in NGC 869 and NGC 884.
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Figure 5.4 Plots of Teff and average WHα, maximum WHα, and 1σ variance of WHα

for NGC 869 (triangles), NGC 884 (squares), and the results of McSwain et al. [2009]
(asterisks).
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5.2 Modeling Be Stars from Hα Emission

Using our Hα observations, we can further quantify the physical parameters of the

Be star disks by utilizing the numerical circumstellar disk models of Grundstrom &

Gies [2006]. These models use observed WHα to determine the radius of half light,

Rd, and disk base density, ρ0 for a given Be star.

In their models it is assumed that the disk is isothermal and geometrically thin,

and that an inner optically thick region of the disk, which appears as an ellipse when

projected onto the plane of the sky, dominates the Hα line emission. To further

simplify the analysis, the specific intensity of the disk emission, I
d

λ
, is assumed to be

isotropic. With these assumptions in place, the Hα flux integrated over wavelength

then depends on the product of the surface flux, the wavelength range over which Hα

is optically thick, and the projected solid angle, given as

F (Hα) = πI
d

λ
�∆λ� cos i

�
Rdisk

r

�2

, (5.2)

where �∆λ� is the wavelength region over which the line is optically thick, i is the

disk inclination, Rdisk is the radius of the optically thick disk, and r is defined as

the distance to the star. This flux is measured via the equivalent width of emission,

Wλ, given in wavelength units relative to the local continuum flux, thus the above

equation can be rewritten as

F (Hα) = |Wλ|(1 + �)πI
�

λ

�
R�

r

�2

. (5.3)

Here � defines the ratio of disk continuum flux to stellar flux within the Hα region,

I
�

λ
is the stellar specific intensity near Hα, and R� is the radius of the star. Equating

these two expressions of F (Hα) then provides the predicted relationship between the

ratio of the disk to stellar radius, and WHα,

Rdisk

R�

=

�
I

�

λ

I
d

λ

Wλ(1 + �)

�∆λ� cos i
. (5.4)

To further account for the model specific dependencies on disk temperature, in-

clination, and density, Grundstrom & Gies [2006] adopt the disk model approach of
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Hummel & Vrancken [2000], which is detailed in Chapter 1. In this model approach

the disk is assumed to be axisymmetric (symmetric about the vertical axis), and cen-

tered over the stellar equator. The disk gas density is given by Equation 1.19,where

the disk base density at the stellar equator is given by ρ0, and H(r) defines the disk

scale height, which is given by Equation 1.20. By equating the photoionization and

recombination rates, as described by Gies et al. [2007], the neutral hydrogen popula-

tion within the disk can be found. These models are used to produce a large grid of

radial and surface elements, where the equation of radiative transfer is then solved

along a ray passing through the center of each element. This spatial image produced

of the star + disk system in the plane of the sky is then collapsed and summed as

described in their work to determine where the summed intensity drops to half of its

maximum value. This value is adopted as the effective radius of the disk, Rdisk.

For the model inputs, we use our determined values of Teff and R�, measured WHα,

disk inclination, i, disk outer boundary of 100 R�, and disk continuum dilution factor

of 0.0033 [Dachs et al., 1988]. Shown in Figures 5.5(a) and 5.5(b) are the resulting

effective radii and disk base densities of our sample Be stars. These results suggest,

in agreement with our WHα analysis, that a majority of our sample Be stars have

disks less than a few stellar radii in size.

With the resulting estimates of disk radius and disk base density, we can further

estimate the mass contained in each Be star disk at the time of each of our Hα obser-

vations following the method detailed by McSwain et al. [2008]. To determine disk

mass, we use an axisymmetric, isothermal density distribution [Carciofi & Bjorkman,

2006] given by Equation 1.19. The disk scale height, H(r) is given by Equations 1.21

-1.23. Analytically integrating this distribution over the full radius and thickness of

the disk gives the total mass contained in the disk, and is done for each observation

of WHα. With multiple epochs of WHα observations for our sample Be stars, we can

examine the changes in disk radius and density over time, and therefore investigate

the disk mass loss and or gain at the time of each measurement. Shown in Figure

5.5(c) is a zoomed in portion of the plot demonstrating the changes in disk mass

over time for sample Be stars. We find that nearly all of our sample Be star disks

are gaining or losing mass to some degree over the 4 year span of our observations.

The resultant values of Rdisk, ρ0, and Mdisk with i = 60◦ for each observation of the

sample Be stars are given in Table 5.2.
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Figure 5.5 Top: Histograms of mean effective radius, in units of R� (left), and log
mean ρ0 (right). Bottom: Zoomed in portion of log Mdisk vs. HJD plot.
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Table 5.2. Be Star Disk Parameters from Hα Equivalent Widths

Rdisk Rdisk Rdisk Rdisk ρ0 Mdisk

WEBDA HJD i = 0◦ i = 30◦ i = 60◦ i = 80◦ 1.0× 10−12
i = 60◦

ID -2,455,000 (R⊙) (R⊙) (R⊙) (R⊙) (g cm−3) (M⊙)

NGC 869
49 122.788 51.1 54.4 65.7 77.7 2.3 2.3e-07
49 437.752 47.1 50.1 60.0 70.5 2.1 2.1e-07
49 872.836 39.7 42.1 49.6 57.4 1.6 1.6e-07
49 1167.654 41.0 43.5 51.4 59.6 1.7 1.7e-07
146 437.766 14.2 14.1 14.6 15.4 0.7 1.6e-08
146 928.719 14.3 14.3 14.9 15.8 0.7 1.7e-08
146 1167.662 14.4 14.3 15.0 15.9 0.7 1.7e-08
309 437.780 54.2 58.1 71.8 86.4 3.5 1.8e-07
309 1167.679 51.7 55.4 68.2 81.8 3.3 1.7e-07
566 121.840 19.8 20.5 22.7 25.0 0.9 2.7e-08
566 437.793 22.4 23.5 26.6 29.7 1.0 3.1e-08
566 930.640 27.3 28.9 33.6 38.4 1.3 4.0e-08
566 1167.573 23.9 25.1 28.6 32.2 1.1 3.4e-08
566 1168.501 23.7 24.9 28.3 31.8 1.1 3.4e-08
566 1169.500 23.5 24.8 28.2 31.6 1.1 3.3e-08
717 437.832 11.4 11.3 11.6 12.1 0.7 8.2e-09
717 871.833 12.1 12.1 13.0 14.1 0.8 9.1e-09
717 930.695 12.0 12.0 12.8 13.8 0.8 9.0e-09
717 1167.589 11.6 11.5 11.9 12.5 0.7 8.4e-09
717 1168.516 11.4 11.2 11.5 11.9 0.7 8.2e-09
717 1169.514 11.5 11.4 11.9 12.5 0.7 8.4e-09
847 122.797 37.6 39.7 45.8 52.0 1.3 1.6e-07
847 437.853 37.5 39.6 45.7 52.0 1.3 1.6e-07
847 871.811 38.1 40.3 46.5 53.0 1.3 1.6e-07
847 1168.586 36.9 39.0 44.8 50.9 1.3 1.6e-07
992 437.907 21.2 22.0 24.6 27.2 0.9 3.0e-08
992 1168.657 21.5 22.4 25.1 27.8 0.9 3.1e-08
1161 121.892 31.0 32.9 39.5 46.5 2.0 3.7e-08
1161 440.849 30.5 32.4 38.9 45.7 1.9 3.6e-08
1161 1168.644 30.8 32.7 39.2 46.2 2.0 3.6e-08
1261 122.882 67.5 72.7 93.0 114.9 5.0 2.1e-07
1261 176.588 68.6 73.9 94.7 117.2 5.2 2.1e-07
1261 437.927 68.2 73.4 94.0 116.3 5.1 2.1e-07
1261 1168.630 68.6 73.9 94.6 117.1 5.2 2.1e-07
1268 437.941 19.7 19.6 20.6 21.8 0.7 5.3e-08
1268 932.618 20.6 20.7 22.3 24.1 0.8 5.7e-08
1268 1168.636 19.7 19.6 20.6 21.9 0.7 5.3e-08
1278 176.714 11.5 12.1 13.9 15.7 1.3 2.7e-09
1278 440.902 11.8 12.4 14.4 16.3 1.3 2.8e-09
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Table 5.2 (cont’d)

Rdisk Rdisk Rdisk Rdisk ρ0 Mdisk

WEBDA HJD i = 0◦ i = 30◦ i = 60◦ i = 80◦ 1.0× 10−12
i = 60◦

ID -2,455,000 (R⊙) (R⊙) (R⊙) (R⊙) (g cm−3) (M⊙)

1278 1169.611 9.9 10.4 11.7 13.1 1.1 2.2e-09
1282 176.644 17.9 18.9 22.1 25.4 1.4 8.0e-09
1282 440.871 20.4 21.6 25.6 29.9 1.7 9.5e-09
1282 1169.585 18.1 19.1 22.3 25.7 1.4 8.1e-09
NGC 884
1702 122.860 27.3 28.9 33.5 38.2 1.4 5.1e-08
1702 439.785 17.2 17.3 18.3 19.6 0.8 2.8e-08
1702 932.646 20.2 20.9 23.2 25.7 0.9 3.5e-08
1702 1167.596 26.3 27.8 32.0 36.5 1.3 4.9e-08
1702 1168.527 26.2 27.6 31.9 36.2 1.3 4.8e-08
1702 1169.527 26.0 27.3 31.5 35.8 1.3 4.8e-08
1926 121.852 45.2 48.5 60.4 73.0 3.8 7.8e-08
1926 176.846 43.3 46.4 57.5 69.3 3.6 7.3e-08
1926 1167.615 42.6 45.7 56.5 68.0 3.5 7.1e-08
1926 1168.537 42.4 45.4 56.1 67.5 3.5 7.1e-08
1926 1169.537 43.0 46.1 57.1 68.7 3.6 7.2e-08
1977 176.783 18.2 19.4 23.9 28.8 2.6 2.1e-09
2088 122.838 27.0 28.6 33.9 39.4 1.6 2.7e-08
2088 439.837 24.0 25.4 29.6 33.9 1.4 2.3e-08
2088 1167.621 28.1 29.8 35.4 41.3 1.7 2.8e-08
2088 1168.548 28.2 29.9 35.6 41.6 1.7 2.8e-08
2088 1169.544 28.1 29.8 35.4 41.4 1.7 2.8e-08
2091 176.737 25.6 27.4 33.9 40.8 2.6 5.9e-09
2091 1167.635 25.6 27.3 33.8 40.7 2.5 5.8e-09
2091 1168.558 25.5 27.3 33.7 40.6 2.5 5.8e-09
2091 1169.557 25.7 27.4 33.9 40.9 2.6 5.9e-09
2138 122.806 51.3 54.6 66.3 78.7 2.4 1.9e-07
2138 176.838 53.0 56.5 68.7 81.8 2.5 2.0e-07
2138 439.857 51.9 55.3 67.1 79.8 2.4 1.9e-07
2138 1168.677 52.3 55.7 67.7 80.5 2.4 2.0e-07
2165 121.872 27.8 29.4 34.8 40.5 1.7 3.6e-08
2165 439.877 27.4 29.1 34.4 40.0 1.7 3.5e-08
2165 934.804 30.7 32.6 39.1 45.9 2.0 4.1e-08
2165 1168.681 31.0 32.9 39.4 46.3 2.0 4.1e-08
2262 440.739 15.1 15.0 15.8 16.7 0.7 1.9e-08
2262 1169.673 15.0 14.9 15.6 16.5 0.7 1.8e-08
2284 121.828 66.6 71.8 92.4 114.7 5.4 1.8e-07
2284 176.598 67.9 73.2 94.5 117.5 5.6 1.8e-07
2284 439.893 68.7 74.1 95.7 119.1 5.6 1.9e-07
2284 440.767 68.1 73.4 94.7 117.8 5.6 1.9e-07
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Table 5.2 (cont’d)

Rdisk Rdisk Rdisk Rdisk ρ0 Mdisk

WEBDA HJD i = 0◦ i = 30◦ i = 60◦ i = 80◦ 1.0× 10−12
i = 60◦

ID -2,455,000 (R⊙) (R⊙) (R⊙) (R⊙) (g cm−3) (M⊙)

2284 1168.692 66.8 72.1 92.8 115.1 5.4 1.8e-07
2563 123.928 36.6 39.3 49.1 59.6 3.9 3.0e-08
2771 176.859 26.0 27.7 34.0 40.6 2.5 1.0e-08

We note that varying the value of the disk inclination in these models has no

effect on the resultant density. Realistically this is likely to be incorrect, however

these calculated disk base densities do provide a first-order estimate that will allow

us to place further constraints on the disk parameters.

5.3 Be Star SEDs

To examine the observed SEDs for our sample Be stars, we utilize the same method

described for the sample B-type stars to normalize the model flux to angular size but

now fix the cluster distance at the mean value determined by the resultant distribu-

tions of distances yielded from the absolute magnitude method described in Chapter

4. An example of a resultant Be SED is shown in Figure 5.6. The 1σ variance of

the absolute magnitude distance distributions are used as error bars for the cluster

distances to produce high and low error SEDs, shown as the dotted and dashed model

SEDs, respectively, in Figure 5.6. A complete set of SEDs for our sample Be stars can

be found in Appendix A. We find good agreement between the optical region of the

observed SEDs, where the disk contribution to the flux is negligible, and results of

our normalized models. The observed IR flux excess of each star is then determined

by taking the difference between the observed fluxes and the corresponding model

flux as determined by our measurements of Teff and log gpol. These observed IR flux

excesses will be utilized in the following section to compare to the predicted IR flux

excesses of the Touhami et al. [2011] models.

78



Figure 5.6 Example SED of Be Star NGC 869 - 1282. Observed photometric mag-
nitudes (diamonds) shown with model SED using measured Teff and log gpol (solid
line) from Chapter 3. SEDs using high and low E(B − V ) errors shown by dotted
and dashed lines, respectively.

5.4 Modeling Be Star Disks Using IR Excesses

To further constrain the predicted disk parameters from Section 5.2, we employ the

radiative transfer models of Touhami et al. [2011]. These models provide a parame-

terization of an assumed isothermal viscous decretion disk. These models are param-

eterized by the physical parameters ρ0, n, the disk-to-star temperature ratio Tdisk/T�,

and the outer boundary disk radius Rdisk, as well as the observable parameters of

λ and i. Like the work of Grundstrom & Gies [2006], these models use a gas den-

sity distribution given by Equation 1.19. The disk base density is ρ0, and the radial

density exponent is given as n = 3. The disk scale height, H(r), is again defined by

Equation 1.20. The Touhami et al. [2011] models, again, follow the methods detailed

by Hummel & Vrancken [2000] for solving the equation of radiative transfer along

a grid of sight lines through elements surrounding the star and disk. Analytically

solving this equation at each point of this grid provides a solution to how photons of

different wavelengths are transported through the gaseous disk material to the surface
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and radiated away.

To understand the physical basis for these models, we begin by considering the

equation of radiative transfer
dIν

dτν

= Sν − Iν . (5.5)

By introducing an integrating factor e
τ , this expression becomes

d

dτ
(Iνe

τ ) = e
τ
∂Iν

∂τ
+ Iνe

τ = e
τ
Sν . (5.6)

Integrating this expression from 0 to τ yields the integral solution to the transfer

equation

Iν(τ) = Iν(0)e−τ +

�
τ

0

Sνe
−(τ−τ

�)
dτ

�
. (5.7)

Assuming the source function Sν is constant, this expression becomes the general

solution to the equation of radiative transfer

Iν(τν) = Iν(0)e−(τc+τν) + Sν(1− e
−τν ), (5.8)

where the total optical depth τ is produced by contributions from both the continuum

optical depth τc and frequency-dependent line optical depth τν , such that τ = τc + τν .

The first term of this expression accounts for the attenuation of the incident intensity

by both the continuum and line sources, while the second describes the emission

produced by line sources.

For these Be star models the resultant continuum-subtracted intensity emerging

from the emission layer in consideration is given by [Horne & Marsh, 1986]

Iν = [Iν(0)e−τν + SL(1− e
−τν )]e−τc − Iν(0)e−τc . (5.9)

The total opacity in the IR is primarily produced by free-free and bound-free emission

processes. The line source function of the emission layer is given by SL, which is

assumed to be constant throughout the layer, and the intensity of the background

radiation is given by Iν(0). Comparing this expression that derived in Equation 5.8

we see that the first term describes the absorption of incident stellar radiation by

line sources in the disk, and further attenuation by the continuum. The second term

accounts for the line emission produced by the disk, which is also attenuated by the
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continuum as it may be absorbed in other physical regions of the disk. The −Iν(0)e−τc

term removes the stellar continuum contributions from the total system intensity, thus

leaving us with the intensity contributions from the disk.

Given our determined values of Teff , R�, and M�, mean predicted ρ0 from the

Grundstrom & Gies [2006] models, and inclination, i, the modeled IR excess for six

wavelength bands is calculated. This approximate disk SED is then plotted against

the available observed IR excesses, determined from the Be SEDs described in the

previous section.

Shown in Figure 5.7 are the resultant models of IR flux excess for the value of ρ0 as

determined by the models of Grundstrom & Gies [2006], and for the value of ρ0 which

fits the observed IR flux excess. Similar figures are available for the remaining sample

Be stars in Appendix A. We find that this second value of ρ0 is typically ∼ 1 order

of magnitude larger than that given by the Grundstrom & Gies [2006] models, which

suggests that there is some systematic discrepancy between the two disk models. It

is also apparent from this figure that there is a strong correlation between i and ρ0

which must be resolved before firm disk parameters can be established. The disk

parameters determined for the average WHα of each star are compiled in Table 5.3,

along with the the value of ρ0 that yields an approximate fit to the observed IR flux

excesses for i = 30◦, 60◦, and 80◦.
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Figure 5.7 Example Be disk SED of NGC 884-1926. Here the stellar flux contribution
has been subtracted out of the total system flux, leaving only the IR flux produced
by the disk. Observed disk flux (diamonds) is shown with multiple models of the IR
excess using different values of i and ρ0, as noted in the plot legend.

Table 5.3. Be Star Disk Parameters from IR Excesses

Mean ρ0 ρ0

WEBDA Mean WHα Mean Rdisk 1.0× 10−12 Mean Mdisk 1.0× 10−11

ID (Å) (R⊙) (g cm−3) (M⊙) (g cm−3)

NGC 869
49 -10.86 56.7 1.9 1.9e-07 1.9
309 -19.85 70.0 3.4 1.7e-07 3.4
566 -0.89 28.0 1.1 3.3e-08 1.1
847 -3.46 45.7 1.3 1.6e-07 1.3
992 0.22 24.8 0.9 3.0e-08 0.9
1161 -10.66 39.2 2.0 3.6e-08 2.0
1261 -51.62 94.1 5.1 2.1e-07 5.1
1278 -1.77 13.3 1.2 2.5e-09 1.2
1282 -4.51 23.4 1.5 8.5e-09 1.5
NGC 884
1926 -44.80 57.5 3.6 7.3e-08 3.6
1977 -27.19 23.9 2.6 2.1e-09 2.6
2088 -8.22 34.0 1.6 2.7e-08 1.6
2091 -26.16 33.8 2.5 5.8e-09 2.5
2138 -17.79 67.5 2.4 1.9e-07 2.4
2165 -9.95 36.9 1.9 3.8e-08 1.9
2284 -44.22 94.0 5.5 1.8e-07 5.5
2563 -49.80 49.1 3.9 3.0e-08 3.9
2771 -25.12 34.0 2.5 1.0e-08 2.5
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5.5 Summary/Conclusions

Through our 4 year baseline of Hα observations, and those compiled from the lit-

erature, we find that a large number of the Be stars in our sample exhibit a wide

range of variability. With the significant number of transient Be stars residing in

these clusters, h and χ Per provide an excellent northern hemisphere laboratory for

investigating the mechanisms spurring Be star disk formation and loss. In our efforts

to place constraints on the radii and densities of these Be star disks, we find sig-

nificant discrepancies between current Be disk models. The densities yielded by the

models of Grundstrom & Gies [2006] are ∼ 1 order of magnitude lower than those

which produce IR disk excesses via the Touhami et al. [2011] models that match the

IR excesses we observe in these Be stars. Finding a reliable means for constraining

the disk inclination is another pressing issue for these cluster stars, which are well

beyond the current reach of IR interferometry.
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Chapter 6

Conclusions and Further Work

With their plethora of massive stars, the double clusters h & χ Persei are an ideal

laboratory in which to study a number of physical phenomena. While the field of

massive star study is relatively small, and far less “sexy” than studies of exoplanets

or dark matter, there are still a wide variety of open questions and unexplained

physics to be found amongst these stars. Their brightness makes them ideal targets

for smaller telescopes like those found on university campuses, which is incredibly

advantageous given the current funding climate.

B-type and Be stars have become important targets for asteroseismology. In hot

stars, different pulsation frequencies provide information about different layers of the

stellar interior. The information gleaned from studies targeting B stars with NRPs is

being used to improve current stellar structure and stellar evolution models. Doing

so, however, requires accurately determined stellar surface parameters in order to set

appropriate boundary conditions for these models. Accurate measures of effective

temperature and surface gravity are essential to determining stellar radii for these

models, as well as for determining stellar ages and evolutionary spin-down. Many

B-type and Be stars in h and χ Per have been found to host NRPs, and there are

on-going campaigns to observe and characterize the nature of the variable pulsations

found in these stars [Krzesiński & Pigulski, 1997, Krzesiński et al., 1999, Saesen et al.,

2010]. The interest in the pulsating stars of h and χ Per has necessitated improved

measurements of stellar parameters for the cluster.

In this work we have measured V sin i, Teff , log gpolar, M�, and R� for 104 B-

type and Be star members of NGC 869 and NGC 884 using spectroscopic modeling
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techniques and calculations from Strömgren photometry. Our determined values for

V sin i are in good agreement with the earlier results of Huang & Gies [2006a],

although there are some discrepancies in our measured temperatures and surface

gravities due to our use of the more recently available non-LTE BSTAR2006 stellar

models of Lanz & Hubeny [2007] and the possible contamination with Be stars and

spectroscopic binaries. Because of the resulting over-estimation of log g, Huang &

Gies [2006a] have underestimated the retention of initial angular momentum by the

cluster members.

We find that the cluster members are significantly more evolved than found by

previous measurements. We also identify 8 transient Be stars in h and χ Per. The Be

stars in these clusters are also rotating more slowly than expected based upon other

young open clusters. Further monitoring of the massive stellar constituents of these

clusters and their rotation rates is well warranted.

The methods we have developed for modeling the stellar flux of B-type stars based

upon our physical parameter measurements and the models of Lanz & Hubeny [2007],

have allowed us to separate the stellar and disk flux contributions of observed Be star

SEDs. With these techniques in hand, we can now conduct a survey of Northern

hemisphere B and Be stars, providing a broader sample of stars for studies of massive

star structure, evolution, and the Be phenomenon.

The substantial amount of variability we observe in the strength of the Hα emission

in our sample Be stars further demonstrates the utility of these clusters to the Be star

community. What better location to study the formation and dissipation mechanisms

of these disk structures than a pair of clusters hosting a large fraction of B-type and

Be stars, which are exhibiting high levels of short term (NRP’s, line profile variations)

and long term (disk growth and weakening, transients) variability.

We are hopeful that obtaining spectropolometric observations of these Be stars

will allow us to constrain the disk inclination, breaking the model correlation with

disk density and allowing us to unravel the order of magnitude discrepancy between

the models of Grundstrom & Gies [2006] and Touhami et al. [2011]. In the future,

we will also continue to work with Dr. Yamina Touhami to extend her disk excess

models to longer IR wavelengths (i.e. 24µm Spitzer).

Observation of the full Balmer series and the decrement of the emission in these
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lines with progressively shorter wavelengths may provide further insight into the phys-

ical structure of these disks. In the near future, we are also seeking to form a collabo-

ration with one of the two research camps producing Be disk atmospheric models, so

that we may compare our observations to physical models as a further independent

means of constraining the physical properties of the disks.
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Appendix A

The Be Stars of h and χ Persei

Included in this appendix is a compilation of data and results for each of the 26

Be stars in our observed sample. For each star there is a stack of Hα spectra from

multiple observations spanning 4 years. Also included are the observed spectral en-

ergy distributions (SEDs) complied from the WEBDA, 2MASS, Spitzer, WISE, and

AKARI databases.
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A.0.1 Star 1057

Compiled spectroscopic observations of NGC 869-1057. From the spectral observa-

tions of this star it appears to be a more evolved giant type. It is likely that this star

has been misclassified as a Be star due to the IR excess produced by it’s stellar wind.

We exclude it from any further Be star analysis.

Figure A.1 Hα spectra of NGC 869-1057 in same format as Figure A.3.
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A.0.2 Stars With Only Hα Observations

With the lack of available Strömgren photometry available for stars NGC 869–517,

NGC 869–846, and NGC 884–1772, and the emission present in their Balmer lines,

we are unable to determine appropriate values of Teff and log g for them at this time.

Without these measurements, we are unable to model the SEDs or IR excesses of

these stars. Here we present the compilation of our Hα observations for these stars

in Figure A.2.

Figure A.2 Observed Hα spectra of NGC 869–517 (top left), NGC 869–846 (top right),

and NGC 884–1772 (bottom). The different line styles correspond to different times

of observation, as denoted in the legend of each plot.
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A.1 NGC 869: h Per

A.1.1 Star 49

Compiled spectroscopic and photometric observations of NGC 869-49. With the

determined temperature and surface gravity of this star, and its placement among

the evolutionary tracks of Schaller et al. [1992], this star may be leaving the main

sequence and moving onto the giant branch. Some variability is observed in the Hα

emission of this star, as well in the observed SED, which may be due to a Be disk or

a weak stellar wind if this star is more evolved.

Figure A.3 Observed Hα spectra of NGC 869–49. Different line styles correspond to

different times of observation, as noted in the plot legend.
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Figure A.4 Top: Observed photometric magnitudes (diamonds) with model SED

using measured Teff and log gpol (solid line) from Chapter 3. SEDs using high and low

E(B−V ) errors shown by dotted and dashed lines, respectively. Bottom: Observed IR

flux excess as determined from photometric magnitudes and model SED (diamonds).

Model IR excess for multiple values of i and ρ0 (lines) as noted by plot legend.
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A.1.2 Star 146

Compiled spectroscopic and photometric observations of NGC 869-146. This star

neither exhibited any emission indicative of a Be disk at the times of our observations,

nor does its observed SED show any signs of IR excess. This, with the observation

of emission by Keller et al. [2001], is suggestive of this star being a transient Be star.

As there is no observed IR excess for this star, we do not present any modeling of the

IR excess.

Figure A.5 Hα spectra of NGC 869-146 in same format as Figure A.3.

92



Figure A.6 Observed SED of NGC 869-146 in same format as Figure A.4.
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A.1.3 Star 309

Compiled spectroscopic and photometric observations of NGC 869-309. This star has

exhibited strong Hα emission at both times of our observations, showing some subtle

variability in strength. The observed IR excess is well matched by the models of

Touhami et al. [2011].

Figure A.7 Hα spectra of NGC 869-309 in same format as Figure A.3.
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Figure A.8 Observed SED and disk excess of NGC 869-309 in same format as Figure

A.4.
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A.1.4 Star 566

Compiled spectroscopic and photometric observations of NGC 869-566. This Be star

shows very clear variations in disk strength over the course of our Hα observations.

Our review of the literature finds that it has been observed with and without signs

of a disk on multiple occasions, making this a transient Be star. The majority of

the photometric observations available appear to have been taken during phases with

only a very weak disk, or no disk at all, preventing us from successfully modeling the

IR excess of this star. However, with the highly transient nature of this star it would

be an excellent target for investigating disk growth/loss events.

Figure A.9 Hα spectra of NGC 869-566 in same format as Figure A.3.
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Figure A.10 Observed SED and disk excess of NGC 869-566 in same format as Figure

A.4.
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A.1.5 Star 717

Compiled spectroscopic and photometric observations of NGC 869-717. This star

neither exhibited any emission indicative of a Be disk at the times of our observations,

nor does its observed SED show any signs of IR excess. There does appear to be some

small changes in the depth of the line core over time, but not enough to suggest the

presence or growth of a disk. The observation of emission by Fabregat et al. [1994],

is suggestive of this star possibly being a transient Be star. As there is no observed

IR excess for this star, we do not present any modeling of the IR excess.

Figure A.11 Hα spectra of NGC 869-717 in same format as Figure A.3.
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Figure A.12 Observed SED of NGC 869-717 in same format as Figure A.4.
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A.1.6 Star 847

Compiled spectroscopic and photometric observations of NGC 869-847. The Hα

emission line profile shape of this star suggests that it may be a shell star, with a low

inclination to our line of sight. Some variability is observed in the line strength over

the course of our observations, particularly in the more or less symmetric shifting

of the red-to-violet emission peak ratio, which is suggestive of a more dense spiral

structure within the rotating disk. The photometric observations available appear to

have been taken during weaker disk phases, making it difficult to model the expected

IR excess of this Be star.

Figure A.13 Hα spectra of NGC 869-847 in same format as Figure A.3.
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Figure A.14 Observed SED and disk excess of NGC 869-847 in same format as Figure

A.4.
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A.1.7 Star 992

Compiled spectroscopic and photometric observations of NGC 869-992. Some vari-

ation in the strength of Hα emission is observed in this star, however, the emission

signature is weak, with a shape suggestive of a very low inclination shell Be star.

There appears to be some small amount of observed disk excess for a few of the pho-

tometric observations, but most appear to have been taken during weak disk phases,

preventing us from successfully modeling the expected IR excess.

Figure A.15 Hα spectra of NGC 869-992 in same format as Figure A.3.
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Figure A.16 Observed SED and disk excess of NGC 869-992 in same format as Figure

A.4.
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A.1.8 Star 1161

Compiled spectroscopic and photometric observations of NGC 869-1161. Smaller

variations are observed in the prominent Hα line of this Be star. The clear IR disk

excess of this star is well matched by the models of Touhami et al. [2011].

Figure A.17 Hα spectra of NGC 869-1161 in same format as Figure A.3.
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Figure A.18 Observed SED and disk excess of NGC 869-1161 in same format as Figure

A.4.
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A.1.9 Star 1261

Compiled spectroscopic and photometric observations of NGC 869-1261. The very

strong disk present in this Be star shows very small variations over the course of our

observations, while a few of the photometric measurements seem to show a little more

variation. The observed IR excess of this Be disk is well matched by the models of

Touhami et al. [2011], with the exception of the few points suggesting variability.

Figure A.19 Hα spectra of NGC 869-1261 in same format as Figure A.3.
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Figure A.20 Observed SED and disk excess of NGC 869-1261 in same format as Figure

A.4.
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A.1.10 Star 1268

Compiled spectroscopic and photometric observations of NGC 869-1268. This star

neither exhibited any emission indicative of a Be disk at the times of our observations,

nor does its observed SED show any signs of IR excess. There does appear to be some

small changes in the depth of the line core over time, but not enough to suggest the

presence or growth of a disk. The observation of emission by Keller et al. [2001], is

suggestive of this star possibly being a transient Be star. As there is no observed IR

excess for this star, we do not present any modeling of the IR excess.

Figure A.21 Hα spectra of NGC 869-1268 in same format as Figure A.3.
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Figure A.22 Observed SED of NGC 869-1268 in same format as Figure A.4.
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A.1.11 Star 1278

Compiled spectroscopic and photometric observations of NGC 869-1278. We observe

a significant decrease in disk strength in our most recent observation of this star,

in comparison to those made in 2009 and 2010. A few of the available photometric

observations for this star also seem to show a change in the disk strength.

Figure A.23 Hα spectra of NGC 869-1278 in same format as Figure A.3.
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Figure A.24 Observed SED and disk excess of NGC 869-1278 in same format as Figure

A.4.
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A.1.12 Star 1282

Compiled spectroscopic and photometric observations of NGC 869-1282. Variability

in the overall Hα line strength very apparent in the spectra plot, and in a few of

the observed photometric magnitudes of this star. The observed IR excess can be

matched by the models of Touhami et al. [2011].

Figure A.25 Hα spectra of NGC 869-1282 in same format as Figure A.3.
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Figure A.26 Observed SED and disk excess of NGC 869-1282 in same format as Figure

A.4.
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A.2 NGC 884: χ Per

A.2.1 Star 1702

Compiled spectroscopic and photometric observations of NGC 884-1702. From our

observations, it is very apparent that this is actually a transient Be star exhibiting

a significant amount of variability. However, the available photometric observations

appear to have been taken during diskless phases, preventing us from modeling the

expected IR excess. Like NGC 869-566, this would make an excellent target for

studying disk growth/loss.

Figure A.27 Hα spectra of NGC 884-1702 in same format as Figure A.3.
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Figure A.28 Observed SED of NGC 884-1702 in same format as Figure A.4.
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A.2.2 Star 1926

Compiled spectroscopic and photometric observations of NGC 884-1926. Some vari-

ation evident in our observations of Hα and the available photometric measurements.

The observed disk excess is well matched by the models of Touhami et al. [2011].

Figure A.29 Hα spectra of NGC 884-1926 in same format as Figure A.3.
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Figure A.30 Observed SED and disk excess of NGC 884-1926 in same format as Figure

A.4.
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A.2.3 Star 1977

Compiled spectroscopic and photometric observations of NGC 884-1977. With only

one observation available for this star in our data, we cannot speak to any variability

it may in fact exhibit. The observed SED clearly shows some excess produced by the

disk. The observed disk excess can be well matched by the models of Touhami et al.

[2011].

Figure A.31 Hα spectra of NGC 884-1977 in same format as Figure A.3.
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Figure A.32 Observed SED and disk excess of NGC 884-1977 in same format as Figure

A.4.
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A.2.4 Star 2088

Compiled spectroscopic and photometric observations of NGC 884-2088. This is an-

other Be star showing significant variation in the strength of it’s Hα emission, as well

as in it’s observed SED. It is unclear whether the differences in the observed uvby

and UBV magnitudes are real, however it is very unlikely to be related to the disk

structure present as it would contribute a negligible amount of flux at optical wave-

lengths. With the variations in the observed photometric magnitudes, it is difficult

to model the IR excess of this star successfully.

Figure A.33 Hα spectra of NGC 884-2088 in same format as Figure A.3.
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Figure A.34 Observed SED and disk excess of NGC 884-2088 in same format as Figure

A.4.
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A.2.5 Star 2091

Compiled spectroscopic and photometric observations of NGC 884-2091. The promi-

nent Hα emission line of this star shows little change between the two times of our

observation. A clear IR excess is seen in the observed SED, which is matched well by

the models of Touhami et al. [2011].

Figure A.35 Hα spectra of NGC 884-2091 in same format as Figure A.3.
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Figure A.36 Observed SED and disk excess of NGC 884-2091 in same format as Figure

A.4.
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A.2.6 Star 2138

Compiled spectroscopic and photometric observations of NGC 884-2138. Some vari-

ation evident in our observations of Hα and the available photometric measurements.

The observed disk excess is somewhat difficult to match with the models of Touhami

et al. [2011], given the more significant variations in the observed IR excess between

different times of measurement.

Figure A.37 Hα spectra of NGC 884-2138 in same format as Figure A.3.
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Figure A.38 Observed SED and disk excess of NGC 884-2138 in same format as Figure

A.4.
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A.2.7 Star 2165

Compiled spectroscopic and photometric observations of NGC 884-2165. Significant

variation evident in our observations of Hα, and to a lesser extent in the available

photometric measurements. The observed disk excess is well matched by the models

of Touhami et al. [2011], with the exception of a few variable points indicative of

different phases of disk strength.

Figure A.39 Hα spectra of NGC 884-2165 in same format as Figure A.3.
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Figure A.40 Observed SED and disk excess of NGC 884-2165 in same format as Figure

A.4.
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A.2.8 Star 2262

Compiled spectroscopic and photometric observations of NGC 884-2262. This star

neither exhibited any emission indicative of a Be disk at the times of our observations,

nor does its observed SED show any signs of IR excess. There does appear to be some

small changes in the depth of the line core over time, but not enough to suggest the

presence or growth of a disk. The observation of emission by Slettebak [1985] and

Bragg & Kenyon [2002], is suggestive of this star possibly being a transient Be star.

As there is no observed IR excess for this star, we do not present any modeling of the

IR excess.

Figure A.41 Hα spectra of NGC 884-2262 in same format as Figure A.3.
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Figure A.42 Observed SED of NGC 884-2262 in same format as Figure A.4.
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A.2.9 Star 2284

Compiled spectroscopic and photometric observations of NGC 884-2284. Subtle varia-

tion evident in our observations of Hα and in the available photometric measurements.

The observed disk excess can be well matched by the models of Touhami et al. [2011],

with the exception of a few spurious points caused by variations in the disk strength

at different times of observation.

Figure A.43 Hα spectra of NGC 884-2284 in same format as Figure A.3.
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Figure A.44 Observed SED and disk excess of NGC 884-2284 in same format as Figure

A.4.
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A.2.10 Star 2563

Compiled spectroscopic and photometric observations of NGC 884-2563. With only

one observation available for this star in our data, we cannot speak to any variability

it may in fact exhibit. The observed SED clearly shows some excess produced by the

disk. The observed disk excess can be well matched by the models of Touhami et al.

[2011].

Figure A.45 Hα spectra of NGC 884-2563 in same format as Figure A.3.
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Figure A.46 Observed SED and disk excess of NGC 884-2563 in same format as Figure

A.4.
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A.2.11 Star 2771

Compiled spectroscopic and photometric observations of NGC 884-2771. With only

one observation available for this star in our data, we cannot speak to any variability

it may in fact exhibit. The observed SED clearly shows some excess produced by the

disk. The observed disk excess can be well matched by the models of Touhami et al.

[2011].

Figure A.47 Hα spectra of NGC 884-2771 in same format as Figure A.3.
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Figure A.48 Observed SED and disk excess of NGC 884-2771 in same format as Figure

A.4.
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Coudé Feed with Spectrograph (17 nights) 2008, 2011
2.1m Telescope with Spectrograph (8 nights) 2011
Wyoming Infrared Observatory

2.3m Telescope with Spectrograph (17 nights) 2010, 2012
Cerro Tololo Inter-American Observatory

0.9m Telescope with Imager (35 nights) 2009 – 2013

141



Professional Development
Member of American Astronomical Society Fall 2008 – Present
CAE Introductory Teaching Workshop January 2013
GRC Meeting: Astronomy’s Discoveries and Physics Education June 2012
Virtual Astronomical Observatory Workshop for Educators January 2012
Teacher Development Series for Higher Education Fall 2011, Spring 2012
Member of Sigma Xi Spring 2011 – Present
President’s Leadership Program at Christopher Newport University Fall 2004 – Spring
2008

Publications
Graduate Work at Lehigh University

Bonnefoy, M., (66 coauthors) et al. Characterization of the gaseous companion κ An-
dromedae b: New Keck and LBTI high-contrast observations 2013, A&A, submitted

Boyer, A. N. M., McSwain, M. V., Aragona, C., & Ou-Yang, B. Physical Properties of
the B and Be star Populations of h and χ Persei 2012, AJ, 144, 158

Napoli, V. J., McSwain, M. V., Marsh Boyer, A. N., & Roettenbacher, R. M. The
Distance of the Gamma-ray Binary 1FGL J1018.6-5856 2011, PASP, 123, 1262

Grundstrom, E. D., McSwain, M. V., Aragona, C., Boyajian, T. S., Marsh, A. N., &
Roettenbacher, R. M. 2011, Bulletin of the Liége Royal Scientific Society, 80, 371
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E. D., Aragona, C., Marsh, A. N., & Roettenbacher, R. M., Multiwavelength Observations
of the Runaway Binary HD 15137 2010, AJ, 139, 857

Aragona, C., McSwain, M. V., Grundstrom, E. D., Marsh, A. N., Roettenbacher, R. M.,
Hessler, K. M., Boyajian, T. S., Ray, P. S., The Orbits of the γ-ray Binaries LS I +61 303
and LS 5039 2009, ApJ, 698, 514-518

Undergraduate Work at Jefferson National Laboratory

Lou, W., (109 coauthors) et al. Polarization Components in πo Photoproduction at Photon
Energies up to 5.6 GeV 2012, PhRvL, 108, 222004

Meziane, M., (110 coauthors) et al. Search for effects beyond the Born approximation in
polarization transfer observables in �ep elastic scattering 2011, PhRvL, 106, 132501

Puckett, A. J. R., (105 coauthors) et al. Recoil Polarization Measurements of the Proton
Electromagnetic Form Factor Ratio to Q2 = 8.5GeV 2 2010, PhRvL, 104, 2301

Presentations
Boyer, A. N. M., Analysis of B and Be Star Populations of the Double Cluster h and χ
Persei, Lehigh University, July 18, 2013, Dissertation Defense

142



Boyer, A. N. M., McSwain, M. V., Touhami, Y., Aragona, C. Physical Properties of the
Be Star Disks in h and χ Persei, 2013, AAS 221, poster #144.25

Boyer, A. N. M. Massive Stars with Disks Oct. 14 2012, Lehigh Valley Amateur Astron-
omy Society, public talk

Boyer, A. N. M., McSwain, M. V., Aragona, C. The Spectral Energy Distributions of the
Be Stars of h and χ Persei, 2012, AAS 219, poster #344.21

Boyer, A. N. M., McSwain, M. V., Analysis of B and Be Star Populations of the Double
Cluster h and χ Persei,“Four Decades of Research on Massive Stars”, July 11-15, 2011,
poster

Marsh, A. N., McSwain, M. V., Analysis of B and Be Star Populations of the Double
Cluster h and χ Persei, AstroPhilly meeting, May 21, 2011, talk

Marsh, A. N., McSwain, M. V., & Currie, T., Analysis of B and Be Star Populations of
the Double Cluster h and χ Persei, 2009, IAU S26, poster #68

Marsh, A. N., Ou-Yang, B., Danly, C., McSwain, M. V., & Currie, T., Analysis of B and
Be Star Populations of the Double Cluster h and χ Persei, Lehigh Academic Symposium,
April 16, 2009, poster

Marsh, A. N., Ou-Yang, B., Danly, C., McSwain, M. V., & Currie, T., Analysis of B and
Be Star Populations of the Double Cluster h and χ Persei, 2009, AAS 213, poster #407.03

Marsh, A., for the GEp-III Collaboration, The GEp-III Experiment at Jefferson Lab:
Understanding the Structure of the Proton, Paideai Research Conference at Christopher
Newport University, April 2008, talk

143


