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Abstract

Model comparison in the modern era allows us to use statistical methods that were previously
difficult with older machines. I present a state-of-the-art model comparison code that uses
modern Bayesian statistics to measure the Bayes factor between two competing models. The
Bayes factor is the ratio of the probability of the data given one model to the probability
of the data given another model. My code was used to compare models in five problems
in planetary science. The first three pertain to radial velocity exoplanet data. There is a
degeneracy in the radial velocity exoplanet signal between a single planet on an eccentric
orbit and a two-planet system with a period ratio of 2:1. This degeneracy could lead to
misunderstandings of the dynamical histories of planetary systems as well as measurements
of planetary abundances if the correct architecture is not established. We constrain the rate
of mischaracterization by analyzing a sample of 60 non-transiting, radial velocity systems
orbiting main sequence stars from the NASA Exoplanet Archive (NASA Archive) using my
model comparison pipeline. We find that 15 systems (25% of our sample) show compelling
evidence for the two-planet case with a confidence level of 95%. The Automated Planet
Finder obtained additional data for seven of the best candidates. My pipeline finds that six
of them continue to show strong evidence for the two-planet case. Observational strategies
to break the 2:1 degeneracy are explored using two thousand synthetically generated single
planets with eccentric orbits and two planets with circular orbits. We find that focusing on
taking observations where the degeneracy is the weakest decreases the ambiguity between
the models more than taking observations at random phases. The final two problems are
model comparison of high-pressure/high-temperature experimental data. My code is able
to identify two phase transitions in pressure-temperature water-ice data taken at Argonne
National Lab in two separate datasets. One of the phase transitions found—cubic ice-VII to
tetragonal ice-VIIt—is previously unreported until now. My code sees these phase transitions
in X-ray diffraction data, which uses Bragg’s law to peer into the crystal lattice of water,
and in pressure–volume equation of state fits.
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Chapter 1

Introduction

Model comparison is the most basic scientific exercise. If there are two models that fit a
set of data reasonably well, then the goal of the scientific exercise becomes determining the
model fits the data better. But, what does “better” mean? One approach is to measure
a goodness-of-fit for each model, and the comparison of the calculated statistics determine
which model more likely fits the data. The classic goodness-of-fit that is taught at the
undergraduate physics level is Pearson’s χ2 statistic, first introduced in 1900 [1]:

χ2(d(x),M(x, ϑ)) =
N∑
i=1

[d(xi)−M(xi, ϑ)]2

σ(xi)
, (1.0.0.1)

where d(x) is the data, σ(x) is the variance, M(x, ϑ) is the model as a function of its
parameters, N is the number of data points, and the independent variable is x.

However, this statistic has some caveats. For instance, there lacks a way to penalize
datasets of varying size. The reduced χ2 is used to get around this, which takes into account
the number of degrees of freedom in the fit:

χ2
red(d(x),M(ϑ)) =

χ2(d(x),M(ϑ))

ν
, (1.0.0.2)

where ν is the degrees of freedom and is calculated as the difference between the number of
data points and the number of model parameters. Another caveat to consider is that this
statistic assumes the errors in the dataset—i.e. σi(x)—are all independent to each other and
Gaussian distributed. This likely not the case in every problem because noise is often corre-
lated. In addition, it assumes the correlations between the model parameters are Gaussian.
This might not be the case for some pairs of model parameters.

In 1763, Reverend Thomas Bayes formulated an equation that describes the probability
of a set of model parameters given the data and the model. His equation also quantifies prior
knowledge about the system and includes it when computing the probability [2]. Bayes was
not able to utilize his theorem during his lifetime. However, with today’s advancements in
computational technology, his theorem became the basis of Bayesian statistics. Using Bayes
statistics in combination with the Markov-Chain Monte Carlo method, we can measure
a goodness-of-fit that does take into account correlations between model parameters, the
dependence of the errors in the dataset, and—if desired—incorporates prior knowledge about
the problem.
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1.1 Exoplanet Historical Overview

While it may seem like a part of the natural order of the universe for planets to be found
around stars, the first confirmed planet outside the solar system was not discovered until
relatively recently. Wolszczan and Frail [3] found a planet orbiting around the millisecond
pulsar PSR1257+12 in 1992 using the radial velocity (RV) technique. The radial velocity
of a star is computed by measuring the shifts in the stellar absorption features as it orbits
around the barycenter of the system [4]. These shifts are due to the presence of a planet(s)
gravitationally tugging at the star. This technique can measure the orbital period, eccen-
tricity, and sky-projected mass (Msin i) of the planets in the system. This same method is
used to measure spectroscopic stellar binary systems [4]. The first planet detected around
a main sequence star was in 1995 by Mayor and Queloz [5] using the same technique. The
first multi-planet system was found around υ AndromedæA, the primary of a binary system,
by Butler et al. in 1999 with a detection of three planets [6]. The inner-most planet was
discovered in 1997 [7]. In 2010, Curiel et al. detected a fourth planet [8]. All of these
detections were using the radial velocity technique.

There are other techniques for detecting exoplanets. The transit technique measures
the dimming and re-brightening of starlight received as a planet passes in front of it [9].
This technique can measure the orbital period and the planet radius. The first transiting
exoplanet is HD 209458b, seen in 2000 [10, 11], however this planet was originally detected
via the radial velocity technique. Gravitational micro-lensing is another detection technique.
In general, when a massive foreground object passes in front of a background object, the
distortion of space-time caused by the foreground object makes it act like a lens [12]. The
image of background object becomes elongated and magnified based on the shape of the lens.
If the foreground star hosts a planet, then the micro-lensed image will become distorted.
Information about the planet can be measured from these deviations [13]. In 2006, Beaulieu
et al. discovered OGLE-2005-BLG-390Lb, the first planet discovered via micro-lensing [14].
Direct imaging of exoplanets is the final detection technique covered here [15]. Observers
block the starlight with chronographs in order to view the planets. Fomalhaut b was the
first directly imaged planet taken by Kalas et al. [16] in 2008.

1.1.1 Architectures of Exoplanets

The architectures of planetary systems give insight into their formation and dynamical his-
tories. For example, interactions with the protoplanetary disk tend to drive adjacent planets
into first-order, mean-motion resonances (MMRs, such as the 2:1), while simultaneously
damping their eccentricities to values that are difficult to measure [17, 18]. On the other
hand, planet-planet scattering [19, 20] or Kozai-Lidov oscillations [21, 22, 23] can produce
single planets with eccentric orbits. While not all planetary systems must pass through these
phases of disk migration or eccentricity growth, the system architectures that they produce
rarely occur from in-situ formation. Thus, reliable estimates of the frequencies of different
architectures will reveal the relative importance of these processes in planet formation and
evolution in general.
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1.1.1.1 Radial Velocity

For RV observations in particular, the challenge in identifying the true system architecture
is a degeneracy between two models—one with a single planet with eccentric orbits (single
eccentrics) and one with two planets with circular orbits at the 2:1 (circular doubles) [24, 25].
Historically, the single-planet model has been favored on the grounds of Occam’s razor [26],
since a system with a single planet is simpler than a system with two. However, the circular
double model has the same number of model parameters as single eccentrics (it is just as
simple) and it is a consequence of dynamical processes known to occur. These facts motivate
careful scrutiny of existing discoveries in order to properly characterize the systems. If
circular doubles are more common than currently suggested, then disk-migration may be
more important than previously thought [18].

This degeneracy is widely known though rarely addressed. Nevertheless, there is prece-
dent for reconsidering certain systems. For example, Kürster et al. [26] reanalyzed RV data
for HD 27894 and found that a circular double model was a better fit than the reported single
eccentric model. Also, Angelada et al. and Wittenmyer et al.[24, 25] found similar results
for several RV systems. At the same time, new measurements from the Kepler mission show
that planet pairs near 2:1 are quite common. For example, using the method of Steffen et al.
[27] on the Kepler DR25 catalog [28], we estimate that 20% of Kepler ’s transiting adjacent
planet pairs with period ratios between 1 and 6 are within ten percent of 2—including the
most prominent peak of the period ratio distribution at 2.17 [27]. Motivated by these new
facts and the results of previous studies, Chapter 3 begins with reanalyzing a sample of
60 single eccentric planetary systems using a new Bayesian analysis pipeline introduced in
Chapter 2.

1.1.2 Planetary Density Estimates

Planets that have both RV and transit data are able to have their densities estimated [10, 11].
Planetary composition models are used to model the different depths as realistic as possible
[29]. However, accurate measurements of the equation of state (EOS) for the included
compounds are required. In this dissertation, we focus on the results of measuring water-
ice data from a high-pressure/high-temperature X-ray diffraction experiment to measure its
EOS.

1.2 Dissertation Overview

The chapters of my dissertation cover the following topics: Chapter 2 introduces the model
comparison pipeline, the likelihood, priors, and the fully marginalized likelihood. Chapter
3 focuses on my work from Boisvert et al. [30] and follow-up observations using the Auto-
mated Planet Finder (APF ). Chapter 4 introduces adding realistic stellar noise to synthetic
systems and the results of analyzing them with a common observational technique. Chapter
5 investigates different observational campaigns in an effort to find the most efficient way to
break the 2:1 degeneracy. Chapter 6 describes my model comparison pipeline analyzing two
high-temperature/high-pressure datasets relating to a newly discovered phase of water-ice
at high pressures. Finally, Chapter 7 is a short conclusion.
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Chapter 2

The Pipeline

The model comparison pipeline utilizes Bayes’ Theorem to determine the probability of
some data given a model and other prior knowledge about the problem. Bayes’ Theorem is
as follows:

P(ϑ|d,M) =
P(ϑ|M)× P(d|ϑ,M)

P(d|M),
(2.0.0.1)

where P is the probability, d is the data, M is the model, and ϑ are the parameters of
M. P(d|ϑ,M) is the likelihood, P(ϑ|M) is the prior, P(ϑ|d,M) is the posterior probabil-
ity distribution of the parameters, and P(d|M) is the fully marginalized likelihood (FML,
a.k.a. the Bayesian evidence). Before going through the pipeline algorithm, let’s define the
likelihood function and the various priors that the algorithm is currently built to use.

The likelihood function—P(d|ϑ,M)—is the probability of a dataset given the model and
the model parameters. The likelihood function we use is based on an assumption that the
errors are Gaussian distributed [31]. With normalization, it is:

ln P(d|ϑ,M) = −1

2

∑
n

[
(dn −M(ϑ, xn))2

σ2
d,n

+ ln 2π σ2
d,n

]
, (2.0.0.2)

where σd are the measurement errors. The likelihood is equivalent to negative χ2—Equation 1.0.0.1.
The likelihood is weighted by the individual errors in each data point.

The prior—P(ϑ|M)—represents all prior knowledge known about the system. The pur-
pose of the prior is to adjust likelihood distribution from Gaussian if there is any reason for
it to deviate. A prior that does this is an informative prior. An uninformed prior allows
the posterior probability distribution to look similar to the likelihood distribution. The four
types of priors used in the model comparison code are uniform, modified Jeffreys, Gaussian,
and Rayleigh.

The uniform prior is the most basic prior. It gives the parameter an equal probability of
being between a range of values. This prior is normalizable and objective. It is given by the
following:

ln P(ϑ|M) = −ln (ϑmax − ϑmin) , (2.0.0.3)

where ϑmax and ϑmin are the maximum and minimum limits on the parameter value.
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The Jeffreys prior, first introduced by Sir Harold Jeffreys in 1946 [32], is used when the
scale of the parameter is not known. It is given by the following:

ln P(ϑ|M) = −ln

[
ϑ× ln

(
ϑmax

ϑmin

)]
, (2.0.0.4)

where ϑmax and ϑmin are the maximum and minimum limits on the parameter value. However,
this prior is not normalizable because it can not take zero for a minimum value. In 1996,
Berger and Pericchi [33] formed the modified Jeffreys prior, a Jeffreys prior that turns into
a uniform prior at small value—ϑ0. Thus, it is used when a scalable parameter could have
zero for a minimum value. It is also normalizable and objective. It is given by the following:

ln P(ϑ|M) = −ln

[
(ϑ0 + ϑ)× ln

(
1 +

ϑmax

ϑ0

)]
, (2.0.0.5)

where ϑmax is the maximum limit on the parameter value and ϑ0 is where the uniform prior
takes over the Jeffreys prior.

The Gaussian prior is used when the value of the parameter and the error are known in
advance. For example, the parameter could be constrained from a different dataset. This
prior is normalizable but not objective. The prior probability is penalized the further the
parameter is from the mean value of the parameter—ϑmean. The error in the parameter is
used to inform the width of the Gaussian—ϑwidth. The prior is given by the following:

ln P(ϑ|M) = −ln
[√

2π ϑwidth

]
− 1

2

(
ϑ− ϑmean

ϑwidth

)
. (2.0.0.6)

The Rayleigh prior is used in many areas of science. A couple examples are in radar
imaging to measure sea winds [34] and in speech algorithms to decrease the signal-to-noise
[35]. This prior is normalizable and objective. The Rayleigh prior is described by the
Rayleigh parameter—ϑR— that alters the shape and range of the distribution. The value of
chosen based on the range of parameter-values. The prior is given by the following:

ln P(ϑ|M) = −ln

[
ϑ

ϑ2
R

× exp

(
−
ϑ2

ϑ2
R

)]
. (2.0.0.7)

In principle, any function can be used to build a prior.

2.1 The Pipeline Algorithm

The model fitting procedure is a three step process. First, we determine the starting seed
for our Markov Chain-Monte Carlo (MCMC) by doing a maximum likelihood estimation
(MLE). Since the likelihood is equivalent to χ2, this step is equivalent to minimizing χ2.

The second step in our pipeline estimates the posterior distributions of the model pa-
rameters using an ensemble sampler MCMC, emcee [36]. Each run has a number of Markov
chains equal to five times the number of model parameters (plus one if the result if odd),
thins the chains every hundred steps, and ignores the first 20% of the chain as burn-in. The
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chains evolve until they yield a set of at least ten thousand independent samples per model
per dataset. We measure the autocorrelation length after each run to determine the number
of independent samples. If the number of independent samples falls short of ten thousand,
then the autocorrelation length is used to determine how many additional steps are needed
to yield ten thousand independent samples and the MCMC is rerun with the new number of
steps. The different chains were initialized using the parameter values from the MLE, with
each parameter scattered by a sufficiently small amount to allow the ensemble sampler to fill
the posterior mode. The resulting posterior distributions yield accurate, correlated errors
on the model parameters. Finally, our procedure quantitatively compares models by calcu-
lating the Bayes factor (BF)—the ratio of the probabilities of the data given two competing
models:

BF =
P(d|Ma)

P(d|Mb)
, (2.1.0.1)

where P(d|Mi) is the FML for model i. The Bayes factor also accounts for the number of
model parameters, that means it can be used for comparing any two models—even those
of varying complexity. The FML is approximated using an importance sampling algorithm
where the sampling distribution is informed by a set of posterior samples taken from the
aforementioned MCMC [37, 30].

2.2 Measuring the Fully Marginalized Likelihood

In this context, importance sampling is essentially a general form of Monte Carlo integration
to estimate the fully marginalized likelihood, P(d|M) in Equation 2.0.0.1. The value of
P(d|M) is the integral over the prior probability distribution P(ϑ|M) times the likelihood
function P(d|ϑ,M), i.e.,

P(d|M) =

∫
P(ϑ|M)P(d|ϑ,M)dϑ (2.2.0.1)

We multiply the numerator and denominator of the integrand by g(ϑ), a distribution over
the model parameters with a known normalization.

P(d|M) =

∫
P(d|ϑ,M)P(ϑ|M)

g(ϑ)
g(ϑ)dϑ. (2.2.0.2)

Equation 2.2.0.2 is in a form such that P(d|M) can be estimated numerically by drawing N

samples from g(~ϑ),

̂P(d|M) ≈ 1

N

∑
ϑi∼g(ϑ)

P(d|ϑi,M)P(ϑi|M)

g(ϑi)
. (2.2.0.3)

The key to an accurate and efficient estimate of ̂P(d|M) lies in choosing an appropriate
g(ϑ). Assuming our parameter space contains one dominant posterior mode, we choose a

multivariate normal N (~µg, ~Σg), where ~µg and ~Σg describe the mean vector and covariance
matrix of the model parameters respectively. After we perform an MCMC on a particular
model/dataset, we can estimate ~µg and ~Σg using a set of posterior samples. That information
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is fed into our importance sampling algorithm to estimate ̂P(d|M) for that model. Nelson
et al. [37], Guo et al. [38], and Weinberg et al. [39] provide more detailed prescriptions and
investigations of this method [30].
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Chapter 3

Radial Velocity Exoplanets

The first project for my model comparison pipeline is fitting models near the 2:1 degeneracy—
introduced in Section 1.1.1—to archival RV exoplanet data, and then perform a Bayes factor
analysis to determine the model that is favored by the data. The families of RV models the
pipeline fit are introduced below.

3.1 The Models

3.1.1 Single Eccentric

One planet on an eccentric orbit is modeled with the following equations:

RVsingle(t) = K[cos(ω + f(t)) + e cos(ω)] + A× (t− tmiddle) + C (3.1.1.1)

M(t) =

(
2π

(t− to)
P

+Mo

)
mod 2π (3.1.1.2)

M(t) = E(t)− e sinE(t) (3.1.1.3)

cosf(t) =
cosE(t)− e

1− e cosE(t)
(3.1.1.4)

sinf(t) =

√
1− e2 sinE(t)

1− e cosE(t)
, (3.1.1.5)

where to is the time of the earliest RV measurement, tmiddle is the time in the middle of the
RV measurements, f(t) is the true anomaly, E(t) is the eccentric anomaly, M(t) is the mean
anomaly, and the model parameters are: orbital period (P ), velocity semi-amplitude (K),
eccentricity (e), longitude of periastron (ω), mean anomaly at to (Mo ≡M(to)), linear trend
(A) and a velocity offset (C). The algorithm for solving for RVsingle(t) is as follows:

• Solve Equation 3.1.1.2 for M(t)

• Numerically solve Kepler’s equation—Equation 3.1.1.3—for E(t)

• Solve and substitute Equations 3.1.1.4 – 3.1.1.5 into Equation 3.1.1.1

8



3.1.2 Circular Double

Two planets on circular orbits are straightforward to model because e = 0 and ω is undefined.
It is modeled with the following equations:

RVdouble(t) = Koutcos fout(t) +Kincos fin(t) + A(t− tmiddle) + C (3.1.2.1)

M(t) =

(
2π

(t− to)
P

+Mo

)
mod 2π (3.1.2.2)

M(t) = E(t) = f(t), (3.1.2.3)

where the model parameters are: outer/inner planet period (Pout/Pin), the velocity semi-
amplitude for the outer/inner planets (Kout/Kin), and mean anomaly at the time of the
earliest RV measurement for the outer/inner planets (Mo,out/Mo,in). Each model also has a
linear trend (A) and a velocity offset (C). When the orbit is circular the true anomaly is
equal to the mean anomaly. This makes the algorithm for solving RVdouble(t) easier than for
the single planet case: Equation 3.1.2.2 needs to be substituted into Equation 3.1.2.1 for the
outer and inner planet.

3.1.3 Degeneracy at the 2:1 Mean-Motion Resonance

The source of the model degeneracy is in the first-order expansion of the RV signal of a single
eccentric planet [40]:

RVsingle ≈ K cos(M + ω) +Ke cos(2M + ω) +O(e2), (3.1.3.1)

where RVsingle is the observed radial velocity, K is the velocity semi-amplitude, e is the
eccentricity, ω is the longitude of periastron, and M is the mean anomaly, which is a function
of time. By comparison, the signal of a circular double is

RVdouble = Kout cos(Mout) +Kin cos(Min), (3.1.3.2)

where RVdouble is the observed radial velocity, Kout and Kin are the velocity semi-amplitudes,
and Mout and Min are the mean anomalies. At the 2:1 MMR, Min = 2Mout and the inner
planet signal (Kin) masquerades—to first-order—as the eccentricity signal (Ke) from the
single planet model.

3.2 Preliminary Sample

The sample introduced in Section 1.1.1.1 contains 60 systems and comprises every non-
transiting RV system from the NASA Exoplanet Archive (NASA Archive), as of November
2016 [41], that is listed as having only a single planet, orbiting a main sequence star, and
whose system properties were derived from a single data set. We did not limit our sample
by eccentricity. Our main results will focus on the main sequence stars, but we will also
report on an extended sample which ignores stellar type. The extended sample contains 95
systems, which is nearly a quarter of all RV-discovered single-planet systems. Figure 3.1
shows how we determine stellar types based on their reported surface gravity and how we
select the main sequence sample.
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Figure 3.1: Stellar effective temperature vs. stellar surface gravity plot for the RV multi-
planet systems from the NASA Archive as grey crosses and the Kepler multi-planet systems
as blue circles. Our sample of 95 stars, ignoring stellar type, are orange diamonds. For our
sample of main sequence stars we select those with log g ≥ 3.825, there are 60 main sequence
stars in the main sample and 95 stars in the entire sample.
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3.2.1 Models Tested

For each system we test four planetary system models: a single eccentric; two circular doubles
(one with a period ratio fixed at 2 and the other fixed at 2.17—where there are two large
peaks in the period ratio distribution from Kepler Steffen et al. [27]); and a “floating”
circular double with no period ratio constraint. This last model has an additional model
parameter, but the Bayes factor calculation can account for different numbers of model
parameters. Our primary results work with the two fixed models given the compelling
theoretical and observational reasons to consider them, the fact that the number of model
parameters are identical (and thus more directly comparable), and because a narrow-band
signal at a fixed period ratio is less susceptible to a false positive detection from stellar RV
jitter or statistical noise. For each system we only consider the larger of the Bayes factor for
the two fixed circular double models.

3.2.2 Pipeline Set-up

We draw our set of initial conditions for the MLE from the NASA Archive. The time
of periastron passage is used to determine the initial Mo. We first fit for C, fixing the
other parameters at their nominal values and setting A = 0. We next fit for A and C
simultaneously. Some systems did not have K, ω, and/or the time of periastron passage
reported on the NASA Archive. In those cases, an MLE was done with the missing quantities
as the only free parameters. We initialized the fixed circular double models to their first-
order, single eccentric equivalent values using equations (3.1.3.1) and (3.1.3.2). For the
floating circular double, the inner planet orbital period is initialized to either the 2:1 or the
2.17:1, depending on which fixed model produced a larger Bayes factor.

We impose a modified Jeffery’s prior for the orbital period and velocity semi-amplitude
with bounds between 0–10,000 days and 0–2,000 m s−1 respectively and ϑ0 equal to 1 day and
1 m s−1 respectively. We use this prior because it is normalizable, objective, and intended for
scalable parameters that could have zero as a value. We use uniform priors for the remaining
parameters, (e, ω, M0), because they are also normalizable and objective. We sample the
parameters for the single eccentric model in {P , K,

√
e sin(ω),

√
e cos(ω), ω +M0}-space in

order to maintain uniform priors [42].
The prior bounds for K, Kout, and Kin are between 0 and 2,000 m s−1. The prior bounds

for P , Pout, and Pin are between 0 and 10,000 days. The prior bounds for
√
e sin(ω) and√

e cos(ω) are such that 0 < (
√
e sin(ω))2 + (

√
e cos(ω))2 < 1, i.e. 0 < e < 1. The prior

bounds for (M0 + ω), M0,out, and M0,in are between -2π and 4π. These limits allow the
Markov chains to cross the 0 and 2π coordinate singularities while remaining well-behaved.
Furthermore, these values are modded by 2π before doing any calculations. The prior bounds
for C are between -100,000 m s−1 and 100,000 m s−1 to accommodate the wide range in offset
values in the real sample.

3.2.3 Pipeline Characterization

We characterized the pipeline efficiency with an ensemble of 1,000 synthetic RV time series
whose system and data properties match the real systems. We use the Bayes factors of
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these synthetic systems to characterize our model comparison pipeline. This Monte Carlo
simulation was initialized as follows.

The start time (t0) is a uniform random draw between 1 and 1,000 days. The number of
observations are drawn from the real systems with a normally-distributed adjustment with
a standard deviation 10% of the nominal value rounded to the nearest whole number. The
observation time series is produced by selecting a set of observation differences (ti − ti−1)
from the real distribution of observation differences with a similar, normally-distributed
10% variation added to each difference. The number of orbits is the number of orbits of a
randomly chosen real system with a normally distributed 10% variation.

We determine the orbital period (P ) using the selected number of orbits and the obser-
vation time series. The velocity semi-amplitude (K) and the eccentricity (e) are separate
random draws from the real systems. The mean anomaly of the start time (M0) and argu-
ment of periastron (ω) are randomly drawn between 0 and 2π. The linear trend (A) is a
10% variation to a random draw from the real systems.

We assume that the RV errors are normally distributed with a standard deviation that
is the quadrature sum of stellar jitter and instrumental and photon noise. The instrumental
and photon noise (σRV) are drawn randomly from the RV errors of the real systems and
our error bars are assigned to this value. Steller jitter is selected from a log uniform dis-
tribution between 0.5 and 5 m s−1. The observation errors are added to the synthetic RV
measurement—not to the error in the RV measurement. Figure 3.2 shows the parameter dis-
tributions for the 1,000 synthetic time series and the real systems as reported in the NASA
Archive.

3.2.3.1 Synthetic Results

The resulting Bayes factors from this characterization are shown as the blue distribution in
Figure 3.3. The vertical lines denote the 95th and 90th percentiles of the distribution. The
shape of the distribution is not symmetric, and the vast majority of our synthetic datasets
favor the single-planet case—as expected since the synthetic systems were constructed to
be single eccentrics. Real systems with Bayes factors larger than those thresholds may be
circular double systems mischaracterized as single eccentrics.

Our approach to model comparison to our sample is different from earlier studies. For
example, Wittenmyer et al. [25] used the reduced χ2 to determine the preferred model and
refined their results with stability tests using the N-body integrator Mercury [43]. Angelada
et al. [24] randomized individual sets of data to calculate the false positive rate per system.
Their model selection was also based on the reduced χ2 of least-squares fitting. In this work,
we use a fully marginalized likelihood to calculate the Bayes factor for the model comparison
and we estimate our false positive rate by analyzing a large simulated dataset with our
pipeline.

3.3 Real System Analysis and Results

After analyzing our synthetic systems, we ran our sample of 60 real systems (95 systems for
the extended sample) through the same pipeline. Figure 3.3 shows that the Bayes factor
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Figure 3.2: Property distributions for our sample of 95 real systems from the NASA Exo-
planet Archive in orange and the 1,000 synthetic time series in blue.
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Figure 3.3: The log Bayes factor distribution for the 1,000 synthetic single eccentric time
series in blue and 60 real systems hosted by main sequence stars in orange. Here, we compare
only the single eccentric model to the fixed, circular double model with the largest Bayes
factor. The 95th and 90th percentiles are indicated with the dotted lines near a Bayes factor
of 24 and 8, respectively.
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distributions for the synthetic and real systems (in orange) are not similar. We find that
15 (25%) of the systems have Bayes factors larger than the 95th percentile of the synthetic
systems. (For the extended sample of 95 systems the numbers are 30 and 31% of the entire
sample respectively.) 9 of these systems prefer the 2.17:1 model (22 of the extended sample)
while the remaining 6 (8 from the extended sample) prefer the 2:1 model. Assuming a
false positive rate of 5% from our 95% confidence level, our estimate of the number of false
positives is 0.75 ± 0.87 (1.5 ± 1.2 for the extended sample). The systems from the extended
sample that prefer the fixed circular double model, the model parameters, and Bayes factors
are shown in Table 3.1. The timeseries and phase plots for the best fixed circular double
model and single eccentric model for HD 240237, HD 2952, α Arietis, HD 96127, and HD
95089 are shown in Figures 3.4–3.23. A CSV file containing the model parameters with errors
for all four models, Bayes factors between the circular double models and the single eccentric
model, and percentile of the best fixed model for each system in the extended sample are
available in Boisvert et al. as Table 2 [30].

We examine the consequences of these potential discoveries on several distributions of
planet properties. Figure 3.24 shows the planet mass vs. orbital period for known RV planets
along with the new planets favored by our analysis orbiting main sequence stars. These
potential new systems lie well within the range of values measured in known systems. We
point out, however, that some systems may yet be false positives. For instance, there are a
few candidate circular double systems that would be hot Jupiters (planet with P . 10 days)
with interior companions. Presently, there is only a single known system (WASP-47 [44])
where a hot Jupiter has a known interior companion. And the period ratio in this case is
over 5:1—far from the degeneracy we consider here. However, the hot Jupiter has an outer
companion with a period ratio near 2.17. Figure 3.25 shows how the predicted mass ratios
for the main sequence systems that favor the two-planet model compare with the mass ratios
for RV systems on the NASA Archive.
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Figure 3.4: Time series for HD 240237. The offset data are in black, the circular double
planet model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is
in light blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and
fixed circular double at 2.17:1 models.
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Figure 3.5: Phase plot for HD 240237. The offset data are in black, the circular double
planet model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is
in light blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and
fixed circular double at 2.17:1 models. The outer planet is on top and the inner planet is on
the bottom.
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Figure 3.6: Time series for HD 240237. The offset data are in black, the single eccentric
planet model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.7: Phase plot for HD 240237. The offset data are in black, the single eccentric
planet model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.8: Time series for HD 2952. The offset data are in black, the circular double planet
model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is in light
blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and fixed
circular double at 2.17:1 models.
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Figure 3.9: Phase plot for HD 2952. The offset data are in black, the circular double planet
model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is in light
blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and fixed
circular double at 2.17:1 models. The outer planet is on top and the inner planet is on the
bottom.
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Figure 3.10: Time series for HD 2952. The offset data are in black, the single eccentric
planet model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.11: Phase plot for HD 2952. The offset data are in black, the single eccentric planet
model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.12: Time series for α Arietis. The offset data are in black, the circular double
planet model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is
in light blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and
fixed circular double at 2.17:1 models.
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Figure 3.13: Phase plot for α Arietis. The offset data are in black, the circular double planet
model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is in light
blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and fixed
circular double at 2.17:1 models. The outer planet is on top and the inner planet is on the
bottom.
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Figure 3.14: Time series for α Arietis. The offset data are in black, the single eccentric
planet model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.15: Phase plot for α Arietis. The offset data are in black, the single eccentric planet
model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.16: Time series for HD 96127. The offset data are in black, the circular double
planet model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is
in light blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and
fixed circular double at 2.17:1 models.
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Figure 3.17: Phase plot for HD 96127. The offset data are in black, the circular double
planet model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is
in light blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and
fixed circular double at 2.17:1 models. The outer planet is on top and the inner planet is on
the bottom.
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Figure 3.18: Time series for HD 96127. The offset data are in black, the single eccentric
planet model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.19: Phase plot for HD 96127. The offset data are in black, the single eccentric
planet model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.20: Time series for HD 95089. The offset data are in black, the circular double
planet model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is
in light blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and
fixed circular double at 2.17:1 models.
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Figure 3.21: Phase plot for HD 95089. The offset data are in black, the circular double
planet model fixed at 2.17:1 in blue and the 68.2% error from the posterior distribution is
in light blue. This is the best fit out of the single eccentric, fixed circular double at 2:1, and
fixed circular double at 2.17:1 models. The outer planet is on top and the inner planet is on
the bottom.
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Figure 3.22: Time series for HD 95089. The offset data are in black, the single eccentric
planet model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.23: Phase plot for HD 95089. The offset data are in black, the single eccentric
planet model in blue and the 68.2% error from the posterior distribution is in light blue.
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Figure 3.24: Orbital period vs. planetary mass for all RV planets. Systems from the NASA
Exoplanet Archive are in teal, with multi- and single-planet systems as open circles and
crosses, respectively. Each system orbiting a main sequence star with a measured Bayes
factor larger than 95th percentile of the synthetic systems are plotted in orange. Each
putative system is represented by a line on the plot, with the diamonds as the inner planet
and the circles are the outer companion. Systems that remain in the 95th percentile after
including a white noise stellar jitter term are in black. We note that these results lie well
within normal parameter values of known systems.
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Figure 3.25: Mass ratio distribution for all RV adjacent planet pairs in grey. The stacked,
orange distribution are our systems with Bayes factors larger than 24 (95th percentile) around
main sequence stars. The nature of the signal favors more massive outer planets. The black
outline shows the systems that have stellar jitter included and still had Bayes factors larger
than the 95th percentile.
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Star Pout Kout Mout Kin Min A C
Star Name Type Model [days] [m s−1] [rad] [m s−1] [rad] [km s−1day−1] [m s−1] Bayes Factor
HD 240237 nMS 2.17:1 770.45 ± 3.09 69.75 ± 1.59 5.45 ± 0.04 57.52 ± 2.57 1.43 ± 0.08 9.96 ± 2.49 82.31 ± 1.54 1.09 × 1085

HD 2952 nMS 2.17:1 318.83 ± 0.27 23.16 ± 0.94 4.13 ± 0.05 15.90 ± 0.71 4.41 ± 0.10 6.37 ± 0.62 3.15 ± 0.74 6.88 × 1057

α Arietis nMS 2.17:1 372.60 ± 0.52 29.67 ± 0.52 4.31 ± 0.04 10.25 ± 0.46 6.17 ± 0.10 -9.5 ± 0.64 0.91 ± 0.45 9.80 × 1049

HD 96127 nMS 2.17:1 632.39 ± 2.19 96.66 ± 1.50 5.95 ± 0.04 41.02 ± 1.26 1.41 ± 0.07 22.83 ± 3.49 -923.95 ± 0.93 9.63 × 1043

HD 95089 nMS 2.17:1 496.57 ± 2.88 20.65 ± 0.55 2.40 ± 0.05 6.73 ± 0.57 4.64 ± 0.11 -4.47 ± 1.39 0.23 ± 0.35 3.75 × 1016

11 Ursae Minoris nMS 2.17:1 513.22 ± 0.75 185.38 ± 1.15 4.30 ± 0.02 19.43 ± 1.15 4.80 ± 0.08 -11.14 ± 2.18 -10.39 ± 0.84 1.06 × 1015

HD 136418 nMS 2.17:1 474.99 ± 1.26 41.62 ± 0.39 5.63 ± 0.03 10.41 ± 0.47 2.86 ± 0.08 -6.93 ± 1.1 -4.99 ± 0.42 8.03 × 1012

HD 81688 nMS 2.17:1 184.08 ± 0.17 60.05 ± 0.92 5.47 ± 0.04 6.96 ± 0.97 5.44 ± 0.15 4.91 ± 1.53 -1.21 ± 0.67 1.41 × 1011

HIP 57050 MS 2.17:1 41.31 ± 0.01 29.43 ± 0.62 2.60 ± 0.11 6.98 ± 0.64 3.86 ± 0.22 9.01 ± 0.53 -15.77 ± 0.83 4.27 × 109

HD 206610 nMS 2.17:1 628.84 ± 6.03 34.50 ± 0.55 1.67 ± 0.05 6.92 ± 0.79 3.06 ± 0.09 -17.3 ± 1.7 19.30 ± 0.47 1.59 × 107

HD 216770 MS 2:1 121.77 ± 0.38 14.05 ± 2.97 4.30 ± 0.33 33.86 ± 3.44 0.79 ± 0.18 36.91 ± 6.87 31146.80 ± 1.92 1.61 × 105

HD 114386 MS 2.17:1 955.46 ± 15.81 33.79 ± 1.55 3.92 ± 0.11 14.08 ± 1.96 2.23 ± 0.22 -5.24 ± 3.82 33367.71 ± 1.28 8.80 × 104

o Coronae Borealis nMS 2:1 187.61 ± 0.13 33.64 ± 0.67 6.00 ± 0.05 8.64 ± 0.67 4.66 ± 0.10 1.92 ± 0.57 1.82 ± 0.49 8.66 × 104

HD 101930 MS 2.17:1 71.30 ± 0.17 17.93 ± 0.41 1.38 ± 0.04 2.37 ± 0.50 1.49 ± 0.20 -10.72 ± 3.43 18363.19 ± 0.35 3.00 × 104

14 Andomedae nMS 2.17:1 185.89 ± 0.22 99.80 ± 1.41 4.90 ± 0.04 6.56 ± 1.61 4.60 ± 0.22 -7.64 ± 2.96 1.68 ± 1.24 2.59 × 104

HD 180902 nMS 2.17:1 482.22 ± 2.92 28.68 ± 1.16 0.30 ± 0.04 4.20 ± 0.88 1.05 ± 0.23 -3.74 ± 2.69 9.27 ± 0.54 1.83 × 104

HD 218566 MS 2:1 225.54 ± 0.14 7.60 ± 0.24 0.90 ± 0.07 2.47 ± 0.26 0.17 ± 0.17 0.61 ± 0.11 0.82 ± 0.19 1.70 × 104

GJ 649 MS 2:1 601.38 ± 2.17 11.55 ± 0.31 3.41 ± 0.11 2.88 ± 0.39 1.83 ± 0.32 0.86 ± 0.31 6.18 ± 0.46 1.10 × 104

75 Ceti nMS 2.17:1 694.41 ± 1.40 37.12 ± 0.74 3.84 ± 0.04 3.31 ± 0.70 4.32 ± 0.21 4.59 ± 0.48 0.40 ± 0.47 1.04 × 104

HD 27894 MS 2.17:1 17.97 ± 0.01 58.40 ± 0.49 5.04 ± 0.07 3.91 ± 0.73 0.50 ± 0.17 -29.59 ± 10.58 82907.65 ± 1.94 6118.83
HD 32518 nMS 2.17:1 157.45 ± 0.19 117.90 ± 2.19 6.00 ± 0.03 9.90 ± 2.38 4.92 ± 0.17 13.84 ± 4.14 -11.90 ± 1.26 3259.36
HD 231701 MS 2.17:1 141.30 ± 0.35 41.56 ± 1.48 1.32 ± 0.10 12.81 ± 3.37 2.98 ± 0.23 -8.44 ± 6.3 -0.02 ± 1.81 993.37
γ1 Leonis nMS 2:1 428.87 ± 0.17 206.77 ± 0.62 1.09 ± 0.01 31.92 ± 0.70 4.99 ± 0.03 9.44 ± 0.86 178.66 ± 0.53 598.25
HD 2638 MS 2.17:1 3.45 ± 0.00 66.75 ± 0.45 5.26 ± 0.09 1.36 ± 0.46 4.44 ± 0.35 49.46 ± 13.72 9619.32 ± 2.32 407.32
HD 31253 MS 2:1 464.44 ± 0.64 10.75 ± 0.34 0.27 ± 0.06 3.58 ± 0.33 2.87 ± 0.13 0.59 ± 0.17 1.96 ± 0.25 295.22
HD 221287 MS 2.17:1 452.51 ± 1.00 73.50 ± 1.37 2.10 ± 0.04 12.95 ± 2.46 2.34 ± 0.05 10.72 ± 2.36 -21861.09 ± 1.29 124.62
HD 190647 MS 2:1 931.10 ± 76.66 30.25 ± 2.44 3.81 ± 0.44 7.90 ± 1.04 2.94 ± 0.93 -20.43 ± 5.67 -40266.66 ± 1.65 82.74
HD 220773 MS 2:1 2877.77 ± 87.74 14.60 ± 1.51 1.63 ± 0.12 10.15 ± 1.42 4.80 ± 0.25 2.89 ± 0.72 -4.96 ± 1.05 54.06
HD 330075 MS 2.17:1 3.39 ± 0.00 106.81 ± 0.73 5.87 ± 0.01 0.49 ± 0.49 3.22 ± 1.21 -13.2 ± 4.57 61278.58 ± 0.40 37.21
HIP 79431 MS 2.17:1 113.99 ± 0.40 155.87 ± 2.20 2.19 ± 0.02 30.65 ± 1.82 4.00 ± 0.09 -385.58 ± 24.21 10.53 ± 1.90 26.99

Table 3.1: The preferred fixed circular double models of the extended sample that has Bayes factor larger than the 95th percentile
of the synthetic systems. Under star type, MS and nMS refer to Main Sequence and non Main Sequence stars, respectively.
The order of the table is by Bayes factor.



3.3.1 Real Results

Our primary analysis does not include stellar jitter (even though our synthetic data has jitter
added to the simulated data). We made this choice for a number of reasons. One is that
since we are considering a fixed period ratio, only noise that occurs at that specific frequency
could produce a spurious signal. Most sources of stellar noise occur on much different time-
scales. The stellar rotation periods (typically ranging from 4–40 days [45]) are shorter than
the inner planet periods for most of these systems. Stellar p-mode oscillations have typical
time-scales of 5-15 minutes [46]. And, surface granulation variations last minutes to hours,
with the largest granules remaining on the surface of stars for about a day [47, 46]. The
time-scales of long term stellar activity arising from the cyclical appearance of starspots are
on the order of years to decades [48].

These facts support the interpretation that stellar noise is not the cause of the inner
companion signal for the majority of our systems. Nevertheless, we did a separate analysis
that included a white noise jitter term to all models and found that 5 of the 15 systems
still remain in the 95th percentile of likely two-planet systems, 4 of which prefer the 2.17:1
architecture. Thus, even if we adopt the much more conservative approach—which assumes
stellar jitter does indeed affect our data at precisely the relevant time scales—we still see a
number of systems that favor the two-planet models.

While our results are primarily from the fixed circular double models, we examined the
results of a floating circular double model in order to estimate the likely distribution of
orbital periods for the inner companion. We analyzed the real and synthetic systems with
the floating circular double model and find an even larger portion of the systems that have
Bayes factors above the 95th percentile—19 systems, 32% of the main sequence sample, (41
systems, 43%, of the extended sample) with an estimated false positive rate of 0.95 ± 0.97
(2.1 ± 1.4 for the extended sample). Of these 19 systems, 9 prefer the floating circular double
model, 6 prefer the fixed 2.17:1 model, and the remaining 4 prefer the 2:1 double circular
model. 4 systems remain in the 95th percentile when including stellar jitter in the model as
a white noise term.

We show the period ratio posteriors that result from this analysis for these 19 systems
and the synthetic systems in Figure 3.26. These histograms show the combined, period ratio
posterior distribution from fitting the circular double model without a constraint on orbital
periods to the 19 systems and to the synthetic systems. The distribution for the synthetic
systems clearly shows the degeneracy at the location of the 2:1 MMR. If the real systems (in
orange) were single-planet systems, then the expected distribution should be the same as for
the synthetics. However, the two distributions differ significantly. In fact, the distribution
for the real systems mirrors the period ratio distribution from the Kepler data [27]. Most
of the combined posteriors favor period ratios just wide of the 2:1 or between 2.15 and 2.2.
Only a few systems preferred the circular double model near the 2:1 because the degeneracy
is located at the 2:1 and the power to distinguish between the models diminishes. Thus, in
that regime, more data with appropriate phase-sampling is essential to distinguish between
the models.
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Figure 3.26: The posterior distributions for the period ratio when considering the inner
planet period as a free parameter. The blue distribution is the 1,000 synthetic single eccen-
tric systems. This distribution peaks at 2:1—the location of the degeneracy. The orange
distribution is the 19 systems with Bayes factors larger than the 95th percentile thresholds
that are hosted by main sequence stars.
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3.4 Discussion

There are currently 395 confirmed solitary RV planets, and we reanalyzed about fifteen
percent of them. Our extended sample contains nearly a quarter of the confirmed RV planets.
The distribution of eccentricities, periods, velocity semi-amplitudes, etc. of our extended
sample is shown in Figure 3.2. If the 15 systems in the main sequence sample (30 systems in
the extended sample) that we identify are indeed circular doubles, then they would increase
the number of RV multi-planet systems by ∼12.5% (∼25%) since there are 120 confirmed
systems reported with at least two planets discovered by RV. They would also significantly
alter the estimated mixture of these two architectures—shifting the relative importance of
their implied dynamical histories.

If the fraction of misidentified single eccentrics in the entire NASA Archive is similar
to the misidentification fraction seen in our sample, then there could be as many as ∼100
planets missing, or ∼15% of the overall confirmed RV planets (∼120 in the extended sam-
ple, or ∼18% of the overall confirmed RV planets). Moreover, the apparent propensity for
some systems to cluster around period ratios near 2.17 is a further indication that there is
something fundamental, but still unknown, that attracts planet pairs into this period ratio.
We encourage observers to consider planning follow-up observations of these systems and
make additional measurements at phases where the degeneracy is at its weakest. New ob-
servations near these phases could confirm or refute the existence of these putative interior
companions. The success of such a campaign opens the door to identifying the architectures
of the systems where the preferred model is still ambiguous. I go into more detail in this in
Chapter 5.

3.4.1 Follow-up Observations with the Automated Planet Finder

A subset of the systems that show the best evidence for being a double planet system are
being observed by the Automated Planet Finder (APF , Howard Isaacson, [49]. APF is
restricted to stars that have a declination larger than −22o and focuses on stars brighter a
V -band magnitude of 9, i.e. V < 9. The target list contains 30 stars. Their stellar and
circular double model properties, are listed on Table 3.2. The systems are listed in order of
largest BF to smallest. The current number of data points and the observation cadence is
also included. Observational cadence is the number of days between a single observation. It
is set to a tenth of the proposed outer planet orbit, but not less than every two weeks—hence
some systems have a cadence of 14 days.

Thus far, we have obtained additional data for seven systems: HD 2952, Hamal, HD 32518,
HD 81688, 14 Andromedæ, γ1 Leonis, and HD 86081. These systems are all non-main se-
quence stars except for HD 86081. The new analysis for system is shown in Table 3.3. The
largest of the newly measured BFs for the circular double models were larger than its origi-
nal for two of the systems, α Arietis and γ1 Leonis. HD 86081 is a main sequence star that
our preliminary results indicate the fixed 2:1 circular double model fits more likely than the
rest. Every calculated Bayes factor is larger than with the archival data. The Bayes factor
between the fixed 2:1 circular double and the single eccentric models is still the largest.

Despite the Bayes factors going down for four systems, three of them still show over-
whelming evidence of an additional planet. Most of these stars are not on the main sequence,
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and thus their stellar surfaces are more active than main sequence stars. As mentioned in
Section 3.3.1, this activity could be misinterpreted as a planet signal, but it is difficult to
conceive of stellar activity remaining at the frequency interval where the new planets are
for the entire range of the timeseries. The analysis of these new fits seem to indicate that
there is indeed a planet present in a third to six-sevenths of the newly observed sample, but
the result it would be more robust if there was a more realistic noise model that takes into
account the stellar properties. The timeseries for the best circular double model along with
the single eccentric model for all seven systems are shown in Figures 3.27–3.54.
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Preferred Stellar
Star Name Pout [day] Kout [m s−1] Kin [m s−1] Fixed CD Model Type V -mag Ndata Cadence [day]
HD 240237 770.449 69.754 57.522 2.17:1 nonMS 8.19 40 77.0449
HD 2952 318.826 23.159 15.895 2.17:1 nonMS 5.922 63 31.8826
Hamal 372.596 29.666 10.251 2.17:1 nonMS 2 678 37.2596

HD 96127 632.389 96.664 41.016 2.17:1 nonMS 7.43 50 63.2389
HD 95089 496.568 20.652 6.731 2.17:1 nonMS 7.946 22 49.6568

11 UrsæMinoris 513.221 185.384 19.425 2.17:1 nonMS 5.016 58 51.3221
HD 136418 474.991 41.621 10.413 2.17:1 nonMS 7.879 24 47.4991
HD 81688 184.079 60.052 6.955 2.17:1 nonMS 5.393 81 18.4079
HD 206610 628.838 34.503 6.924 2.17:1 nonMS 8.346 24 62.8838
HD 216770 121.769 14.047 33.86 2:1 MS 8.094 16 14
HD 114386 955.463 33.788 14.078 2.17:1 MS 8.73 58 95.5463

o CoronæBorealis 187.613 33.637 8.642 2:1 nonMS 5.51 85 18.7613
HD 101930 71.301 17.929 2.373 2.17:1 MS 8.21 16 14

14 Andromedæ 185.886 99.797 6.555 2.17:1 nonMS 5.22 34 18.5886
HD 180902 482.218 28.676 4.197 2.17:1 nonMS 7.778 12 48.2218
HD 218566 225.543 7.599 2.473 2:1 MS 8.63 56 22.5543

75 Ceti 694.412 37.124 3.306 2.17:1 nonMS 5.35 74 69.4412
HD 32518 157.452 117.9 9.897 2.17:1 nonMS 6.421 58 15.7452
HD 231701 141.299 41.561 12.813 2.17:1 MS 8.97 17 14.1299
γ1 Leonis 428.868 206.773 31.921 2:1 nonMS 1.98 205 42.8868
HD 31253 464.439 10.748 3.581 2:1 MS 7.133 39 46.4439
HD 221287 452.506 73.499 12.947 2.17:1 MS 7.807 26 45.2506
HD 190647 931.104 30.254 7.898 2:1 MS 7.775 21 93.1104
HD 220773 2877.765 14.598 10.153 2:1 MS 7.096 43 287.7765
HD 86081 2.136 207.661 2.519 2:1 MS 8.73 26 14
HD 179079 14.474 6.411 0.795 2.17:1 MS 7.95 74 14.474
18 Delphini 986.940 119.243 5.995 2:1 nonMS 5.506 51 98.694
HD 139357 1016.707 143.187 10.776 2:1 nonMS 5.964 49 101.671
ε Tauri 585.700 94.330 13.707 2.17:1 nonMS 3.54 20 58.570

ε CoronæBorealis 417.810 113.120 10.695 2:1 nonMS 4.15 52 41.781

Table 3.2: The target list submitted to APF . These systems show the best evidence for the circular double case. They are
bright enough—V -mag< 9—and in the right spot of the sky for observation. The proposed outer planet orbital period and
velocity semi-amplitude is listed, along with the velocity semi-amplitude of the proposed inner planet. The current number of
data points and the observational cadence is also shown.



Star Name Ndata BF 2:1 | SE BF 2.17:1 | SE BF CD | SE

Original 63 10 57 69

HD 2952 New 91 -3 37 55

∆ Trend +30.8% − − − [2.21:1]

HD 12929 Original 678 11 49 53

Hamal New 699 -6 225 226

α Arietis ∆ Trend +3.1% − + + [2.18:1]

Original 58 0 3 6

HD 32518 New 84 -2 -12 -3

∆ Trend +44.8% − − − [1.99:1]

Original 81 1 11 11

HD 81688 New 104 1 4 9

∆ Trend +28.4% + − − [2.16:1]

Original 34 1 4 14

HD 221345 New 59 4 -17 3

14 Andromedae ∆ Trend +74% + − − [1.99:1]

Original 205 2 −∞ 37

HIP 50583 New 231 -43 −∞ 423

γ1 Leonis ∆ Trend +12.7% − − + [2.02:1]

Original 26 1 0 0

HD 86081 New 33 1 1 1

∆ Trend +26.9% + + + [1.64:1?]

Table 3.3: The results of combining the new observations from APF with the old and sending
them through the model comparison pipeline. The new number of data points is shown. Only
the order of magnitude of the Bayes factor is shown. The ∆ trend indicates if the Bayes
factor got larger (+) or smaller (−). The bold element represents the largest Bayes factor.
The italic element indicates the largest Bayes factor using just the new data with the old. ?
indicates that the model has a large variance in Pin.
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Figure 3.27: New time series for HD 2952. The archival offset data are in black, the new
offset data from APF are in red, the circular double planet model in blue and the 68.2%
error from the posterior distribution is in light blue. This is the best fit out of the single
eccentric, fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double
models. The period ratio for this model is 2.21:1.

47



0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

50

0

50
RV

 [m
 s

1 ]
HD 2952 Outer Planet at 2.21:1

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Phase [-]

50
0

50

Re
sid

ua
ls

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

50

25

0

25

50

RV
 [m

 s
1 ]

HD 2952 Inner Planet at 2.21:1

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Phase [-]

50
0

50

Re
sid

ua
ls

Figure 3.28: Phase plot for HD 2952. The archival offset data are in black, the new offset
data from APF are in red, the circular double planet model in blue and the 68.2% error
from the posterior distribution is in light blue. This is the best fit out of the single eccentric,
fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double models.
The outer planet is on top and the inner planet is on the bottom. The period ratio for this
model is 2.21:1.
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Figure 3.29: Time series for HD 2952. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.30: Phase plot for HD 2952. The offset data are in black, the new offset data from
APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.31: New time series for α Arietis. The archival offset data are in black, the new
offset data from APF are in red, the circular double planet model in blue and the 68.2%
error from the posterior distribution is in light blue. This is the best fit out of the single
eccentric, fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double
models. The period ratio for this model is 2.18:1.
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Figure 3.32: Phase plot for α Arietis. The archival offset data are in black, the new offset
data from APF are in red, the circular double planet model in blue and the 68.2% error
from the posterior distribution is in light blue. This is the best fit out of the single eccentric,
fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double models.
The outer planet is on top and the inner planet is on the bottom. The period ratio for this
model is 2.18:1.
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Figure 3.33: Time series for α Arietis. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.34: Phase plot for α Arietis. The offset data are in black, the new offset data from
APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.35: New time series for HD 32518. The archival offset data are in black, the new
offset data from APF are in red, the circular double planet model in blue and the 68.2%
error from the posterior distribution is in light blue. This is the best fit out of the single
eccentric, fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double
models.
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Figure 3.36: Phase plot for HD 32518. The archival offset data are in black, the new offset
data from APF are in red, the circular double planet model in blue and the 68.2% error
from the posterior distribution is in light blue. This is the best fit out of the single eccentric,
fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double models.
The outer planet is on top and the inner planet is on the bottom.
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Figure 3.37: Time series for HD 32518. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.38: Phase plot for HD 32518. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.39: New time series for HD 81688. The archival offset data are in black, the new
offset data from APF are in red, the circular double planet model in blue and the 68.2%
error from the posterior distribution is in light blue. This is the best fit out of the single
eccentric, fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double
models. The period ratio for this model is 2.16:1.
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Figure 3.40: Phase plot for HD 81688. The archival offset data are in black, the new offset
data from APF are in red, the circular double planet model in blue and the 68.2% error
from the posterior distribution is in light blue. This is the best fit out of the single eccentric,
fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double models.
The outer planet is on top and the inner planet is on the bottom. The period ratio for this
model is 2.16:1.
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Figure 3.41: Time series for HD 81688. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.42: Phase plot for HD 81688. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.43: New time series for 14 Andromedae. The archival offset data are in black, the
new offset data from APF are in red, the circular double planet model in blue and the 68.2%
error from the posterior distribution is in light blue. This is the best fit out of the single
eccentric, fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double
models.
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Figure 3.44: Phase plot for 14 Andromedae. The archival offset data are in black, the new
offset data from APF are in red, the circular double planet model in blue and the 68.2%
error from the posterior distribution is in light blue. This is the best fit out of the single
eccentric, fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double
models. The outer planet is on top and the inner planet is on the bottom.
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Figure 3.45: Time series for 14 Andromedae. The offset data are in black, the new offset
data from APF are in red, the single eccentric planet model in blue and the 68.2% error
from the posterior distribution is in light blue.
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Figure 3.46: Phase plot for 14 Andromedae. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.47: New time series for γ1 Leonis. The archival offset data are in black, the new
offset data from APF are in red, the circular double planet model in blue and the 68.2%
error from the posterior distribution is in light blue. This is the best fit out of the single
eccentric, fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double
models. The period ratio for this model is 2.16:1.
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Figure 3.48: Phase plot for γ1 Leonis. The archival offset data are in black, the new offset
data from APF are in red, the circular double planet model in blue and the 68.2% error
from the posterior distribution is in light blue. This is the best fit out of the single eccentric,
fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double models.
The outer planet is on top and the inner planet is on the bottom. The period ratio for this
model is 2.16:1.
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Figure 3.49: Time series for γ1 Leonis. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.50: Phase plot for γ1 Leonis. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.51: New time series for HD 86081. The archival offset data are in black, the new
offset data from APF are in red, the circular double planet model in blue and the 68.2%
error from the posterior distribution is in light blue. This is the best fit out of the single
eccentric, fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double
models.
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Figure 3.52: Phase plot for HD 86081. The archival offset data are in black, the new offset
data from APF are in red, the circular double planet model in blue and the 68.2% error
from the posterior distribution is in light blue. This is the best fit out of the single eccentric,
fixed circular double at 2:1, fixed circular double at 2.17:1, and free circular double models.
The outer planet is on top and the inner planet is on the bottom.

72



4000 5000 6000 7000 8000

200

0

200

RV
 [m

 s
1 ]

HD 86081 Single Eccentric Model

4000 5000 6000 7000 8000
Time [JD - 2450000]

25

0

25

Re
sid

ua
ls

Figure 3.53: Time series for HD 86081. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Figure 3.54: Phase plot for HD 86081. The offset data are in black, the new offset data
from APF are in red, the single eccentric planet model in blue and the 68.2% error from the
posterior distribution is in light blue.
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Chapter 4

Modeling Stellar Noise

4.1 Stellar Activity

Section 3.3.1 mentions various stellar features and events that are a source of noise for RV
observations. Haywood et al. [50] shows the observed RV signal can be thought of as the
sum of the planet signal, the offset terms (the velocity offset and the linear trend), and the
noise model:

RVobserved =

Nplanets∑
k=1

RVplanet,k +RVo +RVnoise model. (4.1.0.1)

Thus, the residuals of the planet fit, i.e. RVobserved−
∑Nplanets

k=1 RVplanet,k−RVo, are a measure-
ment of the stellar noise and the statistical/systematic errors associated with the observation.

4.2 Modeling Stellar Noise: Gaussian Processes

Many groups are starting to use Gaussian process (GP) regression [51] to model the stellar
noise [50, 52, 53, 54]. GP regression modeling is a non-parametric way to model a set of data
points using a covariance matrix kernel that describes the correlations between each pair of
data points. The functional form of the kernel reflects the nature of the problem. For the
case of stellar noise, the quasi-periodic kernel is a good choice. The kernel is described by
hyperparameters that correspond to some physically meaningful quantity of the data [55].

4.2.1 Kernel Selection and New Likelihood Function

k(ti, tj) = h2exp

[
−(ti − tj)2

2λ2
− sin2(π(ti − tj)/Prot)

2ω2

]
+
√
σ2
jitter + σ2

error(ti) δij, (4.2.1.1)

where h2 is the amplitude of the noise, λ2 is the timescale for growth and decay of active
regions, ω controls the importance of the periodic and non-periodic terms, Prot is the stellar
rotation period, σjitter is the instrumental nose from the spectrograph, σerror is is error in the
RV data, and δij is the Kronecker delta, indicating that the second term is only present in
the diagonal of the covariance matrix [50, 53].
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In practice, the hyperparameters are fit using S-index measurements and the same hy-
perparameters are used when doing the RV analysis. They use S -index measurements to
constrain the noise model, and then use it to model the RV residuals [50, 52, 53, 54]. The
S -index is an emission measurement defined in Vaughan, Preston, and Wilson [56] from the
stellar counts of the H and K spectral lines (Ca II):

S-index = α
NH +NK

NR +NV

, (4.2.1.2)

where NH and NK are the number of counts in the H- and K-band. NR and NV are the
number of counts the nearby continuum of the red and violet side of the H-K region. α
is a normalization factor derived for each night of observation [56]. Some groups fix the
hyperparameters to the values found from the S-index analysis, while others set Gaussian
priors on the hyperparameters—with widths equal to the hyperparameter error—and fit the
hyperparameters and the planet parameters simultaneously [50, 52, 53, 54].

The likelihood function takes on a different form when doing GP regression modeling
[53, 51, 50]:

ln P(d|ϑ,M) = −1

2
rTK−1r− 1

2
ln detK− n

2
ln 2π, (4.2.1.3)

where K is the covariance matrix constructed from Equation 4.2.1.1 described by hyperpa-
rameters a part of the vector ϑ, r is the residual vector— the difference between the data
and the sum of the offset parameters and the planetary architecture model, and n is the
number of data points.

4.3 New Synthetic Sample

We want to test the 2:1 degeneracy with realistic stellar noise in our synthetic systems. We
generate a new sample of 2,000 synthetic systems: 1,000 single eccentrics and 1,000 circular
doubles. Each system has GP noise included by drawing one realization from a quasi-periodic
kernel and adding it to the RV signal. The pipeline will be tested to see if it can recover
the correct architecture. Similar to Chapter 3, each system is fit with four models; single
eccentric, circular double fixed to 2:1, circular double fixed to 2.17:1, and circular double with
inner period free. The noise is modeled using a white-noise parameter—σjitter—a common
tactic of observers. This is the same noise model that is used in Chapter 3. This is done
mainly because S-index measurements are often unavailable in the archive.

4.3.1 The Synthetic Recipe

The 2,000 synthetic RV time series are generated in a similar fashion as in Section 3.2.3.
Their system and data properties are built to match the real systems. The Monte Carlo
simulations were initialized as follows.

100 sky-positions were generated by uniformly drawing the cosine of the declination
between 0–1 and uniformly drawing the right ascension between 0–24 hours. Then, each
location was mock observed every hour, for 16 years, at Lick Observatory (37o20’29”N,
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121o38’34”W) and times where the airmass between 1.3–2.2 using the astroplan and astropy
codes [57]. The airmass is defined:

AM = sec(90o − ALT ), (4.3.1.1)

where ALT is the altitude of the system—the angle between the horizon and the system—
and AM is the airmass. The airmass is an approximate measure of the amount of atmosphere
in a given line-of-sight. The direction of zenith—the location directly above the observer—at
sea level is defined as an airmass of one. The first decade of the resulting time series are
used to generate ten separate observational realizations. Each of the ten systems will have
a different set of orbital parameters and GP hyperparameters according to the following
paragraphs.

The start time (t0) is a uniform random draw between the first 24 times. The observation
time series is produced by selecting a set of observation differences (ti − ti−1) from the real
distribution of observation differences with a similar, normally-distributed 10% variation
added to each difference. These systems will have a timespan of ten years.

We determine the orbital period (P ) using the selected number of orbits and the obser-
vation time series. The velocity semi-amplitude (K) and the eccentricity (e) are separate
random draws from the real systems, with minimum eccentricity of 0.1. The mean anomaly
of the start time (M0) and argument of periastron (ω) are randomly drawn between 0 and
2π. The linear trend (A) is a 10% variation to a uniform random draw between -0.1 to 0.1.
The offset (C) is a random draw between -1000 m s−1 and 1000 m s−1. RV error bars (σRV)
are drawn randomly from the RV errors of the real systems and our error bars are assigned
to this value. Stellar jitter is selected from a log uniform distribution between 0.5 and 5 m
s−1. h is a uniform random draw between 0.5 and 20. λ is a uniform random draw between
20 and 400. ω is a uniform random draw between 0.1 and 0.7. Prot is a uniform random
draw between 1 day and 150 days. A single GP model is drawn using a quasi-period kernel,
with the generated hyperparameters, and is then added to each RV measurement.

The set of 1,000 circular double systems are generated using the same set of orbital
parameters and hyperparameters as the 1,000 single eccentrics. They are converted into
their first-order equivalent for the circular double case. This is done with the following:

Pout = P
Pin = Pout/(2 + ε)
Kout = K
Kin = K e

Mo,out = [ω +Mo] mod 2π

Mo,in =
[
ω + 2Mo − 2π ε (t−to)

P

]
mod 2π,

(4.3.1.2)

where P , K, e, Mo and ω are the orbital period, velocity semi-amplitude, eccentricity, mean
anomaly of earliest observation, and argument of periastron passage for the single eccentric
model, respectively. And Pout, Kout, Mo,out are the orbital period, velocity semi-amplitude,
and mean anomaly for the outer planet in the circular double model equivalent to the single
eccentric model. Pin, Kin, Mo,in is the same, but for the inner planet. ε is a parameter defined
as the outer-to-inner period ratio minus two. For completeness, their inverse relationships
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are:
P = Pout

K = Kout

e = Kin/K

Mo = [Mo,in −Mo,out + 2π ε (t−to)
P

] mod 2π
ω = [Mo,out −Mo] mod 2π.

(4.3.1.3)

Each circular double system is randomly separated into four even groups and assigned
one of the following schemes for determining the outer-to-inner period ratio. The first scheme
is a random uniform draw between 1.9 and 2.25. The remaining schemes are random normal
draws centered on 1.95, 2.05, and 2.17. The width of the distribution for these schemes is
0.05. The hyperparameters for the circular doubles are the same

Finally, a single GP model is drawn using a quasi-period kernel, with the generated hy-
perparameters, and added to each RV measurement. Even though the same hyperparameters
are used for the single eccentrics and circular doubles, there will be a different noise model
added to each synthetic system. This is because the kernel defined by the hyperparameters
is a family of infinite functions, so the chances of drawing the same exact model is very small.
We make use of the george code to add the GP [55]. The pipeline is largely set-up the same
exact way as in Section 3.2.2. The prior bounds for σjitter are between 0.5 m s−1 and 5 m
s−1.

4.4 Preliminary Results

Figure 4.1 shows the resulting Bayes factors for the 2,000 synthetic systems when fit with
the white-noise model. The Bayes factors plotted correspond to the best fixed circular
double model given the single eccentric model. The Bayes factor distribution for the single
eccentrics is similar to Figure 3.3. Figure 4.2 shows the Bayes factors corresponding to the
best circular double model given the single eccentric model. The pipeline was able to recover
most of the synthetic parameters, however, there is still some architecture misidentification.
The pipeline correctly identifies more circular double than single eccentrics. This result
is seen by comparing the location of the 98th percentiles. These differences are expected
because the degeneracy is between single eccentrics and circular doubles occurs at 2:1. Since
our synthetic circular double sample contains many systems that are not at the 2:1, it is
understandable that the pipeline would do a better job at picking those kind of architectures
out. The problem lies with breaking the degeneracy when the system is either close to
the 2:1 or is a single eccentric. Here, the pipeline shows that the degeneracy is present in
our synthetic sample. For the synthetic single eccentrics, 25% of the systems in the 98th
percentile in the fixed circular doubles versus single eccentric case favored the 2:1 model.
In the case of fixed and free circular doubles versus single eccentric, almost half of the 98th
percentile had period ratios smaller than 1 and/or had Kout/Kout-ratios larger than a few
hundred. The former suggests that the inner planet is orbiting much farther from the host
star than the outer planet. The latter suggests that the mass of the inner planet is very
small. Both of these are ways to obtain false positives because they are in places in the
parameter-space where their contribution to the overall signal is negligible compared to the
massive outer planet and, more importantly, the stellar signal.
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In the next chapter we will investigate ways to alter the shape of Bayes factor distribution
to decrease the ambiguity near the 2:1 degeneracy by including the remaining six-years of
the generated time series.
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Figure 4.1: The log Bayes factor distribution for the 1,000 synthetic single eccentric time
series in blue and the 1,000 synthetic circular double time series in red. Here, we compare
only the single eccentric model to the fixed circular double model with the largest Bayes
factor. The 98th percentiles are indicated with the dotted lines for each set of systems:
log(Bayes factors) of 2.83 and -1.17 for the single eccentrics and circular doubles.

81



20 15 10 5 0 5 10 15 20
log10 Bayes Factor

0

25

50

75

100

125

150

175

200

Sy
st

em

Figure 4.2: The log Bayes factor distribution for the 1,000 synthetic single eccentric time
series in blue and the 1,000 synthetic circular double time series in red. Here, we compare the
single eccentric model to the circular double model with the largest Bayes factor. The 98th
percentiles are indicated with the dotted lines for each set of systems. log(Bayes factors) of
5.87 and -0.87 for the single eccentrics and circular doubles.
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Chapter 5

Observation Strategy: Optimum
Phases or More Data?

The best way to confirm that a system is a circular double is to obtain additional data,
repeat the model comparison analysis, and see the effect on the newly computed Bayes
factor. However, it may not be as fruitful to simply obtain data whenever the system is able
to be observed. We want to alter the confidence as much as possible, as efficiently possible.
The system needs to be observed near key phases, where the 2:1 degeneracy is at its weakest,
to do this.

5.1 Breaking the Degeneracy: Optimum Phases

The 2:1 degeneracy can be broken two ways. First, when expanded to the second-order in e,
the RV signal of a single eccentric has a third harmonic term (3M). We adopt the convention
that the second harmonic is at twice the fundamental frequency, and so forth. Following
Murray and Dermott [40], the second-order expansion of the RV signal of a single eccentric
is:

RVsingle ≈ K

[
1− 6e2

8

]
cos(ω +M) +K e cos(ω + 2M)

+K
9e2

8
cos(ω + 3M)−K e2

8
cos(ω −M) +O(e3). (5.1.0.1)

If one can measure the third harmonic term, then the degeneracy is broken since no
equivalent term exists for the two-planet case. Therefore, a successful measurement of this
term is an indication that the system is a single eccentric. However, the amplitude of the
third harmonic signal is small compared to the amplitude of the second harmonic. So the
system needs to be observed when the third harmonic signal is strong whilst the second
harmonic signal is weak. There are key phases (henceforth, optimum phases) in the orbit
where this occurs. They are found by solving for the difference between the second and third
harmonics, finding all the local minima, and numerically solving the resulting transcendental
equation:

2 e sin(ω + 2M) =
27 e2

8
sin(ω + 3M). (5.1.0.2)
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Equation 5.1.0.2 only depends on e and ω. The mean anomalies (M) that satisfy this
equation correspond to the optimum phases that the system should be observed.

Figures 5.1 and 5.2 show where the optimum phases are in relation to the exact single
eccentric model and the equivalent circular double model. The locations of the optimum
phases are not where the difference between the single eccentric and the 2:1 circular double
signals differ the most.

The degeneracy can also be broken if the system is slightly out of resonance, Pin 6= 2Pout,
because the single planet case can only have a second harmonic signal at exactly 2:1. If the
second harmonic term is not seen in the data, then there may be enough period resolution
to show that the system is not exactly at the 2:1, i.e. Pout 6= 2 Pin. This is enough break the
degeneracy between the models because the single planet case only has a harmonic term at
exactly 2:1.

5.1.1 Optimum Phase Parameter-Space

We explore the {e, ω}-parameter space of Equation 5.1.0.2 and found that for any set of e
and ω there will be either two or three solutions to the equation. Figures 5.3 – 5.6 show the
possible solutions with the solution number for a pair of (e, ω) as different colors. The third
solution is possible when the e & 0.4, as seen in Figure 5.4. The solutions repeat every cycle,
as expected. The repetition is seen when extending the phase to -0.2 and 1.2 in Figure 5.6.

This result can be used to inform observers of the optimum time to observe a system in
order to diminish the ambiguity of RV models near the 2:1 degeneracy. Data gathered near
these key phases should have more weight in determining the correct architecture then at
any other phase. We test this strategy in the next section.
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Figure 5.1: Single eccentric model with K = 10 m s−1, e = 0.15, ω = 1.4 rad in black and
its equivalent 2:1 circular double model in grey. The locations of where the third harmonic
signal of the single eccentric model is stronger than the second harmonic signal are the
vertical lines. There are two solutions for this set of (e, ω).
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Figure 5.2: Single eccentric model with K = 10 m s−1, e = 0.6, ω = 1.4 rad in black and
its equivalent 2:1 circular double model in grey. The locations of where the third harmonic
signal of the single eccentric model is stronger than the second harmonic signal are the
vertical lines. There are three solutions for this set of (e, ω).
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Figure 5.3: The solutions to Equation 5.1.0.2. The color indicates the solution number for
the single set of {e, ω}. Yellow is three solutions, red is two solutions, and blue is one
solution. For example, {e=1, ω=2π} has three solutions, as indicated by the three colored
surfaces on the plot.
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Figure 5.4: Same as Figure 5.3, but showing that the third solution emerges around e & 0.4.
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Figure 5.5: Same as Figure 5.3, but showing a different projection.
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Figure 5.6: Same as Figure 5.5, but showing solutions extending past phases 0 and 1, which
are indicated by the black plane.
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5.2 Set-up

We use the remaining 6 years of the 16 year timeseries generated in Section 4.3.1 to test two
observational strategies. The 6 year data is combined with the 10 year data to form a 16
year timeseries. These timeseries are analyzed with our the pipeline and the same models
are fit as defined in Chapter 4.

The first strategy focuses on gathering data the same way as the first 10 years, i.e.
without considering the system phase. The second strategy gathers 50% of the data from
near the optimum phase—defined as ±0.05 phase—and the remaining 50% of the data at
random phases. The latter criterion simulates the observer not passing on an opportunity to
observe the system if the sky conditions are right, but still focuses on gathering data when
the system is near the optimum phase.

We test three schemes for the number of additional data in each 6 year observations. The
first scheme is simply doubling the number of observations. The second is brings the number
of observations in each system equal to the largest number of observations out of the initial
1,000 systems, 108 observations. The third scheme brings the number of observations in each
system equal to twice the largest number of observations out of the initial 1,000 systems,
216 observations.

5.3 Results

The Bayes factors distributions for each scheme, observational strategy, and synthetic system
type are shown in Figures 5.7–5.18. The Bayes factor of the 98th percentile is indicated in
every plot. It is the location of where 98% of the sample is when integrated from the left/right
for the single eccentric/circular double synthetics respectively. It is a measure of how well
the sample is fit as a whole. Thus, comparing the locations of the 98th percentile for the
two observational strategies is a way to determine which one is more effective.

In every case, the strategy of focusing on the optimum phase has better Bayes factors
that favor the true synthetic architecture than compared to the strategy of adding data the
random phases. In general, the ambiguity between the single eccentric and circular double
model decreased. This is seen by the distribution near Bayes factor of unity decreasing
throughout all strategies and schemes. The distribution decreases more for the optimum
phase strategy than the random phase strategy in every synthetic circular double distribu-
tion and a third of the synthetic single eccentric distributions. The 98th percentile for the
synthetic circular doubles are much closer to each other because these systems are not built
exactly at the 2:1 degeneracy, so it is more likely that the circular double case would fit
better.

These distributions suffer from the same false positive issues as in Section 4.4. In some
cases, running the code with more data exacerbates the rate of these fictitious false positives.
I call these fictitious because they are the result of the fitting procedure finding an unrealistic
place of the parameter space that happens to have good likelihood value. Instead of a true
false positive, that is a physically meaningful fit that is incorrect.
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Figure 5.7: The log Bayes factor distributions for the scheme that doubles the number of
data for the 1,000 synthetic single eccentric time series. The initial ten-year distribution is in
light blue. The sixteen-year distributions with the last six years obtaining data at random
phases is the blue wire. The sixteen-year distributions with the last six years obtaining
data at 50% near the optimum phase and 50% random phases is the black wire. Here, we
compare the single eccentric model to the fixed circular double model with the largest Bayes
factor. The 98th percentiles are indicated with the dotted lines for each set of systems. The
log(Bayes factors) for the six-years of data at random phases and six-years of data with 50%
near the optimum phase and 50% random phases are 5.74 and 5.33, respectively.
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Figure 5.8: The log Bayes factor distributions for the scheme that doubles the number of
data for the 1,000 synthetic single eccentric time series. The initial ten-year distribution is
in light blue. The sixteen-year distributions with the last six years obtaining data at random
phases is the blue wire. The sixteen-year distributions with the last six years obtaining data
at 50% near the optimum phase and 50% random phases is the black wire. Here, we compare
the single eccentric model to the circular double model with the largest Bayes factor. The
98th percentiles are indicated with the dotted lines for each set of systems. The log(Bayes
factors) for the six-years of data at random phases and six-years of data with 50% near the
optimum phase and 50% random phases are 12.86 and 11.49, respectively.
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Figure 5.9: The log Bayes factor distributions for the scheme that doubles the number of data
for the 1,000 synthetic circular double time series. The initial ten-year distribution is in light
red. The sixteen-year distributions with the last six years obtaining data at random phases
is the red wire. The sixteen-year distributions with the last six years obtaining data at 50%
near the optimum phase and 50% random phases is the black wire. Here, we compare the
single eccentric model to the fixed circular double model with the largest Bayes factor. The
98th percentiles are indicated with the dotted lines for each set of systems. The log(Bayes
factors) for the six-years of data at random phases and six-years of data with 50% near the
optimum phase and 50% random phases are -3.21 and -2.47, respectively.
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Figure 5.10: The log Bayes factor distributions for the scheme that doubles the number of
data for the 1,000 synthetic circular double time series. The initial ten-year distribution is
in light red. The sixteen-year distributions with the last six years obtaining data at random
phases is the red wire. The sixteen-year distributions with the last six years obtaining data
at 50% near the optimum phase and 50% random phases is the black wire. Here, we compare
the single eccentric model to the circular double model with the largest Bayes factor. The
98th percentiles are indicated with the dotted lines for each set of systems. The log(Bayes
factors) for the six-years of data at random phases and six-years of data with 50% near the
optimum phase and 50% random phases are -0.67 and -0.59, respectively.
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Figure 5.11: The log Bayes factor distributions for the scheme that brings the number of
data for the 1,000 synthetic single eccentric time series up to twice the maximum number
of data in the initial ten-year set, i.e. every system has 216 datapoints. The initial ten-year
distribution is in light blue. The sixteen-year distributions with the last six years obtaining
data at random phases is the blue wire. The sixteen-year distributions with the last six
years obtaining data at 50% near the optimum phase and 50% random phases is the black
wire. Here, we compare the single eccentric model to the fixed circular double model with
the largest Bayes factor. The 98th percentiles are indicated with the dotted lines for each set
of systems. The log(Bayes factors) for the six-years of data at random phases and six-years
of data with 50% near the optimum phase and 50% random phases are 19.13 and 13.31,
respectively.
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Figure 5.12: The log Bayes factor distributions for the scheme that brings the number of
data for the 1,000 synthetic single eccentric time series up to twice the maximum number
of data in the initial ten-year set, i.e. every system has 216 datapoints. The initial ten-year
distribution is in light blue. The sixteen-year distributions with the last six years obtaining
data at random phases is the blue wire. The sixteen-year distributions with the last six years
obtaining data at 50% near the optimum phase and 50% random phases is the black wire.
Here, we compare the single eccentric model to the circular double model with the largest
Bayes factor. The 98th percentiles are indicated with the dotted lines for each set of systems.
The log(Bayes factors) for the six-years of data at random phases and six-years of data with
50% near the optimum phase and 50% random phases are 39.89 and 25.90, respectively.
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Figure 5.13: The log Bayes factor distributions for the scheme that brings the number of
data for the 1,000 synthetic circular double time series up to twice the maximum number
of data in the initial ten-year set, i.e. every system has 216 datapoints. The initial ten-year
distribution is in light red. The sixteen-year distributions with the last six years obtaining
data at random phases is the red wire. The sixteen-year distributions with the last six years
obtaining data at 50% near the optimum phase and 50% random phases is the black wire.
Here, we compare the single eccentric model to the fixed circular double model with the
largest Bayes factor. The 98th percentiles are indicated with the dotted lines for each set
of systems. The log(Bayes factors) for the six-years of data at random phases and six-years
of data with 50% near the optimum phase and 50% random phases are -10.74 and -7.50,
respectively.
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Figure 5.14: The log Bayes factor distributions for the scheme that brings the number of
data for the 1,000 synthetic circular double time series up to twice the maximum number
of data in the initial ten-year set, i.e. every system has 216 datapoints. The initial ten-year
distribution is in light red. The sixteen-year distributions with the last six years obtaining
data at random phases is the red wire. The sixteen-year distributions with the last six years
obtaining data at 50% near the optimum phase and 50% random phases is the black wire.
Here, we compare the single eccentric model to the circular double model with the largest
Bayes factor. The 98th percentiles are indicated with the dotted lines for each set of systems.
The log(Bayes factors) for the six-years of data at random phases and six-years of data with
50% near the optimum phase and 50% random phases are -1.29 and -1.06, respectively.
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Figure 5.15: The log Bayes factor distributions for the scheme that brings the number of
data for the 1,000 synthetic single eccentric time series up to match the maximum number
of data in the initial ten-year set, i.e. every system has 108 datapoints. The initial ten-year
distribution is in light blue. The sixteen-year distributions with the last six years obtaining
data at random phases is the blue wire. The sixteen-year distributions with the last six
years obtaining data at 50% near the optimum phase and 50% random phases is the black
wire. Here, we compare the single eccentric model to the fixed circular double model with
the largest Bayes factor. The 98th percentiles are indicated with the dotted lines for each
set of systems. The log(Bayes factors) for the six-years of data at random phases and six-
years of data with 50% near the optimum phase and 50% random phases are 10.53 and 6.28,
respectively.
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Figure 5.16: The log Bayes factor distributions for the scheme that brings the number of
data for the 1,000 synthetic single eccentric time series up to match the maximum number
of data in the initial ten-year set, i.e. every system has 108 datapoints. The initial ten-year
distribution is in light blue. The sixteen-year distributions with the last six years obtaining
data at random phases is the blue wire. The sixteen-year distributions with the last six years
obtaining data at 50% near the optimum phase and 50% random phases is the black wire.
Here, we compare the single eccentric model to the circular double model with the largest
Bayes factor. The 98th percentiles are indicated with the dotted lines for each set of systems.
The log(Bayes factors) for the six-years of data at random phases and six-years of data with
50% near the optimum phase and 50% random phases are 13.30 and 11.88, respectively.
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Figure 5.17: The log Bayes factor distributions for the scheme that brings the number of
data for the 1,000 synthetic circular double time series up to match the maximum number
of data in the initial ten-year set, i.e. every system has 108 datapoints. The initial ten-year
distribution is in light red. The sixteen-year distributions with the last six years obtaining
data at random phases is the red wire. The sixteen-year distributions with the last six years
obtaining data at 50% near the optimum phase and 50% random phases is the black wire.
Here, we compare the single eccentric model to the fixed circular double model with the
largest Bayes factor. The 98th percentiles are indicated with the dotted lines for each set
of systems. The log(Bayes factors) for the six-years of data at random phases and six-years
of data with 50% near the optimum phase and 50% random phases are -2.48 and -2.21,
respectively.
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Figure 5.18: The log Bayes factor distributions for the scheme that brings the number of
data for the 1,000 synthetic circular double time series up to match the maximum number
of data in the initial ten-year set, i.e. every system has 108 datapoints. The initial ten-year
distribution is in light red. The sixteen-year distributions with the last six years obtaining
data at random phases is the red wire. The sixteen-year distributions with the last six years
obtaining data at 50% near the optimum phase and 50% random phases is the black wire.
Here, we compare the single eccentric model to the circular double model with the largest
Bayes factor. The 98th percentiles are indicated with the dotted lines for each set of systems.
The log(Bayes factors) for the six-years of data at random phases and six-years of data with
50% near the optimum phase and 50% random phases are -1.10 and -0.62, respectively.
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5.4 Conclusions

The answer to question in the title of this chapter is clear: gathering data when the system
is near the optimum phases is more efficient than blindly gathering data when the system
is visible. This result should help observers plan better RV observations for a sample of
stars. An efficient observational campaign can be geared to maximize the confidence of
the resulting observations by giving preference to the systems that are near the optimum
phases. Coordinated observations at specific times should reduce the operation time (and
therefore costs) required to determine the correct architecture of planetary systems near
the 2:1 degeneracy. This conclusion is seen in our Bayes factor distributions comparing the
optimum phase strategy with the random phase strategy.

There are false positives in our synthetic samples. Finding false positives in generated
datasets are a natural part of pipelines. As mentioned earlier, there could be ways where an
inner planet can have very little contribution to the signal, but yet be considered a viable fit.
For example, the ratio of the K-amplitudes between the inner and outer planet is near zero
or if the orbital period of the “inner” period is driven to periods hundreds of times larger
than the “outer” planet. In this scenario, the “inner” planet is actually orbiting farther from
the host star than the “outer” planet. In other cases, every model fit was bad and so the
comparison of those bad FMLs yielded a large Bayes factor. These issues will be addressed
before the next step in this long-term project. Reader, please find the publication where the
entirety of the project is presented.

Here, we fit the architecture models with a white noise model, which is a standard way
that observers fit RV data. What happens if the pipeline fit a realistic noise model, as a
Gaussian process? And, what happens if the pipeline fit without a noise model? Can the
pipeline still find the correct architecture through the stellar noise? These questions will be
answered in the next publication from Dr. Steffen and myself.

105



Chapter 6

The Shape of Water:
High–Pressure/High–Temperature
Data Modeling

Our model comparison code is used to analyze monochromatic powder x-ray diffraction data
taken at Sector 16 ID-B, HPCAT, of the Advanced Photon Source at Argonne National Lab
by the research group headed by Dr. Ashkan Salamat. Their data are taken using a new
laser annealing method to achieve better precision than earlier studies. This precision allows
us to investigate phase transitions in a region where it previously has been difficult. We see
phase transitions in two separate datasets.

6.1 Bragg’s Law

In 1913, father-son team William Henry and Lawrence Bragg [58] noticed bright X-ray reflec-
tions were produced when crystals were bombarded with certain wavelengths and at specific
incident angles. They modeled the crystalline structure as a set of parallel planes, separated
by a constant spacing d. The measured intensity is related to the constructive/destructive
interference of the incident X-rays and the plane spacing. This lead to the formulation of
Bragg’s law:

λ = 2d sin(θ)

d =


a

√
h2 + k2 + l2

, if Cubic[
h2

a2
+
k2 + l2

c2

]− 1
2

, if Tetragonal

,
(6.1.0.1)

where λ is set to 0.406626Å, the wavelength of incident X-rays; θ is the angle where the
reflected radiation is the most intense; h, k, and l are the Miller indices, the notation system
used in crystallography for the different planes in the crystal lattice; and a/c are the unit cell
dimensions. The cubic model only requires one cell length—a—while the tetragonal model
requires two cell lengths—a and c. The shape of the unit cell (cubic or tetragonal) will vary
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the location of the reflected emission. Salamat et al. obtained X-ray diffraction data from
these reflections off of ice.

6.1.1 Pipeline Set-Up

We use uniform priors for the model parameters because they are normalizable and objective.
The only difference between the cubic and tetragonal models are the number of lattice
parameters; a and a/c. The prior bounds for each lattice parameter is between 1 and 10 Å.

6.1.2 Results

Figure 6.1 shows the Bayes factors between the tetragonal and cubic models. Table 6.1
shows the logarithm of the Bayes factors (LBF) at each pressure. Positive LBFs prefer the
tetragonal model, while negative LBFs prefer the cubic model. For a majority of the range
of pressures, the tetragonal is preferred over the cubic model. Ice-VII is not solidified until
2.75 GPa. The cell is cubic until 5.42 GPa, where the cell changes to tetragonal. At large
pressures, the cell returns to a cubic cell. There are only three or four data points (peak
measurements) at 18.77 GPa and above. Thus, while the LBFs indicate that the tetragonal
model fits better at large pressures, the lack of sufficient number of data points compared
to the number of model parameters (two) needs to be noted. Another consideration is the
peak fitting algorithm used could be refined to yield more accurate θs.

6.2 Equation of State

They obtained pressure and volume data for their sample. This data is described by an
equation of state (EOS). We fit eight EOS to the data: a single-phase Birch-Murnaghan
[59], a single-phase Rose-Vinet [60], a two-phase Birch-Murnaghan, and a two-phase Rose-
Vinet, a three-phase Birch-Murnaghan with the derivative of the bulk modulus with respect
to pressure (B′o) set to 4, a three-phase Rose-Vinet with B′o set to 4, a three-phase Birch-
Murnaghan, and a three-phase Rose-Vinet. The two-phase fits are modeling cubic ice-VII
and cubic ice-X. The three-phase fits are modeling cubic ice-VII, tetragonal ice-VIIt, and
cubic ice-X. Each model includes two additional parameters, β and γ to model the pressure
dependence of our systematic uncertainties. The uncertainties for points that were not laser
heated are inflated by the function,

α(P ) = σP (β + γP ), (6.2.0.1)

where σP is the estimated pressure uncertainty, which comes from the distortions in the
volume of our Au pressure marker. This weights the laser annealed points in the EOS fitting
more than the non-laser annealed ones.
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Figure 6.1: This plot is showing the log Bayes factor for the tetragonal unit cell compared
to the cubit unit cell. For a majority of the pressure parameter space, the tetragonal cell is
clearly preferred.

108



Pressure (GPa) log10(Bayes factor) Ndata

2.70 2 6

3.57 33 6

3.69 -2 6

4.37 -0 6

4.50 -1 7

5.00 -3 7

5.42 -2 6

5.70 7 6

6.00 53 7

6.25 228 6

6.70 456 6

7.05 5193 6

7.40 117 6

12.43 56 6

12.62 4 6

13.17 125 7

13.99 117 7

15.72 113 6

18.44 105 7

18.77 4 3

20.55 305 4

25.60 7 4

36.06 159 3

42.97 34 3

51.60 6 3

88.00 1 3

Table 6.1: The Bayes factors from the model comparison between the cubic and tetragonal
unit cell, rounded to the nearest order of magnitude. There also lists the number of data
points that went in to the unit cell fit.

109



6.2.1 Single-Phase Birch-Murnaghan

The single-phase Birch-Murnaghan EOS is given by the following:

P (V ) =
3Bo

2

[(
Vo
V

) 7
3

−
(
Vo
V

) 5
3

]{
1 +

3

4
(B′o − 4)

[(
Vo
V

) 2
3

− 1

]}
(6.2.1.1)

where V are the measured volumes, σV are the measured volume errors, P are the measured
pressures, σP are the measured pressure errors, Vo is the reference volume, Bo is the bulk
modulus, and B′o is the derivative of the bulk modulus with respect to pressure.

6.2.1.1 Pipeline Set-Up

We use uniform priors for the model parameters because they are normalizable and objective.
The prior bounds for Vo is between 5 and 60 cm3 mol−1. The prior bounds for Bo is between
4 and 100 GPa. The prior bounds for B′o is between 1 and 10. We use a uniform prior for
β and a Rayleigh prior for γ because they are normalizable and objective. The Rayleigh
parameter is set to 0.009 to allow α(P ) to go from 1 (no change) to 4. The slope of α(P )
must be positive and the value of α(P ) is forced to be ≥ 1 at pressures greater than 2.71371
GPa—ensuring the errorbars do not shrink.

6.2.2 Single-Phase Rose-Vinet

The single-phase Rose-Vinet EOS is given by the following:

η =
3

√
V

Vo

P (V ) = 3Bo

(
1− η
η2

)
exp

[
3

2
(B′o − 1) (1− η)

] (6.2.2.1)

where V are the measured volumes, σV are the measured volume errors, P are the measured
pressures, σP are the measured pressure errors, Vo is the reference volume, Bo is the bulk
modulus, and B′o is the derivative of the bulk modulus with respect to pressure.

6.2.2.1 Pipeline Set-Up

We use uniform priors for the model parameters because they are normalizable and objective.
The prior bounds for Vo is between 5 and 60 cm3 mol−1. The prior bounds for Bo is between
4 and 100 GPa. The prior bounds for B′o is between 1 and 10. We use a uniform prior for
β and a Rayleigh prior for γ because they are normalizable and objective. The Rayleigh
parameter is set to 0.009 to allow α(P ) to go from 1 (no change) to 4. The slope of α(P )
must be positive and the value of α(P ) is forced to be ≥ 1 at pressures greater than 2.71371
GPa—ensuring the errorbars do not shrink.
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6.2.3 Two-Phase Birch-Murnaghan

The two-phase Birch-Murnaghan EOS is composed of two Birch-Murnaghan EOS with one
transition pressure. The two-phase Birch-Murnaghan is given by the following:

EOS(Vo, Bo, B
′
o) =

3Bo

2

[(
Vo
V

) 7
3

−
(
Vo
V

) 5
3

]{
1 +

3

4
(B′o − 4)

[(
Vo
V

) 2
3

− 1

]}
(6.2.3.1)

P (V ) =


EOS(Vo,VII, Bo,VII, B

′
o,VII), if P < TPVII→X

EOS(Vo,X, Bo,X, B
′
o,X), if TPVII→X < P

, (6.2.3.2)

where V are the measured volumes, σV are the measured volume errors, P are the measured
pressures, σP and are the measured pressure errors. Vo,i is the reference volume, Bo,i is
the bulk modulus, and B′o,i is the derivative of the bulk modulus with respect to pressure
for phase i where the phases are ice-VII (cubic cell) and ice-X (cubic cell). TPVII→X is the
transition pressure from ice-VII to ice-X.

6.2.3.1 Pipeline Set-Up

We use uniform priors for the model parameters because they are normalizable and objective.
The prior bounds for Vo,VII and Vo,X is between 5 and 60 cm3 mol−1. The prior bounds for
Ko,VII and Ko,X is between 4 and 100 GPa. The prior bounds for transition pressure between
ice-VII and ice-X is between 28 and 55 GPa. We use a uniform prior for β and a Rayleigh
prior for γ because they are normalizable and objective. The Rayleigh parameter is set to
0.009 to allow α(P ) to go from 1 (no change) to 4. The slope of α(P ) must be positive and
the value of α(P ) is forced to be ≥ 1 at pressures greater than 2.71371 GPa—ensuring the
errorbars do not shrink.

6.2.4 Two-Phase Rose-Vinet

The two-phase EOS is composed of two Rose-Vinet EOS with one transition pressure. The
EOS is given by the following:

EOS(Vo, Bo, B
′
o) = 3Bo

(
1− η
η2

)
exp

[
3

2
(B′o − 1) (1− η)

]

η =
3

√
V

Vo

(6.2.4.1)

P (V ) =

EOS(Vo,VII, Bo,VII, B
′
o,VII), if P < TPVII→X

EOS(Vo,X, Bo,X, B
′
o,X), if TPVII→X < P

, (6.2.4.2)

where V are the measured volumes, σV are the measured volume errors, P are the measured
pressures, σP and are the measured pressure errors. Vo,i is the reference volume, Bo,i is
the bulk modulus, and B′o,i is the derivative of the bulk modulus with respect to pressure
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for phase i where the phases are ice-VII (cubic cell) and ice-X (cubic cell). TPVII→X is the
transition pressure from ice-VII to ice-X.

6.2.4.1 Pipeline Set-Up

We use uniform priors for the model parameters because they are normalizable and objective.
The prior bounds for Vo,VII and Vo,X is between 5 and 60 cm3 mol−1. The prior bounds for
Ko,VII and Ko,X is between 4 and 100 GPa. The prior bounds for transition pressure between
ice-VII and ice-X is between 28 and 55 GPa. We use a uniform prior for β and a Rayleigh
prior for γ because they are normalizable and objective. The Rayleigh parameter is set to
0.009 to allow α(P ) to go from 1 (no change) to 4. The slope of α(P ) must be positive and
the value of α(P ) is forced to be ≥ 1 at pressures greater than 2.71371 GPa—ensuring the
errorbars do not shrink.

6.2.5 Triple-Phase Birch-Murnaghan

The triple-phase Birch-Murnaghan EOS is composed of three Birch-Murnaghan EOS with
two transition pressures. The triple-phase Birch-Murnaghan is given by the following:

EOS(Vo, Bo, B
′
o) =

3Bo

2

[(
Vo
V

) 7
3

−
(
Vo
V

) 5
3

]{
1 +

3

4
(B′o − 4)

[(
Vo
V

) 2
3

− 1

]}
(6.2.5.1)

P (V ) =


EOS(Vo,VII, Bo,VII, B

′
o,VII), if P < TPVII→VIIt

EOS(Vo,VIIt , Bo,VIIt , B
′
o,VIIt

), if TPVII→VIIt < P < TPVIIt→X

EOS(Vo,X, Bo,X, B
′
o,X), if TPVIIt→X < P

, (6.2.5.2)

where V are the measured volumes, σV are the measured volume errors, P are the measured
pressures, σP and are the measured pressure errors. Vo,i is the reference volume, Bo,i is the
bulk modulus, and B′o,i is the derivative of the bulk modulus with respect to pressure for
phase i where the phases are ice-VII (cubic cell), ice-VIIt (distorted VII, tetragonal cell), ice-
X (cubic cell). TPVII→VIIt and TPVIIt→X are the transition pressure from ice-VII to ice-VIIt
and ice-VIIt to ice-X, respectively.

6.2.5.1 Pipeline Set-Up

We use uniform priors for the model parameters because they are normalizable and objective.
The prior bounds for Vo,VII, Vo,VIIt , and Vo,X is between 5 and 60 cm3 mol−1. The prior bounds
for Ko,VII, Ko,VIIt , Ko,X is between 4 and 100 GPa. The prior bounds for transition pressure
between ice-VII and ice-VIIt is between 3 and 11.75 GPa. The prior bounds for transition
pressure between ice-VIIt and ice-X is between 28 and 55 GPa. We use a uniform prior for
β and a Rayleigh prior for γ because they are normalizable and objective. The Rayleigh
parameter is set to 0.009 to allow α(P ) to go from 1 (no change) to 4. The slope of α(P )
must be positive and the value of α(P ) is forced to be ≥ 1 at pressures greater than 2.71371
GPa—ensuring the errorbars do not shrink.
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6.2.6 Triple-Phase Rose-Vinet

The triple-phase EOS is composed of three second-order Rose-Vinet EOS with two transition
pressures. The EOS is given by the following:

EOS(Vo, Bo, B
′
o) = 3Bo

(
1− η
η2

)
exp

[
3

2
(B′o − 1) (1− η)

]

η =
3

√
V

Vo

(6.2.6.1)

P (V ) =


EOS(Vo,VII, Bo,VII, B

′
o,VII), if P < TPVII→VIIt

EOS(Vo,VIIt , Bo,VIIt , B
′
o,VIIt

), if TPVIIt→VIIt < P < TPVIIt→X

EOS(Vo,X, Bo,X, B
′
o,X), if TPVIIt→X < P

, (6.2.6.2)

where V are the measured volumes, σV are the measured volume errors, P are the measured
pressures, σP and are the measured pressure errors. Vo,i is the reference volume, Bo,i is the
bulk modulus, and B′o,i is the derivative of the bulk modulus with respect to pressure for
phase i where the phases are ice-VII (cubic cell), ice-VIIt (distorted VII, tetragonal cell), ice-
X (cubic cell). TPVII→VIIt and TPVIIt→X are the transition pressure from ice-VII to ice-VIIt
and ice-VIIt to ice-X, respectively.

6.2.6.1 Pipeline Set-Up

We use uniform priors for the model parameters because they are normalizable and objective.
The prior bounds for Vo,VII, Vo,VIIt , and Vo,X is between 5 and 60 cm3 mol−1. The prior bounds
for Ko,VII, Ko,VIIt , Ko,X is between 4 and 100 GPa. The prior bounds for transition pressure
between ice-VII and ice-VIIt is between 3 and 11.75 GPa. The prior bounds for transition
pressure between ice-VIIt and ice-X is between 28 and 55 GPa. We use a uniform prior for
β and a Rayleigh prior for γ because they are normalizable and objective. The Rayleigh
parameter is set to 0.009 to allow α(P ) to go from 1 (no change) to 4. The slope of α(P )
must be positive and the value of α(P ) is forced to be ≥ 1 at pressures greater than 2.71371
GPa—ensuring the errorbars do not shrink.

6.2.7 Results

The fit parameters for each model are in Tables 6.2–6.9 and the pressure vs. volume plots
are shown in Figures 6.2–6.9. For the multi-phase EOS, the error on the transition pressures
are of similar length to the spacings between the pressure data. This is indicated by the
small error in the transition from ice-VII to ice-VIIt as opposed to the larger error on the
transition from ice-VIIt to ice-X. Additional sampling near the transition pressure are needed
for a better constraint. A Bayes factor analysis is done on the models. The table showing
the Bayes factors between each model is shown in Table 6.10. Here, we compare each pair
of model and determine that the three-phase Rose-Vinet EOS fits better than the others.
There is an indicator in the normalized pressure verses Eulerian strain that clearly shows
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a transition occurring at low pressures. Despite the model comparison code favoring the
two-phase fit, there is a physical reason to favor the three-phase fit over the two-phase fit.

6.3 Conclusions

In this chapter my model comparison pipeline was able to quantifiably show there is a
previously unreported phase transition in ice-VII near 5 GPa from a cubic cell to a tetragonal
cell. We used two methods to do this. The first was by measuring Bragg’s Law—the
diffraction of X-rays off of the crystal lattice. The second is by fitting a three-phase Vinet
EOS to pressure-volume data. Both methods also show a transition to ice-VIIt and a return
to ice-X at high pressures. The uncertainties in the parameters are largely due to a lack of
data quality, thus more data is required to better constrain the models.
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Vo [Å3] Bo [GPa] B’o [GPa]

42.20 ± 0.13 16.05 ± 0.41 4.97 ± 0.05

β = 3.51 ± 0.49, γ=0.00201 ± 0.00200

Table 6.2: The parameters fit for the single-phase Burch-Murnaghan Equation of State.
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Figure 6.2: The resulting fit of the single-phase Burch-Murnaghan Equation of State. The
fit is in blue and the data are in black. The orange error bars are the non-laser heater points
and have their uncertainties inflated by Equation 6.2.0.1. The grey solid, dashed, dotted,
and dot-dash lines come from Loubeyre et al. [61], Hemley et al. [62], Frank et al. [63], and
Bezacier et al. [64], respectively.
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Vo [Å3] Bo [GPa] B’o [GPa]

43.05 ± 0.20 12.57 ± 0.50 6.06 ± 0.07

β = 3.57 ± 0.43, γ = 0.00231 ± 0.00230

Table 6.3: The parameters fit for the single-phase Rose-Vinet Equation of State.
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Figure 6.3: The resulting fit of the single-phase Rose-Vinet Equation of State. The fit is in
blue and the data are in black. The orange error bars are the non-laser heater points and
have their uncertainties inflated by Equation 6.2.0.1. The grey solid, dashed, dotted, and
dot-dash lines come from Loubeyre et al. [61], Hemley et al. [62], Frank et al. [63], and
Bezacier et al. [64], respectively.
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Phase Vo [Å3] Bo [GPa] B’o

VII 41.57 ± 0.29 19.61 ± 1.32 4.21 ± 0.17

Transition Pressure from Ice VII to Ice X at 33.17 ± 2.89 GPa

X 35.01 ± 0.92 41.92 ± 6.48 4.26 ± 0.16

β = 1.96 ± 0.24, γ= 0.02235 ± 0.00285

Table 6.4: The parameters fit for the two-phase Burch-Murnaghan Equation of State.
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Figure 6.4: The resulting fit of the two-phase Burch-Murnaghan Equation of State. The
blue curve is the VII cubic cell and the red is the X cubic cell. The transition pressures
are indicated by the shaded light blue region. The width of the region is the error in that
transition pressure. The orange error bars are the non-laser heater points and have their
uncertainties inflated by Equation 6.2.0.1. The grey solid, dashed, dotted, and dot-dash lines
come from Loubeyre et al. [61], Hemley et al. [62], Frank et al. [63], and Bezacier et al.
[64], respectively.
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Phase Vo [Å3] Bo [GPa] B’o

VII 41.82 ± 0.35 17.86 ± 1.57 4.83 ± 0.27

Transition Pressure from Ice VII to Ice X at 31.03 ± 3.03 GPa

X 34.73 ± 0.76 42.08 ± 6.12 4.86 ± 0.24

β = 1.97 ± 0.27, γ= 0.02255 ± 0.00327

Table 6.5: The parameters fit for the two-phase Rose-Vinet Equation of State.
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Figure 6.5: The resulting fit of the two-phase Rose-Vinet Equation of State. The blue curve
is the VII cubic cell and the red is the X cubic cell. The transition pressure is indicated by
the shaded light blue region. The width of the region is the error in that transition pressure.
The orange error bars are the non-laser heater points and have their uncertainties inflated
by Equation 6.2.0.1. The grey solid, dashed, dotted, and dot-dash lines come from Loubeyre
et al. [61], Hemley et al. [62], Frank et al. [63], and Bezacier et al. [64], respectively.
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Phase Vo [Å3] Bo [GPa]

VII 44.98 ± 0.93 10.93 ± 1.43

Transition Pressure from Ice VII to Ice VIIt at 4.76 ± 0.17 GPa

VIIt 40.84 ± 0.10 22.55 ± 0.29

Transition Pressure from Ice VIIt to Ice X at 32.36 ± 1.92 GPa

X 44.19 ± 1.35 18.88 ± 2.02

β = 3.95 ± 0.05, γ= 0.00055 ± 0.00055

Table 6.6: The parameters fit for the three-phase Burch Murnaghan Equation of State, fixing
B′o to 4.
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Figure 6.6: The resulting fit of the three-phase Burch-Murnaghan Equation of State fixing
B′o to 4. The blue curve is the VII cubic cell, the black is the VIIt tetragonal cell, and the red
is the X cubic cell. The transition pressures are indicated by the shaded light blue region.
The width of the region is the error in that transition pressure. The orange error bars are
the non-laser heater points and have their uncertainties inflated by Equation 6.2.0.1. The
grey solid, dashed, dotted, and dot-dash lines come from Loubeyre et al. [61], Hemley et al.
[62], Frank et al. [63], and Bezacier et al. [64], respectively.
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Phase Vo [Å3] Bo [GPa]

VII 44.92 ± 1.07 11.14 ± 1.70

Transition Pressure from Ice VII to Ice VIIt at 4.74 ± 0.21 GPa

VIIt 40.40 ± 0.08 24.61 ± 0.28

Transition Pressure from Ice VIIt to Ice X at 32.36 ± 1.92 GPa

X 40.25 ± 0.53 28.94 ± 1.30

β = 3.96 ± 0.04, γ= 0.00055 ± 0.00055

Table 6.7: The parameters fit for the three-phase Rose-Vinet Equation of State, fixing B′o
to 4.
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Figure 6.7: The resulting fit of the three-phase Rose-Vinet Equation of State fixing B′o to 4.
The blue curve is the VII cubic cell, the black is the VIIt tetragonal cell, and the red is the
X cubic cell. The transition pressures are indicated by the shaded light blue region. The
width of the region is the error in that transition pressure. The orange error bars are the
non-laser heater points and have their uncertainties inflated by Equation 6.2.0.1. The grey
solid, dashed, dotted, and dot-dash lines come from Loubeyre et al. [61], Hemley et al. [62],
Frank et al. [63], and Bezacier et al. [64], respectively.
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Phase Vo [Å3] Bo [GPa] B’o

VII 42.17 ± 0.88 15.52 ± 2.99 5.09 ± 1.39

Transition Pressure from Ice VII to Ice VIIt at 4.49 ± 0.49 GPa

VIIt 40.88 ± 0.44 22.56 ± 2.09 4.00 ± 0.20

Transition Pressure from Ice VIIt to Ice X at 32.77 ± 2.25 GPa

X 34.76 ± 0.52 45.93 ± 4.16 4.15 ± 0.10

β = 1.81 ± 0.29, γ = 0.02437 ± 0.00363

Table 6.8: The parameters fit for the three-phase Burch Murnaghan Equation of State.
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Figure 6.8: The resulting fit of the three-phase Burch-Murnaghan Equation of State. The
blue curve is the VII cubic cell, the black is the VIIt tetragonal cell, and the red is the
X cubic cell. The transition pressures are indicated by the shaded light blue region. The
width of the region is the error in that transition pressure. The orange error bars are the
non-laser heater points and have their uncertainties inflated by Equation 6.2.0.1. The grey
solid, dashed, dotted, and dot-dash lines come from Loubeyre et al. [61], Hemley et al. [62],
Frank et al. [63], and Bezacier et al. [64], respectively.
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Phase Vo [Å3] Bo [GPa] B’o

VII 42.50 ± 0.88 18.47 ± 4.00 2.51 ± 1.51

Transition Pressure from Ice VII to Ice VIIt at 4.78 ± 0.76 GPa

VIIt 41.11 ± 0.53 20.76 ± 2.46 4.49 ± 0.35

Transition Pressure from Ice VIIt to Ice X at 30.91 ± 2.90 GPa

X 33.82 ± 0.43 50.52 ± 4.16 4.50 ± 0.15

β = 1.83 ± 0.30, γ = 0.02312 ± 0.00381

Table 6.9: The parameters fit for the three-phase Rose-Vinet Equation of State.
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Figure 6.9: The resulting fit of the three-phase Rose-Vinet Equation of State. The blue curve
is the VII cubic cell, the black is the VIIt tetragonal cell, and the red is the X cubic cell. The
transition pressures are indicated by the shaded light blue region. The width of the region is
the error in that transition pressure. The orange error bars are the non-laser heater points
and have their uncertainties inflated by Equation 6.2.0.1. The grey solid, dashed, dotted,
and dot-dash lines come from Loubeyre et al. [61], Hemley et al. [62], Frank et al. [63], and
Bezacier et al. [64], respectively.
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1 BM 1 RV 2 BM 2 RV 3 BM F 3 RV F 3 BM 3 RV

1 BM - 6 98 96 65 61 94 93

1 RV -7 - 91 90 59 54 88 86

2 BM -98 -92 - -2 -33 -37 -4 -5

2 RV -97 -90 1 - -31 -36 -2 -4

3 BM F -65 -59 33 31 - -4 29 28

3 RV F -62 -55 37 35 4 - 33 31

3 BM -95 -88 4 2 -29 -34 - -2

3 RV -93 -87 5 3 -28 -32 1 -

Table 6.10: The Bayes factors between all EOS models fit to the pressure/volume data, rounded to the nearest order of
magnitude. The value is the EOS of the bold EOS versus the non-bold EOS.



Chapter 7

Discussion and Conclusions

The theme of this dissertation, and my time working under Dr. Jason Steffen, is data mod-
eling in planetary science. The state-of-the-art model comparison code that I developed is
useful, not only in RV exoplanet studies, but everywhere model fitting and comparison is
needed. It has been used to solve five problems. Three of them relating to RV exoplanet
detection and two relating to high-pressure/high-temperature phase data of H2O-ice.

My code was used to distinguish between RV models near the 2:1 degeneracy and identify
systems from the NASA Archive where there may be another planet. We find that 15 out
of the 60 main sequence systems show compelling evidence for an additional planet with a
confidence level of 95%. Our findings imply that there are hundreds of missing planets in
NASA’s archive. The best potential candidates of those systems had more data taken from
APF and the Bayes factors computed with the new data continue to shows evidence for an
additional planet for all but one system. To test the effectiveness of different observational
campaigns, the code was used to test different sixteen year observational schemes. This
undertaking contained fourteen thousand pipeline runs, totaling fifty-six thousand fits. We
found that focusing on obtaining data when the system is near phases where the 2:1 degen-
eracy is the weakest decreases the ambiguity caused by the degeneracy more than obtaining
data at random phases. The observational campaigns also highlight the need for accurate
noise modeling in order to distinguish between a planet and a stellar source via S -index
measurements. In the future, this code will be used with additional noise models than fit in
this dissertation.

The high-pressure/high-temperature projects are useful for modeling planet interiors,
as the internal pressures of planets are very strong and their descriptions require accurate
equation of state measurements. Our code was able to identify two phase transitions in
Dr. Salamat’s pressure and temperature water-ice data taken at Argonne National Lab.
One of the phase transitions we found—cubic ice-VII to tetragonal ice-VIIt—was previously
unreported until now. Our code saw these phase transitions in X-ray diffraction data, which
uses Bragg’s law to peer into the crystal lattice of water, and in pressure–volume equation
of state fits.

The Bayesian approach to model comparison is useful in any situation where there are
two competing models. The end goal for this code is to be open source. The code will be
allowed to be edited and adjusted to the user’s needs. For example, there will be a way
for additional priors and models can be added. The computational power that is achievable
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now allows for these sophisticated statistical methods to be easily implemented for every
situation that calls for model fitting.
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