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Abstract

This dissertation describes methods and results of spectroscopic studies of the NaCs

molecule. NaCs is of particular interest in many labs where experimental studies of

ultra-cold molecules are being conducted. Data obtained in the present work will

also be useful as benchmarks for various theoretical calculations. Our goals in study-

ing this molecule were to map out high lying electronic states and to understand

how these states interact with one another.

Sodium and cesium metal were heated in a heat-pipe oven to form a vapor of

NaCs molecules. These molecules were excited using narrow band, continuous wave

(cw), tunable lasers. We employed the optical-optical double resonance (OODR)

technique to obtain Doppler-free spectra of transitions to rotational and vibrational

levels of high lying electronic states. One state of particular interest was the 12(0+)

electronic state. Rovibrational level energies corresponding to this state were mea-

sured and used to generate a potential energy curve using computer programs to

implement both the Rydberg-Klein-Rees (RKR) method [1] and the inverted per-

turbation approach (IPA) [2].

By observing fluorescence from the 12(0+) state resolved as a function of wave-

length, we determined that this state interacts with the nearby 11(0+) electronic

state, which was previously mapped out by Ashman et al. [3]. A two-stage coupling

model was devised to describe the resolved fluorescence originating from these two

interacting states. The electronic states interact via spin-orbit coupling, while the

individual rovibrational levels interact via a second mechanism, likely nonadiabatic

coupling. This two-stage coupling between the levels of these states causes quantum

interference between fluorescence pathways associated with different components of

1



the wavefunctions describing these levels. This interference results in more compli-

cated resolved fluorescence spectra. The model was used to fit parameters describing

these interactions so that the resolved fluorescence spectra could be reproduced.

The NaCs 43Π0+ electronic state was also studied in this work. Energies of

many rovibrational levels belonging to the 43Π0+ electronic state were measured.

This state is interesting because it likely has a potential energy curve with a double

minimum, which results in a different type of quantum interference, directly observed

in resolved spectra. The state also very likely has interactions with the 11(0+) and

12(0+) states. Energies of many rovibrational levels lying above the energy of the

barrier between the two minima were measured, and it appears that we also observed

a few levels lying below the barrier. Since the laser wavelengths necessary to excite

the lowest vibrational levels were not available, an experimental potential curve

could not be produced. Therefore, rovibrational level energies and spectroscopic

constants are tabulated.

2



Chapter 1

Introduction

Spectroscopic studies of diatomic molecules, specifically alkali diatomics, have pro-

vided a great deal of information about many interesting and fundamental ideas

surrounding molecular quantum mechanics. Information gathered from the study

of these molecules can be useful for many different areas of research. Currently a

great deal of work is being done with diatomic alkali molecules in attempts to devise

efficient processes of producing ultracold ground state molecules. Photoassociated

ultracold atoms are brought to some of the lowest rovibrational levels of the lowest

triplet or singlet states of LiCs [4], RbCs [5], Cs2 [6], and NaCs [7] through various

single and multistep schemes. The schemes for doing this often require accurate

spectroscopic data, such as rovibrational level structure, electronic state interac-

tions, and transition dipole moment functions.

Our group has chosen to work primarily with heteronuclear alkali molecules. Un-

like homonuclear diatomics, heteronuclear molecules have permanent electric dipole

moments, which are of interest due to possible applications for quantum computing.

It has been suggested that electric fields could be used to trap and orient the polar

molecules to form a type of qubit [8]. Of all the heteronuclear diatomic molecules,

NaCs has the second largest permanent dipole moment (Table 1.1). Spectroscopic

information on NaCs is therefore particularly valuable since it would be a very useful

molecule for such an application.

The permanent electric dipole moment of NaCs is not its only attractive quality.

3



Molecule Expt. Dipole
Moment (Debye)

LiNa 0.47
LiK 3.45
LiRb 4.05
LiCs 6.30
NaK 2.73
NaRb 3.10
NaCs 4.75
KRb 0.20
KCs 2.58
RbCs 2.39

Table 1.1: Permanent dipole moments of
heteronuclear alkali molecules in
the 1(X)1Σ+ state [9].

Atomic Splitting
Symbol (cm−1)

Li 0.335
Na 17.196
K 57.71
Rb 273.595
Cs 554.393
Fr 1686.589

Table 1.2: Spin-orbit splitting of alkali
atoms in the first excited state
(E[PJ= 3

2
]− E[PJ= 1

2
]) [10].

NaCs is also interesting due to the large spin-orbit interaction in this molecule.

The spin-orbit interaction is a result of the magnetic interaction of the magnetic

moment produced by an electron’s spin with the magnetic field produced by its

orbital angular momentum about the nucleus. This interaction is particularly strong

when the molecule contains a heavy atom such as Cs (see Table 1.2). The large

spin-orbit effect causes stronger interactions between electronic states and more

global perturbations of level energies. A molecule with a large spin-orbit interaction

such as NaCs is expected to follow Hund’s coupling case (c), instead of the more

commonly observed cases (a) or (b) [11] (Hund’s cases are described in detail in Sec.

2.2). When the angular momentum vectors couple according to case (c), the energy

level structure and resolved fluorescence spectra can be very different and sometimes

more complicated than those observed in molecules with relatively smaller spin-orbit

interactions.

Theory also benefits from spectroscopic data obtained from the present work.

Theoretical calculations of potentials [12], transition dipole moment functions [13],

and collision cross sections [14] are becoming sufficiently accurate to be useful for

preliminary predictions of experimental data. This comparison is a good test for
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computer codes and methods used for these calculations.

Several previous studies, both experimental and theoretical, provide critical foun-

dations for the experiments presented in this dissertation. Docenko et al. [15] de-

termined rovibrational energies of the 1(X)1Σ+ and 1(a)3Σ+ states of NaCs, and

used this information to map potential curves and determine Dunham coefficients.

Zaharova et al. [16] performed spectroscopic measurements and deperturbation

analysis on the mixed 1(b)3Π0+ ∼2(A)1Σ+ states. More recently, work in our lab by

Ashman et al. [3] determined Dunham coefficients for the NaCs 53Π0+ state and

mapped the potential energy curve using the inverted perturbation approach (IPA).

This study also involved a detailed analysis of resolved bound-free fluorescence spec-

tra in order to accurately determine the 53Π0+ → 1(a)3Σ+ transition dipole moment

function and the repulsive wall of the 1(a)3Σ+ state. In this disseration, I will refer

to the 53Π0+ state as the 11(0+) state using the Hund’s case (c) notation described

in Sec. 2.2. Theoretical potential energy curves, which include spin-orbit effects,

were calculated by Korek et al. [12] and are shown in Figure 1.1. Theoretical tran-

sition dipole moment functions were calculated by Aymar and Dulieu [17]. Both

of these studies were very useful in calculations of rovibrational level energies and

simulations of bound-free spectra. Finally, work done by Brett McGeehan [18] at

Lehigh to improve the flexibility and utility of the BCONT program was very useful

for the analysis described in Chapter 6.

Chapter 2 contains background on fundamental molecular physics including the

Born-Oppenheimer approximation and Hund’s cases. A description of the experi-

mental setup and equipment used to perform these experiments is found in Chapter

3. Experimental techniques, including optical-optical double resonance (OODR)

excitation and resolved fluorescence detection, are described in Chapter 4. Chapter

5 describes our studies of the 12(0+) electronic state of NaCs and explains the pro-

cess of determining an experimental potential energy curve. Chapter 6 discusses the

model we use to describe the resolved bound-free fluorescence from the 12(0+) state

and how simulations of bound-bound and bound-free spectra with this model can

provide information about two-stage coupling between the 11(0+) and 12(0+) states

of NaCs. Spectroscopic studies of the NaCs 43Π0+ state can be found in Chapter

5



7. Finally, Chapter 8 presents the conclusions reached in this work and includes

ideas for future work. Appendices A, B, and C include tables of rovibrational level

energies for the NaCs 1(b)3Π0+ ∼2(A)1Σ+ , 12(0+), and 43Π0+ states, respectively,

obtained in this work. Appendix D lists diode array detector wavelength response

efficiencies (described in Sec. 3.4.3) as a function of array pixel for use in future

work.
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Figure 1.1: Theoretically calculated NaCs potential energy curves [12] for electronic
states relevant to the present work. Labels reflect Hund’s case (a) [Hund’s
case (c) notation].

7



Chapter 2

Molecular Physics

2.1 Born-Oppenheimer Approximation

The time-independent Schrödinger equation,

ĤΨ(~q, ~R) = EΨ(~q, ~R), (2.1)

can be solved to obtain the energy eigenvalues, E, and wavefunctions, Ψ associated

with the states of the molecule. The total wavefunction, Ψ, depends on all the

electronic corrdinates abbreviated ~q, where ~q = {~r1, ..., ~rN}, and the nuclear coor-

dinates, ~R. The Hamiltonian, Ĥ, for the system contains terms that describe the

kinetic and potential energies of the nuclei and electrons.

We have the electronic kinetic energy

T̂elec =
−~2

2me

N∑
i=1

∇2
~q, (2.2)

where me is the mass of the electron, and the nuclear kinetic energy

T̂nucl =
−~2

2µ
∇2

~R
, (2.3)

where µ = MAMB

MA+MB
is the reduced mass of nuclei A and B and derivatives are taken

in the center of mass frame. Addditionally, there is there electron-electron Coulomb
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repulsion potential energy

Vee =
N∑
i=1

N∑
j>i

e2

4πε0rij
, (2.4)

where rij = |~ri − ~rj| is the separation of electrons i and j, the electron-nuclei

Coulomb attraction potential energy

VeN = −
N∑
i=1

2∑
α=1

Zαe
2

4πε0riα
, (2.5)

where riα = |~ri − ~rα| is the separation of electron i and nuclear α, and finally the

nuclear Coulomb repulsion energy

VNN =
Z1Z2e

2

4πε0R
. (2.6)

where R =
∣∣∣~RA − ~RB

∣∣∣ is the internuclear separation.

To simplify the process of solving the total Schrödinger equation, we first solve

the Schrödinger equation for the electronic eigenstates by fixing the internuclear

separation. The resulting energies, En, and wavefunctions, Φn, depend on R para-

metrically:

[T̂elec + Vee(~q) + VeN(~q; ~R) + VNN(~R)]Φn(~q; ~R) = En(R)Φn(~q; ~R). (2.7)

Assuming that the electronic wavefunctions can be calculated, we will then in prin-

ciple have a complete set of orthonormal functions, Φn(~q; ~R) for each R. This com-

plete set of basis functions is used to express the solution to the total Schrödinger

equation:

Ψ(~q, ~R) =
∑
n

ψn(~R)Φn(~q; ~R). (2.8)

Since the total wavefunction must certainly depend on R, the expansion coefficients

must also depend on R. In the Born-Oppenheimer approximation, these ψn(~R) will

turn out to be the nuclear wavefunctions and are determined by substituting this

expansion back into the total molecular Schrödinger equation. After substituting
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Eq. (2.8) into Eq. (2.1), we multiply on the left by Φ∗m(~q; ~R) and integrate over

all the electronic coordinates. Since the electronic wavefunctions form a complete

orthonormal set, the equation simplifies to

[∫
Φ∗m(~q; ~R)

(
−~2

2µ

)
∇2

~R

(∑
n

ψn(~R)Φn(~q; ~R)

)
d3~q

]
+ [Em(R)− E]ψm(~R) = 0.

(2.9)

The analysis of the Coulomb interactions has been exact up to this point. How-

ever, the problem is now to deal with the nuclear kinetic energy term in this equa-

tion. The Born-Oppenheimer approximation consists of assuming that the electronic

wavefunctions vary sufficiently slowly with internuclear separation such that the ki-

netic energy term in the previous equation can be written as:

∇2
~R

(
ψn(~R)Φn(~q; ~R)

)
= ψn(~R)∇2

~R
Φn(~q; ~R) + 2∇~Rψn(~R) · ∇~RΦn(~q; ~R) + Φn(~q; ~R)∇2

~R
ψn(~R)

≈ Φn(~q; ~R)∇2
~R
ψn(~R). (2.10)

This approximation can break down when electronic wavefunctions change suddenly

with internuclear separation, for example, near particular regions of electronic po-

tentials [Em(R)] that exhibit avoided crossings with other potentials.

If the approximation of Eq. (2.10) is satisfactory then Eq. (2.9) reduces to:[
−~2

2µ
∇2

~R
+ Em(R)− E

]
ψm(~R) = 0. (2.11)

The electronic energy as a function of internuclear separation [Em(R)] acts as an

effective potential energy function which gives rise to the nuclear wavefunctions.

The nuclear wavefunctions have a separate radial (vibration) and angular (rotation)

dependence since ∇2
~R

can be broken up into radial and angular parts. Vibrational

and rotation quantum numbers, v and J respectively, should now be included as

labels on ψJm,v(~R) to identify particular solutions to Eq. (2.11). Note that the
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nuclear wavefunctions associated with each electronic state (including continuum

levels) form a complete set for that particular electronic state.

The nuclear kinetic energy term, Eq. (2.3), can be further broken up as:

T̂nucl(R, θ, φ) = T̂radial(R) + Ĥrot = T̂radial(R) +
~2[J(J + 1)− Ω2]

2µR2
, (2.12)

where the nuclear coordinates, ~R, are now explicitly written as R, θ, φ, which

are the radial, polar angle, and azimuthal angle coordinates respectively. In Eq.

(2.12), the second term describes the rotation of the nuclei about their center of

mass. This term is written assuming a Hund’s case (c) coupling case (see Sec.

2.2.4). The rotational quantum number is J , and Ω is the projection of the total

electronic angular momentum onto the internuclear axis. Substituting this into Eq.

(2.11), gives an equation which depends only on R. The centrifugal potential adds

energy to the potential with the added amount scaling as 1
R2 . Typically, potentials

determined either experimentally or theoretically are “rotationless” meaning J = 0

in Eq. (2.12). However, once a rotationless potential has been determined, it is easy

to find the corresponding potential for any particular J values.

2.2 Hund’s Cases

Using the Born-Oppenheimer approximation to find solutions to the molecular

Schrödinger equation implies that the nuclear and electronic motion can be sep-

arated in a simple way. In reality, we would like to find a way to describe the effects

that the electronic and nuclear motions have on one another. Specifically, the dif-

ferent ways in which the angular momenta of the molecule couple together can be

described using Hund’s coupling cases [11]. The various angular momenta associ-

ated with the molecule are electron orbital (~L), electron spin (~S), nuclear orbital or

rotation (~R, not to be confused with the internuclear separation coordinate, which

is also labeled by ~R), and nuclear spin (~I). In this work, we will ignore the effects

of nuclear spin. There are five main Hund’s cases called (a), (b), (c), (d), and (e).
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The differences between these Hund’s cases depend on the relative strengths of the

various interactions between the angular momenta of the molecule. Cases (d) and

(e) are used to describe coupling schemes where rotational coupling is dominant,

which is not the case in NaCs. Therefore descriptions in the following sections will

only be given for cases (a), (b), and (c). Vector coupling diagrams for these three

cases are shown in Figure 2.1. Note that all Hund’s cases are limiting cases and

states of real molecules are likely best described by some intermediate case.

2.2.1 Hund’s Case (a)

In the case (a) limit, the electronic orbital angular momentum couples electrostati-

cally to the internuclear axis. As the electronic orbital angular momentum vector, ~L,

precesses, only its component along the internuclear axis, Λ ≡ |ML|, is well defined.

Similarly, Σ ≡ |MS| is the well defined component of electron spin, ~S, along the in-

ternuclear axis. The total electronic angular momentum along the internuclear axis

is then ~Ω = ~Λ + ~Σ. Finally, ~Ω couples with the nuclear rotation angular momentum

vector, ~R, which is perpendicular to the internuclear axis, to form the total angular

momentum vector, ~J [ ~J = ~Ω + ~R]. In this coupling limit, J , Λ, Σ and, hence, Ω

are all good quantum numbers. Electronic state labels have the form n2S+1ΛΩ. The

quantum number Λ is designated by capital Greek letters such as, Σ for Λ = 0, Π

for Λ = 1, ∆ for Λ = 2, etc. In this coupling limit, electrostatic interactions are most

important.

2.2.2 Hund’s Case (b)

In the case (b) limit, the electronic angular momentum couples electrostatically to

the internuclear axis, as in case (a). The electronic spin, ~S, however, does not couple

to the internuclear axis. Instead, ~Λ and the nuclear rotation angular momentum, ~R,

precess around each other to form ~N [ ~N = ~Λ + ~R]. The electronic spin then couples

to this intermediate angular momentum vector. ~S and ~N precess around each other

to form the total angular momentum, ~J [ ~J = ~N + ~S]. In this Hund’s coupling

limit, electrostatic interactions are still strong, however, spin-orbit interactions are
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Figure 2.1: Vector coupling models for Hund’s cases (a), (b), and (c). The thin horizon-
tal line represents the internuclear axis.

relatively weaker, which results in the spin interacting more strongly with the nuclear

rotation. Electronic states with Λ = 0 are pure case (b) states since, in this situation,

the spin vector does not couple to the internuclear axis. A transition can also occur

between case (a) and case (b) within a single electronic state when the rotation of

the molecule becomes sufficiently rapid that the electron spin can no longer precess

about ~Λ. As a result of this transition, known as spin uncoupling, case (b) is

appropriate when describing states with large J . Because case (b) implies weak

spin-orbit interactions, it is typically not well suited to describe electronic states of

NaCs.

2.2.3 Hund’s Case (c)

In the case (c) limit, spin-orbit coupling between ~L and ~S is stronger than the

electrostatic coupling of either of them to the internuclear axis. Because of the strong

spin-orbit interaction, ~L and ~S precess around each other to form an intermediate

angular momentum vector, ~Ja [ ~Ja = ~L + ~S]. This vector then precesses about the

internuclear axis and its component along that axis is ~Ω. As in case (a), ~Ω then

couples to the nuclear rotation angular momentum vector, ~R, to form the total
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angular momentum ~J [ ~J = ~Ω + ~R]. The quantum numbers Λ and Σ are no longer

valid quantum numbers and the electronic states are described only by Ω.

2.2.4 Rotational Hamiltonian

From the vector coupling models, we can see how to express the rotational energies

in terms of good quantum numbers. Following [19], the rotational part of the nuclear

kinetic energy term of Hamiltonian shown in Eq. (2.12) is:

Hrot =
R2

2µR2
, (2.13)

with R being the rotational angular momentum operator. In general, the total

angular momentum vector, ~J , is the vector sum of electronic orbital angular mo-

mentum, ~L, electronic spin, ~S, and nuclear rotation, ~R. However depending on

which Hund’s case best describes the molecule, the R operator must be expressed

using appropriate quantum numbers valid for that particular Hund’s case.

In Hund’s case (a), we can write an expression for R in terms of other angular

momentum operators since the angular momentum vectors can be related with

~R = ~J − ~L− ~S. (2.14)

Using Eq. (2.14), and the fact that the rotational angular momentum never has a

z-component because nuclear motion must always take place in a plane containing

the internuclear axis, Eq. (2.13) can be rewritten as

Hrot =
1

2µR2
(R2

x +R2
y) =

1

2µR2
[(Jx −Lx − Sx)2 + (Jy −Ly − Sy)2]. (2.15)

Finally, linear combinations of x and y components of the angular momentum op-

erators can be expressed in terms of raising and lowering operators:

J± = Jx ± iJy, L± = Lx ± iLy, S± = Sx ± iSy. (2.16)

This gives the final expression for the rotational Hamiltonian in case (a):
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Hrot =
1

2µR2
[(J2 − J2

z ) + (L2 −L2
z) + (S2 − S2

z )

+ (L+S− +L−S+)− (J+L− + J−L+)− (J+S− + J−S+)]. (2.17)

The last three terms in this expression are off-diagonal terms in the Hamiltonian

matrix that can cause interactions between electronic states. The first three terms,

however, are diagonal and give the rotational energies:

Erot =
~2

2µR2
[J(J + 1)− Ω2 + S(S + 1)− Σ2 + L(L+ 1)− Λ2]. (2.18)

In general L is not a good quantum number so the ~2

2µR2 [L(L + 1) − Λ2] term is

incorporated into the electronic energy of a particular state. Although Σ is a good

quantum number, the S(S+ 1)−Σ2 term is also typically included in the electronic

energy. Therefore, the rotational energies in Hund’s case (a) are usually written as

Erot =
~2

2µR2
[J(J + 1)− Ω2]. (2.19)

In Hund’s case (b), ~N = ~L+ ~R so Eq. (2.13) is written as

Hrot =
1

2µR2
(N −L)2 =

1

2µR2
[N 2−N 2

z +L2−L2
z − (N+L−+N−L+)], (2.20)

with N± = Nx ± iNy. The last term in parentheses results in off-diagonal matrix

elements responsible for coupling of states with ∆Λ = ±1. The other terms yield

diagonal matrix elements giving the rotational energies in Hund’s case (b). As in

Hund’s case (a), the L2 − L2
z terms are typically incorporated into the electronic

energy. Since ~R is perpendicular to the internuclear axis, the component of ~N along

the internuclear axis, ~Nz, is ~Λ. Therefore the rotational energies in terms of Hund’s

case (b) quantum numbers are

Erot =
~2

2µR2
[N(N + 1)− Λ2]. (2.21)
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Finally, in Hund’s case (c), ~J = ~Ja + ~R so Eq. (2.13) is written as

Hrot =
1

2µR2
(J − Ja)2 =

1

2µR2
[J2 − J2

z + J2
a − J2

az − (J+J−a + J−J+
a )], (2.22)

with J±a = Jax ± iJay. The last term in parentheses yields off-diagonal matrix

elements responsible for coupling of states with ∆Ω = ±1. The first terms are

diagonal matrix elements giving the rotational energies in Hund’s case (c). Similar

to the L2 −L2
z terms in Hund’s cases (a) and (b), the J2

a − J2
az terms are typically

incorporated into the electronic energy, since Ja is not a good quantum number.

Finally, the rotational energies in terms of Hund’s case (c) quantum numbers are

Erot =
~2

2µR2
[J(J + 1)− Ω2]. (2.23)

We retain the Ω2 term in the rotational energy since its inclusion in Erot can

be useful in identifying the character of the electronic state, as is described in more

detail in Sec. 5.1.

2.3 Nuclear Motion

Separating the molecular wavefunction as described in Sec. 2.1 is a useful approx-

imation since it allows the total energy of the molecule to be broken up into parts

associated with the various motions of the molecule. When separating the wave-

function in this way the total energy is

E = Ee + Ev + Er, (2.24)

where Ee, Ev, and Er are the electronic, vibrational, and rotational energies, respec-

tively. The electronic part has been described above. As a first approximation, the

vibration of the molecule can be described as a harmonic oscillator and the rotation

as a rigid rotor. Higher order terms are then added to these simple descriptions

such that the energy levels of typical electronic potentials can be described in a

straightforward and general way.
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2.3.1 Vibration

A reasonable starting point for describing the vibrational motion of the nuclei is the

harmonic oscillator approximation. Using a Taylor series expansion, any potential

with a minimum can be approximated, to lowest order, as a harmonic oscillator.

For diatomic electronic potentials, this approximation is often reasonably good near

the bottom of the well. A particular molecular potential, V (R), can be expanded as

V (R) = V (Req)+

(
dV

dR

)
R=Req

(R−Req)+
1

2

(
d2V

dR2

)
R=Req

(R−Req)2 + · · · , (2.25)

where Req is the equilibrium internuclear separation. Since Req is the minimum,

the derivative in the second term is zero and the first term is a constant that can

be incorporated into the electronic energy. So, neglecting higher order terms, the

potential can be considered to be a harmonic oscillator with the second derivative of

the potential at the minimum equal to an effective spring constant, k. The energy

solutions for such a potential are well known,

EHO = ~ω
(
v +

1

2

)
, (2.26)

with ω =
√

k
µ
; i.e. the energy levels are equally spaced. Typical electronic states,

however, do not follow harmonic oscillator level spacings at higher values of v. As

shown in Figure 2.2, the inner wall is usually more steep and the outer wall is

less steep than the harmonic oscillator potential at higher energies. These features

require the addition of higher order terms to account for the anharmonicity of the

potential. The energy can be expanded in a power series [11] in (v + 1
2
) as

Ev = ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2

+ ωeye

(
v +

1

2

)3

+ · · · (2.27)

where ωe, ωexe, and ωeye are constants with units of energy. Note the negative sign

in the second term. This term is negative for physical potentials since the curves

typically open up faster than the harmonic oscillator potential at higher energies
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Figure 2.2: Comparison of a harmonic oscillator potential and energy levels (dashed)
and a typical Morse electronic state potential and energy levels (solid). The
harmonic oscillator energies are regularly spaced while the energies of the
anharmonic Morse potential get closer together as they approach the disso-
ciation limit.
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causing the levels to become more and more closely spaced as they approach the

dissociation limit.

2.3.2 Rotation

The part of the nuclear kinetic energy term in Eq. (2.12) that depends only on

nuclear angular coordinates, θ and φ, describes how the nuclei rotate about their

center of mass. The rotational energies of the molecule can be described using the

rigid rotor approximation which gives

Erot =
~2

2µR2
eq

J(J + 1) = BeJ(J + 1). (2.28)

Here, µR2
eq is the moment of inertia of the molecule and Req is the equilibrium in-

ternuclear separation. As the name implies, the rigid rotor approximation assumes

that the separation between the nuclei is constant. However, as J gets bigger the

molecule rotates faster which results in an increase in the average internuclear sepa-

ration. A larger internuclear separation means a larger moment of inertia and hence

a smaller rotational energy. If a power series [11] in J(J + 1) is used to describe the

rotational energy, then the second term in

Er = BeJ(J + 1)−De[J(J + 1)]2 + · · · (2.29)

accounts for this stretching, where De is called the centrifugal distortion constant.

This term is negative because the stretching will always descrease the rotational

energy.

2.3.3 Dunham Expansion

We would like to be able to describe the rovibrational level energies in a more general

way so it is often not sufficient to rely on a model based on uncoupled vibration and

rotation. For example, as the vibrational energies get larger, the average internuclear

separation tends to increase as shown in Fig. 2.3. This means a correction should

be added to the rigid rotor expression to include the effects of the vibrating rotor:
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Figure 2.3: Energy level diagram illustrating the vibrating rotor for the first 20 vibra-
tional levels. Points represent the values of Req for each vibrational level.
Since the values of Req tend to increase with larger v, the moment of inertia
of the molecule increases with v resulting in a lower rotational energy for
larger v.
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E = BeJ(J + 1)− αe
(
v +

1

2

)
[J(J + 1)] + · · · (2.30)

Here the second term is negative since the moment of inertia is generally larger

for larger v, lowering the rotational energy. A similar expansion can be made to

describe how the centrifugal distortion terms depend on vibration. In principle, one

could add higher and higher order terms to describe the energy level structure of

a particular electronic state, gaining as much accuracy as desired. To write these

expansions in a more compact form, the Dunham expansion is used [20]. This double

power series [11] is written as

E(v, J) =
∑
i,k

Yi,k

(
v +

1

2

)i
[J(J + 1)− Ω2]k, (2.31)

where the Yi,k are called Dunham coefficients. Here we have replaced [J(J + 1)] by

[J(J + 1) − Ω2] as per the discussion in Sec. 2.2.4. Computer programs such as

DParFit written by Robert Le Roy [21] can determine these coefficients from a set

of experimental level energies for a particular electronic state. This expansion is

well suited for typical Morse-like potentials but becomes less useful when describing

states that are highly perturbed; i.e., more and more higher order corrections are

needed to accurately reproduce level energies. The Dunham expansion also becomes

invalid for describing levels close to the dissociation limit. Reference [22] states that

the Dunham expansion is only valid when describing a Morse-like potential within

the range 0 ≤ R ≤ 2Req.

2.4 Transition Intensities

By detecting fluorescence emitted when a molecule in an excited electronic state

decays to a lower state and examining its intensity as a function of wavelength we

obtain information about the energy levels and wavefunctions (and by extension the

potentials) of the electronic states involved, and about the transition dipole moment

function coupling the upper and lower states. Emission from a single ro-vibrational
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level can result in two very different types of spectra. Bound-bound emission pro-

duces fluorescence to discrete bound levels of another lower bound electronic state.

Bound-free emission produces broad continuous fluorescence to lower free, or re-

pulsive, electronic states. To describe this fluorescence the Classical Franck-Condon

Approximation (CFCA) [23] is often used as a crude first estimation of bound-bound

or bound-free fluorescence intensity patterns. Computer programs such as BCONT

[24] and LEVEL [25] written and distributed by Robert Le Roy use fully quantum

mechanical treatments of the states involved to determine the transition intensities.

2.4.1 Classical Franck-Condon Approximation

In a transition, the emission of a photon occurs essentially instantaneously. This

means that the molecule does not have time to change position or velocity during a

transition. The idea of an instantaneous transition is the central idea of the Classical

Franck-Condon Approximation. Assuming that the nuclei do not move during an

electronic transition means that the internuclear separation, R, is constant during

a transition, and the transition can be represented by a vertical arrow connecting

the initial and final states. Classically, the momentum of the nuclei also cannot

change, since according to ~F = d~p
dt

, a change of momentum by a finite amount in

an infinitesimally short time would require an infinite force. This means that both

the velocity and kinetic energy are approximately conserved in an electronic tran-

sition. These ideas can be used to qualitatively describe which transitions between

electronic states will be the strongest.

A classical harmonic oscillator spends a large fraction of its time near the end

points of its oscillation range, where its velocity and kinetic energy are small. The

quantum mechanical motion of the nuclei is similar in that the square of the vi-

brational wavefunction is largest near distances corresponding to classical turning

points of the potential curve. The square of the upper state nuclear radial wave-

function gives the probability that the molecule is separated by a particular value

of R. Therefore, a transition is most probable when turning points from each of the

two levels involved are located at the same (or close to the same) value of R. Figure

22



Figure 2.4: Vertical transition showing the most probable transition between two bound
levels. A transition between levels AB and CD is highly likely because the
inner turning points are located at the same R value and according to the
CFCA the internuclear separation, R, is constant.
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2.4 illustrates a situation where a transition between levels AB and CD is highly

likely because the inner turning points are located at the same R value. Although

the nuclei will still be at the same separation after the transition, they will vibrate

about a different equilibrium separation since the potentials are not parallel. Figure

2.5 shows a resolved bound-bound fluorescence spectrum. Each doublet represents a

pair of transitions down to a particular vibration level of the lower state (a different

lower state v for each doublet). Using the CFCA, we expect to see doublets with

stronger intensity where there is a large degree of overlap of the turning points be-

tween the two electronic states. However, as can be seen in Fig. 2.5, other maxima

are also observed, which can be explained qualitatively in terms of the Mullikan

difference potential (see next paragraph). But the actual bound-bound intensities

should be calculated using a full quantum mechanical description as discussed in

Sec. 2.4.2.

The CFCA also provides a qualitative explanation of the shape of bound-free

spectra. Using the approximation that both internuclear separation and kinetic

energy are conserved when a molecule in an upper bound level makes a radiative

transition down to a repulsive (free) electronic state or to the dissociative continuum

of a bound state, one can determine a function for the wavelength of the emitted

photons, λ(R). This function, along with the square of the upper state vibrational

wavefunction, can give a qualitative representation of a bound-free spectrum inten-

sity pattern. The function λ(R) represents the wavelength corresponding to the

energy difference of the upper and lower electronic potential curves at each separa-

tion R. The kinetic energy of the upper state is added to the lower state potential to

form what is called the Mullikan difference potential (see Fig. 2.6). The difference

between the upper state energy level and the Mullikan difference potential is equal

to the difference of the two potentials at each R. If the Mullikin difference potential

is monotonic, the spectrum will simply be a reflection of the square of the upper

state wavefunction like the spectra shown in Figure 2.7. If λ(R) is not monotonic,

there are quantum interference effects due to the fact that more than one value of

R contributes to fluorescence at the same wavelength. A good example of this is

the 43Π0+ → 1(a)3Σ+ electronic transition of NaCs, which is described further in
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Figure 2.5: Bound-bound resolved fluorescence spectrum.
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Figure 2.6: Typical monotonic Mullikan difference potential for transitions from a bound
upper state to a free lower state. The total energy of the molecule in the
upper state is given by the horizontal line, hence the difference between this
and the upper potential is the kinetic energy (shown with double headed
arrows). Since, under the CFCA, kinetic energy is conserved in a transition,
this is added to the lower state potential to determine the Mullikan difference
potential (dashed curve). The difference between the upper state energy and
the Mullikan difference potential give wavelengths that we expect to observe
in the bound-free fluorescence.
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Chapter 7.

The CFCA does a reasonable job of qualitatively describing the features of

bound-bound and bound-free spectra. However, since the CFCA is only an approx-

imation there are several ways in which it is not adequate. The idea that a unique

function, λ(R), can be used to describe the wavelengths involved in the transition is

not accurate. λ(R) implies that only one (or more, in the case of a non-monotonic

difference potential) value of R contributes to a particular wavelength. In reality,

the quantum mechanical wavefunction tells us that the nuclei are not separated by

one particular value of R, but rather exist in a state corresponding to a simultaneous

superposition of R values with the probability of finding a particular R value being

proportional to the square of the nuclear radial wavefunction at that R. The CFCA

also does not take into account how the intensities of the transitions are affected by

the electronic part of the wavefunctions. This latter effect is described by the tran-

sition dipole moment function. To obtain more detailed information, the transitions

must be described using a fully quantum mechanical approach.

2.4.2 Quantum Mechanical Description of Fluorescence In-

tensities

To calculate the expected intensity distribution of the observed fluorescence from an

upper bound level to a lower bound (or free) electronic state, one needs to use the

total wavefunctions for both the upper and lower states. Following Herzberg’s [11]

description of emission intensities, one can obtain the intensity of a bound-bound

transition from an upper level (α, v) to a particular lower level (α′, v′) is

Iαvα′v′ =
64π4Nαvc

3λ4
αvα′v′

∣∣∣∣∫ ΨαvMΨα′v′dτ

∣∣∣∣2 , (2.32)

where Nαv is the number of molecules in the upper level (α, v), Ψ is the total wave-

function of a particular state, M is the electric dipole operator, and dτ = d~qd~R rep-

resents intergration over all electronic and nuclear coordinates. Vibrational quantum

numbers are designated with v and v′ while α and α′ represent all other quantum
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Figure 2.7: NaCs 11(0+)→1(a)3Σ+ bound-free spectra for low lying vibrational levels of
the 11(0+) state. 28



numbers needed to describe the states. The electric dipole moment operator is a

vector operator given by

M = Z1e ~R1 + Z2e ~R2 −
N∑
i=1

e~ri. (2.33)

Here e is the electron charge, Z1e and Z2e are the charges of nucleus 1 and nucleus

2, respectively, ~R1 and ~R2 are the vectors describing the positions of nucleus 1

and nucleus 2 relative to the center of mass, respectively, and ~ri is the location of

the ith electron relative to the molecular center of mass. The matrix element of

first two terms in Eq. (2.33) is zero when the two levels involved in the transition

belong to different electronic states since this term does not depend on the electronic

coordinates and the electronic wavefunctions are orthonormal. In the present work,

we are only concerned with the second term since all transitions considered here

are between different electronic states. Remembering that we can factor the total

wavefunction into nuclear and electronic parts as in Eq. (2.8), we can substitute the

second term in Eq. (2.33) into the integral in the intensity expression, Eq. (2.32),

to give

Iαvα′v′ =
64π4Nαvc

3λ4
αvα′v′

SJ,J ′

2J + 1

∣∣∣∣∣
N∑
i=1

∫
Φαχαv(−e~ri)Φα′χα′v′R

2dRd~q

∣∣∣∣∣
2

, (2.34)

where SJ,J ′ is the Hönl-London factor [11] resulting from the angular part of the

integral over the nuclear coordinates and χαv is the nuclear radial wavefunction

which is normalized with respect to R2dR. Defining the vibrational wavefunction,

ξ = χ
R

, where ξ is normalized with respect to dR, we can rewrite Eq. (2.34) as

Iαvα′v′ =
64π4Nαvc

3λ4
αvα′v′

SJ,J ′

2J + 1

∣∣∣∣∣
N∑
i=1

∫
Φαξαv(−e~ri)Φα′ξα′v′dRd~q

∣∣∣∣∣
2

. (2.35)

The electronic part of the integral in Eq. (2.35) is typically rewritten as:

µαα′(R) =
N∑
i=1

∫
Φα(−e~ri)Φα′d~q, (2.36)
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and this quantity is usually called the electronic transition dipole moment function.

Finally we end up with the emission intensity in terms of the vibrational wavefunc-

tions of each of the levels involved in the transition:

Iαvα′v′ =
64π4Nαvc

3λ4
αvα′v′

SJ,J ′

2J + 1

∣∣∣∣∫ ξαvµαα′(R)ξα′v′dR

∣∣∣∣2 . (2.37)

Programs such as LEVEL [25] can be used to calculate emission intensities by

first solving the radial Schrödinger equation to find the vibrational wavefunctions.

Integrals in Eq. (2.37) are then evaluated with these calculated wavefunctions and

user-specified transition dipole moment functions. LEVEL also calculates Franck-

Condon factors, which are the squares of vibrational overlap integrals involving the

product of the two wavefunctions i.e.

FCF =

∣∣∣∣∫ ξαv(R)ξα′v′(R)dR

∣∣∣∣2 . (2.38)

These Franck-Condon factors are useful as an estimate of relative transition inten-

sities; however, they rely on the approximation that the transition dipole moment

varies sufficiently slowly with R that it can be removed from the integral.

Emission intensity for a bound-free transition is similar. However, a few modifi-

cations need to be made since the final state in the transition is part of a continuum.

Since the lower state is no longer a discrete level it cannot be labeled by a vibrational

quantum number, v. Instead it is characterized by its energy, E, and its rotational

quantum number, J ′. Because of this programs such as BCONT [24] calculate the

intensity of transitions from the bound upper level to a band of lower levels that lie

in the range E ′ to E ′ + dE ′:

dIαv =
64π4Nαvc

3λ4

∣∣∣∣∫ ΨαvMΨα′E′dτ

∣∣∣∣2 dE ′. (2.39)

To obtain an expression that can more easily be compared to experimental spec-

tra, we would like an expression for the intensity produced over a small range of

wavelengths dλ rather than over a small range of energies dE ′. Converting an energy

interval to a wavelength interval introduces two more factors of λ since
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dE ′

dλ
=

d

dλ

(
hc

λ

)
= −hc

λ2
. (2.40)

Using this substitution, we obtain an expression for the intensity per unit wavelength

interval for transitions to lower states corresponding to transition wavelengths be-

tween λ and λ+ dλ:

dIαv
dλ

dλ =
64π4Nαvhc

2

3λ6

SJ,J ′

2J + 1

∣∣∣∣∫ ξαvµαα′(R)ξα′EdR

∣∣∣∣2 dλ, (2.41)

where ξα′E′ is the free state nuclear radial wavefunction. These free state radial

wavefunctions no longer has discrete v′ quantum numbers associated with it but

rather energies, which can be continuous.

2.4.3 Selection Rules

The intensity of a transition between any two bound levels of a molecule is propor-

tional to the integral in Eq. (2.35) times the Hönl-London factor, SJ,J ′ [11]. This

integral involves the electronic wavefunctions and vibrational wavefunctions of both

levels and the dipole moment operator. If the result of this integral is zero or if the

Hönl-London factor is zero, the transition is said to be “dipole forbidden” [11]. For

the integral and Hönl-London factors to both be non-zero, the quantum numbers

of the initial and final state must differ only by certain values. These differences

are summarized by selection rules. The following are selection rules for transitions

between electronic states of heteronuclear diatomic molecules [26]:

∆Λ = 0,±1, (2.42)

∆S = 0, (2.43)

∆Ω = 0,±1. (2.44)

For NaCs, where spin-orbit coupling is strong and Hund’s case (c) notation is more

appropriate, the selection rule on Λ is not strictly followed since Λ is not a good
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quantum number. Similarly, when spin-orbit coupling is strong, S is not a good

quantum number, and the selection rule Eq. (2.43) can be violated. Since each

alkali atom has only one electron outside closed shells, the alkali diatomic molecules

can only have electronic states with total electron spins of zero (singlet) or one

(triplet). Even for lighter alkali molecules, where spin-orbit coupling is relatively

weak, the interaction can still be sufficient to mix nearly degenerate rovibrational

levels of a singlet state and a triplet state of the same J . Thus such levels have

both singlet and triplet character. These mixed rovibrational levels, especially in

the 1(b)3Π0+ ∼2(A)1Σ+ manifold, are called “window levels” since they allow access

to upper triplet states from the singlet ground electronic state. In NaK, these

interactions are sufficiently small that only a minority of close lying singlet and

triplet rovibrational levels are mixed. However, in NaCs, the spin-orbit interaction

is so strong that it causes a global perturbation where every rovibrational level of

both electronic states has significant singlet and significant triplet character.

The selection rules on the nuclear quantum numbers are the following:

∆v = anything (2.45)

∆J = 0,±1 unless Ω = 0→ Ω = 0, then ∆J = ±1. (2.46)

There is no selection rule on the vibrational quantum since wavefunctions of vibra-

tional levels belonging to two different electronic states are not orthogonal. The

probability of vibrational transitions is therefore governed by Eq. (2.37). In the

selection rule on J , ∆J is defined as Jupper − Jlower, and ∆J = −1, 0,+1 transitions

are labeled P, Q, R transitions, respectively. The selection rule on J results from

the Hönl-London factor.
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Chapter 3

Experimental Apparatus

This chapter describes the experimental apparatus used for this study, which is

shown schematically in Fig. 3.1. Descriptions of the heat pipe oven used to generate

the molecular vapor, the laser systems, and detection systems, specifically the charge

coupled device (CCD) array detector, are included.

3.1 The Heat Pipe Oven

The experiment is centered around a six arm heat pipe oven as shown in Figure

3.1. The heat pipe oven was first introduced by Vidal and Cooper in 1969 [27].

The particular heat pipe oven used in this work was constructed by Seth Ashman

and Joe Zelinski in 2006. A more detailed description of the construction and

components is given in Seth Ashman’s PhD. dissertation [28]. The heat pipe oven

is made of 1.5” diameter stainless steel arms, which are each about 12” long and

that were welded together to form a set of perpendicular axes. Two of the four

horizontal sidearms are used for the propagation of the laser beams. The other

two perpendicular horizontal arms are used for fluorescence detection, white light

alignment, and white light absorption spectra. The fifth (vertical) arm is used to

load the alkali metal. The downward pointing vertical arm is much shorter (about

2”) and is used to contain the liquid sodium and cesium. Conflat flanges at the ends

of the four horizontal and upward vertical arms are used to secure BK7 windows
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Figure 3.1: Schematic diagram of the apparatus used in all experiments described in
this work. Note: the CCD diode array and PMT are not attached to the
monochromator at the same time.
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with o-rings to make a vacuum seal. Clamshell heaters are attached to each arm

of the heat pipe and wrapped in pieces of ceramic insulating blanket. Inlets drilled

near the ends of the four horizontal and upward vertical arms are connected to the

vacuum and gas-handling system so that we could steadily flow a buffer gas through

the heat pipe oven. Chilled water flows through copper tubing that is wrapped

around the ends of each arm near the window. The cooling water and argon buffer

gas prevent the alkali metals from coming in contact with the windows.

Solid sodium and liquid cesium were carefully loaded into the center of the heat

pipe. The voltage of the clamshell heaters is controlled by variacs in order to produce

temperatures of 290 to 310 ◦C inside the heat pipe oven. Heating the alkali metals

produces atomic Na and Cs vapor and molecular species Na2, Cs2, and NaCs. As

the temperature increases, the alkali vapor migrates out from the central region of

the heat pipe until it meets the region of cooler argon buffer gas. A rolled sheet of

fine wire mesh lines the inside of each arm and acts as a wick to bring the condensed

metal back to the central hot region. The temperature is monitored using chromel-

alumel thermocouples attached to each arm of the heat pipe. Pressure is monitored

using a capacitance manometer located a few feet away from the oven in the vacuum

and gas-handling system. In our experiments, argon was chosen as the buffer gas.

Valves regulating the flow of buffer gas from the tank and pumping from the vacuum

system were adjusted such that the pressure in the oven was approximately 3 to 5

Torr.

3.2 Laser Systems

For most experiments two lasers were used in a pump-probe scheme. The pump

laser is a Coherent 899 Titanium:Sapphire (Ti:Saph) continuous wave (cw) ring laser

which is pumped by all visible lines of a Coherent Innova 200 argon ion laser. 10 W

of pump power usually produces approximately 100 to 500 mW of Ti:Saph power.

We currently have access to two sets of optics for the Ti:Saph laser, mid-wave and

short-wave. For all the experiments done here, we have used the mid-wave optics
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which allows a wavelength tuning range from approximately 780 nm to 900 nm.

The probe laser is a Coherent 699 cw ring dye laser. LDS 722 dye is used and the

dye laser is pumped with the 514 nm line of a Coherent Innova Sabre argon ion

laser. Approximately 7.9 W of pump power usually produces approximately 100 to

400 mW of dye laser power with a wavelength tuning range of about 720 to 775 nm.

The Coherent operator’s manual [29] gives details about the features of the

Ti:Saph laser along with detailed alignment procedures. Figure 3.2 shows a schematic

of the Ti:Saph laser cavity. With the exception of the lasing medium, the features

and components of the both the Ti:Saph and dye laser are very similar. One im-

portant feature of the lasers is the narrow single mode linewidth. The birefringent

filter and the two etalons contained in the intracavity assembly act as frequency

filters in order to reduce the number of lasing cavity modes to one. The frequency

of this mode is stabilized in two ways. First, all the laser optics and components are

mounted on an Invar bar, which has a very small coefficient of thermal expansion.

This provides thermal stabilization of the cavity length of less than one micron per

degree centigrade. Further frequency stabilization is achieved using an electronic

servo loop and temperature stabilized reference cavity. The laser control box uses

signals from the reference cavity to determine an error signal when the frequency

drifts. This signal is used by the control box to make small changes in the cavity

length by moving the tweeter assembly (which is a small cavity mirror mounted on

a piezoelectric bar) or the Brewster plate. Frequency filters and stabilization result

in single mode lasing with linewidths as low as 500 kHz.

The lasers are scanned by rotating the Brewster plate. The rotation allows for

small continuous changes in the optical cavity length, which allows for a continuous

scan range of up to 30 GHz. The frequency remains stable during a scan because

it is locked to a fringe of the temperature stabilized reference cavity containing an

identical Brewster plate whose rotation is synchronized with the laser cavity Brew-

ster plate. Both lasers make use of built-in wavemeters and are controlled by the

Coherent Autoscan program. The wavemeter allows for accurate determination of

wavelength and continuous scanning by stitching together many continuous 10 GHz

segments. The beams from the two lasers are counter propagated through the heat
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Figure 3.2: Schematic diagram of the Coherent 899-21 single mode cw Titanium Sap-
phire laser cavity. Mirrors labeled with P are pump laser mirrors, mirrors
label with M form the laser cavity ring, L is the pump laser focusing lens,
TS is the Titanium Sapphire crystal, BP is the Brewster plate, OD is the
optical diode, PR is the pickoff rhomb, BRF is the birefringent filter, FET
is the thick (fat) etalon, SET is the thin (skinny) etalon, and SS is the SET
sensor. Schematic reprinted from [28].
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pipe and focused such that their spot sizes are approximately 1 mm at the center

of the heat pipe.

Since accurate frequency measurements are critical to this work, both lasers need

to be well calibrated. The transitions excited by the Ti:Saph laser were calibrated

by comparison of wavemeter readout to one of two known sources: uranium tran-

sitions or previously calibrated NaCs 2(A)1Σ+ ← 1(X)1Σ+ transitions. To obtain

a calibration from the uranium hollow cathode lamp, a small part of the beam is

split off and sent into the lamp. The optogalvanic signal (change in lamp current

associated with laser frequency resonance with a uranium transition) from the lamp

is monitered while scanning the laser across a known transition from a uranium

atlas [30]. The Ti:Saph wavemeter readout of a particular uranium line is compared

to the known frequency in the atlas to determine the wavemeter error. Once the

error is known, unique red fluorescence signals due to exciting 2(A)1Σ+ ← 1(X)1Σ+

transitions can be used for subsequent calibrations. Dye laser transitions are cali-

brated using fluorescence from an iodine cell. Again, a small part of the beam is

split off and sent into the iodine cell where a photomultipler tube, which has been

filtered to eliminate Ti:Saph laser scatter, detects the fluorescence as a function of

dye laser frequency. These transitions can be compared to those tabulated in an

iodine atlas [31]. The dye laser is used as the probe in these studies and thus must

be scanned much more often than the Ti:Saph, hence, it is much more critical to

know the calibration error as the dye laser is scanned. One known problem of our

dye laser is that the error accumulates for longer scans (more than 1 cm−1). Errors

obtained by comparing measured iodine frequencies with known frequencies are fit

linearly to correct the frequency scale of these longer spectra.
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3.3 Detection

When one of the lasers is resonant with a transition, fluorescence emitted in a direc-

tion perpendicular to the laser propagation direction. For the pump step, fluores-

cence is focused and collected onto the photocathode of a freestanding photomulti-

plier tube (PMT) (“Total Red PMT” in Fig. 3.1, side-on Hamamatsu R928 ). Figure

3.3 shows an example of the total red fluorescence signal as a function of pump laser

frequency. For the probe step, fluorescence is focused and collected onto a second

freestanding PMT (“Total Green PMT” in Fig. 3.1, side-on Hamamatsu R928) that

is filtered to pass green light with short pass (SP) filters [SP575 (Reynard Corpora-

tion R00920-00), SP650 (Reynard Corporation R00940-00), SP675 (Reynard Cor-

poration R00942-00), SP700 (Reynard Corporation R00944-00), and SP800 (Melles

Griot 03SW618)]. Figure 3.4 shows an example of the total green fluorescence signal

as a function of probe laser frequency. In order to discriminate molecular fluores-

cence from background light sources, lock-in detection was used, which was done by

passing the laser beam through a rotating circular mechanical “chopper” wheel with

has 30 equally spaced slots. This modulates the laser beam, and as a result, also

modulates the induced fluorescence. The frequency of this modulation is controlled

by a Stanford Research Systems Model SR540 Chopper Controller. The modulation

reference frequency signal was sent to a Stanford Research Systems Model SR850

DSP Lock-In Amplifier. The current from the anode of the PMT was also sent to

the lock-in amplifier, which only amplifies signals that are modulated at the chopper

frequency. This ensures that the signal observed was only due to fluorescence created

by transitions induced by the laser. Chopping the pump beam and looking for vari-

ations in signal while scanning the probe laser and using lock-in detection ensures

that the recorded signals depend on photons from both the pump and probe lasers,

while preventing detection of fluorescence due to the absorption of two photons from

a single laser.

There are two cases in which information about the fluorescence as a function of

wavelength is needed. First, with the pump laser fixed on a transition (probe laser

blocked), the resolved fluorescence provides information on the quantum number
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Figure 3.3: Typical pump laser excitation scan.
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Figure 3.4: Typical probe laser excitation scan.
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assignment for that particular transition. Second, with both pump and probe lasers

fixed on a double resonance transition, the resolved fluorescence can be used to iden-

tify the upper electronic state excited by the transition. Details about the analysis

of these processes are given in Chapter 4. Experimentally, the fluorescence is focused

onto the entrance slit of a monochromator (Spex270M, labeled “Monochromator”

in Fig. 3.1) using a lens and mirrors in a periscope arrangement. The periscope

arrangement of the mirrors is important so that the image of the horizontal strip of

fluorescence produced by the lasers is rotated to be aligned with the vertical opening

of the entrance slit (maximizing transmission). The fluorescence passes through the

entrance slit is collimated with the first internal mirror of the monochromator, and

then a diffraction grating separates the fluorescence by wavelength. The diffraction

grating used in this experiment has 600 grooves per millimeter and is blazed for 1

µm. The blaze of a grating means that the grating is most efficient at reflecting light

in a particular direction or angle corresponding to a particular wavelength in first

order, in this case, 1 µm. Because of the blaze of the grating, the monochromator

was often used in second order with proper filtering, since second order 500 nm light

is reflected in the same direction as first order 1 µm light as given by the grating

equation:

a sin θ = mλ. (3.1)

Here a is the grating groove spacing, θ is the angle of the diffracted light with

respect to the grating normal, and m is the diffraction order for wavelength λ. The

diffracted light then hits the second monochromator mirror which refocuses it onto

the detector. We have two options available to us for detection at the output of

the monochromator. One is to use the exit slit with PMT mounted behind it. In

this setup, the lock-in amplifier is used to ensure that we only detect signal due to

laser-induced fluorescence. The lock-in signal is recorded using a LabVIEW program

as the grating of the monochromator is rotated. The advantage of using the PMT

is that calibration of the wavelength scale is relatively simple, if the starting and

ending points are known along with any grating offset. With this setup, the narrow
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wavelength band that passes through the exit slit changes in a continuous way to

map the spectrum as a function of wavelength. The second detection option is to

use the charge-coupled device (CCD) diode array detector mounted in the exit slit

plane. The exit slits are not used with the CCD so that a large range of wavelengths

is focused onto the pixels of the array detector. The use of the CCD diode array

detector has different advantages and challenges; it is described in more detail in

the next section.

3.4 CCD diode array detector

The use of the charge-coupled device (CCD) diode array detector has greatly in-

creased the efficiency with which resolved fluorescence spectra can be obtained in our

lab. One major disadvantage to scanning the monochromator grating and record-

ing the output with a PMT is that it requires the total signal to be constant in

time throughout the duration of the scan. If the frequency of one or both of the

lasers drifts off the line or if the power of either laser fluctuates during the scan,

then the scan must be corrected or abandoned altogether. However since the CCD

array observes all wavelengths at the same time, a laser frequency drift or change

in laser power will only cause the observed spectra to change by an overall scaling

factor. The CCD also has a strong advantage in that the time required to obtain a

reasonable size signal is significantly less than the time it would take to record the

same spectrum by scanning the grating for the same size signal.

The monochromator is operated electronically using a HandScan remote con-

troller. The HandScan controls parameters such as slit widths, grating position,

scan starting and ending points and scan speed. The only important parameters

when using the CCD are the entrance slit width and the grating position. A Lab-

VIEW program controls the exposure time of the detector and saves the data. The

program also controls an option that switches between continuous acquisition or a

feature called “snap”. When the program runs in continuous acquisition mode, the
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CCD continually takes exposures and the data are displayed and saved automati-

cally after each. In the “snap” acquisition mode, the CCD waits to take a single

exposure until the user selects the “snap” button. It will display and save only this

exposure. For very small exposure times (usually anything less than a second), it is

preferable to use the “snap” feature to save only a single data set at a given time

so that the data file does not automatically fill up with huge lists of numbers. For

data with longer exposure times or poor signal to noise, continuous acquisition is

preferable so that multiple exposure data sets can be easily averaged. The last and

possibly most important feature of the LabVIEW program is the ability to acquire

and subtract a background. A particular exposure can be set as a background and

then subtracted from subsequent exposures. This removes the background from the

subsequent exposures, both on the display and in the stored data files. Background

subtraction is critical for the CCD since, unlike the PMT signal, lock-in detection

cannot be used. It is most important to subtract a background when using long

exposure times to look at small signals. Although most lights in the lab are off,

background from computer displays and lasers can be an issue. Most prominently,

the 514 nm argon ion line from the argon laser used to pump the dye laser is a major

background light source. This line would show up in all triplet bound-free spectra

obtained using the CCD if not for background subtraction.

3.4.1 Alignment

Before the CCD could be used it needed to be properly attached and aligned on

the monochromator. First, the exit slit and PMT assembly were removed from

the monochromator. A special adaptor designed for the SPEX270M has one end

with a large circular opening which attaches to the exit port of the monochromator

and another cylindrical end which can be attached to the CCD detector head. This

special adaptor allows free translation and rotation of the detector head with respect

to the exit port. The detector head is attached to a signal processor which is

connected to a PC so that the signal can be displayed and recorded using LabVIEW

software. To align and calibrate the system, a small mercury lamp was placed such
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that it illuminated the entrance slit of the monochromator. The grating was rotated

to the position at which the controller reads 435 nm. This produced an image of

the mercury line approximately near the center pixel of the array. The entrance

slit was set to the smallest open setting of 6.25 microns so that the image of the

mercury line on the exit plane was as narrow as possible. The detector was then

translated and rotated in its adaptor mount to fulfill two criteria: the rotation of the

array must be such that the wavelength range associated with an individual pixel is

as small as possible, and the detector array must be translated such that it lies in

the focal plane of the last monochromator mirror. The LabVIEW program was set

to have a relatively short exposure time (about half a second) and to continuously

display sequential exposures so the display could be used for real time feedback of the

alignment of the detector. The detector was first rotated such that the mercury line

was as narrow as possible. The goal was to make the detector array perpendicular

to the image of the entrance slit. If this is not the case, then several pixels may be

illuminated by the same range of wavelengths, resulting in broader lines. Once the

rotation was properly adjusted, the detector head was translated toward or away

from the last monochromator mirror until it was in the focal plane. Again, this was

confirmed by observing the mercury line on the display and translating the detector

such that the line is as narrow as possible. As with the rotation, if the detector is

too close or too far from the mirror, the light will not be focused, and this will result

in broader lines. Typically this process was iterated a few times to be sure that the

optimal position was found. Once the alignment process was done, screws on the

monochromator end of the adaptor were tightened so that the detector stayed in

this position.

3.4.2 Wavelength Calibration

Once the detector was aligned properly, data could be collected and recorded in

a computer file. However the format of the data file gives intensity as a function

of pixel number. To obtain meaningful spectra, the wavelength scale must be cali-

brated. Calibrating the wavelength scale for spectra obtained with the CCD array is
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not as straightforward as calibrating the wavelength scale for spectra obtained with

an exit slit and PMT. When using an exit slit and PMT detector, the wavelength

displayed on the HandScan controller corresponds to the nominal wavelength that

the grating transmits in the direction of the exit slit. Therefore moving the grating

position to a new wavelength reading sends that new nominal wavelength to the

exit slit. It is relatively simple to calibrate the wavelength scale to correct for any

offset in the grating position by scanning over a few standard known mercury lines.

In general, we find the offset is approximately constant with wavelength and we can

obtain an average offset that is used to correct the wavelength axis. This is not the

case when using the CCD array. When using the array, each pixel is effectively a

separate exit slit, each right next to one another. Having these pixels spread out

over the array allows us to see the entire spectrum at one time, but it also means

that the grating is sending a large range of wavelengths to the array for a single

grating position.

To understand how the wavelength range is distributed, we can examine the

grating equation for incident light at an angle [32],

a(sin θm − sin θi) = mλ. (3.2)

Here a is the grating groove spacing, θi and θm are the angles the incident and

diffracted light make with the grating normal, respectively, and m is the diffraction

order for wavelength λ. We would like to obtain an expression for the dispersion of

the light across the pixel array, ∆λ
∆pixel

. To do this, it is easiest to break this quantity

up into several parts:

∆λ

∆pixel
=

∆λ

∆θm

∆θm
∆y

∆y

∆pixel
. (3.3)

In this equation, y refers to the distance along the array. We are only concerned with

the angles associated with the diffracted light, θm, since for any CCD measurement

the grating is held in place, so θi is constant. The three ratios on the right side

of (3.3) can each be evaluated separately to determine the wavelength dependence

of the pixel dispersion. The third term is simply a measure of the pixel width
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which can be easily determined from the number of pixels, N , and the length of

the array, l; i.e., ∆y
∆pixel

= l
N

. The second term can be evaluated geometrically. The

optical length, L, between the grating and the array is approximately 50 cm while

the array width is 2.5 cm. So the small angle approximation is certainly valid, and

yields ∆θm
∆y

= 1
L

. Finally, the first term can be obtained by taking the derivative of

the grating equation. Remembering that θi is constant, we find:

∆λ

∆θm
=
a cos θm
m

=
λ cos θm

(sin θm − sin θi)
. (3.4)

This is the term which gives the wavelength dependence of the dispersion. Unfor-

tunately, values for this angular dispersion cannot be analytically calculated as a

function of wavelength because θm obviously depends on wavelength via the grat-

ing equation. However, values can be obtained relatively easily using numerical

methods. Finally all together the pixel dispersion is given by:

∆λ

∆pixel
=

lλ cos θm
NL(sin θm − sin θi)

. (3.5)

To experimentally determine the wavelength dispersion versus pixel, a mercury

lamp was used. The grating was tuned to a location at which more than one cal-

ibrated mercury line could clearly be observed in the spectra. This was done for

several sets of lines in both first and second order. The pixel number correspond-

ing to each peak was identified, and the pixel dispersion was calculated using the

known mercury line wavelength (in air). Figure 3.5 shows a plot of the theoreti-

cally calculated dispersion as a function of wavelength [from equation (3.5)] along

with the experimentally determined dispersion. Both sets of results have the same

basic shape and can be easily fit with a quadratic. The offset between the theo-

retical and experimental points is likely due to errors in measuring the array width

and monochromator focal length. Additionally, the second geometrical factor may

not be exactly 1
L

. Since the reflection from the second curved monochromator mir-

ror may decrease the dispersion slightly. The fit obtained from the experimental

data was used to correct the wavelength scale on any CCD spectrum shown in this

dissertation.
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Figure 3.5: Plot showing calculated and experimental pixel dispersion versus wavelength.
Dispersions shown here are for first order. Second order dispersions are half
of those shown here.
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Figure 3.6: Wavelength offset of the center pixel of diode array versus wavelength. Off-
sets shown here are for first order. Second order offsets are half of these.
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The known pixel dispersion gives the overall width of the wavelength scale for

a resolved spectrum. To put the entire spectrum on an absolute scale, the center

pixel offset must be determined. Again the mercury lamp was employed. Several

spectra were taken of calibrated mercury lines in both first and second order. The

nominal grating position wavelength, according to the HandScan, was taken to be

the wavelength of the center pixel (pixel number 522). The measured position of

the peaks on the spectra were compared to the calibrated line positions to obtain

the wavelength offset for the center pixel. As shown in figure 3.6, this offset has a

slight wavelength dependence but is well described by a linear fit. The wavelength

dependence to the offset could be due to the fact that the center pixel may not

be exactly aligned with the original exit slit position, coupled with the wavelength

dependent pixel dispersion. Using the center pixel offset obtained from this fit,

along with the dispersion, a calibrated wavelength scale can be calculated for any

spectrum obtained with the CCD array using only the grating position wavelength

read by the HandScan.

3.4.3 Efficiency versus Wavelength Calibration

The primary use of the CCD array is to obtain quick bound-free spectra for the

purpose of identifying the electronic state excited by a particular set of pump-probe

transitions. For this purpose, relative intensity calibration is not very crucial. How-

ever, in some cases, intensities as a function of wavelength needed to be corrected,

because the detection system is not equally sensitive to all wavelengths. This cor-

rection is particularly important when spectra are to be compared to theoretical

simulations produced by the program BCONT, which is discussed in Sec. 6.3. There-

fore, we needed to determine the efficiency of the detection system as a function of

wavelength. The detection system includes lenses, mirrors, interference filters, the

monochromator grating and mirrors, and the CCD detector. Even though each of

these elements has its own relative efficiency for transmitting/detecting light of dif-

ferent wavelengths, we require the overall relative efficiency for the entire system.

This means that if new filters are used or the grating is changed, a new efficiency
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curve must be determined. The CCD detector is also slightly more complicated

in that there are two separate sources of wavelength dependence in the response

function. Each individual pixel has its own particular efficiency as a function of

wavelength, but this efficiency might be slightly different for each of the pixels along

the array. To circumvent this issue, bound-free spectra that required calibrated

relative intensities were only taken at specific grating positions to ensure that the

same efficiency curve was applicable to each spectrum. To be sure that the grating

could be sent to the same place multiple times, a very narrow mercury line was

recorded multiple times after resetting the grating position. Each time the grating

was moved and sent back to this standard position, the location of the peak of the

mercury line did not change by more than one pixel.

To determine the efficiency, a GTE Sylvania model 6.6A/T4Q/1CL-200W quartz-

iodine tungsten filament lamp was used as a light source with a calibrated standard

relative intensity. This lamp is a secondary intensity standard with known relative

intensity versus wavelength (see Figure 3.7 [33]) when operated with a current of

6.5 A. The light was focused at the center of the heat pipe oven and then refocused

on to the entrance slit of the monochromator with interference filters in place. The

intensity detected by the CCD was monitored using LabVIEW. The exposure time

was adjusted so that the entire spectrum was on scale. Since the lamp is so bright,

very small exposure times, typically a few milliseconds, were used.

The measured intensity as a function of wavelength can be compared to the

calibrated emission curve to determine the detection system efficiency, as shown in

Fig. 3.8. For the CCD array, it is convenient to express the efficiency as a function

of pixel number for each specific grating position. When a spectrum is recorded

with a particular grating position, it can be corrected by simply dividing by those

efficiencies pixel by pixel. Appendix D contains tables and plots of the efficiencies

as a function of pixel number for several grating positions.
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Figure 3.7: Standard intensity emission curve for GTE Sylvania model 6.6A/T4Q/1CL-
200W quartz-iodine tungsten filament lamp operated at 6.5 A [33].
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Figure 3.8: Relative efficiency of the detection system, which includes lenses, mirrors,
windows, filters, monochromator grating and mirrors, and the CCD detector.
Efficiency is scaled to have a maximum value of 1. Though the x-axis is
given in wavelength units here, it is often more useful in correcting spectra
to plot efficiency as a function of pixel number for a given grating position.
The monochromator grating was set to 940nm and used in second order to
produce this efficiency curve. The following filters were placed in front of
the monochromator entrance slits: 395nm longpass, 540 shortpass, and 675
shortpass.
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Chapter 4

Experimental Techniques

To investigate the high lying electronic states of NaCs, we employed the Optical-

Optical Double Resonance (OODR) technique [34, 35, 36]. We used the dye and

Ti:Sapphire lasers in a pump-probe scheme, as illustrated in Figure 4.1. The

pump laser induced transitions from a thermally populated rovibrational level of

the ground 1(X)1Σ+ state to a selected level of the mixed 1(b)3Π0+ ∼ 2(A)1Σ+ states.

Strong spin-orbit coupling causes every rovibrational level of the 1(b)3Π0+ ∼ 2(A)1Σ+

manifold to have both singlet and triplet character. Hence the laser in the probe

step was able to induce transitions either to upper singlet states or to upper triplet

states. Transitions were observed by detecting fluorescence corresponding to transi-

tions from the upper state down to either the 1(a)3Σ+ or 1(X)1Σ+ state as a function

of pump or probe laser frequency.

4.1 Pump Transitions

The first step was to identify pump transitions from thermally populated rovibra-

tional levels of the 1(X)1Σ+ state to levels of the 2(A)1Σ+ state. Many of these

transitions had previously been identified by Ashman et al. [3]; however, it was

also necessary to identify several new pump transitions. New pump transitions were

needed for three reasons: to be able to access a lower range of total energy; to

be able to pump a different J quantum number for more coverage of rotational
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Figure 4.1: Schematic diagram of pump-probe OODR scheme. Only potentials relevant
to this work are plotted here. Potentials are theoretical calculations from
Korek et al. [12].
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levels; and to be able to pump a different v in order to observe transitions with

more favorable Franck-Condon factors. We scanned the frequency of the the pump

(Ti:Sapphire) laser while monitoring the anode current from a freestanding PMT

(Total Red PMT in Figure 3.1). When the frequency of the laser is resonant with

a particular 2(A)1Σ+ (v′, J ′) ← 1(X)1Σ+ (v′′, J ′′) transition, red fluorescence is de-

tected. Since only one laser is being used for this process the lines are Doppler

broadened as shown in a typical scan in Fig. 4.2. This means that molecules with a

velocity component in the direction of laser propagation absorb light of slightly lower

frequency then those traveling perpendicular to the beam, since, in the frame of the

molecule, the laser frequency is shifted to the blue by the Doppler effect. Similarly,

molecules with a velocity component in the direction opposite the laser propagation

direction absorb light of slightly higher frequency than those traveling perpendicular

to the beam. The Doppler broadening results in lines that are approximately 1 GHz

wide.

Once a scan like the one shown in Fig 4.2 has been recorded, the frequency

of the pump laser was tuned and then fixed to the peak of one of the lines. The

fluorescence was focused onto the entrance slits of the monochromator shown in

Fig. 3.1 and an image, such as the one shown in Fig. 4.3, was recorded using the

CCD diode array. In order to obtain good resolution for this spectrum, the entrance

slits were set to a relatively small opening width of about 20 microns. If further

resolution was required, the spectrum was recorded in second order. This spectrum

is a good example of bound-bound fluorescence; a series of fluorescence doublets

which correspond to downward transitions from the pumped 2(A)1Σ+ rovibrational

level (often referred to as the intermediate state) to all vibrational levels of the

1(X)1Σ+ state subject to the selection rules ∆J = ±1. The splitting between the

two peaks of a particular doublet gives the rotational spacing of the ground state,

while the splitting between two adjacent doublets gives the vibrational spacing of the

ground state. The vibrational spacing identifies whether the molecule being excited

is indeed NaCs. At lower pump frequencies, it is possible for the pump laser to induce

Cs2 transitions in addition to NaCs transitions. However, the two molecules can be

distinguished since the ground state vibrational spacings for the two molecules are
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Figure 4.2: Typical pump laser excitation scan. Peaks in this type of scan are Doppler
broadened so it is possible for more than one pump transition to lie within a
Doppler width. The arrow indicates a peak resulting from two different pump
transitions: 2(A)1Σ+ (9, 27) ← 1(X)1Σ+ (0, 26) and 2(A)1Σ+ (9, 17) ←
1(X)1Σ+ (0, 18).
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Figure 4.3: Resolved bound-bound fluorescence spectrum for transitions induced with
the pump laser fixed at a particular frequency. The splitting of each doublet
gives information about the rotational spacing of the ground state. The
splitting between doublets gives information about the vibrational spacing
of the ground state.
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very different: ≈ 98 cm−1 for NaCs and ≈ 42 cm−1 for Cs2. The 1(X)1Σ+ state of

NaCs is very well known from the work of Docenko et al. [15]. Therefore, we can

compare the observed line splittings from a spectrum like this to known ground state

splittings, allowing assignments to be made for values of the lower state vibrational

and rotational quantum numbers, v′′ and J ′′, for each line. Once the lower state

J ′′ assignments are known, the 2(A)1Σ+ rotational level assignment, J ′, is known

also because of the ∆J = ±1 selection rule. The value of the intermediate state

vibrational quantum number, v′, can be identified by calculating the total energy

of the 2(A)1Σ+ (v′, J ′) rovibrational level and comparing it to levels in the database

of Zaharova et al. [37]. Since the intermediate state vibration splitting is about

55 cm−1, it is likely that there will only be one possibility for the assignment of v′.

Once a particular pump transition was identified and properly assigned, the pump

laser frequency was fixed to the peak of this transition. Though the line as observed

on the red scan is Doppler broadened, the linewidth of the laser is significantly

narrower (<1 MHz). Since the linewidth of the laser is less than the homogeneous

linewidth, the laser effectively only excites molecules to the intermediate state with

one particular component of velocity along the laser propagation axis. This causes

the subsequent probe excitation scan to be Doppler-free.

4.2 Double Resonance

As described above, the pump laser frequency is fixed to a known pump transition

populating a particular rovibrational level of the 1(b)3Π0+ ∼ 2(A)1Σ+ manifold.

Spin-orbit coupling is sufficiently large in the heavy NaCs molecule that every level

of these states is a singlet-triplet mixture. Due to the selection rules associated

with the spin-orbit operator (see Sec. 6.1.1), the J ′ quantum number must be

the same for both singlet and triplet components, but the v′ quantum numbers

of the two states need not be the same. For simplicity, all intermediate state v′

quantum numbers in this dissertation refer to the vibrational level associated with

the 2(A)1Σ+ component.
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The probe (dye) laser beam and pump laser beam were overlapped inside the

oven by aligning both beams onto fixed apertures. The probe laser frequency was

then scanned while monitoring the anode current of a second freestanding PMT

(labeled “Total Green PMT” in Fig. 3.1), which is filtered to pass green/violet light.

When the probe laser frequency was resonant with a transition out of the pumped

1(b)3Π0+ (v′b, J
′) ∼ 2(A)1Σ+ (v′A, J

′) level to an upper rovibrational level, downward

fluorescence could be detected and recorded. Upper singlet electronic states radiate

down to the 1(X)1Σ+ state in the violet, and upper triplet electronic states radiate

down to the 1(a)3Σ+ state in the green. We record total (unresolved) violet or green

emission as the probe laser is scanned over a transition. Such a scan, shown in Fig.

4.4, is called an “excitation scan”. As mentioned above, these excitation lines are

Doppler free since only the velocity group selected by the pump laser is excited by

these transitions. It sometimes happens that more than one pump transition lies

within one Doppler width of each other. In this case, more than one intermediate

state rovibrational level is excited. Therefore, once a probe transition is identified,

it is important to ensure that it corresponds to a transition out of the rovibrational

level identified in the pump step. To do this, we fix the probe laser frequency on

the peak and change the pump laser frequency by an amount corresponding to the

difference between the 1(X)1Σ+ (v′′, J ′′ = J ′ − 1) and 1(X)1Σ+ (v′′, J ′′ = J ′ + 1)

levels. This difference is known very accurately [15], so if the double resonance

signal is reproduced with the new pump laser frequency, then we have confirmed

that the probe transition is out of the identified 2(A)1Σ+ (v′, J ′) level. Pumping

from a different ground state level in this way is also a valuable method to use if

the v′, J ′ assignment of the pump transition is not known precisely, since the laser

frequency provides much more accurate energy differences than those obtained from

the limited resolution of the resolved spectrum.

So far, no hyperfine structure has been observed in any of the electronic states of

NaCs that we have studied. In studies of NaK [38, 39, 40] hyperfine structure took

qualitatively different forms in states of different electronic symmetries and cou-

pling regimes making it useful in identifying the different electronic states excited
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Figure 4.4: Typical probe laser excitation scan. The peak shown here corre-
sponds to the double resonance transition 53Π0+ (10, 31) ← 1(b)3Π0+ ∼
2(A)1Σ+ (14, 32)← 1(X)1Σ+ (0, 31).
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by OODR transitions. The lack of observable hyperfine structure in our probe exci-

tation scans of NaCs, which is explained in Ref. [3], means every double resonance

signal is a single featureless peak (see Fig. 4.4). To identify the upper electronic

state excited in the probe transition, we resolve the downward fluorescence. Both the

pump and probe laser frequencies are fixed to pump a particular double resonance
1,3ΛΩ(v, J) ← 1(b)3Π0+ (v′b, J

′) ∼ 2(A)1Σ+ (v′A, J
′) ← 1(X)1Σ+ (v′′, J ′′) transition.

The fluorescence is filtered and focused onto the entrance slit of the monochroma-

tor. Upper triplet states radiate via transitions to the repulsive 1(a)3Σ+ state. This

bound-free emission gives rise to broad oscillatory spectra which are qualitatively

different for different electronic states. Because the features in these spectra are

quite broad, we use slit widths of approximately 200 microns in order to increase

signal-to-noise. The resulting bound-free spectra serve as fingerprints for identifying

the upper electronic state (as shown in Fig. 4.5). These spectra also allow for a ten-

tative assignment of the upper state vibrational quantum number, v. As discussed

in Sec. 2.4.1, for a monotonic difference potential the bound-free spectrum intensity

can be considered to be a reflection of the square of the upper state vibrational

wavefunction onto a wavelength grid. In such a case the spectrum should display

v+1 bumps. Once a particular bound-free pattern was identified, the probe laser

frequency was scanned so that rotational P and R pairs could be identified for many

vibrational levels for an upper electronic state whose bound-free fluorescence exhibit

this pattern. Coverage of vibrational levels is limited by the wavelength range of

the probe laser and Franck-Condon factors between the intermediate state and the

upper state. Both of these limitations can usually be partially circumvented by

finding a different pump transition. Coverage of rotational levels is limited by the

∆J = ±1 selection rule. Franck-Condon factors do not change very significantly

with J , so typically both members of a P and R pair could be identified. To expand

coverage of the J quantum number, a pump transition involving a different J must

be used.
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Figure 4.5: Resolved bound-free fluorescence spectrum of the double resonance signal
shown in Fig. 4.4. Fluorescence shown here is due to downward transitions:
53Π0+ (10, 31)→ 1(a)3Σ+ .
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4.3 Collisional Satellite Lines

As described above, the number of rovibrational levels that can be probed from a

given intermediate state level is limited by the selection rule ∆J = ±1. Once the

P and R probe transitions to levels of a given vibrational state have been found, a

new pump transition must be identified and labeled to observe two more P and R

probe transitions. One incredibly useful technique to get around this constraint is

to use observations of collisional satellite lines to identify many rotational levels of

a single vibrational state within one probe laser scan.

If the atomic (Ar or Cs) vapor pressure is sufficiently high, on either side of

the direct P or R line in a pump or probe scan, one can observe regularly spaced

satellite lines, which (in NaCs) decrease in intensity with increasing displacement in

frequency from the direct line. Figure 4.6 shows a probe laser excitation spectrum

with collisional lines. The direct P and R transitions in this figure are truncated

and are actually approximately 10 times full scale. The satellite lines on either side

of the direct lines are due to transitions out of collisionally populated levels near the

rovibrational level involved in the direct transition. A collision of the molecule in

the pumped intermediate level with an atomic collision partner causes the molecule

to jump to a nearby rotational level. This collisional transfer is not limited by the

usual ∆J = ±1 selection rule. In experiments at Temple University, Salami et al.

[41] observed collisional transfer of up to ∆J = −58 in the ground state of Rb2,

and Wolfe et al. [42] observed transfer up to |∆J | = 12 in excited state NaK . The

energy gaps between neighboring satellite lines in the spectrum shown in Fig. 4.6

are equal to the differences of the rotational energy level splittings of the upper and

lower electronic states involved in the transition. Since these rotational gaps vary

slowly with J , and are generally different for each electronic state, the satellite lines

appear on either side of both the P and R direct transitions.

From a practical standpoint, we can take advantage of these satellite lines by us-

ing a two-step process to determine the level energies of the upper electronic state of

interest. First, a direct transition to an upper state 1,3Λ(v, J)← 1(b)3Π0+ (v′b, J
′) ∼

2(A)1Σ+ (v′A, J
′) ← 1(X)1Σ+ (v′′, J ′′) is found using the traditional pump/probe
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Figure 4.6: Example of collisional lines in an excitation spectrum obtained with the
pump laser fixed on the NaCs 2(A)1Σ+ (14, 44) ← 1(X)1Σ+ (0, 45) transi-
tion. The direct P and R lines are truncated and are actually approximately
10 times full scale.
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scheme. A particularly strong direct transition is favorable since a larger direct

line signal typically means that a greater number of collisional lines with sufficient

intensity will be observed. Once this direct transition is identified, the probe laser

frequency is fixed on the peak of the 1,3Λ(v, J) ← 2(A)1Σ+ (v′A, J
′) transition and

the pump laser frequency is scanned. Figure 4.7 shows a schematic diagram of

transitions responsible for collisional lines in a scan of the pump laser. A pump

excitation spectrum will show satellite collisional lines due to the pump transitions

2(A)1Σ+ (v′A, J
′ ±∆J) ← X(v′′, J ′′ ±∆J) followed by collisional transfer of popu-

lation 2(A)1Σ+ (v′A, J
′ ± ∆J) + (Ar or Cs) → 2(A)1Σ+ (v′A, J

′) + (Ar or Cs). The

frequencies of the collisional pump transitions resulting in 1,3Λ(v, J) → 1(a)3Σ+,

1(X)1Σ+ fluorescence depend on the difference between the rotational splittings

of the intermediate state and the ground state. Thus these satellite lines pro-

vide the energies of the intermediate state levels relative to those of the ground

state levels. Since the energies of the ro-vibrational levels of the ground elec-

tronic state are accurately known [15], the energies of the intermediate state lev-

els can be determined to almost the same degree of accuracy (the laser frequen-

cies are known to within 0.01 cm−1). We then carry out a complementary ex-

periment by fixing the pump laser frequency on the peak of the direct transition

2(A)1Σ+ (v′A, J
′) ← 1(X)1Σ+ (v′′, J ′′) and scanning the probe laser frequency. Fig-

ure 4.8 shows a schematic diagram of transitions responsible for collisional lines in

a scan of the probe laser. Collisions in the intermediate state transfer population

to neighboring rotational levels 2(A)1Σ+ (v′A, J
′ ±∆J) producing satellite lines due

to probe transitions 1,3Λ(v, J ±∆J)← 2(A)1Σ+ (v′A, J
′ ±∆J). The energies of the

upper state ro-vibrational levels can now be determined relative to the intermediate

state ro-vibrational levels with almost the same degree of accuracy as for the ground

state level energies.

This process of identifying collisional lines greatly improves the efficiency with

which one can determine level energies since it is possible to observe transitions

to many rotational levels with a single scan. Splittings between rotational levels

within an excited NaCs electronic state are typically about 2-6 cm−1. However, the

spacings between the collisional lines in a pump or probe laser scan are equal to the
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difference in the rotational splittings between two different electronic states. These

values are typically . 1 cm−1. The collisional lines also allow one to make large

jumps in J , which is done by fixing one of the laser frequencies on a collisional peak

and scanning the other until it becomes resonant with the direct transition for that

J . Now this new rotational transition becomes the direct line and new collisional

lines are strong enough to identify and expand the rotational dataset.
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Figure 4.7: Schematic diagram of transitions resulting in collisional lines in pump scans.
As the pump laser is scanned, collisions transfer population from the pump
rotational levels to the lower rotational level associated with the probe transi-
tion. The frequencies of these collisional lines allow us to determine energies
of the intermediate state relative to the ground state.
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Figure 4.8: Schematic diagram of transitions resulting in collisional lines in probe scans.
As the probe laser is scanned, collisions transfer population from the pumped
rotational level to nearby rotational levels. The probe laser can then excite
transition from the collisionally populated intermediate state levels to up-
per rotational levels. The frequencies of these collisional lines allow us to
determine energies of the upper state relative to the intermediate state.
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Chapter 5

Mapping the NaCs 12(0+)

Electronic Potential

In addition to the rovibrational levels from the NaCs 11(0+) electronic state mapped

out by previous work in this lab [3], we have been able to excite rovibrational levels

from several other electronic states within the range of photon energies available to

us with our lasers. This chapter describes the methods we use to identify and mea-

sure rovibrational level energies for the 12(0+) electronic state of NaCs. Descriptions

of how the electronic state was identified and how the RKR and IPA methods were

used to produce a potential energy curve for this state from measured level energies

are also presented. A table of measured rovibrational level energies is presented in

Appendix B.

5.1 Identifying the Electronic State

The first step in the process of mapping out an electronic potential curve for a

diatomic molecule involves measuring energies for many rotational and vibrational

levels for that particular electronic state. In the present work, these measurements

were done by finding double resonance transitions as described in Section 4.2. One

challenge in this process is to identify the upper electronic state involved in these
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transitions. In NaK, upper triplet states were identified relatively easily by the hy-

perfine structure that was observed in a probe excitation spectrum [38, 39, 40]. In

that case, the hyperfine structure took a qualitatively different form in states of dif-

ferent symmetries. In our studies of NaCs thus far, we have not observed hyperfine

structure. Arguments based on angular momenta vector coupling models provide an

explanation for why we do not observe hyperfine structure in most electronic states

of NaCs and these are presented in [3]. However, without observations of hyperfine

structure, rovibrational levels must be assigned to their various electronic states by

resolving their fluorescence as a function of wavelength. As described in Section

2.4.2, the overall intensity distribution within a resolved fluorescence spectrum de-

pends on the shapes of the upper and lower state potentials. In particular, it is very

sensitive to the upper state wavefunction, which is determined by the potential,

and the transition dipole moment function between the upper and lower states in-

volved in the transition. Therefore, rovibrational levels with similar resolved spectra

(specifically bound-free spectra) are likely to belong to the same upper electronic

state. Figure 5.1 shows several bound-free spectra for a particular electronic state

that we were able to identify as the 12(0+) state. Though the non-typical shapes of

the bound-free spectra initially made assignment of the v quantum number difficult,

it was clear that the levels associated with these spectra are low vibrational levels.

These levels were found in the same energy region as the low lying vibrational levels

of the 11(0+) electronic state, which implies that the potential minimum of this new

state must be relatively close, within a few hundred wavenumbers, to the bottom of

the 11(0+) potential.

A valuable piece of information when trying to identify the electronic state is

the Ω quantum number. It is relatively easy to identify the Ω quantum number

if rovibrational levels can be assigned for the lowest J ’s. In Hund’s cases (a) and

(c), as shown in Figure 2.1, the total angular momentum vector, ~J , is made up

of the nuclear rotation angular momentum, ~R, and the total electronic angular

momentum, ~Ω. Since ~J = ~R + ~Ω, and ~R ⊥ ~Ω, | ~J | ≥ |~Ω|. Therefore the lowest

rotational level of a particular electronic state has the quantum number J = Ω.

To help determine the Ω quantum number for the 12(0+) state, we succeeded in
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Figure 5.1: Experimental 12(0+) → 1(a)3Σ+ bound-free spectra for several vibrational
levels of the 12(0+) electronic state. Vibrational quantum number assign-
ments is explained in Sec. 5.2.

72



labeling a pump transition: 2(A)1Σ+(14, 1) ← 1(X)1Σ+(0, 2), which was done by

making large jumps in the J quantum number using collisional -lines as described

in Section 4.3. A probe laser excitation spectrum is shown in Figure 5.2 which

shows the P and R lines associated with transitions to J = 0 and J = 2 of v = 12

of the 12(0+) state. Collisional lines extend on only one side of the direct P line,

indicating that the latter corresponds to the lowest rotational level of the upper

state. We know that this lowest level is J = 0 because it is a P transition from the

level 2(A)1Σ+(14, 1). The pump transition assignment was confirmed by pumping

the same intermediate state level with a transition from a different known ground

state level, namely 2(A)1Σ+(14, 1)← 1(X)1Σ+(0, 0). Since we observed a rotational

level with the quantum number J = 0, we were able to confirm the assignment of

Ω = 0 for the upper electronic state.

By following progressions of rovibrational levels, which display bound-free spec-

tra similar those shown in Figure 5.1, we were able to determine preliminary values

for vibrational and rotational spectroscopic constants. We determined that this

particular electronic state has an ωe value (vibrational spacing) of approximately

54 cm−1, a Be value (rotational constant) of approximately 0.036 cm−1, and a mini-

mum (Te) at ≈ 24670 cm−1 above the bottom of the ground 1(X)1Σ+ state well. The

rotational constant corresponds to an equilibrium separation of 4.9 Å. These prelim-

inary constants are very similar to those of the 11(0+) state where ωe = 64.24 cm−1,

Be = 0.03706 cm−1, and Te = 24511.8 cm−1, which were previously determined by

Ashman et al. [3]. With this information we were able to examine the theoretical

potentials calculated by Korek et al. [12] for an electronic state with Ω = 0, and

a minimum very close in energy and internuclear separation to that of the 11(0+)

electronic state. Figure 5.3 shows these potentials and indicates that the electronic

state in question must be the 12(0+) state.

73



Figure 5.2: Probe laser excitation spectrum showing the transition [labeled P(1)] to a
J = 0 level of the 12(0+) electronic state. The pump laser frequency was
fixed on the transition 2(A)1Σ+(14, 1) ← 1(X)1Σ+(0, 2). Collisional lines
show transitions from nearby rotational levels due to population transfer.
Note that there are no collisional lines associated with the P-series at en-
ergies above that of the P(1) line, indicating that the direct P-line [P(1)]
corresponds to the lowest possible J , as expected.
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Figure 5.3: Electronic potential curves of NaCs calculated by Korek et. al. [12]. All
potentials shown here have electronic symmetry 0+ and have minima in the
energy region of the 11(0+) state. By comparing initial experimental data
with these curves we were able to label a series of progressions as belonging
to the 12(0+) electronic state.
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5.2 Energy Level Assignment and Analysis

Although preliminary spectroscopic constants, ωe and Be, were obtained for the

12(0+) state, it is important that we have accurate assignments of the vibrational

quantum number so that we can map the rovibrational levels of the electronic state

down to the bottom of the well. In the 11(0+) state, this assignment was relatively

easy since the bound-free spectra, as seen in Figure 2.7, are not complicated. For

transitions between states with a monotonic difference potential one could identify

the vibrational quantum number since the square of the upper state wavefunction,

and hence the bound-free spectrum, should have v + 1 peaks. However, the bound-

free spectra associated with the 12(0+) state were not so simple and an absolute

vibrational numbering could not be confidently assigned using just the bound-free

emission. The reason for this is explained in the next chapter. To be sure that

we had an accurate assignment of the 12(0+) vibrational quantum numbers, we

analyzed the bound-bound parts of the resolved spectra from the lowest observed

rovibrational levels. Figures 5.4, 5.5, and 5.6 show resolved spectra for the three

lowest vibrational levels of the 12(0+) state. These resolved spectra reveal that

there is both bound-free emission to the repulsive 1(a)3Σ+ state, and bound-bound

emissions to the rovibrational levels of the ground 1(X)1Σ+ state. Though the shape

of the bound-free resolved fluorescence does not allow for easy assignment of the up-

per state vibrational quantum number, v, the envelope of the discrete bound-bound

resolved fluorescence is more regular and conveys additional information about v.

The envelope of the bound-bound fluorescence for the lowest measured rovibrational

level has only one peak and can therefore be tentatively assigned v = 0 (see also

Chapter 6). Once we established an absolute vibrational numbering for the low

lying levels, we were able to make accurate quantum number assignments for all

other measured rovibrational levels.

The ultimate goal in measuring many rovibrational levels associated with a sin-

gle electronic state is to construct a relatively smooth potential energy curve that is

able to reproduce the measured energy levels as well as possible and also reasonably

predict the energies of unmeasured levels. The most common method of producing
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Figure 5.4: Resolved spectrum showing fluorescence due to bound-free transitions
12(0+)(0, 43) → 1(a)3Σ+ (500-520 nm) and bound-bound transitions
12(0+)(0, 43) → 1(X)1Σ+ (v′′, 42 & 44) (425-450 nm). This spectrum has
been corrected for the wavelength dependence of the detector efficiency (see
Sec. 3.4.3) which results in the dramatic increase in the noise level at the
short wavelength end of the spectrum (near 420 nm).
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Figure 5.5: Resolved spectrum showing fluorescence due to bound-free transitions
12(0+)(1, 43) → 1(a)3Σ+ (500-520 nm) and bound-bound transitions
12(0+)(1, 43)→ 1(X)1Σ+ (v′′, 42 & 44)(410-460 nm).
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Figure 5.6: Resolved spectrum showing fluorescence due to bound-free transitions
12(0+)(2, 43) → 1(a)3Σ+ (500-520 nm) and bound-bound transitions
12(0+)(2, 43)→ 1(X)1Σ+ (v′′, 42 & 44)(410-460 nm).
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an experimental potential from energy level data is the Rydberg-Klein-Rees (RKR)

method. This method requires an accurate set of spectroscopic constants determined

from the measured energies, so the first task is to compile the measured level ener-

gies into a database and fit them using the Dunham expansion, which is described

in Section 2.3.3. We obtain a set of Dunham coefficients using a program called

DParFit developed by Robert Le Roy [21]. This program takes a list of assigned

experimental energies along with experimental uncertainties and fits the constants

Yi,k in Eq. (2.31) (see Sec. 5.3 below) to reproduce those energies in a least squares

sense. The user must determine how many terms to keep in the Dunham expansion.

If too few terms are used, the fit will not have enough flexibility to reproduce the

measured energies. If too many terms are used, the error in the fit is smaller. How-

ever the constants may have been adjusted in a way that accommodates slightly

perturbed energy levels as well as those following regular progressions. Constants

produced from such a fit are often be less able to predict energies for levels that

lie outside the range of experimental data than those obtained from a fit based on

a smaller number of terms. In NaCs, spin-orbit interactions are very strong, and

electronic states typically have global interactions with one another. This means

that rather than having localized perturbations where one or two rotational levels

may not fit into an otherwise regular progression, global perturbations can cause

several sets of vibrational levels to interact with one another. These interactions

result in level energies that tend to exhibit small oscillations about regular progres-

sions. Because of this, it is important to decide first on a meaningful number of

terms to keep in the Dunham expansion.

Therefore, I first examined individual rotational levels within a particular vibra-

tional level. Initially, this was done for the v = 2 vibrational level since we have

wide coverage of J . Figure 5.7 shows a plot of the rotational levels for the v = 2

vibrational level. Such levels should obey the rotational expansion:

E(v, J) = Gv +BvJ(J + 1)−Dv[J(J + 1)]2 + · · · , (5.1)

where Gv is the energy of the (v, 0) level for that particular vibrational state, Bv is
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Figure 5.7: Linear fit of rotational levels for v = 2 of the 12(0+) state to Eq. (5.1) (with
Dv and higher order terms fixed to zero). Error bars associated with each
measurement are 0.02 cm−1 and hence too small to see on this plot. The fit
yields Gv = (24794.44 ± 0.02) cm−1 and Bv = (0.03694 ± 0.000011) cm−1.
Uncertainties in the coefficients are statistical.
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the rotational constant described in Section 2.3.2, andDv is the centrifugal distortion

constant. The straight line fit to the data shown in Fig. 5.7 includes only the

constant and linear terms in Eq. (5.1); i.e. Dv and all higher order terms were fixed

to zero for this fit. Though the level energies appear to be well described with a

linear fit, discrepancies arising from neglect of higher order terms in Eq. (5.1) are

not easily seen due to the large scale of the vertical axis. To more clearly visualize

any higher order dependency on J(J + 1) we plot the expression E(v,J)−Gv

J(J+1)
versus

J(J + 1) for measured energy values and the Gv value obtained in the linear fit.

Figure 5.8 shows this plot using the same data as Fig. 5.7. Smaller values of J

were omitted from this plot since those points exaggerate small discrepancies [due

to dividing by J(J + 1)], which do not give any information about the systematic

trend. From Eq. (5.1) we see that

E(v, J)−Gv

J(J + 1)
= Bv −Dv[J(J + 1)] + · · · . (5.2)

Therefore, if no quadratic or higher order terms in J(J+1) are needed to fit the data,

the points would be observed to be randomly distributed around a constant value,

with deviations consistent with experimental error bars. However a systematic slope

or curvature in this plot, like the one shown in Figure 5.8, suggests that higher order

terms are required.

The same process was repeated with the next higher order term in Eq. (5.1),

namely −Dv[J(J + 1]2. This term accounts for centrifugal distortion, which means

that as the molecule rotates faster, it stretches. The stretching increases the inter-

nuclear separation which results in a lower rotational energy, hence the minus sign

included explicitly in this term. Again, to highlight any systematic dependencies

on J(J + 1) after including the centrifugal distortion term in the fit, we plot the

function E(v,J)−Gv

[J(J+1)]2
− Bv

J(J+1)
versus J(J + 1) using measure energies and the new

fitted values of Gv and Bv. Figure 5.9 shows this plot for the data used in Fig 5.7.

Since these values appear to be randomly distributed about a constant value, we

assume that no additional higher order terms need to be included in the functional

form of Eq. (5.1) used in the fit to reproduce the measured levels.
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Figure 5.8: Plot of E(v,J)−Gv

J(J+1) versus J(J + 1) for v = 2 levels of the 12(0+) state using
the Gv value from the linear fit. The systematic downward slope at high
J implies that higher order terms are needed in Eq. (5.1) to accurately
describe the level energies.
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Figure 5.9: Plot of E(v,J)−Gv

[J(J+1)]2
− Bv

J(J+1) versus J(J + 1) for v = 2 levels of the 12(0+)

state. The values of Gv and Bv for this vibrational level are taken from
the quadratic fit of E(v, J) = Gv + Bv[J(J + 1)] − Dv[J(J + 1)]2; Dv =
(6.0 ± 0.2) × 10−8 cm−1, Bv = (3.718 ± 0.001) × 10−2 cm−1, and Gv =
24794.312± 0.008 cm−1.
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v Gv (cm−1) Bv(cm−1) Dv(cm−1)
1 24742.92 0.03704 6.8×10−8

2 24794.31 0.03718 6.0×10−8

4 24903.16 0.03730 5.5×10−8

5 24958.31 0.03724 6.7×10−8

6 25012.68 0.03704 5.7×10−8

Table 5.1: Coefficients of quadratic fit of rotational levels. The vibrational levels chosen
for the rotational fits have large coverage of J .

v Gv (cm−1) Bv(cm−1) Dv(cm−1) (fixed)
0 24693.308 0.036910 6.1×10−8

1 24742.924 0.037027 6.1×10−8

2 24794.308 0.037187 6.1×10−8

3 24847.954 0.037366 6.1×10−8

4 24903.149 0.037323 6.1×10−8

5 24958.314 0.037220 6.1×10−8

6 25012.676 0.037050 6.1×10−8

7 25065.924 0.036824 6.1×10−8

8 25118.023 0.036666 6.1×10−8

10 25220.343 0.036368 6.1×10−8

12 25312.896 0.038183 6.1×10−8

13 25371.037 0.036079 6.1×10−8

14 25421.054 0.035927 6.1×10−8

Table 5.2: Coefficients of quadratic fit of rotational levels with Dv fixed at 6.1 ×
10−8cm−1. Although this Dv value was determined for vibrational levels
with large coverage of J , it is fixed in the fit for all vibrational levels.
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After fitting rotational progressions for many vibrational levels, we found that

the centrifugal distortion constants were the same to within error bars for different

vibrational states (see Table 5.1). Therefore, in subsequent analysis, the rotational

constant Dv was fixed at (6.1 ± 0.7) × 10−8cm−1. This value is the average of

the Dv constants obtained from the quadratic fits the of v=1, 2, 4, 5, and 6 level

energies. These vibrational levels were chosen since they have very wide coverage of

J . Gv and Bv values were then refitted for all v’s using Eq. (5.1) with Dv fixed to

(6.1 ± 0.7) × 10−8cm−1 and all higher terms set to zero. These values are given in

Table 5.2.

Next we performed similar fits to determine how many vibrational terms are

needed to describe Gv and Bv based on our data set. We fit rotationless vibrational

level energies (Gv values from Table 5.2) to the expression

Gv = Te + ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ωeye(v +

1

2
)3 + ωeze(v +

1

2
)4 + · · · , (5.3)

and rotational constants (Bv values from Table 5.2) for each vibrational level to the

expression

Bv = Be − αe(v +
1

2
) + γe(v +

1

2
)2 + · · · . (5.4)

The Gv and Bv constants as a function of (v + 1
2
) can be analyzed using Eqs. (5.3)

and (5.4) and a method similar to that used for the rotational energies described

above. First we determine how many terms in Eq. (5.3) are needed to describe the

Gv values within experimental uncertainties. Therefore, we plot Gv versus v + 1
2

(Fig. 5.10) and fit with the linear function Gv = Te + ωe(v + 1
2
). To determine if

this linear fit is sufficient we plot Gv−Te
v+ 1

2

versus v + 1
2

using the Te value from the

linear fit (Fig. 5.11). Since, there is clearly a systematic dependence on (v + 1
2
), a

quadratic term in Eq. (5.3) is needed. We then refit the Gv values with Eq. (5.3)

including a quadratic term (but no higher terms). Figure 5.12 shows the plot of
Gv−Te
(v+ 1

2
)2 − ωe

v+ 1
2

versus v + 1
2

using the Te and ωe values from the quadratic fit. This

plot does not show any significant systematic dependence on v + 1
2

which implies
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Figure 5.10: Plot of Gv versus v+ 1
2 for vibrational levels of the 12(0+) state along with

a linear fit to Eq. (5.3) (with ωexe and higher order terms fixed to zero).
Error bars associated with the values of Gv are too small to be seen on this
plot. The fit yields Te = 24668± 2 cm−1 and ωe = 52.1± 0.3 cm−1.
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Figure 5.11: Plot of Gv−Te
v+ 1

2

versus v+ 1
2 for vibrational levels of the 12(0+) state. Values

of Gv are taken from Table 5.2 and Te = 24668±2 cm−1 was obtained from
the fit of Gv values to the linear function Gv = Te + ωe(v + 1

2). There is
clearly a systematic dependence on (v + 1

2), which implies more than just
the constant and linear terms in Eq. (5.3) are needed.
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Figure 5.12: Plot of Gv−Te
(v+ 1

2
)2 − ωe

v+ 1
2

versus v+ 1
2 for vibrational levels of the 12(0+) state.

Values of Gv are taken from Table 5.2 and Te = 24661 ± 3 cm−1, ωe =
55.0 ± 0.9 cm−1 were obtained from the fit of the Gv values to Gv =
Te + ωe(v + 1

2) − ωexe(v + 1
2)2. There does not seem to be any significant

systematic dependence on v + 1
2 , which implies that no terms beyond the

constant, linear, and quadratic terms in Eq. (5.3) are needed to describe
Gv.
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that no terms beyond the constant, linear, and quadratic terms in Eq. (5.3) need to

be included in the description of Gv. Keeping more terms in Eq. (5.3) will increase

the accuracy with which the experimental energies are described; however, keeping

too many terms will make it unlikely that the constants can be used to accurately

determine energies of levels beyond the range of the current dataset.

We plot rotational constants (Bv) from Table 5.2 versus v + 1
2

in Fig. 5.13 and

we fit them using constant and linear terms in Eq. (5.4), Bv = Be − αe(v + 1
2
).

To determine if a linear fit is sufficient, we plot Bv−Be

v+ 1
2

versus v + 1
2

using Be =

0.0374 ± 0.0001 cm−1 from the linear fit (Fig. 5.14). The dependence on (v + 1
2
)

implies more than just the constant and linear terms in Eq. (5.4) are needed to

describe Bv. Therefore we refit the Bv constants including the quadratic term in

Eq. (5.4). To determine if this is sufficient we plot Bv−Be

(v+ 1
2

)2 + αe

v+ 1
2

versus v + 1
2

using

Be = 0.0370 ± 0.0001 cm−1 and αe = (6 ± 4) × 10−5 cm−1 from the quadratic fit

(Fig. 5.15). This plot does not seem to show any significant systematic dependence

on v + 1
2
, which implies that no terms beyond the constant, linear, and quadratic

terms in Eq. (5.4) must be kept to describe the Bv values obtained in this work.

The best fit spectroscopic constants obtained from the the fitting methods pre-

sented here are listed in Table 5.3.

Spectroscopic Constant Fit Value with Error (cm−1)
Te 24661± 3
ωe 55.0± 0.9
ωexe −0.18± 0.06
Be (3.71± 0.01)× 10−2

αe (6± 4)× 10−5

γe (−1.0± 0.3)× 10−5

Dv (6.1± 0.7)× 10−8

Table 5.3: Spectroscopic constants for the NaCs 12(0+) state
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Figure 5.13: Plot of Bv versus v+ 1
2 for vibrational levels of the 12(0+) state along with

a linear fit to Eq. (5.4) (with γe and higher order terms fixed to zero). It
is evident that the constant and linear terms in Eq. (5.4) are not sufficient
to reproduce the Bv terms. Error bars associated with the values of Bv are
too small to be seen on this plot. The fit yields Be = 0.0374± 0.0001 cm−1

and αe = (9.1± 1.7)× 10−5 cm−1.
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Figure 5.14: Plot of Bv−Be

v+ 1
2

versus v+ 1
2 for vibrational levels of the 12(0+) state. Values

of Bv are taken from Table 5.2 and Be = 0.0374±0.0001 cm−1 was obtained
from the fit of Bv values to the linear function Bv = Be−αe(v+ 1

2). There
is clearly a systematic dependence on v + 1

2 , which implies that more than
just the constant and linear terms in Eq. (5.4) are needed to describe Bv.
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Figure 5.15: Plot of Bv−Be

(v+ 1
2

)2 + αe

v+ 1
2

versus v+ 1
2 for vibrational levels of the 12(0+) state.

Values of Bv are taken from Table 5.2 and Be = 0.0370± 0.0001 cm−1 and
αe = (6 ± 4) × 10−5 cm−1 were obtained from the fit of Bv values to the
quadratic function Bv = Be−αe(v+ 1

2) + γe(v+ 1
2)2. There does not seem

to be any significant systematic dependence on v + 1
2 , which implies that

no terms beyond the constant, linear, and quadratic terms in Eq. (5.4) are
needed to describe Bv.
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5.3 Dunham coefficients

The program DParFit [21] by Robert Le Roy was used to fit all measured level

energies to the global Dunham expansion:

E(v, J) =
∑
i,k

Yi,k

(
v +

1

2

)i
[J(J + 1)− Ω2]k. (5.5)

This program takes an input file of experimental energies and uncertainties and

determines the Dunham coefficients, Yi,k, that best reproduce the experimental en-

ergies in a least squares sense. The user decides what is the highest value of i used

in the fit for each value of k. As described by the analysis presented in Sec. 5.2, the

rotational expansion should include terms up to k = 2. The centrifugal distortion

constant, which is equivalent to Y0,2, was fixed at the value (6.1±0.7)×10−8cm−1 as

mentioned above. In the expansion of Gv, Yi,0, should include terms up to at least

i = 2. However, we found that including terms up to i = 4 significantly improved

the fit to the experimental energies. Finally, in the expansion of Bv, Yi,1, should

include terms up to at least i = 2.

Dunham coefficients were fit to 214 level energies for the 12(0+) state which

spanned a range of vibrational levels v = 0 − 14. The best fit set of Dunham

coefficients is listed in Table 5.4. These coefficients reproduce the level energies

with an root mean square (RMS) deviation of 0.38 cm−1. Figure 5.16 shows a plot

of the difference between the observed energies and the ones calculated with the

Dunham coefficients.

5.4 Potential Energy Curve

5.4.1 RKR Potential

Once we determined a reasonable set of Dunham coefficients, we used the coefficients

to construct an NaCs 12(0+) electronic potential energy curve using the Rydberg-

Klein-Rees method [43, 44, 45, 46]. For this process we used the computer program
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k = 0 1 2
i = 0 24671.019± 0.57 (3.683± 0.021)× 10−2 −6.14× 10−8 (fixed)

1 44.24± 0.42 (1.95± 0.84)× 10−4 -
2 2.694± 0.11 (−2.41± 0.68)× 10−5 -
3 −0.273417± 0.011 - -
4 (8.57± 0.37)× 10−3 - -

Table 5.4: NaCs 12(0+) Dunham coefficients. All paramaters have units of cm−1. More
digits are reported than are statistically significant so that the coefficients can
appropriately reproduce experimental energies.

Figure 5.16: Differences of experimental energies and energies calculated using the Dun-
ham coefficients listed in Table 5.4.
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RKR1 2.0, developed by Robert Le Roy [1]. The program accepts spectroscopic

constants or Dunham coefficients as input and uses them to evaluate the following

two integrals:

R2(v)−R1(v) = 2

√
Cu
µ

∫ v

vmin

dv′

[Gv −Gv′ ]
1
2

≡ 2f, (5.6)

and
1

R1(v)
− 1

R2(v)
= 2

√
µ

Cu

∫ v

vmin

Bv′dv
′

[Gv −Gv′ ]
1
2

≡ 2g. (5.7)

In these equations R1(v) and R2(v) represent the turning points for the vibrational

level v, Gv and Bv are the rotationless vibrational constant and rotational constant,

respectively, for vibrational level v, µ is the reduced mass, and Cu is a constant

equal to ~2

2
. The integrals are evaluated semi-classically, treating v as a continuous

variable. The integrals are evaluated from v′ = vmin = −1
2
, which takes into account

the zero point energy of vibration, to v′ = v, the level of interest. The user can select

a size for dv′, which sets the grid spacing for evaluation of these integrals. In addi-

tion, integer (and possibly non-integer) values of v are specified for the calculations

such that the potential is accurately mapped over an energy range corresponding

to the region of measured data. These two integrals give two equations, for a given

v, that can be solved simultaneously to give turning points R1(v) and R2(v). Since

these turning points are calculated as a function of rotationless vibrational level, and

hence of energy, they can be interpolated to map out the potential energy curve.

The RKR potential turning points that we have determined for the NaCs 12(0+)

state, as a function of v, are given in Table 5.5.

Figure 5.17 shows a plot of the RKR potential obtained from the Dunham coef-

ficients listed in Table 5.4, along with the theoretically calculated 12(0+) potential

from [12]. When comparing the level energies calculated using this RKR potential

with measured energy levels, we obtain an RMS deviation of 0.65 cm−1 for v = 0−14

vibrational levels. Figure 5.18 shows a plot of the difference between the observed

energies and the ones calculated with LEVEL 8.0 [25] using the RKR potential.
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v R1 (Å) R2 (Å) Energy (cm−1)
-0.4 4.7447410889 4.9202362886 4.4507
-0.2 4.6818452619 4.9829621785 13.5071
0 4.6396580163 5.0250162234 22.7599

0.2 4.6061539547 5.0584362914 32.1963
0.4 4.5777813483 5.0867850321 41.8044
0.6 4.5528928465 5.1117194221 51.5724
0.8 4.5305601693 5.1341762800 61.4886
1 4.5101977177 5.1547488241 71.5421

1.2 4.4914075702 5.1738418139 81.7219
1.4 4.4739046972 5.1917464495 92.0177
1.6 4.4574767441 5.2086806827 102.4191
1.8 4.4419606147 5.2248127126 112.9164
2 4.4272279782 5.2402755431 123.5001

2.2 4.4131758566 5.2551764510 134.1610
2.4 4.3997202659 5.2696033906 144.8903
2.6 4.3867917793 5.2836294690 155.6794
2.8 4.3743323456 5.2973161597 166.5202
3 4.3622929548 5.3107156643 177.4048

3.2 4.3506318896 5.3238726832 188.3256
3.4 4.3393133947 5.3368257648 199.2755
3.6 4.3283066470 5.3496083505 210.2476
3.8 4.3175849494 5.3622495926 221.2354
4 4.3071250916 5.3747750031 232.2326

4.2 4.2969068384 5.3872069726 243.2334
4.4 4.2869125161 5.3995651878 254.2321
4.6 4.2771266764 5.4118669716 265.2237
5 4.2581281687 5.4363603284 287.1658
6 4.2135249311 5.4974657532 341.5923
7 4.1724675803 5.5590621112 395.1057
8 4.1346944715 5.6214178398 447.5052
9 4.1003799336 5.6842122943 498.7958
10 4.0700518128 5.7465776176 549.1880
11 4.0445157829 5.8071477571 599.0983
12 4.0247510099 5.8641739909 649.1484
13 4.0117636136 5.9157421724 700.1662
14 4.0064124165 5.9600803601 753.1850

Table 5.5: NaCs 12(0+) RKR potential energy curve determined in this work. To obtain
the total absolute potential curve, Te = 24671.019 cm−1 must be added to
each point.
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Figure 5.17: RKR potential (solid curve) calculated using the Dunham coefficients in
Table 5.4. The theoretically calculated 12(0+) potential curve (dashed
curve) from [12] is also plotted for comparision with the horizontal dashed
line corresponding to the Na(3S1/2) + Cs(6D5/2) atomic asymptote.
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Figure 5.18: Differences of experimental level energies and energies calculated for the
RKR potential determined in this work.
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This RKR potential was used as the starting point to apply the Inverted Pertur-

bation Approach (IPA) method to obtain a more accurate potential (as evidenced

by better agreement with measured data).

5.4.2 IPA potential

Our calculated NaCs 12(0+) RKR potential presented in the previous section is not

of sufficient quality to reproduce the level energies to within the accuracy with which

they were measured. To obtain a “better” potential, we used the IPA method [47] to

adjust the potential so that it reproduces the level energies more accurately. To begin

the process, the IPA program requires a potential, V0(R), which reproduces level

energies reasonably well, to use as an initial guess. The RKR potential described

in the previous section is sufficient for this purpose. A correction term, δV (R),

is then added to the initial potential. The Schrödinger equation is solved for this

new potential, V (R) = V0(R) + δV (R), using first-order perturbation theory. Once

the correction potential is determined, the energies of the new total potentials are

evaluated exactly. This process is iterated until level energies calculated using the

new V (R), agree with measured level energies in a least squares sense. For each

iteration, V (R) from the previous round of fitting becoming the new initial potential

for the next round of fitting.

In practice, we use a modified version of the IPA program written by Pashov

et al. [2]. Pashov’s IPA program requires several input files for each iteration.

One file includes experimental energies for measured rovibrational levels along with

experimental uncertainties. Another contains the initial potential energy curve as

a function of internuclear separation to be used for that iteration. There is also

an input file containing level energies calculated from xLEVEL using the initial

potential. xLEVEL is a version of LEVEL written by Robert Le Roy [25], which

has been modified by A. P. Hickman (details in Ref. [38]) to output level energies

and wavefunctions for use as input to IPA. Finally, there is one additional input file

that allows the user to describe how the δV (R) function is to be varied. The user

can choose the number of equally spaced points, and whether or not to vary each
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point individually. After each iteration of the IPA program, xLEVEL must be run

using the new IPA potential to obtain new energies and wavefunctions, and the new

potential must replace the old potential as the initial guess for the next round. The

number of grid points and whether or not to vary δV (R) or to fix δV (R) = 0 at

each individual grid point are also chosen by the user for each iteration.

The process by which the IPA program determines the correction potential,

δV (R) = 0, is detailed in Ref. [2] as follows. The program treats the correction

potential using first order perturbation theory, so that the correction to the energies

of the initial potential, {E0
vJ} are given by

δEvJ = 〈ξ0
vJ | δV (R) |ξ0

vJ〉 , (5.8)

where ξ0
vJ is the vibrational wavefuntion associated with the level (v, J) of the inital

potential. The correction potential is expressed as an expansion over a set of basis

functions {fi(R)}:

δV (R) =
∑
i

cifi(R), (5.9)

where {ci} are the expansion coefficients. Using this expansion, the energy correc-

tions become

δEvJ =
∑
i

ci 〈ξ0
vJ | fi(R) |ξ0

vJ〉 =
∑
i

ciKi,vJ . (5.10)

The problem can now be expressed as a matrix equation:

δE = K · c. (5.11)

The program determines the set of coefficients {ci} by replacing the energy correction

with the known differences between the initial potential energies, {E0
vJ}, and the

known experimental energies, {Eexp
vJ }, called dE. Since K is a matrix of known Ki,vJ

coefficients calculated from the initial potential wavefunctions, the only unknown

quantities are the expansion coefficients for the correction potential, {ci}. Using

the determined set of {ci}, Eq. (5.11) is evaluated again and dE is compared to
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the calculated δE. The coefficients are varied such that the difference between the

experimental dE and the calculated δE is minimized in a least squares sense.

Use of a finer and finer grid of points will continue to reduce discrepancies be-

tween calculated and measured energies, but at the expense of unphysical wiggles

in the potential. The “best” fit IPA potential is determined by us as a trade-off

between accurate reproduction of level energies while still maintaining a reasonably

smooth potential. Using these criteria, we determined our best fit IPA potential for

the NaCs 12(0+) state, which is shown in Fig. 5.19 and listed in Table 5.6. The

initial RKR potential was calculated with turning points up to v = 14. However,

the levels for v=12, 13, and 14 appear to be strongly perturbed so they were not

used for the fitting of the IPA potential. The IPA curve determined here repro-

duces measured level energies for v = 0− 10 with an RMS deviation of 0.034 cm−1.

Figure 5.20 shows a plot of the differences between the observed energies and the

ones calculated with the IPA potential. When comparing the IPA potential to the

theoretical or RKR potentials, it is clear that the IPA potential is not a simple

smooth curve. Some “wiggles” in the inner and outer IPA potential walls appear to

be necessary in order to accurately reproduce the level energies. This is a result of

the assumption we use that all the measured energy levels belonging to the 12(0+)

state can be described by a single potential energy curve. In reality, there are other

NaCs electronic state potentials in this energy region that can interact with one

another to influence the patterns of rovibrational level energies. Most prominently,

the 11(0+) electronic state is a state that was mapped out in a similar process in

our lab by Ashman et al. [3]. The IPA potential for the 11(0+) state shows similar

fluctuations in the outer wall. Chapter 6 will describe in detail how these two states

probably interact with each other and how this influences not only the level energies,

but also the vibrational wavefunctions, and hence the resolved fluorescence spectra

associated with these states.
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Figure 5.19: IPA potential for the NaCs 12(0+) state determined in this work.
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R (Å) Energy (cm−1) R (Å) Energy (cm−1)
4.0066 25372.1902 4.9204 24675.7057
4.0120 25353.8388 4.9832 24685.5888
4.0249 25313.6700 5.0252 24694.8413
4.0447 25262.8959 5.0586 24704.7210
4.0702 25212.3998 5.0870 24715.0111
4.1006 25162.1021 5.1119 24725.0570
4.1349 25112.1539 5.1344 24734.6046
4.1727 25061.5645 5.1549 24743.7734
4.2137 25009.3151 5.1740 24752.9083
4.2583 24955.1027 5.1919 24762.1829
4.2773 24933.1528 5.2089 24773.3190
4.2871 24922.2078 5.2250 24783.9433
4.2971 24911.3020 5.2405 24794.7367
4.3073 24900.4408 5.2554 24805.6899
4.3178 24889.6251 5.2698 24816.7863
4.3285 24878.8374 5.2838 24828.0196
4.3395 24868.0960 5.2975 24839.3859
4.3508 24857.3999 5.3109 24850.8537
4.3625 24846.7576 5.3241 24862.3620
4.3745 24836.1676 5.3370 24873.8740
4.3870 24825.6479 5.3498 24885.3510
4.3999 24815.1958 5.3624 24896.7747
4.4134 24804.8180 5.3750 24908.1083
4.4274 24794.5197 5.3874 24919.3482
4.4422 24784.2999 5.3998 24930.4736
4.4577 24774.1712 5.4121 24941.4632
4.4741 24764.1546 5.4366 24962.9916
4.4916 24754.2386 5.4977 25014.7877
4.5104 24739.9024 5.5593 25065.4399
4.5308 24730.5804 5.6216 25115.7452
4.5531 24721.3148 5.6844 25169.3976
4.5780 24712.0850 5.7468 25228.9479
4.6064 24702.7850 5.8073 25288.2247
4.6399 24693.3421 5.8644 25344.1242
4.6820 24683.7029 5.9159 25391.9912
4.7449 24673.2199 5.9603 25430.4357
4.8327 24668.2803

Table 5.6: NaCs 12(0+) IPA potential energy curve determined in this work.
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Figure 5.20: Differences of experimental level energies and energies calculated with the
best fit IPA potential.
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Chapter 6

Interactions between the NaCs

11(0+) and 12(0+) States

Although the 12(0+) electronic state is believed to have predominantly singlet char-

acter, resolved spectra from this electronic state show strong bound-free emission to

the 1(a)3Σ+ electronic state. We believe this is due to coupling with the 11(0+) state

which has predominantly triplet character. However, spin-orbit coupling between

these two states is not enough to describe and simulate the bound-free emission

spectra from the 12(0+) state. This chapter describes a model for certain types

of interactions between electronic states that we believe to be responsible for the

unique intensity distributions of the 12(0+) bound-free emission. The model and

method used to simulate the bound-free emission are explained. Results of fitting

these simulations to experimental spectra will then be presented and interpreted.

6.1 Types of Interactions

There are several types of interactions that can cause coupling between the various

rovibrational levels of the electronic states of a diatomic molecule. Experimentally,

we measure the level energies that nature determines including all interactions. How-

ever, if we would like to model the spectra that we observe, we need to understand
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specifically how the interactions affect the basic Hamiltonian presented in Section

2.1. Theoretically, coupling between states of the molecule arises because of terms

that are neglected in the Hamiltonian. The four main types of perturbations that

can arise are [19]: electrostatic perturbations due to terms left out of the electronic

part of the Hamiltonian; nonadiabatic perturbations due to terms left out of the

nuclear kinetic energy part of the Hamiltonian; rotational perturbations due to the

dropped terms that are described at the end of Sec. 2.2; and spin-orbit perturbations

due to relativistic terms that have been neglected because electron spin has been

left out of the Hamiltonian. The two relevant interactions that we believe are re-

sponsible for coupling the 11(0+) and 12(0+) states are spin-orbit and nonadiabatic

perturbations. These two perturbations are described in more detail below.

6.1.1 Spin-Orbit Interactions

In order to incorporate relativistic effects into the Hamiltonian, we need to take into

account the effects that the spin of the electron has on the energy of the molecule.

The dominant spin interaction is between the spin magnetic dipole moment of the

electron and the magnetic field generated by the orbital angular momentum of the

electron as it orbits the nuclei. In molecules, there are also effects due to the

interaction of the electron spin with nuclear rotation and with other electronic spins.

However, these effects are much smaller than the spin-orbit terms and generally can

be neglected. The molecular spin-orbit operator is [19]:

HSO =
α2

2

N∑
i=1

(
ZA

r3
iA

liA · si +
ZB

r3
iB

liB · si
)
− α

2

2

N∑
i=1

N∑
j>i

1

r3
ij

(rij×pi) ·(si+2sj). (6.1)

Here α is the fine structure constant, α = e2/~c = 137.036, liA is the angular

momentum of electron i with respect to nucleus A, si is the spin angular momentum

of electron i, (rij×pi) is the orbital angular momentum of electron i about electron

j, and pi is the momentum of electron i with respect to molecule fixed coordinates.

The first term describes the sum of the individual electron spins interacting with

their orbital angular momenta about each nucleus. The second term describes the

107



sum of the individual electron spins interacting with the orbital angular momentum

of every other electron. Veseth [48] shows that the two-electron part of Eq. (6.1)

can be incorporated into the one-electron part as a screening effect. This lets us

write the spin-orbit Hamiltonian in a more compact form:

HSO =
∑
i

âili · si, (6.2)

where

âili =
∑
K

α2

2

Zeff,K

r3
iK

liK , (6.3)

and Zeff,K is the effective charge of nucleus K. Expanding the li · si term into

components we find

li · si = liz · siz +
1

2
(l+i s

−
i + l−i s

+
i ). (6.4)

This gives two terms that lead to spin-orbit coupling between electronic states.

The liz · siz term couples states with the same Λ and Σ quantum numbers. The

(l+i s
−
i + l−i s

+
i ) term, which is the term most relevant for the present work, couples

states where ∆Λ = −∆Σ = ±1. This is a very common interaction that causes

coupling between 3Π and 1Σ states in alkali diatomics. To summarize, the relevant

selection rules for states coupling by this second spin-orbit interaction term are [19]:

∆J = 0, ∆Ω = 0, ∆S = ±1, ∆Λ = −∆Σ = ±1. (6.5)

It is possible that nonrelativistic potential curves corresponding to states with the

same Ω quantum number can cross as shown in Fig. 6.1. Including the relativistic

spin-orbit terms in the Hamiltonian results in states where Ω is the only good quan-

tum number and the potentials do not cross. The most common example in the

alkali diatomic molecules is the spin-orbit coupling of the A1Σ+ and b3Π0 electronic

states. When the spin-orbit coupling is taken into account, Hund’s case (a) nota-

tion no longer applies because Λ and Σ can no longer be considered good quantum
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numbers. Instead the electronic states are described only by their Ω quantum num-

ber, and hence they are referred to as the 2(0+) and 3(0+) electronic states. Figure

6.1 shows two sets of theoretically calculated electronic potential curves for NaCs.

The dashed lines are potentials calculated without the spin-orbit effect [49] which

are designated by Hund’s case (a) notation. Since these curves have different elec-

tronic symmetry with respect to the non-relativistic Hamiltonian, they are allowed

to cross one another. Solid curves represent potentials calculated with the spin-

orbit effect [12]. These potentials are designated by Hund’s case (c) notation. Note

that the spin-orbit interaction, like all perturbations, should push the potentials

apart at each value of R. The fact that this is not demonstrated by the potentials

shown in Fig. 6.1 is due to different basis sets being used in the two calculations of

Refs. [49] and [12]. The spin-orbit interaction is particularly important because it

causes mixing between the singlet and triplet electronic states. This mixing leads

to rovibrational levels that have both singlet and triplet character, which allows

the ∆S = 0 selection rule on electronic transitions to be circumvented. Since the

ground 1(X)1Σ+ state of all alkali molecules is a spin singlet, the only way to access

upper triplet states is through mixed singlet-triplet levels, which in this context are

called “window levels”. In NaCs, the spin-orbit effect is so strong that nearly every

2(A)1Σ+ rotational level is significantly perturbed by rotational levels belonging to

several vibrational levels of the 1(b)3Π0+ state. This leads to a global mixture, which

results in every 2(A)1Σ+ rovibrational level having significant triplet amplitude in

addition to its singlet amplitude.

6.1.2 Nonadiabatic Interactions

As mentioned in Sec. 2.1, Eq. (2.10) is valid when the solutions [Φn(~ri; ~R)] to

the electronic Schrödinger equation vary slowly with internuclear distance. When

the Born-Oppenheimer approximation breaks down, off-diagonal elements of the ne-

glected nuclear kinetic energy terms couple electronic states of identical symmetry;

this is called nonadiabatic coupling. The potentials calculated without considera-

tion of these off-diagonal terms can have avoided crossings and are referred to as
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Figure 6.1: Theoretical calculations of electronic potential curves with and without the
spin-orbit effect. Dashed curves represent potentials calculated without the
spin-orbit effect [49] which are designated by Hund’s case (a) notation. Solid
curves represent potentials calculated with the spin-orbit effect [12] which
are designated by Hund’s case (c) notation. Perturbations should result in
energies that are farther apart than before incorporating the interaction.
However, this is not the case at all values of R for the potentials shown
here. For example, the outer wall of the 2(0+) state lies above that of the
nonrelativistic 2(A)1Σ+ state. This is a result of different theoretical basis
sets used in the two calculations.
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adiabatic potentials. Avoided crossings typically correspond to sudden changes in

the electronic wavefunction over small ranges of R. Figure 6.2 shows a close up of

the potential energy curves for the 33Π and 43Π electronic states of NaK. In cases

such as this, it is sometimes convenient to determine a new set of solutions to the

electronic part of the the Schrödinger equation such that the electronic wavefunction

varies as little as possible with R. These potentials, which might cross each other,

are known as diabatic potentials. A diabatic curve represents a state with the same

electronic character for a large range of R. This representation is found by deter-

mining a new set of electronic wavefunctions which are diagonalized with respect to

the nuclear kinetic energy term but not necessarily diagonalized with respect to the

full electronic Hamiltonian.

The form of the off-diagonal matrix elements due to nonadiabatic coupling are

found by looking at the matrix elements of the nuclear kinetic energy operator:

T̂nucl = − ~2

2µR2

[
∂

∂R

(
R2 ∂

∂R

)]
+

R2

2µR2
. (6.6)

The second term in this expression involves the angular nuclear coordinates and

describes the rotational nuclear kinetic energy. [Note again the possibly confusing

notation. Here R is the internuclear separation coordinate while R2 is the operator

representing the square of the nuclear rotational angular momentum.] The matrix

elements of this second term can be evaluated separately and result in terms re-

sponsible for rotational coupling as described at the end of Section 2.2. In regard

to nonadibatic coupling, this term can be ignored. We simplify the radial part of

the nuclear kinetic energy operator using the chain rule:

T̂radial = − ~2

2µR2

[
2R

∂

∂R
+R2 ∂2

∂R2

]
= − ~2

2µ

[
∂2

∂R2
+

2

R

∂

∂R

]
. (6.7)

Next, we determine the off-diagonal matrix elements that couple levels of two

adiabatic electronic states. Recall that the total wavefunction, Ψ(~r,R), excluding

rotation, of the molecule in a particular rovibrational level, is a product function

such that
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Figure 6.2: Adiabatic and diabatic states corresponding to the 33Π and 43Π electronic
states of NaK. Figure reprinted from Ref. [50].
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Ψad(~r,R) = χ(R)Φad(~r,R), (6.8)

with ∫
d3rΦ∗ad

a Φad
b = δab. (6.9)

Here χ(R) is the nuclear vibrational wavefunction, Φad
a (~q, R) and Φad

b (~q, R) are the

adiabatic electronic wavefunctions, and δab is the Kronecker delta.

The matrix element of Eq. (6.7) is given by

〈Ψad
1 | T̂radial |Ψad

2 〉 = − ~2

2µ

∫ ∫
R2dRd3rχ∗1Φ∗ad

1

[
∂2(χ2Φad

2 )

∂R2
+

2

R

∂(χ2Φad
2 )

∂R

]
= − ~2

2µ

∫ ∫
R2dRd3rχ∗1Φ∗ad

1

[(
χ2
∂2Φad

2

∂R2
+
d2χ2

dR2
Φad

2 + 2
dχ2

dR

∂Φad
2

∂R

)
+

(
2

R
χ2
∂Φad

2

∂R
+

2

R

dχ2

dR
Φad

2

)]
. (6.10)

Here d3r indicates an integral over all electronic coordinates, while R2dR indicates

an integral over only the radial nuclear coordinate. The integral over angular nuclear

coordinates is not included here but yields a factor of one for states of the same J .

The second term on the second line and the second term on the last line of Eq.

(6.10) are zero due to the orthogonality of the electron wavefunctions expressed in

Eq. (6.9). We rewrite the vibrational wavefunction such that

χ(R) =
ξ(R)

R
. (6.11)

The functions χ(R) are normalized with respect to R2dR, while the functions ξ(R)

are normalized with respect to dR.

With these substitutions the matrix element becomes
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〈Ψad
1 | T̂radial |Ψad

2 〉 = − ~2

2µ

∫ ∫
R2dRd3r

[
ξ∗1ξ2

R2
Φ∗ad

1

∂2Φad
2

∂R2

+
2ξ∗1
R

d
(
ξ2
R

)
dR

Φ∗ad
1

∂Φad
2

∂R
+

2ξ∗1ξ2

R3
Φ∗ad

1

∂Φad
2

∂R

]
. (6.12)

Using the chain rule to take the derivative of the vibrational function in the second

term, we obtain

〈Ψad
1 | T̂radial |Ψad

2 〉 = − ~2

2µ

∫ ∫
R2dRd3r

[
ξ∗1ξ2

R2
Φ∗ad

1

∂2Φad
2

∂R2

+
2ξ∗1
R2

dξ2

dR
Φ∗ad

1

∂Φad
2

∂R
− 2ξ∗1ξ2

R3
Φ∗ad

1

∂Φad
2

∂R
+

2ξ∗1ξ2

R3
Φ∗ad

1

∂Φad
2

∂R

]
, (6.13)

where the last two terms cancel. Finally we obtain

〈Ψad
1 | T̂radial |Ψad

2 〉 = − ~2

2µ

∫ ∫
dRd3r

[
ξ∗1ξ2Φ∗ad

1

∂2Φad
2

∂R2
+ 2ξ∗1

dξ2

dR
Φ∗ad

1

∂Φad
2

∂R

]
. (6.14)

Next, we proceed to evaluate the electronic part of the integral. We know that the

adiabatic electronic wavefunctions depend on R and can change rapidly in regions

near avoided crossings. If we assume that only two electronic states are coupled by

this interaction (i.e. because other states of the same symmetry lie relatively far

away in energy), we can write the adiabatic electronic wavefunctions in terms of

diabatic electronic wavefunctions:

Φad
1 (~r,R) = cosϕ(R)Φd

1(~r) + sinϕ(R)Φd
2(~r), (6.15)

Φad
2 (~r,R) = − sinϕ(R)Φd

1(~r) + cosϕ(R)Φd
2(~r), (6.16)

where we use cosϕ(R) and sinϕ(R) as expansion coefficients to satisfy normaliza-

tion, and Φd(~r) is a diabatic electronic wavefunction. Since the adiabatic electronic

wavefunctions depend on R, we must assume that the mixing angle, ϕ, will also
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depend on R. However the diabatic electronic wavefunctions are defined as wave-

functions that have a very weak dependence on R. Using Eqs. (6.15) and (6.16),

we evaluate the derivatives of the electronic wavefunctions with respect to R:

∂Φad
1

∂R
= − sinϕ

∂ϕ

∂R
Φd

1 + cosϕ
∂ϕ

∂R
Φd

2 = Φad
2

∂ϕ

∂R
, (6.17)

∂Φad
2

∂R
= − cosϕ

∂ϕ

∂R
Φd

1 − sinϕ
∂ϕ

∂R
Φd

2 = −Φad
1

∂ϕ

∂R
, (6.18)

and

∂2Φad
1

∂R2
=

∂

∂R

(
Φad

2

∂ϕ

∂R

)
= −

(
∂ϕ

∂R

)2

Φad
1 +

(
∂2ϕ

∂R2

)
Φad

2 , (6.19)

∂2Φad
2

∂R2
=

∂

∂R

(
−Φad

1

∂ϕ

∂R

)
= −

(
∂ϕ

∂R

)2

Φad
2 −

(
∂2ϕ

∂R2

)
Φad

1 . (6.20)

Therefore, it follows that the electronic parts of the matrix elements are

〈Φad
1 |

∂

∂R
|Φad

1 〉r = 0,

〈Φad
1 |

∂

∂R
|Φad

2 〉r = − ∂ϕ
∂R

,

〈Φad
2 |

∂

∂R
|Φad

1 〉r =
∂ϕ

∂R
,

〈Φad
2 |

∂

∂R
|Φad

2 〉r = 0, (6.21)

and

〈Φad
1 |

∂2

∂R2
|Φad

1 〉r = −
(
∂ϕ

∂R

)2

,

〈Φad
1 |

∂2

∂R2
|Φad

2 〉r = − ∂
2ϕ

∂R2
,

〈Φad
2 |

∂2

∂R2
|Φad

1 〉r =
∂2ϕ

∂R2
,

〈Φad
2 |

∂2

∂R2
|Φad

2 〉r = −
(
∂ϕ

∂R

)2

. (6.22)
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We now evaluate the electronic integral in Eq. (6.14) by substituting Eqs. (6.21)

and Eqs. (6.22):

〈Ψad
1 | T̂radial |Ψad

2 〉 = − ~2

2µ

∫
dR

[
ξ∗1ξ2

(
− ∂

2ϕ

∂R2

)
+ 2ξ∗1

∂ξ2

∂R

(
− ∂ϕ
∂R

)]
. (6.23)

Integration of the first term by parts leads to

〈Ψad
1 | T̂radial |Ψad

2 〉 = − ~2

2µ

{
− ξ∗1ξ2

∂ϕ

∂R

∣∣∣∣∞
0

+

∫
dR

[
∂(ξ∗1ξ2)

∂R

∂ϕ

∂R
− 2ξ∗1

∂ξ2

∂R

∂ϕ

∂R

]}
,

(6.24)

where the boundry term [first term in Eq. (6.24)] goes to zero since the vibrational

wavefunctions must go to zero at zero and infinite internuclear separations. The

derivative in the second term on the right hand side of Eq. (6.24) is evaluated using

the chain rule:

〈Ψad
1 | T̂radial |Ψad

2 〉 = − ~2

2µ

∫
dR

[(
ξ∗1
∂ξ2

∂R
+
∂ξ∗1
∂R

ξ2

)
∂ϕ

∂R
− 2ξ∗1

∂ξ2

∂R

∂ϕ

∂R

]
. (6.25)

Finally, we combine terms to obtain the final expression for the off-diagonal matrix

element of the nuclear kinetic energy operator:

〈Ψad
1 | T̂radial |Ψad

2 〉 = − ~2

2µ

∫
dR

[
∂ξ∗1
∂R

ξ2 − ξ∗1
∂ξ2

∂R

]
∂ϕ

∂R
. (6.26)

This equation agrees with Eq. 9 in Ref. [50].

6.2 Two-stage coupling between the NaCs 11(0+)

and 12(0+) states

As mentioned in Chapter 5, the 12(0+)→1(a)3Σ+ electronic transition displays very

clean and unique resolved bound-free fluorescence spectra. However, the 12(0+)→
1(X)1Σ+ electronic transition is also strong and gives clean bound-bound fluores-

cence spectra. The fact that the 12(0+) state makes radiative transitions down to
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both the triplet repulsive state, 2(A)1Σ+, and the singlet ground state, 1(X)1Σ+,

indicates that the 12(0+) state has both triplet and singlet character. This is most

likely due to spin-orbit perturbations with the nearby 11(0+) electronic state, which

is labeled 53Π0+ in Hund’s case (a) notation. Based on theoretical calculations,

which do not include the spin-orbit effect [49], in Hund’s case (a) the 12(0+) state

is labeled the 71Σ+ state. Spin-orbit coupling between 3Π and 1Σ states is very

common, so it is likely that each of the rovibrational levels of both states has signif-

icant singlet and triplet character due to the mixing of the electronic wavefunctions.

However, it is clear from the intensity distribution of the 12(0+)→1(a)3Σ+ resolved

bound-free fluorescence that the spin-orbit effect cannot be the only interaction re-

sponsible for the mixing of the levels of these two electronic states. For example, a

contrasting case occurs in NaK, where spin-orbit coupling between the 2(A)1Σ+ and

1(b)3Π0+ states is (16.33 ± 0.15) cm−1 [51]. Thus significant coupling occurs be-

tween levels of the same J that lie within a few cm−1 of each other. These levels are

known as window levels [52]. Because of the Hund’s case (a) dipole selection rule

on spin, ∆S = 0, resolved fluorescence intensity distributions corresponding to two

such interacting levels should be identical except for an overall scaling factor. This

will be verified experimentally by observing singlet emission from both components

of NaK window levels. For either upper level, only the part of the mixed wavefunc-

tion with triplet electronic character give rise to allowed transitions to the repulsive

1(a)3Σ+ state. Similarly, only the part of the mixed wavefunction with singlet elec-

tronic character give rise to allowed transitions to the bound 1(X)1Σ+ state.

In the case of NaCs, the 11(0+)→1(a)3Σ+ and 12(0+)→1(a)3Σ+ resolved bound-

free fluorescence is qualitatively very different for nearby rovibrational levels of the

two upper states. To explain the intensity distribution of the bound-free emission, we

developed a simple two-stage coupling model to describe how the various components

of the mixed wavefunction result in the observed bound-free fluorescence spectra.

First we consider the electronic part of the wavefunction describing levels of the

11(0+) and 12(0+) states. One key assumption of this model is that these are the

only two electronic state interacting with one another. Discussion of the validity

of assumptions is deferred to Sec. 6.4. However using this assumption, we can
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write the relativistic [Hund’s case (c), spin-orbit included] electronic wavefunctions

[Φ11(0+)(~r,R),Φ12(0+)(~r,R)] in terms of the non-relativistic [Hund’s case (a), spin-

orbit not included] electronic wavefunctions [Φ53Π0+
(~r),Φ71Σ+ (~r)] as

Φ12(0+)(~q, R) = cos θ(R)Φ71Σ+ (~q, R) + sin θ(R)Φ53Π0+
(~q, R) (6.27)

and

Φ11(0+)(~q, R) = − sin θ(R)Φ71Σ+ (~q, R) + cos θ(R)Φ53Π0+
(~q, R). (6.28)

The expansion coefficients are written using sines and cosines so that normalization

is automatically satisfied. This analysis of the mixing of the electronic wavefunc-

tions emphasizes the fact that, in NaCs, the large spin-orbit effect causes global

perturbations that affect all levels of both electronic states.

In addition to the mixing of the electronic state wavefunctions due to spin-

orbit coupling, the individual rovibrational levels of the two electronic states can

also interact via some separate interaction. Making the assumption that only two

rovibrational levels of the same J (one from each electronic state) mix together, we

obtain the following mixed total wavefunctions:

ΨA = cosφ
ξJv12(0+)

R
Φ12(0+) + sinφ

ξJv11(0+)

R
Φ11(0+) (6.29)

and

ΨB = − sinφ
ξJv12(0+)

R
Φ12(0+) + cosφ

ξJv11(0+)

R
Φ11(0+). (6.30)

As in the previous expansion, sines and cosines are used to preserve normalization,

and the signs here reflect the assumption that the predominantly 12(0+) level A lies

higher in energy than the predominantly 11(0+) level B. However we introduce a

different angle, φ, to represent the mixing angle for this second interaction. Note

also that we have introduced a superscript J for the vibrational wavefunctions since

these depend on J .

Now to simulate the resolved fluorescence spectra corresponding to these levels

we first determine the Hund’s case (a) singlet and triplet amplitudes of each upper
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level wavefunction, since the bound-free and bound-bound fluorescence, due to tran-

sitions down to the ground triplet and singlet states, respectively, can be described

in terms of Hund’s case (a) wavefunctions and dipole selection rules. To do this we

insert Eqs. (6.27) and (6.28) into Eqs. (6.29) and (6.30) to obtain

ΨA = cosφ
ξJv12(0+)

R
[cos θ(R)Φ71Σ+ + sin θ(R)Φ53Π0+

]

+ sinφ
ξJv11(0+)

R
[− sin θ(R)Φ71Σ+ + cos θ(R)Φ53Π0+

], (6.31)

and

ΨB = − sinφ
ξJv12(0+)

R
[cos θ(R)Φ71Σ+ + sin θ(R)Φ53Π0+

]

+ cosφ
ξJv11(0+)

R
[− sin θ(R)Φ71Σ+ + cos θ(R)Φ53Π0+

]. (6.32)

It is convenient to use the non-relativistic electronic wavefunctions since it is then

obvious which components of the wavefunction are responsible for the bound-free

(triplet) emission and which are responsible for the bound-bound (singlet) emission.

We can rearrange the equations to better show the singlet and triplet components:

ΨA = [cosφ cos θ(R)
ξJv12(0+)

R
− sinφ sin θ(R)

ξJv11(0+)

R
]Φ71Σ+

+ [cosφ sin θ(R)
ξJv12(0+)

R
+ sinφ cos θ(R)

ξJv11(0+)

R
]Φ53Π0+

, (6.33)

and

ΨB = [− sinφ cos θ(R)
ξJv12(0+)

R
− cosφ sin θ(R)

ξJv11(0+)

R
]Φ71Σ+

+ [− sinφ sin θ(R)
ξJv12(0+)

R
+ cosφ cos θ(R)

ξJv11(0+)

R
]Φ53Π0+

. (6.34)

Assuming that the mixing angles, θ and φ, are small, the singlet emission from

the state associated with ΨA is dominated by the ξJv12(0+)
vibrational wavefunction.
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Similarly, the triplet emission from the state associated with ΨB is dominated by the

ξJv11(0+)
vibrational wavefunction. For the purposes of this dissertation we will refer to

these components as the direct components. This makes sense if we consider that the

11(0+) and 12(0+) states are predominantly triplet and singlet, respectively. This is

also why it is reasonable to assign the vibrational quantum number for levels of the

12(0+) state based on the intensity pattern of the resolved 12(0+)→1(X)1Σ+ bound-

bound emission, rather than the 12(0+)→1(a)3Σ+ bound-free emission.

The cross term components show how the vibrational wavefunctions can mix

together to produce an upper state wavefunction with unusual resolved fluorescence

spectra. The triplet emission associated with ΨA, and the singlet emission associated

with ΨB are not dominated by either the 11(0+) or 12(0+) vibrational wavefunction,

assuming the mixing angles are small and of comparable magnitudes. Rather, terms

from each vibrational wavefunction contribute significantly to the sums, so that the

resolved fluorescence spectra exhibit quantum interference. It is also important to

note that this interference requires two stages of coupling between the interacting

levels.

6.3 Resolved fluorescence from the 11(0+)

and 12(0+) states

In order to test the model described by Eqs. (6.33) and (6.34), we simulated resolved

fluorescence spectra for 11(0+), 12(0+) → 1(X)1Σ+ , 1(a)3Σ+ transitions. This was

done for three pairs of 11(0+) (v11(0+), J) and 12(0+) (v12(0+), J) levels. The levels

were chosen because their emission spectra are relatively strong and the intensity

patterns in the parts of the spectra associated with the cross terms are distinct and

fairly simple. To simulate the spectra, we first applied the model to vibrational

levels that are nearest neighbors in terms of energy. In each of the cases we studied,

the nearest neighbors satisfied v12(0+) − v11(0+) = 2. Figure 6.3 shows the results of

one such mixing of wavefunctions. We used LEVEL [25] and a modified version of

BCONT [18, 24] to carry out the simulations. First, level energies and wavefunctions
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were calculated by LEVEL using experimental 11(0+) and 12(0+) potentials for the

rovibrational levels of interest. The IPA potential of the present work (Table 5.6)

was used for the 12(0+) state and the experimental IPA potential presented in [3]

was used for the 11(0+) state. The wavefunctions calculated from these potentials

were copied into an Excel spreadsheet and manipulated according to Eqs. (6.33)

and (6.34) to form the singlet and triplet components of the interacting levels.

In this first “proof of principle” calculation of these mixed wavefunctions, we

took the mixing angle θ to be constant; i.e. θ(R) = θave. This approximation is

discussed in Sec. 6.4 where we consider the effect of the actual dependence of θ

on R and how such a dependence can be incorporated into the model. Once an

appropriate pair of mixing angles was chosen, the custom wavefunction components

were input to BCONT in order to simulate the spectra from these mixed levels.

Using a custom wavefunction in BCONT allows the user to bypass the input of an

initial upper state potential. Instead of having BCONT calculate the level energy

and wavefunction from the desired upper state level, a separate input file provides

the level energy and point-wise wavefunction. In order to fit the two mixing angles,

θ and φ, calculated spectra were compared to experimental spectra in two stages.

First, the shape of the cross term components was fit. We define K to be the ratio

of the ξJv11(0+)
amplitude to the ξJv12(0+)

amplitude in the cross term component of Eq.

(6.33):

K =
tanφ

tan θ
. (6.35)

Therefore K gives a measure of how much the ξJv11(0+)
vibrational wavefunction con-

tributes to the cross term component relative to the ξJv12(0+)
vibrational wavefunction

in the level described by ΨA in Eq. (6.33); i.e. Eq. (6.33) becomes

ΨA = C
{

[cot θξJv12(0+)
− tanφξJv11(0+)

]Φ71Σ+

+[ξJv12(0+)
+KξJv11(0+)

]Φ53Π0+

}
, (6.36)

with C = cosφ sin θ
R

. The ratio K, therefore, has a large impact on the intensity

121



Figure 6.3: Pure and mixed components of wavefunctions as functions of internuclear
separation (Å) for particular levels of the NaCs 11(0+) and 12(0+) states.
The top row shows plots of pure wavefunctions for the 12(0+)(1, 43) and
11(0+)(3, 43) levels, respectively, calculated using the computer program
LEVEL [25]. The second row shows the singlet and triplet wavefunction
components for the state described by Eq. (6.34). The third row shows
the singlet and triplet wavefunction components for the state described by
Eq. (6.33). These mixed wavefunction components were calculated with
θ = 0.311 radians and φ = 0.209 radians.
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distribution in the part of the spectrum resulting from the cross term component.

We varied K until the simulated triplet part of the 12(0+) spectrum, correspond-

ing to the triplet cross term component, matched the experimental spectrum as

closely as possible in a least squares sense. The overall normalization factor was

used to scale the simulations to ensure that the integrated areas of both the ex-

perimental and simulated spectra were the same. The scaled simulation was com-

pared to the experimental spectrum at each point along the wavelength grid used

in the BCONT calculation, and the RMS deviation was determined. The value

of K was adjusted after each simulation to obtain new cross term wavefunction

components that were given to BCONT for the next simulation. The value of K

was varied with four significant digits until the RMS deviation was minimized for

the bound-free fluorescence associated with each of the three 12(0+) rovibrational

levels studied. Figures 6.4, 6.5, and 6.6 show the bound-free (triplet) parts of the

simulations associated with each optimized cross term component in Eq. (6.33)

along with the experimental spectra associated with the corresponding 12(0+) →
1(a)3Σ+ transitions. In these simulations the transition dipole moment function as-

sociated with the 53Π0+ → 1(a)3Σ+ electronic transition determined in [3] was used,

along with the 1(a)3Σ+ potential curve determined by [3] and [15].

The parameter K also affects the shape of the singlet cross term component (the

first term in Eq. (6.34)). The ratio of the amplitude of ξJv11(0+)
to the amplitude of

ξJv12(0+)
in this term is simply 1

K
. Therefore, using K as the only free parameter we

should be able to fit both cross term components simultaneously. Despite this, we

only used the 12(0+) → 1(a)3Σ+ spectra for the actual fitting because the 11(0+)

→ 1(X)1Σ+ spectra are very weak and noisy in comparison.

Once the intensity distribution of the 12(0+) triplet spectra associated with the

cross term components was reproduced as closely as possible, we began the second

stage of fitting. This involved varying the value of φ for each pair of mixed levels

in order to best reproduce the relative total intensities of the singlet and triplet

components for each of the levels with the value of K held fixed. For each value of φ,

the corresponding θ was determined using the previously determined best fit K and

Eq. (6.35). By examining Eqs. (6.33) and (6.34), we can see that, for small angles,
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Figure 6.4: Experimental and simulated spectra of the 12(0+) (0, 43) →
1(a)3Σ+ transition. The simulated spectrum (dashed) is normalized to the
experimental spectrum (solid) by a constant factor such that the total in-
tegrated area is the same for both. The value of K was varied in order to
give the smallest RMS deviation between the experimental and normalized
simulated spectra. The wavefunction component used for this simulation
involved a mixture of pure 11(0+)(2, 43) and 12(0+)(0, 43) wavefunctions
with the best fit value of K = 0.4075± 0.0001.
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Figure 6.5: Experimental and simulated spectra of the 12(0+) (1, 43) →
1(a)3Σ+ transition. The simulated spectrum (dashed) is normalized to the
experimental spectrum (solid) by a constant factor such that the total in-
tegrated area is the same for both. The value of K was varied in order to
give the smallest RMS deviation between the experimental and normalized
simulated spectra. The wavefunction component used for this simulation
involved a mixture of pure 11(0+)(3, 43) and 12(0+)(1, 43) wavefunctions
with the best fit value of K = 0.6591± 0.0001.
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Figure 6.6: Experimental and simulated spectra of the 12(0+) (2, 33) →
1(a)3Σ+ transition. The simulated spectrum (dashed) is normalized to the
experimental spectrum (solid) by a constant factor such that the total in-
tegrated area is the same for both. The value of K was varied in order to
give the smallest RMS deviation between the experimental and normalized
simulated spectra. The wavefunction component used for this simulation
involved a mixture of pure 11(0+)(4, 33) and 12(0+)(2, 33) wavefunctions
with the best fit value of K = 0.8454± 0.0001.
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an increase in both angles will result in little change to the overall magnitudes of the

direct components, but will cause the overall magnitudes of the cross components

to increase significantly. For the 12(0+) levels, described by Eq. (6.33), a larger φ

results in a greater amplitude of triplet relative to singlet emission. For the 11(0+)

levels, described by Eq. (6.34), a larger φ results in a greater amplitude of singlet

relative to triplet emission. The relative singlet and triplet emission from a state is

also heavily influenced by the transition dipole moment functions so it was important

to have good transition dipole moment functions. For the triplet emission from both

states, the experimental 53Π0+ → 1(a)3Σ+ transition dipole moment function from

[3] was used. For the singlet emission from both states, the theoretical 71Σ+→
1(X)1Σ+ transition dipole moment function from [17] was used. The observed ratio

of singlet emission intensity to triplet emission intensity for a particular experimental

spectrum is also affected by the efficiency of the detection system as a function of

wavelength. Therefore all spectra used for fitting were first carefully corrected for the

detection efficiency as described in Sec. 3.4.3. Finally, BCONT was used to simulate

both the singlet and triplet emission for both states, even though the singlet emission

is bound-bound. This is because the current version of LEVEL does not allow for

a custom wavefunction to be used as input for the initial state. Since this feature

is critical for this analysis, the version of BCONT modified by Brett McGeehan

was used. This modified version calculates bound-bound transitions as a continuum

by treating the discrete levels as a continuum described by a density of states.

Just as important, the modified version of BCONT correctly treats the relative

intensities of bound-free and bound-bound emission. Normalization is preserved by

these calculations, so the experimental and simulated spectra were compared using

total integrated area.

For a given pair of mixed 11(0+) and 12(0+) rovibrational levels, a value of φ was

chosen and the value of K from the previous fitting of the 12(0+) triplet emission was

used. All components of the wavefunctions in Eqs. (6.33) and (6.34) were calculated

and used as input for BCONT. The resulting singlet and triplet simulated spectra

for both states were compared to experiment by first normalizing the simulated

triplet emission spectra for both states by scaling them to match the total integrated
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intensity of the experimental spectra. The simulated singlet emission spectra for

both states were then scaled by the same factor used for the triplet emission for their

respective states. Finally, the ratio of the total integrated areas of the singlet to

triplet emission was calculated for the experimental and simulated spectra for both

states. The RMS deviation between these simulated and experimental integrated

intensity ratios for both states was calculated and φ was varied in order to minimize

this RMS deviation. Table 6.1 lists the best fit parameters for each pair of levels

studied here. Figures 6.7 - 6.12 show comparisons of the experimental and simulated

spectra obtained from these fits. Note that the signal to noise ratio is low on the

short wavelength end of several of the singlet spectra because the detector efficiency

in the violet range of the spectrum is approximately six times lower at 420 nm than

at 450 nm. The detector efficiency is about 22 times greater for the green region of

the spectra associated with the bound-free emission than for the violet region. The

relative CCD detector efficiency is shown in Fig. 6.13. The efficiency is normalized

so the maximum value is one. Since the singlet portion of several of the spectra

(especially those from 11(0+) levels) is already very weak due to the relatively small

71Σ+→ 1(X)1Σ+ transition dipole moment (shown in Fig. 6.14 compared with

53Π0+ → 1(a)3Σ+ transition dipole moment function), the low efficiency at short

wavelength can cause the noise to appear greatly enhanced relative to the signal in

this spectral region.

v11(0+) v12(0+) J K φ (Radians) θ (Radians)

0 2 43 0.4075 ± 0.0001 0.103 ± 0.001 0.248 ± 0.002
1 3 43 0.6591 ± 0.0001 0.209 ± 0.001 0.311 ± 0.002
2 4 33 0.8454 ± 0.0001 0.281 ± 0.001 0.329 ± 0.002

Table 6.1: Summary of best fit mixing angle parameters.
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Figure 6.7: Comparison of experimental and simulated spectra for (a) 12(0+) (0, 43)
→ 1(X)1Σ+ and (b) 12(0+) (0, 43) → 1(a)3Σ+ transitions. The spectra are
the result of mixing pure 11(0+) (2, 43) and 12(0+) (0, 43) wavefunctions
according to Eqs. (6.33) and (6.34) where φ = 0.103 ± 0.001 radians and
θ = 0.248± 0.002 radians.
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Figure 6.8: Comparison of experimental and simulated spectra for (a) 11(0+) (2, 43)
→ 1(X)1Σ+ and (b) 11(0+) (2, 43) → 1(a)3Σ+ transitions. The spectra are
the result of mixing pure 11(0+) (2, 43) and 12(0+) (0, 43) wavefunctions
according to Eqs. (6.33) and (6.34) where φ = 0.103 ± 0.001 radians and
θ = 0.248± 0.002 radians.
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Figure 6.9: Comparison of experimental and simulated spectra for (a) 12(0+) (1, 43)
→ 1(X)1Σ+ and (b) 12(0+) (1, 43) → 1(a)3Σ+ transtions. The spectra are
the result of mixing pure 11(0+) (3, 43) and 12(0+) (1, 43) wavefunctions
according to Eqs. (6.33) and (6.34) where φ = 0.209 ± 0.001 radians and
θ = 0.311± 0.002 radians.
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Figure 6.10: Comparison of experimental and simulated spectra for (a) 11(0+) (3, 43)
→ 1(X)1Σ+ and (b) 11(0+) (3, 43)→ 1(a)3Σ+ transitions. The spectra are
the result of mixing pure 11(0+) (3, 43) and 12(0+) (1, 43) wavefunctions
according to Eqs. (6.33) and (6.34) where φ = 0.209 ± 0.001 radians and
θ = 0.311± 0.002 radians.

132



Figure 6.11: Comparison of experimental and simulated spectra for (a) 12(0+) (2, 33)
→ 1(X)1Σ+ and (b) 12(0+) (2, 33)→ 1(a)3Σ+ transitions. The spectra are
the result of mixing pure 11(0+) (4, 33) and 12(0+) (2, 33) wavefunctions
according to Eqs. (6.33) and (6.34) where φ = 0.281 ± 0.001 radians and
θ = 0.329± 0.002 radians.

133



Figure 6.12: Comparison of experimental and simulated spectra for (a) 11(0+) (4, 33)
→ 1(X)1Σ+ and (b) 11(0+) (4, 33)→ 1(a)3Σ+ transitions. The spectra are
the result of mixing pure 11(0+) (4, 33) and 12(0+) (2, 33) wavefunctions
according to Eqs. (6.33) and (6.34) where φ = 0.281 ± 0.001 radians and
θ = 0.329± 0.002 radians.
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Figure 6.13: Relative CCD detector efficiency scaled such that the maximum is one.
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Figure 6.14: Theoretical 71Σ+→ 1(X)1Σ+ and 53Π0+ → 1(a)3Σ+ transition dipole mo-
ment functions calculated by Aymar and Dulieu [17].
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6.4 Discussion of assumptions and approximations

For the model described in Sec. 6.2 to be able to reproduce the experimental spectra,

it is essential that there be two stages of interactions between the states of the

molecule. The first stage of coupling between these states is spin-orbit coupling,

described in Sec. 6.1.1. This is evident because both electronic states involved in

the coupling radiate to both lower triplet and lower singlet states.

The first simplifying assumption of our model is that in Eqs. (6.27) and (6.28)

we have assumed that the spin-orbit interaction causes the electronic wavefunctions

to mix such that relativistic wavefunctions can be written as a linear combination

of nonrelativistic wavefunctions involving only two electronic states. However, there

are many electronic states that can be excited in the energy region we can access

with our laser systems. Figure 6.15 shows several theoretically calculated potentials

in the energy region of the 11(0+) and 12(0+) states. The minimum of the 13(0+)

potential is much higher than the levels used to fit mixing angles for this work and

likely does not contribute. However, it does seem to show an avoided crossing with

the 12(0+) state above 26,000 cm−1. The 10(0+) [43Π0+ ] electronic state has energy

levels that can be excited in the same region as the 11(0+) and 12(0+) levels studied

here. The fact that the 43Π0+ theoretical potential shows a double minimum implies

that it interacts strongly with one or more electronic states. In particular it almost

certainly interacts with the 11(0+) state in the region near R ∼ 6 Å. If the spin-

orbit interaction of the 11(0+) and 12(0+) electronic states with the 43Π0+ state

is significant, it should be included as an additional term in the expansion of the

electronic wavefunctions. This would result in more terms in the final wavefunction,

specifically ones that contribute to triplet emission. However, we believe that these

terms are negligible because we should be able to see evidence of the mixing with the

43Π0+ state in the experimental spectra. As discussed in Chapter 7, the intensity

distribution of the 43Π0+ → 1(a)3Σ+ bound-free emission is quite different from that

of the 11(0+)→ 1(a)3Σ+ or 12(0+)→ 1(a)3Σ+ emission. In the energy region of the

rovibrational levels studied here, 43Π0+ energy levels span a very large range of R,

and hence the bound-free emission spans a very wide range of wavelength. If there
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are significant contributions to the mixed levels from the 43Π0+ electronic state,

the emission would extend to much longer wavelengths than have been observed.

Localized perturbations involving individual rovibrational levels are also unlikely

since the wavelength of the oscillations in the 43Π0+ vibrational level wavefunctions

are much smaller than those of the 11(0+) or 12(0+) vibrational wavefunctions. This

means that there would be poor overlap between the vibrational wavefunctions and

hence weak interactions. Since emission at longer wavelengths has not been detected,

we conclude that any contributions to the mixing of the levels studied here from the

43Π0+ electronic state is likely negligible.

The second stage of coupling is likely due to nonadiabatic interactions. Unlike the

spin-orbit interaction, evidence of this interaction is much less direct. As described

in Sec. 6.1.2, nonadiabatic coupling is a result of nuclear kinetic energy terms left

out of the Hamiltonian. These terms specifically involve derivatives of the electronic

wavefunction with respect to the internuclear separation, R. Such terms are large

when the character of the electronic wavefunction changes suddenly with respect to

R. Evidence of this sudden change of electronic character can be seen in the potential

energy curves, as shown in Fig. 6.2, when avoided crossings are present. However,

for the current work, avoided crossings are not apparent between the 11(0+) and

12(0+) states of NaCs because the potential energy curves are somewhat parallel as

seen in Fig. 6.16. Although there is no obvious avoided crossing between these two

potentials, electronic states of the same symmetry (0−1 in this case) can interact via

nonadiabatic coupling.

If nonadiabatic coupling is indeed the interaction responsible for the second stage

of coupling, as we have assumed, then our model utilizes several additional simpli-

fying assumptions in order to calculate simulated spectra. First, in the derivation of

the off-diagonal matrix elements of the nuclear kinetic energy operator, Eqs. (6.15)

and (6.16) show that the adiabatic electronic wavefunctions, which depend on R,

are expanded in terms of the diabatic electronic wavefunctions, which do not depend

on R. All the R dependence of the adiabatic wavefunctions is then contained in the

mixing angle, ϕ. However, in our case since the first stage of interaction between the

electronic states is spin-orbit coupling rather than electrostatic interactions, instead
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Figure 6.15: Theoretical potential energy curves in the region of the 11(0+) and 12(0+)
states of NaCs. All curves shown here have 0+ symmetry and were calcu-
lated by Korek et al. [12].
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Figure 6.16: Experimental potential energy curves for the 11(0+) and 12(0+) states.
The former is taken from [3], the latter is from the present work.
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of expanding adiabatic wavefunctions in terms of diabatic wavefunctions, we expand

relativistic wavefunctions in terms of nonrelativistic wavefunctions. In this expan-

sion, as written in Eqs. (6.27) and (6.28), the relativistic electronic wavefunctions

as well as θ depend on R. However, if we assume that the electronic wavefunctions

do not depend significantly on R, the final matrix element for the nonadiabatic in-

teraction is identical to Eq. (6.26) with θ(R) replacing ϕ(R). If the character of

the nonrelativistic electronic wavefunction changes significantly with R, then there

would be an additional term in the final nonadiabatic matrix element involving a

derivative of the electronic wavefunction with respect to R. This, in turn, would

affect the final nonadiabatic interaction expansion coefficients, sinφ and cosφ. Al-

though the matrix element may have additional terms due to this non-zero derivative

of the electronic wavefunction, the matrix element will still involve an integral over

R which means the expansion coefficients will be independent of R. Because the

mixing amplitudes in our model are fitted to the data, our results are not sensitive

to a possible non-zero derivative of the electronic wavefunction.

In addition to assuming that only two electronic states contribute significantly to

the character of the mixed levels, we have also made the assumption that only two

rovibrational levels interact with one another through the second stage of coupling.

Vibrational levels where v12(0+) − v11(0+) = 2 lie closest in energy with an average

separation of about 20 cm−1. Simulations based on mixed levels built from nearest

neighbor pairs gave the best agreement with experimental spectra. The next nearest

neighbor is not much farther away for most vibrational levels (usually approximately

30 cm−1). So in order to test whether they contribute significantly, simulations were

done with next nearest neighbor pairs. Figure 6.17 shows one such simulation with

12(0+) (1, 43) interacting with 11(0+) (2, 43) and it is evident that there is little

to no agreement with the experimental spectrum. We also can be sure that there is

no mixing with any higher vibrational levels by the same argument presented in the

discussion of interactions involving the 10(0+) state. Mixing with higher vibrational

levels of either state would result in wavefunctions with a larger range of R and

hence emission at longer wavelengths (see Fig. 6.18). Again, we do not observe any

emission in longer wavelength regions, so we conclude that mixing with any higher
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Figure 6.17: Simulation of triplet spectrum from next nearest neighbor pair of mixed
levels. In this case, the simulated 12(0+) (1, 43) → 1(a)3Σ+ spectrum
was computed using a mixture of pure 12(0+) (1, 43) and 11(0+) (2, 43)
wavefunctions. The lack of agreement is evident regardless of the values of
θ and φ chosen, which implies that the 12(0+) (1, 43) and 11(0+) (2, 43)
levels do not appear to interact significantly.
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Figure 6.18: Simulated 12(0+) (1, 43) → 1(a)3Σ+ spectrum computed using a mixture
of pure 12(0+) (1, 43) and 11(0+) (4, 43) wavefunctions. Not only does the
simulated emission extend to longer wavelengths than in the experimental
spectrum, but the overall intensity distribution resulting from the cross
term component interference does not agree with observation. This implies
that this 11(0+) (4, 43) level and higher vibrational levels of the 11(0+)
state do not significantly interact with the 12(0+) (1, 43) level.
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vibrational levels is negligible.

The final assumption made in this model is that the mixing angle, θ, used for the

expansion coefficients due to spin-orbit coupling can be described as a constant. In

Eqs. (6.27) and (6.28), the R dependence of the relativistic electronic wavefunctions

is contained in the mixing angle θ(R). However, we replaced θ(R) with an average

θ for our simulations. A significant dependence of θ on R would result in a much

different interference between the two mixed wavefunctions. Salami et al. [41] used

Morse functions to describe empirical and ab initio spin-orbit functions for Rb2. So

it is very possible that θ could have a significant R dependence.

Although this dependence was not included in our fitting of the mixing angles,

the agreement between the simulations and the experimental spectra is quite good.

Systematic discrepancies can likely be attributed to neglecting the R dependence of

θ. Because the emission resulting from the cross term components of the wavefunc-

tion is sensitive to the mixing angles, it is very likely that a more complicated fit

could be done to determine the general dependence of θ on R. As an example, Fig.

6.19 shows a simulation of the triplet emission from the 12(0+) (1, 43) level where

θ is assumed to have a simple linear dependence on R,

θ(R) = θave +m(R−R0), (6.37)

where θave is the average value of θ as determined in the fit which produced the

simulation shown in panel (b) of Fig. 6.9, m is the free parameter describing the

slope, and R0 is the internuclear separation associated with the midpoint of the

wavefunctions. Comparison of panel (b) in Fig. 6.9 and Fig. 6.19 indicates that

the linear θ(R) does a better job of fitting the spectrum than θ = constant. From

Fig. 6.19 it appears that inclusion of a quadratic term in θ(R) would likely give

even better agreement. More careful and complicated fitting of the R dependence

of θ will be carried out in future work. Planned future efforts to include θ(R) in our

model are described in Sec. 8.2.
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Figure 6.19: Simulation of the 12(0+) (1, 43) → 1(a)3Σ+ emission using a linear R de-
pendence for θ. θ(R) was assumed to have a linear dependence on R with
the constraint that the average value of θ over the relevant range of R
remained fixed at the value determined in the fitting which produced the
spectrum shown in panel (b) of Fig. 6.9. Comparing these two simulations,
we find that the linear θ(R) does a better job at simulating the spectrum.
Hence future work will involve careful fitting of a more complicated R de-
pendence of θ.
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Chapter 7

The NaCs 43Π0+ State

As discussed in Chapter 5, we were able to excite rovibrational levels of several

different high lying electronic states of NaCs in the present work. Levels belonging

to the 43Π0+ electronic state were identified and their energies measured. This elec-

tronic state is particularly interesting since it exhibits a double minimum potential.

This double minimum potential results in patterns of rovibrational energy levels

that are very different and more complicated than those of more regular potentials.

The double minimum structure of the potential also produces quantum interference

effects that can be observed in the bound-free fluorescence. This chapter describes

how the 43Π0+ electronic state was identified. Analysis of the vibrational and rota-

tional progressions, and bound-free spectra are also discussed, and we qualitatively

describe the shape and structure of the potential, based on our observations.

7.1 Identifying the 43Π0+ state

As mentioned in Section 5.1, double resonance excitation signals corresponding to

several different upper electronic states of NaCs can be observed for a given pump

transition. However, due to the lack of observable unique hyperfine structure pat-

terns, the fluorescence following a double resonance excitation must be resolved to

determine the upper electronic state excited by the probe transition. Figure 7.1

shows a typical resolved bound-free spectrum for a transition to a state that we
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Figure 7.1: Resolved bound-free 43Π0+ (v0, 43) → 1(a)3Σ+ fluorescence spectrum. The
signature allowing us to identify this as 43Π0+ → 1(a)3Σ+ fluorescence is the
interference structure observed near 515 nm.
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identified as the 43Π0+ [or 10(0+) in Hund’s case (c) notation] electronic state of

NaCs. In this dissertation we refer to this state as the 43Π0+ electronic state, rather

than as the 10(0+) electronic state since, for our work, spin-orbit effects were not in-

vestigated. The most prominent feature of the 43Π0+ → 1(a)3Σ+ bound-free spectra

is the interference structure observed near 515 nm.

As discussed in Section 2.4.1, the Classical Franck-Condon Approximation (CFCA)

is a good method to obtain a rough idea of the intensity distribution of a resolved

bound-free fluorescence spectrum. In the CFCA, transitions take place instanta-

neously so they are represented by vertical lines connecting the potentials. In addi-

tion, momentum and hence kinetic energy are also conserved in this approximation.

Therefore under this assumption, since the internuclear separation, R, does not

change in a transition, one can calculate the difference potential between the two

electronic states to obtain a λ(R) function. This function gives a range of wave-

lengths over which the molecule can fluoresce and each wavelength is weighted by

the probability that the two nuclei are separated by the corresponding R value.

This probability is simply the square of the upper state nuclear radial (vibrational)

wavefunction. If the potential is monotonic, then, under this approximation, we

expect a simple reflection of the upper state wavefunction onto the wavelength grid

according to λ(R). However, if the difference potential is non-monotonic, then for

some wavelengths there are contributions from more than one value of the internu-

clear separation, resulting in interference effects like those observed in Figure 7.1.

To identify the upper electronic state responsible for this spectrum, we plotted sev-

eral 3Λ → 1(a)3Σ+ difference potentials, using the theoretical NaCs potentials of

Korek et al. [12]. Figure 7.2 shows the function λ(R) calculated from the difference

potential V43Π0+
(R)−V1(a)3Σ+ (R) [λ(R) = hc

[V43Π
0+

(R)−V1(a)3Σ+ (R)]
]. Clearly, there is a

non-monotonic feature in the function λ(R) in the region near where we observe in-

terference structure. Furthermore, λ(R) becomes monotonic at longer wavelengths

which is consistent with the more simple and regular oscillating spectrum observed

at longer wavelengths in Figure 7.1.
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Figure 7.2: λ(R) function corresponding to the difference potential, V43Π0+
(R) −

V1(a)3Σ+ (R). Theoretical potentials of Korek et al. [12] were used. The
non-monotonic feature between 495 and 505 nm gives rises to the interfer-
ence structure seen in Figure 7.1.
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7.2 Rovibrational energies for the 43Π0+ state

Once we identified the state responsible for the bound-free spectrum shown in Fig.

7.1 as the 43Π0+ electronic state, rovibrational level energies were measured and col-

lected into a database. Throughout the data collection process it was useful to have

a reasonable idea of the region of the potential in which particular levels resided.

Figure 7.3 shows the NaCs 43Π0+ theoretical potential of Korek et al. [12]. Based

on the sum of the energy of the initial ground-state rovibrational level and the two

photon energies in the OODR excitation process, we determined that in the early

stages of the experiment we probed levels of the 43Π0+ state in the energy region

above the barrier between the two minima. This was confirmed by preliminary

measurements of vibrational and rotational splittings. Measured vibrational split-

tings in this energy region are approximately 8 cm−1, which is much smaller than

vibrational splittings of other nearby electronic states. For comparison, the 11(0+)

and 12(0+) states both have vibrational splittings of approximately 55 cm−1. The

much smaller vibrational splitting for the 43Π0+ state indicates that the potential

is very wide in this region, and is consistent with vibrational splittings calculated

for energies of the theoretical 43Π0+ potential above the barrier. Rotational energy

splittings also provide confirmation that we were exciting energy levels above the

barrier. For one of the highest observed vibrational levels, we measured energies

of many rotational levels using collisional spectra. The rotational constant for this

vibrational state (later labeled vA + 1) was determined to be Bv = 0.01614 cm−1.

This corresponds to an equilibrium separation of about 7.2 Å, which is consistent

with the average internuclear separation of the theoretical potential in the region

above the barrier.

One major challenge in the assignment of measured 43Π0+ rovibrational levels is

determining the vibrational quantum numbers. For the 11(0+) and 12(0+) electronic

states, vibrational assignments were made by examining the resolved bound-free

of bound-bound spectra corresponding to each of the various upper state vibra-

tional levels such as those shown in Fig. 2.7 for the 11(0+) state. However, the

higher energy rovibrational levels of the 43Π0+ state all produce resolved 43Π0+ →
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Figure 7.3: Theoretical NaCs 43Π0+ potential energy curve from Korek et al. [12].
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1(a)3Σ+ bound-free spectra that look almost identical to the one shown in Figure

7.1. The only difference between spectra originating in different 43Π0+ vibrational

levels are small variations in the interference structure. None of these variations

give any indication of the correct vibrational numbering. Because of this, the best

we could do was to assign a relative vibrational numbering for series of vibrational

levels that were identified to be sequential. Throughout the course of identifying

rovibrational levels, we made large downward jumps in energy in an effort to reach

the barrier of the potential. Consequently there are some gaps in vibrational level

coverage and hence the relative vibrational numbering scheme can only be given in

sections. Further work is necessary to fill in these gaps and complete the relative

vibrational numbering. This work in ongoing in our lab.

In order to map out any potential energy curve, coverage of rovibrational levels

at the bottom of the potential well is needed. Unfortunately, the energy ranges

that we can access with our lasers are limited, most importantly in the present case

at lower energies. We have found that the lowest energy range available to us for

NaCs OODR spectroscopy with our current lasers is not sufficiently low to excite

rovibrational levels at the very bottom of the 43Π0+ potential well. This prevents us

from obtaining a complete picture of the potential since we cannot measure the en-

ergies of low lying rovibrational levels and we cannot assign an accurate vibrational

numbering to the levels. Observing bound-free fluorescence from the lowest vibra-

tional levels, where there will likely be little to no interference structure, would have

allowed us to assign an absolute vibrational numbering based on node counting. In

addition, when the lasers are operated at the very low ends of their tuning ranges,

the calibration of the wavemeter becomes less reliable so level energies measured

in these regions are likely to have large and undetermined errors. Because of these

issues, we only present a summary of the data we have collected so far, in the form

of a table of measured energies in Appendix C. We hope to conclude our study of

the NaCs 43Π0+ state when new laser equipment becomes available to us, possibly

through collaboration with another research group.

Because the 43Π0+ electronic potential is likely to be a double minimum potential,

as indicated by the theoretical calculations and our data, we expect the energy level
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structure to change dramatically as the barrier region is approached from above. To

visualize this, we calculated rotational and vibrational constants for each observed

vibrational level. By fitting the 43Π0+ state rotational level energies to the function

E(v, J) = Gv +BvJ(J + 1), (7.1)

we obtained values of Gv and Bv for each vibrational state. Gv represents the energy

of the rotationless vibrational level while BvJ(J + 1) is the rotational energy. The

mean internuclear separation for that vibrational level is given by Rv
eq =

(
~2

2µBv

) 1
2
.

We can also predict the Gv, Bv, and Rv
eq values for the theoretical double minimum

state. Figure 7.4 shows a plot of Gv versus Rv
eq, for vibrational levels determined

using LEVEL 8.0 to calculate energy levels from the theoretical potential. The

theoretical potential is plotted for reference. The calculated vibrational levels are

clearly separated into three distinct regions: one set above the barrier, one set

associated with the outer well, and one set associated with the inner well. Table

7.1 lists the Gv, Bv, and Rv
eq values calculated using the theoretical potential, which

were used to generate Fig. 7.4.

In the region above the barrier, the calculations show more closely spaced Gv

values because of the wide open nature of the potential well in this region and the

Rv
eq values lie near the R value of the barrier. Below the barrier the calculations

show vibrational levels associated with both the inner and outer wells. Because the

potential is much narrower in the regions of each minimum compared to the region

above the barrier, these vibrational levels have larger spacings than those above

the barrier. The rotational constants, and hence equilibrium separations, for the

calculations are also very different for vibrational levels associated with the inner

and outer wells.

Figure 7.5 shows a similar plot for the measured vibrational levels of the 43Π0+ state.

The theoretical 43Π0+ potential is also plotted for reference. Each point represents

Gv versus Rv
eq for a single vibrational level whose rotational level energies were fit

to Eq. (7.1). Green triangles represent vibrational levels where several rotational

levels were observed, either through collisional spectra or by using more than one
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Figure 7.4: Plot of Gv versus Req for calculated vibrational levels of the 43Π0+ state. The
theoretical potential is also plotted for reference. The calculated vibrational
levels are clearly separated into three distinct regions: one set above the
barrier, one set associated with the outer well, and one set associated with
the inner well.

154



vouter Gv (cm−1) Bv (cm−1) Rv
eq (Å) vtotal Gv (cm−1) Bv (cm−1) Rv

eq (Å)

0 24337.4381 0.018047 6.905 25 24614.0418 0.026939 5.652
1 24396.0345 0.017937 6.927 26 24634.7537 0.026707 5.677
2 24441.5660 0.018036 6.908 27 24657.1106 0.026671 5.680
3 24483.8450 0.018182 6.880 28 24679.7406 0.026796 5.667
4 24523.9806 0.018437 6.832 29 24703.2069 0.026867 5.660
5 24561.6423 0.018469 6.826 30 24727.1343 0.027006 5.645

vinner Gv (cm−1) Bv (cm−1) Rv
eq (Å) 31 24751.4003 0.026834 5.663

0 23624.6562 0.042781 4.485 32 24776.1600 0.026783 5.668
1 23691.1061 0.042392 4.506 33 24801.2379 0.026883 5.658
2 23754.4020 0.042065 4.523 34 24826.7395 0.026765 5.670
3 23815.6921 0.041630 4.547 35 24852.5027 0.026652 5.682
4 23877.9722 0.041851 4.534 36 24878.4586 0.026678 5.680
5 23937.8853 0.041004 4.581 37 24904.9648 0.026580 5.690
6 23996.4644 0.040825 4.591 38 24931.4299 0.026568 5.691
7 24052.6102 0.040318 4.620 39 24958.0601 0.026570 5.691
8 24110.4187 0.040518 4.609 40 24984.9303 0.026458 5.703
9 24167.7223 0.040051 4.635 41 25011.7180 0.026357 5.714
10 24224.2281 0.039995 4.639 42 25038.7145 0.026391 5.710
11 24279.8984 0.039643 4.659 43 25065.8534 0.026361 5.714
12 24334.8748 0.039353 4.676 44 25093.2027 0.026323 5.718
13 24388.6662 0.038848 4.707 45 25120.7388 0.026251 5.726
14 24440.6931 0.038292 4.741 46 25148.3128 0.026051 5.748

Table 7.1: Gv, Bv, and Rveq values calculated from the theoretical 43Π0+ potential of [12].
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Figure 7.5: Plot of Gv versus Rveq for measured vibrational levels of the 43Π0+ state. The
theoretical potential is also plotted for reference. Green triangles represent
vibrational levels for which several different rotational levels were observed,
while blue diamonds represent vibrational levels for which only two rota-
tional levels (one P line and one R line from a single intermediate state
level) were observed.
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pump transition. Blue diamonds represent vibrational levels for which we only have

two measured rotational level energies, corresponding to one P and one R line from

a single intermediate level. The Gv and Rv
eq values for these latter vibrational levels

are not as accurate since any small perturbation in one or both of the levels could

dramatically affect the Gv and Bv constants. From what we see in Figure 7.5, it is

likely that the theoretical potential would need to be shifted to larger R and lower

energy to accommodate the measured levels. However, the positions of points as-

sociated with vibrational levels in the region where there should be both inner and

outer well levels imply discrepancies that no adjustment of the potential would be

able to accommodate. For example, there are energy levels that seem to lie well

above the barrier but still have large Req values that are more suggestive of the

outer well position. To understand these issues we need a more complete picture

of the energy level structure of the 43Π0+ state, most critically near the bottom of

the potential. However, at the moment this is not possible in our lab because this

lower region of the potential lies in an energy range that cannot be reached with

our current laser systems.

Since we are unable to determine an accurate potential energy curve for the

43Π0+ state with our current limited dataset, it is best to summarize the observed

level energies by reporting the Gv and Bv constants calculated from the data as

described above. These are given in Table 7.2 for all measured vibrational levels

along, with the relative vibrational numbering. Appendix C gives a full list of

measured level energies.

7.3 Bound-free fluorescence spectra

As mentioned above, the resolved bound-free fluorescence spectra from the higher

rovibrational levels of the NaCs 43Π0+ state are very similar in appearance, including

the number of broad oscillations. Only small variations in the interference struc-

ture distinguish the individual spectra associated with different vibrational levels.

However, lower lying levels with energies approaching the barrier region and below,
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vrel Gv Bv Rv
eq

vA+6 25157.95 0.01736 7.04
vA+5 25150.57 0.01765 6.98
vA+4 25146.43 0.01535 7.49
vA+3 25135.79 0.01601 7.33
vA+2 25123.50 0.01844 6.83
vA+1 25120.49 0.01614 7.30
vA 25112.38 0.01553 7.44
vB+2 24873.05 0.01395 7.86
vB 24833.35 0.02518 5.85

vC+10 24622.46 0.01498 7.58
vC+9 24613.92 0.01387 7.88
vC+8 24601.94 0.01497 7.58
vC+7 24592.40 0.01451 7.70
vC+6 24582.15 0.01454 7.69
vC+5 24571.97 0.01456 7.69
vC+4 24558.70 0.01766 6.98
vC 24517.48 0.01889 6.75
vD 24079.43 0.03802 4.76
vE 24317.14 0.03336 5.08
vF+3 24326.25 0.01403 7.83
vF+2 24308.77 0.01741 7.03
vF+1 24302.12 0.01553 7.44
vF 24274.16 0.02240 6.20

Table 7.2: Results of least squares fits of rotational progression data to Eq. (7.1) for
each observed vibrational state of the NaCs 43Π0+ state.
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display spectra that look quite different. Figure 7.6 shows several resolved bound-

free spectra from some of the lowest studied rovibrational levels of the 43Π0+ state.

The top spectrum in an example of the resolved bound-free fluorescence seen from

levels that lie above the barrier. The most useful information to be gathered from

the three lower spectra is the absolute vibrational numbering. The lowest spectrum

almost certainly corresponds to the v = 4 vibrational level, with the second one

likely corresponding to v = 6. These vibrational levels likely lie below the barrier

such that there is little to no interference structure. In principle, one should be able

to now assign an absolute vibrational numbering to all the levels that lie higher in

energy, which were previously only labeled with relative v’s. Unfortunately, these

particular spectra were taken with our lasers at the absolute end of their tuning

ranges and as a result the wavemeter calibration is not valid. Because of this, the

levels associated with these spectra do not appear in Table 7.2.

Figure 7.7 shows BCONT simulations of resolved bound-free fluorescence from

levels approximately corresponding to those shown in Figure 7.6. These simula-

tions use the theoretical 43Π0+ potential of Korek et al. [12], the experimental

1(a)3Σ+ potential of Ashman et al. [3], and the theoretical 43Π0+ → 1(a)3Σ+ transition

dipole moment function of Aymar and Dulieu [17]. Comparing the simulations of

Fig. 7.7 to the experimental spectra of Fig. 7.6 we see that the long wavelength

end of the simulations extend much farther to the red than the experimental spec-

tra, by as much as 20 nm or more. By looking at the difference potential, Figure

7.2, the CFCA suggests that the long wavelength end of the bound-free fluorescence

corresponds to the smallest internuclear separations. This implies that the inner

wall of the theoretical 43Π0+ potential needs to be shifted to larger R (or that the

repulsive wall of the experimental1(a)3Σ+ potential is too steep). The cutoffs at the

short wavelength end of the experimental spectra and simulations are in fairly good

agreement, as is expected based on energy constraints. Obtaining additional bound-

free spectra from the lowest levels of the 43Π0+ state could give us more insight into

the shape of the potential and a more reliable assignment of the vibrational quantum

number.
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Figure 7.6: Resolved bound-free fluorescence spectra for several different vibrational lev-
els of the 43Π0+ state. From top to bottom, these spectra show bound-free
emission to the 1(a)3Σ+ state from 43Π0+ (vA + 1, 43), (vC + 1, 26), (6, 16),
and (4, 16 or 18). Vibrational quantum number assignments are tentative.
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Figure 7.7: BCONT simulations of bound-free spectra for several different vibrational
levels of the 43Π0+ state. From top to bottom , these simulations show
bound-free emission to the 1(a)3Σ+ state from 43Π0+ (32, 43), (8, 26), (6,
16), and (4, 16). The vibrational number for the top spectrum was chosen
such that the calculated total energy was as close as possible to the measured
energy of the top spectrum shown in Fig. 7.6.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The work presented in this dissertation was undertaken in order to increase our

knowledge of high lying electronic states in NaCs. Our lab’s first study of these

states was carried out by Ashman et al. who mapped out the 53Π0+ potential

well [3]. He also mapped the 53Π0+ → 1(a)3Σ+ transition dipole moment function

along with the repulsive wall of the 1(a)3Σ+ potential by comparing simulated and

experimental bound-free emission spectra. It was evident from the experimental

53Π0+ IPA potential obtained by Ashman that other nearby electronic states interact

with the 53Π0+ state [3]. The work presented here focuses on understanding the

interactions between the 11(0+) [53Π0+ ] and 12(0+) [71Σ+ ] states of NaCs.

Upper state rovibrational levels of several electronic states were identified and

categorized based on the resolved bound-free spectra. One such grouping of rovi-

brational levels corresponds to the 12(0+) electronic state of NaCs. We made use

of a change-coupled device (CCD) array detector to identify these rovibrational lev-

els by observing the resulting 12(0+) → 1(a)3Σ+ bound-free resolved fluorescence

spectra. The CCD detector greatly reduced the amount of time required to obtain

such spectra compared to the previously used setup consisting of a monochromator

and photomultiplier tube. We measured energies of 184 12(0+) rovibrational levels
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covering a vibrational level range of v = 0 − 14. These level energies were used to

construct an experimental potential by first fitting the energies to Dunham coeffi-

cients. The Dunham coefficients were then used to construct a Rydberg-Klein-Rees

potential which was used as a starting point for applying the Inverted Perturbation

Approach (IPA). The final IPA potential reproduces the measured level energies for

v = 0− 10 with an RMS deviation of 0.034 cm−1.

Analysis of the intensity patterns in the 12(0+) → 1(a)3Σ+ bound-free emission

showed distinct features that could not be reproduced when using the experimental

potential to simulate spectra. We determined that these features are the result of

two stages of interactions between the 11(0+) and 12(0+) electronic states. First,

the electronic states interact via the spin-orbit effect. In Hund’s case (a) notation

the 11(0+) and 12(0+) states are labeled as the 53Π0+ and 71Σ+ states, respectively.

Spin-orbit interactions between a 1Σ+ state and a 3Π0+ state are very common and

result in individual levels of the two states that have both singlet and triplet charac-

ter. However, this interaction alone is not enough to explain the intensity patterns

we observe for the 12(0+) → 1(a)3Σ+ bound-free spectra. A second interaction,

which we believe to be non-adiabatic coupling, is necessary to produce the type of

quantum interference that results in the resolved spectra we observe.

We determined a model for the form of the wavefunction for a particular energy

level which is mixed via this two stage coupling. The resulting mixed wavefunctions

have direct and cross term components of both singlet and triplet character. The

program BCONT was used to simulate bound-bound and bound-free resolved spec-

tra resulting from these wavefunctions. The expansion coefficients describing the

mixing between the electronic states and the individual rovibrational levels were

adjusted so that the simulations matched the experimental spectra as closely as

possible. From the fitted coefficients, we obtain information about these interac-

tions. This information, gained from the studies of mixed wavefunctions, leading to

quantum interference effects on the bound-bound and bound-free emission intensity

patterns, is a different and more sensitive method of studying such small interac-

tions compared to the more usual way of studying perturbations through energy

level shifts.
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In this work, we also began studies of the 43Π0+ state of NaCs. The 43Π0+ electronic

state exhibits a double minimum potential energy curve. The barrier in the poten-

tial is evidence of an avoided crossing with higher electronic states, most likely the

11(0+) and 12(0+) states. Since the 43Π0+ state is likely to interact with the other

electronic states studied in this work, we also sought to map out the 43Π0+ potential.

The 43Π0+ → 1(a)3Σ+ bound-free resolved fluorescence is particularly interesting

since it shows strong interference features. However, the nature of the quantum

interference observed in the resolved 43Π0+ → 1(a)3Σ+ fluorescence is different from

that of the 11(0+) and 12(0+) states described above. The double minimum in the

43Π0+ potential energy curve results in a non-monotonic difference potential. Un-

der the Classical Franck-Condon Approximation, this means that molecules at more

than one value of the internuclear separation contribute to the fluorescence at a par-

ticular wavelength. Quantum mechanically, one would say that the wavefunction

overlap integral has significant contributions from two separate regions of R space.

By identifying levels with these distinct bound-free spectra, we compiled a set

of 112 rovibrational levels of the 43Π0+ state. Unfortunately, restrictions on laser

wavelengths currently available in our lab prevent us from carrying out a complete

analysis of the 43Π0+ electronic state at this time.

8.2 Future Work

The work presented here has greatly expanded our knowledge of small interac-

tions between molecular electronic states in general, and high lying electronic states

of NaCs in particular, and of how to obtain information about these interactions

through observations of resolved bound-free and bound-bound spectra. Although

we believe the basic two-stage coupling model presented in this dissertation con-

tains the essential physics to explain our observations, there are still ways that the

model can be improved to give a more complete description of the interactions. Such

improvements will be the subject of future work.

The most prominent feature left out of the current model is the dependence of
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the spin-orbit mixing angle, θ, on R. As mentioned in Sec. 6.4, the expansion

coefficients used to express the relativistic electronic wavefunctions in terms of the

non-relativistic electronic wavefunctions should depend on the internuclear separa-

tion coordinate, R. The fitting of bound-free and bound-bound spectra described

in Sec. 6.3 was carried out assuming a constant value for θ [which probably best

represents the average value of θ(R) over the relevant range of R]. Figure 6.19 shows

that a preliminary rough adjustment of an assumed linear θ(R) dependence can give

better agreement between the simulated and experimental spectra.

Figures 8.1 and 8.2 show a rough preliminary fit of simulations of resolved flu-

orescence from the 11(0+) (6, 45) and 12(0+) (4, 45) levels. These levels lie above

those that were studied in the work presented in Chapter 6. The fitted values for θ

and φ for the 11(0+) (6, 45) and 12(0+) (4, 45) pair are 0.56 radians and 0.6 radians,

respectively. Since the levels involved in these new fits are higher vibrational levels,

the wavefunctions span a larger range of R. Therefore, if θ does have a significant

R dependence, it will likely become more and more important for higher vibrational

levels. This appears to be the case, since we find that the fits displayed in Figs. 8.1

and 8.2 are not very good. We believe that these fits can be improved dramatically

by incorporating an R dependent θ.

A second issue that we wish to explore in the future involves the magnitude of θ

and φ, for higher vibrational levels. We note that the average θ and φ values used

to obtain the “best fit” simulations shown in Figs. 8.1 and 8.2 are a factor of 2-3

times larger than those used in the fits described in Sec. 6.3. When the values of

θ and φ are larger, the sin θ sinφ terms in the direct components become relatively

more significant and have a greater effect on the intensity distributions seen in the

resolved fluorescence. Ashman et al. [3] mention that one oscillation at the short

wavelength end of the bound-free emission from 11(0+) (v=6) levels seemed to be

washed out in their spectra, for reasons that they attribute to resolution issues.

Since we now know that the 11(0+) and 12(0+) states interact in a complicated

way, we may be able to explain the suppressed peak in the bound-free spectrum due

to interference in what we call the direct component of the wavefunction. Fitting

higher vibrational levels, which may have more significant direct term interference,

165



Figure 8.1: Comparison of experimental and simulated spectra for 12(0+) (4, 45) →
1(X)1Σ+ , 1(a)3Σ+ transitions. These spectra result from a mixture of pure
11(0+) (6, 45) and 12(0+) (4, 45) wavefunctions according to Eqs. (6.33)
and (6.34), with φ = 0.6 radians and θ = 0.56 radians. (a) 12(0+) (4, 45) →
1(X)1Σ+ emission, and (b) 12(0+) (4, 45) → 1(a)3Σ+ emission.
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Figure 8.2: Comparison of experimental and simulated spectra for 11(0+) (6, 45) →
1(X)1Σ+ , 1(a)3Σ+ transitions. These spectra result from a mixture of pure
11(0+) (6, 45) and 12(0+) (4, 45) wavefunctions according to Eqs. (6.33)
and (6.34), with φ = 0.6 radians and θ = 0.56 radians. (a) 11(0+) (4, 45) →
1(X)1Σ+ emission, and (b) 11(0+) (4, 45) → 1(a)3Σ+ emission.
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could give more insight into how θ depends on R, but also on subtle changes in the

resolved bound-free and bound-bound emission.

Interference in the direct components of the wavefunctions also influences an-

other aspect that we would like to address in future work. For the simulations

shown in this dissertation, the theoretical 71Σ+→ 1(X)1Σ+ transition dipole mo-

ment (TDM) function was used. A more accurate fit requires the use of an ex-

perimentally determined 71Σ+→ 1(X)1Σ+ TDM function. This can determined

by adjusting parameters describing the TDM function in order to give good agree-

ment between simulations and bound-bound 71Σ+→ 1(X)1Σ+ resolved fluorescence.

However, since the 12(0+) state undergoes mixing with the 11(0+) state as described

here, the component of the wavefunction with 71Σ+ character is not necessarily sim-

ply the 12(0+) wavefunction. This means that the wavefunction component fitting

and the 71Σ+→ 1(X)1Σ+ TDM function fitting to reproduce the bound-free and

bound-bound spectra should be carried out simultaneously.

All the fits described in this dissertation were done by manually adjusting the

mixing angle parameters. Future work on the interactions of these two states will

likely involve more complicated global fitting of the resolved spectra. Since θ(R)

is associated with the spin-orbit mixing of the electronic states, as opposed to the

individual rovibrational levels, it should be treated as a global parameter. A more

sophisticated fit would involve several parameters to describe the functional form

for the global θ(R) function, which would then be used in the same way for each

vibrational level, along with local mixing parameters, φv, which could vary from one

vibrational level to the next.

Finally, work will continue to map out the 43Π0+ electronic state of NaCs. In

order to have the most complete picture of the 43Π0+ potential, it is critical to

acquire rovibrational level data down to the bottom of the well. Extension of the

dataset in this regard is currently not possible since the lowest energy region that

we can access with our lasers is limited. The dataset presented here is compiled

with the intent that it will be used someday as a part of a more complete study of

the 43Π0+ state when new laser equipment becomes available to us, possibly through

collaboration with another research group.
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Appendix A

2(A)1Σ+ Experimental Data

The following table compiles measured 2(A)1Σ+ level energies determined in this

work and work done by Ashman et al. [3]. v′ and J ′ denote the 2(A)1Σ+ state

vibrational and rotational quantum numbers, respectively. v′′ and J ′′ denote the

ground 1(X)1Σ+ state vibrational and rotational quantum numbers, respectively.

Egs is the energy of the 1(X)1Σ+ rovibrational level, calculated with experimental

Dunham coefficients from Docenko et al. [15], which are reported to be accurate to

± 0.003 cm−1. E2(A)1Σ+ (v′,J ′) is the total energy of the 2(A)1Σ+ rovibrational level.

We assign a laser frequency calibration error of ± 0.01 cm−1, hence Epump, and

E2(A)1Σ+ (v′,J ′) should be assigned an uncertainty of ± 0.01 cm−1. The final column

distinguishes whether the level was measured in this work (*) or in Ref. [3] (blank).

v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

9 13 0 14 61.513 11019.23 11080.74 *

9 14 0 15 63.249 11018.76 11082.01 *

9 14 0 13 59.893 11022.11 11082.00 *
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

9 15 0 16 65.100 11018.27 11083.36 *

9 15 0 14 61.513 11021.85 11083.36 *

9 16 0 17 67.067 11017.75 11084.82 *

9 16 0 15 63.249 11021.57 11084.82 *

9 17 0 18 69.149 11017.22 11086.37 *

9 17 0 16 65.100 11021.26 11086.36 *

9 17 0 18 69.149 11017.21 11086.36 *

9 17 0 16 65.100 11021.26 11086.36 *

9 18 0 19 71.347 11016.66 11088.00 *

9 18 0 17 67.067 11020.94 11088.01 *

9 19 0 20 73.660 11016.08 11089.74 *

9 19 0 18 69.149 11020.59 11089.74 *

9 20 0 0 71.347 11020.23 11091.58 *

9 22 0 21 76.089 11019.45 11095.54 *

9 23 0 22 78.633 11019.03 11097.67 *

9 23 0 24 84.066 11013.60 11097.67 *

9 24 0 23 81.292 11018.60 11099.89 *

9 24 0 25 86.956 11012.93 11099.89 *

9 25 0 24 84.066 11018.15 11102.22 *

9 25 0 26 89.961 11012.26 11102.22 *
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

9 26 0 25 86.956 11017.69 11104.64 *

9 26 0 27 93.081 11011.56 11104.64 *

9 27 0 26 89.961 11017.22 11107.18 *

9 27 0 28 96.316 11010.86 11107.17 *

9 28 0 27 93.081 11016.73 11109.81 *

9 28 0 29 99.666 11010.14 11109.81 *

9 29 0 28 96.316 11016.23 11112.55 *

9 29 0 30 103.131 11009.41 11112.54 *

9 30 0 29 99.666 11015.73 11115.39 *

9 30 0 31 106.711 11008.68 11115.39 *

9 31 0 30 103.131 11015.21 11118.34 *

9 31 0 32 110.406 11007.93 11118.34 *

9 32 0 33 114.215 11007.18 11121.40 *

9 33 0 34 118.140 11006.43 11124.57 *

12 22 0 21 76.089 11171.51 11247.60 *

12 23 0 22 78.633 11171.18 11249.81 *

12 24 0 23 81.292 11170.79 11252.08 *

12 26 0 27 93.081 11163.70 11256.78 *

12 26 0 25 86.956 11169.82 11256.77 *

12 27 0 28 96.316 11162.89 11259.20 *
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

12 27 0 26 89.961 11169.24 11259.20 *

12 28 0 29 99.666 11162.01 11261.68 *

12 28 0 27 93.081 11168.59 11261.67 *

12 29 0 30 103.131 11161.07 11264.20 *

12 29 0 28 96.316 11167.88 11264.20 *

12 30 0 31 106.711 11160.06 11266.78 *

12 30 0 29 99.666 11167.11 11266.78 *

12 31 0 32 110.406 11159.01 11269.41 *

12 31 0 30 103.131 11166.28 11269.41 *

12 32 0 33 114.215 11157.89 11272.11 *

12 32 0 31 106.711 11165.40 11272.11 *

12 33 0 32 110.406 11164.46 11274.87 *

12 33 0 34 118.140 11156.73 11274.87 *

12 34 0 35 122.179 11155.49 11277.67 *

12 34 0 33 114.215 11163.45 11277.67 *

12 35 0 36 126.332 11154.25 11280.59 *

12 35 0 34 118.140 11162.45 11280.59 *

12 36 0 37 130.600 11152.95 11283.55 *

12 36 0 35 122.179 11161.38 11283.56 *

12 37 0 38 134.982 11151.61 11286.59 *
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

12 37 0 36 126.332 11160.26 11286.59 *

12 38 0 39 139.479 11150.23 11289.70 *

12 38 0 37 130.600 11159.11 11289.71 *

12 39 0 40 144.090 11148.80 11292.89 *

12 39 0 38 134.982 11157.91 11292.90 *

12 40 0 41 148.816 11147.34 11296.16 *

12 40 0 39 139.479 11156.69 11296.17 *

12 41 0 42 153.655 11145.85 11299.51 *

12 41 0 40 144.090 11155.42 11299.51 *

12 41 0 42 153.655 11145.85 11299.50 *

12 42 0 41 148.816 11154.12 11302.93 *

12 42 0 43 158.609 11144.32 11302.93 *

12 43 0 42 153.655 11152.79 11306.44 *

12 43 0 44 163.676 11142.76 11306.43 *

12 44 0 43 158.609 11151.42 11310.03 *

12 44 0 45 168.858 11141.17 11310.02 *

12 45 0 44 163.676 11150.03 11313.71 *

12 45 0 46 174.153 11139.55 11313.70 *

12 46 0 45 168.858 11148.60 11317.46 *

12 46 0 47 179.562 11137.89 11317.45 *
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

12 47 0 46 174.153 11147.15 11321.30 *

12 47 0 48 185.085 11136.21 11321.30 *

12 48 0 47 179.562 11145.67 11325.23 *

12 48 0 47 179.562 11145.66 11325.23 *

12 49 0 48 185.085 11144.16 11329.24 *

12 50 0 49 190.721 11142.63 11333.35 *

12 51 0 50 196.470 11141.08 11337.55 *

12 52 0 51 202.333 11139.51 11341.84 *

12 53 0 52 208.310 11137.92 11346.23 *

12 54 0 53 214.399 11136.31 11350.71 *

14 1 0 2 49.706 11296.42 11346.13 *

14 2 0 3 50.053 11296.22 11346.27 *

14 3 0 4 50.517 11296.01 11346.53 *

14 4 0 5 51.095 11295.76 11346.86 *

14 5 0 6 51.790 11295.48 11347.27 *

14 6 0 7 52.601 11295.17 11347.77 *

14 7 0 8 53.527 11294.83 11348.36 *

14 8 0 9 54.569 11294.63 11349.20 *

14 9 0 10 55.726 11294.05 11349.78 *

14 10 0 9 54.569 11296.06 11350.63
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

14 10 0 9 54.569 11296.06 11350.63 *

14 11 0 10 55.726 11295.80 11351.52

14 12 0 11 56.999 11295.52 11352.52

14 13 0 12 58.388 11295.22 11353.61

14 13 0 14 61.513 11292.10 11353.61

14 14 0 13 59.893 11294.89 11354.78

14 14 0 15 63.249 11291.54 11354.79

14 15 0 14 61.513 11294.53 11356.04

14 15 0 16 65.100 11290.94 11356.04

14 16 0 15 63.249 11294.14 11357.39

14 16 0 17 67.067 11290.32 11357.38

14 17 0 16 65.100 11293.71 11358.81

14 17 0 18 69.149 11289.66 11358.81

14 18 0 17 67.067 11293.26 11360.32

14 18 0 19 71.347 11288.98 11360.32

14 19 0 18 69.149 11292.78 11361.92

14 19 0 20 73.660 11288.26 11361.92

14 20 0 19 71.347 11292.27 11363.61

14 20 0 21 76.089 11287.52 11363.61

14 21 0 20 73.660 11291.73 11365.39
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

14 21 0 22 78.633 11286.76 11365.39

14 22 0 21 76.089 11291.17 11367.26

14 22 0 23 81.292 11285.97 11367.26

14 23 0 22 78.633 11290.58 11369.21

14 23 0 24 84.066 11285.15 11369.22

14 24 0 23 81.292 11289.97 11371.26

14 24 0 25 86.956 11284.31 11371.27

14 25 0 24 84.066 11289.34 11373.41

14 25 0 24 84.066 11289.34 11373.41

14 25 0 26 89.961 11283.45 11373.41

14 26 0 25 86.956 11288.69 11375.64

14 26 0 25 86.956 11288.69 11375.65

14 26 0 27 93.081 11282.56 11375.64

14 26 0 27 93.081 11282.57 11375.65

14 27 0 26 89.961 11288.02 11377.98

14 27 0 26 89.961 11288.02 11377.98

14 27 0 28 96.316 11281.67 11377.98

14 28 0 27 93.081 11287.34 11380.42

14 28 0 27 93.081 11287.34 11380.42

14 28 0 29 99.666 11280.75 11380.42
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

14 28 0 29 99.666 11280.75 11380.42

14 29 0 28 96.316 11286.64 11382.96

14 29 0 28 96.316 11286.64 11382.96

14 29 0 30 103.131 11279.83 11382.96

14 29 0 30 103.131 11279.83 11382.96

14 30 0 29 99.666 11285.94 11385.60

14 30 0 29 99.666 11285.94 11385.61

14 30 0 31 106.711 11278.89 11385.60

14 30 0 31 106.711 11278.89 11385.60

14 31 0 30 103.131 11285.22 11388.35

14 31 0 30 103.131 11285.23 11388.36

14 31 0 32 110.406 11277.95 11388.35

14 31 0 32 110.406 11277.95 11388.36

14 32 0 31 106.711 11284.51 11391.22

14 32 0 31 106.711 11284.51 11391.22

14 33 0 32 110.406 11283.80 11394.20

14 33 0 32 110.406 11283.80 11394.20

14 34 0 33 114.215 11283.09 11397.30

14 34 0 35 122.179 11275.12 11397.30

14 35 0 34 118.140 11282.39 11400.53
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

14 35 0 36 126.332 11274.19 11400.52

14 36 0 35 122.179 11281.71 11403.88

14 36 0 37 130.600 11273.28 11403.88

14 37 0 36 126.332 11281.04 11407.37

14 37 0 38 134.983 11272.38 11407.37

14 38 0 37 130.600 11280.39 11410.99

14 38 0 39 139.479 11271.51 11410.99

14 39 0 38 134.983 11279.75 11414.73

14 39 0 40 144.090 11270.65 11414.74

14 40 0 39 139.479 11279.15 11418.63

14 40 0 41 148.816 11269.81 11418.63

14 41 0 40 144.090 11278.57 11422.66

14 41 0 42 153.655 11269.00 11422.66

14 42 0 41 148.816 11278.02 11426.83

14 42 0 43 158.609 11268.22 11426.83

14 43 0 42 153.655 11277.49 11431.15

14 43 0 44 163.676 11267.47 11431.14

14 43 0 44 163.676 11267.47 11431.15

14 44 0 43 158.609 11276.99 11435.60

14 44 0 45 168.858 11266.74 11435.60
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

14 44 0 45 168.858 11266.74 11435.60

14 45 0 44 163.676 11276.51 11440.19

14 45 0 46 174.153 11266.03 11440.19

14 45 0 46 174.153 11266.04 11440.19

14 46 0 45 168.858 11276.06 11444.92

14 46 0 47 179.562 11265.35 11444.91

14 47 0 46 174.153 11275.62 11449.78

14 47 0 48 185.085 11264.69 11449.78

14 47 0 48 185.085 11264.70 11449.78

14 47 0 48 185.085 11264.70 11449.78

14 48 0 47 179.562 11275.21 11454.78

14 48 0 49 190.721 11264.05 11454.77

14 48 0 49 190.721 11264.06 11454.78

14 48 0 49 190.721 11264.06 11454.78

14 49 0 48 185.085 11274.82 11459.91

14 49 0 50 196.470 11263.44 11459.91

14 49 0 50 196.470 11263.44 11459.91

14 49 0 50 196.470 11263.46 11459.93

14 50 0 49 190.721 11274.46 11465.18

14 50 0 51 202.333 11262.84 11465.18
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

14 50 0 51 202.333 11262.85 11465.18

14 50 0 51 202.333 11262.85 11465.18

14 51 0 50 196.470 11274.12 11470.59

14 51 0 52 208.310 11262.28 11470.59

14 51 0 52 208.310 11262.29 11470.59

14 51 0 52 208.310 11262.29 11470.60

14 52 0 51 202.333 11273.83 11476.17

14 52 0 53 214.399 11261.77 11476.16

14 52 0 53 214.399 11261.77 11476.17

14 52 0 53 214.399 11261.77 11476.17

14 53 0 52 208.310 11272.48 11480.79

14 53 0 54 220.602 11260.20 11480.80

14 53 0 54 220.602 11260.20 11480.80

14 54 0 53 214.399 11272.32 11486.72

14 54 0 53 214.399 11272.33 11486.73

14 54 0 55 226.917 11259.81 11486.72

14 54 0 55 226.917 11259.81 11486.73

14 55 0 54 220.602 11272.08 11492.68

14 55 0 54 220.602 11272.08 11492.68

14 55 0 56 233.345 11259.33 11492.68
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

14 55 0 56 233.345 11259.33 11492.68

14 56 0 55 226.917 11271.76 11498.68

14 56 0 55 226.917 11271.76 11498.68

14 56 0 57 239.886 11258.79 11498.68

14 56 0 57 239.886 11258.79 11498.68

14 57 0 56 233.345 11271.41 11504.76

14 57 0 56 233.345 11271.41 11504.76

14 57 0 58 246.540 11258.22 11504.76

14 57 0 58 246.540 11258.22 11504.76

14 58 0 57 239.886 11271.04 11510.92

14 58 0 57 239.886 11271.04 11510.92

14 58 0 59 253.306 11257.61 11510.92

14 58 0 59 253.306 11257.61 11510.92

14 59 0 58 246.540 11270.63 11517.17

14 59 0 58 246.540 11270.63 11517.17

14 59 0 60 260.185 11256.98 11517.17

14 59 0 60 260.185 11256.98 11517.17

14 60 0 59 253.306 11270.19 11523.50

14 60 0 59 253.306 11270.19 11523.50

14 60 0 61 267.176 11256.32 11523.50
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

14 60 0 61 267.176 11256.33 11523.50

14 61 0 60 260.185 11269.72 11529.91

14 61 0 62 274.279 11255.63 11529.90

14 62 0 61 267.176 11269.19 11536.37

14 62 0 63 281.494 11254.87 11536.37

14 63 0 62 274.279 11268.59 11542.87

14 63 0 64 288.822 11254.05 11542.87

14 64 0 63 281.494 11267.90 11549.39

14 64 0 65 296.261 11253.13 11549.39

14 65 0 64 288.822 11267.06 11555.88

14 65 0 66 303.811 11252.07 11555.88

14 66 0 65 296.261 11266.04 11562.30

14 66 0 67 311.474 11250.83 11562.30

14 67 0 68 319.248 11249.36 11568.60

14 67 0 68 319.248 11249.36 11568.60

14 68 0 69 327.133 11247.63 11574.76

14 68 0 69 327.133 11247.63 11574.77

14 69 0 70 335.129 11245.67 11580.80

14 70 0 71 343.237 11243.52 11586.75

14 71 0 72 351.455 11241.20 11592.66
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

16 44 0 45 168.858 11375.67 11544.52

18 1 0 2 49.706 11524.80 11574.50

18 2 0 3 50.054 11524.61 11574.66

18 2 0 3 50.054 11524.61 11574.66

18 3 0 2 49.706 11525.18 11574.89

18 3 0 4 50.517 11524.38 11574.89

18 3 0 4 50.517 11524.38 11574.89

18 4 0 3 50.054 11525.15 11575.20

18 4 0 5 51.096 11524.11 11575.21

18 4 0 5 51.096 11524.11 11575.21

18 5 0 4 50.517 11525.08 11575.60

18 5 0 6 51.790 11523.81 11575.60

18 5 0 6 51.790 11523.81 11575.60

18 6 0 5 51.096 11524.97 11576.07

18 6 0 7 52.601 11523.46 11576.06

18 6 0 7 52.601 11523.47 11576.07

18 7 0 6 51.790 11524.82 11576.61

18 7 0 6 51.790 11524.83 11576.62

18 7 0 8 53.527 11523.09 11576.61

18 7 0 8 53.527 11523.09 11576.61
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

18 8 0 7 52.601 11524.64 11577.24

18 8 0 7 52.601 11524.64 11577.24

18 8 0 9 54.569 11522.67 11577.24

18 8 0 9 54.569 11522.67 11577.24

18 9 0 8 53.527 11524.42 11577.95

18 9 0 8 53.527 11524.42 11577.95

18 9 0 10 55.726 11522.22 11577.95

18 9 0 10 55.726 11522.22 11577.95

18 10 0 9 54.569 11524.16 11578.73

18 10 0 9 54.569 11524.16 11578.73

18 10 0 11 56.999 11521.73 11578.73

18 10 0 11 56.999 11521.73 11578.73

18 11 0 10 55.726 11523.87 11579.59

18 11 0 10 55.726 11523.87 11579.59

18 11 0 12 58.388 11521.20 11579.59

18 11 0 12 58.388 11521.21 11579.60

18 12 0 11 56.999 11523.53 11580.53

18 12 0 11 56.999 11523.54 11580.53

18 12 0 13 59.893 11520.64 11580.53

18 12 0 13 59.893 11520.65 11580.54
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

18 13 0 12 58.388 11523.16 11581.55

18 13 0 12 58.388 11523.16 11581.55

18 13 0 14 61.513 11520.04 11581.55

18 13 0 14 61.513 11520.04 11581.55

18 14 0 13 59.893 11522.75 11582.65

18 14 0 13 59.893 11522.75 11582.65

18 14 0 15 63.249 11519.40 11582.65

18 14 0 15 63.249 11519.40 11582.65

18 15 0 14 61.513 11522.31 11583.82

18 15 0 14 61.513 11522.31 11583.82

18 15 0 16 65.100 11518.73 11583.83

18 15 0 16 65.100 11518.73 11583.83

18 16 0 15 63.249 11521.83 11585.08

18 16 0 15 63.249 11521.83 11585.08

18 16 0 17 67.067 11518.01 11585.08

18 16 0 17 67.067 11518.01 11585.08

18 17 0 16 65.100 11521.31 11586.41

18 17 0 16 65.100 11521.31 11586.41

18 17 0 18 69.149 11517.26 11586.41

18 17 0 18 69.149 11517.26 11586.41
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

18 18 0 17 67.067 11520.76 11587.82

18 18 0 17 67.067 11520.76 11587.83

18 18 0 19 71.347 11516.48 11587.82

18 18 0 19 71.347 11516.48 11587.83

18 19 0 18 69.149 11520.16 11589.31

18 19 0 18 69.149 11520.17 11589.31

18 19 0 20 73.660 11515.65 11589.31

18 19 0 20 73.660 11515.65 11589.31

18 20 0 19 71.347 11519.53 11590.88

18 20 0 19 71.347 11519.54 11590.88

18 20 0 21 76.089 11514.79 11590.88

18 20 0 21 76.089 11514.80 11590.89

18 21 0 20 73.660 11518.87 11592.53

18 21 0 20 73.660 11518.87 11592.53

18 21 0 22 78.633 11513.89 11592.52

18 22 0 21 76.089 11518.17 11594.26

18 22 0 21 76.089 11518.17 11594.26

18 22 0 23 81.292 11512.96 11594.25

18 23 0 22 78.633 11517.43 11596.06

18 23 0 22 78.633 11517.43 11596.07
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

18 23 0 24 84.066 11511.99 11596.06

18 24 0 23 81.292 11516.66 11597.95

18 24 0 23 81.292 11516.66 11597.95

18 24 0 25 86.956 11510.98 11597.94

18 24 0 25 86.956 11510.99 11597.95

18 25 0 24 84.066 11515.85 11599.92

18 25 0 24 84.066 11515.85 11599.92

18 25 0 26 89.961 11509.95 11599.91

18 25 0 26 89.961 11509.95 11599.91

18 26 0 25 86.956 11515.00 11601.95

18 26 0 25 86.956 11515.01 11601.96

18 26 0 27 93.081 11508.87 11601.95

18 26 0 27 93.081 11508.88 11601.96

18 27 0 26 89.961 11514.12 11604.08

18 27 0 28 96.316 11507.76 11604.08

18 27 0 28 96.316 11507.77 11604.09

18 28 0 27 93.081 11513.20 11606.28

18 28 0 29 99.666 11506.62 11606.28

18 28 0 29 99.666 11506.63 11606.29

18 29 0 28 96.316 11512.25 11608.57
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

18 29 0 30 103.131 11505.44 11608.57

18 29 0 30 103.131 11505.45 11608.58

18 30 0 29 99.666 11511.27 11610.94

18 30 0 29 99.666 11511.28 11610.95

18 30 0 31 106.711 11504.23 11610.94

18 31 0 30 103.131 11510.26 11613.39

18 31 0 30 103.131 11510.26 11613.40

18 31 0 32 110.406 11502.98 11613.39

18 32 0 31 106.711 11509.21 11615.92

18 32 0 31 106.711 11509.21 11615.92

18 32 0 33 114.215 11501.71 11615.92

18 33 0 32 110.406 11508.13 11618.53

18 33 0 32 110.406 11508.13 11618.53

18 33 0 34 118.140 11500.39 11618.53

18 34 0 33 114.215 11507.01 11621.22

18 34 0 33 114.215 11507.01 11621.23

18 34 0 35 122.179 11499.05 11621.22

18 35 0 34 118.140 11505.86 11624.00

18 35 0 34 118.140 11505.87 11624.01

18 35 0 36 126.332 11497.67 11624.00
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

18 36 0 35 122.179 11504.68 11626.86

18 36 0 37 130.600 11496.26 11626.86

18 37 0 36 126.332 11503.48 11629.81

18 37 0 38 134.983 11494.82 11629.80

18 38 0 37 130.600 11502.23 11632.83

18 38 0 39 139.479 11493.36 11632.84

18 39 0 38 134.983 11500.97 11635.95

18 39 0 40 144.090 11491.86 11635.95

18 40 0 39 139.479 11499.67 11639.15

18 40 0 41 148.816 11490.34 11639.15

18 41 0 40 144.090 11498.35 11642.44

18 41 0 42 153.655 11488.79 11642.44

18 42 0 41 148.816 11497.00 11645.82

18 42 0 43 158.609 11487.21 11645.82

18 43 0 42 153.655 11495.63 11649.29

18 43 0 44 163.676 11485.61 11649.29

18 44 0 43 158.609 11494.24 11652.85

18 44 0 45 168.858 11483.99 11652.85

18 45 0 44 163.676 11492.83 11656.50

18 45 0 46 174.153 11482.35 11656.50
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

18 46 0 45 168.858 11491.40 11660.26

18 46 0 47 179.562 11480.69 11660.25

18 47 0 46 174.153 11489.95 11664.10

18 47 0 48 185.085 11479.02 11664.10

18 48 0 47 179.562 11488.48 11668.05

18 48 0 49 190.721 11477.33 11668.05

18 49 0 48 185.085 11487.01 11672.09

18 49 0 50 196.470 11475.62 11672.09

18 50 0 49 190.721 11485.52 11676.25

18 50 0 51 202.333 11473.92 11676.25

18 51 0 50 196.470 11484.04 11680.51

18 51 0 52 208.310 11472.20 11680.51

18 52 0 51 202.333 11482.55 11684.88

18 52 0 53 214.399 11470.49 11684.88

18 53 0 52 208.310 11481.06 11689.37

18 54 0 53 214.399 11479.58 11693.98

18 55 0 54 220.602 11478.10 11698.71

18 56 0 55 226.917 11476.64 11703.56

18 57 0 56 233.345 11475.20 11708.54

18 58 0 57 239.886 11473.78 11713.66
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

18 59 0 58 246.540 11472.38 11718.92

18 60 0 59 253.306 11471.01 11724.32

21 4 0 3 50.054 11685.40 11735.45

21 5 0 4 50.517 11685.34 11735.86

21 6 0 5 51.096 11685.26 11736.36

21 6 0 7 52.601 11683.76 11736.36

21 7 0 6 51.790 11685.15 11736.94

21 7 0 8 53.527 11683.41 11736.93

21 8 0 7 52.601 11685.00 11737.60

21 8 0 9 54.569 11683.03 11737.60

21 9 0 8 53.527 11684.81 11738.34

21 9 0 10 55.726 11682.61 11738.34

21 10 0 9 54.569 11684.60 11739.17

21 10 0 11 56.999 11682.17 11739.16

21 11 0 10 55.726 11684.34 11740.07

21 11 0 12 58.388 11681.68 11740.07

21 12 0 11 56.999 11684.06 11741.06

21 12 0 13 59.893 11681.16 11741.05

21 13 0 12 58.388 11683.73 11742.12

21 13 0 14 61.513 11680.61 11742.12
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

21 14 0 13 59.893 11683.37 11743.26

21 14 0 13 59.893 11683.37 11743.27

21 14 0 15 63.249 11680.01 11743.26

21 14 0 15 63.249 11680.02 11743.27

21 15 0 14 61.513 11682.98 11744.50

21 15 0 16 65.100 11679.39 11744.49

21 16 0 15 63.249 11682.55 11745.80

21 16 0 17 67.067 11678.73 11745.80

21 17 0 16 65.100 11682.09 11747.19

21 18 0 17 67.067 11681.59 11748.65

21 19 0 18 69.149 11681.05 11750.19

21 20 0 19 71.347 11680.47 11751.82

21 21 0 20 73.660 11679.86 11753.52

21 22 0 21 76.089 11679.21 11755.30

21 23 0 22 78.633 11678.52 11757.15

21 35 0 36 126.332 11659.00 11785.33

21 36 0 37 130.600 11657.57 11788.17

21 37 0 38 134.983 11656.10 11791.09

21 38 0 39 139.479 11654.60 11794.08

21 39 0 40 144.090 11653.05 11797.14
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

21 40 0 41 148.816 11651.47 11800.29

21 41 0 40 144.090 11659.42 11803.51

21 41 0 42 153.655 11649.85 11803.50

21 42 0 41 148.816 11657.99 11806.80

21 42 0 43 158.609 11648.19 11806.80

21 43 0 42 153.655 11656.52 11810.18

21 43 0 44 163.676 11646.50 11810.18

21 44 0 43 158.609 11655.01 11813.62

21 44 0 43 158.609 11655.02 11813.63

21 44 0 45 168.858 11644.76 11813.62

21 44 0 45 168.858 11644.77 11813.63

21 45 0 44 163.676 11653.49 11817.17

21 45 0 46 174.153 11643.01 11817.16

21 46 0 45 168.858 11651.93 11820.79

21 46 0 47 179.562 11641.22 11820.78

21 47 0 46 174.153 11650.33 11824.49

21 48 0 47 179.562 11648.71 11828.27

21 49 0 48 185.085 11647.07 11832.16

21 50 0 49 190.721 11645.41 11836.13

21 51 0 50 196.470 11643.73 11840.20
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

21 52 0 51 202.333 11642.06 11844.39

23 32 0 43 106.711 11762.49 11883.78 *

23 33 0 43 110.406 11762.49 11886.52 *

23 34 0 43 114.215 11762.49 11889.33 *

23 35 0 43 118.140 11762.49 11892.20 *

23 36 0 43 122.179 11762.49 11895.15 *

23 37 0 43 126.332 11762.49 11898.16 *

23 38 0 43 130.600 11762.49 11901.24 *

23 39 0 43 134.982 11762.49 11904.39 *

23 40 0 43 139.479 11762.49 11907.60 *

23 41 0 43 144.090 11762.49 11910.87 *

23 42 0 43 148.816 11762.49 11914.22 *

23 43 0 43 153.655 11762.49 11917.63 *

23 44 0 43 158.609 11762.49 11921.10 *

23 45 0 43 163.676 11762.49 11924.65 *

23 46 0 43 168.858 11762.49 11928.26 *

23 47 0 43 174.153 11762.49 11931.94 *

23 48 0 43 179.562 11762.48 11935.68 *

23 49 0 43 185.085 11762.49 11939.50 *

23 50 1 49 288.375 11655.01 11943.38
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

23 50 1 51 299.940 11643.43 11943.37

23 50 0 43 190.721 11762.49 11943.38 *

23 51 0 43 196.470 11762.49 11947.32 *

23 52 0 43 202.333 11762.49 11951.33 *

25 9 1 8 151.740 11787.99 11939.73

25 10 1 9 152.777 11787.94 11940.71

25 11 1 10 153.930 11787.87 11941.80

25 12 1 11 155.198 11787.79 11942.99

25 13 1 12 156.582 11787.69 11944.27

25 14 1 13 158.080 11787.57 11945.65

25 15 1 14 159.694 11787.43 11947.13

25 15 1 16 163.266 11783.86 11947.13

25 16 1 15 161.422 11787.28 11948.70

25 16 1 17 165.225 11783.48 11948.70

25 17 1 16 163.266 11787.11 11950.37

25 17 1 18 167.299 11783.07 11950.37

25 18 0 17 67.067 11885.08 11952.14

25 18 1 17 165.225 11786.91 11952.14

25 18 1 19 169.488 11782.65 11952.14

25 19 0 18 69.149 11884.85 11954.00
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

25 19 1 18 167.299 11786.70 11954.00

25 20 0 19 71.347 11884.61 11955.96

25 20 0 21 76.089 11879.87 11955.96

25 20 1 19 169.488 11786.47 11955.96

25 20 1 21 174.210 11781.75 11955.96

25 21 0 20 73.660 11884.35 11958.01

25 21 0 22 78.633 11879.37 11958.00

25 21 1 20 171.792 11786.21 11958.00

25 21 1 22 176.744 11781.26 11958.00

25 22 0 21 76.089 11884.06 11960.15

25 22 0 23 81.292 11878.86 11960.15

25 22 1 21 174.210 11785.94 11960.15

25 22 1 23 179.393 11780.75 11960.14

25 23 0 22 78.633 11883.75 11962.38

25 23 0 24 84.066 11878.31 11962.38

25 23 1 22 176.744 11785.63 11962.38

25 23 1 24 182.156 11780.22 11962.38

25 24 0 23 81.292 11883.41 11964.70

25 24 0 25 86.956 11877.75 11964.70

25 24 1 23 179.393 11785.31 11964.70
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

25 24 1 25 185.034 11779.67 11964.70

25 25 0 24 84.066 11883.05 11967.11

25 25 0 26 89.961 11877.15 11967.11

25 25 1 24 182.156 11784.95 11967.11

25 25 1 26 188.026 11779.08 11967.11

25 25 1 24 182.156 11817.35 11999.50

25 26 0 25 86.956 11882.66 11969.61

25 26 0 27 93.081 11876.53 11969.61

25 26 1 25 185.034 11784.58 11969.61

25 26 1 27 191.134 11778.48 11969.61

25 27 0 26 89.961 11882.24 11972.20

25 27 0 28 96.316 11875.88 11972.20

25 27 0 28 96.316 11875.88 11972.20

25 27 1 26 188.026 11784.17 11972.19

25 27 1 28 194.356 11777.77 11972.12

25 28 0 27 93.081 11881.79 11974.87

25 28 0 29 99.666 11875.20 11974.86

25 28 1 27 191.134 11783.73 11974.86

25 28 1 29 197.692 11777.17 11974.87

25 29 0 28 96.316 11881.30 11977.62
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

25 29 0 30 103.131 11874.49 11977.62

25 29 1 28 194.356 11783.26 11977.61

25 29 1 30 201.143 11776.47 11977.62

25 30 0 29 99.666 11880.78 11980.45

25 30 0 31 106.711 11873.74 11980.45

25 30 1 29 197.692 11782.76 11980.45

25 31 0 32 110.406 11872.95 11983.36

25 31 1 30 201.143 11782.21 11983.36

25 32 0 31 106.711 11879.64 11986.35

25 32 0 33 114.215 11872.13 11986.35

25 32 1 31 204.708 11781.64 11986.35

25 33 0 32 110.406 11879.00 11989.41

25 33 0 32 110.406 11879.01 11989.41

25 33 0 34 118.140 11871.27 11989.41

25 33 1 32 208.388 11781.02 11989.41

25 34 0 33 114.215 11878.33 11992.54

25 34 0 33 114.215 11878.33 11992.54

25 34 0 35 122.179 11870.36 11992.54

25 34 1 33 212.182 11780.36 11992.54

25 35 0 34 118.140 11877.61 11995.75
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

25 35 0 34 118.140 11877.61 11995.75

25 35 0 36 126.332 11869.41 11995.74

25 36 0 35 122.179 11876.84 11999.02

25 36 0 35 122.179 11876.84 11999.02

25 36 0 37 130.600 11868.42 11999.02

25 37 0 36 126.332 11876.02 12002.36

25 37 0 36 126.332 11876.02 12002.36

25 37 0 38 134.983 11867.37 12002.36

25 38 0 37 130.600 11875.16 12005.76

25 38 0 39 139.479 11866.28 12005.76

25 39 0 38 134.983 11874.24 12009.22

25 39 0 40 144.090 11865.13 12009.22

25 40 0 39 139.479 11873.26 12012.74

25 40 0 41 148.816 11863.92 12012.74

25 41 0 40 144.090 11872.23 12016.32

25 41 0 42 153.655 11862.66 12016.32

25 42 0 41 148.816 11871.14 12019.96

25 42 0 43 158.609 11861.35 12019.96

25 43 0 42 153.655 11869.99 12023.65

25 44 0 43 158.609 11868.78 12027.39
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

25 45 0 44 163.676 11867.37 12031.05

25 46 0 45 168.858 11866.18 12035.04

25 47 0 46 174.153 11864.79 12038.94

25 48 0 47 179.562 11863.33 12042.89

27 11 0 10 55.726 12189.13 12244.85

27 11 0 12 58.388 12186.47 12244.85

27 11 1 10 153.930 12090.93 12244.86

27 11 1 12 156.582 12088.27 12244.85

27 33 1 32 208.388 11877.40 12085.78

27 34 1 33 212.182 11877.03 12089.21

27 35 1 34 216.091 11876.64 12092.73

27 36 1 35 220.113 11876.23 12096.34

27 36 1 37 228.500 11867.84 12096.34

27 37 1 36 224.250 11875.79 12100.04

27 37 1 38 232.865 11867.17 12100.04

27 38 1 37 228.500 11875.33 12103.83

27 38 1 39 237.343 11866.49 12103.83

27 39 1 38 232.865 11874.84 12107.70

27 39 1 40 241.936 11865.77 12107.70

27 40 1 39 237.343 11874.31 12111.66
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

27 40 1 41 246.642 11865.01 12111.66

27 41 1 40 241.936 11873.75 12115.69

27 41 1 42 251.461 11864.22 12115.68

27 42 1 41 246.642 11873.15 12119.79

27 42 1 43 256.395 11863.40 12119.79

27 43 1 42 251.461 11872.51 12123.97

27 43 1 44 261.442 11862.53 12123.97

27 44 1 43 256.395 11871.82 12128.21

27 44 1 45 266.602 11861.61 12128.21

27 45 1 44 261.442 11871.08 12132.52

27 45 1 46 271.875 11860.64 12132.52

27 46 1 45 266.602 11870.28 12136.88

27 46 1 47 277.262 11859.62 12136.89

27 47 1 46 271.875 11869.43 12141.30

27 47 1 48 282.762 11858.54 12141.30

27 48 1 47 277.262 11868.51 12145.77

27 48 1 49 288.375 11857.39 12145.77

27 49 1 48 282.762 11867.52 12150.28

27 49 1 50 294.101 11856.18 12150.28

27 50 1 49 288.375 11866.45 12154.83
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

27 50 1 51 299.940 11854.89 12154.83

27 51 1 50 294.101 11865.31 12159.42

27 51 1 52 305.892 11853.52 12159.41

27 52 1 51 299.940 11864.10 12164.04

27 52 1 53 311.956 11852.08 12164.04

27 53 1 52 305.892 11862.80 12168.69

27 53 1 54 318.133 11850.56 12168.69

27 54 1 53 311.956 11861.42 12173.38

27 55 1 54 318.133 11859.96 12178.09

27 56 1 55 324.423 11858.40 12182.83

27 81 0 80 421.181 11900.11 12321.29

27 81 0 82 439.712 11881.58 12321.29

27 81 1 80 517.878 11803.42 12321.29

27 81 1 82 536.331 11784.96 12321.29

27 83 0 82 439.712 11897.41 12337.12

27 83 0 84 458.680 11878.44 12337.12

27 83 1 82 536.331 11800.79 12337.12

27 83 1 84 555.219 11781.90 12337.12

30 11 1 10 153.930 12260.46 12414.39

30 11 1 12 156.582 12257.80 12414.38
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

30 11 2 10 251.477 12162.91 12414.39

30 11 2 12 254.118 12160.27 12414.38

31 61 0 60 260.185 12146.13 12406.32

31 61 0 62 274.279 12132.04 12406.32

31 61 1 60 357.553 12048.76 12406.32

31 61 1 62 371.589 12034.73 12406.32

31 61 2 60 454.256 11952.06 12406.32

31 61 2 62 468.232 11938.08 12406.32

31 61 3 60 550.286 11856.03 12406.32

31 61 3 62 564.204 11842.11 12406.32

31 61 4 60 645.641 11760.68 12406.32

31 61 4 62 659.498 11746.82 12406.31

32 46 1 45 266.602 12144.79 12411.39

32 47 1 46 271.875 12144.43 12416.31

32 47 1 48 282.762 12133.54 12416.31

32 48 1 47 277.262 12144.07 12421.34

32 48 1 49 288.375 12132.96 12421.33

32 49 1 48 282.762 12143.71 12426.47

32 49 1 50 294.101 12132.37 12426.47

32 50 1 49 288.375 12143.35 12431.72
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

32 50 1 51 299.940 12131.78 12431.72

32 51 1 50 294.101 12142.97 12437.07

32 51 1 52 305.892 12131.18 12437.07

32 52 1 51 299.940 12142.60 12442.54

32 52 1 53 311.956 12130.58 12442.54

32 53 1 52 305.892 12142.22 12448.11

33 11 2 10 251.477 12268.51 12519.98

33 11 2 12 254.118 12265.87 12519.98

33 11 3 10 348.361 12171.61 12519.98

33 11 3 12 350.991 12168.98 12519.97

34 28 2 27 288.528 12193.34 12481.86

34 28 2 29 295.059 12186.81 12481.86

34 36 2 37 325.740 12176.98 12502.72

34 37 2 38 330.086 12175.54 12505.62

34 38 2 39 334.546 12174.04 12508.58

34 39 2 40 339.120 12172.49 12511.61

34 40 2 41 343.806 12170.89 12514.70

34 41 2 42 348.606 12169.24 12517.85

34 42 2 41 343.806 12177.25 12521.06

34 42 2 43 353.519 12167.54 12521.06
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

34 43 2 42 348.606 12175.73 12524.34

34 43 2 44 358.545 12165.79 12524.34

34 44 2 43 353.519 12174.16 12527.68

34 44 2 45 363.684 12163.99 12527.68

34 44 2 45 363.684 12163.99 12527.68

34 45 2 44 358.545 12172.54 12531.08

34 45 2 46 368.935 12162.14 12531.08

34 45 2 46 368.935 12162.14 12531.08

34 46 2 45 363.684 12170.87 12534.55

34 46 2 47 374.300 12160.25 12534.55

34 46 2 47 374.300 12160.25 12534.55

34 47 2 46 368.935 12169.14 12538.08

34 47 2 48 379.777 12158.30 12538.08

34 47 2 48 379.777 12158.30 12538.08

34 47 2 48 379.777 12158.30 12538.08

34 48 2 47 374.300 12167.37 12541.67

34 48 2 49 385.367 12156.30 12541.67

34 49 2 48 379.777 12165.55 12545.33

34 49 2 50 391.069 12154.26 12545.33

34 50 2 49 385.367 12163.69 12549.05
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

34 50 2 49 385.367 12163.69 12549.06

34 50 2 51 396.883 12152.17 12549.05

34 51 2 50 391.069 12161.77 12552.84

34 51 2 50 391.069 12161.77 12552.84

34 51 2 52 402.810 12150.03 12552.84

34 52 2 51 396.883 12159.82 12556.70

34 52 2 51 396.883 12159.81 12556.70

34 52 2 53 408.849 12147.85 12556.70

34 53 2 52 402.810 12157.81 12560.62

34 53 2 54 415.000 12145.62 12560.62

34 54 2 53 408.849 12155.76 12564.61

34 54 2 55 421.264 12143.34 12564.61

34 55 2 54 415.000 12153.66 12568.66

34 55 2 56 427.639 12141.02 12568.66

34 56 0 55 226.917 12345.87 12572.79

34 56 0 57 239.886 12332.90 12572.78

34 56 1 55 324.423 12248.36 12572.78

34 56 1 57 337.339 12235.44 12572.78

34 56 2 55 421.264 12151.52 12572.78

34 56 2 55 421.264 12151.52 12572.78
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

34 56 2 57 434.125 12138.66 12572.78

34 56 2 57 434.125 12138.66 12572.78

34 56 3 55 517.434 12055.35 12572.78

34 56 3 57 530.242 12042.54 12572.78

34 57 2 56 427.639 12149.33 12576.97

34 57 2 58 440.724 12136.25 12576.97

34 58 2 57 434.125 12147.12 12581.24

34 58 2 59 447.434 12133.81 12581.24

34 59 2 58 440.724 12144.86 12585.58

34 59 2 58 440.724 12144.86 12585.59

34 60 2 59 447.434 12142.58 12590.01

34 61 2 60 454.256 12140.28 12594.54

34 62 2 61 461.188 12138.05 12599.24

35 15 2 16 260.775 12263.38 12524.16

35 15 3 14 354.077 12170.08 12524.16

35 15 3 16 357.620 12166.54 12524.16

35 68 2 67 505.117 12173.94 12679.05

35 68 2 69 520.645 12158.41 12679.06

35 87 1 86 574.542 12204.37 12778.91

35 87 1 88 594.298 12184.62 12778.91
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

35 87 1 88 594.298 12184.62 12778.92

35 87 2 86 670.323 12108.59 12778.91

35 87 2 88 689.993 12088.92 12778.92

37 43 0 42 153.655 12538.36 12692.01

37 43 0 44 163.676 12528.34 12692.01

37 43 1 42 251.461 12440.55 12692.01

37 43 1 44 261.442 12430.57 12692.01

37 43 2 42 348.606 12343.40 12692.00

37 43 2 44 358.545 12333.46 12692.00

37 43 3 42 445.084 12246.92 12692.00

37 43 3 44 454.981 12237.02 12692.00

37 43 4 42 540.891 12151.11 12692.00

37 43 4 44 550.745 12141.27 12692.01

37 43 4 44 550.745 12141.27 12692.01

37 43 5 42 636.022 12055.99 12692.01

37 43 5 44 645.834 12046.18 12692.01

37 43 6 42 730.474 11961.54 12692.01

37 43 6 44 740.242 11951.77 12692.01

37 43 7 42 824.241 11867.77 12692.01

37 43 7 44 833.966 11858.04 12692.01
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

37 43 8 42 917.319 11774.69 12692.01

37 43 8 44 927.000 11765.01 12692.01

37 43 9 42 1009.702 11682.31 12692.01

37 43 9 44 1019.338 11672.68 12692.01

37 43 10 42 1101.385 11590.63 12692.02

37 43 10 44 1110.976 11581.04 12692.01

37 43 11 42 1192.362 11499.65 12692.01

37 43 11 44 1201.907 11490.11 12692.01

37 43 12 42 1282.627 11409.39 12692.01

37 43 12 44 1292.127 11399.89 12692.01

37 43 13 42 1372.175 11319.84 12692.02

37 43 13 44 1381.627 11310.39 12692.01

37 43 15 42 1549.090 11142.92 12692.01

37 43 15 44 1558.447 11133.57 12692.01

37 68 2 69 520.645 12261.47 12782.11

37 68 3 67 600.930 12181.19 12782.12

37 68 3 69 616.392 12165.72 12782.11

39 68 3 67 600.930 12301.67 12902.60

39 68 3 69 616.392 12286.20 12902.60

40 84 3 85 755.790 12275.74 13031.53
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v′ J ′ v′′ J ′′ Egs Epump E2(A)1Σ+ (v′,J ′) Note

(cm−1) (cm−1) (cm−1)

40 84 4 83 831.390 12200.15 13031.54

40 84 4 85 850.247 12181.29 13031.53

41 108 3 107 992.190 12248.18 13240.37

41 108 3 109 1016.194 12224.18 13240.37

41 108 4 107 1085.587 12154.78 13240.36

41 108 4 109 1109.481 12130.89 13240.37
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Appendix B

12(0+) Experimental Data

The following table compiles measured 12(0+) level energies determined in this work. v

and J denote the vibrational and rotational quantum numbers for a particular state, re-

spectively. The primes follow the typical convention where unprimed quantum numbers

correspond to the upper state [the 12(0+) state], single prime quantum numbers corre-

spond to the intermediate state [the 2(A)1Σ+ state], and double prime quantum numbers

correspond to the ground state [the 1(X)1Σ+ state]. If a particular transition involved a

collision, the quantum numbers of collisionall populated intermediate state level are de-

noted with a subscript c. Egs is the energy of the 1(X)1Σ+ rovibrational level, calculated

with experimental Dunham coefficients from Docenko et al. [15], which are reported to

be accurate to ± 0.003 cm−1. Epump and Eprobe are the photon energies of the pump

and probe laser, respectively, which we assign an uncertainty of ± 0.01 cm−1. Ecoll is

the energy associated with the collision which transferred population to the nearby rota-

tional level. A positive Ecoll indicates a collision which transferred population to a higher
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rotational level, while a negative Ecoll indicates a collision which transferred population

to a lower rotational level. Finally, E12(0+)(v,J) is the total energy of the 12(0+) rovibra-

tional level. Since these total energies are a result of photons from both lasers, we assign

uncertainties of ± 0.02 cm−1 to each of the total energies.

v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E12(0+)(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

0 33 12 34 0 33 114.215 11163.45 13456.98 24734.65

0 35 12 34 0 33 114.215 11163.45 13462.05 24739.72

0 43 14 44 0 45 168.858 11266.74 13327.32 24762.92

0 45 14 44 0 45 168.858 11266.74 13333.86 24769.45

1 0 14 1 0 2 49.706 11296.42 13396.80 24742.93

1 2 14 1 0 2 49.706 11296.42 13397.02 24743.15

1 23 14 26 14 24 0 25 86.956 11288.69 -4.38 13392.06 24763.32

1 24 14 26 14 25 0 25 86.956 11288.69 -2.24 13391.70 24765.10

1 25 14 26 0 25 86.956 11288.69 13391.31 24766.95

1 26 14 26 14 27 0 25 86.956 11288.69 2.34 13390.91 24768.89

1 27 14 26 14 28 0 25 86.956 11288.69 4.77 13390.47 24770.89

1 27 14 26 0 25 86.956 11288.69 13395.24 24770.88

1 37 14 44 14 38 0 45 168.858 11266.74 -24.61 13383.89 24794.88

1 38 14 44 14 39 0 45 168.858 11266.74 -20.86 13382.93 24797.67

1 39 14 44 14 38 0 45 168.858 11266.74 -24.61 13389.56 24800.55

1 39 14 44 14 40 0 45 168.858 11266.74 -16.97 13381.91 24800.55

1 40 14 44 14 41 0 45 168.858 11266.74 -12.94 13380.83 24803.49

1 40 14 44 14 39 0 45 168.858 11266.74 -20.86 13388.76 24803.50

1 41 14 44 14 40 0 45 168.858 11266.74 -16.97 13387.88 24806.51

1 42 14 44 14 41 0 45 168.858 11266.74 -12.94 13386.93 24809.59

1 42 14 44 14 43 0 45 168.858 11266.74 -4.45 13378.45 24809.60
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E12(0+)(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

1 43 14 44 0 45 168.858 11266.74 13377.16 24812.76

1 43 14 44 14 42 0 45 168.858 11266.74 -8.76 13385.93 24812.76

1 44 14 44 14 45 0 45 168.858 11266.74 4.59 13375.81 24815.99

1 44 14 44 14 43 0 45 168.858 11266.74 -4.45 13384.85 24815.99

1 45 14 44 0 45 168.858 11266.74 13383.70 24819.30

1 46 14 44 14 45 0 45 168.858 11266.74 4.59 13382.50 24822.68

1 47 14 44 14 46 0 45 168.858 11266.74 9.32 13381.22 24826.14

1 48 14 44 14 47 0 45 168.858 11266.74 14.18 13379.88 24829.66

1 49 14 44 14 48 0 45 168.858 11266.74 19.18 13378.48 24833.26

1 50 14 44 14 49 0 45 168.858 11266.74 24.33 13377.02 24836.95

2 5 14 10 14 6 0 9 54.569 11296.06 -2.85 13447.63 24795.41

2 6 14 10 14 7 0 9 54.569 11296.06 -2.27 13447.50 24795.86

2 7 14 10 14 8 0 9 54.569 11296.06 -1.42 13447.35 24796.56

2 8 14 10 14 9 0 9 54.569 11296.06 -0.85 13447.19 24796.97

2 9 14 10 0 9 54.569 11296.06 13447.03 24797.66

2 10 14 10 14 11 0 9 54.569 11296.06 0.90 13446.85 24798.37

2 11 14 10 14 12 0 9 54.569 11296.06 1.89 13446.67 24799.19

2 11 14 10 14 0 9 54.569 11296.06 13448.60 24799.22

2 12 14 10 14 13 0 9 54.569 11296.06 2.99 13446.47 24800.08

2 13 14 10 14 14 0 9 54.569 11296.06 4.16 13446.26 24801.05

2 24 14 26 14 23 0 25 86.956 11288.69 -6.43 13447.39 24816.60

2 25 14 26 0 25 86.956 11288.69 13442.80 24818.44

2 25 14 26 14 24 0 25 86.956 11288.69 -4.38 13447.19 24818.45

2 26 14 26 14 25 0 25 86.956 11288.69 -2.24 13446.98 24820.39

2 27 14 26 0 25 86.956 11288.69 13446.74 24822.38

2 28 14 26 14 27 0 25 86.956 11288.69 2.34 13446.47 24824.46

2 29 14 26 14 28 0 25 86.956 11288.69 4.77 13446.19 24826.61

2 30 14 26 14 29 0 25 86.956 11288.69 7.31 13445.88 24828.84

2 31 14 39 14 30 0 40 144.090 11270.65 -29.13 13445.53 24831.13
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E12(0+)(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

2 32 14 39 14 31 0 40 144.090 11270.65 -26.38 13445.15 24833.51

2 33 14 39 14 32 0 40 144.090 11270.65 -23.52 13444.72 24835.94

2 34 14 39 14 33 0 40 144.090 11270.65 -20.53 13444.27 24838.47

2 35 14 39 14 34 0 40 144.090 11270.65 -17.43 13443.76 24841.06

2 36 14 39 14 35 0 40 144.090 11270.65 -14.21 13443.21 24843.74

2 37 14 39 14 36 0 40 144.090 11270.65 -10.85 13442.59 24846.47

2 38 14 39 14 37 0 40 144.090 11270.65 -7.37 13441.92 24849.29

2 39 14 39 14 38 0 40 144.090 11270.65 -3.75 13441.19 24852.17

2 39 14 44 14 38 0 45 168.858 11266.74 -24.61 13441.19 24852.18

2 40 14 39 0 40 144.090 11270.65 13440.39 24855.13

2 40 14 44 14 39 0 45 168.858 11266.74 -20.86 13440.39 24855.13

2 41 14 39 14 40 0 40 144.090 11270.65 3.89 13439.53 24858.16

2 41 14 44 14 40 0 45 168.858 11266.74 -16.97 13439.53 24858.16

2 42 14 44 14 41 0 45 168.858 11266.74 -12.94 13438.60 24861.26

2 43 14 44 0 45 168.858 11266.74 13428.85 24864.44

2 43 14 44 14 42 0 45 168.858 11266.74 -8.76 13437.61 24864.44

2 44 14 44 14 43 0 45 168.858 11266.74 -4.45 13436.55 24867.70

2 45 14 44 0 45 168.858 11266.74 13435.41 24871.01

2 46 14 44 14 45 0 45 168.858 11266.74 4.59 13434.22 24874.41

2 47 14 44 14 46 0 45 168.858 11266.74 9.32 13432.97 24877.89

2 48 14 44 14 47 0 45 168.858 11266.74 14.18 13431.65 24881.43

2 49 14 44 14 48 0 45 168.858 11266.74 19.18 13430.28 24885.05

2 55 14 60 14 56 0 59 253.306 11270.20 -24.82 13409.58 24908.26

2 56 14 60 14 57 0 59 253.306 11270.20 -18.74 13407.63 24912.38

2 57 14 60 14 58 0 59 253.306 11270.20 -12.58 13405.65 24916.57

2 58 14 60 14 59 0 59 253.306 11270.20 -6.33 13403.68 24920.85

2 59 14 60 0 59 253.306 11270.20 13401.68 24925.18

2 61 14 60 0 59 253.306 11270.20 13410.57 24934.07

2 62 14 60 14 61 0 59 253.306 11270.20 6.40 13408.72 24938.63
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E12(0+)(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

2 63 14 60 14 62 0 59 253.306 11270.20 12.87 13406.88 24943.25

2 64 14 60 14 63 0 59 253.306 11270.20 19.37 13405.07 24947.94

2 65 14 60 14 64 0 59 253.306 11270.20 25.89 13403.33 24952.72

3 43 12 44 0 43 158.609 11151.39 13608.43 24918.43

3 45 12 44 0 43 158.609 11151.39 13615.04 24925.04

4 6 14 10 14 7 0 9 54.569 11296.06 -2.27 13556.33 24904.69

4 7 14 10 14 8 0 9 54.569 11296.06 -1.42 13556.19 24905.39

4 8 14 10 14 9 0 9 54.569 11296.06 -0.85 13556.04 24905.82

4 9 14 10 0 9 54.569 11296.06 13555.88 24906.50

4 10 14 10 14 11 0 9 54.569 11296.06 0.90 13555.71 24907.23

4 11 14 10 0 9 54.569 11296.06 13557.45 24908.07

4 11 14 10 14 12 0 9 54.569 11296.06 1.89 13555.53 24908.05

4 12 14 10 14 13 0 9 54.569 11296.06 2.99 13555.34 24908.95

4 23 14 26 14 24 0 25 86.956 11288.69 -4.38 13552.47 24923.73

4 24 14 26 14 25 0 25 86.956 11288.69 -2.24 13552.12 24925.53

4 25 14 26 0 25 86.956 11288.69 13551.75 24927.39

4 26 14 26 14 27 0 25 86.956 11288.69 2.34 13551.35 24929.34

4 27 14 26 14 28 0 25 86.956 11288.69 4.77 13550.93 24931.35

4 27 14 26 0 25 86.956 11288.69 13555.70 24931.35

4 37 14 44 14 38 0 45 168.858 11266.74 -24.61 13544.46 24955.45

4 38 14 39 0 40 144.090 11270.65 13543.56 24958.29

4 38 14 44 14 39 0 45 168.858 11266.74 -20.86 13543.55 24958.29

4 39 14 39 14 40 0 40 144.090 11270.65 3.89 13542.57 24961.20

4 39 14 44 14 40 0 45 168.858 11266.74 -16.97 13542.57 24961.20

4 40 14 44 14 41 0 45 168.858 11266.74 -12.94 13541.52 24964.18

4 41 14 44 14 42 0 45 168.858 11266.74 -8.76 13540.39 24967.22

4 42 14 44 14 43 0 45 168.858 11266.74 -4.45 13539.20 24970.35

4 43 14 44 0 45 168.858 11266.74 13537.94 24973.54

4 44 14 44 14 45 0 45 168.858 11266.74 4.59 13536.62 24976.81
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E12(0+)(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

4 45 14 44 14 46 0 45 168.858 11266.74 9.32 13535.24 24980.15

4 45 14 44 0 45 168.858 11266.74 13544.54 24980.13

4 46 14 44 14 47 0 45 168.858 11266.74 14.18 13533.79 24983.57

4 47 14 44 14 48 0 45 168.858 11266.74 19.18 13532.27 24987.04

4 48 14 44 14 49 0 45 168.858 11266.74 24.33 13530.69 24990.62

4 49 14 44 14 50 0 45 168.858 11266.74 29.58 13529.05 24994.23

4 50 14 44 14 51 0 45 168.858 11266.74 34.99 13527.34 24997.93

4 51 14 44 14 52 0 45 168.858 11266.74 40.57 13525.56 25001.73

4 59 14 60 0 59 253.306 11270.20 13511.01 25034.51

4 61 14 60 0 59 253.306 11270.20 13519.93 25043.43

5 4 14 10 14 5 0 9 54.569 11296.06 -3.36 13611.76 24959.03

5 5 14 10 14 6 0 9 54.569 11296.06 -2.85 13611.63 24959.41

5 6 14 10 14 7 0 9 54.569 11296.06 -2.27 13611.50 24959.85

5 7 14 10 14 8 0 9 54.569 11296.06 -1.42 13611.35 24960.55

5 8 14 10 14 9 0 9 54.569 11296.06 -0.85 13611.19 24960.97

5 9 14 10 0 9 54.569 11296.06 13611.03 24961.65

5 10 14 10 14 11 0 9 54.569 11296.06 0.90 13610.86 24962.38

5 11 14 10 0 9 54.569 11296.06 13612.60 24963.23

5 11 14 10 14 12 0 9 54.569 11296.06 1.89 13610.67 24963.19

5 12 14 10 14 13 0 9 54.569 11296.06 2.99 13610.48 24964.09

5 22 14 26 14 21 0 25 86.956 11288.69 -10.25 13611.74 24977.13

5 23 14 26 14 24 0 25 86.956 11288.69 -4.38 13607.58 24978.85

5 23 14 26 14 22 0 25 86.956 11288.69 -8.39 13611.58 24978.84

5 24 14 26 14 25 0 25 86.956 11288.69 -2.24 13607.22 24980.63

5 24 14 26 14 23 0 25 86.956 11288.69 -6.43 13611.41 24980.62

5 25 14 26 0 25 86.956 11288.69 13606.83 24982.47

5 26 14 26 14 25 0 25 86.956 11288.69 -2.24 13611.01 24984.42

5 26 14 26 14 27 0 25 86.956 11288.69 2.34 13606.44 24984.42

5 27 14 26 0 25 86.956 11288.69 13610.78 24986.42
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E12(0+)(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

5 27 14 26 14 28 0 25 86.956 11288.69 4.77 13606.00 24986.42

5 28 14 26 14 27 0 25 86.956 11288.69 2.34 13610.52 24988.50

5 29 14 26 14 28 0 25 86.956 11288.69 4.77 13610.24 24990.66

5 30 14 26 14 29 0 25 86.956 11288.69 7.31 13609.92 24992.88

5 43 14 44 0 45 168.858 11266.74 13592.94 25028.53

5 45 14 44 0 45 168.858 11266.74 13599.52 25035.11

5 59 14 60 0 59 253.306 11270.20 13565.79 25089.30

5 61 14 60 0 59 253.306 11270.20 13574.69 25098.19

6 5 14 10 14 6 0 9 54.569 11296.06 -2.85 13665.98 25013.76

6 6 14 10 14 7 0 9 54.569 11296.06 -2.27 13665.85 25014.21

6 7 14 10 14 8 0 9 54.569 11296.06 -1.42 13665.70 25014.90

6 8 14 10 14 9 0 9 54.569 11296.06 -0.85 13665.55 25015.33

6 9 14 10 0 9 54.569 11296.06 13665.38 25016.01

6 10 14 10 14 11 0 9 54.569 11296.06 0.90 13665.20 25016.73

6 11 14 10 0 9 54.569 11296.06 13666.93 25017.56

6 11 14 10 14 12 0 9 54.569 11296.06 1.89 13665.02 25017.54

6 12 14 10 14 13 0 9 54.569 11296.06 2.99 13664.82 25018.44

6 22 14 26 14 21 0 25 86.956 11288.69 -10.25 13666.01 25031.40

6 23 14 26 14 22 0 25 86.956 11288.69 -8.39 13665.85 25033.10

6 23 14 26 14 24 0 25 86.956 11288.69 -4.38 13661.84 25033.11

6 24 14 26 14 23 0 25 86.956 11288.69 -6.43 13665.66 25034.88

6 24 14 26 14 25 0 25 86.956 11288.69 -2.24 13661.48 25034.88

6 25 14 26 14 24 0 25 86.956 11288.69 -4.38 13665.47 25036.73

6 25 14 26 0 25 86.956 11288.69 13661.09 25036.73

6 26 14 26 14 25 0 25 86.956 11288.69 -2.24 13665.25 25038.66

6 26 14 26 14 27 0 25 86.956 11288.69 2.34 13660.67 25038.65

6 27 14 26 0 25 86.956 11288.69 13665.01 25040.65

6 28 14 26 14 27 0 25 86.956 11288.69 2.34 13664.74 25042.73

6 29 14 26 14 28 0 25 86.956 11288.69 4.77 13664.45 25044.87
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E12(0+)(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

6 30 14 26 14 29 0 25 86.956 11288.69 7.31 13664.13 25047.09

6 43 14 44 0 45 168.858 11266.74 13646.96 25082.56

6 45 14 44 0 45 168.858 11266.74 13653.51 25089.11

7 43 11 44 0 43 158.609 11107.34 13869.43 25135.38

7 45 11 44 0 43 158.609 11107.34 13875.93 25141.88

7 59 14 60 0 59 253.306 11270.20 13672.01 25195.51

7 61 14 60 0 59 253.306 11270.20 13680.81 25204.31

8 0 14 1 0 2 49.706 11296.42 13771.91 25118.04

8 1 14 1 14 2 0 2 49.706 11296.42 0.15 13771.82 25118.09

8 2 14 1 14 3 0 2 49.706 11296.42 0.40 13771.71 25118.24

8 2 14 1 0 2 49.706 11296.42 13772.13 25118.26

8 3 14 1 14 2 0 2 49.706 11296.42 0.15 13772.18 25118.46

8 4 14 1 14 3 0 2 49.706 11296.42 0.40 13772.22 25118.75

8 5 14 1 14 4 0 2 49.706 11296.42 0.73 13772.26 25119.12

8 43 18 44 0 43 158.609 11494.24 13534.33 25187.18

8 45 18 44 0 43 158.609 11494.24 13540.81 25193.66

10 0 14 1 0 2 49.706 11296.42 13874.22 25220.34

10 1 14 1 14 2 0 2 49.706 11296.42 0.15 13874.12 25220.40

10 2 14 1 14 3 0 2 49.706 11296.42 0.40 13874.02 25220.55

10 2 14 1 0 2 49.706 11296.42 13874.43 25220.56

10 3 14 1 14 4 0 2 49.706 11296.42 0.73 13873.91 25220.77

10 3 14 1 14 2 0 2 49.706 11296.42 0.15 13874.48 25220.76

10 4 14 1 14 5 0 2 49.706 11296.42 1.14 13873.78 25221.05

10 4 14 10 14 5 0 9 54.569 11296.06 -3.36 13873.78 25221.06

10 4 14 1 14 3 0 2 49.706 11296.42 0.40 13874.53 25221.06

10 5 14 1 14 6 0 2 49.706 11296.42 1.65 13873.64 25221.42

10 5 14 10 14 6 0 9 54.569 11296.06 -2.85 13873.65 25221.42

10 5 14 1 14 4 0 2 49.706 11296.42 0.73 13874.56 25221.42

10 6 14 10 14 7 0 9 54.569 11296.06 -2.27 13873.50 25221.86
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E12(0+)(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

10 7 14 10 14 8 0 9 54.569 11296.06 -1.42 13873.35 25222.55

10 8 14 10 14 9 0 9 54.569 11296.06 -0.85 13873.18 25222.96

10 9 14 10 0 9 54.569 11296.06 13873.00 25223.63

10 10 14 10 14 9 0 9 54.569 11296.06 -0.85 13874.56 25224.34

10 11 14 10 0 9 54.569 11296.06 13874.53 25225.16

10 12 14 10 14 11 0 9 54.569 11296.06 0.90 13874.48 25226.01

10 13 14 10 14 12 0 9 54.569 11296.06 1.89 13874.43 25226.95

10 14 14 10 14 13 0 9 54.569 11296.06 2.99 13874.36 25227.98

10 15 14 10 14 14 0 9 54.569 11296.06 4.16 13874.29 25229.07

10 43 14 44 0 45 168.858 11266.74 13853.31 25288.90

10 45 14 44 0 45 168.858 11266.74 13859.74 25295.34

10 59 14 60 0 59 253.306 11270.20 13824.83 25348.33

10 61 14 60 0 59 253.306 11270.20 13833.52 25357.02

12 41 18 42 0 41 148.816 11497.00 13732.65 25378.47

12 43 18 42 0 41 148.816 11497.00 13739.11 25384.92

13 43 18 44 0 43 158.609 11494.24 13786.23 25439.08

13 45 18 44 0 43 158.609 11494.24 13792.61 25445.46

14 43 18 44 0 43 158.609 11494.24 13835.96 25488.81

14 45 18 44 0 43 158.609 11494.24 13842.31 25495.16

22 43 29 44 1 45 266.602 11994.95 13653.82 25915.37

22 45 29 44 1 45 266.602 11994.95 13659.80 25921.35
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Appendix C

43Π0+ Experimental Data

The following table compiles measured 43Π0+ level energies determined in this work. v

and J denote the vibrational and rotational quantum numbers for a particular state, re-

spectively. The primes follow the typical convention where unprimed quantum numbers

correspond to the upper state [the 12(0+) state], single prime quantum numbers corre-

spond to the intermediate state [the 2(A)1Σ+ state], and double prime quantum numbers

correspond to the ground state [the 1(X)1Σ+ state]. Since an absolute vibrational number-

ing scheme could not be determined, relative vibrational numbers are given. If a particular

transition involved a collision, the quantum numbers of collisionall populated intermediate

state level are denoted with a subscript c. Egs is the energy of the 1(X)1Σ+ rovibrational

level, calculated with experimental Dunham coefficients from Docenko et al. [15], which

are reported to be accurate to ± 0.003 cm−1. Epump and Eprobe are the photon ener-

gies of the pump and probe laser, respectively, which we assign an uncertainty of ± 0.01

cm−1. Ecoll is the energy associated with the collision which transferred population to the
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nearby rotational level. A positive Ecoll indicates a collision which transferred population

to a higher rotational level, while a negative Ecoll indicates a collision which transferred

population to a lower rotational level. Finally, E43Π0+ (v,J) is the total energy of the

43Π0+ rovibrational level. Since these total energies are a result of photons from both

lasers, we assign uncertainties of ± 0.02 cm−1 to each of the total energies.

v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E43Π
0+

(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

vA+7 43 23 44 0 43 158.609 11762.50 13278.66 25199.77

vA+6 45 23 44 0 43 158.609 11762.50 13272.78 25193.89

vA+6 43 23 44 0 43 158.609 11762.50 13269.69 25190.80

vA+5 45 23 44 0 43 158.609 11762.50 13266.01 25187.11

vA+5 43 23 44 0 43 158.609 11762.50 13262.86 25183.97

vA+4 47 23 44 23 48 0 43 158.609 11762.50 14.57 13245.34 25181.02

vA+4 46 23 44 23 47 0 43 158.609 11762.50 10.83 13247.67 25179.61

vA+4 45 23 44 0 45 168.858 11752.25 13257.10 25178.21

vA+4 45 23 44 23 46 0 43 158.609 11762.50 7.16 13249.96 25178.23

vA+4 44 23 44 23 45 0 43 158.609 11762.50 3.54 13252.22 25176.87

vA+4 44 23 44 23 43 0 43 158.609 11762.50 -3.48 13259.22 25176.85

vA+4 43 23 44 0 45 168.858 11752.25 13254.39 25175.50

vA+4 43 23 44 23 42 0 43 158.609 11762.50 -6.89 13261.29 25175.51

vA+4 42 23 44 23 43 0 43 158.609 11762.50 -3.48 13256.55 25174.18

vA+4 41 23 44 23 42 0 43 158.609 11762.50 -6.89 13258.66 25172.88

vA+4 40 23 44 23 41 0 43 158.609 11762.50 -10.24 13260.74 25171.62

vA+4 39 23 44 23 40 0 43 158.609 11762.50 -13.51 13262.73 25170.32

vA+3 45 23 44 0 43 158.609 11762.50 13247.82 25168.93

vA+3 43 23 44 0 43 158.609 11762.50 13244.97 25166.08

vA+2 45 23 44 0 43 158.609 11762.50 13240.57 25161.68
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E43Π
0+

(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

vA+2 43 23 44 0 43 158.609 11762.50 13237.29 25158.39

vA+1 47 23 44 23 46 0 43 158.609 11762.50 7.16 13228.56 25156.82

vA+1 46 23 44 23 45 0 43 158.609 11762.50 3.54 13230.71 25155.36

vA+1 45 23 44 0 43 158.609 11762.50 13232.79 25153.90

vA+1 45 23 44 23 46 0 43 158.609 11762.50 7.16 13225.67 25153.93

vA+1 44 23 44 23 43 0 43 158.609 11762.50 -3.48 13234.87 25152.50

vA+1 44 23 44 23 45 0 43 158.609 11762.50 3.54 13227.85 25152.50

vA+1 43 23 44 0 43 158.609 11762.50 13229.94 25151.04

vA+1 43 23 44 23 42 0 43 158.609 11762.50 -6.89 13236.83 25151.05

vA+1 42 23 44 23 41 0 43 158.609 11762.50 -10.24 13238.77 25149.64

vA+1 42 23 44 23 43 0 43 158.609 11762.50 -3.48 13232.02 25149.65

vA+1 41 23 44 23 42 0 43 158.609 11762.50 -6.89 13234.05 25148.27

vA+1 40 23 44 23 41 0 43 158.609 11762.50 -10.24 13236.02 25146.89

vA 45 23 44 0 43 158.609 11762.50 13223.41 25144.51

vA 43 23 44 0 43 158.609 11762.50 13220.64 25141.75

vB+3 45 18 44 0 43 158.609 11494.24 13258.88 24911.73

vB+3 43 18 44 0 43 158.609 11494.24 13254.56 24907.41

vB+2 45 18 44 0 43 158.609 11494.24 13249.07 24901.92

vB+2 43 18 44 0 43 158.609 11494.24 13246.59 24899.44

vB 45 18 44 0 43 158.609 11494.24 13232.63 24885.48

vB 43 18 44 0 43 158.609 11494.24 13228.15 24881.00

vC+10 35 12 34 0 33 114.215 11163.45 13363.67 24641.33

vC+10 33 12 34 0 33 114.215 11163.45 13361.60 24639.27

vC+9 45 12 44 0 43 158.609 11151.40 13332.71 24642.72

vC+9 43 12 44 0 43 158.609 11151.40 13330.01 24640.02

vC+9 35 12 34 0 33 114.215 11163.45 13353.85 24631.52

vC+9 33 12 34 0 33 114.215 11163.45 13351.73 24629.40

vC+8 35 12 34 0 33 114.215 11163.45 13343.12 24620.79

vC+8 33 12 34 0 33 114.215 11163.45 13341.06 24618.73
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E43Π
0+

(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

vC+7 35 12 34 0 33 114.215 11163.45 13333.02 24610.69

vC+7 33 12 34 0 33 114.215 11163.45 13331.01 24608.68

vC+6 35 12 34 0 33 114.215 11163.45 13322.81 24600.47

vC+6 33 12 34 0 33 114.215 11163.45 13320.80 24598.47

vC+5 35 12 34 0 33 114.215 11163.45 13312.65 24590.32

vC+5 33 12 34 0 33 114.215 11163.45 13310.64 24588.31

vC+4 35 12 34 0 35 122.179 11155.49 13303.29 24580.96

vC+4 33 12 34 0 35 122.179 11155.49 13300.85 24578.52

vC+2 35 12 34 0 35 122.179 11155.49 13283.44 24561.11

vC 35 12 34 0 35 122.179 11155.49 13263.62 24541.29

vC 33 12 34 0 35 122.179 11155.49 13261.01 24538.68

vD 31 9 27 9 30 0 26 89.961 11017.22 8.21 13001.71 24117.10

vD 30 9 27 9 29 0 26 89.961 11017.22 5.37 13002.22 24114.77

vD 29 9 27 9 28 0 26 89.961 11017.22 2.63 13002.69 24112.49

vD 28 9 27 0 26 89.961 11017.22 13003.13 24110.30

vD 27 9 27 9 26 0 26 89.961 11017.22 -2.53 13003.54 24108.19

vD 26 9 27 9 25 0 26 89.961 11017.22 -4.96 13003.92 24106.14

vD 25 9 27 9 24 0 26 89.961 11017.22 -7.28 13004.28 24104.17

vD 20 9 17 9 19 0 18 69.149 11017.22 3.38 13005.67 24095.42

vD 19 9 17 9 18 0 18 69.149 11017.22 1.64 13005.89 24093.90

vD 19 9 17 9 20 0 18 69.149 11017.22 5.21 13002.32 24093.90

vD 18 9 17 0 18 69.149 11017.22 13006.08 24092.44

vD 18 9 17 9 19 0 18 69.149 11017.22 3.38 13002.69 24092.44

vD 17 9 17 9 16 0 18 69.149 11017.22 -1.55 13006.25 24091.07

vD 17 9 17 9 18 0 18 69.149 11017.22 1.64 13003.06 24091.06

vD 16 9 17 0 18 69.149 11017.22 13003.40 24089.77

vD 16 9 17 9 15 0 18 69.149 11017.22 -3.00 13006.40 24089.76

vD 15 9 17 9 14 0 18 69.149 11017.22 -4.36 13006.54 24088.54

vD 15 9 17 9 16 0 18 69.149 11017.22 -1.55 13003.72 24088.54
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E43Π
0+

(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

vD 14 9 17 9 13 0 18 69.149 11017.22 -5.63 13006.65 24087.39

vD 14 9 17 9 15 0 18 69.149 11017.22 -3.00 13004.03 24087.39

vD 13 9 17 9 14 0 18 69.149 11017.22 -4.36 13004.33 24086.34

vE 31 9 27 9 30 0 26 89.961 11017.22 8.21 13234.30 24349.69

vE 30 9 27 9 29 0 26 89.961 11017.22 5.37 13235.24 24347.79

vE 29 9 27 9 28 0 26 89.961 11017.22 2.63 13236.18 24345.99

vE 28 9 27 0 26 89.961 11017.22 13237.03 24344.21

vE 28 9 27 9 29 0 26 89.961 11017.22 5.37 13231.66 24344.21

vE 27 9 27 9 28 0 26 89.961 11017.22 2.63 13232.66 24342.47

vE 27 9 27 9 26 0 26 89.961 11017.22 -2.53 13237.83 24342.47

vE 26 9 27 0 26 89.961 11017.22 13233.64 24340.81

vE 26 9 27 9 25 0 26 89.961 11017.22 -4.96 13238.60 24340.82

vE 25 9 27 9 26 0 26 89.961 11017.22 -2.53 13234.59 24339.23

vE 25 9 27 9 24 0 26 89.961 11017.22 -7.28 13239.34 24339.23

vE 24 9 27 9 25 0 26 89.961 11017.22 -4.96 13235.58 24337.79

vE 19 9 17 9 20 0 18 69.149 11017.22 5.21 13237.63 24329.21

vE 18 9 17 9 19 0 18 69.149 11017.22 3.38 13238.32 24328.06

vE 17 9 17 9 18 0 18 69.149 11017.22 1.64 13239.60 24327.61

vE 16 9 17 0 18 69.149 11017.22 13239.60 24325.97

vF+3 28 9 27 0 26 89.961 11017.22 13230.46 24337.64

vF+3 26 9 27 0 26 89.961 11017.22 13228.92 24336.10

vF+2 28 9 27 0 26 89.961 11017.22 13215.65 24322.83

vF+2 26 9 27 0 26 89.961 11017.22 13213.91 24321.08

vF+2 18 9 17 0 18 69.149 11017.22 13228.38 24314.75

vF+2 16 9 17 0 18 69.149 11017.22 13227.10 24313.47

vF+1 28 9 27 0 26 89.961 11017.22 13207.50 24314.68

vF+1 26 9 27 0 26 89.961 11017.22 13205.92 24313.09

vF+1 18 9 17 0 18 69.149 11017.22 13221.04 24307.41

vF+1 16 9 17 0 18 69.149 11017.22 13219.99 24306.35
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v J v′ J ′ v′c J ′c v′′ J ′′ Egs Epump Ecoll Eprobe E43Π
0+

(v,J)

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

vF 28 9 27 0 26 89.961 11017.22 13184.81 24291.99

vF 26 9 27 0 26 89.961 11017.22 13183.18 24290.36

vF 18 9 17 0 18 69.149 11017.22 13195.28 24281.64

vF 16 9 17 0 18 69.149 11017.22 13193.94 24280.30
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Appendix D

CCD Detector Efficiency Data

The following table compiles CCD detector efficiency curves for various monochromator

grating settings used in this work. The efficiencies are given as a function of pixel number,

as opposed to wavelength, so that if a spectrum is taken at one of the grating positions

given here, the intensity can be easily corrected by dividing by the efficiency pixel by pixel.

The efficiencies are normalized so that the maximum value is one. For the efficiencies

shown here, the monochromator was used in second order with 395nm longpass, 540

shortpass, and 675 shortpass filters placed in front of the entrance slit. Figure D.1 and

Table D.1 give the relative detector efficiency at a grating position of 860 nm. Figure D.2

and Table D.2 give the relative detector efficiency at a grating position of 940 nm. Figure

D.2 and Table D.2 give the relative detector efficiency at a grating position of 1020 nm.

Note that the given pixel numbers are 4-1039 as opposed to the total number of pixels

which are numbered 0-1043. This is because the the first and last four pixels on the array

do not produce signal and hence are removed from both the efficiencies and spectra.
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Pixel Efficiency Pixel Efficiency Pixel Efficiency Pixel Efficiency

4 0.0401 263 0.0789 522 0.2438 781 0.6032

5 0.0404 264 0.0789 523 0.2435 782 0.6040

6 0.0401 265 0.0789 524 0.2437 783 0.6043

7 0.0400 266 0.0789 525 0.2433 784 0.6080

8 0.0399 267 0.0795 526 0.2437 785 0.6079

9 0.0395 268 0.0794 527 0.2434 786 0.6088

10 0.0393 269 0.0797 528 0.2439 787 0.6098

11 0.0394 270 0.0802 529 0.2442 788 0.6109

12 0.0392 271 0.0802 530 0.2448 789 0.6122

13 0.0392 272 0.0803 531 0.2442 790 0.6130

14 0.0392 273 0.0804 532 0.2449 791 0.6135

15 0.0395 274 0.0806 533 0.2444 792 0.6149

16 0.0390 275 0.0806 534 0.2449 793 0.6151

17 0.0391 276 0.0809 535 0.2449 794 0.6154

18 0.0393 277 0.0810 536 0.2454 795 0.6154

19 0.0392 278 0.0816 537 0.2458 796 0.6161

20 0.0395 279 0.0817 538 0.2459 797 0.6158

21 0.0392 280 0.0818 539 0.2464 798 0.6160

22 0.0395 281 0.0821 540 0.2464 799 0.6156

23 0.0400 282 0.0821 541 0.2459 800 0.6155

24 0.0401 283 0.0824 542 0.2463 801 0.6151

25 0.0402 284 0.0832 543 0.2468 802 0.6153

26 0.0404 285 0.0831 544 0.2468 803 0.6166

27 0.0401 286 0.0835 545 0.2474 804 0.6165

28 0.0402 287 0.0833 546 0.2476 805 0.6179

29 0.0411 288 0.0831 547 0.2482 806 0.6187

30 0.0411 289 0.0837 548 0.2477 807 0.6188

31 0.0414 290 0.0837 549 0.2487 808 0.6183

32 0.0416 291 0.0839 550 0.2490 809 0.6203

33 0.0420 292 0.0838 551 0.2489 810 0.6205

34 0.0421 293 0.0844 552 0.2487 811 0.6221

35 0.0425 294 0.0849 553 0.2495 812 0.6218

36 0.0424 295 0.0849 554 0.2490 813 0.6216

37 0.0426 296 0.0852 555 0.2496 814 0.6221

38 0.0425 297 0.0859 556 0.2501 815 0.6228

39 0.0436 298 0.0854 557 0.2507 816 0.6237
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Pixel Efficiency Pixel Efficiency Pixel Efficiency Pixel Efficiency

40 0.0437 299 0.0856 558 0.2511 817 0.6225

41 0.0435 300 0.0855 559 0.2528 818 0.6235

42 0.0437 301 0.0864 560 0.2532 819 0.6239

43 0.0443 302 0.0869 561 0.2540 820 0.6243

44 0.0444 303 0.0880 562 0.2545 821 0.6244

45 0.0443 304 0.0889 563 0.2547 822 0.6241

46 0.0448 305 0.0894 564 0.2553 823 0.6242

47 0.0447 306 0.0900 565 0.2564 824 0.6243

48 0.0447 307 0.0904 566 0.2568 825 0.6248

49 0.0449 308 0.0911 567 0.2571 826 0.6235

50 0.0453 309 0.0914 568 0.2579 827 0.6235

51 0.0458 310 0.0916 569 0.2582 828 0.6239

52 0.0459 311 0.0928 570 0.2590 829 0.6246

53 0.0459 312 0.0928 571 0.2601 830 0.6252

54 0.0463 313 0.0931 572 0.2610 831 0.6249

55 0.0465 314 0.0937 573 0.2618 832 0.6250

56 0.0468 315 0.0942 574 0.2628 833 0.6257

57 0.0469 316 0.0950 575 0.2638 834 0.6248

58 0.0472 317 0.0954 576 0.2641 835 0.6257

59 0.0477 318 0.0959 577 0.2645 836 0.6256

60 0.0476 319 0.0965 578 0.2656 837 0.6255

61 0.0482 320 0.0972 579 0.2662 838 0.6258

62 0.0484 321 0.0976 580 0.2669 839 0.6268

63 0.0487 322 0.0983 581 0.2675 840 0.6264

64 0.0493 323 0.0985 582 0.2686 841 0.6250

65 0.0492 324 0.0995 583 0.2694 842 0.6239

66 0.0495 325 0.0999 584 0.2703 843 0.6217

67 0.0497 326 0.1009 585 0.2711 844 0.6214

68 0.0496 327 0.1014 586 0.2718 845 0.6218

69 0.0499 328 0.1022 587 0.2730 846 0.6236

70 0.0506 329 0.1034 588 0.2743 847 0.6258

71 0.0504 330 0.1043 589 0.2748 848 0.6270

72 0.0508 331 0.1049 590 0.2751 849 0.6299

73 0.0515 332 0.1056 591 0.2754 850 0.6307

74 0.0517 333 0.1065 592 0.2757 851 0.6318

75 0.0524 334 0.1072 593 0.2769 852 0.6333

76 0.0526 335 0.1083 594 0.2776 853 0.6343
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77 0.0524 336 0.1089 595 0.2793 854 0.6344

78 0.0521 337 0.1098 596 0.2805 855 0.6355

79 0.0524 338 0.1105 597 0.2818 856 0.6362

80 0.0529 339 0.1117 598 0.2827 857 0.6368

81 0.0533 340 0.1124 599 0.2831 858 0.6360

82 0.0536 341 0.1136 600 0.2855 859 0.6376

83 0.0547 342 0.1145 601 0.2869 860 0.6378

84 0.0553 343 0.1152 602 0.2875 861 0.6374

85 0.0558 344 0.1160 603 0.2898 862 0.6367

86 0.0564 345 0.1174 604 0.2913 863 0.6370

87 0.0565 346 0.1182 605 0.2916 864 0.6368

88 0.0570 347 0.1189 606 0.2931 865 0.6385

89 0.0572 348 0.1202 607 0.2946 866 0.6393

90 0.0573 349 0.1209 608 0.2961 867 0.6422

91 0.0584 350 0.1223 609 0.2968 868 0.6432

92 0.0586 351 0.1235 610 0.2980 869 0.6443

93 0.0591 352 0.1245 611 0.2993 870 0.6462

94 0.0590 353 0.1256 612 0.3004 871 0.6478

95 0.0599 354 0.1268 613 0.3018 872 0.6490

96 0.0601 355 0.1277 614 0.3029 873 0.6498

97 0.0604 356 0.1293 615 0.3039 874 0.6513

98 0.0604 357 0.1307 616 0.3055 875 0.6517

99 0.0610 358 0.1315 617 0.3073 876 0.6516

100 0.0615 359 0.1333 618 0.3083 877 0.6529

101 0.0620 360 0.1341 619 0.3093 878 0.6554

102 0.0623 361 0.1353 620 0.3112 879 0.6566

103 0.0633 362 0.1363 621 0.3119 880 0.6581

104 0.0633 363 0.1378 622 0.3131 881 0.6599

105 0.0636 364 0.1384 623 0.3144 882 0.6609

106 0.0640 365 0.1397 624 0.3152 883 0.6622

107 0.0644 366 0.1405 625 0.3161 884 0.6641

108 0.0654 367 0.1412 626 0.3170 885 0.6660

109 0.0654 368 0.1422 627 0.3181 886 0.6674

110 0.0660 369 0.1436 628 0.3193 887 0.6686

111 0.0658 370 0.1452 629 0.3217 888 0.6703

112 0.0667 371 0.1465 630 0.3239 889 0.6720

113 0.0672 372 0.1482 631 0.3267 890 0.6729

229



Pixel Efficiency Pixel Efficiency Pixel Efficiency Pixel Efficiency

114 0.0677 373 0.1500 632 0.3289 891 0.6757

115 0.0678 374 0.1516 633 0.3312 892 0.6777

116 0.0682 375 0.1532 634 0.3330 893 0.6800

117 0.0687 376 0.1545 635 0.3347 894 0.6806

118 0.0691 377 0.1559 636 0.3369 895 0.6824

119 0.0696 378 0.1569 637 0.3382 896 0.6851

120 0.0698 379 0.1577 638 0.3396 897 0.6861

121 0.0704 380 0.1590 639 0.3416 898 0.6877

122 0.0706 381 0.1604 640 0.3433 899 0.6902

123 0.0707 382 0.1623 641 0.3451 900 0.6928

124 0.0713 383 0.1639 642 0.3466 901 0.6944

125 0.0710 384 0.1656 643 0.3474 902 0.6955

126 0.0719 385 0.1670 644 0.3482 903 0.6973

127 0.0725 386 0.1687 645 0.3486 904 0.6992

128 0.0727 387 0.1701 646 0.3492 905 0.7012

129 0.0734 388 0.1714 647 0.3507 906 0.7034

130 0.0736 389 0.1731 648 0.3536 907 0.7059

131 0.0744 390 0.1743 649 0.3559 908 0.7078

132 0.0745 391 0.1761 650 0.3577 909 0.7100

133 0.0746 392 0.1774 651 0.3595 910 0.7117

134 0.0749 393 0.1795 652 0.3613 911 0.7136

135 0.0757 394 0.1805 653 0.3630 912 0.7161

136 0.0761 395 0.1823 654 0.3658 913 0.7177

137 0.0763 396 0.1840 655 0.3675 914 0.7197

138 0.0768 397 0.1850 656 0.3703 915 0.7222

139 0.0772 398 0.1862 657 0.3737 916 0.7239

140 0.0773 399 0.1876 658 0.3767 917 0.7265

141 0.0779 400 0.1893 659 0.3797 918 0.7296

142 0.0778 401 0.1907 660 0.3826 919 0.7320

143 0.0786 402 0.1922 661 0.3855 920 0.7346

144 0.0789 403 0.1939 662 0.3889 921 0.7367

145 0.0792 404 0.1954 663 0.3912 922 0.7388

146 0.0794 405 0.1967 664 0.3936 923 0.7414

147 0.0795 406 0.1978 665 0.3969 924 0.7442

148 0.0798 407 0.2001 666 0.3977 925 0.7466

149 0.0802 408 0.2012 667 0.4000 926 0.7485

150 0.0804 409 0.2026 668 0.4014 927 0.7518
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151 0.0803 410 0.2043 669 0.4045 928 0.7537

152 0.0807 411 0.2054 670 0.4062 929 0.7556

153 0.0812 412 0.2070 671 0.4097 930 0.7580

154 0.0813 413 0.2080 672 0.4120 931 0.7603

155 0.0813 414 0.2093 673 0.4152 932 0.7628

156 0.0817 415 0.2115 674 0.4172 933 0.7645

157 0.0819 416 0.2125 675 0.4194 934 0.7680

158 0.0818 417 0.2140 676 0.4219 935 0.7694

159 0.0818 418 0.2152 677 0.4252 936 0.7713

160 0.0820 419 0.2165 678 0.4281 937 0.7734

161 0.0823 420 0.2183 679 0.4305 938 0.7745

162 0.0827 421 0.2196 680 0.4327 939 0.7779

163 0.0830 422 0.2207 681 0.4352 940 0.7790

164 0.0825 423 0.2221 682 0.4381 941 0.7813

165 0.0830 424 0.2229 683 0.4410 942 0.7829

166 0.0824 425 0.2242 684 0.4436 943 0.7849

167 0.0829 426 0.2254 685 0.4467 944 0.7871

168 0.0828 427 0.2263 686 0.4494 945 0.7886

169 0.0830 428 0.2279 687 0.4522 946 0.7915

170 0.0830 429 0.2286 688 0.4550 947 0.7918

171 0.0828 430 0.2300 689 0.4586 948 0.7940

172 0.0833 431 0.2308 690 0.4614 949 0.7960

173 0.0831 432 0.2317 691 0.4638 950 0.7983

174 0.0829 433 0.2325 692 0.4646 951 0.8010

175 0.0829 434 0.2337 693 0.4663 952 0.8029

176 0.0830 435 0.2350 694 0.4678 953 0.8037

177 0.0831 436 0.2361 695 0.4701 954 0.8066

178 0.0833 437 0.2365 696 0.4715 955 0.8085

179 0.0829 438 0.2372 697 0.4738 956 0.8107

180 0.0830 439 0.2385 698 0.4758 957 0.8122

181 0.0834 440 0.2390 699 0.4789 958 0.8137

182 0.0830 441 0.2403 700 0.4828 959 0.8148

183 0.0825 442 0.2400 701 0.4860 960 0.8166

184 0.0827 443 0.2409 702 0.4902 961 0.8189

185 0.0820 444 0.2418 703 0.4939 962 0.8217

186 0.0819 445 0.2432 704 0.4965 963 0.8223

187 0.0820 446 0.2434 705 0.4988 964 0.8250
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188 0.0817 447 0.2443 706 0.5018 965 0.8267

189 0.0819 448 0.2453 707 0.5037 966 0.8290

190 0.0817 449 0.2461 708 0.5059 967 0.8315

191 0.0822 450 0.2464 709 0.5072 968 0.8346

192 0.0821 451 0.2468 710 0.5093 969 0.8358

193 0.0821 452 0.2470 711 0.5102 970 0.8386

194 0.0824 453 0.2485 712 0.5121 971 0.8408

195 0.0823 454 0.2490 713 0.5122 972 0.8430

196 0.0822 455 0.2493 714 0.5131 973 0.8453

197 0.0815 456 0.2501 715 0.5147 974 0.8471

198 0.0816 457 0.2509 716 0.5172 975 0.8495

199 0.0816 458 0.2510 717 0.5202 976 0.8517

200 0.0812 459 0.2507 718 0.5229 977 0.8537

201 0.0815 460 0.2514 719 0.5260 978 0.8562

202 0.0807 461 0.2511 720 0.5276 979 0.8580

203 0.0810 462 0.2517 721 0.5302 980 0.8597

204 0.0809 463 0.2519 722 0.5325 981 0.8628

205 0.0808 464 0.2520 723 0.5334 982 0.8653

206 0.0805 465 0.2527 724 0.5349 983 0.8671

207 0.0804 466 0.2527 725 0.5369 984 0.8696

208 0.0802 467 0.2525 726 0.5395 985 0.8721

209 0.0802 468 0.2533 727 0.5417 986 0.8742

210 0.0795 469 0.2536 728 0.5433 987 0.8765

211 0.0797 470 0.2535 729 0.5456 988 0.8785

212 0.0793 471 0.2534 730 0.5476 989 0.8810

213 0.0791 472 0.2535 731 0.5489 990 0.8841

214 0.0791 473 0.2530 732 0.5507 991 0.8862

215 0.0787 474 0.2534 733 0.5523 992 0.8865

216 0.0791 475 0.2534 734 0.5536 993 0.8853

217 0.0792 476 0.2539 735 0.5544 994 0.8835

218 0.0787 477 0.2543 736 0.5556 995 0.8836

219 0.0785 478 0.2531 737 0.5564 996 0.8837

220 0.0791 479 0.2530 738 0.5571 997 0.8867

221 0.0788 480 0.2527 739 0.5579 998 0.8911

222 0.0789 481 0.2534 740 0.5603 999 0.8971

223 0.0787 482 0.2540 741 0.5615 1000 0.9016

224 0.0785 483 0.2529 742 0.5624 1001 0.9058
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225 0.0785 484 0.2529 743 0.5633 1002 0.9083

226 0.0783 485 0.2527 744 0.5627 1003 0.9121

227 0.0780 486 0.2518 745 0.5631 1004 0.9140

228 0.0780 487 0.2514 746 0.5632 1005 0.9167

229 0.0780 488 0.2515 747 0.5638 1006 0.9185

230 0.0779 489 0.2508 748 0.5645 1007 0.9214

231 0.0778 490 0.2504 749 0.5660 1008 0.9236

232 0.0776 491 0.2506 750 0.5678 1009 0.9251

233 0.0777 492 0.2508 751 0.5693 1010 0.9264

234 0.0778 493 0.2506 752 0.5708 1011 0.9269

235 0.0776 494 0.2502 753 0.5724 1012 0.9277

236 0.0778 495 0.2504 754 0.5737 1013 0.9292

237 0.0776 496 0.2499 755 0.5743 1014 0.9312

238 0.0779 497 0.2496 756 0.5747 1015 0.9340

239 0.0776 498 0.2490 757 0.5755 1016 0.9371

240 0.0777 499 0.2488 758 0.5770 1017 0.9407

241 0.0777 500 0.2485 759 0.5773 1018 0.9437

242 0.0778 501 0.2484 760 0.5777 1019 0.9475

243 0.0778 502 0.2484 761 0.5781 1020 0.9497

244 0.0776 503 0.2483 762 0.5793 1021 0.9520

245 0.0779 504 0.2479 763 0.5798 1022 0.9567

246 0.0777 505 0.2482 764 0.5814 1023 0.9584

247 0.0779 506 0.2479 765 0.5831 1024 0.9622

248 0.0781 507 0.2474 766 0.5850 1025 0.9651

249 0.0779 508 0.2477 767 0.5864 1026 0.9669

250 0.0780 509 0.2478 768 0.5872 1027 0.9696

251 0.0776 510 0.2471 769 0.5889 1028 0.9743

252 0.0780 511 0.2468 770 0.5897 1029 0.9774

253 0.0784 512 0.2465 771 0.5901 1030 0.9800

254 0.0783 513 0.2464 772 0.5915 1031 0.9828

255 0.0784 514 0.2459 773 0.5927 1032 0.9863

256 0.0781 515 0.2457 774 0.5941 1033 0.9888

257 0.0785 516 0.2457 775 0.5942 1034 0.9910

258 0.0785 517 0.2450 776 0.5952 1035 0.9923

259 0.0787 518 0.2456 777 0.5963 1036 0.9946

260 0.0785 519 0.2450 778 0.5981 1037 0.9974

261 0.0784 520 0.2448 779 0.5984 1038 0.9984
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262 0.0789 521 0.2442 780 0.6015 1039 1.0000

Table D.1: Efficiency as a function of pixel number for a grating position of 860 nm

Figure D.1: Efficiency as a function of pixel number for a grating position of 860 nm.
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4 0.1435 263 0.3162 522 0.5694 781 0.8280

5 0.1432 264 0.3167 523 0.5686 782 0.8299

6 0.1426 265 0.3172 524 0.5688 783 0.8324

7 0.1420 266 0.3179 525 0.5686 784 0.8352

8 0.1413 267 0.3179 526 0.5693 785 0.8368

9 0.1409 268 0.3175 527 0.5698 786 0.8381

10 0.1399 269 0.3179 528 0.5707 787 0.8397

11 0.1391 270 0.3186 529 0.5718 788 0.8416

12 0.1389 271 0.3186 530 0.5725 789 0.8431

13 0.1387 272 0.3197 531 0.5726 790 0.8449

14 0.1389 273 0.3200 532 0.5725 791 0.8458

15 0.1387 274 0.3203 533 0.5727 792 0.8475

16 0.1389 275 0.3206 534 0.5734 793 0.8484

17 0.1390 276 0.3208 535 0.5733 794 0.8488

18 0.1393 277 0.3213 536 0.5733 795 0.8501

19 0.1392 278 0.3217 537 0.5739 796 0.8509

20 0.1401 279 0.3222 538 0.5753 797 0.8512

21 0.1403 280 0.3226 539 0.5748 798 0.8519

22 0.1405 281 0.3232 540 0.5759 799 0.8515

23 0.1411 282 0.3239 541 0.5752 800 0.8504

24 0.1418 283 0.3241 542 0.5766 801 0.8501

25 0.1427 284 0.3243 543 0.5763 802 0.8507

26 0.1434 285 0.3248 544 0.5762 803 0.8520

27 0.1441 286 0.3254 545 0.5775 804 0.8538

28 0.1452 287 0.3247 546 0.5778 805 0.8562

29 0.1458 288 0.3246 547 0.5780 806 0.8577

30 0.1466 289 0.3244 548 0.5779 807 0.8592

31 0.1476 290 0.3244 549 0.5782 808 0.8605

32 0.1484 291 0.3240 550 0.5788 809 0.8620

33 0.1493 292 0.3240 551 0.5790 810 0.8634

34 0.1497 293 0.3248 552 0.5783 811 0.8660

35 0.1510 294 0.3248 553 0.5782 812 0.8669

36 0.1515 295 0.3255 554 0.5773 813 0.8667

37 0.1522 296 0.3255 555 0.5778 814 0.8686

38 0.1531 297 0.3255 556 0.5785 815 0.8695

39 0.1538 298 0.3247 557 0.5790 816 0.8715
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40 0.1549 299 0.3244 558 0.5803 817 0.8715

41 0.1554 300 0.3240 559 0.5821 818 0.8729

42 0.1564 301 0.3253 560 0.5831 819 0.8739

43 0.1568 302 0.3273 561 0.5848 820 0.8749

44 0.1579 303 0.3303 562 0.5853 821 0.8756

45 0.1587 304 0.3331 563 0.5845 822 0.8768

46 0.1594 305 0.3356 564 0.5856 823 0.8776

47 0.1602 306 0.3372 565 0.5869 824 0.8786

48 0.1612 307 0.3384 566 0.5874 825 0.8791

49 0.1620 308 0.3394 567 0.5872 826 0.8795

50 0.1627 309 0.3402 568 0.5880 827 0.8800

51 0.1639 310 0.3407 569 0.5884 828 0.8813

52 0.1651 311 0.3412 570 0.5893 829 0.8820

53 0.1659 312 0.3421 571 0.5899 830 0.8834

54 0.1667 313 0.3425 572 0.5913 831 0.8838

55 0.1678 314 0.3435 573 0.5923 832 0.8845

56 0.1687 315 0.3441 574 0.5932 833 0.8855

57 0.1696 316 0.3448 575 0.5934 834 0.8859

58 0.1706 317 0.3460 576 0.5938 835 0.8870

59 0.1715 318 0.3473 577 0.5942 836 0.8870

60 0.1729 319 0.3477 578 0.5947 837 0.8883

61 0.1736 320 0.3490 579 0.5948 838 0.8890

62 0.1747 321 0.3501 580 0.5954 839 0.8896

63 0.1760 322 0.3508 581 0.5962 840 0.8898

64 0.1774 323 0.3519 582 0.5967 841 0.8881

65 0.1780 324 0.3527 583 0.5968 842 0.8860

66 0.1786 325 0.3538 584 0.5980 843 0.8848

67 0.1790 326 0.3549 585 0.5990 844 0.8846

68 0.1796 327 0.3565 586 0.5995 845 0.8861

69 0.1805 328 0.3577 587 0.6008 846 0.8891

70 0.1818 329 0.3592 588 0.6012 847 0.8918

71 0.1827 330 0.3604 589 0.6011 848 0.8950

72 0.1848 331 0.3619 590 0.6002 849 0.8977

73 0.1863 332 0.3633 591 0.5993 850 0.9000

74 0.1877 333 0.3646 592 0.5991 851 0.9013

75 0.1889 334 0.3658 593 0.5996 852 0.9031

76 0.1892 335 0.3674 594 0.6005 853 0.9048
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77 0.1892 336 0.3683 595 0.6026 854 0.9061

78 0.1885 337 0.3693 596 0.6049 855 0.9062

79 0.1888 338 0.3706 597 0.6060 856 0.9078

80 0.1897 339 0.3720 598 0.6073 857 0.9083

81 0.1912 340 0.3739 599 0.6081 858 0.9083

82 0.1935 341 0.3748 600 0.6095 859 0.9086

83 0.1965 342 0.3760 601 0.6114 860 0.9085

84 0.1990 343 0.3765 602 0.6126 861 0.9087

85 0.2013 344 0.3777 603 0.6144 862 0.9071

86 0.2033 345 0.3788 604 0.6166 863 0.9069

87 0.2044 346 0.3802 605 0.6167 864 0.9067

88 0.2060 347 0.3816 606 0.6178 865 0.9077

89 0.2071 348 0.3833 607 0.6187 866 0.9083

90 0.2085 349 0.3842 608 0.6193 867 0.9105

91 0.2098 350 0.3862 609 0.6199 868 0.9119

92 0.2110 351 0.3873 610 0.6209 869 0.9132

93 0.2124 352 0.3886 611 0.6218 870 0.9160

94 0.2135 353 0.3896 612 0.6222 871 0.9165

95 0.2148 354 0.3912 613 0.6226 872 0.9174

96 0.2159 355 0.3919 614 0.6235 873 0.9173

97 0.2172 356 0.3942 615 0.6245 874 0.9184

98 0.2186 357 0.3956 616 0.6250 875 0.9186

99 0.2198 358 0.3968 617 0.6253 876 0.9178

100 0.2209 359 0.3984 618 0.6260 877 0.9189

101 0.2228 360 0.3990 619 0.6262 878 0.9201

102 0.2244 361 0.3996 620 0.6267 879 0.9203

103 0.2258 362 0.4008 621 0.6271 880 0.9214

104 0.2270 363 0.4018 622 0.6269 881 0.9218

105 0.2283 364 0.4022 623 0.6271 882 0.9223

106 0.2300 365 0.4018 624 0.6267 883 0.9228

107 0.2312 366 0.4015 625 0.6254 884 0.9231

108 0.2329 367 0.4009 626 0.6246 885 0.9241

109 0.2339 368 0.4014 627 0.6235 886 0.9248

110 0.2349 369 0.4025 628 0.6239 887 0.9246

111 0.2363 370 0.4040 629 0.6254 888 0.9252

112 0.2375 371 0.4063 630 0.6269 889 0.9252

113 0.2390 372 0.4087 631 0.6295 890 0.9258
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114 0.2405 373 0.4110 632 0.6321 891 0.9270

115 0.2416 374 0.4134 633 0.6342 892 0.9274

116 0.2430 375 0.4149 634 0.6364 893 0.9276

117 0.2441 376 0.4161 635 0.6368 894 0.9275

118 0.2456 377 0.4172 636 0.6382 895 0.9287

119 0.2463 378 0.4167 637 0.6373 896 0.9286

120 0.2478 379 0.4173 638 0.6377 897 0.9285

121 0.2487 380 0.4182 639 0.6388 898 0.9287

122 0.2494 381 0.4194 640 0.6391 899 0.9296

123 0.2496 382 0.4207 641 0.6400 900 0.9296

124 0.2502 383 0.4231 642 0.6393 901 0.9305

125 0.2509 384 0.4249 643 0.6378 902 0.9299

126 0.2519 385 0.4265 644 0.6353 903 0.9304

127 0.2541 386 0.4293 645 0.6328 904 0.9306

128 0.2554 387 0.4304 646 0.6305 905 0.9309

129 0.2570 388 0.4320 647 0.6300 906 0.9307

130 0.2586 389 0.4335 648 0.6307 907 0.9308

131 0.2597 390 0.4352 649 0.6323 908 0.9313

132 0.2606 391 0.4366 650 0.6327 909 0.9321

133 0.2617 392 0.4383 651 0.6336 910 0.9317

134 0.2626 393 0.4403 652 0.6337 911 0.9323

135 0.2640 394 0.4418 653 0.6338 912 0.9321

136 0.2650 395 0.4434 654 0.6341 913 0.9321

137 0.2659 396 0.4446 655 0.6344 914 0.9321

138 0.2668 397 0.4453 656 0.6372 915 0.9336

139 0.2674 398 0.4467 657 0.6397 916 0.9329

140 0.2688 399 0.4478 658 0.6423 917 0.9340

141 0.2698 400 0.4488 659 0.6452 918 0.9351

142 0.2701 401 0.4503 660 0.6479 919 0.9359

143 0.2717 402 0.4519 661 0.6506 920 0.9365

144 0.2720 403 0.4539 662 0.6539 921 0.9358

145 0.2728 404 0.4561 663 0.6562 922 0.9365

146 0.2732 405 0.4576 664 0.6577 923 0.9370

147 0.2744 406 0.4593 665 0.6598 924 0.9383

148 0.2749 407 0.4603 666 0.6600 925 0.9381

149 0.2760 408 0.4618 667 0.6604 926 0.9380

150 0.2769 409 0.4632 668 0.6603 927 0.9383
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151 0.2775 410 0.4648 669 0.6617 928 0.9383

152 0.2784 411 0.4666 670 0.6610 929 0.9387

153 0.2792 412 0.4681 671 0.6635 930 0.9383

154 0.2797 413 0.4694 672 0.6645 931 0.9390

155 0.2805 414 0.4712 673 0.6657 932 0.9385

156 0.2812 415 0.4742 674 0.6678 933 0.9397

157 0.2818 416 0.4751 675 0.6683 934 0.9401

158 0.2827 417 0.4771 676 0.6695 935 0.9406

159 0.2831 418 0.4785 677 0.6715 936 0.9410

160 0.2837 419 0.4806 678 0.6740 937 0.9413

161 0.2846 420 0.4820 679 0.6740 938 0.9401

162 0.2848 421 0.4840 680 0.6748 939 0.9422

163 0.2858 422 0.4854 681 0.6760 940 0.9423

164 0.2862 423 0.4872 682 0.6774 941 0.9430

165 0.2867 424 0.4886 683 0.6795 942 0.9430

166 0.2872 425 0.4903 684 0.6809 943 0.9441

167 0.2880 426 0.4910 685 0.6832 944 0.9430

168 0.2882 427 0.4928 686 0.6855 945 0.9443

169 0.2882 428 0.4953 687 0.6866 946 0.9440

170 0.2889 429 0.4962 688 0.6881 947 0.9432

171 0.2900 430 0.4983 689 0.6913 948 0.9434

172 0.2901 431 0.4987 690 0.6932 949 0.9441

173 0.2913 432 0.4997 691 0.6936 950 0.9455

174 0.2911 433 0.5015 692 0.6931 951 0.9455

175 0.2918 434 0.5029 693 0.6936 952 0.9456

176 0.2927 435 0.5038 694 0.6927 953 0.9453

177 0.2929 436 0.5058 695 0.6938 954 0.9455

178 0.2933 437 0.5069 696 0.6937 955 0.9459

179 0.2938 438 0.5076 697 0.6950 956 0.9460

180 0.2942 439 0.5102 698 0.6959 957 0.9466

181 0.2941 440 0.5105 699 0.6986 958 0.9465

182 0.2942 441 0.5120 700 0.7018 959 0.9460

183 0.2940 442 0.5134 701 0.7054 960 0.9461

184 0.2944 443 0.5138 702 0.7096 961 0.9468

185 0.2945 444 0.5148 703 0.7134 962 0.9474

186 0.2947 445 0.5168 704 0.7170 963 0.9470

187 0.2951 446 0.5180 705 0.7185 964 0.9469
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188 0.2955 447 0.5198 706 0.7210 965 0.9471

189 0.2966 448 0.5222 707 0.7225 966 0.9483

190 0.2981 449 0.5229 708 0.7244 967 0.9489

191 0.2989 450 0.5242 709 0.7261 968 0.9508

192 0.2998 451 0.5252 710 0.7269 969 0.9504

193 0.3005 452 0.5265 711 0.7279 970 0.9520

194 0.3012 453 0.5281 712 0.7286 971 0.9532

195 0.3019 454 0.5297 713 0.7284 972 0.9535

196 0.3020 455 0.5315 714 0.7289 973 0.9535

197 0.3025 456 0.5329 715 0.7306 974 0.9537

198 0.3033 457 0.5343 716 0.7329 975 0.9552

199 0.3036 458 0.5360 717 0.7355 976 0.9551

200 0.3040 459 0.5365 718 0.7369 977 0.9561

201 0.3041 460 0.5375 719 0.7397 978 0.9562

202 0.3042 461 0.5386 720 0.7418 979 0.9564

203 0.3044 462 0.5401 721 0.7436 980 0.9563

204 0.3052 463 0.5409 722 0.7456 981 0.9577

205 0.3054 464 0.5411 723 0.7467 982 0.9585

206 0.3056 465 0.5427 724 0.7483 983 0.9592

207 0.3057 466 0.5436 725 0.7510 984 0.9603

208 0.3059 467 0.5448 726 0.7534 985 0.9603

209 0.3053 468 0.5455 727 0.7556 986 0.9607

210 0.3051 469 0.5468 728 0.7577 987 0.9622

211 0.3045 470 0.5478 729 0.7609 988 0.9628

212 0.3046 471 0.5484 730 0.7625 989 0.9632

213 0.3047 472 0.5496 731 0.7647 990 0.9645

214 0.3046 473 0.5505 732 0.7664 991 0.9648

215 0.3050 474 0.5509 733 0.7677 992 0.9624

216 0.3065 475 0.5521 734 0.7696 993 0.9590

217 0.3069 476 0.5534 735 0.7702 994 0.9551

218 0.3074 477 0.5545 736 0.7706 995 0.9521

219 0.3077 478 0.5546 737 0.7717 996 0.9502

220 0.3088 479 0.5556 738 0.7731 997 0.9528

221 0.3091 480 0.5553 739 0.7743 998 0.9559

222 0.3094 481 0.5569 740 0.7760 999 0.9606

223 0.3091 482 0.5585 741 0.7773 1000 0.9641

224 0.3098 483 0.5587 742 0.7782 1001 0.9674
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225 0.3097 484 0.5597 743 0.7788 1002 0.9696

226 0.3101 485 0.5593 744 0.7779 1003 0.9717

227 0.3104 486 0.5592 745 0.7782 1004 0.9721

228 0.3098 487 0.5586 746 0.7777 1005 0.9733

229 0.3105 488 0.5595 747 0.7777 1006 0.9743

230 0.3101 489 0.5589 748 0.7776 1007 0.9747

231 0.3101 490 0.5600 749 0.7799 1008 0.9751

232 0.3108 491 0.5599 750 0.7816 1009 0.9757

233 0.3111 492 0.5612 751 0.7839 1010 0.9755

234 0.3106 493 0.5622 752 0.7869 1011 0.9756

235 0.3111 494 0.5623 753 0.7886 1012 0.9751

236 0.3113 495 0.5634 754 0.7907 1013 0.9756

237 0.3115 496 0.5633 755 0.7920 1014 0.9760

238 0.3120 497 0.5636 756 0.7927 1015 0.9769

239 0.3123 498 0.5630 757 0.7937 1016 0.9783

240 0.3128 499 0.5636 758 0.7939 1017 0.9790

241 0.3125 500 0.5642 759 0.7945 1018 0.9802

242 0.3125 501 0.5645 760 0.7953 1019 0.9816

243 0.3129 502 0.5656 761 0.7954 1020 0.9824

244 0.3125 503 0.5663 762 0.7961 1021 0.9826

245 0.3130 504 0.5669 763 0.7971 1022 0.9844

246 0.3129 505 0.5672 764 0.7986 1023 0.9852

247 0.3128 506 0.5681 765 0.8008 1024 0.9865

248 0.3129 507 0.5687 766 0.8038 1025 0.9874

249 0.3133 508 0.5691 767 0.8056 1026 0.9880

250 0.3132 509 0.5692 768 0.8080 1027 0.9890

251 0.3139 510 0.5692 769 0.8102 1028 0.9906

252 0.3137 511 0.5690 770 0.8107 1029 0.9919

253 0.3139 512 0.5687 771 0.8119 1030 0.9932

254 0.3140 513 0.5691 772 0.8131 1031 0.9937

255 0.3148 514 0.5689 773 0.8148 1032 0.9948

256 0.3149 515 0.5683 774 0.8169 1033 0.9959

257 0.3151 516 0.5698 775 0.8168 1034 0.9971

258 0.3150 517 0.5700 776 0.8174 1035 0.9973

259 0.3155 518 0.5701 777 0.8189 1036 0.9979

260 0.3160 519 0.5706 778 0.8202 1037 0.9992

261 0.3158 520 0.5697 779 0.8222 1038 0.9996
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262 0.3161 521 0.5694 780 0.8252 1039 0.9999

Table D.2: Efficiency as a function of pixel number for a grating position of 940 nm

Figure D.2: Efficiency as a function of pixel number for a grating position of 940 nm.
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4 0.4282 263 0.6292 522 0.7994 781 0.9514

5 0.4268 264 0.6312 523 0.7986 782 0.9530

6 0.4247 265 0.6317 524 0.7998 783 0.9551

7 0.4229 266 0.6319 525 0.7995 784 0.9572

8 0.4212 267 0.6333 526 0.8021 785 0.9570

9 0.4184 268 0.6324 527 0.8039 786 0.9566

10 0.4169 269 0.6335 528 0.8047 787 0.9586

11 0.4156 270 0.6331 529 0.8079 788 0.9587

12 0.4140 271 0.6340 530 0.8082 789 0.9592

13 0.4134 272 0.6358 531 0.8100 790 0.9592

14 0.4125 273 0.6353 532 0.8105 791 0.9598

15 0.4112 274 0.6373 533 0.8124 792 0.9602

16 0.4109 275 0.6378 534 0.8122 793 0.9600

17 0.4102 276 0.6381 535 0.8133 794 0.9598

18 0.4106 277 0.6387 536 0.8147 795 0.9598

19 0.4099 278 0.6390 537 0.8162 796 0.9608

20 0.4109 279 0.6399 538 0.8187 797 0.9592

21 0.4102 280 0.6401 539 0.8197 798 0.9587

22 0.4108 281 0.6424 540 0.8211 799 0.9573

23 0.4110 282 0.6410 541 0.8213 800 0.9559

24 0.4115 283 0.6433 542 0.8237 801 0.9547

25 0.4125 284 0.6419 543 0.8236 802 0.9546

26 0.4125 285 0.6417 544 0.8253 803 0.9545

27 0.4128 286 0.6415 545 0.8263 804 0.9548

28 0.4136 287 0.6393 546 0.8276 805 0.9570

29 0.4156 288 0.6390 547 0.8282 806 0.9569

30 0.4160 289 0.6367 548 0.8301 807 0.9579

31 0.4166 290 0.6372 549 0.8314 808 0.9592

32 0.4169 291 0.6358 550 0.8317 809 0.9599

33 0.4190 292 0.6342 551 0.8315 810 0.9610

34 0.4197 293 0.6343 552 0.8320 811 0.9618

35 0.4197 294 0.6333 553 0.8326 812 0.9626

36 0.4204 295 0.6320 554 0.8323 813 0.9617

37 0.4210 296 0.6325 555 0.8324 814 0.9613

38 0.4226 297 0.6308 556 0.8341 815 0.9629

39 0.4228 298 0.6281 557 0.8352 816 0.9636
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40 0.4239 299 0.6260 558 0.8382 817 0.9626

41 0.4241 300 0.6258 559 0.8396 818 0.9638

42 0.4244 301 0.6278 560 0.8424 819 0.9636

43 0.4250 302 0.6306 561 0.8456 820 0.9640

44 0.4264 303 0.6345 562 0.8466 821 0.9646

45 0.4253 304 0.6385 563 0.8465 822 0.9634

46 0.4265 305 0.6426 564 0.8495 823 0.9641

47 0.4260 306 0.6466 565 0.8488 824 0.9641

48 0.4276 307 0.6491 566 0.8528 825 0.9646

49 0.4281 308 0.6496 567 0.8524 826 0.9640

50 0.4287 309 0.6511 568 0.8521 827 0.9641

51 0.4303 310 0.6508 569 0.8543 828 0.9642

52 0.4304 311 0.6504 570 0.8555 829 0.9640

53 0.4320 312 0.6511 571 0.8563 830 0.9649

54 0.4327 313 0.6507 572 0.8584 831 0.9650

55 0.4335 314 0.6507 573 0.8601 832 0.9645

56 0.4334 315 0.6502 574 0.8614 833 0.9658

57 0.4342 316 0.6505 575 0.8619 834 0.9651

58 0.4347 317 0.6505 576 0.8620 835 0.9657

59 0.4357 318 0.6507 577 0.8627 836 0.9654

60 0.4370 319 0.6517 578 0.8630 837 0.9658

61 0.4374 320 0.6518 579 0.8657 838 0.9661

62 0.4383 321 0.6527 580 0.8665 839 0.9654

63 0.4391 322 0.6520 581 0.8659 840 0.9645

64 0.4408 323 0.6525 582 0.8676 841 0.9640

65 0.4414 324 0.6525 583 0.8687 842 0.9630

66 0.4425 325 0.6521 584 0.8687 843 0.9601

67 0.4410 326 0.6530 585 0.8714 844 0.9607

68 0.4416 327 0.6543 586 0.8722 845 0.9610

69 0.4407 328 0.6540 587 0.8719 846 0.9623

70 0.4406 329 0.6554 588 0.8733 847 0.9648

71 0.4426 330 0.6560 589 0.8719 848 0.9654

72 0.4455 331 0.6551 590 0.8694 849 0.9672

73 0.4471 332 0.6574 591 0.8689 850 0.9689

74 0.4486 333 0.6575 592 0.8702 851 0.9700

75 0.4500 334 0.6589 593 0.8706 852 0.9709

76 0.4481 335 0.6575 594 0.8725 853 0.9734
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77 0.4464 336 0.6587 595 0.8738 854 0.9732

78 0.4447 337 0.6587 596 0.8770 855 0.9748

79 0.4434 338 0.6578 597 0.8784 856 0.9734

80 0.4448 339 0.6591 598 0.8788 857 0.9745

81 0.4447 340 0.6598 599 0.8811 858 0.9731

82 0.4490 341 0.6605 600 0.8819 859 0.9734

83 0.4518 342 0.6599 601 0.8838 860 0.9728

84 0.4545 343 0.6587 602 0.8855 861 0.9730

85 0.4576 344 0.6592 603 0.8855 862 0.9720

86 0.4600 345 0.6592 604 0.8889 863 0.9716

87 0.4609 346 0.6605 605 0.8892 864 0.9703

88 0.4634 347 0.6600 606 0.8907 865 0.9721

89 0.4639 348 0.6607 607 0.8925 866 0.9714

90 0.4648 349 0.6619 608 0.8922 867 0.9727

91 0.4638 350 0.6618 609 0.8925 868 0.9745

92 0.4663 351 0.6639 610 0.8946 869 0.9744

93 0.4664 352 0.6638 611 0.8952 870 0.9766

94 0.4681 353 0.6643 612 0.8951 871 0.9772

95 0.4690 354 0.6652 613 0.8969 872 0.9793

96 0.4685 355 0.6643 614 0.8963 873 0.9782

97 0.4698 356 0.6667 615 0.8978 874 0.9795

98 0.4723 357 0.6670 616 0.8985 875 0.9794

99 0.4726 358 0.6680 617 0.8982 876 0.9784

100 0.4727 359 0.6674 618 0.8996 877 0.9801

101 0.4758 360 0.6688 619 0.8995 878 0.9808

102 0.4765 361 0.6665 620 0.8998 879 0.9804

103 0.4778 362 0.6670 621 0.9001 880 0.9814

104 0.4789 363 0.6658 622 0.9003 881 0.9820

105 0.4800 364 0.6653 623 0.8995 882 0.9810

106 0.4809 365 0.6630 624 0.8980 883 0.9820

107 0.4840 366 0.6601 625 0.8954 884 0.9819

108 0.4837 367 0.6570 626 0.8937 885 0.9832

109 0.4854 368 0.6556 627 0.8934 886 0.9835

110 0.4847 369 0.6553 628 0.8939 887 0.9837

111 0.4870 370 0.6564 629 0.8945 888 0.9834

112 0.4875 371 0.6576 630 0.8974 889 0.9847

113 0.4903 372 0.6606 631 0.9002 890 0.9838
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114 0.4900 373 0.6630 632 0.9005 891 0.9856

115 0.4909 374 0.6660 633 0.9048 892 0.9855

116 0.4926 375 0.6675 634 0.9066 893 0.9860

117 0.4939 376 0.6666 635 0.9082 894 0.9858

118 0.4949 377 0.6671 636 0.9088 895 0.9859

119 0.4956 378 0.6668 637 0.9085 896 0.9861

120 0.4973 379 0.6649 638 0.9083 897 0.9866

121 0.4966 380 0.6645 639 0.9098 898 0.9870

122 0.4980 381 0.6657 640 0.9104 899 0.9876

123 0.4960 382 0.6668 641 0.9080 900 0.9874

124 0.4965 383 0.6688 642 0.9078 901 0.9875

125 0.4977 384 0.6698 643 0.9044 902 0.9870

126 0.4978 385 0.6728 644 0.8996 903 0.9882

127 0.4995 386 0.6743 645 0.8975 904 0.9885

128 0.5025 387 0.6763 646 0.8937 905 0.9891

129 0.5055 388 0.6764 647 0.8912 906 0.9892

130 0.5064 389 0.6787 648 0.8912 907 0.9891

131 0.5096 390 0.6789 649 0.8914 908 0.9893

132 0.5107 391 0.6800 650 0.8919 909 0.9901

133 0.5115 392 0.6810 651 0.8917 910 0.9903

134 0.5132 393 0.6826 652 0.8913 911 0.9916

135 0.5146 394 0.6844 653 0.8907 912 0.9910

136 0.5156 395 0.6841 654 0.8913 913 0.9913

137 0.5167 396 0.6855 655 0.8925 914 0.9917

138 0.5181 397 0.6850 656 0.8955 915 0.9928

139 0.5198 398 0.6856 657 0.8958 916 0.9918

140 0.5204 399 0.6864 658 0.9002 917 0.9930

141 0.5234 400 0.6864 659 0.9031 918 0.9937

142 0.5243 401 0.6865 660 0.9060 919 0.9945

143 0.5245 402 0.6866 661 0.9113 920 0.9956

144 0.5263 403 0.6894 662 0.9142 921 0.9956

145 0.5276 404 0.6921 663 0.9168 922 0.9953

146 0.5282 405 0.6925 664 0.9198 923 0.9959

147 0.5293 406 0.6927 665 0.9230 924 0.9961

148 0.5297 407 0.6931 666 0.9210 925 0.9965

149 0.5321 408 0.6941 667 0.9212 926 0.9965

150 0.5333 409 0.6954 668 0.9199 927 0.9977
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151 0.5345 410 0.6948 669 0.9216 928 0.9971

152 0.5354 411 0.6964 670 0.9202 929 0.9973

153 0.5366 412 0.6977 671 0.9213 930 0.9974

154 0.5378 413 0.6992 672 0.9219 931 0.9978

155 0.5388 414 0.6996 673 0.9226 932 0.9971

156 0.5401 415 0.7014 674 0.9229 933 0.9978

157 0.5413 416 0.7028 675 0.9241 934 0.9984

158 0.5417 417 0.7035 676 0.9227 935 0.9983

159 0.5441 418 0.7034 677 0.9241 936 0.9990

160 0.5447 419 0.7053 678 0.9261 937 0.9988

161 0.5438 420 0.7066 679 0.9252 938 0.9978

162 0.5456 421 0.7091 680 0.9264 939 0.9990

163 0.5464 422 0.7093 681 0.9250 940 0.9993

164 0.5486 423 0.7088 682 0.9250 941 1.0004

165 0.5498 424 0.7104 683 0.9259 942 0.9994

166 0.5502 425 0.7108 684 0.9266 943 0.9999

167 0.5512 426 0.7123 685 0.9287 944 0.9994

168 0.5505 427 0.7117 686 0.9297 945 1.0001

169 0.5529 428 0.7138 687 0.9294 946 0.9997

170 0.5535 429 0.7141 688 0.9291 947 0.9991

171 0.5555 430 0.7143 689 0.9318 948 0.9993

172 0.5563 431 0.7146 690 0.9328 949 0.9993

173 0.5571 432 0.7155 691 0.9313 950 0.9997

174 0.5571 433 0.7153 692 0.9294 951 0.9995

175 0.5587 434 0.7163 693 0.9277 952 0.9995

176 0.5591 435 0.7159 694 0.9249 953 0.9996

177 0.5601 436 0.7168 695 0.9245 954 0.9989

178 0.5607 437 0.7181 696 0.9230 955 0.9988

179 0.5625 438 0.7178 697 0.9213 956 0.9991

180 0.5633 439 0.7202 698 0.9228 957 0.9997

181 0.5626 440 0.7202 699 0.9258 958 0.9993

182 0.5636 441 0.7198 700 0.9271 959 0.9982

183 0.5634 442 0.7212 701 0.9302 960 0.9985

184 0.5654 443 0.7203 702 0.9325 961 0.9983

185 0.5641 444 0.7212 703 0.9357 962 0.9984

186 0.5653 445 0.7223 704 0.9384 963 0.9984

187 0.5659 446 0.7236 705 0.9404 964 0.9985
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188 0.5693 447 0.7255 706 0.9421 965 0.9977

189 0.5688 448 0.7252 707 0.9426 966 0.9985

190 0.5720 449 0.7263 708 0.9434 967 0.9984

191 0.5734 450 0.7279 709 0.9433 968 0.9996

192 0.5742 451 0.7272 710 0.9434 969 0.9991

193 0.5759 452 0.7287 711 0.9429 970 0.9994

194 0.5777 453 0.7300 712 0.9423 971 1.0003

195 0.5790 454 0.7306 713 0.9417 972 1.0005

196 0.5779 455 0.7324 714 0.9408 973 1.0001

197 0.5791 456 0.7348 715 0.9418 974 1.0000

198 0.5800 457 0.7352 716 0.9419 975 1.0002

199 0.5821 458 0.7361 717 0.9425 976 1.0000

200 0.5826 459 0.7372 718 0.9424 977 1.0005

201 0.5824 460 0.7375 719 0.9444 978 1.0001

202 0.5837 461 0.7387 720 0.9438 979 0.9997

203 0.5849 462 0.7399 721 0.9433 980 0.9996

204 0.5846 463 0.7402 722 0.9437 981 1.0002

205 0.5859 464 0.7404 723 0.9447 982 1.0003

206 0.5872 465 0.7415 724 0.9439 983 1.0003

207 0.5876 466 0.7421 725 0.9473 984 1.0005

208 0.5882 467 0.7428 726 0.9483 985 1.0008

209 0.5866 468 0.7435 727 0.9491 986 1.0006

210 0.5860 469 0.7451 728 0.9489 987 1.0011

211 0.5853 470 0.7460 729 0.9510 988 1.0009

212 0.5852 471 0.7473 730 0.9514 989 1.0008

213 0.5852 472 0.7469 731 0.9530 990 1.0008

214 0.5858 473 0.7499 732 0.9527 991 1.0004

215 0.5882 474 0.7497 733 0.9527 992 0.9993

216 0.5886 475 0.7512 734 0.9529 993 0.9970

217 0.5914 476 0.7537 735 0.9525 994 0.9950

218 0.5929 477 0.7531 736 0.9516 995 0.9927

219 0.5950 478 0.7550 737 0.9515 996 0.9918

220 0.5969 479 0.7551 738 0.9521 997 0.9931

221 0.5973 480 0.7553 739 0.9510 998 0.9933

222 0.5980 481 0.7580 740 0.9499 999 0.9957

223 0.5992 482 0.7595 741 0.9507 1000 0.9973

224 0.5997 483 0.7612 742 0.9498 1001 0.9988

248



Pixel Efficiency Pixel Efficiency Pixel Efficiency Pixel Efficiency

225 0.6023 484 0.7608 743 0.9478 1002 1.0004

226 0.6027 485 0.7610 744 0.9469 1003 1.0013

227 0.6026 486 0.7608 745 0.9462 1004 1.0015

228 0.6035 487 0.7619 746 0.9432 1005 1.0021

229 0.6030 488 0.7625 747 0.9430 1006 1.0021

230 0.6032 489 0.7629 748 0.9415 1007 1.0023

231 0.6041 490 0.7628 749 0.9427 1008 1.0022

232 0.6058 491 0.7646 750 0.9431 1009 1.0014

233 0.6065 492 0.7662 751 0.9447 1010 1.0021

234 0.6071 493 0.7683 752 0.9458 1011 1.0012

235 0.6077 494 0.7679 753 0.9454 1012 1.0007

236 0.6092 495 0.7699 754 0.9481 1013 1.0010

237 0.6104 496 0.7701 755 0.9472 1014 1.0006

238 0.6101 497 0.7710 756 0.9467 1015 1.0008

239 0.6130 498 0.7703 757 0.9465 1016 1.0011

240 0.6127 499 0.7716 758 0.9457 1017 1.0012

241 0.6138 500 0.7717 759 0.9445 1018 1.0020

242 0.6154 501 0.7728 760 0.9448 1019 1.0014

243 0.6164 502 0.7751 761 0.9438 1020 1.0014

244 0.6149 503 0.7765 762 0.9431 1021 1.0007

245 0.6164 504 0.7797 763 0.9422 1022 1.0015

246 0.6177 505 0.7799 764 0.9430 1023 1.0016

247 0.6184 506 0.7828 765 0.9441 1024 1.0011

248 0.6177 507 0.7831 766 0.9456 1025 1.0013

249 0.6195 508 0.7849 767 0.9453 1026 1.0009

250 0.6193 509 0.7868 768 0.9478 1027 1.0005

251 0.6206 510 0.7880 769 0.9488 1028 1.0000

252 0.6223 511 0.7869 770 0.9488 1029 0.9996

253 0.6225 512 0.7878 771 0.9485 1030 0.9991

254 0.6243 513 0.7897 772 0.9480 1031 0.9987

255 0.6243 514 0.7912 773 0.9483 1032 0.9983

256 0.6263 515 0.7905 774 0.9493 1033 0.9978

257 0.6256 516 0.7924 775 0.9479 1034 0.9974

258 0.6266 517 0.7944 776 0.9479 1035 0.9970

259 0.6276 518 0.7944 777 0.9477 1036 0.9965

260 0.6279 519 0.7954 778 0.9479 1037 0.9961

261 0.6276 520 0.7969 779 0.9482 1038 0.9957

249



Pixel Efficiency Pixel Efficiency Pixel Efficiency Pixel Efficiency

262 0.6281 521 0.7970 780 0.9513 1039 0.9952

Table D.3: Efficiency as a function of pixel number for a grating position of 1020 nm

Figure D.3: Efficiency as a function of pixel number for a grating position of 1020 nm.
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troscopic studies of NaCs for the ground state asymptote of Na + Cs pairs”, Eur.

Phys. J. D 31, 205–211 (2004).

[16] J. Zaharova, O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, and E.
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