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Abstract 
 

 

In this study, hydrogen-containing defects in two semiconducting metal oxides, SnO2 

and TiO2, have been investigated by FTIR spectroscopy. Transparent conducting oxides are 

unusual but highly useful materials that combine transparency in the visible range with 

electrical conductivity. With these unique properties, applications utilizing these materials 

have been continuously growing in several fields, such as display technology, solar cells, and 

optoelectronics.  

Defects or impurities in the crystal structure of transparent conducting oxides affect 

the properties of these materials. Although hydrogen is the simplest atom, as an impurity, it 

plays remarkable roles in the electrical and optical properties of metal oxides. For example, 

recent research has suggested that hydrogen centers are responsible for the n-type 

conductivity in many metal oxides, in contrast to the traditionally accepted idea that native 

defects, such as oxygen vacancies and cation interstitials, are the source of conductivity. In 

order to utilize transparent conducting oxides to their highest potential, the conductivity 

needs to be controlled and engineered. However, a modern understanding of the conductivity 

of transparent conducting oxides and the role played by hydrogen is still at an early stage. In 

this study, IR spectroscopy experiments have been performed to probe the structures and 

reaction of hydrogen related centers and their relationship to changes in the conductivity of 

SnO2 and TiO2. 



2 
 

In SnO2, the relationship between H and the free carriers it introduces has been 

investigated. The thermal stability of the free carrier absorption and its relationship to the 

thermal stabilities of the O-H lines have been examined. Distinctive polarization properties of 

several O-H centers have been used to test microscopic defect models. Temperature 

dependent interactions between electrically active and inactive defects have been identified 

by annealing studies.  

 Studies of TiO2 have focused on the fundamental O-D center and the strong 

dependence of its vibrational spectrum on temperature. The behavior of three closely spaced 

O-D lines have been studied by IR spectroscopy and theory and explained with a small polaron 

model. 
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Chapter 1 

Introduction:  Transparent Conducting Oxides 
 

1.1 Transparent Conducting Oxides  

Hydrogen impurities in crystalline semiconducting materials have long been a subject 

of active research. Even simple imperfections in the crystal structure can cause significant 

changes in the properties of semiconductors and the electronic devices made from them. 

Hydrogen impurities, which can be introduced into the crystal structure intentionally or 

unintentionally, are known to participate in a wide range of phenomena that affect  the 

properties of conventional semiconductor materials; examples are the passivation of donor 

and acceptor impurities [1.1-1.3], the elimination of the deleterious properties of defects, and 

even  the modification of the band gap of the host crystal [1.1, 1.2, 1.4]. The identification and 

characterization of hydrogen-related defects are often necessary to understand, control and 

engineer the properties of semiconductors. Substantial research over recent decades has 

provided scientists and engineers with a better understanding of hydrogen in commonly used 

semiconductors such as Si and compounds like GaAs. However, hydrogen is not yet well 

understood for the case of transparent metal oxides. 

Although they have been known for more than a century, the transparent metal oxides are 

receiving renewed interest as semiconductors. The reason for this growing attention is the 

unusual coexistence of optical transparency and electrical conductivity. This is attractive for 

many applications, especially in the optoelectronics and energy areas. A common example of a 

transparent conducting oxide (TCO) is the indium tin oxide (ITO) system which is widely used 
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as a transparent electrode in flat panel and touch screen display technology [1.5-1.8] and in 

solar cells [1.6, 1.9-1.11]. ITO has also found applications in electromagnetic shielding [1.6, 1.8] 

and thermal management for energy-efficient windows [1.6, 1.8]. Although ITO possesses 

highly desirable electrical and optical properties [1.12], the scarcity and cost of indium have 

encouraged researchers to seek alternative TCO materials. The other two TCO’s that dominate 

the market are tin oxide (SnO2) and zinc oxide (ZnO) [1.13]. SnO2 is one of the oldest TCOs that 

found practical use for defrosting windows in airplanes during World War II [1.8]. 

Subsequently, it has been used in low-emissivity windows for architectural, aerospace and 

automotive applications [1.5-1.6, 1.8-1.9]; solid-state gas sensors [1.14-1.15]; transparent 

electrodes in thin film solar cells [1.8, 1.16]; and transparent thin film transistors [1.17]. A 

lower cost alternative to ITO in applications such as display technology and solar cells is ZnO 

[1.8, 1.18-1.19]. Titanium oxide (TiO2) is another metal oxide that has been of recent interest 

for applications as catalysts in solar cells, paint pigments, optical coatings and gas sensors 

[1.10, 1.20]. As the demand increases for higher efficiency and higher performance products in 

the optoelectronics and energy industries, it is natural to assume a growing demand for the 

unique properties provided by transparent conducting metal oxides. 

Due to fundamental differences in the mechanisms that define the electrical and optical 

properties of metal oxides compared to conventional semiconductors, outcomes of previous 

research efforts concentrated mainly on the latter class do not necessarily apply to the former. 

Despite many successful applications of transparent conducting oxides, much remains to be 

done to understand the sources of their unique properties and effects of other parameters, 

such as impurities [1.13]. The purpose of this work is to contribute to this understanding by 
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conducting experimental and theoretical research on hydrogen-related impurities in two 

common metal oxides, SnO2 and TiO2, with the rutile crystal lattice structure. The experimental 

method employed in this study to detect and identify defects is Fourier transform infrared 

(FTIR) spectroscopy which will be briefly discussed in the following sections. Prior to that, an 

introduction to the crystal structures and some properties of metal oxides will be given. 

1.2 Selected Crystal Structures of Transparent Conducting Oxides 

This section will include basic information about various types of crystal structures that 

are found in metal oxides and that are important to establish a baseline for the study of these 

materials. In many cases, understanding of metal oxides requires knowledge of crystal 

structures that are more exotic than diamond cubic. 

The first crystal structure of interest is rutile, which is the crystalline form of SnO2 and 

is also the most frequently encountered form for TiO2. The unit cell of rutile SnO2 is shown in 

Fig. 1.1. Each Sn atom is surrounded octahedrally by six oxygen atoms. Two of these oxygen 

atoms lie in the axial direction while the remaining four are termed as equatorial [1.21]. Each 

oxygen atom is surrounded by three coplanar Sn atoms, to form an almost equilateral triangle. 

The low symmetry of this structure makes it an ideal candidate for analysis by vibrational 

spectroscopy, since vibrational modes have distinctive polarization properties that reveal clues 

to the structure. TiO2 has the same rutile structure as SnO2 with each Sn atom in the structure 

replaced by Ti. 

ZnO has the crystal lattice structure known as wurtzite, which is shown in Fig. 1.2. Each 

Zn atom is tetrahedrally surrounded by four oxygens atom and vice versa. In addition to ZnO, 
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many important semiconductors with large band gaps, such as GaN and CdS, crystallize in this 

form. The structure is similar to zincblende, except for different orientations of  the Zn- and O-

centered tetrahedra. 

Indium oxide (In2O3) and crystalline ITO both have the cubic bixbyite crystal structure. 

A total of 80 atoms form the unit cell for this structure (shown in Fig. 1.3). Although each 

indium atom has six oxygen neighbors, there are two different configurations for the 

neighboring oxygens, resulting in two different indium sites. The complexity of this crystal 

structure makes the analysis of these materials challenging. 

 The perovskite structure, as shown in Fig. 1.4, is encountered for oxides with the 

general form of ABO3, such as SrTiO3 and CaTiO3. In the ideal high symmetry case, perovskites 

have a simple cubic lattice with A atoms, i.e. Sr or Ca, placed on the corners of the cube, B 

atoms, i.e. Ti, sitting at the body center and oxygens on the face centers. Many symmetry-

lowering distortions of the perovskite lattice are commonly observed, making this a fascinating 

class of materials. 
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Fig. 1.1: Rutile structure for SnO2 [1.22]. Compliments of W. B. Fowler. 

 

Fig. 1.2: Wurtzite structure, (left) unit cell, (right) orientations of Zn and O-centered 
tetrahedra. 
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Fig. 1.3: Unit cell structure of bixbyite [1.23]. 

 

Fig. 1.4: Unit cell of the perovskite structure for SrTiO3 [1.10]. 
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1.3 Conductivity of Transparent Metal Oxides 

Transparent metal oxides are wide band gap materials, with a fundamental band gap 

typically of 3 eV or more [1.6, 1.9, 1.24-1.26], which combine electrical conductivity with 

optical transparency. A list of a few transparent metal oxides and their corresponding band 

gaps is given in Table 1.1. With the wide band gaps that are required for optical transparency, 

these materials might be expected to be insulators in the undoped state at room temperature 

[1.9]. By increasing the free carrier density through doping, they can be typically converted to 

n-type semiconducting materials. Although this fact has been known and employed in many 

successful applications for many decades, the source of n-type conductivity is surprisingly still 

controversial. Traditionally, native defects such as O vacancies and cation interstitials have 

been invoked as possible sources of n-type conductivity [1.27-1.30]. However, more recent 

theoretical and experimental work has suggested that these defects cannot be the primary 

source of n-type conductivity since the O vacancy is likely to be a deep donor rather than a 

shallow donor and cation interstitials are likely to be unstable at room temperature [1.31-

1.32]. Other native defects, defect complexes, and impurities also have been proposed as 

alternative sources of conductivity. Hydrogen impurities in particular have appeared as a 

strong candidate in recent studies [1.32]. 
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Material Structure type Band-gap (eV) references 

ZnO Wurtzile 3.1-3.6 [1.10], [1.26], [1.27], [1.33] 

SnO2 Rutile 3.6-4.6 [1.14], [1.27] 

TiO2 Rutile 3.0 [1.34],[1.35] 

In2O3 Bixbyite 3.5-3.75 [1.36],[1.9],[1.27] 

ITO Bixbyite 3.5-4.6 [1.26],[1.27] 

SrTiO3 Perovskite 3.25 [1.37] 

 

Table 1.1: Crystal structures and band gaps of a selection of transparent conducting oxides at 

room temperature. 

Hydrogen has long been known to be an important impurity in conventional 

semiconductors. Hydrogen introduces electrical levels in the band gap and participates in a 

wide range of phenomena that affect the properties of the semiconductor. Since it is difficult 

to remove hydrogen from the growth environment, it is expected to be present in almost all 

semiconductors as an impurity. Perhaps hydrogen is best known for its ability to passivate 

shallow impurities and deep level defects [1.3, 1.38-1.43]. For example, H is intentionally 

introduced into the Si bulk to passivate defects and consequently improve the performance of 

solar cells made from low cost Si materials [1.44-1.46]. In most cases, hydrogen impurities 

reduce the conductivities introduced by other dopants [1.3, 1.32]. However, for metal oxides, 

hydrogen surprises us by acting as a shallow donor and causing conductivity by itself [1.47-

1.51]. From the 1950’s, it has been known that hydrogen impurities give rise to shallow donors 

in ZnO [1.47, 1.49, 1.52-1.55]. Similar effects caused by hydrogen, i.e. increased n-type 

conductivity, have also been reported for other conducting oxides; In2O3 [1.51], Ga2O3 [1.56] 
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and SnO2 [1.21]. Mechanisms that explain the effect of hydrogen on metal oxides are different 

from those for other semiconductors. 

Hydrogen, as an interstitial impurity in common semiconductors, is stable in either the 

+1 (donor) or the -1 (acceptor) charge states. The transition point where hydrogen changes 

from being a donor to an acceptor is called the H(+/-) transition level [1.10, 1.32]. The relative 

position of this level with respect to the Fermi level determines whether hydrogen forms a 

donor or an acceptor in the semiconductor. For conventional semiconductors, the transition 

level is near the middle of the band gap. Therefore, for Fermi levels close to the conduction 

band, i.e. n-type semiconductors, hydrogen acts as an acceptor. Conversely, for Fermi levels 

close to the valence band, i.e. p-type semiconductors, hydrogen acts as a donor. Interstitial 

hydrogen in these materials always counteracts the prevailing conductivity [1.3, 1.32, 1.57-

1.58]. However, in the case ZnO, H+ is the stable charge state for all Fermi level positions, and 

hydrogen acts as a shallow donor, i.e. as a source of conductivity, even in n-type 

semiconductors [1.32, 1.59-1.62]. For this case, the H(+/-) transition level lies above the 

conduction band minimum. The H(+/-) transition levels determined by muon experiments 

[1.62] and by two separate theoretical calculations [1.48, 1.52] are shown  in Fig. 1.5 in 

relation to band gaps of various metal oxides and other semiconductors [1.10]. Although there 

is a significant discrepancy between the determined transition level positions, all lie above the 

conduction band minimums of metal oxides.  

Following the brief discussion above, two points should be emphasized: 1) transparent 

conducting metal oxides are an important class of semiconductors with unique properties and 

exceptional potential for technological applications, 2) the effect of impurities, particularly of 
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hydrogen, on the properties of transparent conducting oxides is critically important. However, 

much research remains to be done to advance these materials to their highest potential. This 

study contributed to progress in this field by investigating hydrogen-related impurities and 

their effects on the chemical and electrical properties of two important metal oxides; namely 

SnO2 and TiO2. The backbone of the study was built by experimental analysis. FTIR 

Spectroscopy which detects local vibrational modes due to impurities and absorption due to 

free carriers was the preferred experimental method and will be briefly introduced in the 

following sections. 

 

Fig. 1.5:  Experimentally determined [1.62] and theoretically predicted [1.48, 1.59] H(+/-) 

transition level for various semiconductors in relation to their band gaps. [1.10] 
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Chapter 2 

Experimental Methods: Infrared Spectroscopy 
 

2.1 Local Vibrational Modes (LVMs) 

When an impurity atom that is lighter than the host atoms is present in a crystal, new 

vibrational modes with a higher frequency than the host-crystal’s vibrational modes way 

appear. Vibrational spectroscopy can be used effectively to probe and identify defects 

containing light impurities by detecting these additional vibrational modes in the host crystal’s 

spectra.  

The effect of a light impurity in an otherwise perfect crystal on the vibratonal spectrum 

can be studied with a simple model given by Barker and Sievers [2.1] for GaP. This is a one-

dimensional, linear diatomic chain with 48 atoms as shown in Fig. 2.1. Assuming harmonic 

vibrations, 24 acoustic and 24 optic vibrational modes for this perfect chain model were 

calculated, and the dispersion curves are presented in Fig. 2.1. A selection of the modes is 

illustrated in the figure by using vertical displacements for clarity, although the motions are in 

the longitudinal direction in reality. For instance, for mode 1, the zero frequency mode,  the 

vibration of all atoms are in phase with each other, while for the highest frequency optic mode 

at the zone center, each atom vibrates against its neighbor. When an impurity atom with a 

mass m’ that is smaller than the masses of both crystal host atoms is substituted into the 

chain, a new vibrational mode with a higher frequency appears. In addition to its high 

frequency, this new mode has also another distinctive property; that is, it is localized at the 
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impurity atom. Since the high frequency of this mode cannot be followed by the heavier atoms 

in the crystal, the wave does not propagate, and only a few neighbor atoms participate in the 

motion. Therefore, the high frequency vibrational mode is called a local vibrational mode 

(LVM).  A selection of the modes calculated with an impurity in the chain is shown in Fig. 2.2 

(a). The local vibrational mode due to the impurity is given as Mode 48, and as clearly seen, its 

frequency is higher than that of the other modes and only the atoms near the impurity are in 

motion. As the mass of the impurity atom is decreased, the frequency of the LVM increases 

and the mode becomes more localized. This is illustrated in Fig. 2.2 (b). In the calculations of 

Barker and Sievers, the force constant was assumed to be unchanged with or without the 

impurity.

 

Fig. 2.1: (a) Linear chain model and dispersion curves for a 48 atom chain model of GaP. (b) A 

selection of the mode’s eigenvectors for the 48 atom chain model of GaP [2.1-2.2]. 

(a) (b)



20 
 

 

Fig. 2.2: (a) A selection of the vibrational eigenvectors for the 48 atom chain model of GaP 

containing a light-element impurity which is substituted for the lighter atom in the chain. 

Mode 48 represents the LVM with the highest frequency. (b) The eigenvectors for the LVM 

with different impurity mass.  The highest frequency mode becomes more localized with the 

decreasing mass of the impurity [2.1-2.2]. 

The angular frequency of the LVM due to a light impurity atom (with a mass m’) placed 

into a lattice where the nearest neighbor atom has a mass of M is given by the following 

commonly used equation [2.3-2.4]: 

     
 

  
 

 

  
 .     (2.1) 

(a) (b)
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Here X is a parameter of order 1 [2.5] and k is the force constant between the impurity atom 

and its neighbor. Since isotopic substitutions for both the impurity atom and the nearest 

neighbor host atom can cause frequency shifts in the absorption lines, fine structures detected 

by high resolution measurements can be used to analyze the defect structure and determine 

the neighboring atoms. The power of vibrational spectroscopy for detecting and identifying 

impurity-related structures is well illustrated by a study previously performed in our group by 

Shi et al. [2.6]. This study is also relevant to this work because it investigates properties of 

impurities in a transparent conducting oxide, namely ZnO. 

 Li impurities are known to substitute for Zn in hydrothermally grown ZnO where a Li-

containing solvent is used. Moreover, the strong infrared line at 3577.3 cm-1 in the spectrum of 

hydrogen-containing ZnO (Fig. 2.3) is associated with a OH-Li complex. In addition to this 

strong line, there are other LVMs that give rise to weak absorption lines in the spectrum. In 

Fig. 2.3, the spectrum for deuterium-containing ZnO is shown for comparison. The spectrum of 

the deuterium doped sample shows clearly a frequency shifted partner for the O-H line in the 

hydrogen treated sample. The strong line due to OD-Li has a frequency of 2644.5 cm-1, about 

1.35 times smaller than the frequency for the OH-Li line. If the ratio of the two frequencies is 

calculated using Eqn 2.1 as 

  

  
  

  
 

  
 

 

  
 

  
 

  
 

 

  
 
 

 
  

      
  

  
   ,  (2.2) 

the expected shift is close to   , consistent with the experimental observation.  
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 In addition to the shifts due to the isotopes of hydrogen, the effect of the oxygen 

isotopes, i.e., 17O and 18O with natural abundances of 0.04% and 0.20%, respectively, can also 

be observed in both spectra (Fig. 2.3). While the strong absorption line at 3577.3 cm-1 (2644.5 

cm-1) correspond to the OH-Li (OD-Li) complex with 16O, the weaker absorption lines at 3566.6 

cm-1 (2629.2 cm-1) and 3571.7 cm-1 (2636.4 cm-1) correspond to the same complex with 18O and 

17O, respectively. The intensities of these lines are in good agreement with the natural 

abundances of these isotopes due to the very useful fact that the concentration of the defect 

is proportional to the intensity of the absorption line. 

 More interesting, Li has also two isotopes, 6Li and 7Li, with abundances 7.5% and 

92.5%, respectively, which also affect the spectra. The fine structure due to the two Li isotopes 

could be resolved for the OD-Li line near 2644.5 cm-1 and is shown in Fig. 2.4. Two separate 

lines at 2644.52 cm-1 and 2644.69 cm-1 with relative intensities (0.93:0.07), in very good 

agreement with the natural abundances of the Li isotopes, were discovered with high 

resolution measurements. A similar observation could not be made for the hydrogen-treated 

sample (Fig. 2.4) for two reasons. The OD-Li infrared lines are narrower than the OH-Li lines, 

and the isotope shift due to Li in OD-Li is larger than that in OH-Li. In general, H-containing 

defects typically have broader IR lines than the corresponding D-containing defects, therefore 

study of D-treated samples can give information about hydrogen-related defects that cannot 

be observed in H-treated samples.  
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Fig. 2.3: IR absorption spectra ( 4.2 K) of hydrogen- (a) and deuterium- (b)  treated ZnO 

samples that focus on the OH-Li and OD-Li absorption lines with the three oxygen isotopes 

16O,17O, 18O [2.6]. 
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Fig. 2.4: IR absorption spectra of hydrogen- (a) and deuterium- (b) treated ZnO samples that 

focus on the OH-Li and OD-Li absorption lines with H or D bound to 16O [2.6]. 

The use of polarization properties provides another strategy for analyzing defect 

structures with vibrational spectroscopy. A vibrational mode will be excited only if the incident 

light has an electric vector component in the direction of the oscillating dipole moment. 

Therefore, the use of polarized light can give important information about the orientations of 

the bonds in the defect structure. This perspective will be utilized during the course of this 

study. 

 Finally, the relationship between the strength of the absorption lines and the defect 

concentration should be mentioned. The integrated absorption coefficient (LVM intensity) for 
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a local mode is directly proportional to the defect concentration as is shown by the following 

equation, 

        
    

    
 .     (2.3) 

Here N is the defect concentration per cm-3, q is an effective charge for the mode, σ is the 

wavenumber, and η is the refractive index of the host. Eq. 2.3 can alternatively be expressed 

as 

                 (2.4) 

where A is a calibration factor that can be determined from other methods such as secondary 

ion mass spectrometry (SIMS) or Hall effect [2.7].  

The signal-to-noise ratio for a vibrational spectroscopy measurement depends on the 

concentration of the defect. In other words, there is a minimum defect concentration that can 

be detected by an absorption measurement. Although this minimum value is dependent on 

several parameters, roughly a concentration of 1018 cm-3 in a 1 m thick layer, or 1014 cm-3 in 1 

cm thick sample, can be detected [2.2]. For higher frequency LVMs, such as hydrogen-related 

modes, a lower concentration, near 1017 cm-3 in a 1 m thick layer, is the detection limit [2.2]. 

 2.2 Free Carrier Absorption 

 Free carriers are electrons (holes) that are free to move within the conduction 

(valence) band. These carriers experience no restoring force when displaced by an 

electromagnetic wave. Free carrier absorption occurs when an incident photon excites the 
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electron to a higher energy state within the same band and is proportional to the carrier 

concentration. The phenomenon of free carrier absorption is critically important for this work 

for two main reasons: 1) A high concentration of free carriers give rises to broad continuum 

absorption in the IR frequency range, which is of interest for vibrational spectroscopy of doped 

semiconductors [2.2], and 2) a high concentrations of free carriers can cause high electrical 

conductivity and reduced visible transparency in metal oxides [2.8]. The presence of high free 

carrier densities in doped metal oxides is actually desired to obtain the required electrical 

conductivity, and the wide band-gap structure of these materials prevents interband 

excitations of electrons and hole by visible light to provide an optically transparent material at 

the same time. However, the free carrier absorption which occurs by the excitation of free 

electrons in the conduction band to higher states in the same band is also a limit to the optical 

transparency. These transitions are generally caused by incident photons that have 

substantially lower energy than the band-gap energy, and they occur in an indirect fashion 

which involves changes in both energy and momentum. Fig. 2.5 shows a schematic that 

explains the free carrier transition in a doped semiconductor. A free electron in the conduction 

band that is below the Fermi level is excited to a higher energy above the Fermi level by an 

incident photon. Photons have only very small momentum compared to electrons and some 

other mechanisms such as phonon scattering or scattering from ionized impurities must also 

come into play to conserve momentum. This corresponds to the horizontal transition shown in 

Fig. 2.5, and the electron arrives in an empty state above the Fermi level at the end of the 

process [2.9].  
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Fig. 2.5: Free carrier transition in a doped semiconductor [2.9]. 

 

 Free carrier absorption can be modeled using the Drude theory which was originally 

used for the modeling of free electrons in plasmas. The theory considers the oscillations of the 

free electron induced by the electric vector of an electromagnetic field and finds the free 

carrier absorption coefficient to be [2.9]. 

    
   

 

    
 .                (2.5) 

Here, n is the refractive index, is the momentum scattering time, and wp is the plasma 

frequency given by, 

  
  

   

     
  .              (2.6) 

Here, N corresponds to the carrier density and m* is the effective mass. The plasma frequency 

is important in transparent metal oxide device design because it divides the optical properties 

of the material. At frequencies below wp, the material is highly reflective, whereas the material 

can transmit or absorb light at frequencies above wp. The plasma frequency generally falls in 

the near-infrared region for most of the metal oxides, and therefore transparency is permitted 
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in the visible range unless a high free-carrier density introduces substantial absorption. It 

should be noted that the plasma frequency is proportional to the square root of the free 

carrier concentration, as seen in Eq. 2.6, and a high carrier density can shift this optical limit to 

higher frequencies into the visible range. Combining Eqs. 2.5 and 2.6 yields 

    
   

      
    .    (2.7) 

There is a direct proportionality of the free carrier absorption to the carrier density as seen in 

Eq. 2.7. The free carrier absorption is also proportional to ω-2, meaning that the absorption is 

more pronounced at lower frequencies, particularly in the infrared region where most of our 

defect spectroscopy studies are done. Fig. 2.6  shows a comparison of the transmission spectra 

of a heavily n-doped and an undoped Ge sample [2.10] . The effect of free carrier absorption is 

apparent in the long wavelength region. 
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Fig. 2.6: Transmission spectra of an undoped germanium sample (upper) and a heavily n-

doped germanium sample (lower) [2.10]. 

In conclusion, a good understanding of free carrier absorption in transparent metal 

oxides is useful for determining the sources and level of conductivity and also for defining the 

limits of optical transparency. The free carrier absorption will be frequently revisited in the 

following chapters as we investigate the relationship between the H-related shallow donors, 

and the free carrier concentration caused by these defects.  

2.3 Measurement Technique  

Infrared spectroscopy was used to detect and identify the defects of interest in this 

study by employing a Bomem DA 3.16 FTIR spectrometer. The FTIR spectrometer provides two 

major advantages over traditional prism or diffraction spectrometers; 1) a higher signal-to-

noise ratio, 2) capability of obtaining a spectrum with broad frequency range in a single 
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measurement. While the former enables higher resolution measurements, the latter is 

especially important for time efficiency and is possible through the use of a Michelson 

interferometer. 

 The Michelson interferometer shown in Fig. 2.7 is an optical component of a FTIR 

spectrometer and works as follows. A light beam from an infrared source reaches the beam 

splitter and is divided into two equal components as shown in the figure. The first component 

travels towards a fixed mirror and is reflected back to the beam splitter. The second 

component of the beam, on the other hand, is directed towards a movable mirror and is 

reflected back to the beam splitter. The two beam components interfere with each other at 

the beam splitter and the re-combined beam moves towards the sample. The light transmitted 

from the sample is then collected by a detector. 
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Fig. 2.7: Optical configuration of a Michelson interferometer. 

The Michelson interferometer enables study of the absorption of light at different 

frequencies in a single measurement by the following principle. First, consider a 

monochromatic light source and the case with no sample. The intensity of the output from the 

beam splitter is determined by the position of the moving mirror, or in other words, the optical 

path difference between the two components of the split beam. For example, if the optical 

paths defined by the fixed and movable mirrors are the same or differ by an integer multiple of 

the light wavelength, the components interfere constructively to yield a maximum detector 

signal. Conversely, when the movable mirror is positioned such that the optical path difference 

is an integer multiple of half of a wavelength, the components interfere destructively and the 

detector records a minimum signal. When the movable mirror scans with a constant speed, 
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the detector records a cosine wave due to a continuous cycle of constructive and destructive 

interferences (Fig. 2.8 (a)). The intensity recorded by the detector is given by  

     
 

 
                  (2.8) 

Here B is the intensity of the incoming light, x is the optical path difference, and v is the 

frequency. The Fourier transform of the cosine wave gives the spectrum, in this case, a single 

sharp line. 

If a slightly different, second frequency is also introduced into the interferometer, the 

detector recording turns into a beating pattern as seen in (b). For polychromatic sources that 

include many frequencies, the interferogram recorded by the detector is the sum of many 

cosine waves with different amplitudes and periods and will take a more complicated shape, 

as shown in Fig. 2.8 (c). Again, the Fourier transform reveals the spectrum of the incident 

beam. 
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Fig. 2.8: Interferograms (left) and corresponding Fourier transformed spectra (right) for (a) a 

single frequency, (b) two close frequencies, and (c) a number of frequencies [2.11]. 

(a)

(c)

(b)
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Fig. 2.9: Interferogram (left) and corresponding Fourier transform spectrum (right) measured 

in our equipment with no samples. 

In FTIR spectrometers, an IR light with a continuum of frequencies is used as a source. For this 

case, the interferogram which is shown in Fig. 2.9 is mathematically expressed by an integral 

     
    

 
                
 

  
    (1.9) 

The largest signal in the interferogram seen in Fig. 2.9 corresponds to the constructive 

interference of all the light coming from the source, which occurs only at the zero path 

difference (ZPD) position. Immediately around the ZPD location, the signal quickly decreases to 

a steady state value and little information can be directly obtained by looking at the 

interferogram. However, a Fourier Transform can be applied to obtain the original spectrum 

which contains information about the light source, optical elements of the equipment and the 

detector. The transform can be written as  
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The raw spectrum, obtained by the transform of the interferogram shown in Fig. 2.9, is given 

in the same figure, next to the interferogram. By using a source of continuous frequencies, a 

continuous broad spectrum of frequencies is obtained in a single measurement. Up to this 

point, no sample was considered in the system, so that the overall shape of the spectrum 

corresponded to the response of elements of the equipment, such as the photodetector. 

Therefore, it is nearly the same for every measurement using the same set-up. Environmental 

effects such as oil, CO2 and water vapor present in the system can slightly modify the shape of 

the spectrum, as shown in Fig. 2.9. 

 Up to this point, no sample was considered in the measurement system and the 

response of the equipment was discussed. When a sample is placed and the spectrum with the 

sample is obtained, it can be compared with the reference spectrum, i.e. the spectrum 

corresponding to the “no-sample” condition, in order to cancel out the equipment response 

and the effects of background features. Therefore, in the ideal situation, the net spectrum 

corresponds solely to the chemical structure of the sample. A reference and a sample 

spectrum are given together in Fig. 2.10. The sample spectrum can then be divided by the 

reference spectrum to find the transmittance of the sample.  More often, the absorbance is 

used, and it can be determined by taking the –log10 of the transmittance. The absorbance 

spectrum of the sample is shown in Fig. 2.10 and the peaks corresponding to some defects in 

the sample are shown in more detail in the inset. These peaks, seen at the interval 3150 cm-1 -

3400 cm-1, actually correspond to O-H related defects in SnO2, which will be an important 

subject of interest and treated in detail in Chapter 3. 
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Fig. 2.10: (a) Spectrum obtained from a sample in comparison to a “no-sample” reference 

measurement, (b) absorption spectrum of the sample (hydrogen-treated SnO2), inset spectrum 

focusing on the O-H absorption lines. 

2.4 Instrumentation 

Measurements in this study were performed with a Bomem DA 3.16 FTIR 

spectrometer. The spectrometer is controlled by a computer via a PCDA3INT VAX interface and 

the data acquisition is performed by the use of the Bomem PCDA data acquisition software, 

which allows the user to select and modify experimental parameters and collect data. The Fast 

Fourier Transform is performed with the interface computer and the transformed data is sent 

back to the computer for analysis with the Bomem GRAMs/32 software. Peak Fit v4 and Origin 

8 are the other software packages used in this study for data analysis, plotting and curve fitting 

purposes. 
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Fig. 2.11: The optical configuration of Bomem DA 3.16 spectrometer [2.12]. 
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The schematic configuration of the Bomem spectrometer is shown in Fig. 2.11. A 

silicon carbide globar (mid-IR) and a quartz halogen lamp (near IR-visible) are the two available 

light sources which cover different ranges of frequencies. In this study, we mainly used the 

silicon carbide globar source since the mid-IR frequency range was of interest for our studies. 

The light from the source passes through a six-position rotary filter and an iris which has 

different diameter settings between 0.5 - 10 mm. PCDA software is used to select the desired 

aperture and filter type and to communicate with the set-up. Then the light is reflected from a 

flat mirror and transferred to the beam splitter. Two types of beam splitters were available to 

cover different frequency ranges; a KBr beam splitter coated with Ge/ZnSe for the 450 cm-1 -

5000 cm-1 range and a quartz beam splitter coated with TiO2 for the 4000 cm-1 -27000 cm-1 

range. The 10 cm diameter KBr beam splitter was primarily used in this study. As discussed 

previously, the light is split by the beam splitter and the components are re-combined after 

being reflected back either from a fixed or a moving mirror. Then the light is focused on the 

sample, a set of off-axis paraboloid mirrors, and finally to the photodetector. Liquid N2-cooled 

InSb detectors which measure IR absorption in the range 1800 cm-1 - 8000 cm-1 were used in 

the experiments. Two other types of detectors, namely a HgCdTe (MCT) photodiode and a Si 

bolometer, were available to cover different frequency ranges; 800-5000 cm-1 and 350-2500 

cm-1 respectively. 

Most of the infrared absorption measurements were performed at liquid He 

temperatures in order to reduce the thermal vibration of the host crystal lattice. The sample 

was placed inside one of two available cryostats. The first one is an Air Products Heli-Tran 

cryostat equipped with either a CaF2 or CsI window [2.13]. This is a continuous flow, cold-

finger cryostat and is easy to operate. This cryostat was used in our studies of SnO2. The 
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second cryostat is an Oxford CF1204 model, which is also a continuous flow cryostat that cools 

the sample space with He exchange gas. A schematic of this cryostat is given in Fig. 2.12. This 

cryostat provides a design that separates the vacuum layer and the sample chamber, which 

speeds up the transition between consecutive experiments using different samples. The 

cryostat has a six window configuration which includes 2 outer vacuum case windows and 2 

inner-sample cold windows. The remaining 2 are the radiation shield windows between the 

outer vacuum and inner sample windows and are cooled by thermal contact with the cold 

shield. Therefore, the temperature in the sample chamber is protected from the effect of 

black-body radiation from the room temperature environment. The major advantage of this 

cryostat for our studies is its very good temperature stability (within ± 0.1 K [2.14]). So this 

cryostat was preferred especially for our TiO2 experiments which involve repeated 

measurements with temperature steps as small as 0.5 K. The accuracy and stability of the 

temperature control were the key factors for this set of experiments. 

The vacuum in IR spectroscopy is needed mainly to minimize the effects of background 

features, such as the absorption of light by water vapor, CO2 and oil. Separate pumps are used 

for generating the vacuum in the spectrometer (a mechanical pump) and in the cryostat (a 

turbo pump). Liquid nitrogen cold traps inside the spectrometer and also on the turbo pump 

vacuum line are used to further reduce the absorption arising from water vapor, oil, and CO2. 
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Fig. 2.12: Illustration of Oxford CF1204 cryostat [2.14]. 
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Chapter 3 

FTIR Spectroscopy of O-H and O-D Centers in SnO2 

 

   3.1 Introduction 

Tin oxide (SnO2) is one of the conducting metal oxides that shows great potential for 

use as a large gap semiconductor. It has a band gap of 3.6 eV [3.1] and a rutile structure as 

shown in Fig. 3.1. For this structure, there are six neighboring oxygen atoms for each Sn 

atom, and also each oxygen forms a plane with its three Sn neighbors. The c-axis of the 

structure is normal to one of the O-Sn bonds, while the other two bonds make angles of 

39.3° and 140.7° with the c-axis [3.2]. SnO2 has been used in many technological 

applications for many years, for example as a transparent conductor for various electronic 

devices [3.1, 3.3-3.4], a oxidation catalyst [3.1] and a gas sensor [3.5-3.6]. 

 

Fig. 3.1: Rutile lattice structure of SnO2 [3.7].  
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 The source of conductivity in SnO2 and other similar transparent metal oxides is an 

active research subject because understanding these sources of conductivity would lead to 

optimal benefits from this emerging class of semiconductors. Previously, native defects such as 

oxygen vacancies and cation interstitials have been suggested to be the source of n-type 

conductivity [3.8-3.11]. However, recently, both theory [3.12-3.16] and experiments [3.17-

3.19] have suggested that hydrogen within these crystals may act as sources of electrical 

conductivity. For example, hydrogen is known to give rise to shallow donors and is proposed to 

be an important source of n-type conductivity in ZnO. Interstitial H (Hi) and H at an O vacancy 

(HO) both have been predicted to be shallow donors in ZnO [3.12-3.13, 3.17, 3.19-3.20]. 

 Recent theory suggests that a similar situation may also exist for SnO2. Theory predicts 

that native defects are unlikely to be the major source of conductivity [3.15] and that 

hydrogen defects can act as shallow donors. Also similar to ZnO, both Hi and HO have been 

suggested to be donors in SnO2. Illustrations of the Hi and HO configurations in SnO2 are shown 

in Fig. 3.2 (a) and (b), respectively. Near room temperature, Hi in SnO2 is predicted to be 

thermally unstable [3.15], similar to Hi in ZnO [3.20] which has an O-H vibrational line at 3611 

cm-1 [3.21]. On the other hand, HO is more thermally stable as predicted for SnO2 [3.15] and as 

shown for ZnO [3.13, 3.20]. Clearly, there is a strong analogy between the hydrogen behavior 

in ZnO and SnO2. In this chapter, IR vibrational spectroscopy will be used to investigate 

hydrogen related defects and their effects on the electrical properties of SnO2. Our 

experimental strategy is based on previous findings for ZnO and also the theoretical results 

and limited experimental data for SnO2. 
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 Thermal treatments in different ambients are known to have strong effects on the 

behavior of hydrogen- related defects. For instance, annealing SnO2 in a hydrogen-containing 

ambient gives rise to strong n-type conductivity and generates a number of O-H absorption 

lines [3.22-3.26]. A recent study confirmed the increased conductivity upon annealing SnO2 in 

hydrogen and assigned the vibrational lines that were generated to Hi and two different 

complexes of H with a Sn vacancy [3.27]. These two possible H-VSn configurations are shown in 

Fig. 3.2 (c) and (d). In the same study, some H in SnO2 was determined to be undetectable by 

IR spectroscopy or “hidden”, including HO centers whose vibrational line is suggested to be in a 

spectral region where the sample is opaque.  

 Annealing ZnO in H or D also generates some differences in its IR spectra. For instance, 

Hi decays upon annealing while H2 molecules are formed. These molecules provide a hydrogen 

reservoir in ZnO that can be partially converted back to Hi by further thermal treatments [3.28-

3.30]. These results show that there is an inter-conversion reaction between Hi and H2 

molecules driven by thermal treatments that make the conductivity of ZnO highly sensitive to 

thermal history. Therefore, since HO is thermally more stable and will not decay until annealing 

at around 500°C, it is believed that HO is the hydrogen-related source of conductivity in as-

grown ZnO samples. In this chapter, IR spectra obtained for SnO2 will be evaluated in the light 

of information available for ZnO and its hydrogen behavior after various thermal treatments. 

Furthermore, the diffusion characteristics of Hi and HO are different in ZnO; Hi diffuses rapidly 

through the bulk of material that is a few millimeters thick and HO is only found in the near 

surface region [3.20]. The differentiation of these defects will be attempted for SnO2. It should 
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be noted that both Hi and HO can be introduced in ZnO and SnO2 by annealing in an H2 ambient 

at elevated temperatures as will be performed in this study.  

 

 

Fig. 3.2: Configurations of several H-related defects in SnO2. (a) Interstitial hydrogen (Hi). (b) 

Hydrogen at an oxygen vacancy (HO). Two possible structures of the VSn-H complexes in SnO2 

are shown: (c) H bonded to one of the Sn vacancy’s axial O atoms and (d) H bonded to one of 

the Sn vacancy’s equatorial O neighbors. The transparent atom corresponds to the VSn site. 

Gray (black) dashed lines correspond to the axial (equatorial) bonds.[3.27]   
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 The polarization properties of the vibrational absorption arising from O-H centers in 

SnO2 that are produced by thermal treatments will be investigated. Referring to Fig. 3.1, it can 

be seen that the normal to the plane of O and its three Sn neighbors is itself normal to the c-

axis. The unique configuration of the Sn-O bonds with the above mentioned angles to the c-

axis allows IR polarization experiments to provide additional information on the microscopic 

O-H defect structures in SnO2. 

 This chapter reports on our IR vibrational spectroscopy study of hydrogen related 

impurities in SnO2. By interpreting these results and comparing them to ZnO, we have 

obtained a good understanding of hydrogen centers in SnO2, how they are formed and 

affected by thermal treatments, and their relationship to free carriers that are introduced by 

hydrogen. Moreover, we have performed a polarization study that reveals the O-H bond 

angles that are formed and also helps to assign defect structures to specific IR lines. 

3.2 Experimental Procedures 

Hydrogen impurities in SnO2 have been analyzed experimentally using vibrational 

spectroscopy. Rutile phase, bulk single crystal SnO2 samples were prepared and used in our 

experiments. These samples had been grown at Oak Ridge National Laboratory by the vapor 

transport method with H2 carrier gas [3.31], which caused OH centers to be present even in  

as-grown samples.  In order to introduce additional deuterium or hydrogen into the samples 

for our measurements, as-grown samples were placed in sealed quartz ampoules with 2/3 atm 

of D2 or H2 gas at room temperature and then annealed at elevated temperature. The 

treatments in D2 or H2 were terminated by quenching the ampoule to room temperature in 
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water to complete the annealing treatment. H2 and D2 treatments gave rise to an opaque layer 

of Sn at the sample surface which was removed by lapping with silicon carbide (280 and 600 

mesh grit) and polishing with aluminum oxide powder (3.0 micron) and diamond paste. 

IR absorption spectra were measured with a Bomem DA3.16 Fourier transform infrared 

spectrometer that was outfitted with an InSb detector and a KBr beam splitter. Light was 

polarized with a wire grid polarizer that was placed after the sample. O-H and O-D vibrational 

stretching modes for SnO2 samples were measured at liquid He temperature (4.2 K). The 

samples were cooled with a Helitran, continuous-flow cryostat. IR spectra of the free carrier 

absorption were measured for SnO2 samples at room temperature to provide a contact-free 

method to probe the free carrier concentration that is convenient for annealing experiments. 

  The subsequent anneals were performed in a tube furnace in a flowing inert gas (He) and 

terminated by quenching the sample in water in order to examine the reactions and thermal 

stabilities of OH and its OD isotope. The SnO2 samples used in our studies were stored in liquid 

N2 (at 77 K) between measurements since the OH (OD) lines and free carrier absorption are 

not thermally stable for long storage times at room temperatures. However, a few of our 

samples were intentionally stored at room temperature to probe the thermal stabilities of the 

various hydrogen centers. 

3.3 Experimental Results 

3.3.1 IR Spectra 

        In our first experiment, SnO2 samples that contained H, D, or both H and D were studied 

using polarized light with electric vector perpendicular to the c-direction. Fig. 3.3 shows IR 
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spectra (4.2°K) of five specimens with different annealing conditions: (i) as grown sample, (ii) 

annealed in He at 500°C for 30 min and quenched rapidly in D2O, (iii) annealed in D2 at 700°C 

for 30 min (after pre-annealing in He at 1100°C for 5 hours to remove hydrogen from the as 

grown sample), (iv) annealed in an H2 ambient at 700°C for 30 min, (v) annealed in a D2 

ambient at 700°C for 30 min. In spectra (iii), (iv), and (v), SnO2 samples were placed in sealed 

quartz ampoules containing H2 or D2 gas at 2/3 atm at room temperature and annealed in a 

tube furnace. Each annealing treatment was terminated by quenching the ampoule in water to 

room temperature except for the experiment in Fig. 3.3 (ii). On the right side of Fig. 3.3, 

baseline corrected spectra focusing on the O-H absorption lines are also shown. 

 As seen from spectrum (i), the as-grown samples have hydrogen centers (a strong O-H 

line at 3261.5 cm-1 and weaker lines at 3258.0 and 3272.0 cm-1) which do not give rise to 

electrically active shallow donors. Simply annealing the as-grown sample in He and subsequent 

quenching in D2O produced an additional O-H line at 3156.0 cm-1 in spectrum (ii) and the 

optical transparency of the sample was not changed. D2O was used to make sure that the 

quenching liquid was not the source of H. Annealing SnO2 at 300°C and 700°C in a flowing He 

ambient also introduced the 3156.0 cm-1 line but with reduced intensity. Spectra (i) and (ii) are 

shown without baseline corrections. The spectra for annealing treatments at 300°C and 700°C 

in a He ambient also had flat baselines.  

      When a similar annealing procedure was performed in H2 (spectrum (iv)), the 3156.0 

cm-1 line was also introduced with a higher intensity, as well as additional lines at 3281.8, 

3334.2, and 3343.2 cm-1. This treatment also gave rise to broad low frequency absorption, i.e., 

the steeper slope of spectra seen at low frequency, due to the introduction of free carriers 
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[3.32], similar the results obtained by annealing ZnO in an H2 ambient [3.29, 3.33-3.34]. 

Annealing in D2 (spectrum (v)) produced several O-D lines that are frequency shifted partners 

of the O-H lines along with broad absorption due to free carriers.  

 The frequencies of the O-H and O-D lines and their ratio are listed in Table 3.1 .The 

ratios of H to D mode frequencies have values close to 1.34 which is consistent with their 

assignment to O-H and O-D stretching. 

  Interestingly, the O-H line spectrum that was observed in spectrum (iv) (i.e., by 

annealing in an H2 ambient) was also produced by annealing in D2. This result can be attributed 

to the interaction of hydrogen that was already present in our samples with native defects that 

were introduced by the heat treatment. This result is reinforced by spectrum (iii). For 

spectrum (iii), an as-grown sample was pre-annealed at 1100°C for 5 hours in a flowing He 

ambient to remove all of the hydrogen introduced during crystal growth. After removing 

hydrogen from the as-grown sample, the sample was annealed in a D2 ambient for 30 min at 

700 °C.  Only deuterium centers were then produced, unlike the result shown in spectrum (v) 

which has both O-H and O-D centers together. Note that free carrier absorption was observed 

in cases (iii), (iv), and (v), in increasing order.  
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Fig. 3.3: IR absorption spectra of SnO2 annealed in different ambients and at different 

temperatures for 30 min at 4.2°K and with a resolution = 1 cm-1. The figure on the left shows 

the free carrier absorption and the figure on the right has been baseline-corrected to focus on 

the IR absorption lines in the O-H stretching region. An empty sample holder was used as the 

reference. 
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ωH (cm-1) ωD (cm-1) r (ωH/ ωD) assignment I// / I 

3156.1 2360.4 1.337 Hi 0 

3258.1 ----- ----- O-H 0 

3261.5 2425.7 1.345 O-H 0 

3272.0 2432.6 1.345 O-H 0 

3281.8 2438.5 1.346 O-H 0 

3281.8 2446.9 1.341 O-H 0.5 

3299.9 2451.3 1.346 O-H 0 

3334.2 2477.5 1.346 (O-H)2 1 

3343.2 2483.8 1.346 (O-H)2 0 

 

Table 3.1: Frequencies of O-H and O-D vibrational modes observed for an SnO2 sample that 

had been annealed in H2 or D2 gas.  The ratio r of the O-H and O-D line frequencies and the 

polarization ratio I// / I for the various lines are also shown. 

  Annealing in H2 and D2 ambients made the sample partially decompose and damaged 

the sample surfaces. These treatments introduced an opaque layer of Sn on the surface of the 

samples with a thickness of about 0.05 mm that was removed by lapping and polishing. 

Moreover, the deuterium treated sample shown in Fig. 3.3 (v) was mechanically thinned in 

several steps from each side. The thinning process was started with an initial thickness of 0.5 

mm and ended at 0.2 mm. After each thinning step, an IR spectrum was measured in order to 

determine whether the O-H and O-D lines and free carriers were located at the damaged 

sample surface or throughout the sample bulk. Spectra of the O-H and O-D absorption lines 

and for the free carrier absorption measured after each step thinning are shown in Fig. 3.4. 

The O-H and O-D IR lines along with the free carrier absorption were reduced uniformly as the 
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sample was thinned so as to keep the absorption coefficient approximately constant.  These 

results show that the O-H and O-D defects and the free carrier absorption come from defects 

distributed throughout the sample’s initial 0.5 mm thickness. 

 

Fig. 3.4: IR absorption spectra (resolution=1cm-1) for an SnO2 sample that had been annealed 

in a D2 ambient at 700°C for 30min. The sample was subsequently thinned in several steps 

from both sides, and measured with polarized light with Ec. (a)(baseline corrected) focused 

on the IR absorption lines seen in the O-H and O-D stretching regions and measured at 4.2°K . 

(b) Free carrier absorption measured at RT for each thinning step. An empty sample holder 

was used as the reference. 



53 
 

3.3.2 Polarization Properties 

Fig. 3.5 shows the results for a SnO2 sample that had been annealed in an H2 ambient at 

700°C to produce O-H centers and subsequently annealed at 100°C in a He ambient to increase 

the relative intensities of the 3281.8, 3334.2, and 3343.2 cm-1 lines. IR spectra for this sample 

were measured using light with two different polarizations: parallel and perpendicular to the c-

direction of the rutile structure. O-H lines at 3156.1, 3261.5, and 3343.2 cm-1 were all polarized 

perpendicular to the c-direction meaning that the O-H bonds for these defects lie in the a-b 

plane of the rutile structure while the line at 3334.2 cm-1 was polarized parallel to the c-

direction. Moreover, the line at 3281.8 cm-1 had components in both directions.  Surprisingly, 

the intensity of the O-H line at 3281.8 cm-1 and its dependence on polarization have been 

found to depend also on the prior annealing treatment of the sample.  

 Treating a SnO2 sample in a D2 ambient (at 700°C for 30 min.) gives rise to both H- and D- 

containing centers together. Fig. 3.6 presents spectra for both the H and D centers for an       

as-treated and subsequently annealed sample (at 150°C for 30 min. in He flowing ambient) to 

examine the polarization properties of the lines and their annealing behavior. In the O-D 

region near the frequency 2400 cm-1 for Ec, the 2360.4, 2425.7, 2432.6, and 2451 cm-1 lines 

are seen in Fig. 3.6 (a), and for the O-H region [Fig. 3.6 (b)], these lines correspond to  the 

3156.1, 3261.5,3272.0, and 3299.9 cm-1 lines respectively, as shown in Table 3.1.  The O-D line 

at 2446.9 cm-1 shows absorption for both the Ec and E//c polarizations, with an intensity 

ratio of I///I = 0.5. The subsequent annealing of the sample at 150°C in He increases the 

intensity of most of the lines. For example, the intensity of the 2438.5 cm-1 line grows 

substantially for Ec after annealing in He. 
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         In order to understand the unusual behavior of the line at 3281.8 cm-1 upon annealing, 

the O-H and O-D regions in Fig. 3.6 are examined and compared for both polarizations. The 

intensity ratio, I///I, for the line at 3281.8 cm-1  is around 0.5, which is similar to the ratio of 

corresponding O-D line at 2446.9 cm-1, in the as-treated sample. After annealing at 150°C,  the 

3281.8 line for the polarization Ec grows in intensity more than the same line for the 

polarization E//c .The intensity ratio, I///I, is decreased to around 0.3. On the contrary, in the 

O-D range upon with annealing, the intensity of the 2446.4 cm-1 line is increased slightly for 

both polarizations. This is a different behavior than that of the 3281.8 cm-1 line which grows in 

intensity primarily for Ec. We note that the 2438 cm-1 line in the OD range grows 

substantially in intensity for Ec. This comparison upon annealing shown in Fig. 3.6 (a) and (b) 

reveals that the lines at 2438.5 and 2446.4 cm-1, that are separate in the O-D spectrum, have 

isotopic partners in the O-H spectrum that lie at the same frequency, 3281.8 cm-1.  The 

coincidence of two O-H modes with different polarization properties and annealing behaviors 

explains the unusual changes in the ratio I///I for the 3281.8 cm-1 line upon annealing. 
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Fig. 3.5: IR absorption spectra of SnO2 annealed in an H2 ambient at 700°C for 30 min and 

subsequently annealed in a He ambient at 100°C for 30 min.  Spectra were measured with 

polarized light with electric vectors both perpendicular and parallel to the c-axis at 4.2°K and 

resolution = 1 cm-1. 
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Fig. 3.6: IR absorption spectra (T=4.2° K, resolution=1 cm-1) measured for light polarized with 

electric vector Ec (upper) and with E//c (lower).  D was introduced by an anneal (30 min) in 

D2 gas at 700 °C for the “as-treated” sample.  The sample was subsequently annealed (30 min) 

at 150 °C in a He ambient.  (a) the O-D stretching region.  (b) the O-H stretching region.  The 

line at 3261.5 (2425.7) was truncated so that weaker lines in the spectrum could be seen more 

clearly. 

           In our experiments with polarized IR light, additional O-H and O-D lines show interesting 

behavior upon annealing. When deuterated or hydrogenated samples are annealed near 

100°C or 150°C in He as seen in Fig. 3.5 and Fig. 3.6, the intensities of the lines at 3334.2 and 
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3343.2 cm-1, which are very weak in as treated samples, increase. However, only in a 

deuterated sample, the line at 3339.0 cm-1, which is not present in an as-treated sample, 

grows in intensity upon annealing. These three lines have distinctive polarization properties: 

the line at 3334.2 cm-1  has a component only for E//c, and the line at 3343.2 has a  component  

only for Ec. The 3339 cm-1 line is seen in both polarizations. For the O-D range, the 

corresponding lines have the same annealing and polarization properties. The line at 2477.5 

cm-1 is seen for E//c, and the lines at 2483.8 cm-1 is seen for Ec. The line at 2479.7 cm-1 is seen 

for both polarizations. 

           Studies performed by Hlaing Oo et al. [3.27] reached different conclusions than the 

results discussed above. Absorption for only the Ec polarization was reported for the O-H and 

O-D centers in SnO2. Moreover, the lines at 3334.2 and 3343.2 cm-1 were seen only weakly in 

the spectra reported by Hlaing Oo et al. and were not examined in their studies [3.27]. 

3.3.3. Annealing Behavior 

            The thermal stabilities of the free carrier absorption and also the various O-H and O-D 

centers were examined in another set of experiments. Free carrier absorption spectra, 

measured at room temperature, for a hydrogenated SnO2 sample that was subsequently 

annealed at various temperatures in a He ambient prior to each measurement are shown in 

Fig. 3.7 (a). At the end of each annealing treatment, the sample was quenched rapidly in water 

to room temperature. Fig. 3.7 (b) shows the difference of the absorption coefficients at 2000 

and 4000 cm-1, which was taken as a measure of the strength of the free carrier absorption vs. 

the annealing temperature. The free-carrier absorption shows an interesting dependence on 
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the annealing temperature. The plot in Fig. 3.7 (b) shows an approximately 25% decrease in 

the free carrier absorption at around 100-150°C, which recovered at around 200°C. The free 

carrier absorption also decayed almost completely after an anneal at 650°C. 

 

Fig. 3.7: IR absorption spectra for SnO2 annealed in an H2 ambient at 700°C for 30 min with a 

selection of subsequent annealing treatments in a He ambient  for 30 min at the temperatures 

shown. (a) The free carrier absorption spectra for different annealing temperatures. (b) 

Difference in the absorption coefficients measured at 2000 cm-1 and 4000 cm-1 vs. the 

annealing temperature. The spectrum of SnO2 annealed subsequently at 900°C for 30 min to 

remove H (measured at room temperature with a resolution = 1 cm-1) was used as a reference 

for these data.    
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           Fig. 3.8 shows IR spectra from the same experiments but measured at 4.2°K. The spectra 

are focused on the O-H absorption lines. A baseline correction has been made remove the 

absorption due to free carriers to help observe the individual line changes upon annealing. To 

investigate the annealing behavior in more detail, the areas of the individual absorption lines 

determined by fitting the spectra with sums of Lorentzian line shapes (by using Peak Fit v4 

software) are plotted vs. the anneal temperature in Fig. 3.9 (a) and (b). A replica of Fig. 3.7 (b) 

is also presented as Fig. 3.9 (c) for comparison purposes. It is seen in Fig. 3.9 that upon 

annealing at 150°C, the intensity of the 3156.1 cm-1 line was decreased while the intensities of 

several of the other lines (3281.8, 3343.2, 3281.8, and 3334.2 cm-1) was increased. After 

annealing at 200°C, the 3156.1 cm-1 line recovered while several of the other lines lost 

intensity. Then, upon annealing at 650°C, the majority of the 3156.1 cm-1 line intensity was 

eliminated.  
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Fig. 3.8: Baseline corrected IR absorption spectra (T=4.2° K, resolution=1 cm-1) for SnO2, 

focused on the IR absorption lines in the O-H stretching region.  The sample was first annealed 

(30 min) at 700 °C in H2 gas to introduce H.  This anneal was terminated by a quench to room 

temperature in water.  The sample was then sequentially annealed (30 min) in a flowing He 

ambient at the temperatures shown.  Anneals were terminated by a quench to room 

temperature in water. (a) measured with polarized light with Ec (left). (b) measured with 

polarized light with E//c (right). An empty sample holder was used as the reference. 
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Fig. 3.9: Spectra for a SnO2 sample annealed in an H2 ambient at 700°C for 30 min and 

subsequently annealed in a He ambient at different temperatures for 30 min. Panels (a) and 

(b) show the integrated absorption coefficients for the IR lines at the frequencies indicated vs. 

annealing temperature. Open and closed circles in panel (a) and open and closed squares in 

panel (b) are for Ec.  Open and close triangles in panel (b) are for E//c.  Panel (c) shows the 

difference in the absorption coefficients due to free carriers measured at 2000 cm-1 and 4000 

cm-1 vs. the annealing temperature. 
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           Finally, an experiment to investigate the effects of room temperature storage was 

performed for a total of 108 days. Free carrier absorption spectra and baseline corrected IR 

spectra showing the O-H lines that had been measured at various times are plotted in Fig. 3.10 

(a) and (b), respectively. Also, results are shown for a final measurement when the sample, at 

the end of the 108 day period, was re-annealed at 500°C in flowing He for 30 min and 

quenched rapidly. In order to examine the behavior of the individual O-H lines upon annealing 

at room temperature, the intensities of the lines are plotted versus the (room temperature) 

annealing time in Fig. 3.11 (a) and (b). Moreover, the strength of the free carrier absorption for 

the as-grown sample, the hydrogenated sample, and the sample annealed in He after a long 

time room temperature annealing are shown in Fig. 3.11 (c). The free carrier absorption 

decreased up to 65 days and by an amount of nearly 35% compared to the as-treated sample, 

whereas, after that, no significant change occurred. Similarly, the intensity of the 3156.1 cm-1 

line decreased during the first 65 days and was nearly eliminated. Over the same time period, 

the intensity of the 3261.5 cm-1 line also decreased by 24% while the intensities of the lines at 

3281.9 and 3343.2 cm-1 were increased. The re-annealing procedure in a He ambient at 500°C 

recovered the free carrier absorption, brought back the lines at 3156.1 and 3261.5 cm-1, and 

almost eliminated the lines  at 3281.9 and 3343.2 cm-1. Furthermore, the total intensity of all 

of the O-H lines was found to be nearly constant for the various spectra shown in Fig. 3.10 and 

Fig. 3.11, that is, for the as-treated sample, following the subsequent storage times at room 

temperature, and following heat treatment at 500 °C.  These results suggest that the various 

O-H centers have IR lines with similar oscillator strengths and that these centers can be inter-

converted into one another by the appropriate thermal treatments. 
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Fig. 3.10: IR absorption spectra for SnO2 annealed in an H2 ambient at 700°C for 30 min and 

subsequently stored at room temperatures for the times that are indicated. Spectra were 

measured at 4.2°K with a resolution = 1 cm-1. (a) shows the free carrier absorption for the 

different storage times. (b) baseline-corrected spectra that focuses on the IR absorption lines 

in the O-H stretching region. Spectra were measured with polarized light with E perpendicular 

to the c-axis. An empty sample holder was used as the reference. 
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Fig. 3.11: The sample was SnO2 annealed in a H2 ambient at 700°C for 1h. and subsequently 

annealed at room temperature for the times that are indicated. Spectra were measured at 

4.2°K with a resolution = 1 cm-1 for Ec polarization. The same sample was subsequently 

annealed in a He ambient at 500°C for 30 min. Panels (a) and (b) show the integrated 

absorption coefficients for the IR lines at the frequencies indicated vs. the storage times at RT  

that are indicated. Panel (c) shows the difference in the absorption coefficients due to free 

carriers measured at 2000 cm-1 and 4000 cm-1 vs. the storage times at RT for an as-grown 

sample, an H2- treated sample, and a subsequently annealed sample in a He ambient. 
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3.4 Discussion 

3.4.1 Production and thermal stability of H-related shallow donors 

 We have seen that hydrogenating SnO2 samples at 700°C introduces a number of O-H 

vibrational lines along with free carrier absorption as shown in Fig. 3.3 and Fig. 3.7, similar to 

the results of Hlaing Oo et.al. [3.27]. To produce the spectra in Fig. 3.7 (a), a reference 

spectrum, measured for the same SnO2 sample following a final anneal at 900°C for 30 mins in 

He ambient to remove H , was subtracted from the IR data. Therefore, hydrogen is the main 

cause for the free carrier absorption shown in Fig. 3.7 (a). Because SnO2 and ZnO have similar 

electron masses and mobilities [3.35-3.37], the calibration of the free carrier absorption 

determined previously for ZnO annealed in an H2 ambient [3.29, 3.33-3.34] can be applied 

approximately  to the free carrier absorption spectra  presented in Fig. 3.7 for the 

hydrogenated  SnO2 sample measured at room temperature.  In order to determine the 

calibration of the free carrier absorption for hydrogenated ZnO, Hall measurements were 

performed by S. J. Pearton’s group at the University of Florida in an earlier collaboration with 

our group [3.29]. The concentration of the free carriers is proportional to the absorption 

coefficient at a given frequency [3.33-3.34]. Thus, the absorption coefficient at 2000 cm-1 was 

taken as a measure of the free carrier absorption [3.29]. A calibration of the free carrier 

absorption coefficient at 2000 cm-1 was given by G. A. Shi et. al. [3.29, 3.39] for hydrogenated 

ZnO as  

                                   Nfc = 9.3 x 1015 cm-2 α(2000 cm-1)                                                                     (3.1) 
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By applying this approximate calibration to hydrogenated SnO2 samples, the free-carrier 

absorption shown in the “as-treated” spectrum in Fig. 3.7 corresponds to an electron 

concentration of  ≈1x1018 cm-3.  This result is in agreement with the early results of Samson 

and Fonstad [3.22]. In their studies, the hydrogenation of   different SnO2 samples (at 900°C) 

gave rise to shallow donors with concentrations between 9.8x1017 and 8x1018 cm-3, and they 

suggested that H was the shallow donor [3.22]. 

 Hydrogenation or deuteriation of SnO2 samples gives rise to the strong free-carrier 

absorption and shallow donors with a concentration of approximately 1018 cm-3. In order to 

understand if a large concentration of donors is produced only for the sample annealed in an 

H2 or D2 ambient, we examined the free carrier absorption for SnO2 samples annealed in a He 

ambient as shown in Fig. 3.3 and Fig. 3.7. We found that these samples had at least 5 to 10 

times smaller donor concentrations than was observed for hydrogenated SnO2 samples. 

 From the results of annealing and room temperature storage experiments shown in 

Fig. 3.7 and Fig. 3.7, it can be seen that the observed thermal stabilities point to the presence 

of at least two H-related donors in SnO2. The reduction of the free carrier absorption at around 

100°C [Fig. 3.7 (b)] suggests that there is a donor species that is not thermally stable at this 

temperature. Furthermore, a more thermally stable species is seen to be responsible for the 

free carrier absorption that disappears at 650°C. The results for a long storage time at room 

temperature [Fig. 3.10 (a)] also support this conclusion since the free carrier absorption of a 

hydrogenated sample is reduced significantly (by 35 %)  after 65 days, i.e., due to the presence 

of a donor that is thermally unstable at room temperature. Moreover, the remaining portion 
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of the free carrier absorption can be attributed to a more thermally stable donor and does not 

decay appreciably for longer times at room temperature. 

3.4.2 Relationship of shallow donors to hydrogen centers 

In this section, we will try to identify various hydrogen centers using different 

annealing strategies presented in the previous sections. It can be seen in Fig. 3.9 that the dip in 

the free carrier absorption at around 100 to 150 °C closely matches a similar reduction in the 

intensity of the O-H line at 3156 cm-1. Additionally, the intensity of this line decays during a 

long storage time at room temperature [Fig. 3.10 (b)], in a fashion similar to the free carrier 

absorption [Fig. 3.10 (a)]. Finally, a re-annealing treatment at 500 °C in a He ambient recovers 

the intensity of both the 3156 cm-1 line and the free carrier absorption. All of these 

observations are consistent with the O-H center that gives rise to the 3156 cm-1 line being 

responsible for 35 % of the free carrier absorption. 

A shallow donor that is thermally unstable near room temperature was found to be Hi 

by theory [3.10, 3.15, 3.27]. Furthermore, a strong O-H bond that lies perpendicular to the c-

axis with a theoretical vibrational frequency of 3245 cm-1 was predicted [3.27, 3.38]. Hlaing Oo 

et al. [3.27] conducted a combined experimental and theoretical study and observed that the 

vibrational properties of the O-H center that gives rise to the 3156 cm-1 are consistent with the 

predicted theoretical properties. Therefore, the 3156 cm-1 line was assigned to Hi [3.27]. Our 

observations support this assignment. 

Theory also predicted that Ho is a donor in SnO2 with a greater thermal stability [3.15, 

3.27]. Our experimental observations support the suggestion that Ho is responsible for the 
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portion of the free carrier absorption that remains stable until near 650°C for samples that had 

been heat treated in an H2 ambient to introduce H. This more stable donor gave rise to about 

65% of the total free carrier absorption. 

The relationship between the two types of shallow donors and the corresponding H-

related defects in SnO2 closely resembles the previous findings for H in ZnO [3.29, 3.39]. In 

ZnO, Hi with an O-H vibrational line at 3611 cm-1 and Ho both act as shallow donors and 

approximately 85% of the donors that were formed after annealing in a H2 ambient at 700 °C 

were not thermally stable near room temperature. The remaining 15% were observed to be 

stable up to 500 °C. Moreover, Ho in these samples was found to be formed near the sample 

surface. 

When we introduced hydrogen (or deuterium) into SnO2 samples, the sample surfaces 

were observed to be severely damaged. Both Hi and Ho are introduced deep into the bulk of 

the SnO2 sample. This was determined by the step-by-step sample thinning process discussed 

earlier in the chapter and presented in Fig. 3.4. In SnO2, Ho is distributed throughout the bulk 

of the sample following hydrogenation, in contrast to the case of ZnO, and is the dominant 

donor accounting for 65% of the free carrers. This result shows that the oxygen vacancies 

necessary for the production of the HO donor center are introduced deep into the sample bulk 

by the damaging anneal in an H2 ambient. 

3.4.3 Properties of other O-H centers 

 Our spectra showed a number of different IR lines in addition to the 3156.1 cm-1 line 

which was assigned to Hi as a shallow donor. Most of the lines detected in our experiments 
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were the same as those observed by Hlaing Oo et al. [3.27], suggesting that these lines are due 

to O-H centers that involve H and intrinsic defects rather than impurities that are dependent 

on the sample source. In this section, an analysis of these lines will be presented, aided by the 

information obtained from polarized spectra. 

 Fig. 3.12 shows IR absorption spectra with Ec (upper) and E//c (lower) polarizations 

for SnO2 samples that had been treated in three different conditions. In (a), the spectrum was 

measured for a sample that contained primarily O-D centers. Spectrum (b) was measured for a 

sample that contained O-H centers only. The spectra (c) and (d) focus on the D- and H-ranges, 

respectively, for a sample that contained both H and D. These samples were prepared by 

treatments in a D2 or H2 ambient followed by an anneal at 150 or at 200 °C in He for 30 min or 

for an anneal at room temperature for about 65 days to produce the defects of interest and to 

increase their intensities. 
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Fig. 3.12: IR absorption spectra (T= 4.2°K, resolution= 1 cm-1) in the O-H and O-D stretching 

regions  for  the (O-H) 2 and (O-D) 2 centers measured with light polarized with electric vector 

Ec (upper) and with E//c (lower) for samples with different isotopic content. (a) is primarily 

D, (b) only H, (c) is H˃D so the O-D mode of the O-HD center dominates, (d) is H ≈D. Here, H or 

D was introduced by an anneal (30 min) in H2 or D2 gas at 700°C. This treatment was followed 

by an additional anneal between room temperature and 200°C to produce the defect of 

interest. 
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 The IR lines at 3334.2 and 3343.2 cm-1 were observed to be initially present in a 

hydrogenated sample and with distinct polarization characteristics [Fig. 3.12 (b)]. The 2477.5 

and 2483.8 cm-1 lines are due to the corresponding O-D modes [Fig. 3.12 (a)]. When a sample 

that contains both H and D is measured, an additional line appears at 3339.0 cm-1 (2479.7 cm-1 

for O-D), midway between the 3334.2 and 3343.2 cm-1 lines (2477.5 and 2483.8 cm-1) and this 

additional line is observed for both polarizations Ec and E//c [Fig. 3.12 (c) and (d)]. This is a 

characteristic behavior of a center that has two equivalent H (D) atoms, such as (O-H)2 or (O-

D)2 complexes. Considering H, 3334.2 and 3343.2 cm-1 lines are assigned to (O-H)2 while the 

line  midway between at 3339.0 cm-1 corresponds to the dynamically decoupled O-H mode 

that occurs when one of the H atoms in the (O-H)2 center is replaced by a D atom. In other 

words, this line is due to a O-H—D-O center. Similarly, the line at 2479.7 cm-1 for the 

deuterated complex is due to the dynamically decoupled O-D mode that occurs when one of 

the D atoms in the (O-D)2 complex is replaced by an H atom. A similar defect with two 

equivalent H atoms is also found in ZnO. In this case, a complex of two H atoms with a zinc 

vacancy (VZn-H2) has been identified. Although the IR data and the behavior of the H or D-

related defects are very similar in ZnO and SnO2, the determination of possible candidates for 

microscopic defect structures in SnO2 is not straightforward. For this purpose, a theoretical 

analysis based on our experimental data was performed by Prof. Fowler and will be discussed 

in the following section. 

 The polarization dependence of the O-H absorption gives us important information to 

help assign the O-H modes to specific structures in SnO2. As shown in Fig. 3.5, the IR lines at 

3261.5 and 3281.8 cm-1 have distinctive polarization properties (the 2361.5 cm-1 line is seen 
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only for Ec and the 3281.8 cm-1 line has components for both the Ec and E//c polarizations). 

Theory  [3.27] by Hlaing Oo. et al. suggested that these lines were due to complexes of H with 

a Sn vacancy (VSn).Two possible configurations for VSn-H complexes are shown in Fig. 3.13 (a) 

and (b) [3.27] and in Fig. 3.2 (c)and (d). In Fig. 3.13 (a) and in Fig. 3.2(c), H has a bond with one 

of the Sn vacancy’s axial O neighbors, and this O-H bond is perpendicular to the c-axis. In Fig. 

3.13 (b) and in Fig. 3.2 (d), H has a bond with one of the Sn vacancy’s equatorial O neighbors, 

and the O-H bond has both parallel and perpendicular components with respect to the c-axis. 

Therefore, the 2361.7 cm-1 line is consistent with an assignment to H bonded to one of the VSn 

defect’s axial O atoms as shown in Fig. 3.13 (a) and the 3281.8 cm-1 line might correspond to a 

defect complex with H bonded to one of the VSn defect’s equatorial O atoms as shown in        

Fig. 3.13 (b). (These assignments, based on only the polarization properties of the IR lines, are 

reversed from the defect assignments suggested by Hlaing Oo et al. [3.27]). In the next section, 

the insight of the theory performed by Prof. Fowler on the assignments of the various O-H 

modes will be discussed. 
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Fig. 3.13: Configurations of VSn-H complexes in SnO2.  (a) shows the structure with H bonded to 

one of the Sn vacancy’s axial O atoms with its O-H bond perpendicular to the c axis of the rutile 

structure.  (b) shows the structure with H bonded to one of the Sn vacancy’s equatorial O 

neighbors. 

3.4.4 Defect models from theory and polarized absorption spectra 

 IR absorption experiments using polarized light have resulted in significant 

observations on the structure and behavior of O-H defects in SnO2. A further analysis based on 

theory and simulations to support our experimental data has been provided by Prof. Beall 

Fowler [3.40]. 

 Top portions in Fig. 3.6 (a) and (b) show the IR spectra for D2 and H2 treated samples 

measured for Ec and E//c. As was discussed in the preceding sections, the line at 2360.4 cm-1 

(3156.1 cm-1) has been assigned to interstitial D (H). The O-D (O-H) line at 2425.7 cm-1 (3261.5 

cm-1) and several other lines are observed only with Ec polarization while the line at 2446.9 

c

(a) (b)
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cm-1 (3281.8 cm-1) had components both for Ec and E//c. In order to find the intensity ratio 

of the components of this line for the two polarizations, Gaussian line shapes were used to fit 

the spectra of different samples. Fig. 3.14 shows a representative fit and Table 3.2 lists the 

parameters obtained from this fit. The intensity ratio for the line at 2446.9 cm-1 with Ec and 

E//c polarizations was found to be  

           
         

               (3.2) 
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Fig. 3.14: Baseline corrected IR absorption spectra (T=4.2° K, resolution=1 cm-1) focusing on   

O-D absorption lines of SnO2 (treated in D2 at 700°C for 30 min. and annealed for 30 minutes at 

150°C in a He ambient) are shown for polarized light with vector Ec (upper) and E//c (lower). 

The positions and widths of individual absorption lines were determined by fitting the spectra 

with sums of Gaussian line shapes.  
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Perpendicular polarization 

peak 2425.6 2432.5 2438.5 2446.9 2451.3 

amplitude 3.561 0.957 0.639 0.341 0.376 

FWHM 1.517 1.368 1.971 2.421 1.391 

int. area 5.749 1.393 1.339 0.879 0.557 

 

Parallel polarization 

peak 2425.6 2432.5 2438.5 2446.9 

amplitude 0.095 0.022 0.019 0.191 

FWHM 1.619 1.034 1.146 2.220 

int. area 0.163 0.024 0.024 0.451 

 

Table 3.2: Frequencies, amplitudes, line widths, and integrated areas for O-D absorption lines 

of SnO2 (treated in D2 at 700°C for 30 min. and annealed for 30 minutes at 150°C in a He 

ambient) are listed for polarized light with vector Ec and E//c. Gaussian line shapes were 

used for these fits. 

 

Distinctive polarization properties are also evident for the three lines at 2477.5, 

2479.7, and, 2483.8 cm-1 (3334.2, 3339.0, and 3343.2 cm-1) as is shown in Fig. 3.12. The lines at 

2477.5 and 2483.8 cm-1 (3334.2 and 3343.2 cm-1) have been assigned to (O-D)2  [(O-H)2] 

complexes as was discussed above. The line at 2479.7 cm-1  (3339.0 cm-1) corresponds to the 

O-D (O-H) mode of the dynamically decoupled (O-D—H –O) center. One of the lines arising 

from the (O-D)2 complex, namely the 2477.5 cm-1 line [or 3334.2 cm-1 line for (O-H)2] is 

detected only for E//c, while the other line, i.e. 2483.8 cm-1 (3343.2 cm-1) is seen only for the 

Ec polarization,(neglecting the small peak observed for E//c due to the small deviation of the 

sample from perfect alignment). However, the intermediate line at 2479.7 cm-1 (3339.0 cm-1) is 

seen for both polarizations. For the (O-D)2 center, the different SnO2 spectra were fit with 
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Gaussian line shapes. Fig. 3.15, Fig. 3.17, Table 3.3 and Table 3.5 show results for some of the 

fits generated for the (O-D)2 center. For the (O-H)2 center , Lorentzian line shapes were used to 

fit spectra. In this case, results are shown in Fig. 3.16, Fig. 3.18, Table 3.4 and Table 3.6.  

 

Fig. 3.15: Baseline corrected IR absorption spectra (T=4.2° K, resolution=1 cm-1) focusing on the     

(O-D)2 absorption lines of SnO2 (primarily D2) and annealed for 30 minutes at 150°C in a He 

ambient.  Spectra are shown for polarized light with electric vector Ec (upper) and E//c 

(lower). The parameters for the individual absorption lines were determined by fitting the 

spectra with sums of Gaussian line shapes. 
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Perpendicular polarization 

peak 2480.2 2483.8 

amplitude 0.277 1.084 

FWHM 2.887 3.298 

int. area 0.734 3.805 

 

Parallel polarization 

peak 2477.5 2483.4 

amplitude 0.487 0.101 

FWHM 1.843 3.700 

int. area 0.955 0.398 

 

Table 3.3: Frequencies, amplitudes, line widths, and integrated areas for the (O-D)2 absorption 

lines of SnO2 (primarily D2 and annealed for 30 minutes  at 150°C in a He ambient) are shown 

for  polarized light with electric vector Ec and E//c . Gaussian line shapes were used for these 

fits. 
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Fig. 3.16: Baseline corrected IR absorption spectra (T=4.2° K, resolution=1 cm-1) focusing on the 

(O-H)2 absorption lines of SnO2 (H2 at 700°C for 30 min. and then annealed for 30 minutes  at 

150°C in a He ambient) are shown for polarized light with  electric vector Ec (upper) and E//c 

(lower). The individual absorption lines were determined by fitting the spectra with sums of 

Lorentzian line shapes.  
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Perpendicular polarization 

peak 3343.2 

amplitude 8.432 

FWHM 3.089 

int. area 38.860 

 

Parallel polarization 

peak 3334.2 3343.2 

amplitude 3.406 0.318 

FWHM 2.748 3.129 

int. area 13.999 1.482 

 

Table 3.4: Frequencies, amplitudes, line widths, and integrated areas for each of the O-H 

absorption lines of SnO2 (treated in H2 at 700°C for 30 min. and annealed for 30 minutes  at 

150°C in a He ambient) are shown for polarized light with electric vector Ec and E//c. 

Lorentzian line shapes were used for these fits. 

 

From the combination of all of these fits, the intensity ratios of the parallel to 

perpendicular modes are determined to be 

           
         

  
           

         
                (3.3) 

In a similar fashion, the ratios of the parallel to perpendicular components of the dynamically 

decoupled modes can be determined from Gaussian fits for O-D as shown in Fig. 3.17 and 

Table 3.5 and for O-H as shown in Fig. 3.18 and Table 3.6: 
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         

  
           

         
             (3.4) 

 

Fig. 3.17: Baseline corrected IR absorption spectra (T=4.2° K, resolution=1 cm-1) focusing on the 

(O-D)2 absorption lines of SnO2 (D2 at 700°C for 30 min. and annealed for 30 minutes  at 150°C 

in a He ambient) are shown for both polarized light with electric vector Ec (upper) and E//c 

(lower). The parameters for the individual absorption lines were determined by fitting the 

spectra with sums of Gaussian line shapes.  
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Perpendicular polarization 

peak 2476.3 2479.7 2483.2 

amplitude 0.052 0.322 0.167 

FWHM 1.677 2.169 3.476 

int. area 0.093 0.743 0.61 

 

Parallel polarization 

peak 2470 2473 2477.2 2479.7 

amplitude 0.005 0.011 0.098 0.101 

FWHM 1.001 0.886 1.756 2.132 

int. area 0.005 0.01 0.182 0.229 

 

Table 3.5: Frequencies, amplitudes, line widths, and integrated areas for each of the O-D 

absorption lines for SnO2 (treated in D2 and annealed  for 30 minutes  at 150°C  in  a He 

ambient)  are shown for polarized light with electric vector Ec and E//c . Gaussian line shapes 

were used for these fits. 
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Fig. 3.18: Baseline corrected IR absorption spectra (T=4.2° K, resolution=1 cm-1) focusing on the 

(O-H)2 absorption lines of SnO2 (D2 at 700°C for 2 hours and annealed for 30 minutes  at 200°C 

in a He ambient) are shown for polarized light with electric vector Ec (upper) and E//c 

(lower). The parameters for the individual absorption lines were determined by fitting the 

spectra with sums of Gaussian line shapes.  
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Perpendicular Polarization 

peak 3326.5 3331.1 3336.5 3339 3343.2 

amplitude 0.036 0.105 0.307 1.309 1.152 

FWHM 2.141 3.051 3.323 2.208 3.937 

int. area 0.083 0.341 1.086 3.075 4.825 

 

Parallel polarization 

peak 3326.1 3330.6 3334.2 3339 3343.2 

amplitude 0.079 0.087 0.426 0.571 0.173 

FWHM 2.704 2.19 3.305 2.52 4.331 

int. area 0.227 0.202 1.499 1.532 0.797 

 

Table 3.6: Frequencies, amplitudes, line widths, and integrated areas of the O-H  absorption 

lines for  SnO2( treated in D2 and  annealed for 30 minutes  at 200°C  in  a He ambient)  are 

shown for polarized light with electric vector Ec and E//c . Gaussian line shapes were used to 

determine the parameters shown here. 

From the rutile symmetry and the equivalence of different oxygen sites, the following 

equation relating the intensity ratio of parallel to perpendicular components to the angle 

between the O-D transition dipole with the c-axis (θ) can be used to determine bond angles: 

   
 

                (3.5) 

For example, the O-D line at 2446.9 cm-1 was found to have a parallel to perpendicular 

intensity  ratio of 0.54±0.05 which yields an O-D angle of 63° or (180°-63°)±1° from the c-axis. 
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Similarly, the O-D (O-H) bond angles for the (O-D)2 ((O-H)2) centers whose lines are at 2477.5  

and 2483.8  cm-1 (3334.2 and 3343.2 cm-1) were determined to be 69° or (180°-69°) ± 2°. The 

polarization ratios for the dynamically decoupled O-D and O-H modes of the (O-D—H-O) 

center at 2479.7 and 3339.0 cm-1 yield a bond angle of 66° or (180°-66°) ± 3°. As expected this 

result is consistent with the bond angle calculated for the (O-D)2 complexes within 

experimental error. 

 A simple spring and mass analysis for the (O-H)2 lines at 3334.2 and 3343.2 cm-1, the 

corresponding (O-D)2 lines at 2477.5  and 2483.8  cm-1, and the intermediate lines at 2479.7 

and 3339.0 cm-1 due to (O-H—D-O) center has been carried out considering only the harmonic 

part of the coupling force between the two (O-H) bonds. This is mainly due to the small 

experimental splitting that suggests a very small coupling force. However, anharmonicity is not 

completely negligible and it may be calculated from the isotopic data, using reduced diatomic 

masses. Then the 2x2 harmonic dynamical matrix was solved and the force constants were fit 

to the “harmonic experiment” after which the anharmonicity was added back. This analysis 

leads to conclusions which can be used as clues to the assignments and the structure of the 

(O-H)2 defect and by extension some of the other (O-H) defects. These findings are as follows: 

1) Since allowing the force constants of each (O-H) bond to differ worsens the 

experimental agreement, the two (O-H) bonds are taken to be equivalent. 

2) The data can be fit to within 0.1 cm-1, using one stretching and one coupling force 

constant. 

3) The coupling force constant is very small, about 0.2% of the stretching force constant.  
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The polarization data and the theoretical calculations generate constraints on the possible 

defect models. For instance, for the (O-H)2 case, the two O-H bonds are equivalent. Moreover, 

the perturbation of the O-H defect should cause only a modest displacement of the bond away 

from the normal to the c-axis. 

 As discussed earlier, the work by Hlaing Oo et al. [3.27] provided an analysis that 

preceded our polarization data. They suggested that the 3261.7 and 3281.8 cm-1 lines are 

associated with H trapped at a Sn vacancy. Two different types of O-H sites in this 

configuration are possible (named axial and equatorial) and were shown in Fig. 3.2 (c) and (d). 

Since the O-H bond perpendicular to the c-axis, i.e., the axial configuration, is calculated to be 

less stable than the equatorial configuration by ~0.1 eV, Hlaing Oo et al. [3.27] assigned the 

3261.7 cm-1 line to the equatorial configuration and the 3281.8 cm-1 line to the axial one. No 

polarization data and an associated check of these assignments were present in this previous 

work. [3.27] 

 The experimental data generated using polarized light in our study does not support 

these assignments. First, the 3261.7 cm-1 line does not have a component in the IR spectra for 

E//c, suggesting that the bond lies in the axial direction. Conversely, the 3281.8 cm-1 line has 

components for both the Ec and E//c polarizations, therefore it could be a candidate for the 

equatorial configuration. Additionally, the assignment of H at a Sn vacancy is questionable for 

the equatorial configuration. A representation of a Sn vacancy within the SnO2 rutile structure 

is shown in Fig. 3.19. When an H atom is trapped at this vacancy, the OH bond in the 

equatorial configuration would be expected to have an angle near the corresponding O-Sn 

direction, or ~30°-40° with the +c axis. Simulations using the CRYSTAL2006 [3.41] software 
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have been run to confirm this expectation by Prof. Fowler. Employing a Gaussian basis, DFT 

with B3LYP exchange-correlation method and using a 48 or 72 atom supercell, the results 

shown in Fig. 3.20 have been obtained for a single H atom trapped at a Sn vacancy and  for two 

versions of two H atoms trapped at a Sn vacancy. These results confirm that lower than 

observed bond angles are predicted for such configurations. For this range of angles, the ratio 

of parallel to perpendicular polarization intensities would be around 3 to 6 from Eq. 3.5, which 

is about 6 to 12 times larger than observed value of 0.54 for the O-H line at 3281.8 cm-1 (and 

for  the 2446.9 cm-1 line for O-D). The bond angle calculated from the observed polarization 

data is around 63° compared to ~30°-40° the expected for H at a Sn vacancy. Similar problems 

are also present for the assignment of the (O-H)2 defects, for which the experimental data 

yield bond angles around 66°-69°. Therefore, we conclude that there is no spectroscopic 

evidence for the equatorial configuration of an O-H center or for an (O-H)2 defect associated 

with a Sn vacancy. However, the axial configuration of O-H associated with a Sn vacancy could 

be the origin of one of the observed transitions with polarization perpendicular to c. This could 

be one of the lines still unassigned in the spectrum for Ec. 
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Fig. 3.19: Schematic portion of SnO2 containing a Sn vacancy, drawn using Moldraw [3.7]. 

Compliments of W. B. Fowler. 
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Fig. 3.20: The different configurations of SnO2 with a single H trapped at a Sn vacancy and with 

two versions of two H atoms trapped at a Sn vacancy, drawn using Moldraw [3.7]. 

Compliments of W.B. Fowler. 

Fowler’s analysis was not limited to a Sn vacancy, but was continued for other lattice 

defects. In the rutile lattice, one or two interstitial H atoms attached to one or two O atoms 

near a Sn interstial could satisfy the symmetry requirements discussed earlier. The rutile 

structure with a Sn interstitial is shown in Fig. 3.21. Three of the oxygen atoms which are near 
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the interstitial Sn were labeled and colored differently to help discuss some of the possible 

configurations. If a single H atom is attached to O(1) with the same c-axis value as interstitial 

Sn, this configuration would have only a component for Ec and could be the origin of the O-H 

line at 3261.5 cm-1 (2425.7 cm-1 line for O-D). If the hydrogen is attached to O(2) or O(3), the 

symmetry breaking due to the presence of the Sn interstitial could lead to a small relaxation of 

the H along the c-direction, yielding IR components for both Ec and E//c. The line at 3281.8 

cm-1 (2446.9 cm-1) could arise from this configuration. Moreover, one H atom can attach to 

O(2) and another to O(3) to form the (O-H)2 complex with a c-axis relaxation, i.e., this 

configuration would have components for both polarizations. This would correspond to the 

lines in the 3340 cm-1 (2480 cm-1) region. Other two H defects involving more distant O atoms 

might also exist.  
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Fig. 3.21: Schematic portion of SnO2 containing a Sn interstitial. Special neighboring oxygens 

[possible oxygens that H could attach to make (O-H) or (O-H)2 centers] are labeled 1-3, drawn 

using Moldraw [3.7, 3.40]. 

Finally, another possible defect satisfying the constraints imposed by the polarization 

data should be mentioned here. Hydrogens trapped near a substitutional or an interstitial 

impurity metal atom can also be considered even though we believe it is unlikely to be an 

alternative. This is mainly due to very similar IR spectra obtained for samples from very 

different sources [3.27, 3.42]. Secondly, impurities associated with O-H bands in cassiterite 

[3.43] lead to absorption bands that are absent in our samples. However, this possibility 

cannot be completely ruled out. 
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3.4.5 Sources and sinks for hydrogen 

 Our IR data provide us with clues that there are hydrogen centers (a hidden source of 

hydrogen) in as-grown SnO2 samples that do not give rise to free carrier absorption or 

electrically active shallow donors. In Fig. 3.3, spectrum (ii), when an as-grown sample was 

annealed in a He ambient and quenched, a small concentration of an electrically active shallow 

donor (Hi) was produced. Annealing an as-grown sample in an H2 ambient produced Hi, Ho, and 

other O-H centers throughout the sample bulk as shown in Fig. 3.3, spectrum (iv). Moreover, 

annealing an as-grown sample in a D2 ambient produced both O-D and O-H centers together 

throughout the sample bulk shown in Fig. 3.3, spectrum (v), even though hydrogen was not 

introduced deliberately. In order to better understand this interesting result, another sample 

was prepared by annealing an as-grown SnO2 sample in a He ambient at 1100°C for 5h to 

remove hydrogen completely throughout the bulk and by subsequently annealing in a D2 

ambient. The resulting spectrum shown in Fig. 3.3, spectrum (iii), contains only O-D centers 

and not O-H centers. These results show that H is already present in our as-grown SnO2 

samples due to crystal growth and this H can be converted into shallow donors and O-H 

centers by heat treatments. In other words, there is a reservoir of electrically inactive 

hydrogen in as-grown samples. Moreover, annealing in a D2 ambient demonstrates the dual 

role played by the damaging anneal as both a source of native defects that form the defect 

centers seen in our experiments and as a source of deuterium. 

 Ho was suggested as a possible source of hidden hydrogen in SnO2 samples by Hlaing 

Oo et al. [3.27]. However, Ho cannot serve as a reservoir of hydrogen in our samples due to its 

electrical activity which gives rise to strong free carrier absorption. Instead our results reveal 
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that the O-H complex with an IR line at 3261 cm-1 is an attractive candidate as a source of H 

because it is already present in the sample and does not give rise to free carrier absorption. 

Other O-H centers are not prominent in as-grown samples. Despite the fact that a high 

formation energy is theoretically predicted for H2 in SnO2 [3.27], our data suggest that H2 is 

another possible source of hidden hydrogen because it is electrically inactive and does not give 

rise to free carrier absorption or O-H vibrational lines, similar to the role played by H2 in ZnO 

[3.29-3.30]. 

 Our data show that H or D can be exchanged between H- or D- containing centers 

when samples are treated at elevated temperatures. H centers that give rise to electrically 

active shallow donors can be converted to centers that do not and vice versa. This is shown in 

Fig. 3.7-Fig. 3.11. For instance, the IR lines at 3281.8, 3334.2, and 3343.2 cm-1, increase in 

intensity when the 3156 cm-1 line assigned to Hi disappears during long storage times at room 

temperature (Fig. 3.10, Fig. 3.11). Moreover, during the same period, the intensity of the line 

at 3261.5 cm-1 decreases as does the free carrier absorption. Recall that the 3281.8 and 3261.5 

cm-1 lines were assigned to O-H centers while the 3334.2 and 3343.2 cm-1 lines correspond to 

(O-H)2 complexes. When the sample that underwent a long storage time was re-annealed at 

500°C in a He ambient and quenched, Hi recovered at the expense of the H trapped in other 

(O-H)n complexes as seen in Fig. 3.10. Moreover, the free carrier absorption was also 

recovered [Fig. 3.10 and Fig. 3.11 (bottom)] and the line at 3261.5 cm-1 regained its intensity 

(Fig. 3.10). According to these observations, an exchange of H between Hi and (O-H)n centers 

can occur. Hi migrates to be trapped by a native defect to form the 3281.8 cm-1 line during a 

long storage time at room temperature or by annealing at around 100-150°C. Additionally, the 
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intensity decrease for the 3261.5 cm-1 line of an (O-H) center is correlated with the intensity 

increase for the lines at 3334.2 and 3343.2 cm-1 that correspond to (O-H)2 complexes. This 

suggests that the O-H center traps an additional H atom (that is found to be unstable at 

around room temperature) to form the (O-H)2 center upon annealing or for long storage time. 

Both of these processes can be reversed, i.e., Hi from these defects can be released upon 

annealing at elevated temperature and this Hi can be frozen in as an isolated interstitial donor 

when the sample is quenched to room temperature. 

 Although the more thermally stable shallow donor that has been proposed to be due 

to HO is not directly detectable by IR vibrational spectroscopy, our data show that it can also be 

converted to other defects upon annealing. This can be studied by investigating the behavior 

of the free carrier absorption and some of the O-H lines. As shown in Fig. 3.9, the free carrier 

absorption due to Ho is almost completely annealed away at 600°C while the intensities of the 

lines at 3156.1 cm-1 (Hi) and 3261.5 cm-1 (O-H) grow, suggesting that the exchange of H 

between Ho and these centers can occur.  

3.5 Conclusion 

 Hydrogen and deuterium centers in rutile single-crystal SnO2 have been investigated 

by infrared vibrational spectroscopy. Annealing as-grown SnO2 samples in an H2 ambient at 

elevated temperature gives rise to O-H vibrational lines along with the broad low frequency 

absorption that is the characteristic of free carriers. This annealing treatment strongly affects 

the conductivity of the sample because it produces the hydrogen and native defects that form 

shallow donors and O-H centers throughout the bulk of the SnO2 sample. Surprisingly, 
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annealing an as-grown SnO2 sample in D2 ambient introduces not only O-D centers but also O-

H centers together with free carrier absorption. The cause is that the electrically inactive 

hydrogen that is already present in the as-grown sample (because of the growth procedure) 

interacts with native defects and gives rise to O-H centers and shallow donors during the heat 

treatment. In summary, the introduction of hydrogen or deuterium into as grown SnO2 

samples produces shallow donors. 

 By investigating the thermal stabilities of the various H-containing defects and their 

relationship with the free carriers which are introduced by shallow donors, the role hydrogen 

plays as a cause of conductivity in SnO2 has been studied. The annealing behaviors of the free 

carriers and O-H IR absorption show that two H-related donors that give rise to free carriers 

are present. The first one is marginally stable at room temperature and corresponds to around 

35% of the free carriers. The O-H line at 3156.1 cm-1 was previously assigned to Hi and was 

concluded to be the less stable shallow donor by Hlaing Oo et al. [3.27]. Our experimental 

results strongly support this assignment due to the thermal stability properties and 

relationship of the 3156 cm-1 line to the free carrier absorption. A second shallow donor is 

assigned to Ho that is a more thermally stable donor (up to near 600°C) and is responsible for 

about 65% of the free carriers. Ho cannot be detected by vibrational spectroscopy, but this 

assignment is consistent with theory [3.15, 3.27]. 

 Studying the annealing behavior and unique polarization properties of hydrogenated 

or deuterated SnO2 samples has yielded important clues about the structures and chemical 

reactions of several O-H centers. Upon thermal treatment, additional O-H and (O-H)2 centers 

that do not give rise to free carriers are also observed. It is found that an inter-conversion 
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between these electrically inactive centers and H-related shallow donors can occur. Therefore, 

the conductivity of a hydrogenated sample is highly sensitive to its thermal history.  

 Several O-H and (O-H)2 centers have been found to have distinctive polarization 

properties, which led to structure-sensitive tests of proposed microscopic models. Theoretical 

work by Prof. Fowler that complemented our polarization data suggested that some of the 

previously proposed models are not consistent with experimental data and suggested new, 

consistent configurations. For example, the previous assignment of the line at 3281.8 cm-1 to H 

being trapped at an Sn vacancy and with an axial configuration [3.27] did not agree with our 

polarization data and bond angle calculations. Instead, it was proposed to be due to H being 

trapped next to an interstitial Sn atom with some relaxation from the normal to the c-axis. 

Similar proposals backed by theory were made for the 3334.2 and 3343.2 cm-1 lines. They were 

assigned to an (O-H)2 center trapped by insterstitial Sn. The IR line at 3339.0 cm-1 was 

determined to be due to the same center except that one of the H atoms was replaced with a 

D atom to form a (O-H—D-O) center. 
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Chapter 4   

FTIR Spectroscopy of O-H and O-D centers in TiO2 

4.1 Introduction 

 In this chapter, studies of hydrogen related defects within the rutile TiO2 structure will 

be presented. TiO2 is of particular interest because it has received attention from many 

application areas, such as optics, electronics and energy efficiency [4.1-4.2]. Furthermore, the 

effect of impurities on the electrical and chemical properties is known to be critical for many of 

these applications. For instance, the n-type conductivity that this material typically exhibits has 

been traditionally attributed to native defects. Another reason for the selection of TiO2 is 

because of the differences between the findings of two previous studies of the interstitial 

hydrogen atom in TiO2. These differences will be explained and analyzed in the following 

paragraphs after a brief introduction to the rutile TiO2 structure and hydrogen-related defects 

in TiO2. 

   Rutile TiO2 has six fold coordinated Ti and 3 fold coordinated oxygen atoms as seen in 

Fig. 4.1. Interstitial hydrogen (Hi) in TiO2 has unique properties that have been studied over 

many years. Researchers have obtained several significant results: (1) Hi attaches to a single 

lattice O such that the O-H bond lies at (1/2, 0, 0) which is perpendicular to the [001] c-axis of 

the rutile lattice [4.3-4.4]. (2) The diffusion of Hi in TiO2 involves hydrogen jumps from one 

oxygen atom to another along the c-direction, which makes the existence of hydrogen at room 

temperature puzzling [4.5-4.7]. (3) IR measurements reveal that TiO2 shows strong OH, OD and 
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OT stretching modes (D and T being the isotopic siblings of H) with unusually large 

anharmonicity [4.8]. 

                      

 

Fig. 4.1: Rutile lattice structure of TiO2 with O-H bond. 

           

Furthermore, recent Electron Paramagnetic Resonance (EPR) experiments on neutral 

Hi, as well as on F substituting for O in mildly reduced TiO2, show a characteristic that is 

unusual in most materials, especially semiconductors: the spin associated with the unpaired 

electron in each case is localized on a single Ti, rather than being spread out over many sites 

[4.9-4.10]. In another important study performed by Bates and Perkins in the 1970s [4.8], OD, 

OH and also OT infrared vibrational modes were analyzed. It was found that each of these 

bonds generated a single, sharp and strongly polarized line with Ec at 2445 cm-1, 3286 cm-1, 

and 2071 cm-1 for OD, OH and OT, respectively, as seen in Fig. 4.2. Also, they reported no 

evidence that these centers were shallow donors.  

Ti
O

H

c 
axis
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Fig. 4.2: Infrared stretching modes of OH, OD, and OT in TiO2 measured at 77 K [4.8].  

 

However, in a recent study [4.11] performed by Herklotz et al., a very different story was told 

and the differences mentioned above were established. In recent experiments, instead of a 

single, sharp IR line, three closely spaced and overlapping lines were detected at  2445.0, 

2445.7, 2447.8 cm-1 for the OD center. These lines were assigned to different charge states of 
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the same defect, namely the ground and excited vibrational modes of the neutral state and 

also a vibrational mode for a positive charge state. The relative intensities of these lines were 

found to be strongly dependent on temperature as is shown in Fig. 4.3. Herklotz et al. also 

observed that above 20 K, the neutral state intensity was decreased while the positive state 

intensity was increased as is shown in Fig. 4.4 (a). This observation supported the idea that 

different charge states were associated with the same defect. Moreover, they correlated the 

intensity change of the OD (and OH) centers to the temperature dependence of an additional 

broad absorption that was attributed to free carriers [4.12].This correlation is shown in Fig. 4.4 

(b). In this figure, the strength of the free carrier absorption is plotted vs temperature, and a 

significant increase becomes apparent above 20 K, similar to the appearance of the positive 

charge state. Based on these data, Herklotz et al. assigned these OH and OD centers to shallow 

donors and the multiline structure to its two different charge states. 
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Fig. 4.3: IR absoption spectra of deuterium treated TiO2 (resolution= 0.2 cm-1) meausured with 

unpolarized light at different temperatures. The energy diagram for the neutral charge state is 

shown in the inset [4.11]. 

 



105 
 

 

Fig. 4.4: (a) IR absorption of neutral and positive charge states vs temperature for the O-D 

center in TiO2. (b) The free carrier absorption vs temperature. Points are experimental data 

and solid lines are the best-fit curves to the experimental data [4.11]. 

In order to answer the questions related to the OH and OD stretching modes raised by 

these previous studies, we have performed further experimental and theoretical studies. In 

the following sections, the OH and OD centers in TiO2 will be investigated but the OD center 

will be studied more intensely than the OH center because the IR lines for OD are sharper and 

reveal greater detail. 
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We will begin with high-resolution vibrational spectroscopy performed as a function of 

temperature to gain insight into the different vibrational properties seen for OD in TiO2 in the 

1970’s and in recent studies and into how these results might be interpreted.  

4.2 Experimental Set-up and Samples 

Hydrogen and deuterium in TiO2 have been studied experimentally using IR vibrational 

spectroscopy. The rutile phase TiO2 samples used in our experiments were obtained from 

different sources. Some of our samples were provided by Commercial Crystal Laboratories. 

Fortunately, we are also in possession of the very samples, grown by the National Lead Co., 

studied by Bates and Perkins in the 1970s [4.8]. These samples are approximately 2 mm thick 

disks with faces parallel to the (100) plane. For the experiments of Bates and Perkins, the 

samples were given the following thermal and chemical treatments. Crystal growth was 

induced by flame fusion in the presence of water vapor and was the reason for the presence of 

a high concentration of OH centers in these samples. Thus, OH centers in as-grown material 

were studied by Bates and Perkins without additional treatment with H2. However, for 

deuterium treatments, disks were heated for 5h in the pressure of about 0.4 atm of D2 gas at 

600°C. Then the samples were subsequently heated for 2 h at 800°C in a flowing stream of 

oxygen to restore their transparency. This was the condition of the TiO2 samples prior to 

starting our own experiments. 

In order to introduce deuterium in our measurements, TiO2 samples from both sources 

were placed in sealed quartz ampoules with 2/3 atm of D2 gas at room temperature and 

annealed at elevated temperature (at 500°C for 4 h). The treatments in D2 were terminated by 
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quenching the ampoule to room temperature in water to complete the annealing. Subsequent 

anneals were performed in a tube furnace either in flowing N2 or in air and terminated by 

quenching the sample in water. 

IR absorption spectra were measured with a Bomem DA3.16 Fourier transform 

infrared spectrometer. Light was polarized with a wire grid polarizer that was placed after the 

sample. O-H and O-D vibrational stretching modes for TiO2 samples were measured between 4 

K and 60 K with an InSb detector. Samples were cooled by an Oxford Instruments CF1204 

cryostat with He contact gas in order to make precise temperature dependent measurements. 

4.3 Experimental Results and Discussion  

4.3.1 O-D stretching vibrational mode 

  We started our experiments with TiO2 samples taken from the collection that had 

been prepared by Bates and Perkins [4.8]. These samples were stored in dated sample boxes 

from the 1970’s. Initial measurements were performed without any additional annealing 

treatments. IR measurements in the OD range at various temperatures revealed two different 

results. The upper spectra in Fig. 4.5 show the same single sharp line at 2445.0 cm-1 that was 

observed by Bates and Perkins [4.8]. However, the lower spectra show the same multi-line 

structure that was observed by Herklotz et al. [4.11]. Experimental results measured at 4 K and 

17 K are compared in Fig. 4.5 because these temperatures reveal the changes in the multi-line 

structure more clearly. 
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Fig. 4.5: IR absorption spectra (T= 4 K and 17 K, resolution= 0.1 cm-1, [100] optical viewing 

direction) measured with Ec for TiO2 samples prepared by Bates and Perkins [4.8].  The 

samples were reported to have been deuterated by annealing in a D2 ambient (5 h at 600 °C) 

followed by an anneal in flowing oxygen (2 h at 800 °C). The upper and lower spectra 

represent two different samples from that collection. 

These surprising results motivated further investigations to understand the reason 

behind this variation. In order to detect the cause of this behavior, the samples from 

Commercial Crystal Laboratories were prepared in our lab for further experiments. Fig. 4.6 

shows the IR spectra for one of these TiO2 samples. The lower spectrum in this figure was 

obtained from the sample which was treated in D2 gas for 4 hrs at 500°C and immediately 
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quenched to room temperature. The partially resolved multiline structure for the OD center is 

observed clearly. The sample was also observed to be made blue in color by the treatment, as 

also witnessed in other studies [4.13-4.14]. The upper spectrum, on the other hand, tells a 

different story. In this case, the sample used to generate the lower spectrum was subsequently 

annealed in air at 500°C for 30 mins after the D2 treatment. In addition to obtaining a single, 

sharp IR line at 2445.0 cm-1, similar to the results of Bates and Perkins, the blue color also 

disappeared, restoring the sample’s visible transparency. Similar results have been obtained 

using samples from both of our sources, i.e., the collection of Bates and Perkins and the 

samples from Commercial Crystal Laboratories. 
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Fig. 4.6: IR absorption spectra (T=4.2 K, resolution 0.1 cm-1) measured with Ec for TiO2 

samples prepared at Lehigh.  The samples were deuterated by annealing in a D2 ambient (4 h 

at 500 °C).  The lower spectrum was measured without further annealing.  The upper spectrum 

was measured following a subsequent anneal in air (30 min at 500 °C). 

The single, sharp line (2445.0 cm-1 ) seen in the spectra of samples that were D2 

treated and subsequently annealed in air can be attributed to a positively charged OD center 

(OD-) that is present in a more fully oxygenated sample.(Charge states are referenced to a Ti4+, 

O2- ionic model). The two additional IR lines observed in the spectra of samples that were 

treated only in D2 can be attributed to the neutral OD center (OD2- present in a reduced TiO2 

sample. These additional lines were detected at 2445.7 and 2447.8 cm-1. Since Bates and 

Perkins treated their samples in flowing oxygen to restore transparency after annealing in D2 

gas, their samples were intended to be fully oxygenated and this caused the observation of the 
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single line spectrum. It should be noted that some of the samples in their collection were not 

fully oxygenated and their measurement revealed the multiline structure as discussed above 

and shown in Fig. 4.5. Another reason why Bates and Perkins did not observe the partially 

resolved lines in some of their samples may be their usual measurement temperature. They 

performed most of their experiments at 77 K where the overlapping multiline shape could 

have been easily missed due to the broadened line shapes. Herklotz et al., on the other hand, 

performed their measurements at low temperatures and with samples not intentionally 

oxygenated. Our experiments solve the puzzling discrepancy between the two previous studies 

by Bates and Perkins [4.8] and Herklotz et al. [4.11].  

The IR data from a detailed air-annealing study of a D2 treated sample is presented in 

Fig. 4.7. IR spectra for measurement temperatures of 4 K, 17 K and 50 K are shown in the 

panels of the figure. Measurements at 50 K make it difficult to resolve the multiline structure 

because the lines are broader. In addition to the effects of the measurement temperature, we 

were also interested in the effects of annealing temperature. A range of 100°C to 650°C was 

used for annealing temperatures, and a selection of the spectra measured between 250°C to 

650°C are shown in comparison with of an as-treated sample. Since the measurements for the 

100°C-250°C annealing temperature range did not produce any significant changes compared 

to the as-treated sample, they are not included in the plot. Note that a magnification of up to 

x32 was used for some spectra and is labeled in the plot. A quench in water to room 

temperature followed the annealing treatment for all of the measurements. Our annealing 

results show that with increasing annealing temperature, the multiline structure evolves to a 

single line that corresponds to the charged OD- state. The neutral OD center starts to be 
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eliminated above 250°C and the charged OD- center starts to dominate the IR spectra at higher 

annealing temperatures. Only OD- (or full oxygenation) is present at around 650°C. This is a 

higher annealing temperature than observed in measurements shown in Fig. 4.6, possibly 

because quenching was used in the experiments shown in Fig. 4.7. The results shown               

in Fig. 4.6 are for a sample that was held in air at room temperature for cooling after 

annealing. 
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Fig. 4.7: IR absorption spectra (T=4 K,17 K ,and 50 K, resolution 0.1 cm-1 with Ec)  for TiO2 

annealed in  a D2 ambient at 500°C for 4 hours  with subsequent annealing treatments in air  

for 30 min at the temperatures shown.  All anneals were terminated by a quench to room 

temperature in water. 
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Moreover, in order to understand where these charged and neutral states  are located  

in the sample,  a TiO2 sample reduced by a treatment in a D2 ambient at 500°C  for 4 hours was 

mechanically thinned in several steps from each side, using silicon carbide for lapping  and 

aluminum oxide powder  and diamond paste  for polishing. The thinning process was started 

with an initial thickness of 1.53 mm and ended at 0.62 mm. After each thinning step, an IR 

spectrum (at 4 °K and 17 °K ) was measured (Fig. 4.8) in order to determine whether the 

charged and neutral states are located near the sample surface or throughout the sample bulk. 

Then, in order to reveal the changes in both neutral and charge states in more detail upon 

thinning, absorption lines of the charged and neutral states were determined by fitting the 

spectra with sums of Voigt line shapes (by using Peak Fit v4 software) as shown in Fig. 4.9 for 

the sample before and after all the thinning steps at 4 °K.  In the reduced sample, the oxygen 

deficient neutral state gets relatively weaker deeper inside the sample while the charged state 

gets relatively stronger. The reason is that oxygen is reduced near the surface when the TiO2 

sample is annealed in D2 ambient. Consequently, the oxygen-rich charge state (OD-) gets 

stronger with respect to the neutral state when the sample surface is removed and the center 

of the sample is exposed. This also explains why when a sample is annealed in air, only the 

oxygen-rich charged (OD-) state remains due to full oxygenation.  
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Fig. 4.8: IR absorption spectra (T=4 K and 17 K, resolution 0.1 cm-1) for TiO2 annealed in a D2 

ambient at 500°C for 4 hours. The sample was subsequently thinned in several steps from both 

sides, and measured at the thickness shown with polarized light Ec. An empty sample holder 

was used as the reference. 
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Fig. 4.9: IR absorption spectra (T=4 K, resolution 0.1 cm-1 with Ec) were measured  for a TiO2 

sample annealed in a D2 ambient (4 h at 500 °C) with the thickness 1.53 mm (on the left) and 

0.62mm (on the right). The lower traces show fits to the spectra. 
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In addition to providing an explanation of the two different observations in the 

literature, our findings provide a strategy to distinguish and investigate the behavior of each 

state of the multiline structure separately. As a first step in our analysis, the OD- charge state 

that is left alone in the spectrum after a full oxygenation of TiO2 samples was studied by itself. 

For this purpose, a D2 treated (4 hrs, 500°C) sample was subsequently annealed in air (30 mins, 

500°C) and its IR spectra were measured at various temperatures from 3.5 K to 60 K. The 

temperature dependence of this single line attributed to OD- is shown in Fig. 4.10 for the range 

3.5 K to 35 K. Lorentzian line shapes corresponding to the best-fit curves determined by 

PeakFit v4 software are also presented in the figure. There is only a slight change in the line 

shape with increasing temperature, that is, the OD- center shows little sensitivity to 

temperature changes. 
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Fig. 4.10: IR spectra for the OD- center measured at various temperatures (resolution = 0.1   

cm-1). Measurements were performed on samples treated in D2 and subsequently annealed in 

air until only the OD- charge state remained. 

We have also measured the temperature dependence between 3.5 K and 60 K for the 

three partially resolved OD lines by performing experiments on D2-treated (4 hrs, 500°C) 

samples. The resulting spectra for the range 4 K-50 K are presented as the upper curves in    

Fig. 4.11. In this case, strong temperature effects which are related to the temperature 

dependent behavior of the OD neutral state (2445.7 and 2447.8 cm-1 lines) are observed. 

Distinguishing the overlapping curves in order to separately study the behavior of each 

state is not straightforward. As a first step, we fit the experimental results for the three-line 

spectrum (upper traces in Fig. 4.11) from across the range of measurement temperatures to a 
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sum of Voigt line shapes. We obtained good fits that revealed a constant contribution from the 

charged OD- defect. Based on this insight, we subtracted the spectrum for the air-annealed 

sample (scaled by a single constant factor, independent of temperature) from the spectrum 

measured for the sample reduced by annealing in D2, temperature by temperature. This 

procedure yielded the spectrum for the neutral charge state alone at each temperature 

(center traces Fig. 4.11). The spectra for the neutral OD center could then be fit by the sum of 

two Voigt line shapes (lower traces Fig. 4.11) with frequencies (4 K) of ωL=2445.7 cm-1 and 

ωH=2447.9 cm-1. These fits were made with Peak Fit software. 
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Fig. 4.11: IR absorption spectra (T=4 K, 17 K and 50 K, resolution 0.1 cm-1 with Ec) measured 

as a function of temperature for a TiO2 sample annealed in a D2 ambient (4 h at 500 °C).  The 

upper traces show the IR spectra, as measured.  The center traces show the spectra after the 

contribution from the line at 2445.0 due to the charged OD- center has been subtracted.  The 

lower traces show the fits to the spectra of the neutral charge state by a sum of two Voigt line 

shapes. 

 

In order to investigate the neutral state’s temperature dependence more carefully, the 
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decreases in intensity while A(ωH) increases in intensity, showing what appears to be a simple 

activated behavior. However, above 20 K, A(ωL) regains intensity at the expense of the 

intensity of A(ωH). This behavior is surprising and requires further consideration. As a side 

note, the total area of the IR lines of the neutral OD center remains approximately constant 

between 4 K and 60 K.  

 

Fig. 4.12: The integrated areas of the absorbance lines, A(ωH) and A(ωL), measured as a 

function of temperature for the two components assigned to the neutral OD center in TiO2.   

                The next step in our analysis is to investigate the intensity ratio of these two 

absorbance lines as a function of temperature. For simple activated behavior, a linear slope is 

expected from a semi-log plot of this ratio versus inverse temperature (Fig. 4.13), following the 
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                                   (4.1) 

Between 4 K and 20 K, there is a linear slope. However, at higher temperatures (above 20 K) a 

sharp transition from an ascending to a descending curve is observed. The previously 

mentioned intensity switch between the absorption lines at ωL and ωH is the reason for this 

sharp transition at around 20 K. We interpret this change in slope as being due to an additional 

configuration of the neutral state that is indistinguishable from the ground neutral state 

configuration at ωL.  

 

Fig. 4.13: Semi-log plot of the ratio of the areas of the IR lines at ωH and ωL associated with the 

neutral OD center vs. inverse temperature.   
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The temperature dependence of the IR lines corresponding to the neutral state cannot 

be fit by a simple model with two components with different energies.  Previously, Herklotz et 

al. [4.11] proposed a model, supported by additional experimental observations. In this model, 

neutral OD was proposed to become ionized to give an IR line near ωL at elevated 

temperatures. A correlation of the ionization of neutral OD with the appearance of absorption 

attributed by Herklotz et al. to free carriers supported this suggested model.  The overall 

conclusion of Herklotz et al. was that D (or H) gives rise to a shallow donor in TiO2 with an 

ionization energy of 10 meV and Drude-like, free-carrier absorption [4.12].  

We propose a different model to explain the temperature dependence of the IR lines at 

ωL and ωH (shown in Fig. 4.12 and Fig. 4.13) that involves the properties of the neutral OD 

center alone. We favor this model due to two observations; 1) we have seen no appreciable 

absorption in our spectra that might be associated with free carriers as seen in Fig. 4.14; 2) we 

have seen no temperature dependence for the intensity of the OD- state, i.e. no intensity 

exchange between the neutral and OD- states. In our model, at least three configurations with 

different energies for the neutral OD center will be considered, as depicted in the inset to    

Fig. 4.15. The neutral OD configuration with lowest energy, E1, gives a line at ωL, while the 

configuration with energy E2 gives a line at ωH. And the configuration with energy E3 gives a 

line again at ωL that is indistinguishable from the contribution of the configuration with energy 

E1. In summary, two configurations with different energies, namely E1 and E3, happen to have 

the same frequency, ωL,, while the configuration with energy E2 has a different frequency, ωH. 
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Fig. 4.14: The free carrier absorption spectra of an as-grown and D2 treated (4h at 500 ⁰C) TiO2 

samples measured at 4 ⁰K and 50 ⁰K with a resolution = 0.1 cm-1. For spectrum (i), (ii),and (iii), 

an empty sample holder was used as the reference but for the spectrum (iv), the spectrum 

measured at 4 ⁰K was used as the reference to repeat Herklotz’s [4.11] free carrier absorption  

experiment  with our samples. 

In this model, the areas of the lines at ωL and ωH, are given by the following 

expressions: 
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  ,    (4.3) 

respectively, where Z is the partition function for the 3-level system (shown in the inset to  

Fig. 4.15) given by, 

           
   

  
         

   
  
   .    (4.4) 

 

The gi are the degeneracies of the different levels and the pi account for the fact that the IR 

transitions for the different configurations can have different oscillator strengths. Finally, using 

the relations Eqs. 4.2 and 4.3, the ratio of the areas of the IR lines at ωL and ωH shown in Fig. 

4.13, can be expressed as 
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Fig. 4.15: IR spectrum of the neutral OD center alone, with two IR lines with frequencies ωL and 

ωH. (Inset) The energies corresponding to the three-level system. 

In the following procedure, the values of pi, gi, E2 and E3 that give a best fit model to 

the experimental data will be determined. This optimization procedure has two steps. In the 

first step, the model given by Eq. 4.5 was fit to the data seen in Fig. 4.13 using the Microsoft 

Excel Optimization Solver. Independent of initial values for parameters, E2 and E3 converged to 

0.5 ± 0.05 and 11 ± 4 meV respectively, and the fit of the model with the data is presented in 

Fig. 4.16. In this initial step, these energy values are determined and fixed for the next step. 

Before proceeding with the second optimization step, a detailed analysis of the model and the 

experimental data in the limits of low and high temperature will be given next. For 

convenience, consider the reciprocal of Eq. 4.5 
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    (4.6) 

For low temperature (<10 K), the relation of 4.6 versus 1/T simplifies to 

     
     

  
    

    
     

  

  
      (4.7) 

Therefore, in the limit of low temperature, the slope of the semi-log plot of A(ωH)/A(ωL) (Eq. 

4.5) versus 1/T is equal to E2/k. Moreover, the y-intercept of the curve given by log (p2g2/p1g1) 

is a constraint that will be used in the fitting procedure. From a graphical analysis, a range 

between 0.61 and 0.95 was determined for the ratio (p2g2/p1g1). 
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A similar procedure can be applied for the high temperature range (> 35 K). Starting 

with Eq. 4.6 and considering the high temperature limit, the relation simplifies to, 

     
     

  
    

    
 

    

    
     

     

  
  .     (4.9) 

In the limit of high temperature, the slope of the semi-log plot of Eq. 4.5 versus 1/T is equal to 

(E3-E2)/k. The y-intercept of the curve generates another relationship between the pi and gi for 

which the following ranges were determined from a graphical analysis and with the use of Eq. 

4.8: 
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        (4.10) 

In the second step, E2 and E3 values determined in the first step were used as fixed 

values in Eq. 4.2 and Eq. 4.3 in order to provide the best fit of the model to the experimental 

data shown in Fig. 4.12. The pi and gi values were adjusted using a least squares error 

minimization procedure, subject to the constraints Eq. 4.8 and Eq. 4.10. The Microsoft Excel 

Optimization Solver was used again for this purpose and the following values were found to 

yield the best fit to our data: 

p1 p2 p3 g1 g2 g3 

0.679 0.514 0.382 1 1 19.561 
 

Table 4.1: Adjusted values of pi and gi for the best fit model to data. 

 

The fit parameters pi vary by only small factors near 1, consistent with the expectation that 

different OD configurations should have similar oscillator strengths. The degeneracies of levels 

E1 and E2 were found to be one while a high degeneracy was found for the level E3. The 

sharpness of the transition between ascending-descending slopes seen for the semi-log plot in 

Fig. 4.13 requires a larger degeneracy for the level E3. Using these values, a comparison of the 

model with the experiments is shown in Fig. 4.16 and Fig. 4.17. In Fig. 4.17, the model results 

shown by a solid line fits very well the integrated absorption data corresponding to the lines at 

ωL and ωH (shown by circles).  Also shown in the figure with dashed lines are the model results 

for the contributions of levels E1 and E3 that sum to yield the area A(ωL). The contribution from 

the E3 level is significant above 20 K while the contribution from the E1 level continuously 
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decreases with increasing temperature. A fit to the ratio of the areas of the IR lines at ωL and 

ωH is shown in Fig. 4.16. A very good fit that provides a good representation of the sharp 

transition in slopes near 20 K is obtained. 

 

Fig. 4.16: Semi-log plot of the ratio of the areas of the IR lines at ωH and ωL associated with the 

neutral OD center vs. inverse temperature. The solid line shows a fit to the ratio of the areas of 

the IR lines at ωH and ωL associated with the neutral OD center vs. inverse temperature. 
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Fig. 4.17: The integrated areas of the absorbance curves, A(ωH) and A(ωL), measured as a 

function of temperature for the two components of the line shape assigned to the neutral OD 

center in TiO2. The solid lines show fits to the experimental data for the line areas.  The dashed 

lines show the areas of the contributions arising from the levels E1 and E3 that sum to yield the 

area A(ωL). 

The high degeneracy given by g3 should also be mentioned here. Although a very good 

fit was obtained with g3=19, other satisfactory fits are also possible with g3>12 for the intensity 

ratio plot, as shown in Fig. 4.18, indicating a high degeneracy for the E3 level. The sharpness of 

the transition between ascending-descending slopes increases with increasing value of g3. We 

have selected g3=19 for the analysis because it gives a very good fit to the intensity ratio and 

also gives the best fits to separate plots of A(ωL) and A(ωH) together. The fit of the model to 
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the A(ωL) and A(ωH) data for different g3 values is shown in Fig. 4.19. Clearly, the match 

between model and data for g3<12 and g3>20 becomes less successful. The adjusted 

parameters found for the optimized fit using different g3 values are listed in Table 4.2. It should 

be noted that in this analysis we have fixed g3 to the values presented in the table and have 

done the optimization in a reversed order. We have first optimized A(ωL) and A(ωH) by 

constraining g3 only and found E2 and E3 values. Then these were input in the second 

optimization step for the ratio A(ωH)/A(ωL). If the optimization procedure is started with the 

ratio A(ωH)/A(ωL), each g3 value would yield the same E2 and E3 values which results in less 

satisfactory fits in the A(ωL) and A(ωH) plots.   
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Fig. 4.18: Semi-log plot of the ratio of the areas of the IR lines at ωH and ωL vs. inverse 

temperature with different degeneracies (g3= 3, 12, 20, and 100) for level E3. The solid lines 

represent fits to the experimental data. 
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Fig. 4.19: The integrated areas of the absorbance curves, A(ωH) and A(ωL), measured as a 

function of temperature fitted with different degeneracies (g3= 3, 12, 20, and 100) for level E3. 

The solid lines show the fit to the experimental data. The dashed lines show the areas of the 

contributions arising from the levels E1 and E3 that sum to yield the area A(ωL). 

 

 

 

 

 

 

 

0 25 50

 

 

0 25 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A(
H
)

 

 

in
te

g
ra

te
d

 a
b

so
rb

a
n

ce
 (

cm
-1
)

T (K)

g
3
=3 g

3
=12 g

3
=20 g

3
=100

A(
L
)

0 25 50
 

 

0 25 50

 

 



134 
 

 g3=3 g3=12 g3=20 g3=100 

E2 0.482 0.507 0.502 0.480 

E3 4.958 9.005 10.895 17.448 

p1 0.685 0.677 0.678 0.685 

P2 0.512 0.518 0.512 0.493 

P3 0.496 0.384 0.356 0.287 

 

Table 4.2: Adjusted values of the pi and the level energies for degeneracies of level E3 for the 

best-fit model to data with g3 held fixed at the selected value. 

 

4.3.2 O-H stretching vibrational mode 

Up to now, the data analyzed and discussed are related to the IR lines of OD centers in 

TiO2. In this section, the results for the OH lines from similar experimental and modeling 

approaches will be presented. Since the samples, the experimental set-up and the modeling 

method are the same as was introduced for the OD vibrational modes, the focus will be on the 

results for the OH modes. 

Due to the increased noise and the reduced sharpness of the IR lines for the OH 

center, the determination of the frequencies for the IR lines that overlap is not as easy as in 

the OD case. An air annealed sample was first measured at temperatures between 3.5 K and 

60 K, and as was observed for the OD lines, only the positive charge states, i.e. OD- and OH-, 

remain in the spectra. From these measurements, the frequency arising from OH- was 

determined to be 3287.4 cm-1 at 4 K and changed only slightly at higher temperatures.  
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It is difficult to determine the frequencies of the overlapping components of the IR 

band for the O-H center. In order to determine the frequencies ωL and ωH for the OH range, a 

constant ratio of the frequencies of OH and OD has been assumed. The shift factors were 

found from the ratio measured for the frequencies of the positive charge state for OD and OH 

at each temperature. These factors were multiplied times the ωL and ωH frequencies for the OD 

center to obtain the corresponding frequencies for the OH center. The ratio for the 

temperature range 3.5 K-60 K was found to be 1.34459±0.00001 (the theoretical value for an 

OH diatomic is 1.374) and the ωL and ωH frequencies for OH were determined to be           

3288.4 cm-1 and 3291.4 cm-1, respectively, at 4 K. 

The method used to fit the IR line shapes for the OD center was used to analyze the 

line shape for OH. The three overlapping OH lines, the contribution from the neutral OH center 

alone, and the fits for the components at ωL and ωH are plotted in Fig. 4.20. The same 

methodology used to find a best fit to the experimental areas of the IR lines at ωL and ωH for 

the OD neutral center was used to generate the best fit curves shown in Fig. 4.21 and Fig. 4.22 

for the neutral OH center. The optimized parameters for this fit are listed in Table 4.3. E2 was 

determined to be 0.5 ± 0.38 meV and E3 was found to be 11 ± 9.5 meV from the high and low 

temperature slopes of experimental data in Fig. 4.22. The error in energy level is found to be 

the value that doubles the total error in the least square analysis. 

p1 p2 p3 q1 q2 q3 

0.703 1.107 0.810 1 1 40 
 

Table 4.3: Adjusted values of pi and gi for the best fit model to data for the O-H center. 
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The data for the OH range are more scattered due to the increased line widths and the 

difficulty of uniquely separating the lines. The fit is not as good as the one for the OD range. 

However, very similar trends are observed. At around 20 K, a sharp transition in the ratio of 

areas of IR lines at ωL and ωH is caused by an increase in the intensity of ωL line which is the 

sum of contributions from the levels E1 and E3. Again, in the same temperature range, the 

contribution from the E3 level starts to grow while the contribution from the E1 level 

decreases. 

The uncertainties in the values of the energies have prevented us from obtaining 

useful information about isotope shifts for the energy separations E2 - E1 and E3 - E1. 

 



137 
 

 

Fig. 4.20: IR absorption spectra (T=4 K, 17 K and 50 K, resolution 0.1 cm-1 with Ec), showing 

the O-H stretching region, measured as a function of temperature for a TiO2 sample annealed 

in a D2 ambient (4 h at 500 °C).  The upper traces show the IR spectra, as measured.  The 

center traces show the spectra after the contribution from the line at 3287.4 due to the 

charged OH center had been subtracted.  The lower traces show the fits to the spectra by a 

sum of two Lorenzian line shapes.  
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Fig. 4.21: The integrated areas of the absorbance curves, A(ωH) and A(ωL), measured as a 

function of temperature for the two components of the line shape assigned to the neutral OH 

center in TiO2. The solid lines show fits to the experimental data for the line areas.  The dashed 

lines show the areas of the contributions arising from the levels E1 and E3 that sum to yield the 

area A(ωL). 
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Fig. 4.22: Semi-log plot of the ratio of the areas of the IR lines at ωH and ωL associated with the 

neutral OH center vs. inverse temperature. The solid line shows a fit to the ratio of the areas of 

the IR lines at ωH and ωL associated with the neutral OH center vs. inverse temperature. 

 

4.3.3 Small Polaron Model 

 In this section, we explain the physical origin of the three configurations with different 
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following computed lattice constants were used in these supercells: a = 4.572 Å, c = 2.984 Å, 

and u = 0.305 and Gaussian basis functions [4.18-4.20] were of the type 8411 for O, 8651(d3) 

for Ti, and 311p(1) for H. 

The unusual electronic properties of TiO2 and their relationship with the crystal 

structure have been examined first. Electron self trapping on Ti is such an unusual and 

important characteristic that stems from the Ti d-like character of the lowest conduction band 

[4.21-4.24], unlike the s/p-like character seen in many other metal oxides including SnO2.  This 

kind of behavior can be explained by the small polaron model [4.25]. According to this model, 

an extra electron can be self-trapped near a single lattice atom by displacing the nearby lattice 

atoms and creating a localized potential well. This is illustrated in Fig. 4.23 (a) [4.25]. In the 

figure, the excess electron represented by a dot is trapped near a lattice atom and displaces 

the neighboring lattice atoms as shown by circles. This changes the local potential well that 

was already provided in the lattice by the undisplaced atoms (top of Fig. 4.23 (b)) to a self-

trapping potential well as shown just below, reducing the energy of the excess electron. 
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Fig. 4.23: a) Illustration of small polaron formation with a trapped excess electron (black dot) 

and associated displacements at neighboring lattice atoms (circles), b) Illustration of the 

change in the potential from that of a regular lattice configuration (top) to a modified, self-

trapping well after atomic displacements (bottom) [4.25]. 

Similar to the explanation made for the small polaron model, electron self-trapping on 

Ti also occurs with associated displacements of neighboring ions. Thus, the electron behaves 

not as a Bloch function, but as a small polaron inside TiO2 [4.25-4.28].In other words, it is 

energetically more favorable for the excess electron to localize in the d-orbital of one Ti atom 

than to spread out in the lattice with wave characteristics [4.10]. A band gap of 3.76 eV was 

determined from the band structure computation with CRYSTAL06. The bands correspond well 

with those of earlier calculations and exhibit the complex nature of the lowest conduction 

bands, even though the predicted band gap is larger than experiment [4.29]. 
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In Fowler’s calculations, electron self-trapping near a Ti atom in a rutile TiO2 supercell 

was predicted. When an extra electron was placed within a TiO2 supercell, it tended to localize 

around a single Ti atom. It should be noted that this occurs with 20% exchange potential 

although nearly complete localization requires a 30% exchange potential.  

Another important observation resulting from Fowler’s CRYSTAL06 calculations 

occurred when an interstitial H was included in the rutile supercell; slightly different initial 

choices of atomic positions resulted in slightly different minimum energy atomic 

configurations. And each of these exhibits spin localization on a different Ti! Thus the small-

polaron nature of the electron persists, even when it comes from Hi.  This result is consistent 

with several published accounts [4.30-4.32] in which either correlation or hybridization was 

included in the density functional formalism.  Please refer to Fig. 4.24 for an example of the  

localization of a Hi electron in a 192 atom rutile TiO2 supercell,  calculated by the Vienna ab 

initio simulation package, VASP 5.2.8 [4.32]. We use these and other results to address the 

origin of the energy levels that emerge from the analysis of our experimental results.  
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Fig. 4.24: Predicted localization of the electron of an Hi donor in a 192 atom TiO2 supercell 

calculated by VASP 5.2.8. [4.32] 

Before associating the small splittings seen in our vibrational spectra for TiO2 samples 

to the small polaron phenomenon, we should consider some other possible and common 

sources of such splittings. The first alternative source to be investigated can be the effect of 

different heavy atom isotopes. Although the presence of 17O and 18O in TiO2 can shift the 

spectra, it is very unlikely to be the reason for the splittings observed in our spectra due to 

very small abundances of these isotopes. Also, even if there were such isotopes in the crystal, 

we would expect a larger splitting due to these heavy oxygens than has been observed. 

Second, we can consider splitting due to effects of H or D tunneling between oxygen atoms. 

This can easily be ruled out since the splitting observed in our spectra would be too small to be 

associated with this effect. The potential energy function of Hi as a function of distance from O 

was previously calculated by Fowler et al. [4.33], and it was shown that the large relaxation 

characteristic of the O-H defect removes any potential tunneling degeneracy with respect to 

the O that lies across the channel. Basically, the O-O distance is too large for H or D tunneling 
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to occur in TiO2. Finally, hindered rotation was considered as an alternative source for the 

splittings. Rotational effects can be ruled out with confidence due to the low symmetry of 

rutile. As a matter of fact, there is no axis of rotation for the OH complex lying in the xy plane 

of the TiO2 rutile structure.  

In conclusion, we propose that the near degeneracy of a small polaron electron that 

arises from Hi and can localize on different Ti, can be used to explain the energy splitting 

observed in the vibrational spectra of OD in TiO2. Recent EPR studies of OH in TiO2 provide 

further experimental support for this model [4.9-4.10].  In these studies, electrons from two 

distinct sources, namely Hi and substitutional F, were found to be localized at two distinctly 

different Ti atoms. In our model, we propose that each energy level, as shown in Fig. 4.25 (b), 

corresponds to the localization of an electron from Hi at a different Ti location. For E1, we 

propose that the localization of the electron occurs at Ti1 in reference to Fig. 4.25 (a), 

consistent with EPR results for neutral H at low temperature [4.10]. We suggest that the 

electron is localized at Ti2 for E2. For E3, the localization occurs at Ti3 or Ti3’ or any one of more 

distant Ti. This model provides a physical explanation for the three configurations with 

different energies that are required to explain the temperature dependence of IR spectra. 

Moreover, the high degeneracy determined for E3 in our model could be associated with the 

possibility that the electron can be localized on a variety of more distant Ti atoms without 

significantly affecting the OD IR frequency.  

A number of interesting issues remain open. For example, since the energy differences 

between configurations are too small to reliably determine their order by theory, the 

assignment of these configurations is not completely consistent with theoretical predictions 
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[4.30-4.32]. According to these predictions, the lowest energy configuration corresponds to 

electron localization on Ti3 or Ti3’ but this result is not consistent with EPR observations [4.10]. 

The inaccurate theoretical ordering with such small splittings may come from defect-defect 

interaction associated with supercell size. Therefore, the guidance of theory is general and not 

specific. Nonetheless, the consideration of both theoretical and experimental results suggests 

that the small splittings seen in IR spectra can be directly attributed to small polaron effects 

that are unique to TiO2.  

 Another point that should be noted is related to the degeneracy of the level E3. 

Although we have used g3=19 to produce the satisfactory fits seen in Fig. 4.16 and Fig. 4.17, 

g3>12 also gives satisfactory fits (Fig. 4.18 and Fig. 4.19), suggesting that g3 must be large. E3 

and g3 are the energy and degeneracy of an “effective level” that accounts for an extra 

electron that can be localized on any one of more distant Ti lattice atoms.  
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Fig. 4.25: a) The different configurations for the neutral OH (OD) center with a negative charge 

localized on different Ti3+ neighbors, drawn using Moldraw [3.7] b) Energies of three 

configurations used to fit the temperature dependence of the IR data. 

 

4.4 TiO2 Samples from Dresden 

After our studies were completed, we arranged to exchange TiO2 samples with the 

group in Dresden. These samples were grown by the Verneuil technique by Crystec GmbH 

(Germany). One sample is in its as-grown state and a second sample had been treated in D2. IR 

spectra for these samples are shown in Fig. 4.26. These IR results are similar to the results we 

have obtained (seen in Fig. 4.14). Similar to our results, there is little, if any, free carrier 

absorption. The differences between our results and those of the Dresden group are not due 

(a) (b)
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to differences between samples but rather are due to how we have chosen to interpret our 

data.  

 

Fig. 4.26: (a) IR absorption spectra (T= 4 K, 17 K, and 50 K, resolution= 0.1cm-1) of D2 treated 

TiO2 sample from Dresden measured with polarized light with Ec. (b) The free carrier 

absorption spectra of  TiO2 samples (as-grown and treated in D2) measured at 4.2 ⁰K and 50 ⁰K 

with a resolution = 0.1 cm-1. For spectra (i), (ii),and (iii), an empty sample holder was used as 

the reference but for the spectrum (iv), the spectrum measured at 4 ⁰K was used as the 

reference. 
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4.5 Conclusion  

Hydrogen and deuterium in rutile TiO2 have been investigated by vibrational 

spectroscopy. New results obtained for samples previously studied by Bates and Perkins and a 

comparison of these results with those obtained for samples prepared at Lehigh allowed us to 

explain the different observations made by Herklotz et al. [4.11] and by Bates and Perkins 

[4.8]. When samples were treated in a D2 ambient and quenched, the multiline structure 

arising from charged OD- and a neutral OD center was observed in the spectrum. This result is 

consistent with recent observations made by Herklotz et al.. However, following a subsequent 

treatment in air, the sample becomes more fully oxygenated and the IR spectrum is simplified 

to a sharp, single line arising from the charged OD- center, as was observed by Bates and 

Perkins. 

After resolving the discrepancy between previous studies of OH and OD in TiO2, we 

have extended our experiments to analyze the temperature dependence of the IR spectra. We 

have observed that the total concentration of the neutral OD center remains constant while 

the concentration of the charged OD- center is unaffected by temperature changes over the 

test range of 3.5 K to 60 K. While these IR measurements have shown a temperature 

dependence similar to those of Herklotz et al. [4.11], a different model has been proposed to 

explain this behavior. According to the model of Herklotz et al., the neutral OD center acts as a 

shallow donor in TiO2 with a binding energy of 10 meV. It is still an on-going subject of 

discussion whether the character of H is shallow or deep in TiO2 [4.35-4.36], and within the 

scope of this work, we have not seen an evidence of a shallow character. Instead, we have 

proposed a small polaron model to explain the temperature dependence of the neutral OD 
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center. Theoretical calculations performed by Fowler have revealed that an excess electron 

arising from Hi tends to localize on a Ti lattice atom and forms a small polaron by displacing 

neighboring atoms. Moreover, depending on the choice of the initial position, the localization 

of the electron occurs at different Ti sites, giving slightly different energy configurations. This 

provides a microscopic explanation for the small splittings seen in the IR spectra arising from 

the neutral OD center. A large value for the degeneracy has been found for one of the energy 

configurations, suggesting an electron localizing on any one of several distant Ti atoms and 

therefore not changing the associated IR frequency significantly. In conclusion, the small 

polaron model finds that an electron becomes localized on a Ti atom and explains the unusual 

temperature dependence of a neutral OD center in TiO2. The model is consistent with the 

findings of a recent EPR study of H and F in TiO2 [4.10] and with recent theory. 

Similar experimental and theoretical studies have been conducted also for an OH 

center in TiO2 samples.  A similar multiline structure and temperature behavior have been 

observed for OH and we have been able to analyze this center with a similar approach. 

However, since the OH line shapes are broader, revealing less detail, useful information about 

isotope effects on the position of the three line structure could not be extracted from IR data. 

The analysis of the OH center finds a behavior that is consistent with the properties found by 

more detailed analysis that was possible for OD. 
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Chapter 5  

Conclusion  
 

The hydrogen-related defects in two rutile-structure transparent metal oxides, namely 

SnO2 and TiO2, have been studied by FTIR spectroscopy. Hydrogen impurities have been known 

to be an important factor in the electrical and optical properties of metal oxide 

semiconductors which are unusual materials that combine electrical conductivity and optical 

transparency in the visible range.  

The first oxide investigated was SnO2, and the subject of interest was the 

determination of the thermal stabilities of the O-H centers in hydrogen and deuterium-treated 

samples and their relationship to the free carriers that are introduced by shallow donors. We 

found that electrically inactive hydrogen that is already present in as-grown samples interacts 

with native defects to give rise to O-H centers and shallow donors during heat treatment. Two 

H-related donors that give rise to free carriers were found to be present in these samples 

through an annealing study.  The first donor is marginally stable at room temperature and was 

assigned to Hi and to the O-H line at 3156.1 cm-1, in agreement with a previous assignment by 

Hlaing Oo et al. A second shallow donor was assigned to H at an oxygen vacancy ,Ho, that is a 

more thermally stable donor (up to near 600°C). About 35% of the free carrier absorption was 

determined to be due to Hi while the remaining 65% was from Ho. 

 Thermal treatment of SnO2 also produced additional O-H and (O-H)2 centers that do 

not give rise to free carriers. Our IR spectroscopy studies utilizing the annealing and 

polarization properties of hydrogen or deuterium treated samples revealed that an inter-
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conversion between electrically inactive centers and H-related shallow donors can occur. We 

investigated the structure and chemical reactions of several O-H and (O-H)2 centers, taking 

advantage of their distinctive polarization properties in our experiments and theoretical work 

performed in collaboration with Prof. Fowler. The polarization data and theoretical 

calculations contradicted the previous assignment of the line at 3281.8 cm-1 to H being trapped 

at a Sn vacancy and with an axial configuration. We proposed that the line 3281.8 cm-1 is due 

to H being trapped next to an interstitial Sn atom with some relaxation from the normal to the 

c-axis. Using the polarization data and theory, the 3334.2 and 3343.2 cm-1 lines were assigned 

to an (O-H)2 center trapped by an interstitial Sn atom. A IR line at 3339.0 cm-1 was proposed to 

be due to the (O-H—D-O) form of the same center. 

Rutile TiO2 was the second metal oxide studied. We began our experiments on TiO2 by 

resolving a discrepancy between the observations of two earlier studies of the OD center and 

the IR lines near 2445 cm-1 that OD give rise to. Our experiments revealed that the multiline or 

the single line structures, reported by two different groups, were obtained depending on the 

oxygenation level of the D2 treated samples.  

The temperature dependence of the IR spectra was then investigated. Although similar 

IR results to those from a previous study done by Herklotz et al. were obtained, we presented 

a different interpretation and model to explain the observe temperature dependence. 

Herklotz et al. related the multiline structure to different (neutral and positive) charge states 

of the same OD center and assigned the neutral OD center to a shallow donor. In our 

experimental data, the positive charge state (OD-) showed insignificant temperature 

dependence and also the total concentration of the neutral OD center remained constant over 



155 
 

the test range 3.5 K to 60 K. In addition, our measurements did not show appreciable free 

carrier absorption, so we have not seen evidence for the shallow character of OD within the 

scope of this work. Instead, we have proposed a different model related to the neutral OD 

center only. With the help of Prof. Fowler’s theoretical calculations, we explained the physical 

meaning of the temperature dependence of the neutral OD center. These calculations 

revealed that an excess electron arising from Hi tends to localize on a Ti lattice atom and forms 

a small polaron that arises from the displacements of neighboring atoms. Moreover, 

depending on the choice of the initial position, the localization of the electron occurs at 

different Ti sites, giving slightly different energy configurations. This provides a microscopic 

explanation for the small splittings seen in the IR spectra arising from the neutral OD center. In 

summary, we propose a small polaron model to describe the temperature dependence of the 

neutral OD center that has at least three configurations with different energies.  

My experimental studies reveal how hydrogen can change the properties of 

transparent metal oxides. Further research needs to be done to fully understand the effects of 

hydrogen on the properties of these unique materials. Our research group plans to investigate 

hydrogen in other metal oxides, such as In2O3, MgO and ZnO. 
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