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ABSTRACT

In this work I use modeling and image analysis to study the dynamics of the

actin cytoskeleton. Actin is a protein that polyermizes into filaments. Actin plays an

important role in many functions of the cell: it is a dynamic facet of the cytoskeleton

that helps cells determine their shape; it is a principal component of mechanisms used

for cell motility; and it is fundamental to cytokinesis during cellular division. In vitro

experiments have helped to understand many aspects of actin polymerization, but the

kinetics of actin polymerization in live cells often reveal surprising results. New live

cell experimental techniques make it possible to measure the kinetics, localization,

and abundance of proteins with ever greater precision. These novel techniques create

challenges for both extracting data from complex images, and mathematical modeling

to interpret the underlying mechanisms.

The first type of experiment I examine allows measurement of growth rates and

persistence length of actin polymers in vitro. In this method researchers polymer-

ize actin filaments on a glass slide with fluorescently labeled actin. Individual actin

filaments can then be imaged over time using time-lapse Total Internal Reflection

Fluorescence (TIRF) microscopy. To address the challenge of measuring actin fila-

ments quickly and accurately I developed an interactive software tool for segmenta-

tion, tracking, and visualization of individual fibers. The algorithm used is called

Stretching Open Active Contours. Open active contours are parametric curves that

deform to minimize the sum of an external energy derived from the image and an

internal bending and stretching energy. Images of simulated semiflexible polymers

with known bending and torsional rigidity are analyzed to validate the method. This

method was used successfully to measure the curvature and tangent correlations of

actin filaments imaged by TIRF microscopy in vitro. It was also used to measure

curvature distributions for 3D image stacks of actin cables in fission yeast, imaged by

spinning disk confocal microscopy.

The second type of experiments are live cell experiments that demand compu-

tational image analysis. In experiments performed by the group headed by Naoki

Watanabe, the kinetics of actin can be observed through single molecule speckle

(SiMS) microscopy of lamellipodia. Lamellipodia are flat (∼ 200nm thick) protru-

sions that cells use to crawl on flat surfaces. By imaging the lamellipodium of cells

expressing low concentrations of labeled protein, the behavior of single actin proteins

can be observed. Labeled proteins appear as speckles when they are part of an actin
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filament. When a speckle appears it corresponds to actin polymerization and when a

speckle disappears it corresponds to depolymerization. Locating and tracking speck-

les is very tedious due to the low signal to noise and due to the different structures

found near the lamellipodium. I present a program, Speckle TrackerJ, which addresses

some of these challenges using computer assisted techniques for finding positions and

tracking particles in different situations. A dynamic user interface assists in creating,

editing and refining particle tracks. This program has been useful for measuring actin

and related proteins in the cytoskeleton. For example, we used the program to mea-

sure the diffusion coefficient of capping proteins (CP) in the lamellipodium and we

efficiently measured the appearance and disappearance of EGFP-actin speckles within

the lamellipodium of motile cells. By measuring the appearance and disappearance

of actin speckles we observe the kinetics of actin binding to the filamentous network

in the lamellipodium. This program was also able to assist in tracking vesicles in

supported lipid bilayer experiments performed by E. Karatekin and A. Gohlke.

Finaly, I use modeling combined with results of the previous experiments to in-

terpret the results of live cell experiments using Fluorescent Recovery After Photo-

bleaching (FRAP). Prior FRAP experiments using EGFP-actin have suggested that

polymerization occurs exclusively at the leading edge of motile cells. This result

contradicts results from the SiMS experiments where recovery occurs throughout the

lamellipodium. To compare these two types of experiments I used the statistics ob-

tained from SiMS experiments to create a model for the steady state distribution

and kinetics of actin in the lamellipodium. I used this model to demonstrate that by

including two species of diffuse actin both types of experiments, FRAP and SiMS, do

not contradict each other. The second species of diffuse actin consists of slowly dif-

fusing oligomers that associate to the F-actin network throughout the lamellipodium

or break up into monomers after a characteristic time. Our work motivates studies

to test the presence and composition of slowly diffusing actin species that may con-

tribute to local remodeling of the actin network and increase the amount of soluble

actin available for polymerization.
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Chapter 1

Actin polymerization and the

lamellipodium

1.1 BACKGROUND

1.1.1 Actin is part of the machinery of crawling cells

Active cell motion is found in a wide range of organisms, such as the “run and

tumble” motions of the bacteria Escherichia coli [1], to white blood cells in our

immune system [2]. In both of these examples the cells build complicated structures

out of proteins to produce motility. The subject of this work is motility based on the

actin cytoskeleton. Actin plays an important role in cell motility [3], it helps cells

determine their shape [4], and it is fundamental to cytokinesis during cell division

[5]. One of the best systems to study actin based motility are cells that crawl using

a lamellipodium. Lamellipodia are thin sheet like structures that protrude along a

surface (see Fig. 1.1). Lamellipodia protrusions are approximately 200 nm thick

and extend several micrometers from the body of the cell. The basic structure of

the lamellipodium is a plasma membrane supported by a dendritic network of actin

filaments (Fig. 1.2). Protrusion of lamellipodia is driven by polymerization of actin

monomers into filaments at the leading edge.

The organization of actin into the branched network seen in Fig. 1.2B requires

many proteins. In addition to actin, lamellipodia are characterized by actin filament

nucleating proteins such as: the Arp2/3 complex; adhesion proteins that cross the

plasma membrane to interact with the surroundings; proteins that attach to the

ends of filaments and prevent polymerization, such as Capping Protein (CP); and

3



Thickness ~ 200nm

Width
~10μm

Lamellipodium

Figure 1.1: Overview of a cell with a lamellipodium. The top image is an epifluorescent
image of a XTC cell expressing EGFP-actin [6]. The lamellipodium goes
around the circumference of this cell and gives it a “fried egg” morphology
(Scale bar: 8 µm). The bottom cartoon depicts a side view of the cell, to
show how the lamellipodium would compared to the body of the cell.

proteins that bind and sever actin filaments such as ADF/cofilin. The roles of some

of these proteins are described in the dendritic nucleation model of the lamellipodia

(see Section 1.1.4).

1.1.2 Basics of actin polymerization

Actin can exist either as a monomer (globular or “G-actin”) or as a polymer (fil-

amentous or “F-actin”). Actin filaments are polarized with a “barbed” end and a

“pointed” end (see Fig. 1.3A). The names barbed and pointed are a reference to

the way actin filaments looked in early electron micrographs where actin was imaged

while bound to myosin [8, 9].

Each end of an actin filament has different polymerization rates and different

4



A B

Figure 1.2: Electron Microscopy reveals the actin network in the lamellipodium. A)
Cropped region from the cell showing in Fig. 1.1. Scale bar: 8 µm. B)
Electron Micrograph of a Xenopus fibroblast from Ref. [7] shows the dense
brush-like network of actin filaments at the leading edge. Scale bar: 1 µm.

steady-state conditions depending on the state of the actin monomers. The state

of an actin subunit is determined by a bound nucleotide. Each actin subunit has a

binding cleft where it can bind a nucleotide, either ATP or ADP (Fig. 1.3B). G-actin

can bind both ATP and ADP, but because ATP exists in excess in the cytoplasm

a majority of actin available for polymerization is G-actin bound to ATP (“ATP-

actin”). ATP-actin polymerizes faster at the barbed ends of actin filaments than at

the pointed ends (see Fig. 1.3A). Shortly after being polymerized, ATP-actin subunits

hydrolyze the ATP into an ADP and a phosphate, Pi, at a rate of 0.3 s−1 [10, 11].

A subunit with ADP and Pi is ADP-Pi-actin. Phosphate release into solution occurs

at a rate of 0.003 s−1 [10] and the subunit becomes ADP-actin. This is one way that

actin polymerization consumes energy, which can be used by cells for directed motion

and organized structures required for cellular functions.

One technique used to measure actin polymerization uses a fluorescent dye, pyrene

[14]. Pyrene can be covalently bound to actin monomers and used to polymerize

with a mixture of labeled and unlabeled actin subunits. Filamentous pyrene-actin is

∼ 20 times brighter than monomeric pyrene-actin [10], so the amount of polymerized

5



A B

C

ATP ADP

i ii iii

i ii iii

Figure 1.3: A) Actin filaments from Ref. [12]. Left: EM picture of an actin filament
that has been decorated by myosin heads and then allowed to polymerize
again. The shape of the myosin attached the the actin filaments resembles
an arrowhead. That is how the barbed and pointed ends were named. The
undecorated ends of the filament show that the barbed end grew much faster
than the pointed end. Right: Schematic of the polymerization rates at the
different ends of the filament. Labels T, D represent the type of nucleotide
(ATP or ADP, respectively) that is bound to the actin subunit. Actin subunits
hydrolyze ATP into ADP when they are in a filament; when they are in
solution they will replace the ADP with ATP. B) Crystal structure of actin
monomers with different bound nuecleotides from ref.[13]. i) ATP-actin ii)
ADP-actin and iii) actin without the bound nucleotide and divalent ion which
is required for actin polymerization. C) Cartoon representation of B.

actin can be measured by measuring the total fluorescence intensity as a function of

time. When salt is added to a low-salt solution of labeled and unlabeled monomers,

polymerization begins. Experiments with pyrene-actin show that low concentrations

of actin (< 10µM) have a significant delay in polymerization. This is due to slow

nucleation of actin filaments: actin monomers need to first form a stable trimer or

tetramer before it can polymerize into filaments [14]. After the initial delay, the

rate of polymerization increases rapidly, possibly due to the addition of barbed ends

created by fragmentation [14]. This process continues until most of the available

actin is consumed and the remaining actin in solution is at the critical concentration,

∼ 0.1µM [15]. When the solution reaches a steady state, there is still turnover in

the polymerized actin because of the ATP-actin hydrolysis cycle. ATP-actin, ADP-

Pi-actin and ADP-actin have different critical concentrations and at steady state the

6



barbed end is polymerizing while the pointed end is shrinking [15, 16].

Pyrene fluorescence assays are a powerful tool that allowed measurements of actin

polymerization in real time during the 1980’s and 1990’s. These assays measure actin

polymerization in bulk experiments, where the behavior of individual filaments needs

to be inferred from the results. They also involve complications when actin binding

proteins alter the pyrene fluorescence. A more recent technique used to measure

actin polymerization is Total Internal Reflection Fluorescence (TIRF) microscopy [17].

TIRF enables imaging individual actin filaments as they grow in real time (see Fig.

1.4). In these experiments a solution containing actin monomers covalently bound to

a fluorescent dye such as Alexa 488, and unlabeled actin monomers is contained above

a slide. The slide is coated with proteins that attach to actin filaments. The slide

is illuminated by an evanescent wave so that only the fluorescent proteins near the

slide, < 200nm, are illuminated. Only actin filaments that are attached to the slide

will be close enough to be illuminated and the result is a clear image of individual

filaments as they polymerize (see Fig. 1.4). In addition to imaging actin filaments,

the interaction of other proteins and actin filaments can also be studied using this

technique.

Although TIRF improves the ability to observe actin polymerization, it also cre-

ates new challenges regarding analysis. For example, in order to measure polymer-

ization kinetics, filaments need to be quickly and accurately tracked. I addressed this

issue by writing a program for tracking filaments described in Chapter 2.

1.1.3 Regulation of actin polymerization

One way to control actin polymerization is through the nucleation of new filaments.

The actin related protein complex, Arp2/3, is one of the major actin filament nu-

cleators in cells. Arp2/3 protein complex contains seven proteins. Two of these

proteins, Arp 2 and 3, are similar in structure to actin monomers [18]. Arp2/3 nu-

cleates actin filaments by branching off of existing filaments (see Fig. 1.5A). Arp2/3

anchors the pointed end of the daughter filament to the mother filament at an angle

of 70 degrees. When ATP-actin is polymerized in vitro, more branches are found on

the younger parts of mother filaments [17]. Further evidence has shown that this

is because Arp2/3 mediated branches are more stable when the mother filament is

ATP-actin or ADP-Pi-actin compared to ADP-actin [19].

Another important protein is profilin. Profilin regulates actin polymerization in

7



Figure 1.4: An actin filament with Alexa 488 labeled subunits growing in a TIRF mi-
croscopy experiment. The filament is growing on a slide that is being illumi-
nated by a laser reflected off of the slide. The total internal reflection causes
an evanescent wave to illuminate only the fluorescent subunits that are at-
tached to the slide. The time between frames is 10 seconds apart and the final
length is ∼ 10µm. There are approximately 237 subunits per µm. Images were
provided by I. Fujiwara and the experimental details have been published in
[15].

multiple ways. It binds to free actin monomers (see Fig. 1.5B) and increases the rate

of nucleotide exchange [10]. Profilin works in conjunction with Thymosin-β4, a protein

that binds and sequesters G-actin, to maintain a pool of free G-actin. Profilin allows

G-actin to bind to the barbed end of filaments but restricts growth from the pointed

end[16]. It suppresses spontaneous nucleation, which is very fast at physiological

concentrations of G-actin ∼ 100µM. It can also bind to the barbed ends of filaments,

and when in high concentration can restrict polymerization [24]. Profilin also causes

an increase in the amount of Arp2/3 mediated branching [17].

A protein that is critical for the regulation of actin turnover is Cofilin. Cofilin is

a protein that binds to the sides of filaments (see Fig. 1.5C), especially ADP-actin

and severs them into smaller pieces [10]. Cofilin accelerates Pi release [25]. It can

also bind to G-actin monomers. It’s primary function appears to be to increase F→G

8
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Figure 1.5: A) Model of activated Arp2/3 complex from Ref. [20]. By binding to the
sides of existing actin filaments, Arp2/3 nucleates new filaments. Two of the
proteins in the Arp2/3 complex, Arp2 and Arp3, are very similar to actin
monomers. B) Co-crystal structure of β-actin (light-red) and bovine profilin
(light blue) from Ref. [21]. C) Pseudoatomic model of cofilin bound to filamen-
tous actin, where the actin filament has undergone a conformational change
due to the binding of cofilin. From Ref. [22]. D) CP/F-actin model of CP
bound to F-actin at the barbed end, from Ref. [23]. CP is a heterodimer with
a CPα subunit and a CPβ subunit, shown in orange and green respectively.

turnover through severing and possibly in cooperation with other proteins such as

Aip1 [26].

Another important protein is capping protein (CP) [23]. CP is a heterodimer that

binds to the barbed ends of actin filaments (see Fig. 1.5) and blocks polymerization.

In the presence of profilin, CP effectively blocks polymerization. This is because

profilin can reduce both the rates of nucleation and pointed-end polymerization, while
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Figure 1.6: Dendritic Nucleation/Array Treadmilling Model for Protrusion of the Leading
Edge [12].

CP blocks the barbed end [25].

I have described some of the more well known proteins that participate in the

regulation of actin polymerization based on in vitro experiments. Unfortunately in

live cells the behavior of proteins may not be the identical to the behavior seen in

vitro. These differences make it nescessary to also study the polymerization kinetics of

actin in living cells. The lamellipodium is a good system for performing such studies

due to it’s geometry and because many of the proteins characteristic of lamellipodia

are well studied.

1.1.4 Dendritic nucleation model

In preceding section I briefly introduced some of the more important actin polymer-

ization regulating proteins in the lamellipodium. These studies have been used to

develop the dendritic nucleation model [12] shown in Fig. 1.6.

Starting at the leading edge there are receptors that respond to external signals
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and activate protein WASP (Wiskott-Aldrich Syndrome Protein). WASP in turn ac-

tivates Arp2/3 complex. The Arp2/3-initiated branches form at an angle of about 70

degrees from the mother actin filament [12]. This process is believed to generate the

branched structure seen in Fig. 1.2. Nucleation by the Arp2/3 complex is autocat-

alytic because creation of more filaments allows further branching sites. This would

lead to unbounded growth in the number of barbed ends. CP limits this growth by

binding reversibly to the barbed ends of actin filaments and preventing both poly-

merization and depolymerization. It has been suggested that CP helps to funnel free

subunits to the leading edge by blocking the polymerization of filaments growing at

a distance from the leading edge, which will keep the free monomer pool high [27].

Actin is also recycled, by the disassembly of filaments. Aged actin filaments are

primarily ADP-actin with ADF/cofilin bound to the sides. ADF/cofilin causes fil-

ament severing (see Fig. 1.6). Other proteins such as Aip1 may cooperate with

ADF/cofilin to destabilize actin filaments [28]. The ADP-actin monomers in the

cytoplasm then exchange ADP for ATP with the help of profilin, so that they can

reassemble at the barbed ends near the leading edge. Throughout this process the

actin network is undergoing “retrograde flow”: even though the leading edge is pro-

truding or stationary, the actin filaments themselves are moving backwards towards

the center of the cell.

Figure 1.6 shows a cartoon of what is happening in the cell, but the kinetics of

proteins and their functions in the lamellipodium is still an active area of research,

with many questions remaining.

1.1.5 Fluorescence microscopy methods to study dynamics

at the leading edge.

In the previous sections I have discussed studies that use chemical dyes to label actin

proteins. In these studies purified actin is combined with dyes and allowed to bind

covalently to actin and then the labeled actin can be used for polymerization. One

challenge to combine this technique with living cells is getting the dyes into the cells.

One way to do this is to use chemicals to fix the cell, so that components to do

not move any more and then use a detergent to remove the plasma membrane. A

common way to incorporate a dye is to label the toxin phalloidin [29]. Phalloidin

binds to actin filaments and prevents depolymerization. While this is adequate for

studying the steady state distribution of actin, it is not ideal for studying the dynamics
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of polymerization. Another technique used to incorporate dyes into living cells is to

inject the labeled proteins into the cells via microinjection [30] or electroporation

[31], which reversibly ruptures the membranes so that there is fluid transfer between

the cell and the solution. This technique enables looking at the dynamics of labeled

proteins. However, the dyes and antibodies used to stain the particles or proteins

might cause side-effects to the host organism.

A revolutionary technique to study proteins in living cells uses Green Fluorescent

Protein (GFP) [32]. This fluorescent protein from the Aequorea jellyfish was suc-

cessfully cloned and expressed in organisms other than the Aequorea. Cells can be

modified to produce GFP using their own machinery, without the requirement of any

jellyfish-specific enzymes to cause fluorescence. The gene that encodes for GFP can

also be combined with a gene that encodes for a protein and when the cell produces

that protein, it is labeled with GFP. While this technique is widely used, occasionally

the mutation can be fatal or seriously alter the behavior of cells because it interferes

with the function of the endogenous protein. Imaging cells containing GFP can be

challenging due to photobleaching and blinking [33].

Fluorescence microscopy has been used to monitor the dynamics of actin and regu-

lators at the leading edge [7, 34–41]. By introduction of fluorescently labeled proteins

using genetic methods or microinjection, the dynamics of assembly and disassembly

can be monitored in live cells [37, 39, 41–44]. At high concentrations of fluorescent

actin, the actin network at the leading edge appears as a uniform intensity field (see

Fig. 1.7A). At lower concentrations of actin markers, the actin appears as “speckles”

which can be small aggregates of 3-5 fluorophores [45] or single molecules [41] (see

Fig. 1.7B).

Another type of experiment that uses fluorescence to probe protein dynamics is

Fluorescent Recovery After Photobleach (FRAP). This method takes advantage of

the fact that fluorophores bleach under high illumination. A high intensity laser is

used to bleach a region of fluorecently labeled proteins. The rate of fluorescence

recovery depends on their how the protein behaves. This technique can be used to

measure diffusion coefficients, and binding and unbinding rates [46]. It has also been

applied to study dynamics and localization of actin polymerization in the lamellipodia

[43, 44].

In this thesis I present work from a collaboratory effort with Naoki Watanabe

(Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School
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Figure 1.7: Images of cell at different fluorescent marker concentration. (A) Image of an
XTC on poly-L-lysine coated slide (Naoki Watanabe, Laboratory of Single-
Molecule Cell Biology, Tohoku University Graduate School of Life Sciences,
Sendai, Miyagi, Japan). B) A similar cell with a much lower marker count,
diluted to 1: 100000. Only immobilized markers show up as speckles. Scale
bars: 10µm C) Speckle lifetime versus distance from leading edge. Blue circles
show lifetime at appearance location. Red boxes are average lifetime with
calibration for photobleaching [41]. D) Histogram of speckle lifetimes [41].

of Life Sciences, Sendai, Miyagi, Japan) who has developed single molecule speckle

(SiMS) microscopy for imaging single molecules in lamellipodia. In his experiments

low concentration of markers (GFP or dye labeled actin) are used and the result is

an image of speckles (see Fig. 1.7B). A speckle is a stationary fluorescent marker

that corresponds to a polymerized protein [39, 41, 47]. A diffuse particle, one that is

not bound to the actin network, still contributes light but it does not form a speckle

because of its motion during image acquisition [6].
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1.2 MOTIVATION AND OUTLINE

Understanding the behavior of proteins in cells combines a number of processes:

identifying interacting proteins, understanding in vitro properties, and characterizing

their behavior in the cells. The lamellipodium is a great system for studying the actin

cytoskeleton since many of these steps have significant progress. The three main goals

of this thesis contribute to the field of actin dynamics as follows.

First, improve techniques for extracting relevant data from fluorescent microscopy

images. Studies of actin polymerization rates using TIRF microscopy vitro [15, 48]

demonstrate a need for reliably extracting the shapes of linear elements. I have

developed a tool for measuring the linear structures in fluorescent microscopy.

Second, develop a method for analyzing images of live cells from SiMS microscopy.

This task is very tedious due to the low signal to noise, and the heterogeneous com-

position of cells. To address these challenges I wrote a new tool, Speckle TrackerJ,

which uses computer assisted techniques for finding positions and tracking particles

in different situations.

Third, model actin turnover in the lamellipodium and compare it to the results

obtained from two different experimental techniques. The model describes the overall

actin concentration profile and simulates FRAP recovery based on data from SiMS

experiments. Studies of actin dynamics at the leading edge of motile cells with single

molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin

speckle lifetimes and indicated actin polymerization and depolymerization over an

extended region. Other experiments using FRAP with the same EGFP-actin as

a probe have suggested, by contrast, that polymerization occurs exclusively at the

leading edge.

The following sections contain a brief outline of the remaining chapters in this

thesis.

1.2.1 Extracting filament structures from fluorescence mi-

croscopy images

I wrote a software tool, “JFilament,” based on an algorithm developed during a

collaboration with Dr X. Huang at the P.C. Rossin College of Engineering and Applied

Science, Lehigh University. The algorithm uses stretching open active contours to

measure the growth rate of actin filaments in TIRF microscopy [49]. Stretching open
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active contours are parametric curves that deform to minimize the sum of an external

energy derived from the image and an internal bending and stretching energy. The

external energy generates (i) forces that attract the contour towards the central bright

line of a filament in the image, and (ii) forces that stretch the active contour towards

the ends of bright ridges. The algorithm has been useful for a variety of applications.

Chapter 2 describes JFilament a tool for segmentation, tracking, and visualization

of individual fibers. Images of simulated semiflexible polymers with known bending

and torsional rigidity are analyzed to validate the method. This method is used to

quantify the conformations and dynamics of actin in two examples: actin filaments

imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by

spinning disk confocal microscopy.

1.2.2 Particle tracking in fluorescence microscopy

In Chapter 3 I address some challenges using computer assisted techniques for finding

positions and tracking particles in speckle microscopy. I wrote Speckle TrackerJ with

a dynamic user interface to assist in creating, editing and refining particle tracks. The

following are results from application of this program: (1) Tracking single molecule

diffusion in simulated images. The shape of the diffusing marker on the image changes

from speckle to cloud, depending on the relationship of the diffusion coefficient to the

camera exposure time. We use these images to illustrate the range of diffusion co-

efficients that can be measured. (2) We used the program to measure the diffusion

coefficient of capping proteins (CP) in the lamellipodium. We found values of order

0.5 µm2/s, suggesting CP association with protein complexes or the membrane. (3)

We demonstrate efficient measuring of appearance and disappearance of EGFP-actin

speckles within the lamellipodium of motile cells that indicate actin monomer incorpo-

ration into the actin filament network. (4) We marked appearance and disappearance

events of fluorescently-labeled vesicles to supported lipid bilayers and tracked single

lipids from the fused vesicle on the bilayer. This is the first time that vesicle fusion

has been detected with single molecule sensitivity and the program allowed us to

perform a quantitative analysis. (5) By discriminating between undocking and fusion

events, dwell times for vesicle fusion following vesicle docking to membranes can be

measured.
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1.2.3 Theoretical model of actin turnover in the lamellipodium

Chapter 4 is a theoretical study of actin turnover in the lamellipodium. I used data

from single molecule experiments by Naoki Watanabe to create a steady state profile

of actin in the lamellipodium. From the steady state profile we can calculate the G-

actin depletion near the leading edge. Knowing the steady state G-actin concentration

I created a 2D stochastic simulation to explore a long standing issue in the field that

has been divided by seemingly contradicting experimental results: where does actin

polymerization occur in the lamellipodium?

We focus on two types experiments for our analysis, namely Fluorescence re-

covery after photobleaching (FRAP) [43] and Single Molecule Speckle (SiMS) mi-

croscopy [41]. FRAP shows very little fluorescent actin recovery away from the lead-

ing edge, which has been interpreted as a lack of actin turnover away from the leading

edge. These experiments support a whole network treadmilling model in which actin

polymerization occurs almost exclusively at the leading edge. Conversely, SiMS mi-

croscopy shows actin turnover throughout the lamellipodium. Other studies also

suggest a capacity for remodeling throughout lamellipodia [36, 39, 40, 45, 47, 50–52].

By using the model I developed we were able to compare the two experimental

results (FRAP and SiMS). The model uses the statistics of actin polymerization

from SiMS to simulate FRAP in the lamellipodium. The recovery is measured in two

regions, the front and back for comparison with experiments. There is good agreement

between the experiment and model, except for the recovery at the back. In the model

with actin monomers as the only diffuse species recovery at the back is too fast. To

explore possible sources of these differences, we consider actin existing as oligomers in

the lamellipodium. The model containing oligomers is in better agreement with the

FRAP experiments and demonstrates that remodeling could be happening throughout

the lamellipodium.
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Chapter 2

Extracting filament structures from

fluorescent microscopy images

This chapter describes the work performed with post-doctoral researcher Eddy Yusuf

and members of Dr. Xiaolei Huang’s group, Tian Shen, and Hongsheng Li at Lehigh

University. I wrote a program that is used for tracking filamentous structures in

images captured by fluorescent microscopy. The program uses an algorithm developed

by Li et al [49]. Additional E. Yusuf used this software to track actin structures which

is described here. This work has been published in Cytoskeleton [53].

2.1 INTRODUCTION

The assembly of actin and tubulin proteins and their bacterial homologues into long

filaments underlies important cellular processes such as cell motility, intracellular

transport, and cell division [54–56]. Image analysis of fluorescently-labeled cytoskele-

tal filaments has provided insights into the function of the cytoskeleton. Examples

of such studies include measurements of actin polymerization rates using TIRF mi-

croscopy (TIRFM) in vitro [15, 48], shapes of microtubules and actin filaments [57–

64], shapes of MreB bundles in E. coli [65, 66], spatial distribution of actin stress

fibers [67–69], and network morphology and distribution of intermediate filaments

[70–72].

Reliably extracting information on the shapes of linear elements that correspond to

filaments or bundles involves two image analysis tasks: segmentation (i.e. extracting

the centerline of filaments), and tracking (i.e. measuring motion and deformation
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over time). A large body of prior work has described algorithms that aid in detection

of dynamic linear structures in images.

In two dimensions (2D), semi-automated methods have been used to track actin

filament ends for measuring elongation rates [48]. Automated methods exist for track-

ing the tips of microtubules [73–76]. In [77], the body of a microtubule can be ex-

tracted and tracked over frames using tangential constraints. [49, 78] used open active

contour models to extract filaments and proposed mechanisms for handling filament

intersections.

Related methods have been developed to extract linear and tubular structures

in 3D images. Some model-free techniques, such as mathematical morphology [79],

matching filters [80], region growth [81], and minimum description length [82] have

been used with considerable success. Model-based approaches have broader appli-

cations since they are more robust to noise and can conveniently integrate prior

knowledge; these include particle filters [83], minimal path [84], level set [[85], and

snake-based methods [86, 87].

Several groups have made software that implements segmentation of linear struc-

tures freely available. This includes the 3D FIRE (FIbeR Extraction) Matlab code

[88], the NeuriteTracer [89] and NeuronJ [90] ImageJ plugins, and more recently,

V3D-Neuron [91]. Visualization software aids in simultaneous viewing of the raw

image data superimposed on segmented structures [91, 92].

I developed a new open source, software tool that allows segmentation and tracking

of filamentous structures in both two and three dimensions. This tool is based on the

“Stretching Open Active Contours” algorithm [49]. Active contours, or “snakes,” [93]

are deformable parametric spline curves. When placed on an image, an active contour

deforms “actively” to minimize its associated energy. The total energy consists of an

internal energy that makes the active contour smooth by penalizing abrupt changes

in direction, and an external energy that represents constraints from the image data.

The external energy generates forces that attract the curve toward salient image

features. Conventional active contours are closed contours. In this work open curves

were used, to segment and track cytoskeletal filaments. The internal energy term

remains the same as that in the original work [93]. Observing the appearance of

bright ridges at approximately the central line of each filament. Snakes are deformed

by two external energy terms: (i) an intensity-based energy term that is the lowest

along the central bright ridges of the image, thus generating forces that attract the
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open active contour towards the centerline of a filament, and (ii) a stretching energy

term that exerts forces at the curve’s two ends and stretches the active contour

towards the ends of the filament in the image. Thus, these new active contours are

called “Stretching Open Active Contours” (SOACs).

The software tool is called JFilament (http://athena.physics.lehigh.edu/jfilament/)

and it is an ImageJ (http://rsbweb.nih.gov/ij/) plug-in. JFilament allows simultane-

ous visualization of 2D, 3D or 4D (3D space + 1 time) images together with graphical

curves representing segmented filaments. Users can deform, add, delete, save and load

filament curves. The overview flowchart of the JFilament is illustrated in Figure 2.1A.

The main page of the JFilament user interface is shown in Figure 2.1B. In addition

to SOACs, JFilament includes standard “closed” active contours which can be used

for tasks such as segmentation and tracking of cell boundaries.

JFilament can be used to quantify static and dynamics properties of cytoskeletal

filaments, such as bending and torsional persistence lengths (lp and lτ , respectively),

and elongation rates. First, to validate our analysis, I generated simulated images of

filaments with known lp and lτ . JFilament was used successfully to measure these

lengths. Then, we applied our methods to two cases involving images from experi-

ments: (i) measurements of persistence length and elongation rate of actin filaments

imaged by TIRFM in vitro, and (ii) measurements of bending and torsional properties

of fluorescently-labeled actin cables in fission yeast, imaged by confocal microscopy.

We report the first measurements of configurational statistics of actin cables in 3D.

2.2 METHODS

2.2.1 Data: static and time-lapsed images

JFilament was designed to be used primarily for analysis of single-color fluorescence

microscopy images. Typically these are (i) stacks of 2D images with each frame rep-

resenting different time (as with epifluorescence or TIRFM images), or (ii) 4D stacks,

with each time point represented by a 3D stack. We assume that the 3D stacks con-

sist of equidistant confocal microscopy planes or deconvoluted epifluorescence focal
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Figure 2.1: (A) The flowchart of the JFilament program. (B) A snapshot of the graphical
user interface.
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Figure 2.2: Illustration of the open active contour model, where s ∈ [0, L] measures con-
tour length. Points (dots) are uniformly sampled on the active contour. N is
the total number of sampling points on the active contour. Internal energy
favors snake shrinking and penalizes abrupt direction change along the active
contour. Stretching forces (arrows) are applied at the tips (r(0) and r(L))
and point outwards along the contour’s tangent directions. The forces are
intensity-adaptive. If the tip of the active contour is on the filament body
then the force points outwards to stretch the active contour; if the tip is in
the background, the force points inwards to shrink the contour.

planes. We used JFilament to analyze images of in vitro actin polymerization ob-

tained by TIRFM from [15] and confocal microscopy images of actin cables in fission

yeast labeled by GFP-CHD from [94].

2.2.2 Filament segmentation using SOACs

To locate the bright ridges that correspond to filaments, we used SOACs which are

open active contours that minimize the sum of an internal and external energy [49, 93].

The internal energy of SOACs favors shorter and straighter active contours. An

image-based external energy term attracts them towards the bright ridges at the

central lines of filaments and extends them along linear elements depending on the

location of the end points.

In 2D, let r(s) = (x(s), y(s)), s ∈ [0, L] represent an open curve parametrically

(Figure 2.2), where s represents arc length along the open curve, and L is the length

of the active contour. In 3D, r(s) = (x(s), y(s), z(s)), where s ∈ [0, L]. The starting

and the ending points of the active contour are s = 0 and s = L respectively. A set

of N discrete sampling points ri = (xi, yi), i = 1, · · · , N , (or in 3D ri = (xi, yi, zi), i =

1, · · · , N), is sampled from the active contour to represent it. The points are sampled

at approximately evenly-spaced intervals.

The active-contour-based segmentation works by minimizing the contour’s overall
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energy, E, which is composed of internal energy, Eint, and external energy, Eext, i.e.,

E = Eint + Eext. (2.1)

The internal energy term makes the active contour smooth by penalizing abrupt

changes in direction. The external energy term represents forces from the image

data.

Internal Energy Term. The internal energy term, Eint, is defined similar to

closed snakes [93]:

Eint =

∫ L

0

[α|rs(s)|2 + β|rss(s)|2] ds, (2.2)

where rs(s) ≡ dr/ds and rss(s) ≡ d2r/ds2. The first term, |rs(s)|2, penalizes stretch-

ing; the second term, |rss(s)|2, penalizes bending.

External Snake Energy. The external energy, Eext, consists of two terms: an

image term, Eimg, and a stretching term, Estr:

Eext = k

∫ L

0

[Eimg(r(s)) + kstr · Estr(r(s))] ds, (2.3)

where k is a constant that balances the internal and external energy contributions,

and kstr is a constant that balances the two external energy terms, which are defined

below.

We use a Gaussian-filtered image, Eimg = Gλ ∗ I, as the image term, where Gλ is

the Gaussian smoothing kernel, I denotes the original image, and * denotes the 2D

or 3D filtering operator [95]. The degree of smoothing can be adjusted in JFilament

by changing parameter λ. This term is different from the gradient magnitude term

|∇Gλ ∗ I|2 commonly used in conventional segmentation methods [93, 96]. As shown

in Figure 2.3, the gradient vectors corresponding to ∇Eimg point toward the center

of filaments. Therefore, our image term has the desired property of attracting the

active contour towards the central bright ridge of the filament.

The gradient vectors of the image term, ∇Eimg, cannot attract the tips of the

active contour to grow along the filament body. In order to give an active contour

the ability to stretch along a filament body, stretching forces are added to tips of the

active contour (s = 0 and s = L). The tip stretching forces point outwards along the

tangent direction of the active contour as shown in Figure 2.2. The direction is −t(s)

if s = 0 and t(s) if s = L, where t(s) ≡ − rs(s)
|rs(s)| . The magnitude of the stretching

force is given by:

F (r(s)) = (I(r(s))− Imean)/(If − Ib), (2.4)
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Figure 2.3: TIRFM image of a single actin filament and illustration of the gradient field
of our image term, Eimg = Gλ ∗ I. The gradient vectors point toward the
center of the filament. Therefore, the image term attracts the active contour
toward the central line of the filament.

where I(r(s)) denotes the pixel intensity value covered by a certain point r(s) on the

active contour, If denotes the mean foreground (i.e. filament) intensity, Ib denotes

the mean background intensity, and Imean denotes the average intensity. Parameters,

If , Ib, Imean, are constants and they are estimated using foreground and background

training samples before segmentation. When the intensity at the snake tip is greater

than Imean the force will stretch the snake. If the tip is located at a region of lower in-

tensity than Imean, the force causes the active contour to shrink. Given the stretching

force definition, we have the gradient field of the stretching energy term as:

∇Estr(r(s)) =


−F (r(s)) t(s) s = 0,

F (r(s)) t(s) s = L,

0 otherwise.

(2.5)

Active Contour Deformation. An open active contour deforms and stretches

under the influence of forces generated by the above internal and external energy

terms. Similarly to [93], the energy function of our new SOAC model is minimized

using the Euler method. Since the active contour is represented by a set of discrete

points, its overall energy E can be approximated by a sum of energies at these points:
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Ẽ =
N∑
i=1

Ẽint(i) + Ẽext(i), (2.6)

where Ẽint(i) and Ẽext(i) denote the internal and external energy at the ith point

of the active contour, respectively. The derivatives of Ẽint(i) and Ẽext(i) can be

calculated with finite differences in 2D or 3D. Euler’s method is used to derive the

dynamics of the active contour. Therefore we minimize the energy function (2.6) by

iteratively solving for the coordinates of all points and following the model evolution

equations:

xn = (A + γI)−1(γxn−1 − ∂Ẽext(xn−1,yn−1)/∂x), (2.7)

yn = (A + γI)−1(γyn−1 − ∂Ẽext(xn−1,yn−1)/∂y), (2.8)

in 2D, and,

xn = (A + γI)−1(γxn−1 − ∂Ẽext(xn−1,yn−1, zn−1)/∂x), (2.9)

yn = (A + γI)−1(γyn−1 − ∂Ẽext(xn−1,yn−1, zn−1)/∂y), (2.10)

zn = (A + γI)−1(γzn−1 − ∂Ẽext(xn−1,yn−1, zn−1)/∂z). (2.11)

in 3D. In the equations, A is a strictly penta-diagonal banded matrix created based

on α and β [Equation (2.2)] and encodes the derivatives of internal energy for every

point. I is the identity matrix, x, y and z are the vectors representing the sets of x,

y and z coordinates, γ is the step size in Euler’s method, and the subscript n denotes

the iteration number.

Using the above optimization method, an open active contour can efficiently de-

form to desired filament central line locations. During its deformation, the active

contour is re-sampled every few iterations, maintaining the distance between adja-

cent sampling points at a fixed interval ∆ssnake. Thus as the active contour grows

longer, the number of sampling points increases, enabling the active contour to elon-

gate. An example of the deformation process of our active contour model is shown in

Figure 2.4A. Note that although the initialization is far away from the actual filament

location (Figure 2.4A(i)), the active contour is able to correctly recover the filament

central ridges (Figure 2.4A(iv)). In JFilament, the user is able to pick the desired

number of iterations that are sufficient to ensure convergence.

User Interaction and Manual Editing. I have included manual controls

that increase throughput and segmentation accuracy. In addition to initialization,
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Figure 2.4: Examples of segmentation and tracking of linear structures in 2D. Units are
in pixels. (A) Examples of segmentation of an actin filament in a TIRFM
image. (i) Initialization of the active contour away from the central line of
the filament. (ii)-(iv) The active contour after 20, 40 and 80 iterations of
deformation. (B) Images of actin filament polymerization over time using
TIRFM. Panels (i)-(iv) correspond to frames 1, 4, 9 and 13. The growth occurs
primarily at the barbed end. (C) Illustration of tracking filament growth in
panel B using SOACs. Red, green, cyan, and purple curves show SOACs for
frames 1, 4, 9 and 13. Frame drift and filament shape changes can be observed;
SOACs can adapt to these changes.

the ends of active contours can also be trimmed or stretched and the middle of fil-

aments can be cropped. These simple modifications enable more accurate results

by allowing the user to solve the difficulties caused by intersections or variations in

intensity that are hard to predict and automate. The user can define 3D points by

clicking on cross-section planes.
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2.2.3 Filament tracking using SOACs

An active contour can be added and initialized manually at any time point k of a 2D

or 3D image sequence. The converged snake of the kth time point is used to initialize

the active contour for time point k+ 1. Thus, the active contour can adapt by grow-

ing or shrinking, following the growth or shrinkage of the filament in the image over

time. An example is shown in Figures 2.4B and 2.4C where the red curve denotes

the active contour computed based on a filament in the first frame. The green curve

represents the active contour computed for the same filament in the fourth frame.

Image sequences may often show drift, i.e. translation, between contiguous frames

[48]. Our algorithm is robust to mild frame drift and filament shape changes since

the snake is allowed to re-equilibrate along the shifted images. An example of this is

shown in Figure 2.4C.

2.2.4 Visualization

Visualization and user interactions in 3D are more challenging than those in 2D. I

used Java3D for simultaneous visualization of 3D images and segmentation results

represented by active contours. Figure 2.5 shows an example. The active contour,

representing the segmented filament is shown on top of a 3D volume view (panel

2.5(i)). Another window shows the position of the active contour with respect to

cross sections of the image with the yz, zx, and xy planes; the three planes can be

moved along the x, y, and z axes (panel 2.5(ii)). The visualization platform supports

rendering of 4D images.

2.2.5 Curve properties

The parametric equation of a 3D snake curve, r(s), can be used to evaluate the set

of three Frenet–Serret orthonormal vectors (see Fig. 2.6), namely the tangent (t),

normal (n), and binormal (b) vectors at position s [97]:

t =
dr

ds
(2.12)

n =
1

|dt/ds|
dt

ds
(2.13)

b = t× n. (2.14)
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(ii)

(i) (ii)

3.5
µm

Figure 2.5: Examples of segmentation and tracking of linear structures in 3D. Illustration
of 3D views together with filament segmentation results. The images show a
fission yeast cdc25-22 cell expressing GFP-CHD that marks actin cables and
actin patches [94]. (i) 3D volume view and active contour of a segmented actin
cable. (ii) Image of an active contour together with x, y and z cross-sections
of the image.
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Figure 2.6: A cartoon showing a filament and sets of Frenet-Serret orthonormal vectors
(tangent, t; normal, n; binormal b; see Equation (2.14)) at points i and j
along the filament. The vector drawings at the bottom right show the angle
between tangent vectors and the angle between binormal vectors at points i
and j, respectively. Averaging over such angles is used in the calculation of
the tangent and binormal correlation functions.
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The curvature, κ, and torsion, τ , are determined by the rates of change of the

tangent vector and binormal vector with respect to the arc length:

κ =

∣∣∣∣dtds
∣∣∣∣ , τ =

∣∣∣∣dbds
∣∣∣∣ . (2.15)

Curvature represents the rate at which the curve deviates from a straight line on a

plane. Torsion represents the rate at which the curve goes out of a plane. A 2D curve

has zero torsion (constant binormal vector).

The shapes of snakes extracted from the image can be used to describe the sta-

tistical properties of an ensemble of curves that represent filaments or bundles. Such

quantities include the probability distributions of curvature and torsion. Other sta-

tistical quantities are the tangent and binormal correlations. The tangent correlation

function is defined as the ensemble average of the product of tangent vectors separated

by a distance ∆s:

〈cos θ(∆s)〉 = 〈t(s+ ∆s) · t(s)〉. (2.16)

Here, 〈〉 represents the average over all filaments and over all s along each filament.

Similarly, the binormal correlation function is defined as the ensemble average of the

product between binormal vectors separated by a distance ∆s:

〈cosφ(∆s)〉 = 〈b(s+ ∆s) · b(s)〉. (2.17)

The tangent correlation function measures how fast a curve changes orientation while

the binormal correlation function measures how fast the curve goes out of a plane.

2.2.6 Simulated semiflexible filaments

Filament Model. For testing purposes, I constructed simulated images of equilib-

rium semiflexible polymers (worm-like chains, “WLCs”) in 2D and 3D described by

the following Hamiltonian:

H = Hbending +Htorsion

=
b

2

∫
ds [κ(s)]2 +

bτ
2

∫
ds [τ(s)]2 , (2.18)

where b is the bending rigidity and bτ is the torsional rigidity. The last term represent-

ing torsion is absent in 2D. In 3D, this model represents a chain with uniform bending

and torsional rigidity but no coupling between bending and torsion. In general, the
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energetics of biopolymers involve coupled bending, torsion and twist [98]. Equation

(2.18) does not include filament twist which is a property that is not captured by

SOACs. Even though H is not the most general Hamiltonian to describe WLCs, it is

useful as a model for validation since its equilibrium properties are known and easy

to simulate.

In the model of Equation (2.18), the tangent correlation function decays exponen-

tially and is given by [99]

〈t(s+ ∆s) · t(s)〉 = exp

{
−(d− 1)∆s

2lp

}
, (2.19)

where d is dimensionality and lp = b/kBT is the persistence length. Similarly, the

binormal correlation function is given by [100]

〈b(s+ ∆s) · b(s)〉 = exp

{
−∆s

2lτ

}
, (2.20)

where lτ = bτ/kBT is the torsional persistence length.

The curvature distribution P (κ), the probability density for observing a value of

curvature between κ and κ+ dκ, depends on the dimension [101]:

P2D(κ) =

√
2lp∆sc
π

exp
{
−lp∆scκ2/2

}
, 2D (2.21)

P3D(κ) = lp∆sc κ exp
{
−lp∆scκ2/2

}
, 3D (2.22)

where ∆sc is the length between sampling points along the curve that are used to

calculate the curvature. In the model of Equation (2.18) where there is no coupling

between bending and torsion, the torsion is distributed as exp {−Htorsion/kBT}. Thus,

the probability density for obtaining a value of torsion between τ and τ + dτ is

P (τ) =

√
2lτ∆sc
π

exp
{
−lτ∆scτ 2/2

}
. (2.23)

In addition to using correlation functions and curvature/torsion distributions, the

properties of semiflexible filaments can also be studied by Fourier analysis. For a 2D

curve, the amplitude of the nth Fourier mode is an ≡
√

2/L
∫ L
0
ds θ(s) cos(nπs/L),

where θ(s) is the tangent angle at position s. When a 2D curve representing an

equilibrium semiflexible polymer is measured with mean square point localization

error ε2, the mean square Fourier amplitudes satisfy[102]:

〈a2n〉 =
1

lp

(
L

nπ

)2

+
4ε2

L

[
1 + (N − 1) sin

nπ

2N

]
, (2.24)
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where N is the number of sample points along the curve. The persistence length lp

can be evaluated by fitting to Equation (2.24).

Generation of Images of Filaments. Trajectories of 2D semiflexible fila-

ments were generated using a walk of constant step size δ. An angle θ between

the displacement vectors of successive steps was chosen from a Gaussian distribution

centered at θ = 0 and variance σθ. The variance and the step size determine the

persistence length of the filament. Expanding Equations (2.16) and (2.19) for small

θ and ∆s, respectively, one has 1− 〈θ2〉/2 ' 1− δ/2lp. Thus, the persistence length

is [101]:

lp = δ/σ2
θ . (2.25)

The statistics of the resulting angular distributions are identical to those of a 2D

worm-like chain down to the level of a single step of the walk. Images were generated

by convoluting the trajectory of the walk with a Gaussian kernel.

Simulated images of filaments in 3D were generated similarly to 2D. The an-

gle θ between successive displacement vectors was drawn from the distribution ∼
θ exp (−θ2/2σ2

θ) [101], with θ positive or negative. The torsional angle φ describing

the rotation of the plane defined by two successive steps was chosen from a Gaussian

distribution centered at φ = 0 with variance σφ. Expanding Equations (2.16) and

(2.19), one has 1− 〈θ2〉/2 ' 1− δ/lp. Using 〈θ2〉 = 2σ2
θ , we find:

lp = δ/σ2
θ ; lτ = δ/σ2

φ. (2.26)

The second of Equation (2.26) follows similarly from Equations (2.17) and (2.20). The

generated trajectories obey the statistics of Equation (2.18) down to a single step of

the walk. Images were generated by convoluting the trajectory of the walk with a

Gaussian which is 3 times wider along the direction in between z-slices, mimicking

an experimental point spread function (PSF) of a confocal microscope.

2.3 RESULTS

In this section we demonstrate how JFilament can be used to quantify static and

dynamics properties of cytoskeletal filaments. We start by validating our analysis

using simulated images of semiflexible polymers of known properties.

30



 1

 10

 100

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

P
(κ

)

κ (pixel
-1

)

lp=3800

lp=2100

lp=1200

A B C

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120

lp=550

lp=240

lp=140

∆s (pixel)

〈c
o

s 
θ
(∆
s
)〉

0.001

0.01

0 .1

1

10

100

1 10 100

<
a

n

2
>

 (
p

ix
e

l)

m ode num ber, n

l
p
=110  p ixe ls

ε=0.037 p ixe ls

0.001

0.01

0 .1

1

10

100

1 10 100

<
a

n

2
>

 (
p

ix
e

l)

m ode num ber, n

l
p
=253  p ixe ls

ε=0.026 p ixe ls

0.001

0.01

0 .1

1

10

1 10 100

<
a

n

2
>

 (
p

ix
e

l)

m ode num ber, n

l
p
=525  p ixe ls

ε=0.02 p ixe ls

D

(i) (ii) (iii)

Figure 2.7: Analysis on 2D simulated filaments with known persistence lengths (lp =
500, 222, and 125 pixels) and total length L=170 pixels. The coarse-graining
length is ∆sc = ∆ssnake = 1 pixel and 40 filaments were used. (A) Typical
image with lp = 125 pixels. (B) Plot of tangent correlations and fits to a
single exponential. Error bars indicate standard deviation of individual mea-
surements. The values of the extracted persistence length are shown on the
panel. These values are close to the intrinsic persistence lengths of the WLCs.
(C) Plot of curvature distribution and Gaussian fits [cf. Equation (2.21)].
The measured persistence lengths shown on the plot are much longer than
the intrinsic persistence length of the WLCs (see main text for discussion).
(D) Plots of mean square amplitude of Fourier modes versus mode number for
intrinsic persistence length 500, 222, and 125 in panels (i)-(iii), respectively.
Continuous lines are fits to Equation (2.24); the corresponding values of lp
and ε are shown in the panels. The dashed line in panel (i) shows the results
of Equation (2.24) using lp = 500 and ε = 0.14 (see main text).

2.3.1 Validation using simulated 2D semiflexible polymers

I generated simulated images of 2D worm-like chains using walks of step size δ = 1/20

pixel and total length 170 pixels, as described in the Methods section. The persistence

length of these chains was varied by changing the parameter σθ, see Equation (2.25).

The resulting trajectories were convoluted with a 2D Gaussian of variance 1 pixel to

generate images such as those in Figure 2.7A.

We used JFilament to generate active contours that adapted to the bright ridges

of the simulated image. The distance between successive points on the snake was

set to ∆ssnake = 1 pixel. The other parameters of the snakes (such as α, β and γ,
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lp (WLC) lp (tangent correlation) lp (Fourier)
σθ = 0.01 500 540 525
σθ = 0.015 220 240 253
σθ = 0.02 125 140 110

Table 2.1: Table showing agreement between intrinsic and measured persistence length of
simulated 2D worm-like chains (units: pixels). The intrinsic persistence length
was varied by changing parameter σθ. The measured persistence length was
extracted from fits to the tangent correlation function and mean square Fourier
amplitudes in Figure 2.7.

see Methods section) were adjusted manually until good agreement was achieved by

visual inspection. The parametric curves of the snakes were then used to calculate the

tangent correlation function, curvature distribution and amplitudes of Fourier modes

(see Figures 2.7B,C,D).

Figure 2.7B shows the tangent correlation function for three different values of the

WLC persistence length. After fitting to single exponentials, see Equation (2.19), we

were able to obtain estimates of the persistence length that were within 10% of the

value of the intrinsic persistence length of the WLCs. Fits to Fourier amplitudes in

Figure 2.7D, using Equation (2.24), give similar estimates for the persistence length,

see Table 2.1.

We found that the curvature distribution can also provide a good estimate of the

persistence length, but this requires caution, as discussed in [58]. Figure 2.7C shows

the curvature distribution for the same snakes as those used in Figure 2.7B,D. In

this panel, a value for the curvature was calculated from each triplet of successive

points of the snake; on average, the successive points were separated by distance

∆sc = ∆ssnake. The resulting curvature distributions follow Gaussian profiles, as

expected from Equation (2.21). However, fitting these curves to Equation (2.21)

results in a predicted persistence length which is an order of magnitude higher than

the intrinsic persistence length of the WLC.

The problem with the values obtained in Figure 2.7B is that they reflect the

bending stiffness of the active contour, in addition to that of the WLC. Because

of our choice of snake parameters, locally, i.e. on scales of order a pixel, the snake

appears stiffer than the WLC. This behavior is also evident in downward trend of 〈a2n〉
in Fig. 2.7D at mode numbers n ∼ 30: the data deviate from the expected scaling of

slope -2 and lie below the fit of Equation (2.24). This deviation indicates a stiffening
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of the snake on short scales. Consistently, the slope of the tangent correlation function

at s = 1 pixel in Figure 2.7B is somewhat smaller than the slope at s = 20, implying

larger persistence length at small distances. However, since the relative decay of the

tangent correlation over small distances is small, the exponential fit is dominated by

the decay of the tangent correlation over distances much longer than a pixel; thus the

correct persistence length is recovered by the fit.

It is useful to compare the results of Fig. 2.7D to the method of [60] who used a

combination of thresholding and thinning to achieve an accuracy of pixel localization

ε = 0.14 pixels. The dashed line in Figure 2.7D(i) shows the predicted Fourier

amplitudes using lp = 500 (the intrinsic persistence length) and ε = 0.14. This noise

level in pixel localization causes a plateau of 〈a2n〉 at n ≈ 20. The noise plateau for

SOACs, by contrast, is reached at n ≈ 50. Thus SOACs achieve very low noise in pixel

localization, ε = 0.02 pixels, at the expense of snake stiffening. For the particular

example in the figure, both methods would give equally good results for lp as they

are approximately equally accurate for n < 20 and exhibit deviations from a line of

slope -2 for n > 20.

Figure 2.8 shows how a coarse graining analysis can be used to extract the true

persistence length of the simulated filaments from the curvature distribution. A

cartoon of a contour is depicted in Figure 2.8A. The distance between the dots in

Figure 2.8A is the distance between sampling points of the contour in JFilament,

∆ssnake. For ∆sc = ∆ssnake the curvature at the ith site is calculated from three

successive points along the snake i − 1, i, and i + 1, as in Figure 2.7C. Figure 2.8A,

illustrates how the curvature at the kth site can be obtained from points k− 1, k, and

k + 1. In this particular example the coarse graining length is ∆sc = 2∆ssnake.

We found that the value of the persistence length extracted from the curvature

distribution depends strongly on the value of ∆sc. Figure 2.8C shows that with in-

creasing ∆sc, the distribution narrows, as expected from Equation (2.21). In addition

to this trend, the value of the measured persistence length after fitting changes as

well. Figure 2.8D shows that the extracted lp decreases with increasing ∆sc and

approaches the intrinsic value of lp around ∆sc = 20 pixels. Thus, as ∆sc becomes

larger, the curvature distribution becomes independent of the local snake rigidity and

eventually measures the true persistence length of the filament in the image.

Since the tangent correlation function already describes correlations over many

scales, its shape is less sensitive to our choice of ∆sc, see Figure 2.8B and D. For
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Figure 2.8: Coarse graining analysis of curvature reveals the true rigidity of WLCs. The
calculations use WLCs with lp = 500 pixels (n = 40 filaments). (A) Schematic
of coarse graining. The black dots represent the sampling points of the active
contour that are separated by ∆ssnake. Without coarse-graining, the coor-
dinates of i − 1, i, and i + 1 are used to calculate the tangent vectors and
curvature. With coarse-graining, ∆sc = 2 in this example, sites k − 1, k, and
k+ 1 are used instead. (B) The tangent correlations are weakly dependent on
coarse graining length ∆sc and follow single exponential decay (solid line). Er-
ror bars indicate standard deviation of individual measurements. (C) Plot of
curvature distributions for different coarse-graining lengths ∆sc. The widths
depend on ∆sc, as expected from Equation (2.21). In addition to this change,
the value of the extracted persistence lengths (shown in the panel) change
with ∆sc as well. (D) Measured persistence lengths as a function of ∆sc
calculated from the tangent correlation (circles) and curvature distribution
(squares) as compared to the intrinsic persistence length of WLCs (triangles).
The accuracy of estimates of persistence length using the curvature distribu-
tion increases with increasing ∆sc.

all ∆sc, the tangent correlation function can be fit with exponentials of identical

persistence length.
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lp (pixel) lτ (pixel)
WLC 500 500
tangent correlation 530 -
curvature distribution 540 -
binormal correlation - 510
torsion distribution - 540

Table 2.2: The bending (lp) and torsional (lτ ) persistence lengths as extracted from the
analysis (see Figure 2.9) agree well with those of the simulated WLC.

2.3.2 Validation using simulated 3D semiflexible polymers

We tested JFilament’s performance in 3D using simulated images of WLCs, similarly

to 2D. The simulated WLCs had lp = lτ = 500 pixels, obtained using σθ = σφ = 0.01

and step size δ = 1/20 pixels as described in Methods [see Equation (2.26)]. 3D

image stacks were generated by convoluting the trajectories of the WLCs with a

Gaussian distribution of variance 1 and 3 pixels in the xy and z directions, respectively

(see Figure 2.9A). This mimics the anisotropy in the PSF in confocal microscopy

experiments [103]. The spacing between images along the z direction was 1 x y pixel.

JFilament was subsequently used to trace WLCs using a sampling interval ∆ssnake = 1

pixel. We then used the shapes of the snakes to calculate the tangent correlation,

curvature distribution, binormal correlation, and torsion distributions in Figure 2.9.

We found that, similarly to the 2D case, an exponential fit to the tangent cor-

relation function (Figure 2.9B) provides a good estimate of the bending persistence

length. Our estimate of lp = 530 pixels from the fit is close to the actual value (see Ta-

ble 2.2). This value was very weakly dependent on coarse-graining. Coarse-graining

is however required in order to extract the correct lp from the curvature distribution,

similarly to 2D. We found that ∆sc = 20 pixels is adequate: using this value in Figure

2.9C, a fit to Equation (2.22) gives lp = 540 pixels, close to the actual value.

The calculated binormal correlation function and the torsion distribution, Figures

2.9D and 2.9E, agree with the expectations of the WLC model [cf., Eqs. 2.20 and 2.23.

The measured torsional persistence lengths, lτ = 510 pixels (binormal) and lτ = 540

pixels (torsion), are within 10% of the intrinsic value (see Table 2.2). We found

that the binormal correlation function is not sensitive to the choice of coarse-graining

length ∆sc while for torsion distribution, ∆sc = 20 pixels is sufficient to obtain a

good fit to a Gaussian profile and to produce the correct torsional persistence length.
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Figure 2.9: Analysis of simulated images of 3D filaments with known bending and tor-
sional persistence lengths (lp = lτ =500 pixels) demonstrates the validity of
SOACs. Measured values from fits are shown in the panels. In all cases, these
values are within 10% of the intrinsic values (see also Table 2.2). Coarse-
graining length is ∆sc = 20 pixels and n = 40 filaments. Error bars indicate
standard deviation of individual measurements. (A) Typical simulated 3D
image. (B) The tangent correlation function and exponential fit. (C) Cur-
vature distribution and fit to Equation (2.22). (D) Binormal correlation and
exponential fit. (E) Torsion distribution and Gaussian fit.

In conclusion, similarly to the 2D case, the persistence lengths extracted by cur-

vature and torsion distributions are influenced by local properties such as the rigidity

of the active contours. This dependence is eliminated by coarse graining. In con-

trast, the tangent and binormal correlation functions are less sensitive to the degree

of coarse graining.
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2.3.3 Measurements of actin filaments in a TIRFM elonga-

tion assay

Having validated our methods using simulated 2D and 3D polymers, we now demon-

strate the application of JFilament to experimental data. First we analyze the confor-

mations of purified actin in a TIRFM polymerization experiment of 4µM Mg-ADP-

actin in the presence of 15mM inorganic phosphate Pi [15].

Selecting filaments from a single frame in the movie, we calculated the tangent

correlation function and curvature distribution, after coarse graining to ∆sc = 8

pixels (see Figure 2.10). We found that the tangent correlation function fits to a

single exponential with a persistence length lp = 9µm. The exponential shape is

consistent with the statistics of equilibrium 2D semiflexible polymers, even though

these filaments are not in strict equilibrium as they grow over time and attach to pivot

points on the glass surface. The curvature distribution is well approximated byplat

a Gaussian, also consistent with equilibrium statistics. A fit to the equilibrium WLC

model [Equation (2.21)] leads to lp = 10µm. Both these values of lp are consistent with

prior measurements of persistence length of native actin filaments (without phalloidin)

[104, 105]. The value of lp does not change appreciably upon further coarse-graining,

indicating that it is not fd by image noise or snake stiffness.

Since active contours stretch, JFilament can also be used to measure filament

elongation rates. We calculated the rate using j = 〈L(t + ∆t) − L(t)〉/∆t, where L

is length and 〈〉 denotes averaging over different times and different filaments. We

found j = 11± 0.5 monomers/s, consistent with the value reported in [15]. Since the

pointed end polymerizes much slower than the barbed end, this rate is mostly due to

the barbed end.

2.3.4 Measurements of actin cables in fission yeast imaged

by confocal microscopy

As a second example of an application to experiments, we used images of fission

yeast expressing Calponin Homology Domain fused to GFP (GFP-CHD) obtained by

Jian-Qiu Wu in [94], see Figure 2.5. GFP-CHD binds to the sides of actin filaments

and labels actin cables and actin patches. We used confocal microscopy images of

strain JW1311 obtained with 45 nm/pixel along the xy plane and 125 nm between

z slices. These cells are longer than normal fission yeast because they are cdc25-22
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Figure 2.10: Analysis of actin filaments in a frame of a TIRFM movie from [15] (4 µM
ADP-Pi-actin with 15 mM Pi), see Fig. 4A. Images of 30% Alexa green-
labeled actin were captured by an ORCA-ER camera (Hamamatsu Corpo-
ration, Hamamatsu, Japan). The exposure time was 500ms and the pixel
size 0.17 µm. We used ∆sc = 1.3µm, n=20 filaments. (A) Plot of tangent
correlation function. Error bars indicate standard deviation of individual
measurements. A fit to a single exponential gives persistence length 9µm.
(B) Plot of curvature distribution. A Gaussian fit gives persistence length
10 µm.

cells arrested in the G2 phase so they keep elongating without entering mitosis.

We analyzed cables that have a clear trajectory across the cell, as in Figure 2.5.

Figure 2.11A shows that the tangent correlation function can be described by a double

exponential with two length scales: l1 = 2 µm and l2 = 1 mm. Thus, while l1 is less

than the persistence length of single actin filaments [104, 105], l2 is of order the

persistence length of microtubules [102]. The curvature distribution in Figure 2.11B

changes upon coarse-graining and does not follow a distribution similar to that of

Figure 2.9C. For ∆sc = 0.9 µm, the distribution appears to approach an exponential,

exp(−ακ), with α = 0.25 µm.

Similarly to the tangent correlation function, the fit of the binormal correlation

function to a double exponential gives a pair of short and long scales with similar

values: l1 = 0.5 µm and l2 = 1 mm (see Figure 2.11C). Here, l1 is less reliable as a

numerical value since it is of order the width of the PSF in the z direction and ∆sc.

Similarly to the curvature distribution, the shape of the torsion distribution depends

on the degree of coarse-graining, see Figure 2.11D.

The above analysis shows that the conformations of actin cables are richer than

those of 3D semiflexible polymers. The small value of l1 could be due to deformations
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Figure 2.11: Analysis of actin cables in a fission yeast cell expressing GFP-CHD, average
of 40 cables (see Figure 2.5 and main text). Error bars indicate standard
deviation of individual measurements. (A) The tangent correlation function
using ∆sc = 0.9 µm. Fit to a double exponential (continuous line) leads
to length scales l1 = 2 µm and l2 = 1 mm. (B) Plot of the curvature
distribution for different ∆sc. (C) Plot of the binormal correlation function
using ∆sc = 0.9 µm. Fit to a double exponential leads to l1 = 0.5 µm and
l2 = 1 mm. (D) Plot of the torsion distribution for different ∆sc. A power
law fit (exponent −2.4) is shown for ∆sc = 0.9µm.

on short scales such as motor pulling or buckling [59, 62], interaction of cables with

patches [106], fixed fluctuations that occur during actin cable assembly at the tips

of the cell [61, 107]. The large value of l2 could reflect the stiffness of the bundles

and the fact that the actin cables are confined within a rigid tube, i.e. the whole cell

[108]. The existence of different scales generates curvature and torsion distributions

whose shape depends on the extent of coarse-graining. These data motivate future

work with yeast mutants that will shed light on the origin of the observed statistics.
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2.4 DISCUSSION

We presented a tool for segmentation of cytoskeletal filaments in images based on the

SOACs method. The software allows both automated segmentation and tracking of

the images as well as full manual controls, such as trimming, stretching, and cropping

parts of the active contours, to obtain accurate results. Properties such as length

changes and curvature can be easily extracted from the coordinates of the active

contour.

Compared to other implementations that segment linear structures, the SOACs

have the advantage of using parametric curves of fixed topology to represent filaments,

and they are particularly good at preserving topology at intersections and growing

over faint elements that are otherwise hard to detect. Many previous methods such

as point-and-click, skeletonization by thresholding, level-set and MRF-based methods

[58, 60, 63, 88, 109, 110] produce pixel-wise segmentation results; the curve has to

be reconstructed in a separate step and this may be problematic in noisy images

or in images involving complex features. Active contours, however, are continuous

curves by construction. They naturally deform and align with the central bridge

ridges of filaments, are robust to noise, and can capture dynamical features such as

deformation and elongation. User-interaction and the ability to change the properties

of active contours through a few basic set of parameter values allows the analysis of

images of varying complexity in 2D and 3D. While in its present form our method

does not describe network structures, such an extension is possible. Strategies can

also be introduced to handle crossed filaments—for instance, in [49], we proposed

two strategies, greater tip stiffness and tip ”jump”, to solve the filament intersection

problem using SOACs.

We further showed how the traces of the SOACs can be used to measure the intrin-

sic properties of semiflexible polymers with high accuracy. We argued that care has to

be exerted when analyzing features that rely on accurate measurements at the scale

of order one pixel or of order the width of the point spread function. Noise, intrinsic

snake stiffness, PSF anisotropy may influence quantities that depend on precise local

contour shape. One example was the distribution of curvature: for stiff filaments, the

average curvature is small so it can be influenced by these factors. Depending on the

particular case, a careful analysis, such as the coarse-graning analysis of Fig. 7, may

be required [57, 58, 60, 102]. Similarly, the physical significance of quantities such
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as torsional and bending persistence lengths may depend on the system in consider-

ation: bending, torsion and twist are generally coupled. JFilament provides a means

to extract quantitiative information in order to examine, for example, correlations

between bending and torsion. Such measurements could help clarify the biophysical

properties of cytoskeletal filaments and bundles of filaments.
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Chapter 3

Tracking of speckle trajectories in

fluorescence microscopy:

application to actin polymerization

and membrane fusion

This chapter describes another software tool I wrote for tracking point-like particles.

I originally wrote this tool for tracking speckles (see Fig. 3.5) in XTC Fibroblasts

in images collected by Naoki Watanabe and a post doc in his lab, Hiroki Mizuno.

This work proved useful for tracking point like features in other systems, and led to a

collaboration with Erdem Karatekin and Andrea Gohlke at Yale School of Medicine

who performed experiments using supported lipid bilayers. The following contains

the algorithms of this software, and results obtained through it’s application. This

work was published in Biophysical Journal [6].

3.1 INTRODUCTION

Advances in microscopic imaging continues to create unique demands for particle

tracking in biological systems [111–114]. Examples of tasks that involve tracking

of bright spots include virus trafficking in live cells [115], motion of transmembrane

proteins on the cell membrane [116], cell microrheology [114, 117], dynamics and fu-

sion of secretory and synaptic vesicles [118–121], and tracking of cytoskeletal proteins

[40, 41, 122, 123].
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The field of algorithm development for particle tracking has a rich history. There

are three approaches to apply these algorithms to biological systems. Firstly, close

collaboration of biologists, computer scientists and physical scientists to develop spe-

cialized software [113]. Secondly, many labs resort to commercial software. The

latter, however, have the disadvantage that they are expensive, often require addi-

tional modules, and need to be modified by the vendor. Finally, a third possibility is

to use open-source software tools that may be directly applied, or depending on the

flexibility of the program, modified for a specific system.

One of the first freely-available particle tracking tools was developed in IDL

[117, 124] to track the positions of colloidal particles. This algorithm involved image

restoration followed by detection of particle positions and linking of positions into

trajectories. This code has been converted to the MATLAB (The Mathworks, Inc.)

and C++ languages and extended in 3D [125, 126]. It has also been adapted in the

MATLAB program PolyParticleTracker [127]. GMimPro is a detection and tracking

software available as a compiled Windows program [128, 129]. Freely-available MAT-

LAB code for particle tracking further includes u-track [42], MTT [130] and plusTip-

Tracker [131] (optimized for tracking microtubule plus ends). u-track and MTT,

developed for tracking dense particle systems, use various criteria for deciding the

likelihood of particle merging, starting, stopping and gaps in detection failure. Since

the MATLAB platform is not always available, many researchers have contributed

tracking algorithms as plugins for the open-source image analysis program ImageJ.

Some open-source plugins are MTrack2, Manual Tracking, and Particle Tracker [132].

The latter is based on the MATLAB code and methods developed in [133]. Free

ImageJ plugins, available as jar files (compiled code), include MTrackJ [134] and

SpotTracker [135].

All tracking algorithms start failing at low signal-to-noise (STN) ratio and at high

particle mobility during camera exposure. These challenging situations are common

in single molecule studies in live cells [39, 41]. Another challenge occurs when one is

interested in a small subset of particles within a heterogeneous population, such as

single vesicles that fuse with the plasma membrane or with supported bilayers [118–

121, 136]. The challenge is to track only that subset. In all those cases the primary

question is whether valid single particle tracks can be obtained at all.

To address the above challenges we developed an open-source particle-tracking

tool, Speckle TrackerJ, as an ImageJ plugin [137], with the following two-tier strategy.
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First, tracks are obtained with rough positioning accuracy, using user assistance and

supervision when needed. The user can control which of the candidate particles

to track over time with the aid of tracking models. We designed models that use

the expected behavior of particles to improve detection and tracking. A modular

construction allows modification and design of new tracking models. In a second

step, the positioning accuracy and precision of the existing tracks are improved. This

iterative approach is much more efficient than trying to achieve the best tracking

performance in a single step in the challenging cases described above. Our method

is particularly useful when measuring particle lifetimes (trajectory length) in the

presence of noise and blinking where user input is required to distinguish broken

trajectories from real appearance and disappearance events.

We demonstrate that Speckle TrackerJ compares well with related software in

control synthetic image sequences that cover a range of noise levels and particle mo-

bilities. We then proceed to demonstrate the successful application of our method

to four different challenging experimental situations: dynamics of single capping pro-

teins at the leading edge of motile cells, single-molecule actin speckle lifetimes in

lamellipodia, release and diffusion of single fluorescent lipids from vesicles upon fu-

sion with supported, planar bilayers, and docking-to-fusion lifetimes of vesicles fusing

with planar supported bilayers mediated by soluble N-ethylmaleimide-sensitive factor

attachment protein receptor (SNARE) proteins. In none of these situations could

other existing software be used satisfactorily.

3.2 MATERIALS AND METHODS

3.2.1 Particle representation

Trajectories of particles through time are recorded as speckle tracks. A speckle track

records the position of a particle in time. Each point of a track is represented by a

speckle mark. Tracks can be created and modified by a user or through computer

assisted techniques.

Computer assisted tracking is divided into three steps: Detection of speckle mark

candidates; tracking through time to create a speckle track using a model; and re-

finement of speckle mark positions. These steps can be repeated manually or using

batch tracking. At any point during this process the speckle tracks can be modified

(see “User Interface” in Supporting Materials).
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3.2.2 Detecting particles

We implemented two detection methods. (1) “Locate Speckles,” uses a threshold

value to create a binary image. A two-pass connected components algorithm is then

applied to find speckle mark candidates. (2) “Template Locate,” performs the same

operation as the “Locate Speckles” method except that it uses existing speckle marks

to create a Normalized Cross Correlation (NCC) filtered copy of the image. The

NCC template is created by averaging a square region of adjustable size centered at

existing speckle marks.

3.2.3 Tracking the tracker

Tracking has been separated into two components: models and the tracker algorithm

(see Fig. 3.1). Models modify speckle tracks by adding new marks (some only refine

their position). The tracker algorithm applies the selected model successively from

frame to frame and records which speckle tracks are being modified.

Before the tracker starts, it initializes the selected model with existing speckle

tracks (which tracks are used depends on the model). After initialization, the tracker

creates a tracking list, a list of speckle tracks to be updated. The tracking loop

begins by passing a speckle track and the current time frame to the model, which

then determines how to continue to the track. If the model determines that a track

ends, the track is removed from the list. After the model finishes, the tracker checks

the tracking list for speckle tracks that overlap. Overlap occurs if two tracks have a

speckle mark on the same frame and the distance between those marks is less than

a user-adjustable minimum distance parameter. If the tracking list is not empty, the

tracker will move to the next frame and start the tracking loop again.

3.2.4 Tracking models

We implemented tracking models that use fixed and adaptable parameters (see Sup-

porting Material and [137]). Adaptable-parameter models “learn” as tracking pro-

ceeds.

“Diffusing Spots” is an adaptable-parameter model that adds a new mark to

the speckle track in the frame immediately after the last frame that has already

been marked. It searches for a new mark within a square region centered at the

previous mark. The model is initialized by calculating the average intensity, < I >,
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Figure 3.1: Flow chart of automated tracking algorithm. Actions in the grey region are
performed by the model and all other actions are performed by the tracking
algorithm.

the variance in intensity, σ2
δI , and the variance in frame to frame displacement, σ2

d,

calculated using all speckle marks from either the selected speckle track, if “Auto-

Track” was used to start the tracker, or all existing tracks, if Auto-Track All was

used. The intensity measurements are made by integrating the pixel intensity over a

circle centered at the position of each speckle mark. The radius is a user-adjustable
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parameter. To predict the position of the next speckle mark, the model finds all pixels

that are local maxima within the square search region. For each candidate location,

the intensity, I, change in intensity from the previous frame,δI, and the displacement

from the previous frame, d, is measured and used to generate weights:

wi = e(I−<I>)/(<I>−Im), wδI = e−δI
2/(2σ2

δI), wd = e−d
2/(2σ2

d), (3.1)

where Im is the mean value of the intensity in all frames of the movie. If I is greater

than < I >, wi is set to one. The weights are summed with user-adjustable factors,

fi, fδI , fd, to get a combined weight:

w = wifi + wδIfδI + wdfd, fi + fδI + fd = 1. (3.2)

The best candidate is accepted if w > wmin. If no candidate satisfies this condition,

the track stops.

“Diffusing NCC” is similar to Diffusing Spots but it takes into account NCC

values. Initialization consists of measuring the average intensity I over a circle and

NCC value at every speckle mark position using a square template made from all

speckle marks. To find a new candidate location, the model checks the square search

region for the location with the maximum NCC value. Then the intensity and NCC

value are measured at that location and used in a weighting function

w = e−(I−<I>)2/(2σ2
i )e−α(NCC−<NCC>)2/2σ2

NCC (3.3)

where averages and standard deviations are over all existing speckle marks and α is

an adjustable parameter. If w is smaller than a threshold wmin, the track ends.

“Constant Velocity NCC” model is the same as Diffusing NCC but the search for

the best candidate occurs over a square whose center is displaced from the position

of the previous speckle mark. This method is useful in cases where particles move

with constant velocity.

3.2.5 Refine position

Speckle tracks can be refined to improve the position of existing speckle marks (see

Supporting Material). The “Adjustment Model” modifies existing speckle tracks by

moving them to the center of intensity. The “Gaussian Fit” model refines the position

of speckles with sub-pixel accuracy by fitting a 2D Gaussian to the intensity near a

speckle mark.
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3.2.6 Experiments

Details of experimental protocols can be found in Supporting Materials. In summary,

live cell imaging of XTC cells was carried out as described [39]. Fluorescent speckle

microscopy was carried out by observing cells expressing a low amount of EGFP-

tagged proteins. Imaging acquisition was carried out at 21-23 ◦C using Olympus oil

objectives, PlanApo 100 (NA 1.40) or 150 (NA 1.45).

Single-vesicle docking and fusion experiments were performed as described in de-

tail in ref. [138]. Synaptic/exocytic vesicle-associated v-SNARE proteins VAMP2/synaptobrevin

and the target membrane associated t-SNAREs syntaxin and SNAP25 were reconsti-

tuted into small unilamellar vesicles (SUVs) and planar, supported bilayers (SBLs),

respectively. The SUVs carry a small fraction of fluorescently labeled lipids. We used

total internal reflection fluorescence microscopy (TIRFM) at 31 frames/s full-frame

(512x512 pixels) or at 57 frames/s from a 400x256 pixel region of interest using a

back-thinned EM-CCD camera (iXon DU897E, Andor technology).

3.3 RESULTS

Speckle TrackeJ was designed with the ability to correctly follow multiple moving

particles over their lifetimes in the presence of inhomogeneous backgrounds, noise,

particle crossings, and multiple sources of intensity fluctuations. We have however,

implemented standard methods for sub-pixel particle localization, such as 2D Gaus-

sian fitting. In Fig. 3.2 we demonstrate how the localization accuracy ε of our program

depends on STN and pixel size [133, 139](see Supporting Material). We find ε scales

approximately linearly with σ/λ and 1/STN, as in other algorithms [117, 140].

Below, we describe tests of our program, starting from simulated images of diffus-

ing particles. We compare to other tracking tools in images of increasing complexity

such as very high dynamic error and low STN. We proceed to demonstrate the appli-

cation of our method to experimental systems in which other free tools were unable

to provide us with results due to additional complexities.

3.3.1 Single molecule diffusion simulations

A common task in particle tracking is measuring the diffusion coefficient, D. To

validate and test the software, we generated simulated images of diffusing particles
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Figure 3.2: Standard deviation of the difference between particle position and speckle
mark after refining with Gaussian Fit, ε, versus 1/STN. Plot for different
ratios of PSF width to pixel size, σ/λ. Simulated particles were tracked as
described in section 5 of Supporting Material. The graphs shows data from
Fig. 4 of [139](σ/λ = 1 and Fig. 6 of [](σ/λ ≈ 1) who compared Gaussian fit
and centroid algorithms. We did not include the lowest STN data in [139]since
some of these data points fall outside of the graph.

with different background noise levels (Fig. 3.3A). We simulated point particles that

perform random walks, contributing to the intensity to the image as they move during

the exposure time, texp. The simulated camera exposure time was 50 ms and a

pixel (px) represented 100 nm, similar to the experiments below. The time step

dt = 0.0001px2/(4D) was adjusted such that the diffusion distance per dt is much less

than a pixel. At each time step, particles were displaced by a distance selected from

the 2D diffusion propagator probability distribution. The intensity of each particle

was convolved with a Gaussian kernel of standard deviation 2 px, representing the

point spread function.
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D =1 µm2/s2/s (low noise). (D) Averaged MSD plots for different diffusion
coefficients in Table 1. Error bars are one standard deviation of the mean.
Inset is an enlarged version.

Further we simulated the effects of camera noise, by adding normally distributed

noise. We define the signal to noise ratio, STN = I/σnoise , where I is the average

intensity (above the background) at the position of the speckle mark and σnoise is the

standard deviation of the intensity at the same position [133, 139]. These simulations

did not include other sources of error such as fixed pattern noise, vibrations, drift

or fluctuations in the intensity of the fluorescent marker being tracked [111], see

Discussion.

In Fig. 3.3A, slowly diffusing particles appear as small bright spots. With in-

creasing D, diffusing particles appear as dimmer and more spread out clouds due to

diffusion during the exposure. This contributes to “dynamic error” [140, 141]. In

addition, fast-moving particles move farther so there are more crossed paths which
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u-track Particle Tracker Speckle TrackerJ
D STN 4/3Dtexp + 2ε2 s2 D s2 D s2 D

(µm2/s) (px2) (px2) (µm2/s) (px2) (µm2/s) (px2) (µm2/s)
0.01 22.6 0.071 0.071 ± 0.001 0.011 0.071 ± 0.001 0.011 0.071 ± 0.001 0.011
0.01 4.4 0.17 0.186 ± 0.003 0.011 0.266 ± 0.006 0.010 0.236 ± 0.004 0.011
0.1 20.4 0.67 0.68 ± 0.012 0.10 0.68 ± 0.011 0.11 0.68 ± 0.012 0.11
0.1 3.7 0.82 0.79 ± 0.013 0.11 0.85 ± 0.07 0.068 0.8 ± 0.013 0.10
1 6.3 6.8 6.9 ± 0.12 0.99 6.8 ± 0.12 1.0 6.9 ± 0.12 0.98
1 2.9 6.8 7.1 ± 0.13 1.01 7.5 ± 0.4 0.91 7.7 ± 0.13 1.0
4 3.4 27 33.8 ± 0.9 3.4 35.7 ± 2.0 4.3 36 ± 1.0 3.7
4 2.1 27 28 ± 1.1 3.5 47 ± 2.1 3.6

Table 3.1: Results of tracking particles in simulated images using three different software
tools. First two columns show simulated diffusion coefficient and STN value.
The third column shows the theoretical value for s2, a sum of dynamic error
and static error. The latter was calculated using the value of STN and Fig.
3.2. The remaining columns show calculated s2 and D. Empty boxes: we were
unable to find good tracking parameters.

greatly hinders auto-tracking. The presence of noise especially limits the ability to

detect clouds of fast-moving particles.

We tracked the particles in these images with our software and with two other

software suites that have well-developed interfaces to handle complex tracking prob-

lems: Particle Tracker [133], which is based on the method developed by Crocker and

Grier [117] and u-track [113]. We tracked particles with our program using the Dif-

fusing Spots model and refined their positions using the Adjustment model followed

by Gaussian Fit (Fig. 3.3B). To evaluate the accuracy, we measured the variance, s2,

of the distance between the speckle mark and the position of the simulated particle

at the end of each exposure.

For low diffusion coefficients, 0.01 to 0.1 µm2/s, all three particle trackers per-

formed well, even at STN below 4, see Table 3.1. We were able to track the majority

of the particles in the images through the end of the movie (301 frames), with little

need to fine tune the program parameters (see Table 3.2). The calculated value of s2

was consistent with the theoretical limit s2 > 4/3Dtexp + 2ε2, where ε is the static

error in the absence of motion and 4/3Dtexp represents dynamic error [140]. The

calculated diffusion coefficients from plots of MSD vs lag time achieved an accuracy

better than 10% in most cases. These results suggest that our software is comparable

to the existing tools under conditions that demand sub-pixel accuracy, where particles

move of order one or less pixels per frame.

At the larger diffusion coefficients, 1 and 4 µm2/s, high dynamic error and low

STN makes tracking particles more challenging. Due to motion during exposure the
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u-track Particle Tracker Speckle TrackerJ

D
(µm2/s)

STN Ntracks

> 20
frames

Mean
track
lenth

(frames)

Ntracks

> 20
frames

Mean
track
lenth

(frames)

Ntracks

> 20
frames

Mean
track
lenth

(frames)
0.01 22.6 12 301 11 301 12 301
0.01 4.4 12 301 22 96 12 301
0.1 20.4 14 247 12 278 11 299
0.1 3.7 14 251 6 24 12 289

1 6.3 20 174 30 109 13 274
1 2.9 46 75 16 26 29 118
4 3.4 47 29 12 27 10 144
4 2.1 24 29 5 101

Table 3.2: Results of tracking particles in simulated images using three different software
tools. First two columns show simulated diffusion coefficient and STN value.
Each movie had 12 particles and was 301 frames long. The table shows the
number of particle tracks longer than 20 frames and mean track length from
the runs we used to calculate the diffusion coefficients in Table 3.1. At low
STN, bits of the same particle trajectory appear as different tracks as particles
are lost and found, so the number of tracks is more than 12 in many cases.
For Speckle TrackerJ we switched from batch auto-tracking to a combination
of auto-tracking and manual interaction at D = 4 µm2/s. Empty boxes: we
were unable to find good tracking parameters.

intensity of a particle can be so low that it is not discernable from the background.

For the high D cases, tuning the parameters in u-track and Particle Tracker leads

to a tradeoff between broken tracks, due to missed particles, and many short-lived

false positives (see Tables 3.1 and 3.2). While the performance can be optimized

through tracking and linking parameters, manually pruning and merging tracks is

not provided by the software. To address this issue we limited our analysis to tracks

that are longer than 20 frames. In this manner the calculated diffusion coefficients

were within 15% of the actual values. At high diffusion coefficients particles cross

frequently, and during fully automated detection we could not exclude regions with

clusters of particles. Some longer tracks were generated by switching from particle to

particle.

An advantage of Speckle TrackerJ is the ability to track particles selectively. We

were able to achieve the same accuracy in measuring high D values by seeding can-

didate speckle marks in regions with isolated particles and then auto-tracking. Even

when auto-track failed after 10 frames, multiple tools allowed us to quickly find and
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manually join broken tracks and thus continue the track. For the highest noise and

diffusion, both Speckle TrackerJ and u-track produced a similar number of total marks

and a similar diffusion coefficient but the resulting tracks are quite different. Speckle

TrackerJ yielded a few long tracks (see Table 3.2), which is an important aspect of

particle tracking.

Each tracker required a similar amount of time to track particles. For problems

that were tractable, the automated solutions for all three programs offered an advan-

tage. For the more complicated scenarios, where it was impossible to automatically

track all of the particles, Speckle TrackerJ quickly produced representative tracks.

Selecting valid tracks is the main rate limiting step in the analysis of the following

experiments where a significant number of bright features such as clumps of immobile

fluorophores need to be excluded from analysis.

3.3.2 Single molecule diffusion capping proteins at the lead-

ing edge of motile cells

Capping protein (CP) plays a critical role in regulation of actin-based structures,

such as lamellipodial protrusions and actin patches in yeast [47, 54]. The α and β CP

subunits bind to free barbed ends of actin filaments, blocking access to the barbed

end and preventing polymerization. CP also interacts with phosphatidylinositol 4,5-

bisphosphate [142]. CP binding to membranes near the leading edge of motile cells

may play a role in recruitment of CP protein to the leading edge [143, 144]. CP bound

to the actin meshwork in lamellipodia dissociates from the network approximately 25-

fold faster than actin subunits [39]. These findings suggested that cofilin-mediated

actin filament severing triggers CP dissociation from the actin network by frequent

severing. Fast severing and annealing reactions may contribute to structural reorga-

nization of the actin network from the highly branched brushwork at the leading edge

to the less branched network along the direction of retrograde flow [47].

To better understand why CP dissociates so fast in lamellipodia, we inspected

diffuse CP which would be separate from the actin network. We expect the diffusion

coefficient of CP to represent the size of the protein, or protein complex to which

they are attached. We performed experiments on XTC cells expressing EGFP-CP β

1 at low amounts and acquired images of the cell edge showing single CPs (Fig. 3.4A,

B). CP associated with the actin meshwork has a diffraction-limited spot appearance

while the faster diffusing species are more spread out clouds, see Fig. 3.4A, B, similar
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Figure 3.4: Tracking diffusing CPs at the leading edge of XTC cells. (A) Maximum
intensity projection from a movie of GFP-labeled CP at the leading edge.
Dashed line shows outline of leading edge. Exposure time was 66 ms and 1
pixel = 80 nm. Diffuse structures are diffusing molecules. Bright speckles
are CP proteins bound to the actin meshwork. (B) Enlarged section of box
of panel A, single frame. Line: trace of a speckle track. Middle arrow: start
of track. Top arrow: another diffusing speckle. Bottom arrow: cloud too
mobile to track for enough frames. (C) MSD plots for individual speckle
tracks from the movie. (D) Distribution of diffusion coefficients found by
fitting individual MSD curves with straight lines. Experimental: 22 tracked
CPs. Simulated: results of tracking simulated particles for 10 frames with
comparable conditions to the experiment: D = 0.6 µm2/s, 66ms exposure, 1
px = 80 nm. Bin sizes are 0.14 µm2/s. Scale bars, 2µm.

to the simulated images in Fig. 3.3A.

Tracking clouds of diffusing CP in Fig. 3.4 is challenging because of low STN,

high dynamic error, the presence of many static speckles and, occasionally, organelles
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that happen to contain fluorophores. The flexibility of our software allowed us to

successfully track several of those diffusing molecules for 8-30 frames and calculate

their individual MSD vs lag time curves (Fig. 3.4C). Fitting each MSD plot to a line,

we calculated a distribution of diffusion coefficients, D (Fig. 3.4D). The measured

D values are in the range 0.2 - 2 µm2/s. Because we only tracked the CP speckles

for as few as 10 frames, this range may represent measurement error: the accuracy

in the measurement of D is lower when using shorter tracks. To evaluate this effect,

we tracked particles in simulated images for 10 frames, with same exposure time and

pixel size as in the experiment [145]. Each particle had D = 0.6 µm2/s, and low

noise was added to the image, same as in Fig. 3.3A. We found a spread of D values

similar to the spread of values in experiments (Fig. 3.4D). We also note that the

experimental images may include a population (we estimated no more than 50%) of

CP with D > 1 µm2/s, that could not be tracked.

The D values in Fig. 3.4D are much lower than those of proteins of similar molecu-

lar weight, e.g. actin monomers that are near 5 µm2/s[146]. An intriguing hypothesis

is that these slowly diffusing CPs are short severed actin filament oligomers. This

would be consistent with the suggestion of Miyoshi et al. [39] that short CP lifetimes

represent rapid actin filament severing near the barbed end. Future work is required,

however, to test alternative mechanisms such as slow diffusion due to association of

CP with the cell membrane.

3.3.3 Actin speckle lifetimes in lamellipodia

An important application of particle tracking involves measurements of lifetimes of

actin monomers and tubulin dimers incorporated into filaments [39, 41, 122, 147].

When labeled actin or tubulin are in sufficiently low abundance compared to the un-

labeled pool, polymerized labeled subunits appear as discrete speckles (Fig. 3.5B)

[41]. Signals from diffusing subunits are much weaker since their intensity is dis-

tributed over several pixels (Fig. 3.3A). Depending on the marker concentration, the

speckles may represent single molecules [39, 41, 122, 147] or groups of few labeled

molecules [37, 40]. Single molecule speckle microscopy has shown that the dynamics

of the cytoskeleton are characterized by continuous remodeling, involving constant

assembly and disassembly that corresponds to speckle appearance and disappearance

events in the images. Measurements of speckle lifetimes (time interval between speckle

appearance and disappearance) have shown a broad distribution of lifetimes of actin
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Figure 3.5: Speckle lifetime measurements. (A) XTC cell expressing EGFP-actin at
high concentrations in which actin filaments in the lamellipodia appear as a
continuous field. Scale: 8 µm. (B) Leading edge of lamellipodium with very
dilute concentration of EGFP-actin. Single EGFP-actin monomers appear as
speckles. Bottom: tracked speckles. Scale: 2.65 µm. (C) Intensity profile of
speckle marked by arrow in panel B. (D) Histogram of speckle lifetimes (n
= 709). Squares: raw data. Columns: data normalized for photobleaching.
Normalization and half-life estimation as in [41].

in lamellipodia and tubulin in spindles[39, 41, 122]. Tracking of speckle motions also

provides information on filament transport [37, 39–41, 122, 147].

We expressed EGFP-actin in XTC cells [39, 41], see Fig. 3.5A. We used cells with

low EGFP-actin concentration (Fig. 3.5B). In this panel, each speckle is a single actin

monomer bound to the actin meshwork of the lamellipodium. During the course of

the video (4 s intervals at 2 s exposure/frame), the actin speckles move away from

the leading edge due to retrograde flow, as shown by the tracks in Fig. 3.5B. Using

the Constant Velocity NCC model, we tracked 900 actin speckles within 5 µm of

the leading edge in 3-6 hrs, much faster compared to more than 12 hours with the
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previous method [41]. Each track was carefully checked: the automatic tracking still

needed to be monitored to make sure of false positives and speckle tracks that end

prematurely due to gross changes in the background or blinking.

Fig. 3.5C shows a typical graph of the intensity of a speckle through its lifetime.

Measurements of speckle lifetimes demonstrate the rapid turnover of actin in the

lamellipodium (Fig. 3.5D). To calculate the half-life of actin monomers we adjusted

the lifetimes to account for photobleaching and fit the cumulative number of speckles

with an exponential [41]. The measured half-life of 24 s is close to the previously

measured value of 30 sec [41].

3.3.4 SNARE-mediated fusion of single liposomes with sup-

ported bilayers, with single-molecule sensitivity Intro-

duction

With few exceptions, intracellular fusion reactions are mediated by SNARE proteins;

fusion is driven by pairing of vesicle-associated v-SNAREs with cognate t-SNAREs

on the target membrane, resulting in a four-helix bundle (SNAREpin) that brings bi-

layers into close proximity [148, 149]. Much of our current mechanistic understanding

of SNARE-mediated fusion has come from a bulk fluorescence dequenching assay in

which small unilamellar vesicles containing v-SNAREs (v-SUVs) are mixed with SUVs

containing t-SNAREs (t-SUVs) [149]. Recently, several researchers [150–153], includ-

ing some of my co-authors [6, 138], have developed assays in which docking and fu-

sion of single-vesicles with planar, supported bilayers (SBLs) can be detected. Unlike

other single-vesicle approaches [150–153], this assay recapitulates the requirement for

SNAP25, one of the essential t-SNARE components in vivo, without need for an artifi-

cial peptide [151]. Using this assay, it was demonstrated previously that SUVs recon-

stituted with the synaptic/exocytic v-SNAREs VAMP/synaptobrevin fused rapidly

with planar SBLs containing the synaptic/exocytic t-SNAREs syntaxin 1-SNAP25,

with single fusion events occurring 130 ms after docking, and requiring 5-10 SNARE

complexes per fusion event [138]. Vesicles are continuously flown over the SBL. They

dock at a constant rate and a small subset of docked vesicles fuse with the underlying

SBL after a certain delay.
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3.3.5 Diffusion of single fluorescent lipids from fused vesicles

in supported bilayers

We used TIRFM to visualize for the first time the release and diffusion of single

fluorescently labeled lipid molecules that initially reside in the SUV and become

released into the SBL upon fusion of the two membranes. Because the SUV size

is small ( 50 nm in diameter [138]), SUVs labeled with the fluorescent lipid LR-

PE appear as diffraction-limited bright spots. After fusion, the LR-PE molecules

diffuse away from the fusion site and become discernible as single speckles that can

be tracked with 17 ms time resolution (Fig. 3.6A, B). More than 90% of the spots

bleach in a single step, strongly suggesting they correspond to single-fluorophores.

The challenge for tracking here is that the background at any time is filled with

docked and unfused vesicles with a very broad range of intensities (due to different

vesicle sizes and bleaching times), as well as with single molecules that have survived

from other fusions. After visually identifying and seeding single molecules released

from single fusion events, we tracked 33 single LR-PEs diffusing in the SBL that lasted

more than 30 frames and calculated their MSD vs lag time (Fig. 3.6C). The averaged

MSD (Fig. 3.6D), increases linearly with time, indicating a Brownian process. This

suggests that the lipids that anchor the polymer cushion between the glass support

and the SBL or membrane defects are dilute enough that they do not perturb LR-PE

diffusion [154]. We find, in close agreement with the diffusivity estimated previously

from the increasing spread of the overall fluorescence signal as a function of time after

fusion [138].

3.3.6 Analysis of vesicle docking and fusion events

A crucial information, only obtained by single-vesicle docking and fusion assays, is

the lag time for fusion after a vesicle docks onto the SBL. This time reflects molec-

ular mechanisms required for vesicles to become fusion-ready (e.g. by recruitment

of proteins via lateral diffusion to the fusion site [138]) or rearrangements of the

lipids/proteins leading to membrane fusion. Docking of a vesicle onto the supported

bilayer is characterized by the sudden appearance of a vesicle speckle, since TIRFM

selectively visualizes only those vesicles very close to the surface. In contrast, fusion

events are characterized by the spread of the fluorescence intensity (initially concen-

trated within a SUV which appears as a diffraction-limited spot) within the SBL after

58



2

C

Time (s)

)

D

A B

M
SD

 (
μm

 2 )

D=1.6μm /s2

t = 0 ms t = 88 ms

t =1.58 s t = 2.24 s

0

0.5

1

1.5

2

2.5

0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

0 2 4 6 8 10 12 14 16

M
S

D
(p

x

Time (frames)

x
x

x
x x

x
x

xx
x

x
x

x
x

x

Figure 3.6: Single lipid tracking following vesicle fusion on a supported bilayer. (A) Mon-
tage of TIRFM images. Top left: before docking; top right: docking; bottom
left: shortly after fusion; bottom right: more time after fusion. Released lipids
diffuse on the membrane. Residual lipids from prior fusion events can be seen
in the first frame. (B) Image of tracked lipids. Movie taken at 67 frames/s.
(C) MSD for individual lipid trajectories. (D) Averaged MSD plots and linear
fit from 33 lipids tracked for at least 30 frames. Error bars are one standard
deviation of the mean. Scale: 2.67 µm (10 pixels).

merging of the SUV and SBL membranes.

Measuring docking-to-fusion delays is challenging, because: (i) the small subset

of docked vesicles that fuse need to be identified, (ii) broken trajectories and false

detections distort the lifetime of the docked state, (iii) docked vesicles have a broad in-

tensity distribution, (iv) the vesicle disintegrates into numerous small speckles rapidly

after fusion. Several algorithms have been designed for automated or lightly super-

vised detection of exocytosis events in live-cell TIRFM studies [120, 155, 156]. These
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Figure 3.7: Detection and analysis of fusion events. (A) Successive frames of image
sequence of a vesicle that docked (frame 1246) and fused (frame 1289). (B)
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position of the vesicle (top curve) and a surrounding ring 2.5 px wide (bottom
curve). (C) y-t projection of an image sequence. Docked vesicle appears as a
thin band (left arrow). Fusion results in formation of comet-tail appearance
(right arrow). (D) Probability that a vesicle survived without fusion beyond
a given delay after docking (178 fusion events from 10 different acquisitions).

dedicated programs work well in specific applications, but are not completely reliable

when conditions (cell type, marker properties, STN) are changed. We have tested

the program by Sebastian et al. [155] and a similar one written by E. Karatekin for

SUV-SBL fusion, but have found that user input is required for the most reliable

analysis of docking-to-fusion delays.

Two tools in Speckle TrackerJ assisted in identifying fusion events. The first is

based on tracing the intensities within a small circle around a vesicle and a ring just

outside the circle. When fusion occurs, the average intensity in the inner circle ini-

tially increases sharply, within one frame: fluorophores come closer to the glass-buffer

interface where the evanescent field intensity is higher, as well as due to polarization

and possible dequenching effects [118, 153, 157]. As the fluorophores leave the inner

circle they enter the ring enclosing it. Thus, as the intensity in the inner circle drops,

the intensity in the annulus increases (Fig. 3.7B). This simple criterion was used in

the past for assisting detection of fusion events [121].

The second tool is based on the projection of a sequence of images (xyt) onto

the y-t plane. A docked vesicle appears as a bright line in such a projection, with

the start of the line corresponding to the frame in which the vesicle docked. If the
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vesicle undocks, the line ends at the frame when undocking occurred. In contrast, if

the vesicle fuses, then the dispersion of the fluorophores within the SBL results in a

comet-like appearance of the projected profile (Fig. 3.7C).

Fusing vesicles were identified as described above, and were tracked from the

first frame in which they docked until the frame in which fusion occurred. A sample

sequence is shown in Fig. 3.7A. From these trajectories, we calculated the probability

that a v-SUV survived beyond a delay t after docking (the survivor function), see Fig.

3.7D. The delay time distribution matches closely the distribution obtained previously

using mainly manual analysis [138].

3.4 DISCUSSION

Speckle TrackerJ is most suited to situations where (i) STN is very low and/or particle

mobility during camera exposure is high, (ii) the particles of interest constitute only

a subset of all particles, (iii) particle lifetimes in addition to mobilities are desired,

(iv) particle densities are not too high so that the user supervision/assistance during

tracking is feasible.

The program can achieve sub-pixel resolution depending on the background noise

and size of the pixel. Interpreting results that rely on sub-pixel resolution, however,

requires careful consideration of additional issues, such as camera fixed pattern noise,

vibration, shot noise, sample drift and dynamic error. We refer the reader to ex-

tensive discussions in the literature on the relative importance of these factors and

for recommendations on how to select experimental conditions for optimal tracking

accuracy [111, 114, 125, 140, 141, 158–161].

Tracking errors often lead to distorted MSD curves [111, 125, 140]. The ability to

control the quality of the acquired data in Speckle TrackerJ can help avoid possible

artifacts due to the assumptions of tracking algorithms. Of course manual editing

could also introduce errors: manual filling of “gaps” in particle tracks could distort

the resulting MSD curves over the timescales related to the size of these gaps. Various

tools in Speckle TrackerJ allow for easier testing and control of these issues.

There is a general trend toward fully automated, unsupervised detection, tracking

and analysis of larger and larger sets of data. However, at the forefront of single-

molecule or single-vesicle biological research there are many situations where the STN

is very low, particle mobility is high during detection, a small sub-population needs
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to be selectively analyzed, and/or both the particles and the background have broad

intensity variations. Careful supervision of all tracks is required in such challenging

situations, especially if the experimental approaches are new. The development of

SpeckleTrackerJ grew out of the need for a flexible tool combining supervised/assisted

tracking with efficient automated algorithms. When imaging conditions are suffi-

ciently good, SpeckleTrackerJ allows unsupervised tracking with performance com-

parable to other, existing tools. In extremely difficult situations, with light user

assistance, it allows obtaining and supervising tracks where existing tools fail.

3.5 SUPPLEMENTARY MATERIAL

3.5.1 Additional information on particle detection methods

“Locate Speckles,” has three parameters: threshold, size, and minimum distance. Us-

ing the threshold value, a binary image is generated. A two-pass connected compo-

nents algorithm [162] is then applied to find speckle mark candidates. The position

of a candidate is the center of mass of the connected component. Candidates are

then removed if the number of pixels of the connected component is less than the

size parameter. If the distance two candidates is smaller than the minimum distance

parameter, the candidate with the smaller size is removed. “Template Locate,” per-

forms the same operation as the “Locate Speckles” method except that it uses existing

speckle marks to create a Normalized Cross Correlation (NCC) [139] filtered copy of

the image. The NCC template is made by averaging a square region of adjustable

size centered at existing speckle marks. Thus the program can be trained simply by

clicking to define a template.

3.5.2 Additional information on tracking models

“Static.” The Static Model places speckle marks on all frames preceding the first

frame of the speckle track, at the position of the first speckle mark. In a similar

fashion, it places speckle marks on all frames following the last mark of the track at

the position of the last mark.

“Extend Linear Refine.” The Extend Linear Refine Model is similar to the Static

model but it additionally tries to account for a small constant velocity during the

movie. In this model, each additional mark at the beginning or the end of the speckle
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track is adjusted using the “center of intensity” algorithm described in Eq. 3.4 below

(around the position of the first or last existing mark, respectively). Once a speckle

track that spans the whole movie is constructed, this model performs a weighted least

squares fit to positions of the speckle track. Each point is weighted proportionally

to the local intensity to obtain a velocity. Finally, all marks are updated to lie on a

straight line trajectory determined by this velocity.

“Constant Velocity NCC” model is the same as Diffusing NCC but the search for

the best candidate occurs over a square whose center is displaced from the position

of the previous speckle mark. To estimate v, a linear least squares fit on each exist-

ing speckle track is performed during initialization. The velocities from the fit are

averaged to calculate v.

3.5.3 Additional information on refine position models

Speckle tracks can be refined to improve the position of existing speckle marks. A

technique used to refine positions moves the speckle mark to the center of intensity

of an area of size 5x5 pixels:

∆x =

2∑
i=−2

2∑
j=−2

(x+ i)I(x+ i, y + j)

2∑
i=−2

2∑
j=−2

I(x+ i, y + j)

,∆y =

2∑
i=−2

2∑
j=−2

(y + j)I(x+ i, y + j)

2∑
i=−2

2∑
j=−2

I(x+ i, y + j)

(3.4)

This process is applied iteratively until the change in position is small (less than 0.01

px) or five iterations have occurred. The background noise will have a center at the

center of the square but by iterating, the bright feature will ‘pull’ the center towards

it.

The “Adjustment Model” modifies existing speckle tracks by using the above refine

technique for every speckle mark. The Refine Model performs the operation of the

Adjustment Model, then it applies a least squares fit to the positions of the existing

marks as in the Extend Linear Refine Model. It also fills in missing speckle marks

between the first and last frame of the speckle track.

The “Gaussian Fit” model refines the position of speckles with sub pixel accuracy.

It fits a 2D Gaussian to the intensity of a 11x11 px2 square near a speckle mark as

follows using a least squares fit. The fit is started with a user-defined standard

deviation of the Gaussian, σ (1 px is the default value). The position of the center of

the Gaussian is varied using a variant of the simplex method as follows. Four points
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are picked along the x and y axes with a distance of 0.75 px from the originally-

estimated position. The amplitude and background of a 2D Gaussian centered at

each point is found using a linear least squares fit, and the error is calculated. The

results are sorted according to the error, which is the sum of the squares of residuals.

The point with the highest error is moved toward the point with the lowest error,

at the midpoint position. The process of moving the point with the highest error is

iterated and continues until the largest difference in error among the points is below

a threshold value (10−6). This results in an estimate of the best position. The whole

process is repeated for different σ, using a 1D golden section algorithm [163] with

initial step dσ = 0.1 px to select for the sigma that minimizes the error. The fit is

finished when the change dσ is sufficiently small (less than 0.02 px). While this is

perhaps the most accurate model when the particles are Gaussian spots, it is also the

most computationally intensive.

3.5.4 User interface

Users can manually create and modify speckle tracks by clicking on the image (Fig.

S1A), and by moving, trimming and merging of tracks. Further tools to aid in the

users judgment are the Profiler, the Selection Table and the Reslice Control. The Pro-

filer (Fig. 3.8C) graphs the intensity of the speckle over a circle with user-adjustable

radius, rin, and over an annulus with inner radius rin and outer radius, rout. The Se-

lection Table (Fig. 3.8B) shows speckle track values such as maximum displacement

per frame and distance of closest approach to neighboring tracks. The table allows

users to sort and select speckle tracks, navigate the image stack and find problematic

cases. The Reslice Control (Fig. 3.8D) makes a y-t projection of the original image

stack to facilitate viewing the intensity through time.

3.5.5 Tracking precision

To evaluate the accuracy of our Gaussian Fit and tracking algorithm, we used a

previously described method [133, 139]. Simulated particles that were stationary

during exposure were displaced by a small distance (0.27 px) between exposures. We

generated images of 12 such simulated particles for 101 frames using the method

described in the Single Molecule Diffusion Simulations section of the main text. To

check the effect of pixel size, λ, the intensity of each particle was convolved with a
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Figure 3.8: Speckle TrackerJ, user interface. (A) Image with marked speckles. (B) Selec-
tion Table shows data about tracked particles; it can be used to select speckle
tracks. (C) Profiler shows the selected speckle intensity in different frames.
(D) Reslice Control shows a projection of the movie with time as horizontal
axis and the start and end points of speckle tracks.

Gaussian kernel of standard deviation σ = 0.5, 1, or 1.5 px. To study the effect of

STN we varied the standard deviation, σN , of the added Gaussian noise.

Here, we define the signal to noise to be STN = I/σN where I is the average

intensity (above the background) at the position of the speckle mark. To better

compare with previous studies we divide with σN instead of the standard deviation

of the noise at the position of the particle (as was done in Table 3.1): otherwise

fluctuations in the distribution of particle intensity among the pixels near the particle

position leads to an absolute maximum STN value, even without added noise.

For each set of images, speckles were seeded, and tracked automatically using the

Constant Velocity NCC model followed by the Adjustment and Gaussian Fit models.
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Fig. 3.2 shows the dependence of the precision, ε, equal to the standard deviation of

the difference between particle position and speckle mark, on STN and σ/λ. We find ε

scales approximately linearly with σ/λ and 1/STN, as in other algorithms [117, 140].

The magnitude of our precision is comparable to those of previous tracking studies

[133, 139], with small differences that are likely due to small differences in STN

calculations and type of noise (the authors of [133] simulated Poisson noise). Because

our tracking algorithm scans a large region of space before placing a speckle mark,

the “bias” [133, 139], i.e. the average distance between speckle mark and particle

position, was negligible.

3.5.6 Additional information on single-molecule imaging of

fluorescent actin and capping protein

Live cell imaging was carried out as described in [39] by Naoki Watanabe. Cells

were transiently transfected using Superfect (Qiagen) and maintained after passage

into fresh flasks. Before experiments, cells were trypsinized and allowed to spread

on a poly-L-lysine (PLL)-coated glass coverslip attached to a flow cell in 70% L-15

medium without serum for 30-60 min. The flow cell was then placed on the stage

of an Olympus BX51 microscope equipped with Cascade II:512 (Roper Scientific).

Fluorescent speckle microscopy was carried out by observing cells expressing a low

amount of EGFP-tagged proteins. A restricted area near the cell edge was illuminated

using a 75 W xenon illumination system. Imaging acquisition was carried out at 21-

23 ◦C using the Metamorph software (Molecular Devise) and Olympus oil objectives,

PlanApo 100 (NA 1.40) or 150 (NA 1.45).

3.5.7 Additional information on single-vesicle docking and

fusion experiments

Experiments described below were performed by Erdem Karatekin. The follow-

ing lipids were purchased from Avanti Polar Lipids, Inc. (Alabaster, Alabama):

1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-

L-serine (sodium salt) (DOPS), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene
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glycol)-2000] (ammonium salt) (mPEG2000PE), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-

N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (NBD-PE), 1,2-dioleoyl-sn-glycero-

3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (LR-

PE). Expression, purification and reconstitution of the synaptic/exocytic vesicle-

associated v-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein

receptor) proteins VAMP2/synaptobrevin and the target membrane associated t-

SNAREs syntaxin and SNAP25 were described previously [138]. Reconstitution

of the SNARE proteins into small unilamellar vesicles (SUVs) was also done fol-

lowing ref. using the following lipid composition, in mole %: DOPC/DOPS/LR-

PE/mPEG2000K =79.2/15/0.8 for the v-SNARE vesicles (v-SUVs) and DOPC/DOPS/NBD-

PE/mPEG2000K=79.5/15/0.5/5 for the t-SNARE containing supported bilayers (t-

SBLs). To have a relatively clean background, in this study we reduced the LR-PE

label density on the v-SUVs to 0.8 mole %, whereas 1-2 % were used previously [138].

Planar, supported bilayers decorated with t-SNAREs were made to cover the bot-

tom of microfluidic channels by bursting and fusion of t-SUVs onto clean, hydrophilic

glass coverslip substrates. The NBD-PE label in the supported bilayer is used to

assess the fluidity and quality of the t-SBL before introducing the v-SUVs into the

channel.

The microscopy setup, the formation and characterization of the t-SBLs are de-

scribed in ref. [138]. Importantly, two modifications here allowed us to detect single

fluorescent lipids to be detected in the SBL after fusion for the first time: (i) to reduce

the background signals, we reduced the LR-PE label density on the v-SUVs to 0.8

mole %, whereas 1-2% were used previously [138], and (ii) we used total internal re-

flection fluorescence microscopy (TIRFM) instead of far-field epifluorescence that was

employed previously, allowing image acquisition at 31 frames/sec full-frame (512x512

pixels) or at 57 frames/s from a 400x256 pixel region of interest using a back-thinned

EM-CCD camera (iXon DU897E, Andor technology). We used custom-made, high

quality filters (clean-up: zet532/10x, dichroic: zt532rdc on custom 2 mm thick sub-

strate, emission: hhq545lp and et605/70m) from Chroma Technology Corp. (Bellows

Falls, VT). The fastest acquisition rates here are about 7 times faster than in ref.

[138]
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Chapter 4

Actin turnover in the

lamellipodium: A model of FRAP

using single molecule statistics

This chapter describes a model I developed to study actin turnover in the lamel-

lipodium. The work has been submitted to Biophysical Journal and is awaiting

review.

4.1 INTRODUCTION

4.1.1 Lamellipodium and related proteins

Lamellipodia are flat protrusions that allow cells to attach, and move across on flat

surfaces (see Fig. 4.1A, B). This machinery for motility is used by a variety of cells

such as white blood cells in the immune system or epithelial cells during wound

healing and cell migration [47, 54]. The lamellipodium is characterized by a brushlike

network of actin filaments, with their barbed ends located towards the leading edge

of the cell [164]. Regulating proteins such as capping protein (CP), Arp2/3 complex,

SCAR/WAVE, tropomyosin, and cofilin are also characteristic of lamellipodia. The

regulators are controlled through signaling pathways that steer cells from external

cues.
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Figure 4.1: Prior experimental results to develop and validate model. (A) XTC cell
expressing EGFP-actin at high concentrations [6]. Scale bar, 8 µm. (B)
Intensity profile measurement from cell in A (along dashed line). (C) Cell
expressing EGFP-actin at low concentrations [6]. Top: Individual speckles
indicate single actin proteins. Bottom: same as top showing speckle tracks in
time. The beginning and end of track (speckle appearance and disappearance)
corresponds to polymerization and depolymerization. Scale bar, 2.65 µm.
(D) Appearance events versus distance from leading edge (10) and double
exponential fit. (E) Speckle lifetime distribution [6]. (F) FRAP experiment
using a B16-F1 melanoma cell from [43] shows rapid recovery near leading
edge and slow recovery away from leading edge. Scale bar, 2 µm. The average
retrograde flow rate in [43] was 0.062 0.025 µm/s. (G) Measurement of FRAP
kinetics at front and back halves of bleached regions.

4.1.2 Experimental work on lamellipodium

Many of the actin regulatory proteins have been characterized in vitro, but precisely

how they control actin polymerization and depolymerization across the lamellipodium

has not been completely resolved. The majority of actin polymerization in lamellipo-

dia occurs near the leading edge (here we do not distinguish between lamellipodium

and lamella [45]). Growing actin filaments push against the lipid membrane while

the whole actin network undergoes retrograde flow [54, 165]. As the network moves

toward the body of the cell, F-actin is depolymerized and recycled to be used again.

Numerous experiments provide evidence that actin polymerization and depolymer-

ization also occurs throughout the lamellipodium [47]: photoactivated labeled actin
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showed turnover during retrograde flow [50]; microinjected fluorescent actin and elec-

tron microscopy experiments show barbed ends throughout the lamellipodium [36, 51];

phaloidin-stabilized neuron growth cones incubated with Alexa-488-G-actin shows in-

corporation of actin at barbed ends within a 2-3 µm band [52]; Single Molecule Speckle

(SiMS) Microscopy demonstrates single molecules of actin polymerizing throughout

the lamellipodium [41] (Fig. 4.1C); Quantitative Fluorescent Speckle Microscopy

shows turnover of clusters of actin proteins far from the leading edge [40]; cells that

are permeabilized and introduced with fluorescent CP demonstrate free barbed ends,

or CP binding sites well into (∼ 5µm) the lamellipodium [39].

4.1.3 Models of actin turnover in the lamellipodium

The studies in the preceding paragraph indicate an extended distribution of barbed

ends across the lamellipodium. However, fluorescent recovery after photobleaching

(FRAP) experiments show that significant fluorescence recovery occurs fast near at

the leading edge, while recovery away from the leading edge occurs with a delay

followed by a more rapid increase [43, 44, 166] (Fig. 4.1F,G). A computational model

by Lai et al. [43] reproduced the experimental FRAP observations assuming actin

polymerization occurrs only very close to the leading edge. In this picture recovery

at the back relies on retrograde flow of unbleached monomers from the very front

[43, 167].

It has been proposed that reassociation of the bleached actin within the bleached

area may slow down recovery [47]. This has been demonstrated by a reaction diffusion

model of actin turnover in a spatially homogenous system without retrograde flow

[146, 168, 169]. But the FRAP kinetics in a model that combines actin remodeling

throughout the lamellipodium and retrograde flow have not been calculated.

Many previous models of actin in the lamellipodium have considered actin poly-

merization occurring exclusively at the leading edge [170–173]. The G-actin dis-

tribution has been studied considering populations of bound or sequestering actin

monomers, assuming various combinations of sinks and sources of G-actin (repre-

senting polymerization and depolymerization) throughout the lamellipodium [174].

Other workers have implemented models that account for well known reactions at

the leading edge, including assembly and disassembly away from leading edge and

G-actin diffusion [175–177]. However the authors of [174–177] did not model FRAP

curves. A three dimensional PDE model [173] was used to model FLAP, which is
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similar to FRAP. This model treated actin monomers and polymers in a solvent but

it did not include the effects of actin polymerization away from the leading edge.

Another group studied FRAP of CP at the leading edge [178].

4.1.4 Overview

In the current chapter we consider models with turnover distributed throughout the

lamellipodium. We demonstrate that the FRAP measurements are not clandestine

to contradict experiments that indicate turnover throughout the lamellipodium. We

compare two different models and show that turnover can occur without causing rapid

FRAP recovery away from the leading edge. The first model uses diffuse actin that

polymerizes and depolymerizes as monomers. FRAP curves simulated with this model

are similar to, but not completely consistent with prior experimental observations.

For the second model we consider two species of diffuse actin that can polymerize

and depolymerize throughout the lamellipodium, monomers and oligomers (O-actin).

Oligomers are slowly diffusing actin that can anneal to the F-actin network. The

presence of a small amount of oligomers significantly reduces the amount of recov-

ery away from the leading edge in simulated FRAP. The results of this model are

consistent with both FRAP and SiMS microscopy.

The following models use speckle appearance rates and speckle lifetimes from SiMS

microscopy [6, 41] to compute the steady state F-actin profile. The F-actin profile is

then used to calculate the steady-state G- and O-actin profiles and the corresponding

polymerization rates as function of distance from leading edge. Using these rate

constants in a 2D stochastic simulation, we compute the predicted FRAP curves.

4.2 RESULTS

4.2.1 F-Actin profile based on speckle statistics

We used the statistics of single molecules of labeled actin obtained in previous studies

of XTC cells (Fig. 4.1C) [6, 41] as an input to our model. The location of speckle

appearance events correspond to polymerization and yield an appearance rate, a(x),

as function of distance from leading edge x (Fig. 4.1D) [41]. The units of a are

µM/s. To obtain an analytical form for a(x), we fit the appearance curve with a
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double exponential:

a(x) = G∞K
(
A1e

−x/λ1 + A2e
−x/λ2

)
. (4.1)

The shorter length, λ1, corresponds to polymerization at the leading edge while the

longer length scale, λ2, corresponds to basal polymerization that occurs throughout

the lamellipodium. The total rate of appearance is scaled in proportion to the cyto-

plasmic concentration of labeled actin monomers far from the leading edge, G∞. For

convenience we pick A1+A2 = 1 so K can be used as a parameter that adjusts the to-

tal rate of polymerization and the resulting F-actin/G-actin ratio (“F:G ratio”). The

fit gives A1 = 0.82, A2 = 0.18, λ1 = 0.48µm, λ2 = 9.1µm. (How appearance events

are distributed in space within the first 0.5 µm of the leading edge is not crucial for

the present study).

Measurements of the speckle lifetime distribution in Fig. 4.1E, p(tl), give the

probability distribution of the amount of time tl that each actin subunit spends as

F-actin. The lifetime distribution is approximately constant as function of distance

from the leading edge [41]. We fit the lifetime distribution with a double exponential:

p(tl)/p(0) = C1e
−tl/τ1 + C2e

−tl/τ2 , (4.2)

where C1 = 0.904, C2 = 0.096, τ1 = 20 s, τ2 = 128 s. The velocity of retrograde

flow vr, (that ranges between 20-80 nm/s in XTC cells [179]) provides the remaining

parameter necessary to construct an F-actin profile represented by the speckle statis-

tics. Using the appearance rate a(x) as a source of F-actin yields the steady state

concentration profile:

F (x) =

∫ ∞
0

Y (x, x′)a(x′)dx′. (4.3)

The profile Y (x, x′) generated by a point source at x′ is obtained by considering the

amount of subunits that have a longer lifetime than the time it took to travel from

x′ to x via retrograde flow:

Y (x, x′) = Θ(x− x′) 1

vr

∫ ∞
x−x′
vr

p(tl)dtl, (4.4)

where the prefactor is found by balancing the amount due to retrograde flow out of

with amount created by the point source.

The resulting F-actin profile in Fig. 4.2B is similar to the experimental profile

shown in Fig. 4.1B. The profile in the figure becomes wider for larger values of the
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Figure 4.2: Speckle statistics used to create a steady state profile in a model with G-
actin monomers as only diffuse actin species. (A) F- and G-actin states and
transition rates. (B) Steady state profiles of F- and G-actin. Columns indicate
different K values, which determine the F:G ratio. Rows are for different
retrograde flow values. Concentration is normalized to G∞ In this work we do
not try to capture the exact position of the maximum of the F-actin profile
that occurs within the first 1 µm from leading edge; this feature depends on
the precise value of parameter λ1.

retrograde flow rate. Plots of the disappearance rate d(x), namely the rate with which

F-actin becomes G-actin at steady state, show a peak between 1 and 2 µm away from

the leading edge (Fig. 4.12C), similar to [175, 176]. The F-actin profile and d(x) are

the same for the two models we consider in this paper because they are determined

by the measured appearance rate, retrograde flow, and speckle lifetimes.

Retrograde flow changes with distance from the leading edge, becoming slower for

x > 5 µm in XTC cells [179]. We are interested in FRAP recovery within the first 5
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µm so we do not consider this x-dependence.

4.2.2 G-Actin profile considering monomers as only diffuse

actin species.

As a first model we consider that actin exists in two states: F-actin that undergoes

retrograde flow, and G-actin with diffusion coefficient D = 4 µm2/s[38, 168, 180, 181]

(we also varied the value of D in Fig. 4.4). G-actin diffuses freely, polymerizing to

become F-actin with rate a(x) (Fig. 4.2A). At steady state the exchange between F-

and G-actin can be written as a function of position:

vr
∂F (x)

∂x
= −D∂

2G(x)

∂x2
= a(x)− d(x) (4.5)

where G(x) is the G-actin concentration. Knowing F (x) from Eq. 4.3, we can solve

Eq. 4.5 for the G-actin profile:

G(x) = G∞ −
vr
D

∫ ∞
x

F (x′)dx′ (4.6)

The resulting steady state profiles are plotted in Fig. 4.2B, normalized to the

G-actin concentration far from the leading edge, G∞. The value of parameter K

determines the F:G ratio since it changes the magnitude (but not the shape) of

the F-actin profile (see Eq. 4.1-4.3 and Section 4.4.2). By increasing K, the G-

actin depletion near the leading edge is increased, see graphs from the left to right

in Fig. 4.2B. Increasing the value of the retrograde flow velocity causes a greater

depletion of G-actin shown by comparing the graphs vertically in Fig. 4.2B. The

requirement that G(x) remains positive restricts the possible values of K, vr, and G∞

and the maximum possible value of the F:G ratio
∫ L
0
F (x)dx/

∫ L
0
G(x)dx, where L is

characteristic lamellipodium width. Measured values of the F:G ratio are in the rage

2-10 [35, 47, 182, 183] and the graphs in Fig. 4.2 show that the model can account

for these F:G measurements.

4.2.3 Particle simulation with monomers as only diffuse actin

species.

To calculate FRAP recovery curves in the monomer-only model we assume the tran-

sition rate monomers convert to F-actin is:

rG→F (x) = a(x)/G(x) (4.7)
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Figure 4.3: Simulated FRAP results in model with monomers as only diffuse actin
species. (A) Calculated monomer transition rate as a function of distance
from the leading edge for two different F:G ratios (vr = 0.05 µm/s). (B)
Example image of simulated FRAP. Size of bleached region 5 x 20 µm and
K = 0.5s−1,vr = 0.03µm/s. Simulated exposure 500 ms/frame with 2500
ms lag between frames. (C) Normalized recovery curves at 0-0.5 µm (hollow
symbols) and 2.5-3 µm (filled symbols) from leading edge, for two different K
values. Intensities are normalized to the steady state value at the bleached
position and approach 1 at sufficiently long times. (D) As B, for different
value of retrograde flow.

Fig. 4.3B shows the calculated G → F transition rate using the measured a(x)

and G(x) from Eqs. 4.1 and 4.6. Estimated values for the concentration of barbed

ends are [B] ≈ 1 µM [47]. Using rG→F = k+[B], we find the rate constant close to

the leading edge is k+ ≈ 0.5M−1s−1, consistent with previous estimates [47].

Eq. 4.7 contains an implicit relationship between polymerization rate constant,

F:G ratio, retrograde flow rate andG∞. This is a condition required for self-consistency

of the model at steady state. It should not be used to infer a dependency between

only two variables. For example, reducing cofilin concentration by shRNA decreases

the retrograde flow rate [44] but Eq. 4.7 cannot be used in isolation to infer that this

must also change the polymerization rate; such a perturbation may also decrease the

G-actin pool and modify the F-actin lifetimes.

We used the transition rate, rG→F (x), in an off-lattice 2D Monte Carlo simula-

tion to simulate the reaction and diffusion of individual actin subunits in the lamel-

lipodium (a rectangle extending 60 µm into the cell and 40 µm wide, with reflecting

boundaries). Each subunit is either diffusing (G-actin) or undergoing retrograde flow
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(F-actin). Subunits are updated every time step ∆t, chosen to be sufficiently small, 1

ms or smaller. The distance traveled by diffusing monomers within ∆t is picked from

the 2D Gaussian diffusion propagator. After the monomer is moved, it is checked

for association to the F-actin in the lamellipodium, which occurs with probability

rG→F (x)∆t. When a monomer transitions to F-actin, its lifetime is picked from the

lifetime distribution p(tl), see Section 4.4.3. The positions of F-actin subunits are

updated by moving them in the direction of retrograde flow by distance vr∆t. If they

reach the boundary, they are converted back into G-actin (the size of the system was

chosen large enough such that this is a rare event). After an F-actin subunit is moved,

its lifetime is compared to the time elapsed since polymerization to check if it should

depolymerize and become G-actin.

The system was initialized at steady state by using the concentration profiles

obtain from the above analytical calculations (Eqs. 4.3 and 4.6). The lifetimes of the

particles in the initial distribution were picked by applying Bayes rule (see Section

4.4.3). The resulting initial distributions of F- and G-actin subunits maintain the

calculated steady state distributions, validating the simulations (see Fig. 4.13).

To simulate images, the particles are treated as diffraction-limited spots that dif-

fuse during camera exposure [6]. The position of each particle is updated and exposed

throughout the exposure time, ∼ 106 times per exposure, to produce a simulated

lamellipodium image. Bleached particles are removed from the simulation and do not

contribute to intensity.

4.2.4 FRAP recovery in model with monomers as only dif-

fuse actin species.

A simulated FRAP image is shown in Fig. 4.3B where a region of size 5x20 µm is

bleached near the leading edge. Fig. 4.3C, D show the recovery of intensity at two

strips between 0-0.5 µm, and 2.5-3 µm (“Front” and “Back” respectively) from the

leading edge. Overall, the recovery curves are similar to the recovery curves seen in

experiments (Fig. 4.1G), with fast recovery at the front and slower recovery at the

back.

Recovery at the front involves three stages. First, unbleached G-actin diffusion

to the leading edge within about 2 sec, assuming free diffusion (see discussion on

inhibited diffusion below). Second, the F-actin increases until a balance is established

between polymerization of G-actin and removal of F-actin by both retrograde flow
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Figure 4.4: Effects on profile and FRAP due to changing the diffusion coefficient in
monomer-only model. The other parameters remain the same, K = 0.5 s−1

and vr = 0.03 µm/s. Steady state profiles for (A) D = 2 µm2/s, (B) D = 4
µm2/s, and (C) D = 6 µm2/s. (D) Comparison of FRAP recovery results for
different values of D (front: empty symbols; back: filled symbols). Decreasing
D increases the gradient of the G-actin profile and slows down FRAP recovery
at both the front and the back of the lamellipodium. Some studies have
suggested D values as large as 14 µm2/s[54]. For such large values of D the
G-actin profile becomes flat and the FRAP curves approach a limit that is
similar to those of D = 6 µm2/s.

away from the leading edge region and depolymerization. Since the time it takes for

an F-actin subunit to be carried away from the front region, 0.5 µm/vr, is within

10-15 s, and since the average speckle lifetime is 60 s (see Eq. (S11) and Eq. 4.2),

retrograde flow is the dominant removal mechanism of F-actin close to the leading

edge. Thus this second stage completes in about 10-15 sec. Third, there is a slow

recovery due to algebraic tail of the G-actin diffusion (see also Fig. 4.4) while the

local F:G ratio remains approximately constant.

Recovery at the rear is slower than at the front. There is a qualitative difference
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between the shapes of the simulated (Fig. 4.3C,D) and experimental (Fig. 4.1G)

recovery curves. In the experimental data there is little recovery until 35 sec, which

is about the time retrograde flow carries fresh monomers from very close to the lead-

ing edge into the region. Recovery at the back involves G-actin diffusion into the

bleached region, G-actin transitioning to F-actin (that occurs over 1/rG→F ≈ 13 sec,

see Fig. 4.3A), and retrograde flow carrying unbleached subunits to the rear. In the

simulations, retrograde flow carries unbleached monomers from the very front to the

back in 30 s and 50 s in Fig. 4.3C, D, respectively, and causes an abrupt increase

in slope. However, the intensity at the back has already started to recover at earlier

times due to the basal polymerization.

It has been shown that a high F:G ratio can cause a delay in FRAP since as-

sociation of G-actin into F-actin hinders the diffusion of G-actin into the bleached

region [168]. This effect becomes important when the typical distance travelled by

G-actin before reassociation to F-actin [174], , s =
√

4D/rG→F becomes comparable

to the size of the bleached region. In Fig. 4.3A, increasing K increases rG→F . To

estimate s, we use rG→F at the mid-point of the bleached region. For K = 0.25 s−1,

we find s = 19 µm and for K = 0.5s−1, s = 12 µm, which are larger than the width

of the bleached region. Thus while hindered diffusion has an effect on the recovery

in Fig. 4.3, it cannot fully account for slow recovery at the back in experiments.

To explore this concept further we look at the consequence of changing the diffusion

coefficient, D, see Fig. 4.4. Changing D changes the G-actin distribution, causing

a larger G-actin depletion near the leading edge for smaller D values. When D = 6

µm2/s, s = 16µm and the shapes of the recovery curves in Fig. 4.4D are qualitatively

similar to Fig. 4.3C. When D = 2 µm2/s, s = 4.8µm and we see a much stronger

delay in both front and back recovery. A remarkable feature of the D = 2 µm2/scase

is that the recovery at the front is slowed much more than the recovery at the rear.

This indicates that hindered diffusion cannot explain the slow recovery at the rear in

Fig. 4.1F while still allowing the fast recovery at the front.

We also considered the effects of having a longer lifetime, τ2 (Fig. 4.5) and found

that it slows recovery, but does not have enough of effect within values close the

measured values (Fig. 4.1E). The factor that changed the shape of the back recovery

the most was λ2, which determines how far into the lamellipodium polymerization

occurs. By reducing λ2 close to λ1 we get recovery curves more similar to a tread-

milling model, but this is equivalent to assuming negligible polymerization away from
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Figure 4.5: Effects on concentration profile and FRAP in monomer-only model due to
changing value of parameter τ2 that describes the lifetime of the “long-lived”
F-actin subunits, see Eq. 4.2. The value of τ2 used in the main text was 128 s.
Steady state profiles for (A) τ2 = 20 s, K = 0.67 s−1, (B) τ2 = 120 s, K = 0.5
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the F:G ratio about the same. (D) Comparison of FRAP recovery results for
different values of τ2 (front: empty symbols; back: filled symbols). The other
parameters remain the same and vr = 0.03 µm/s, for all three values of τ2.

the leading edge (Fig. 4.6).

We did not explicitly account for the fact that G-actin monomers can carry differ-

ent types of nucleotide (ADP or ATP), or that monomers can be bound to profilin,

thymosin or cofilin. We assumed that the reactions among these different states oc-

cur fast enough to be considered quasi-static and also do not modify the diffusion

coefficient of bound G-actin [174]. Thus, the values of rate constants represent the

average behavior of the G-actin pool. If there is a time that must elapse before a de-

polymerized monomer is able to repolymerize, this delay would not modify the shape

of the FRAP curves qualitatively (this would be similar to using a higher K, see Fig.

4.3C, D and also Fig. 4.11 below).

79



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

λ2 = 0.5 μm

λ2 = 10 μm
λ2 = 1.4 μm

0

1

2

3

4

5

0 2 4 6 8 10

F-Actin
G-Actin

0

1

2

3

4

5

0 2 4 6 8 10

F-Actin
G-Actin

0

1

2

3

4

5

0 2 4 6 8 10

F-Actin
G-Actin

A B

C D

Distance from L.E.(μm)

Distance from L.E.(μm) Distance from L.E.(μm)

C
o
n

ce
n

tr
a
ti

o
n

*

C
o
n

ce
n

tr
a
ti

o
n

*

C
o
n

ce
n

tr
a
ti

o
n

*

Time(s)

In
te

n
si

ty
*

Steady State Profile, λ2 = 0.5 μm Steady State Profile, λ2 = 1.4 μm

Steady State Profile, λ2 = 10 μm Recovery after Bleach

Figure 4.6: Effects on concentration profile and FRAP in monomer-only model due to
changing value of parameter λ2 in Eq. 4.1, which determines how far into the
lamellipodium polymerization occurs. The value of λ2 used in the main text
was 9.1 µm. (A) λ2 =0.5 µm (B) λ2 = 1.4 µm (C) λ2 = 10.0 µm all other
parameters kept the same: K = 0.5 s−1, λ1 = 0.5 µm, vr = 0.03 µm/s. (D)
Recovery plot comparing three different recovery curves for the different λ2
(front: empty symbols; back: filled symbols).

The discrepancy in the back recovery curves between model and experiment is

small, but it illustrates the difference between a treadmilling type model and a model

with remodeling further away from the leading edge. A smaller discrepancy is that the

simulated recovery at the front has a slow tail, unlike experiment, for K = 0.5s−1 that

corresponds to realistic F:G ratios. These results indicate that a model which only

includes monomers as the diffuse actin species cannot fully account for both SiMS and

FRAP results. In the next section we examine the possibility that appearance events

in SiMS microscopy are caused by both G-actin and slowly diffusing actin oligomers.
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4.2.5 Model with both monomers and oligomers contributing

to appearance events.

Several works suggest actin oligomers are present in the lamellipodium. Cofilin causes

severing of actin filaments [184–187] and the Arp2/3 complex nucleates actin filaments

that can debranch in vitro [19, 188]. The short lifetimes of CP speckles in lamellipodia,

which depend on cofilin-catalyzed, jasplakinolide-sensitive actin disassembly, indicate

severing of capped filaments [39]. Oligomer annealing [189, 190], possibly involving

Aip1-capped filaments [191–193] could be a mechanism for structural reorganization

of actin filaments in the lamellipodium [39, 191]. This could assist the change from

a densely branched network near the leading edge to a network of longer filaments

further away [164]. However, a different picture has been discussed after recent cryo

EM experiments [194–197].

Oligomer generation and annealing would be consistent with SiMS observations.

Oligomers with diffusion coefficient DO ≈ 0.5µm2/sand a fluorescent subunit would

appear as background noise during exposure in SiMS experiments [6]. If they anneal to

the network, they would contribute to speckle appearance events in SiMS experiments.

When they dissociate from the network (via severing or debranching) they would

contribute to speckle disappearances. Since the diffusion coefficient in the cytoplasm

decreases with increasing molecular weight of protein complex [198], such DO values

may represent fragments of order 10 actin subunits or less.

In the model shown in Fig. 4.7A, G-actin monomers can associate into F-actin

and F-actin subunits depolymerize into O-actin. Subunits of O-actin can become

F-actin or disassemble to G-actin with an average lifetime τO. O-actin is a slowly

diffusing species of actin with a different appearance profile than G-actin (Fig. 4.7B).

The total appearance rate is separated into oligomers, aO(x), and monomers, aG(x),

with a(x) = aO(x)+aG(x). We assume O-actin accounts for a majority of appearance

events away from the leading edge while G-actin polymerization contributes to most

events close to the leading edge. Given the evidence for barbed ends throughout the

lamellipodium, we expect both O- and G- actin to associate away from the leading

edgehere we examine a limiting case to illustrate how much of an effect oligomer-based

remodeling changes FRAP. The relative G- and O-actin contribution to appearances

is considered in the Discussion.

We use the speckle appearance rates and lifetime distributions to calculate the
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steady state profiles. At steady state, similar to Eq. 4.5:

vr
∂F (x)

∂x
= aO(x) + aG(x)− d(x), (4.8)

DG
∂2G(x)

∂x2
= aG(x)− 1

τO
O(x), (4.9)

DO
∂2O(x)

∂x2
= aO(x)− d(x) +

1

τO
O(x), (4.10)

where DG = 4 µm2/sand DO are the G- and O-actin diffusion coefficients. The F-

actin profile is given by the same expression as in Eq. 4.3, so we can substitute in

Eq. 4.8 to solve for d(x), which leads to O(x) through Eq. 4.10:

O(x) = τO cosh(
x√
DOτO

)

∫ ∞

0

f(x′) exp(
−x′√
DOτO

)dx′ − τO
∫ x

0

f(x′) sinh(
x− x′√
DOτO

dx′. (4.11)

The G-actin profile can then be solved similar to the monomer model, using Eq. 4.9:

G(x) = G∞ −
DO

DG

O(x)− vr
DG

∫ ∞
x

F (x′)dx′. (4.12)

Examples of calculated profiles are shown in Fig. 4.7C, where we used DO = 0.5

µm2/sand τO = 20 s. The total amount of O-actin is quite low compared to the

amount of F and G-actin, while still making a contribution to the total appearance

rate. Provided DO < 1 µm2/sand τO > 2 s, these parameters do not affect the shape

of the FRAP recovery curves significantly (Fig. 4.9, 4.10).

4.2.6 FRAP simulations using O-, G- and F-actin.

The O- and G-actin binding rates were obtained from the steady state profiles,

rG→F = aG(x)/G(x) and rO→F = aO(x)/O(x) (Fig. 4.8A). Using these rates we per-

formed stochastic particle simulations to produce images of simulated FRAP (Fig.

4.8B), as in the monomer-only model. The new model captures two features of the

experiment in Fig. 4.1G that the monomer-only model did not contain:

(1) Recovery away from the leading edge (Fig. 4.8C and 4.8D) is slower than the

recovery in the monomer-only model (Fig. 4.3C and 4.3D), which is more consistent

with the experimental results. The resulting FRAP curve at the back does not show

significant recovery until retrograde flow carries monomers from the leading edge

into the back region. For the chosen parameters, oligomers do not diffuse into the

bleached region before retrograde flow transports monomers from the leading edge

into the region. Two factors contribute: (i) the time required to travel distance
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Figure 4.7: Speckle statistics used to create a steady state profile in a model with both G-
actin and actin oligomers (O-actin) as diffuse species. (A) F-, G- and O-actin
states and transition rates. (B) Appearance events broken into monomers and
oligomers. We consider the limit where speckle appearance events far from
the leading edge are mostly due to oligomers. (C) Steady state profiles for
two different K values and two different retrograde flow velocities (τO = 20 s,
DO = 0.5 µm2/s). Concentration is normalized to G∞

of order 3 µm by free oligomer diffusion is about 4.5 s but this is slowed down by

rebinding of O-actin within the bleached region [168] since 2.5 µm; (ii) generation of

a new O-actin subunits from unbleached monomers that polymerize at the leading

edge requires times of order the average speckle lifetime.

(2) The recovery at the leading edge (Fig. 4.8C and 4.8D) does not have a signif-

icant long tail and is similar to Fig. 4.1G, even with the higher K value. The tail in

the front recovery curve in Fig. 4.3C for K = 0.5 s−1 was due to hindered diffusion

83



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

K = 0.5 s-1
K = 0.25 s-1

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

K = 0.25 s-1

K = 0.5 s-1

A

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10

B

C

Distance from L.E.(μm) Time(s)

In
te

n
si

ty
*

p
e
r 

se
co

n
d

G→F and O→F Rates Recovery Curvesvr = 0.03 μm/s

Back

Front

Time(s)

In
te

n
si

ty
*

Recovery Curves

Back

Front

D

-1sec 0sec 9sec 18sec 39sec 60sec 81sec 102sec 137sec

rO→F(x)

rG→F(x)

vr = 0.05 μm/s
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[168]. In the model with oligomers, the region of G-actin polymerization is narrow,

and this effect is reduced in magnitude.

The above results support models that include annealing and severing in the lamel-

lipodium [172, 176]. They indicate that SiMS results may be consistent with FRAP

data, and reveal the kinetics of a population of actin not previously characterized in

cells.

4.3 DISCUSSION

We used modeling to show how the combination of SiMS and FRAP experiments

provides information on the actin remodeling kinetics at the lamellipodium. A model

in which all diffuse actin species are identical and have a single diffusion coefficient

predicts a slow, continuous recovery at the back of the lamellipodium, different to

the experiment in Fig. 4.1G that shows a two-stage recovery process. Possible con-

tributors to this apparent discrepancy are: differences between experimental systems
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Figure 4.9: Effects on concentration profile and FRAP in model with oligomers due to
changing oligomer lifetimes. All other parameters are kept the same as in Fig.
4.8. Profile plots for all three species with (A) τO = 5 s, (B) τO = 20 s, and
(C) τO = 120 s. (D) Recovery plot comparing three different recovery curves
for the different τO (front: empty symbols; back: filled symbols).

(XTC cells versus B16-F1 melanoma cells); the bright illumination required for pho-

tobleaching changes the kinetics of the actin in the lamellipodium (for example our

preliminary experimental observations show that bright illumination sometimes trig-

gers cell edge retraction); or the protruding or retracting activity of the lamellipodium

could affect the turnover.

Here we showed another possibility: a model with both monomers and oligomers

(G- and O-actin) agrees with both basal remodeling and two-stage FRAP recovery

at the back of the lamellipodium. This agreement requires that O-actin has diffusion

coefficient about 10 times smaller than G-actin, which can occur if they consist of a

few actin monomers or if they are associated with proteins such as Arp2/3 complex,

Aip1, CP protein or VASP tetramers, which bind to multiple actin monomers and to

the sides of filaments [199, 200].
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Figure 4.10: Effects on concentration profile and FRAP in model with oligomers due to
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In the model with oligomers we assumed that the speckle appearance rate a(x)

within 1 µm of the leading edge is mostly coming from monomers (Fig. 4.7B). The

appearance rate is the sum of the products of the G→F and O→F transition rates

with the local G- and O-actin concentrations. For the parameters of Figs. 4.7 and

4.8 we found that this leads to O-actin to assemble with smaller rate constants (Fig.

4.8A) and to have smaller concentration than G-actin at the very front (Fig. 4.7).

This is a reasonable result since it may be harder for O-actin to assemble at barbed

ends pushing against the membrane. Although a recent experimental study suggests

oligomer polymerization occurs at the leading edge [201]. In some simulations where

the O→F and G→F rate constants at the leading edge were similar, as in Fig. 4.9A

where τO = 5 s, the resulting FRAP recovery was similar to Fig. 4.8C.
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In the model with oligomers we also assumed the speckle appearance rate a(x)

away from the leading edge is primarily due to O-actin (Fig. 4.7B). We have explored

the contribution of both G- and O-actin to the appearances in the basal region by

breaking the second term of Eq. 4.1 into two parts, A2 = (1 − f)A2 + fA2 in

Fig. 4.11. The (1 − f)A2 term is the portion of G-actin appearances while fA2

corresponds to the O-actin contribution. Reducing the appearance rate of oligomers

causes an accumulation of oligomers, which cannot polymerize; to balance this effect

τO was adjusted to maintain a similar O-actin concentration. The predicted recovery

curves as a function of f are shown in Fig. 4.11. This figure demonstrates that

G-actin appearance events away from the leading edge increase the rate of recovery

away from the leading edge. Since both monomers and oligomers would bind to free

barbed ends, most likely, the real system corresponds to an intermediate f value.

A possible origin for differences between G- and O-actin association rates might

be that O-actin has more binding sites away from the leading edge (eg. filament

sides). Also, free barbed ends of severed filaments away from the leading edge could

be protected by Aip1 that exists at 1.8 µM at the leading edge [191]. Experiments

using cells permeabilized by CP have demonstrated an abundance of free barbed

ends throughout the lamellipodium [39]. These experiments might label free barbed

ends that were protected by Aip1 that dissociated during preparation. This would

be consistent with the live cell observations that show Aip1 speckles dissociating

at 1 s−1 [191] and CP in a narrow region close to the leading edge. A maximal

estimated rate of Aip1 capping, 1.8 µM/s, may however fall short of the anticipated

oligomer generation rate of order 0.2∼ G∞K 10 µM/s in the basal region (see Fig.

4.12C). Another reason G-actin might associate slower in the basal region is because

of sequestering proteins, such as thymosin-β4.

Oligomers in the lamellipodium could serve multiple purposes. Control of actin

assembly relies on nucleating proteins activated at the leading edge. This leads to

autocatalytic polymerization regulated by capping. While this mechanism allows fast

response, it consumes energy and may result in misoriented branches. Rather than

disassembling branches into monomers, it may be energetically efficient to recycle

these segments. Annealing those segments to filaments growing in the preferred di-

rection may provide a geometrical feedback to turn a random branched structure into

a polarized network. Another function could be regulation of soluble actin. Due to

their slow diffusion coefficient, oligomers may accumulate near the leading edge (Fig.
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Figure 4.11: Recovery curves for different contributions of O-actin to the appearances
away from the leading edge (fraction of A2 term of Eq. 4.1). The recov-
ery curves for low percentages of O-actin contribution are similar to the
monomer-only model. The limit of 100% oligomer contribution is the case of
Fig. 4.8. Zero contribution is similar to the monomer-only model (Fig. 4.3)
but includes slowly-diffusing O-actin that does not associate. Parameters:
K = 0.5 s−1, vr = 0.03 µm/s, DO = 0.5 µm2/s, D = 4 µm2/s. Parameter τO
was adjusted to keep the F-, G- and O-actin concentrations similar to those
in Fig. 4C (top left panel). The value of τO was 3.3, 5.7 and 20 s−1 at 0%,
50% and 100% O-actin appearances, respectively.

4.9C). Recent experiments showed higher G-actin concentration at the leading edge

of growth cones, measured by DNAse1 binding [52]. Our work suggests a possible

explanation for this increase, in addition to convective flow [34, 180, 202].

Our model motivates experiments to look for the presence of oligomers and mea-

sure their characteristics, for example τO and DO. These parameters influence the

amount of blurring of the edges at the boundary of the bleached region. This blurring

is hard to detect (see Fig. 4.7B), however, because oligomers are predicted to be a

small fraction of the total actin. Fast acquisition ( 10 ms/frame) SiMS experiments
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Figure 4.12: Calculations based on single molecule speckle statistics to compare with
results in [41]. (A) Analytical results showing the amount of F-actin due to
leading edge (LE) or the basal polymerization, using Eq. 4.13. Here we define
LE polymerization to be the polymerization events due to the first term in
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to Fig. 4B of Ref. [41]. (B) Plot of relative new speckle formation rate vs
distance from LE. This is the rate of speckle appearance, a(x), divided by
the amount of F-actin at each location, F (x), calculated using Eq. 4.13. The
graph is similar to the experimental measurements in Fig. 3B of Ref. [41]
where the value of the new speckle formation rate was around 0.03 s−1. (C)
Disassembly rate (Eq. 4.5) as a function of distance from the leading edge
normalized to the appearance rate, a(x), at x = 0.

could provide some of these details by tracking actual diffusing particles to measure

their lifetime and diffusion coefficient [6].
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4.4 SUPPLEMENTARY MATERIAL

4.4.1 Calculation of the steady state F-actin profile based

on single molecule speckle statistics

To obtain an analytical expression for the F-actin profile based on SiMS data, we

substitute Eqs. 4.1 and 4.2 into 4.3 and 4.5 of the main text to obtain

F (x) =
G∞K

vr

2∑
i=1

2∑
j=1

Fij(x), (4.13)

and when vrτj 6= λi:

Fij(x) =
AiCjτj

1/(vrτj)− 1/λi

(
e−x/λi − e−x/(vrτj)

)
, (4.14)

or if vrτj = λi:

Fij(x) = AiCjτje
−x/(vrτj)x. (4.15)

For both cases when we solve for the total amount of F-actin, we get the same

result, ∫ ∞
0

F (x)dx = G∞K
2∑
i=1

2∑
j=1

AiCjτ
2
j λi. (4.16)

This result demonstrates that the F-actin concentration is directly proportional

to parameter K.

4.4.2 Condition on model parameters to generate positive

G-actin profile.

The G-actin profile can be calculated analytically by substituting Eq. 4.13 into Eq.

4.6 of the main text. By using Eq. 4.16 to calculate G-actin at the leading edge, the

G-actin will go to zero when

G(0)

G∞
= 1− vr

D
K

2∑
i=1

2∑
j=1

AiCjτ
2
j λi. (4.17)

This yields the following inequality that should be satisfied such that G(0) does

not become negative:

D > vrK
2∑
i=1

2∑
j=1

AiCjτ
2
j λi. (4.18)
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4.4.3 Picking speckle lifetimes and initializing steady state

in stochastic simulations

When a G-actin or O-actin subunit associates to become F-actin, its lifetime as F-

actin is picked from the double exponential lifetime distribution of Eq. 4.2, a sum

of “long-life” and “short-life” exponentials. We first pick which of the exponential

distribution to choose from based on the following probabilities.

p(2) =
τ2C2

τ2C2 + τ1C1

, p(1) = 1− p(2). (4.19)

Then we pick the actual lifetime from the respective exponential distribution.

To initialize the simulations, we distribute particles in space according to the

analytically-calculated F-, O- and G-actin distributions. When choosing the lifetime

of an F-actin subunit at distance x from the leading edge in the initial state, we must

be careful to recognize the possible paths this subunit could have taken to arrive at

x. Consider a subunit that converts to F-actin at x whose lifetime belongs to either

the long- or short-lived population (i = 1 or 2). The probability that the subunit will

still exist at x is based on the time it needs to get there:

p(x|i, x′) = e
−x−x

′
vrτi (4.20)

Knowing the distribution of appearances, a(x), we can calculate the probability of

finding a subunit of type i at x:

p(x|i) = Λ

∫ x

0

a(x′)e
−x−x

′
vrτi dx, (4.21)

where Λ is a normalization constant that does not depend on i. Thus we can apply

Bayes theorem to determine the probability that a subunit found at x belongs to the

long-life population:

p(2|x) =
p(x|2)p(2)

p(x|2)p(2) + p(x|1)p(1)
(4.22)

and similarly for p(1|x). During initialization, when a subunit is placed at x, the

above probability was used to determine if the lifetime of the subunit is picked from

the long-life exponential distribution or the short-life distribution. This expression

also gives a way to calculate an effective time constant as a function of position.

τeff (x) = τ2p(2|x) + τ1p(1|x) (4.23)
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Figure 4.13: Stochastic particle simulation maintains steady state initialized according
to analytical expressions for steady state profiles and Eq. 4.22. Example
showing monomer-only model with K = 0.5 s−1, vr = 0.03 µm/s. (A) 100
simulations with an area of 55 µm x 40 µm were started with the system in
steady state. Each system was divided into strips of width 0.25 µm and the
number of particles in the strip was measured every 3 s. The values plotted
are the average measured value for strips at three different positions. Error
bars are the standard deviation among simulations. (B) All of the 0.25 µm
strips from 0 to 5 µm were averaged over time from 0 to 120 s to create a
profile. The size of the error bars are the standard deviation of the average
value sampled every 3 s for 120 s.

The O-actin lifetimes were picked from a single exponential distribution with average

lifetime τO.

We tested that the simulations maintain the initial steady state over time, thus

validating our procedure. Fig. 4.13A shows that the values of local concentrations

do not change significantly, and Fig 4.13B shows that the shape of the concentration

profile is the same over time.
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Chapter 5

Conclusion

The purpose of this research has been to further the study actin dynamics in cells.

To achieve this end I have developed image analysis tools to aid in extracting data

from fluorescent microscopy images, and I have developed a model for interpreting

the data. More specifically, I presented methods used in two programs for improving

data collection from fluorescence microcsopy experiments. In the presentation of

these techniques I analyzed some of the errors associate with extracting data from

images and I described analysis techniques for measuring properties such as: diffusion

coefficients, persistence lengths and growth rates. I also developed a model that

improves the ability to compare results from two different experimental techniques,

SiMS and FRAP. The model showed that there is not enough information to claim

SiMS and FRAP experiments contradict each other. Some questions that were not

explored yet, but should be seen as possible future work are as follows.

The two experiments, SiMS and FRAP, are performed on different organisms.

Each organism could have a different amount of turnover away from the leading edge,

which suggests SiMS microscopy should be performed on B16-F1 cells to test for

similar speckle appearance profiles and speckle lifetimes. Another contribution that

could be important for this analysis is the state of the leading edge during FRAP.

If the cell is protruding or retracting during recovery, it could change the amount of

turnover that occurs. While we have not excluded the fact that the systems behave

differently, we have shown that they are compatible and actually my be capturing

different features of the lamellipodium.

Another type of experiment that could be important would be fast acquisition

speckle movies, so that diffusing particles could be imaged as they diffuse. This
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would be similar to the CP movies in Chapter 3 applied to labeled actin. If oligomers

are present then we should see a slowly diffusing population of actin, and preliminary

results by Naoki Watanabe’s lab suggest this. This would help to identify the type

of speckle appearance events that we have assumed in the model of Chapter 4.

Future modeling work should include refining parameters and conditions. For

example the retrograde flow and speckle lifetimes are considered space invariant, but

there is evidence for variation in these values. The diffusion coefficient was split into

two values, but we expect there to be a range of diffusion coefficients corresponding to

the length of oligomers. Another variation that should be considered is the protrusion

and retraction of the leading edge. Can the same polymerization profile can work for

a moving edge or would patterns form that should be experimentally observable?
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