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Abstract 

Light element impurities in multi-crystalline Si have been investigated with 

Fourier transform infrared spectroscopy. These experiments include defect studies 

in silicon with a high concentration of carbon and also with various concentrations 

of both nitrogen and oxygen. 

A thermally stable VH4 center trapped by carbon was discovered. The vibrational 

properties of this defect have been studied for the case of mixed H and D isotopes 

to establish its structure. The new lines we have found are assigned to the Si-H(D) 

and C-H(D) stretching modes of the defect center. 

We have studied N- and O-related defects in multi-crystalline Si used by industry 

to fabricate solar cells. The N-N center is the dominant N-related defect. However, 

N is also found to be bonded with O in multi-crystalline Si. NN-On centers are 

most likely seen when the oxygen concentration in the sample is high. We have 

also studied the properties of electrically active N-O centers that contain a single 

N atom. These N-O shallow donors are found to be present in multi-crystalline Si 

samples containing oxygen and nitrogen but with a lower concentration than is 

present in oxygen-rich Czochralski-grown Si that contains nitrogen. 
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Chapter 1:   Introduction 

The study of defects in semiconductors has a long history. A large variety of 

impurity atoms are used to control the electrical properties of semiconductors. 

Impurities are also unintentionally introduced at all production stages. Many 

materials have been used for semiconductor devices, among which silicon has 

remained by far the most widely used semiconductor. In this dissertation, I use 

Fourier transform infrared spectroscopy (FTIR) to probe and understand the local 

vibrational modes of light element impurities, such as carbon and nitrogen, in 

multi-crystalline silicon substrates. The investigation of impurity structures and 

impurity concentrations leads to a deeper understanding of the structural, 

chemical, and electronic properties of cast silicon
[1.1]

, thus providing fundamental 

insight into defect engineering for photovoltaic applications. 

In chapter 2 the fundamentals of FTIR are introduced. The FTIR spectrometer 

used throughout my research is discussed. In addition to the FTIR spectrometer, 

the other instruments used in this research are described. This includes the 

description of InSb and HgCdTe detectors, as well as a silicon bolometer. The far-

infrared measurement setup is also explained. Next, the experimental methods for 

detecting vibrational spectra, isotope substitution, and annealing methods used in 

this research are described. And last, solar grade silicon and impurity structures in 

silicon are surveyed
[1.2]

. 

The Si materials typically used to fabricate solar cells often contain high 

concentrations of carbon and hydrogen impurities. One of the more thermally 

stable defects in Si that contains both C and H gives rise to a Si-H vibrational line 
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at 2183.4 cm
-1

. In chapter 3, we show that this center also gives rise to additional 

weak Si-H and C-H lines at 2214.4 and 2826.9 cm
-1

 (4.2K). When D is partially 

substituted for H, rich isotopic splittings of these IR lines are produced. An 

analysis of these data reveals that the 2183.4, 2214.4, and 2826.9 cm
-1

 lines are 

due to a VH4 defect bound to a substitutional C impurity, i.e., a VH3-HC center. 

In chapter 4, nitrogen-related defects in multi-crystalline silicon are investigated. 

Two types are considered: N-N pair centers in the mid IR and N-O centers in the 

far IR. The goal of these experiments is to determine what N-containing defect 

complexes are present in multi-crystalline Si and how these defects depend on the 

impurity content of the sample. Electrically inactive centers are probed via their 

vibrational transitions in the mid-infrared. Electrically active centers are probed 

via their electronic transitions in the far-infrared. 

 

 

 

 

 

 



4 
 

References 

1.1 Ian Thomas Witting, Defect and impurity distributions in traditionally cast 

multicrystalline and cast monocrystalline silicon for solar substrates, Master’s 

Thesis, North Carolina State, Raleigh, NC, 2008. 

1.2 A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 

2nd ed., John Wiley and Sons, Chichester, 2011. 

 

 

 

 

 

 

 

 

 



5 
 

Chapter 2:   Fundamentals 

2.1   FTIR 

The primary instrument that has been used throughout my research is a Bomem 

DA 3.16 Fourier Transform Infrared (FTIR) spectrometer. FTIR is used to obtain 

the infrared absorption spectrum of a solid sample. In this section, both the 

principles of FTIR and the experimental setup of the FTIR spectrometer in our lab 

are introduced. 

2.1.1   Theory – how FTIR works 

In order to measure how a sample absorbs light of different frequencies, 

absorption spectroscopy is used. The most straightforward way of doing this is to 

use a dispersive spectrometer which measures how much light is absorbed after 

passing a monochromatic light beam through a sample. The spectral information is 

obtained by varying the frequency so that the entire spectrum is determined by 

making a measurement of one frequency element at a time, multiplied by the 

number of frequency elements in the spectrum. This can require a long time if the 

frequency range is broad and the resolution is narrow. In addition, the 

monochromator’s slits only allow a small amount of the beam to pass through 

which discards a large portion of the total energy in the beam. 

While the conventional dispersive spectrometer works with several disadvantages 

as described above, there is an alternative solution which finds increasing 

application: by converting the information from the frequency domain to the time 
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domain, where detectors are able to track both frequency and intensity 

information, an improved spectrometer can be constructed. This is the basis of 

FTIR spectroscopy. 

An FTIR spectrometer measures a spectrum by illuminating a Michelson 

interferometer with a broad band light source. The output light passes through a 

sample, is attenuated, and is then received by a detector. This process gives an 

interferogram signal that can be Fourier transformed to give a spectrum. The 

characteristics of a sample we are interested in can be determined by taking the 

ratio of two spectra measured with and without the sample. 

The Michelson interferometer consists of four arms (illustrated in Figure 2.1). 

They include (1) the light source, (2) a stationary mirror, (3) a moving mirror and 

(4) the sample and detector. At the intersection of these four arms is a beamsplitter 

which transmits half of the radiation and reflects half of it. A beam of light is 

generated by the light source and is split into two beams. One of the light beams 

travels a fixed distance while the other travels a variable distance determined by 

the distance from the moving mirror to the beamsplitter. When the light leaves the 

interferometer, it passes through the sample and is focused upon the detector. The 

detector produces an electrical signal proportional to the intensity of light it 

receives. The optical path difference is also recorded at the same time. Thus, a plot 

of detector response versus optical path difference is generated when the moving 

mirror is translated back and forth. One scan is defined by the moving mirror 

translating back and forth once. And the plot of light intensity vs. path length is a 

complete interferogram. 
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The Fourier theorem relates the interferogram with the spectrum. Since any 

waveform can be expressed as the sum of many sine wave components of different 

frequencies and amplitudes, the interferogram can be decoded to sort out the 

intensities and frequencies presented. The mathematical form of the Fourier 

transform is shown in the equations below: 

 

 

Figure 2.1   The layout of the Michelson interferometer[2.1] 
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Here I(x) is the interferogram and B(σ) is the spectrum as a function of frequency 

in wavenumber units. In practice, the scan distance must be finite and only a 

portion of the interferogram is collected. All elements of the interferogram outside 

the region enclosed by the finite scan are discarded. The multiplication of the 

infinite interferogram by a box function has an effect of convoluting the Fourier 

transform of the infinite interferogram with the Fourier transform of a box 

function which is a sinc function. 

Any features narrower than the instrument resolution will have the pattern of the 

transform of the box function, as shown in Figure 2.2. The sidebands could 

interfere with an adjacent peak. A technique called apodization is used to 

minimize sidebands. It multiplies the interferogram by a function designed to 

reduce the truncation effects. 

 

 

 

 

 

 
Figure 2.2   The function sin σ / σ 
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2.1.2   Instrument – FTIR spectrometer in our lab 

In our lab, we have a Bomem DA 3.16 FTIR spectrometer, the optical components 

of which are shown in Figure 2.3. It has two choices of light sources: a silicon 

carbide globar or a quartz halogen lamp. A six-position rotary filter wheel is 

equipped with a metal screen at position 6 that can be used to reduce the intensity 

of light to 50%. An iris is used to control the size of the aperture from 0.5 to 10 

mm. The beamsplitter is mounted at the center of the spectrometer. There are three 

types of beamsplitters: a 10 cm quartz beamsplitter for the visible/UV range, a 10 

cm diameter KBr beamplitter coated with Ge/ZnSe for the 450 ~ 5000 cm
-1

 range, 

and a mylar beamsplitter for the far IR ≤ 450 cm
-1

. 

The spectrometer is controlled by Bomem PCDA software installed on a personal 

computer. The interferogram is saved on the personal computer and the same 

Bomem PCDA software is used to send a command to an interface computer, 

whose task is to perform the Fourier transform. Afterward, a spectrum that has 

been Fourier transformed from the interferogram is generated on the personal 

computer. Bomem GRAMs/32 software and OriginLab software are used for the 

purpose of display and manipulation of spectra. 
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Figure 2.3   The optical configuration of the Bomem DA 3.16 
Fourier Transform Infrared Spectrometer[2.2] 
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2.2   Instrumentation 

2.2.1   Infrared detectors 

The infrared is a segment of the electromagnetic spectrum ranging from the 

microwave to the red end of the visible range. IR absorption is typically measured 

as a function of either wavenumber or wavelength. Wavenumber is defined as the 

number of waves per unit length and is the unit used in this research. The unit of 

wavenumber is cm
-1

, and is called the reciprocal centimeter. The wavenumber unit 

is convenient because wavenumbers are proportional to frequency, as well as the 

energy of the IR light. IR absorption data are shown in the form of a spectrum 

with either the percent transmittance or absorbance as the y-axis and wavenumber 

as the x-axis. 

The IR region is composed of the three subregions shown in Table 2.1. 

 Near IR Mid IR Far IR 

Wavenumber 13,000 – 4,000 cm
-1 

4,000 – 400 cm
-1 

400 – 10 cm
-1 

Table 2.1   The three IR subregions 

Three types of infrared detectors have been used in our experiments to cover the 

mid IR and far IR regions we are interested in. The first is an InSb detector for the 

range 1800 to 8500 cm
-1

. The second is a HgCdTe (MCT) detector for the range 

800 to 8000 cm
-1

. The third is a bolometer for the range from 200 to 2000 cm
-1

. 

Both the InSb and MCT detectors work at liquid nitrogen temperature. The Si 

bolometer works at liquid helium temperature. 
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The InSb detector and MCT detector are PN junction detectors. They are diodes 

with a band gap less than the energy of the infrared photons to be detected. When 

the PN junction is illuminated by photons, electron-hole pairs are generated in the 

depletion region. Therefore, a photocurrent is produced in the external circuit. If 

the device is operated in an open circuit configuration, an external potential will be 

measurable. This is called the photovoltaic mode of operation and the InSb 

detector works in this way. If the device is operated in a short circuit 

configuration, an external photo-current flows and is measurable. This is the 

photoconductive mode of operation. The MCT detector works in this mode. 

The bolometer is a type of thermal detector. By the absorption of radiation, the 

temperature changes; this causes a change in the electrical resistance of the 

sensing element used in the bolometer. The change in the bolometer resistance 

causes a change of the output voltage that can be measured. Our bolometer 

element consists of a diamond absorber that is bonded to a heavily boron-doped 

silicon resistor. The layout of the bolometer is shown in Figure 2.4. 

The bolometer is cooled to 4.2 K to reduce noise. The detector sits behind a filter 

wheel that is also cooled to 4.2 K. There are 4 long pass filters mounted on the 

wheel that can be selected from outside the He cooled unit. These filters are used 

to select the appropriate frequency region to be studied. Narrowing the IR 

frequency band pass with a cold filter improves the signal to noise ratio of the 

measurement. 
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2.2.2   Shallow levels in compensated samples 

In the far IR range, absorbance spectra due to the electronic transitions of shallow 

donors and acceptors can be measured. The n-type doping of a semiconductor 

(shown in Figure 2.5) introduces a series of energy levels below the conduction 

band edge. These states are called donor levels. They are illustrated in Figure 2.6. 

Figure 2.4   A 4.2 K bolometer detector[2.3] 
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When the ground states of the donors are occupied, it is possible to absorb 

photons, and to promote these electrons to the excited states of the donors. The 

same effect can occur for holes in p-type materials, using IR light to promote holes 

from the ground state of the acceptor to its excited states. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5   The n-type doping of silicon by the addition of a substitutional P 
impurity[2.4]. The delocalized electron is shown by the shaded region. 
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Figure 2.6(a)   Electronic transitions of acceptor impurities in compensated 
p-type Si without any supplementary light illumination. A hole is promoted 
from the ground state to its excited states. Empty electron states are not 
seen. 

Figure 2.6(b)   Electronic transitions of donor and acceptor impurities in p-
type Si seen with supplementary illumination with visible light. Electron-
hole pairs are generated. These electrons and holes then fill the donor and 
acceptor ground state levels. Infrared transitions from the donor and 
acceptor ground states to the shallow excited states can then be seen 
under supplementary white-light illumination. 
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The absorption spectra of phosphorus and boron in silicon are shown in Figures 

2.7(a) and (b) respectively.
[2.5]

 In Figure 2.7(b) the weak Si(P) lines are labeled 

―P‖ in parentheses. The boron lines are labeled with numbers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7(a)   Absorption spectrum of phosphorus donors in neutron 
transmutation doped silicon.[2.5] 
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Compensated samples that contain both shallow donors and acceptors present a 

special problem. Only the dominant impurity type is occupied by electrons or 

holes in darkness. To see both n- and p-type impurities one can excite the sample 

by light so electron-hole pairs are generated. These electrons and holes then refill 

donor and acceptor levels as is illustrated in Figure 2.6. 

Our far IR experimental setup is shown in Figure 2.8. The IR beam from the 

globar first passes through a Si filter at room temperature to remove light with 

energy above the band gap of the Si sample held at 4.2 K. A spectrum is first 

measured without additional illumination. A second spectrum is then measured 

Figure 2.7(b)   Absorption spectrum of boron acceptors in silicon. There is 
also a small concentration of phosphorus in this sample. The IR beam 
contains above band gap light which populates the P impurities with 
electrons, even in p-type material.[2.5] 
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while the sample is illuminated from the side with visible light to create electrons 

and holes that can be trapped by impurities in the sample. The difference of these 

spectra shows the transitions made possible by the further addition of electrons 

and holes. For example, this technique makes possible the observation of donor 

impurities in p-type samples. The intensity of the visible light used for side 

illumination is increased until no further change in the absorption due to shallow 

impurities is seen. 

 

 

 

 

 

 

 

 

 

Figure 2.8   The far IR experimental setup used to observe the spectra of 
shallow impurities in compensated samples. 
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2.3   Experimental methods 

2.3.1   Vibrational spectroscopy of light element impurities 

The atoms in molecules and solids have characteristic vibrational properties. 

Similar to a classical mechanical mass-spring system, the masses of the moving 

atoms and the strengths of the bonds connecting them determine a characteristic 

vibrational energy. A vibrational spectrum shows this vibrational energy in a 

spectral region, usually the infrared. This spectrum can be used to help determine 

the structure of a defect molecule or to probe its concentration. 

Vibrational spectra are obtained by measuring infrared absorption or Raman 

scattering spectra. Different modes of vibration are active for the different 

experimental methods. A change in dipole moment is necessary for a vibrational 

mode to appear in an infrared spectrum, and a change in the molecular 

polarizability is necessary for a vibrational mode to appear in a Raman spectrum. 

When an atom in a crystal is replaced by an impurity atom, one or more new 

vibrational modes may appear. A special case occurs when the impurity is lighter 

than the host atoms. In this case, the vibrational frequency will usually be above 

the phonon frequency range, and this vibrational mode of the impurity is referred 

to as a local vibrational mode (LVM) because only the light impurity and its first 

neighbors participate appreciably. 
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2.3.2   Isotopic substitutions 

To identify defect atoms and their neighbors, isotopic substitutions of the atoms in 

the defect are helpful. The vibrational frequency shifts if the mass of the light 

impurity atom is changed. 

The diatomic molecule is a useful model for understanding the vibrational 

properties of a light-element impurity in a solid. Assume a light atom of mass m is 

bound to a heavier atom of mass M. The vibrational frequency is then 

 

One sees that ω is sensitive to both the mass of the light impurity and also the 

mass of its neighbor. In a solid, this equation is modified to be 

 

The factor χ accounts for the fact that the neighbor atom is bonded to the solid. 

In the case the defect complex might contain hydrogen, when hydrogen is replaced 

by the heavier isotope deuterium, the vibrational frequency will be lowered by a 

factor near 1/√2. In this case, it becomes unambiguous to assert that the complex is 

indeed hydrogen-related. If that H atom is attached to a Si neighbor, then 

frequency shifts due to the three naturally abundant isotopes of Si are also seen 

[
28

Si(92%), 
29

Si(5%), 
30

Si(3%)]. 
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2.4   Silicon 

Silicon is the second most abundant element in weight of the earth’s crust. It is 

also the most widely used semiconductor. The silicon crystal has a diamond cubic 

structure which is shown in Figure 2.9. The lattice is composed of two 

interpenetrating face-centered-cubic lattices displaced by ¼ <111>, with each 

atom surrounded by four nearest neighbors. Different crystal growth methods will 

influence the properties of the silicon crystal by introducing different types of 

impurities and defects. In this section, the main manufacturing processes for 

silicon of different purity levels are surveyed. 

 

 

 

 

Metallurgical grade silicon usually has a silicon content > 95%. It is also called 

silicon metal (shown in Figure 2.10). An electric arc furnace filled with quartz and 

carbon materials is heated to over 1,900°C. The carbon and silica undergo the 

chemical reaction: 

SiO2(s) + 2 C(s) → Si(l) + 2 CO(g) 

Figure 2.9   Silicon lattice 
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The resulting liquid silicon is trapped in the bottom of the furnace, which is then 

cooled. The main impurities are iron, aluminium, calcium, titanium, carbon and 

oxygen. Dopant impurities like phosphorus and boron are uncontrolled. 

 

 

 

 

 

 

Another type of silicon with greater purity is polycrystalline silicon (shown in 

Figure 2.11) with impurities in the ppb(a)—ppt(a) range. The most popular 

process for manufacturing polycrystalline silicon is the Siemens process. In the 

Siemens process, metallurgical grade silicon is reacted with hydrochloric acid. The 

product obtained is trichlorosilane, which is purified through fractional distillation. 

High-purity silicon rods are then exposed to trichlorosilane. The thermal 

decomposition of trichlorosilane at 1100°C deposits additional silicon onto the 

rods: 

2 SiHCl3 → Si + 2 HCl + SiCl4 

Figure 2.10   Silicon metal[2.6] 
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Mono-crystalline silicon is a form of silicon in which the crystal lattice of the 

entire solid is continuous. The two main processes used to grow mono-crystalline 

silicon are the Czochralski method and the floating zone method. In the 

Czochralski process (shown in Figures 2.12(a) and (b)), the polysilicon is melted 

in a quartz crucible with impurities doped intentionally into the melt. A seed 

crystal is dipped into the molten silicon. The seed crystal is slowly pulled upwards 

and a cylindrical ingot is extracted from the melt. 

 

Figure 2.11   Polycrystalline silicon 
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Figure 2.12(b)   The Czochralski process for 
silicon crystal growth[2.8] 

Figure 2.12(a)   The Czochralski process for growing single 
crystal ingots of silicon[2.7] 
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In the floating zone process (shown in Figure 2.13), a seed crystal is used to start 

the growth of a crystal ingot from one end of a polycrystalline silicon rod. When 

the rod is passed through an RF heating coil, a localized molten zone is created. 

The crystal ingot starts to grow from the molten zone and the impurities remain 

preferentially in the molten zone. 

 

 

 

 

 

 

 

 

 

 

Figure 2.13   The float zone process[2.9] 
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Multi-crystalline silicon is an alternative to mono-crystalline silicon. It is widely 

used in the photovoltaic industry. A silicon nitride (Si3N4)-coated quartz crucible 

is used to melt the silicon raw material and to subsequently solidify the multi-

crystalline ingot. The purpose of the Si3N4 coating is to prevent the adhesion of the 

silicon ingot to the crucible. By reducing the temperature below the melting 

temperature of silicon, crystallization starts at the bottom of the crucible. The 

crystallization front moves in a vertical direction upwards through the crucible. 

This is called directional solidification. The multi-crystalline silicon grown by the 

directional solidification method shows similar defect structures. The material 

quality of multi-crystalline silicon is lower than that of mono-crystalline silicon 

due to the presence of grain boundries and dislocations (see Figures 2.14(a) and 

(b)). The advantage of multi-crystalline silicon over mono-crystalline silicon is an 

approximately 4 times greater solidification rate and therefore a cheaper 

manufacturing cost. The inherent rectangular or square wafer shape, compared 

with round mono-crystalline wafers, also provides a better utilization of the wafer 

area. 
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Figure 2.14(a)   A multi-crystalline silicon wafer. 
Grains are a few mm to 1 cm in size.[2.10] 

Figure 2.14(b)   A multi-crystalline ingot of silicon[2.10] 
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Several companies are experimenting with cast silicon that is nearly single crystal, 

called ―mono-cast‖. For mono-cast Si, the melt is seeded from the bottom to 

produce an ingot that is mostly crystalline. Mono-cast Si still contains more 

defects than Si grown by the Czochralski or floating-zone methods, primarily as 

dislocations. It is not yet clear that the advantages of mono-cast Si will outweigh 

the increased difficulty in growing nearly single-crystal ingots or its increased cost. 

Most silicon for photovoltaics applications is grown from electronics grade 

polycrystalline starting material. There is some interest in using cheaper, lower 

quality starting materials. Si crystals and ingots can be produced from up-graded 

metallurgical (UMG) Si. In this case, the concentrations of dopants and harmful 

metal impurities are not as well controlled. It remains to be seen if processes can 

be developed for the fabrication of solar-cells with competitive efficiencies from 

UMG Si. 

Other growth methods are possible, for example, the growth of Si ribbons that do 

not have to be sawn into wafers. At this point in time, ribbon-growth is not 

competitive with bulk growth in the solar-cell industry. 
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2.5   Defect structures in silicon 

Defects break the periodic arrangement of the atoms in silicon crystals. The 

electrical and mechanical properties of silicon can be changed by defects. Thus it 

is important to understand defects and to implement defect engineering strategies 

to improve the performance of silicon. 

Defects can be generally classified into groups by the dimension of their existence. 

There are point defects, dislocations, grain boundaries and precipitates. 

Point defects consist of a few incorrect, missing, or additional atoms in the crystal 

(see Figure 2.15). When an atom on a lattice site is absent, a vacancy defect is 

formed. A substitutional impurity occurs when an atom in the lattice is replaced by 

an impurity atom. Substitutional impurities are very important in semiconductors 

because they can be used to control the electrical conductivity. Group V elements 

(such as P) when doped into silicon give rise to an excess of electrons while group 

III elements (such as B) give rise to an excess of holes. An additional host atom or 

an impurity atom can sit between the host atoms and is called an interstitial defect. 
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Figure 2.15   From top to bottom: illustrations show a vacancy, 
a substitutional defect, and an interstitial defect.[2.11] 
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Dislocations are line defects in the crystal (see Figure 2.16). A dislocation can be 

illustrated by inserting a half piece of paper in a stack of paper. The edge of the 

half sheet of paper is the dislocation. 

 

 

 

 

 

There are also three dimensional volumetric defects. Grain boundaries extend over 

an area in the bulk (see Figure 2.17). They originate from the mismatch between 

neighbor areas of different crystal orientation. Precipitates start to grow with 

nuclei of defects in a silicon crystal when impurity concentrations are larger than 

their solubility. 

 

 

 

Figure 2.16   A dislocation[2.11] 

Figure 2.17   Grain boundaries[2.11] 
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The defects containing light elements that are of interest in this dissertation are H, 

B, C, N and O. B and C are substitutional impurities. H, N and O are interstitial 

impurities. H can take a variety of configurations, sometimes with H at a bond-

center, sometimes at a tetrahedral interstitial site, and sometimes as an H2 

molecule at a tetrahedral interstitial site. Interstitial O interrupts a Si-Si bond and 

sits at a bond center (see Figure 2.18). N defects involve a split interstitial 

configuration where N shares a lattice site with a Si host atom (see Figure 2.19). 

 

 

 

 

 

 

 

 

 

 

Figure 2.18   Model for the interstitial 
configuration of oxygen in silicon [2.12] 

Figure 2.19   Model for the split interstitial configuration [2.13] 
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Chapter 3:   VH4 center trapped by C 
in Si 

3.1   Introduction 

Hydrogen is commonly introduced into Si solar cells to passivate defects in the Si 

bulk and improve solar-cell performance.
[3.1-3.5]

 When H is introduced into multi-

crystalline Si (mc-Si) with a high carbon content that is often used to fabricate 

solar cells, the dominant defects seen by IR spectroscopy have hydrogen in 

configurations in which H is trapped by C.
[3.6]

 These C-H centers provide a 

reservoir of H and play a role similar to that of H2 molecules in high-purity Si. 

One of the more thermally stable defects found in Si that contains both C and H is 

a center with a vibrational line at 2183.4 cm
-1

. While this vibrational line has been 

observed previously,
[3.6-3.8]

 it has not been assigned to a specific defect structure. In 

the present chapter, vibrational spectroscopy and theory show unambiguously that 

the 2183.4 cm
-1

 line is due to a VH4 center trapped by a carbon impurity in Si. 

Previous results for the defects that are formed by C and H in single-crystal Si 

provide a foundation for our studies.
[3.9-3.13]

 A defect structure known as H2
*
 that 

contains one H atom at a bond-centered site (Hbc) and a second H atom at an 

antibonding site (Hab), along the same trigonal axis, can be trapped by a 

substitutional C impurity to form H2
*
(C) defects.

[3.9-3.12]
 The vibrational properties 

of the two possible H2
*
(C) configurations have been studied, and defect structures 

have been proposed (see Figure 3.1). A Si-H vibrational mode at 2210 cm
-1

 and a 

C-H mode at 2688 cm
-1

 have been assigned to the SiHbc-CHab structure.
[3.6, 3.11, 3.12]
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A Si-H vibrational mode at 1922 cm
-1

 and a C-H mode at 2752 cm
-1

 have been 

assigned to the CHbc-SiHab structure.
[3.10-3.12] 

 

 

 

 

 

 

 

 

 

In other experiments, electron irradiation damage was used to produce pairs of 

nearest-neighbor substitutional C atoms. When H interacts with these Cs-Cs pairs, 

a (CH)2 defect is formed with a CH-HC structure.
[3.13]

 The (CH)2 center has a C-H 

mode at 2967 cm
-1

 that is also shown in Figure 3.1. It has been found that for Si 

with a C concentration [C] > 5 x 10
17

 cm
-3

, a substantial concentration of 

Figure 3.1   IR absorption spectrum (4.2 K) of a Si sample that had been 
hydrogenated by annealing in an H2 ambient at 1250°C followed by a rapid 
quench to room temperature. The sample was made from cast, mc-Si with 
a carbon concentration of [C] = 8.8×1017 cm-3. The inset shows the 
structures of H2

* defects trapped by substitutional carbon in Si. The 2210 
and 2688 cm-1 lines have been assigned to the SiHbcCHab structure shown 
on the left[3.6, 3.11, 3.12]. The 1922 and 2752 cm-1 lines have been assigned to 
the CHbcSiHab structure on the right[3.10-3.12]. 
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substitutional C pairs is formed in the absence of radiation damage and that these 

C pairs provide a thermally stable trap for H.
[3.6] 

The implantation of protons into Si produces a number of different centers in 

which H decorates the dangling bonds of vacancy centers that were introduced by 

the bombarding protons.
[3.14]

 Similar defects are produced by the electron 

irradiation of Si that contains H.
[3.15, 3.16]

 Of particular interest here is a VH4 center 

in which H atoms terminate the four dangling bonds of a Si vacancy. The VH4 

defect has a well-known vibrational line
[3.14]

 at 2223 cm
-1

 (4.2 K) that can also be 

produced in hydrogenated Si by thermal annealing without any radiation 

damage.
[3.6, 3.7, 3.17]

 The partial substitution of D for H produces an isotopic 

structure in the vibrational spectrum of VH4 that reveals its composition and 

symmetry.
[3.14, 3.17]

 Similarly, in this chapter the partial substitution of D for H in Si 

containing a high concentration of C is shown to give a rich isotopic structure that 

helps us to determine the microscopic structure of the defect giving rise to the 

2183.4 cm
-1

 line. 

Finally, a few of the IR lines to be studied here were observed in a previous study 

by Pajot et al.
[3.8]

 of Si crystals grown in H2 or D2.  While these lines were not 

attributed to specific defects, the existence of these weak IR lines, tabulated by 

Pajot et al., proves useful here. 

3.2   Experimental methods 

Si samples containing an especially high concentration of carbon impurities were 

chosen for our experiments. These samples were cut from bulk, cast-Si material to 
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have dimensions of approximately 8×6×10 mm
3
 and were multi-crystalline with 

grain sizes from a few millimeters to one centimeter. 

In order to investigate the interaction of hydrogen with C in mc-Si, samples were 

annealed at 1250°C in sealed ampoules containing H2 gas or mixtures of H2 and 

D2 (2/3 atm at room temperature) followed by a rapid quench in water to room 

temperature.
[3.6, 3.18]

 Any subsequent anneals were performed in a conventional 

tube furnace under flowing He. These anneals were also terminated by a rapid 

quench. 

IR spectra were measured with a Bomem DA3 Fourier transform IR spectrometer. 

An InSb detector (77K) was used for measurements of H-stretching modes. A Si 

bolometer (4.2K) was used to characterize the concentration of carbon. For IR 

measurements of H stretching modes, samples were cooled to near 4.2K with a 

Helitran, continuous-flow cryostat. 

To characterize the concentration of carbon, the IR line at 607 cm
-1

 assigned to 

substitutional C was measured at room temperature.
[3.19]

 The mc-Si samples used 

in the experiments reported here had a carbon concentration of [C] = 8.8×10
17

 cm
-

3
. Reference samples for our infrared spectra were cut from Si grown by the 

floating zone method and had a carbon concentration of [C] = 0.2×10
17

 cm
-3

. 

3.3   Annealing behavior of IR spectra 

Figure 3.2 shows the evolution upon annealing of the defects in a mc-Si:C sample 

into which H had been introduced. [The vibrational line at 2967 cm
-1

 due to the 
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(CH)2 center, shown in Figure 3.1, is thermally stable throughout the annealing 

sequence
[3.6]

.] The vibrational lines due to H2
*
(C) centers (1922, 2210, and 2752 

cm
-1

) begin to disappear at 350 ºC while the 2223 cm
-1

 IR line due to VH4 grows 

in. At 550 ºC, the 2223 cm
-1

 line due to VH4 disappears while a Si-H mode at 

2183.4 cm
-1

 grows in along with an additional line at 2826.9 cm
-1

 in the C-H 

stretching range. We have found that the 2826.9 cm
-1

 line shifts to 2819.3 cm
-1

 in a 

Si sample containing the 
13

C isotope, confirming its assignment to a C-related 

vibrational mode.
[3.20] 

The 2826.9 cm
-1

 line has the same annealing behavior as the Si-H mode at 2183.4 

cm
-1

, suggesting that both of these IR lines are due to an unknown defect structure 

in Si that contains both C and H. 
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Figure 3.2   IR spectra (4.2 K) of a mc-Si sample into which H had been 
introduced by an anneal at 1250 °C in an H2 ambient followed by a rapid 
quench to room temperature. This sample was annealed sequentially for 
30 min at the temperatures: (a) as grown, (b) 100 °C, (c) 200 °C, (d) 250 °C, 
(e) 300 °C, (f) 350 °C, (g) 400 °C, (h) 450 °C, (i) 500 °C, (j) 550 °C, (k) 600 °C, 
(l) 650 °C, (m) 700 °C, (n) 750 °C and (o) 800 °C. 
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3.4   A VH4 center trapped by substitutional carbon in Si 

3.4.1   IR absorption spectra 

Samples of multi-crystalline Si were prepared that contained different relative 

concentrations of H and D for our experiments. The relative concentrations of H 

and D in a sample could be estimated independently by examining the relative 

intensities of the IR lines due to the VH4 complex and its isotopic siblings VH4-

nDn. Figure 3.3 shows that the VH4 complex with its IR line at 2223 cm
-1

 is 

dominant following an anneal at 500 °C. Figure 3.3 shows spectra in the frequency 

range where VH4-nDn lines appear for our H- and D-containing samples following 

an annealing at 500 °C. The assignments of the IR lines, made originally by Bech 

Nielsen et al.
[3.14]

, show that these samples contain (a) only H, (b) H > D, (c) H ≈ 

D, and (d) D > H. 

Spectra for mc-Si:C samples that contain H [spectrum (i)] or mixtures of H and D 

[spectra (ii) and (iii)] are shown in Figure 3.4. These samples had been annealed at 

550 °C to produce the 2183.4 and 2826.9 cm
-1

 lines and their isotopic siblings. 

The relative concentrations of H and D in these samples were determined 

independently by examining the relative intensities of the isotopically shifted lines 

of the HD
*
(C) centers that were studied prior to any post-hydrogenation annealing 

treatments and also from the relative intensities of the VH4-nDn center shown in 

Figure 3.3.
[3.21] 
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Figure 3.3   IR spectra (4.2 K, 0.3 cm-1 resolution) of mc-Si samples into 
which H (or H+D) had been introduced by an anneal at 1250 °C in an H2 (or 
H2 + D2) ambient followed by a rapid quench to room temperature. These 
samples were subsequently annealed at 500 °C for 30 min to produce the 
hydrogen centers of interest. Spectrum (a) is for a sample that contained H 
alone. Spectrum (b) is for a sample that contained H+D with H>D. 
Spectrum (c) is for a sample that contained H+D with H=D. Spectrum (d) is 
for a sample that contained H+D with H<D. 
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Figure 3.4   IR spectra (4.2 K, 0.3 cm-1 resolution) of mc-Si samples into 
which H (or H+D) had been introduced by an anneal at 1250 °C in an H2 (or 
H2 + D2) ambient followed by a rapid quench to room temperature. The H 
and D content of these samples were determined in Figure 3.3. These 
samples were subsequently annealed at 550 °C for 30 min to produce the 
hydrogen centers of interest. Spectrum (i) is for a sample that contained H 
alone. Spectrum (ii) is for a sample that contained H+D with H>D. Spectrum 
(iii) is for a sample that contained H+D with H<D. (a) shows the Si-H 
stretching region. The Si-H lines are labeled by their VH3-nDn-HC 
assignments. Each of the Si-H lines is split into a closely spaced doublet. The 
component of the doublet at lower frequency is for the center containing 
C-H. The component at higher frequency is for the center containing C-D. 
(b) shows the C-H stretching region. The C-H components are labeled by the 
number, n, of Si-D bonds in the VH3-nDn-HC center. 
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Figure 3.5   An expansion of the spectra shown in Figure 3.4 that 
reveals the splittings of the Si-H stretching modes in the frequency 
range 2182 to 2188 cm-1 for samples with H>D and H<D. 

Spectra (ii) and (iii) in Figure 3.4(a) and (b) for samples containing both H and D 

show a rich isotopic structure. The Si-H line at 2183.4 cm
-1

 is split into several 

components, each of which has a doublet structure (Figure 3.5) that is spaced by 

approximately 0.4 cm
-1

. The C-H line at 2826.9 cm
-1

 is split into four components. 

Furthermore, a closer examination of spectrum (i) in Figure 3.4(a) for the sample 

containing H alone shows a weak line at 2214.6 cm
-1

 seen also by Pajot et al.
[3.22]

 

All but one of the IR lines in Figure 3.4 show the same behavior upon annealing, 

suggesting that they are isotopic siblings of a common defect structure. The one 

line that does not show the same behavior as the others lies at 2211 cm
-1

. The 2211 

cm
-1

 line has been assigned previously to the (CD)2 center
[3.13]

 which is the 

isotopic partner of the (CH)2 defect that gives rise to the 2967 cm
-1

 line shown in 

Figure 3.1. The frequencies of the IR lines seen in Figure 3.4 are listed in Table 

3.1. 
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Table 3.1   Measured and predicted vibrational frequencies of Si-H and C-
H stretching modes of the VH3-HC center in Si and related centers that 
result from the partial substitution of D for H. 

 

 

 

 

 

 

 

The complicated vibrational structure seen for the spectra of the 2183.4, 2214.6, 

and 2826.9 cm
-1

 lines and their isotopic siblings that is produced by the partial 

substitution of D for H is not consistent with a defect structure that contains just 

two H atoms. The annealing behavior of the 2183.4 cm
-1

 line suggests another 

possible assignment. Figure 3.6(a) shows isochronal annealing data for the 2223 

cm
-1

 line assigned to VH4 for a Si sample grown by the floating zone method. 

Figure 3.6(b) shows isochronal annealing data for the 2223 and 2183.4 cm
-1

 lines 

for a mc-Si sample with a carbon concentration of [C] = 8.8×10
17

 cm
-3

. These data 

show that the 2223 cm
-1

 line disappears at a lower annealing temperature in mc-Si 

with higher carbon content than in FZ Si with much lower carbon content. These 

annealing results suggest an interaction between VH4 and C impurities in Si. 
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Figure 3.6   The isochronal (30 min) annealing dependence of the 
integrated intensities of the IR lines at 2223 and 2183.4 cm-1. These 
hydrogen centers were produced by a thermal treatment (1250 °C, 1 
hour) in an H2 ambient. (a) is for a Si sample grown by the floating-zone 
method and with a carbon concentration of [C] = 0.2×1017 cm-3. (b) is for a 
cast, mc-Si sample with a carbon concentration of [C] = 8.8×1017 cm-3. 

 

 

 

 

 

 

 

 

 

3.4.2   Theory 

Our experiments suggest a VH4 center trapped by C (i.e., a VH3-HC center) as a 

candidate for the 2183.4, 2214.6, and 2826.9 cm
-1

 lines. Our collaborator, Prof. W. 

B. Fowler, has performed a theoretical analysis within this model, focusing on the 

shift of the 2214.6 cm
-1

 line to 2206.1 cm
-1

, and to 2197.1 cm
-1

 observed as Si-H 

bonds are replaced by Si-D. A model was constructed that includes bond-bond 

coupling and the anharmonicity of the modes.
[3.20]
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Several theoretical approaches were used to study these defects. First-principles 

calculations using SIESTA
[3.23]

 and CRYSTAL06
[3.24]

 have been carried out on 

this defect and its isotopes to predict equilibrium configurations and vibrational 

frequencies. The vibrational frequencies determined from first-principles 

calculations agree only qualitatively with experiment because of anharmonic 

corrections. Peng at al. used these first-principles results to determine the 

magnitude of the Si-H, bond-bond, coupling constants. A model was then 

constructed to explain the vibrational properties of the VH3-HC center that 

included two stretch force constants, two coupling force constants, and 

anhamonicity. The predictions resulting from a fit of this model to our data are 

shown in Table 3.1. 

As can be seen from the results in Table 3.1, the positions of the Si-H stretching 

modes and their shifts for centers with Si-H bonds partially substituted by Si-D are 

reproduced by Fowler's model with near cm
-1

 accuracy.
[3.25]

 The relaxed structure 

for the VH3-HC center is shown in Figure 3.7
[3.26]

. 
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Figure 3.7   The structure (Ref. 26) of the VH3-CH center predicted by 
CRYSTAL06 (Ref. 24).  The C relaxes away from the vacancy by 0.29 Å, and 
each Si relaxes away by 0.18 Å.  An H attached to Si is 1.83 Å from another 
H attached to Si, and it is 2.25 Å  from the H attached to C. 

 

 

 

 

 

 

 

 

The doublet structure of the Si-H modes is explained by the small shift in 

frequency that occurs when a C-H bond is substituted by C-D for a particular 

isotopic variant of the VH3-HC center. Our results show the greater effect of 

substituting Si-D for Si-H than occurs for substituting C-D for C-H. This occurs 

primarily because the Si-H modes lie closer in frequency and interact more 

strongly than the Si-H and C-H modes. Furthermore, the relaxation of the C atom 

away from the vacancy that is found by theory (Figure 3.7) reduces the Si-H and 

C-H coupling because of the greater spatial separation of the H atoms. 
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Small upward shifts are seen in our spectra [Figure 3.4(b)] for the C-H line of the 

VH3-nDn-HC centers as n increases from 0 to 3 to give rise to 4 closely spaced C-H 

lines. This C-H line structure provides further strong support for our VH3-HC 

assignment. However, these small shifts (~0.7 cm
-1

) are not predicted by Fowler's 

model calculations and may arise from anharmonic coupling effects that are not 

included in the theory. 

In addition to the Si-H and C-H lines that have been observed in our experiments 

for the VH3-HC center and its isotopic siblings, the existence of corresponding Si-

D and C-D stretching modes is anticipated. However, we have searched for these 

vibrational lines in our spectra without success. Fortunately, two of these lines 

were observed by Pajot et al.
[3.8]

 in their study of silicon crystals grown in H2 or 

D2. A search of their table of H and D lines not attributed to specific defect 

structures reveals the Si-D and C-D modes of the VD3-DC structure that 

correspond to the 2183.4, 2214.6 and 2826.9 cm
-1

 lines of VH3-HC. The positions 

of the D-shifted lines for the 2183.4 and 2826.9 cm
-1

 lines are at 1587.8 and 

2105.1 cm
-1

. 
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3.5   Conclusion 

We have studied the interaction of H with C in mc-Si. In addition to the IR lines 

assigned previously to H2
*
(C) and (CH)2 centers,

[9-11]
 vibrational lines at 2183.4 

and 2826.9 cm
-1

 are produced when a hydrogenated sample is annealed near 

550°C. 

Our spectroscopic results reveal that the 2183.4 and 2826.9 cm
-1

 lines give rise to 

a complicated line structure when D is partially substituted for H. Furthermore, a 

weak line at 2214.6 cm
-1

 was found. The vibrational line structures we have 

observed are too complicated to be consistent with a defect containing only two H 

atoms. 

Theory shows that a VH3-HC center explains the rich vibrational spectra that are 

seen when D is partially substituted for H. The splitting of the defect’s Si-H modes 

is explained well by a model that accounts for the coupling of the Si-H bonds. The 

Si-H lines are also split into closely spaced doublets. Theory shows that these 

small splittings occur when a C-D bond is substituted for C-H in a particular 

isotopic variant of the VH3-HC center. 

The C-H line of the VH3-HC center shifts by a few tenths of a cm
-1

 to higher 

frequency when Si-D bonds are substituted for Si-H. There are four components, a 

finding that provides further strong support for our assignment of the 2183.4, 

2214.6, and 2826.9 cm
-1

 lines to the Si-H and C-H stretching modes of a VH3-HC 

center. 
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Our experimental results and their analysis by Fowler and coworkers establish that 

one of the more thermally stable hydrogen-related centers in silicon containing a 

high concentration of carbon is a VH4 center trapped by a carbon impurity. 
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3.22 In fact, the theoretical model for the vibrational properties of the VH3-HC 

center predicted the existence of the 2214.6 cm
-1

 line which was subsequently 

found in our IR spectra. 

3.23 P. Ordejón, E. Artacho, and J.M. Soler, Phys. Rev. B 53, 10 441 (1996);D. 

Sánchez-Portal, P. Ordejón, E. Artacho, and J.M. Soler, Int. J. Quantum Chem. 

65, 453 (1997). 
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3.24 R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. 

Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, M. 

Llunell, Crystal06 User’s Manual, University of Torino, Torino, 2006. 

3.25 We also note the qualitative similarity of the Si-H modes predicted for the 

VH3-HC center to the vibrational properties of the isolated VH3 center that has 

the same symmetry and its isotopic siblings (Ref. 12).  The Si-H lines of 

isolated VH3, however, are not split into closely spaced doublets. 

3.26 P. Ugliengo et al., Z. Kristallogr. 207, 9 (1993); P. Ugliengo, ―MOLDRAW: A 

program to display and manipulate molecular and crystal structures,‖ Torino, 

2006, available on the web at http.//www.moldraw.unito.it. 
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Chapter 4:   FTIR Studies of N in Si 

4.1   Introduction 

When silicon wafers for microelectronics applications are manufactured, nitrogen 

is sometimes intentionally added to control oxygen precipitation in Czochralski 

(CZ) silicon, to harden the silicon, and to affect the concentrations of native 

vacancies and interstitials
[4.1]

. Nitrogen is also present in multi-crystalline silicon. 

Nitrogen dissolves into multi-crystalline silicon from the quartz crucible, which is 

lined with silicon nitride to prevent the adhesion of silicon to the crucible wall. 

Several N-related complexes have been reported in CZ silicon doped with 

nitrogen. The defects seen in the mid infrared range are N-N pairs and N-N pairs 

decorated by additional oxygen atoms. Another family of defects is the set of 

electrically active N-O-related shallow donors with a single nitrogen atom. These 

N-O centers can also be decorated by additional O atoms. 

Multi-crystalline silicon has been found by SIMS measurements made by our 

collaborators at MEMC Electronic Materials to have a concentration of nitrogen 

up to 8×10
15

 cm
-3

. This N concentration is approximately 4 times larger than is 

present in CZ Si where N has been deliberately introduced. Furthermore, SiN 

inclusions are also seen in mc-Si. 

It is not known what N-containing point defects are present in mc-Si that contains 

an unusually large concentration of N or if this N interacts with other impurities 

also present in mc-Si. Addressing these questions are the goal of our work. What 
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N-centers are present in mc-Si and with what concentration? How does N interact 

with O and C that are also present in the mc-Si sample? Are any of these defect 

electrically active, and if so, with what concentration? This basic knowledge is 

intended to help our collaborators in the solar cell industry understand the defect 

properties of mc-Si materials that are widely used to fabricate solar cells. 

4.2   Survey of nitrogen centers 

Nitrogen in silicon was first studied in the 1950's. Kaiser and Thurmond reported 

that liquid silicon exposed to gaseous N2 during crystal growth by the floating 

zone method may grow Si3N4 under certain conditions.
[4.2]

 

Stein measured the infrared absorption of local vibrational modes due to N for Si 

samples that had been implanted with the nitrogen isotopes (
14

N, 
15

N) and also 

combinations of these isotopes. These results revealed that pairs of nitrogen atoms 

exist in silicon.
[4.3]

 Two LVM absorption lines with IR frequencies (room 

temperature) of 963 cm
-1

 and 766 cm
-1

 were identified. 

The structure of this nitrogen pair defect was subsequently determined by 

channeling, infrared local vibrational mode spectroscopy, and ab initio local 

density functional theory.
[4.4]

 The structure of the nitrogen pair in the silicon lattice 

is shown in Figure 4.1. This structure consists of two N split-interstitial defects 

aligned in opposite directions. For the two IR active modes at 766 and 963 cm
-1

, 

the two nitrogen atoms are dynamically coupled and move in the same direction, 

along the [001] or the [110] direction, respectively. The motions of the atoms that 

give these lines are shown in Figure 4.2(a) and Figure 4.2(b). 



58 
 

Figure 4.1   The structure of the N-N pair in the silicon lattice[4.5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2(b)   The 967 cm-1 (77K) N-N asymmetric 
stretching mode along the [110] direction[4.6] 

Figure 4.2(a)   The 770 cm-1 (77K) N-N asymmetric 
stretching mode along the[001] direction[4.6] 
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Figure 4.3   A comparison between FZ and CZ samples of correlation 
plots, IR absorption coefficient at 963 cm-1 for the N-N pair center vs. 
the nitrogen concentration determined independently.[4.7] 

In oxygen-free silicon grown by the floating-zone (FZ) method, the nitrogen di-

interstitial pair is the dominant nitrogen center that exists. Itoh et al. used the 

absorption coefficient of the N-pair line at 963 cm
-1

 to measure the nitrogen 

concentration in silicon.
[4.7]

 They compared the correlation plot, absorption 

coefficient vs. nitrogen concentration, for FZ and CZ silicon samples with 

different N concentrations. A comparison of FZ and CZ samples is shown in 

Figure 4.3. For these plots, the N concentration was determined independently by 

neutron activation analysis. 

 

 

 

 

 

 

 

For the FZ samples with different N concentrations, a calibration curve can be 

drawn that relates the absorption coefficient at 963 cm
-1

 to the N concentration. 

However, the corresponding absorption coefficient data from the CZ sample lie 
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below the calibration curve. A comparison of the IR results for FZ and CZ 

samples shows that CZ silicon contains nitrogen defects other than the N-pairs that 

give rise to the 963 cm
-1

 line. 

In oxygen-rich CZ silicon, a series of additional LVM absorption lines was found 

in the mid IR.
[4.8]

 These IR lines have been assigned to the nitrogen pair with 

additional interstitial oxygen atoms bonded nearby to form NNOx (x=1, 2) centers. 

A representative structure is shown in Figure 4.4. 

 

 

 

 

 

 

The complexes of nitrogen with oxygen have been found to be formed in CZ 

silicon during long anneals (several hours) at temperatures near 600 °C to 650 

°C.
[4.10]

 These complexes are dissociated by anneals at temperatures between 800 

°C and 1000 °C. 

Figure 4.4   N-N pair with an additional O atom bonded nearby[4.9] 
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Many of the N-O defects have been assigned by Alt and coworkers.
[4.11]

 The 

difference of spectra measured for a sample annealed near 1000 °C and a sample 

annealed near 650 °C reveals the IR peaks that are changed by these annealing 

treatments. This is a convenient strategy for identifying weak IR features due to 

nitrogen and oxygen and for separating these features from silicon background 

absorption that is not affected by annealing. Such difference spectra are shown in 

Figure 4.5. Upward going peaks are due to N-N centers whose concentration is 

increased by annealing at 1000 °C. Downward going peaks are due to N-O centers 

formed by annealing near 600 °C and then removed by the subsequent anneal at 

higher temperature. Table 4.1 shows the assignments of the N-O defects with their 

peak positions. 

 

 

 

 

 

 

 
Figure 4.5   Difference spectra for nitrogen and oxygen 
containing defects in silicon, measured in a boron-doped CZ 
silicon sample with a N concentration between ~1014 and 
1.4×1015 cm-3 and an O concentrations of about 7×1017 cm-3.[4.11] 
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Electrically active nitrogen-oxygen complexes have also been studied in CZ 

silicon that contains nitrogen and oxygen impurities. Suezawa et al. observed the 

electronic transition of the nitrogen-oxygen complexes in the far IR (shown in 

Figure 4.6).
[4.12]

 Group I lines are associated with 1s to 2p0 transitions and group II 

lines are associated with 1s to 2p± transitions. 

 

 

Table 4.1   Assignments of nitrogen and oxygen 
containing defects shown in Figure 4.5[4.11] 
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Alt et al. have further investigated the far IR absorption spectra of the nitrogen-

oxygen shallow donors.
[4.11]

 As is shown in Figure 4.7, different groups of shallow 

donors were again detected. A heat treatment at 1000 °C caused the nitrogen-

oxygen shallow donor centers to be annealed away. A subsequent annealing 

treatment at 650 °C regenerated these IR lines. 

Figure 4.6   Absorption spectra showing electronic transitions 
of N-On complexes in Si[4.12] 
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The spectrum for an individual shallow donor center would show hydrogenic 

transitions 1s→2p0, 1s→2p±, etc. The spectra shown in Figures 4.6 and 4.7 are 

complicated because there are several different N-O centers with different 

configurations and slightly different 1s ground state energies. The transitions for 

as many as 8 different centers have been reported. Group I lines are associated 

with the 1s→2p0 transition, group II lines are associated with the 1s→2p± 

transition, and group III lines are associated with the 1s→3p± transition. Table 4.2 

Figure 4.7   Nitrogen-oxygen shallow donor centers seen in far IR 
absorption spectra of CZ silicon that contains N impurities[4.11]. The 
spectrum shown in black is for a sample annealed at 650 °C. The 
spectrum shown in red is for a sample annealed at 1000 °C. 
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shows the frequencies for the 1s→2p± transitions of the family of shallow N-O 

donors. 

STD NO-1 NO-2 NO-3 NO-4 NO-5 NO-6 NO-6’ NO-8 

1s→2p± freq. (cm-1) 233.8 237.8 240.4 242.5 249.8 247.0 230.6 241.5 

 

4.3   Mid IR spectra of nitrogen centers in multi-crystalline silicon 

We measured IR absorption spectra for six multi-crystalline silicon samples 

provided by MEMC Electronic Materials in the mid-IR range from 400 cm
-1

 to 

1200 cm
-1

 to probe N-related defects and to determine the concentrations of 

carbon and oxygen. We measured the absorption coefficient spectra (room 

temperature) shown in Figures 4.8(a) to 4.8(f). The strong absorption lines due to 

carbon at 605 cm
-1

 and oxygen at 1104 cm
-1

 are seen for samples that are 2 mm 

thick. The two weak N-N lines at 766 and 963 cm
-1

 are seen for samples that were 

5 mm thick and are shown in the insets. 

The absorption coefficients for the light elements C, O, and N have been 

calibrated so that the concentrations of substitutional C, interstitial O, and the N-N 

pair can be determined from the peak absorption coefficients of their IR lines. The 

concentration of carbon is 1 × 10
17

 cm
-2

 times the absorption coefficient at 605 cm
-

1
.
[4.14]

 The concentration of interstitial oxygen is 3.15 × 10
17

 cm
-2

 times the 

absorption coefficient at 1104 cm
-1

.
[4.15]

 The concentration of the N-N pair is 1.83 

× 10
17

 cm
-2

 times the absorption coefficient at 963 cm
-1

.
[4.7]

 

Table 4.2   The frequencies of the 1s→2p± transitions of the 
family of N-O shallow thermal donors (STDs) in Si.[4.13] 
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As an example, the multi-crystalline silicon sample LDK B2, whose spectra are 

shown in Figure 4.8(b), has a carbon concentration of 6 × 10
17 

cm
-3

, an oxygen 

concentration of 3.2 × 10
17

 cm
-3

, and a nitrogen-pair concentration of 4.2 × 10
15

 

cm
-3

. 

Table 4.3 shows data for the concentrations of the light elements for all 6 samples 

from MEMC. Concentrations of C and O measured by FTIR at MEMC are given 

in units parts per million atomic (ppma). Results for C and O determined from the 

spectra measured at Lehigh shown in Figure 4.8(a)-(f) are given in units 

atoms/cm
3
. The units conversion is 2 ppma = 1 × 10

17
 cm

-3
. Results for O 

measured at Lehigh and at MEMC are in reasonable agreement. The discrepancies 

for the concentrations of C measured at Lehigh and MEMC are substantial, i.e., 

these results can differ by a factor of 2. We point out that it is difficult to 

accurately measure the strengths of the strong absorption lines due to C in samples 

2 mm thick. 

The concentration of N provided by MEMC in Table 4.3 was determined by 

secondary ion mass spectrometry (SIMS) and reflects the total nitrogen 

concentration in the sample. The concentration of N determined at Lehigh by 

FTIR reflects the concentration of N-N pair centers that give rise to the IR line at 

963 cm
-1

 so the nitrogen concentration measured by IR should be less than the N 

concentration measured by SIMS, consistent with the results shown in Table 4.3. 

Samples listed in Table 4.3 from the same brick of mc-Si have labels with the 

same prefix, LDK, for example. The suffix T2 indicates that a sample is from the 

top of a brick; the suffix B2 indicates that a sample is from the bottom of a brick. 
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The concentrations of O and C follow trends that are well known in mc-Si ingots 

that are solidified from the bottom up. The oxygen concentration is highest at the 

bottom of an ingot, whereas the carbon concentration is highest at the top of an 

ingot. 

 

Sample [C] – a (at•cm-

3) Lehigh 

L 

Le 

[C] – b (ppma) 

MEMC 

M 

[O] – a (at•cm-

3) Lehigh 

[O] – b (ppma) 

MEMC 

[N] – a (at•cm-

3) Lehigh 

[N] – b (at•cm-

3) MEMC 

LDK T2 8.2×10
17 

8.6 1.0×10
17 

0.6 3.3×10
15 

2×10
16 

LDK B2 6.0×10
17 

4.3 3.2×10
17 

4.2 4.2×10
15 

7×10
15 

A8 T3 4.6×10
17 

5.6 1.2×10
17 

3.1 2.0×10
15 

4.7×10
15 

A8 B3 1.2×10
17 

1.6 4.7×10
17 

7.4 0.5×10
15 

2.7×10
15 

E8 T3 2.3×10
17 

2.5 1.3×10
17 

0.5 3.7×10
15 

7.9×10
15 

E8 B3 0.3×10
17 

0.5 0.6×10
17 

0.8 3.5×10
15 

5.7×10
15 

 

 

 

 

 

 

 

Table 4.3   Concentrations of C, O and N from FTIR measurements at 
Lehigh and from the MEMC Company 
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Figure 4.8(a)   Room temperature IR spectra from 
sample LDK T2 with thicknesses of 2mm and 5mm. 
Spectra of the N-N pair lines are shown in the insert. 

Figure 4.8(b)   Room temperature IR spectra from 
sample LDK B2 with thicknesses of 2mm and 5mm. 
Spectra of the N-N pair lines are shown in the insert. 
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Figure 4.8(c)   Room temperature IR spectra from 
sample A8 T3 with thicknesses of 2mm and 5mm. 
Spectra of the N-N pair lines are shown in the insert. 

Figure 4.8(d)   Room temperature IR spectra from 
sample A8 B3 with thicknesses of 2mm and 5mm. 
Spectra of the N-N pair lines are shown in the insert. 
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Figure 4.8(e)   Room temperature IR spectra from 
sample E8 T3 with thicknesses of 2mm and 5mm. 
Spectra of the N-N pair lines are shown in the insert. 

Figure 4.8(f)   Room temperature IR spectra from 
sample E8 B3 with thicknesses of 2mm and 5mm. 
Spectra of the N-N pair lines are shown in the insert. 
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The vibrational line for the N-N defect at 963 cm
-1

 at room temperature narrows 

and increases in height when the temperature is lowered. Figure 4.9 compares 

spectra for sample LDK B2, annealed at 1000°C for 30 min, that were measured at 

room temperature and at 77K. The N-N line shifts to 967 cm
-1

 and its peak height 

is found to be increased by a factor of 1.56. From the calibration of the 963 cm
-1

 

line (room temperature) determined by Itoh et al., our results find the calibration 

of the 967 cm
-1

 line (77K) to be: 

[N] = 1.2×10
17

 cm
-2

 α967 (77K). 

From the noise in the baseline of our IR data measured at 77K, we estimate that 

the detection limit for N measured with the N-N line at 967 cm
-1

 is 2 × 10
14

 cm
-3

 

for a multi-crystalline sample with thickness 5 mm. 

 

 

 

 

 

 

Figure 4.9   Absorbance spectra for sample LDK B2, annealed at 
1000 °C, measured at both room temperature and 77 K. 
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We have measured IR spectra at 77K for the six mc-Si samples with different 

impurity content that had been provided by MEMC. Spectra for the 967 cm
-1

 line 

are shown in Figure 4.10 for as-solidified samples and for pieces of the same 

samples annealed at 1000°C. An absorbance spectrum calculated from these 

spectra reveals the differences between as-solidified and annealed samples. The 

concentrations of N-N centers determined from each of these spectra along with 

the differences produced by annealing are listed in Table 4.4. 

Trends in our data can be seen. 

(1) Annealing an as-solidified sample at 1000°C causes the N-N line to increase in 

intensity compared to an as-solidified sample for some samples, but not others. 

(2) The % increase of the N-N line’s intensity is greatest for samples from the 

bottom of a mc-Si brick where the oxygen concentration is greatest. Samples 

LDKB2 and A8B3 with highest [O] show the greatest % change in the 967 cm
-1

 

line intensity upon annealing at 1000°C. For samples with low oxygen 

concentrations, the change in the 967 cm
-1

 line’s intensity upon annealing at 

1000°C is barely detectable. 

These trends are consistent with the presence of NN-On complexes in samples in 

their as-solidified state, similar to the situation found for N in oxygen-rich, CZ-

grown Si. These complexes are dissociated by an anneal at 1000°C, increasing the 

fraction of N in the form of isolated N-N centers that gives rise to the 967 cm
-1

 line. 
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Figure 4.10   IR spectra (77K) for the line at 967 cm-1 due to N-N centers in 
Si. These results are for mc-Si samples provided by MEMC. Spectra are 
shown for samples in their as-solidified state, after an anneal at 1000°C, 
and for the difference of these results. 
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Table 4.4   Absorption coefficients and N concentrations for mc-Si samples 

obtained from MEMC determined from the IR data shown in Figure 4.10. 

sample α1000 (cm-1) [N]1000 

(at•cm-3) 

αAG (cm-1) 

L 

Le 

[N]AG   

(at•cm-3) 

M 

∆α (cm-1) ∆[N] (at•cm-3) 

a. LDK T2 0.0536
 

6.3×10
15

 0.0477
 

5.6×10
15

 0.0046
 

0.5×10
15 

b. LDK B2 0.0667
 

7.8×10
15

 0.0377
 

4.4×10
15

 0.0265
 

3.1×10
15 

c. A8 T3 0.0240
 

2.8×10
15

 0.0267
 

3.1×10
15

 0
 

0
 

d. A8 B3 0.0177
 

2.1×10
15

 0.0136
 

1.6×10
15

 0.0038
 

0.4×10
15 

e. E8 T3 0.0350
 

4.1×10
15

 0.0333
 

3.9×10
15

 0
 

0
 

f. E8 B3 0.0411
 

4.8×10
15

 0.0363
 

4.2×10
15

 0.0044
 

0.5×10
15 

 

Figure 4.11 shows data for the absorption coefficient of the line associated with 

the N-N pair plotted vs the N concentration determined independently. The 

vertical scale on the right is for the absorption coefficient of the N-N pair line at 

963 cm
-1

 measured at room temperature. The dashed line is the calibration line 

determined by Itoh et al. for the N-N pair center in FZ Si. The open circles are the 

data points reported by Itoh et al. for CZ Si (shown also in Figure 4.3), referenced 

to the vertical scale shown on the right. 

The left vertical scale in Figure 4.11 is for the absorption coefficient of the N-N 

pair line at 967 cm
-1

 measured at 77K, scaled by a factor so that it corresponds also 

to the absorption coefficient scale shown on the right. That is, the left scale is 

related to the right scale by the factor 1/1.56 determined from the IR data in Figure 

4.9. The open squares shown in Figure 4.11 are for the absorption coefficient at 

967 cm
-1

 measured at 77K (Table 4.4) plotted vs the N concentration determined 

by SIMS for the mc-Si samples from MEMC in their as-solidified condition. (We 

have chosen to plot IR data measured at 77K because the N-N concentration can 
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be determined more accurately from the sharper N-N IR line at 967 cm
-1

 measured 

at 77K than from the corresponding line at 963 cm
-1

 measured at room 

temperature.) The absorption coefficient data for the N-N center from as-solidified 

multi-crystalline silicon are similar to those for CZ silicon. These results indicate 

that a portion of the nitrogen impurities is involved in structures other than the N-

N pair. (There is one anomalous data point that suggests a very high N 

concentration for sample LDK T2. Multi-crystalline samples are inhomogeneous 

and can contain Si-N inclusions. The localized ion beam used for the SIMS 

measurement may have probed an N-rich spot on the sample to give this 

anomalous data point.) 

We annealed the multi-crystalline Si samples at 1000 °C and measured the 

absorption coefficient at 967 cm
-1

 at 77K to obtain the data shown in Table 4.4. 

For several of these samples, the absorption coefficient at 967 cm
-1

 was increased 

by the annealing treatment. These data are shown by open triangles (in Figure 

4.11). These results are consistent with the dissociation of NN-On centers to 

produce an increased concentration of the isolated N-N pair. We note that the 

samples that showed little change upon annealing at 1000°C (the samples A8 T3, 

E8 T3, and E8 B3 with [N] = 4.7 × 10
15

, 7.9 × 10
15

 and 5.7 × 10
15

 cm
-3

, 

respectively) had a low concentration of oxygen. 

Several of our data points in Figure 4.11 for samples annealed at 1000°C fall close 

to the line measured by Itoh et al. for N in oxygen-free Si grown by the floating 

zone method. This result suggests that the N-N center is dominant in samples that 

have been annealed at 1000°C in Figure 4.11. Furthermore, the nitrogen 
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concentration determined here by SIMS appears to be in reasonable agreement 

with the N concentration determined by Itoh et al. by neutron activation analysis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11   Calibration line for FZ silicon (solid line), data for CZ 
silicon taken from Itoh et al. (circles, right scale), and data for multi-
crystalline silicon that  combine  absorption coefficients for the 967 
cm-1 line measured at Lehigh (77K, left scale) with SIMS data for the N 
concentration provided by MEMC (squares). The absorption 
coefficient for the 967 cm-1 line is increased by an anneal at 1000 °C 
(triangles, left scale). Points for different samples are labeled with 
letters according to the labels in Figure 4.10. 
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IR spectra measured at 77K for mc-Si samples also reveal the NN-On centers that 

are present. Figure 4.12 shows spectra measured at 77K for the six mc-Si samples 

obtained from MEMC. We focus first on panel (b) for sample LDKB2 where the 

concentration of N-N defects complexed with oxygen is greatest. 

These results establish that N-N centers are involved in complexes with O to form 

NN-On defects. The intensity of the 967 cm
-1

 line in sample LDK B2 annealed at 

1000°C shows that the concentration of N is 7.8 × 10
15

 cm
-3

 (Table 4.4). In the as-

grown sample, approximately 60% of the N is in the form of N-N centers, 

meaning that 40% is complexed with oxygen. 
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Figure 4.12   IR spectra (77K) due to NN-On centers in Si. These results are for 
mc-Si samples provided by MEMC. Spectra are shown for samples in their as-
solidified state, after an anneal at 1000°C, and for the difference of these 
results. 
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A detailed difference spectrum for the sample LDK B2 annealed at 1000 °C minus 

the spectrum for the as-grown sample is shown in Figure 4.13 over a wide spectral 

range. Labels for the IR lines are given according to Table 4.1 to assign the N-

related structures. 

 

 

 

 

 

 

 

Figure 4.12, panel a, shows absorbance spectra for sample LDK T2 measured at 

77 K. The intensity of the 967 cm
-1

 line in this sample annealed at 1000 °C shows 

that the concentration of N is 6.3 × 10
15

 cm
-3

. In an as-grown sample, 

approximately 90% of the N is in the form of N-N centers and 10% is complexed 

with oxygen. Table 4.3 shows that the oxygen concentration for sample LDK B2 

is 3.2 × 10
17

 cm
-3

 whereas for sample LDK T2 the oxygen concentration is [O] = 

Figure 4.13   A difference spectrum for the multi-crystalline silicon 
sample LDK B2. Upward going lines are due to NN defects. Downward 
going lines are due to nitrogen-oxygen complexes removed by the 
anneal at 1000 °C. Assignments of lines are given in Table 4.1. 
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1.0 × 10
17

 cm
-3

. The different oxygen concentrations in the samples are consistent 

with a greater concentration of NN-On centers in sample LDK B2. 

Similarly, for sample A8 B3 with [O] = 4.7 × 10
17

 cm
-3

, the results in Table 4.4 

show that approximately 75% of the N in the sample is in the form of N-N centers 

and that 25% is involved in complexes with oxygen. For sample A8 T3, with its 

smaller oxygen content of [O] = 1.2 × 10
17

 cm
-3

, near 100% of the N is in the form 

of N-N centers. 

The oxygen concentration is small in both samples E8 B3 and E8 T3. In this case, 

Table 4.4 shows that approximately 90% or more of the N is in the form of N-N 

centers. 

The N- and O-containing centers in the samples from MEMC, detected in 

difference spectra, 1000°C – as solidified, are compared in Figure 4.14. Table 4.3 

shows that sample LDK B2 contains relatively high N and high O. The spectrum 

in Figure 4.14 shows the NN-O center (1000 and 1031 cm
-1

), and even NN-O2 

centers (1021 cm
-1

). Sample A8 B3 contains the highest [O] of the set of samples 

and lower [N] than LDK B2. In this case NN-O and NN-O2 centers are seen, but 

now centers containing only oxygen are also present [that is, the defects O2 (1012 

and 1060 cm
-1

) and O3 (1007 cm
-1

)]. Samples from the tops of bricks (LDK T2 

and A8 T3) with their reduced oxygen content do not show the centers with O 

alone and modest concentrations of the NN-O defect. Finally, samples E8 T3 and 

E8 B3 both have substantial N concentrations but little O. Annealing treatments 

cause only small changes in the concentration of the N-N defect due to the 

formation of NN-O complexes. 
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4.4   Far IR studies of nitrogen centers in multi-crystalline silicon 

Vibrational spectroscopy finds that mc-Si samples containing nitrogen and oxygen 

with concentrations in the neighborhood of 4×10
15

 cm
-3

 and 4×10
17

 cm
-3

, 

respectively, can contain up to a few times 10
15

 cm
-3

 NN-On complexes. These 

NN-On complexes are electrically inactive. What about the N-On complexes with a 

Figure 4.14   Difference spectra for mc-Si samples annealed at 1000°C 
and for samples from the same test slab in its as-solidified condition. 
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single N atom that act as shallow thermal donors? While these defects do not show 

substantial vibrational absorption in our samples, that may be probed with high 

sensitivity by way of their electronic transitions. 

We began our far IR experiments with studies of p-type Czochralski-grown Si 

with a nominal resistivity of 10 to 15 Ω-cm, a carbon concentration of [C] < 0.1 

ppma, a nitrogen concentration of [N] = 4×10
15

 cm
-3

, and an oxygen concentration 

of [O] = 12.5 ppma to demonstrate in our laboratory the strategies discussed in Sec. 

2.2.2 to be used to probe electronic transitions in partially compensated Si samples. 

It is well known that annealing CZ-Si near 450°C produces a family of ―oxygen 

donors‖ with different binding energies. These defects contain different numbers 

of oxygen atoms and are helium-like double donors with IR lines that have been 

studied extensively.
[4.16]

 A partially compensated Si test sample was made for our 

experiments by annealing a p-type, CZ-Si sample at 450°C for 6 hours to produce 

oxygen donors. 

Absorption spectra in the far IR are shown in Figure 4.15 for a CZ silicon sample 

annealed at 450 °C. In the darkness (lower spectra), we observe the boron lines at 

245, 278 and 320 cm
-1

.
[4.17]

 Lines that might arise from shallow donors are not 

seen in darkness. With supplementary, visible-light illumination from the side 

(upper spectra), the intensities of the boron lines are observed to be increased 

because holes have been produced that more fully populate the compensated 

shallow acceptor centers. Furthermore, the upper spectra in Figure 4.15 show the 

electronic transitions of shallow donors that have become populated by electrons 

that were also produced by side illumination. The absorption lines of the shallow 
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oxygen donors are labeled by their final states and assignments to specific donor 

centers of the oxygen donor family. 

We can determine the concentration of neutral boron acceptors from the strength 

of the line due to B at 278 cm
-1

. The calibration for B is that the concentration of B 

equals 1.5 × 10
13

 cm
-1

 times the integrated absorption coefficient for the line at 

278 cm
-1

. Results for the neutral B concentrations determined from Figure 4.15 are 

shown in Table 4.5. 

The value [B] = 1.2 × 10
15

 cm
-3

 corresponds to a resistivity near 12 Ω-cm, a result 

that is consistent with the nominal resistivity of the sample. 
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Figure 4.15   Absorption spectra (4.2K, resolution 0.5 cm-1), measured 
with  an empty sample holder for reference, for p-type CZ silicon 
annealed at 450°C for 6 hours. Label numbers on the left panel are 
boron lines.[4.18] Labels on the right panel are for thermal donor lines 
assigned previously.[4.19] 

 

 

 

 

 

 

 

 

 

 

Defect ω (cm
-1

) α (cm
-1

) 

L 

Le 

IA (cm
-2

) 

M 

Concentration (at•cm
-3

) 

B(dark) 278
 

23.286
 

37.784 5.7×10
14 

B(120W) 278
 

46.861
 

79.505 1.2×10
15 

 

Table 4.5   Data for the absorption coefficient of the B acceptor and the 
concentration of neutral B, determined from the data in Figure 4.15. 
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It also possible to produce the electrically active N-O centers of interest to us in 

our CZ-grown, Si test samples, in this case, by a long anneal at 600 °C. IR spectra 

measured both in darkness and with side illumination are shown in Figure 4.16 for 

a Czochraski grown Si sample annealed at 600 °C. 

 

 

 

 

 

 

 

 

 

 

Figure 4.16   Absorbance spectra (4.2K, resolution 0.5 cm-1) measured 
with an empty sample holder for reference, for p-type CZ silicon 
annealed at 600 °C for 15 hours. Label numbers on the left panel are 
boron lines[4.18]. 
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Figure 4.17 shows an expansion of the spectrum presented in the upper left panel 

of Figure 4.16. The lines 1 and 2 assigned to the B acceptor are labeled in the 

figure. The N-O IR lines are labeled by their assignments given in Ref. 4.13 and in 

Table 4.2 here. The 1s → 2p± lines of shallow donors 3 and 5 are the dominant N-

O lines. 

 

 

 

 

 

 

 

 

 

Figure 4.17   A spectrum for the same CZ Si sample as shown in Figure 
4.16, in the N-O shallow donor FIR region. The labels are for N-O related 
lines.[4.13] Two boron lines are also labeled with number 1 and 2[4.18]. 
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The concentrations of neutral B and of the N-O shallow donors can be estimated 

from the intensities of the IR lines shown in Figures 4.16 and 4.17. The B 

concentration is again obtained from the area of the 278 cm
-1

 line. 

The calibration for the N-O lines is that the concentration of the N-O donor equals 

5×10
13

 cm
-2

 times the peak absorption coefficient for its associated 1s to 2p± line. 

The concentrations of B and the N-O centers shown in Figure 4.17 are listed in 

Table 4.6. 

 

Defect ω (cm
-1

) α (cm
-1

) 

L 

Le 

IA (cm
-2

) 

M 

Concentration (at•cm
-3

) 

B(dark) 278
 

19.844
 

31.129 4.7×10
14 

B(120W) 278
 

27.625
 

44.584 6.7×10
14 

NO(3) 240 8.330 8.593 4.2×10
14

 

NO(5) 250 5.994 6.852 3.0×10
14

 

 

Table 4.6   Data for the absorption coefficient of the B acceptor line at 278 cm-1 
and N-O donor lines determined from Figures 4.16 and 4.17. The concentrations 
of neutral B and N-O donors estimated from these data are also shown. 

 

 

Figure 4.18 shows spectra for the same CZ-grown Si material whose spectra are 

shown in Figures 4.15 and 4.16. In this case, the sample was annealed at 800 °C 

for 30 minutes. No N-O centers are seen following an 800 °C annealing treatment. 

Estimates for the B concentrations for Figure 4.18 are given in Table 4.7. 
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Defect ω (cm
-1

) α (cm
-1

) 

L 

Le 

IA (cm
-2

) 

M 

Concentration (at•cm
-3

) 

B(dark) 278
 

19.510
 

21.724 3.3×10
14 

B(120W) 278
 

16.727
 

26.382 4.0×10
14 

 

Table 4.7   Data for the absorption coefficient of the B acceptor line at 278 cm-1 
shown in Figure 4.18 along with the concentration of neutral B determined 
from this data. 

 

Figure 4.18   Absorbance spectra (4.2K, resolution 0.5 cm-1) 
measured with an empty sample holder for reference, for p-type CZ 
silicon annealed at 800 °C. Label numbers on the left panel are 
boron lines[4.18]. A phosphorus line is also labeled[4.20]. 
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After confirming the detection of donor complexes formed in CZ silicon, the 

defects in multi-crystalline silicon sample LDK B2 were investigated. (This 

sample was chosen because it contained the largest concentration of electrically 

inactive N and O containing complexes of the samples that have been studied here.) 

The optical throughput of multi-crystalline silicon is smaller than for CZ silicon 

because of the imperfect structure of multi-crystalline silicon, leading to a reduced 

signal to noise ratio for our absorption measurements. 

Only the N-O lines at 240 cm
-1

 and 250 cm
-1

 were detectable in our experiments. 

All absorbance spectra have a reference spectrum measured with no sample in the 

sample holder. The thin lines are for spectra measured when there was no 

supplementary light illuminating the sample, while the thicker lines (red in PDF) 

are for spectra measured with a 120 Watt light illuminating the sample. In Figures 

4.19(a), (b) and (c), spectra for samples in the as grown, 800 °C annealed, and 600 

°C annealed conditions are shown, respectively. (Because the transmission 

approaches zero at the boron peaks, the boron lines in the absorbance spectra are 

saturated. Although the changes of the spectra with and without supplementary 

light illumination are small, weak lines due to N-O complexes can be seen for the 

as-grown sample. After the sample was annealed at 800 °C for 30 minutes, the IR 

lines from the N-O complexes vanished. After the sample was annealed for 17 

hours at 600 °C, the N-O complexes reappeared. The 240 and 250 cm
-1

 lines 

produced by thermal annealing can be seen in Figures 4.19(d), (e), (f), which are 

expansions of Figures 4.19(a), (b), (c), respectively. 
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Figure 4.19   Far IR spectra measured for sample LDK B2 at 4.2K with a 

resolution of 0.5 cm-1. Thin lines are for spectra taken without light 

illumination. Thicker lines (red in PDF) are taken with 120W light bulb 

illumination. (a), (b) and (c) are samples under as-grown, 800 °C annealed, 

and 600 °C annealed conditions respectively. (d), (e) and (f) are the same 

spectra in an expanded scale (5 X). 
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We have estimated the concentrations of donors NO(3) and NO(5) from the 

spectra shown in Figure 4.19. These results are presented in Table 4.8. 

Defect ω (cm
-1

) α (cm
-1

) 

L 

Le 

Concentration (at•cm
-3

) 

NO(3) - AG 240 0.700 3.5×10
13

 

NO(5) - AG 250 1.294 6.5×10
13

 

NO(3) - 800 240 - - 

NO(5) - 800 250 - - 

NO(3) - 600 240 0.821 4.1×10
13

 

NO(5) - 600 250 1.761 8.8×10
13

 

 

Table 4.8   Data for the peak absorption coefficient and shallow donor 
concentration for the donors NO(3) and NO(5) whose spectra are shown in 
Figure 4.19. These data are for sample LDK B2 in its as-solidified state, annealed 
at 800 °C and annealed at 600 °C. 

The resistivity of our mc-Si samples is near 1 -cm which corresponds to a boron 

concentration of [B] = 1.5 × 10
16

 cm
-3

. The concentration of compensating N-O 

donors is near 1% of this value, that is, 1.3 × 10
14

 cm
-3

 from the data presented in 

Table 4.8. 

We have performed similar experiments for sample A8 B3 which contained the 

highest concentration of O (4.7×10
17

 cm
-3

) of our samples obtained from MEMC. 

In Figures 4.20(a) and (b), spectra for the sample A8 B3 in the as grown and 

600°C annealed conditions are shown, respectively. Lines due to N-O complexes 

may be only weakly seen in the as-grown sample. After the sample was annealed 

for 17 hours at 600°C, a greater concentration of N-O complexes appeared. The 

240 and 250 cm
-1

 lines affected by thermal annealing can be seen in Figures 

4.20(c), (d), which are expansions of Figures 4.20(a), (b), respectively. 
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Figure 4.20   Far IR spectra measured for sample A8 B3 at 4.2K with a 

resolution of 0.5 cm-1, thin lines are for spectra taken without light 

illumination. Thicker lines (red in PDF) are taken with 120W light bulb 

illumination. (a) and (b) are samples under as-grown and 600°C annealed 

conditions respectively. (c) and (d) are the same spectra in an expanded 

scale (5 X). 
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We have also estimated the concentrations of donors NO(3) and NO(5) from the 

spectra shown in Figure 4.20. These results are presented in Table 4.9. 

Defect ω (cm
-1

) α (cm
-1

) 

L 

Le 

Concentration (at•cm
-3

) 

NO(3) - AG 240 - - 

NO(5) - AG 250 0.542 2.7×10
13

 

NO(3) - 600 240 1.707 8.5×10
13

 

NO(5) - 600 250 2.029 10.1×10
13

 

 

Table 4.9   Data for the peak absorption coefficient and shallow donor 
concentration for the donors NO(3) and NO(5) whose spectra are shown in 
Figure 4.20. These data are for sample A8 B3 in its as-solidified state and 
annealed at 600°C. 

The resistivity of our mc-Si samples is near 1 -cm which corresponds to a boron 

concentration of [B] = 1.5 × 10
16

 cm
-3

. The concentration of compensating N-O 

donors for sample A8 B3 is near 1% of this value, that is, 1.9×10
14

 cm
-3

 from the 

data presented in Table 4.9. 
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4.5   Conclusion: N-centers in mc-Si 

In conclusion, defects containing N and O in multi-crystalline Si have been 

studied by IR spectroscopy. Multi-crystalline Si samples are found to contain N 

with concentrations in the range 2.7×10
15

 to 7.9×10
15

 cm
-3

. The dominant N-

containing point defect is the N-N, interstitial-pair center that is seen also in mono-

crystalline Si grown by the floating zone or Czochralski methods. The 

unintentional concentration of N in mc-Si typically exceeds the concentration 

typically found in mono-crystalline Si materials by a factor near 4. 

Nitrogen centers are also found to be complexed with oxygen impurities that are 

present in mc-Si. NN-On complexes are seen in our experiments, especially for 

samples at the bottom of a mc-Si brick, where the oxygen concentration is highest. 

In as-solidified mc-Si material, nearly 40% of the N can be found in the form of 

NN-On complexes in some samples. Presumably, these defects were formed 

during the time the mc-Si ingot cooled after it solidified. 

We have also searched for N-O complexes with a single N atom that give rise to 

shallow donors with binding energies near 35 meV. The concentration of 

electrically active N-O centers was found to be  1.3×10
14

  cm
-3

 in a p-type Si 

sample (LDK B2, resistivity near 1 -cm, [B]=1.5×10
16

 cm
-3

) rich in N (7.8×10
15

 

cm
-3

) and O (3.2×10
17

 cm
-3

). Similar results were found for a second sample (A8 

B3) that was richer in oxygen ([N-O] = 1.9×10
14

 cm
-3

). These concentrations of N-

O centers are lower than can be produced in Czochralski grown Si that contains N, 

presumably because of the lower concentration of O in mc-Si as compared to Cz-

grown Si (>7x10
17

 cm
-3

). 
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Our results show that electrically active N-O centers have little impact on the p-

type doping of mc-Si because their concentration (near 2×10
14

 cm
-3

) is small 

compared to the intentional B concentration (1.5×10
16

 cm
-3

). However, even this 

small concentration of electrically-active shallow donors may have an effect on 

the minority carrier lifetime in Si.
[4.21]

 These effects on lifetime are a subject of 

future investigation. 

Our experimental results provide new insight into the behavior of N in multi-

crystalline Si and its interactions with other defects in Si materials widely used for 

the fabrication of solar cells. 
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