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Abstract

Cross sections for rotationally inelastic collisions of He with the NaK molecule in

the ground (X1Σ+) and first excited (A1Σ+) electronic states have been calculated.

Electronic structure calculations were performed with the GAMESS code to deter-

mine potential surfaces. For most of the calculations, the NaK bond length was

fixed at the equilibrium value. The coupled channel scattering formalism developed

by Arthurs and Dalgarno was used with the potential surfaces to calculate cross sec-

tions for rotational energy transfer. The computer code was modified to calculate

also the collisional transfer of orientation and alignment. These theoretical results

have been compared with available experimental measurements of the A1Σ+ state

collisional rate constants. Experimental data for the (A1Σ+, v = 16, j = 14) state

show a strong propensity for transitions with even values of ∆j. The theoretical

calculations using the potential calculated with the equilibrium bond length of NaK

do not show this propensity, but these calculations correspond to an initial state

of v = 0. Recent calculations have determined the potential surface for several

different values of the NaK bond length rv. Preliminary scattering results using

a potential averaged over the range of values of rv appropriate for v = 15 show a

much greater propensity for even values of ∆j. In addition, the magnitudes of esti-

mated rate constants for several transitions are in good agreement with experiment.

1



These results suggest that the propensity for even ∆j rotational transitions of NaK

(A1Σ+) may depend strongly on the vibrational level.

In a separate study, the time-dependent MCTDH wavepacket method and the

time-independent coupled channel method were compared. Rotationally inelastic

cross sections using the same model potential were calculated using both methods,

and excellent agreement was obtained.

2



Chapter 1

Introduction

1.1 Motivation

An active experimental program at Lehigh University has probed the behavior of

heteronuclear alkali molecules [1–6]. Our interest in this project was sparked by

experimental results describing inelastic collisions between electronically excited

NaK molecules and various collisional partners [2]. Of particular note for the present

work are rotationally inelastic collisions between NaK and He or Ar; for example

He + NaK(v, j,m) → He + NaK(v, j′,m′),

where v is the vibrational quantum number, and j and m are the quantum numbers

that describe the rotational state of the molecule. The primes indicate the new

angular momentum quantum numbers after an inelastic collision occurs. In the

experiments at Lehigh [2], the NaK molecule may be either in the ground electronic

state (X1Σ+) or the first excited state (A1Σ+) [7]. The focus is on the collisions in

which the electronic and vibrational states do not change. In this introduction, we

will discuss the experimental methods and results, give a brief background of the
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rotational quantum numbers, and discuss future work the experimental group plans

to do.

There is a large body of literature on rotationally inelastic collisions [8, 9], but

Dr. Huennekens’ group has investigated some features that have received less at-

tention. Several aspects of their experimental work are of particular interest. For

several electronic and vibrational states of NaK, Dr. Huennekens’ group has found a

propensity for rotationally inelastic collisions to have even values of ∆j; the odd ∆j

transitions are observed but are less probable than ∆j even transitions. Homonu-

clear diatomic molecules have an exact selection rule for ∆j even. This restriction

is based on parity due to the symmetry of the molecule with respect to inversion

about the center. The propensity found in NaK may indicate an approximate re-

flection symmetry. Another aspect of the experimental work is the investigation of

how collisions that change j affect the m quantum number. A method known as

polarization spectroscopy [10] is used to measure the tendency of the orientation

of the NaK molecule to be preserved during collisions. A more precise definition

of orientation will be given in Section 1.3, but generally speaking orientation is

related to the average value of the m quantum number. This thesis describes the

theoretical calculations that are intended to provide a quantitative explanation of

the experimental results.

Unless otherwise specified, this work will use atomic units. In particular, units of

bohr (a0) will be used for length and hartree (Eh) units will be used for energy. The

experimental work discussed here is conducted in a heat pipe oven that is heated

to roughly 600 K. The mean thermal energy of this temperature distribution is

0.0020 Eh, an energy which will be reference frequently throughout this dissertation.
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1.2 Overview of Experimental Method

The recent experimental work of Wolfe et al. [2] is based on a pump-probe laser

excitation scheme to excite NaK molecules contained within a heat pipe oven (a

vessel containing gas phase alkali atoms and molecules and noble gas atoms). The

essential features of the pump-probe scheme are illustrated in Figure 1.1, which

shows schematic potential curves for the ground and excited states of NaK. A pump

laser is fixed on a transition from one rovibrational level of the ground state to a

particular (v, j) rovibrational level of the intermediate state. The probe laser is then

used to excite the molecule from intermediate state levels to levels of a higher excited

state. The probe laser is scanned over a range of wavelengths, and it is absorbed

Figure 1.1: Diagram of a typical pump and probe scheme for NaK. The pump
laser excites transitions out of the ground state to the intermediate state,
A1Σ+ (v,j) level. The probe laser excites transitions to the highest state,
31Π.
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Figure 1.2: Diagram of the pump and probe scheme used by Wolfe et al. [2].
The pump laser excites transitions out of the ground X1Σ+state of NaK
to the A1Σ+ state. While in the intermediate A1Σ+ state the molecule
can undergo collisions. The probe laser excites the collisionally populated
A1Σ+levels to the highest 31Π state, giving information about the popula-
tion in the A1Σ+ state. [2]

whenever its frequency matches a transition to an upper state, assuming the lower

level of the transition is populated. The absorption is detected by monitoring

the fluorescence from the upper electronic state as a function of the probe laser

frequency.

The pump-probe method is commonly used to provide information about the

6



energy level structure of the highest electronic state. An alternative scheme used

to study the effect of collisions in the usual pump-probe method is illustrated in

Fig. 1.2. In the experiments conducted by Wolfe et al. [2], a tunable dye laser was

used to excite the NaK from the X1Σ+ground state to the a specific (v,j) level

in the A1Σ+ state and was fixed on this transition. Collisions with the Ar buffer

gas populated neighboring levels A1Σ+ (v,j′) levels. The probe laser was scanned

over a range of wavelengths near the direct transition from the A1Σ+ state (16,30)

level to the 31Π state. The probe laser also excites transitions from the collisionally

populated levels A1Σ+ (v,j′) to the 31Π state. The violet fluorescence emitted by

the NaK molecule as it radiates from the 31Π state back down to the ground state

is monitored.

A typical violet fluorescence spectrum (probe laser scan) is shown in Fig. 1.3

for an experiment which excites NaK molecules to the (v, j) = (16,30) level of the

A1Σ+ state [7] using the pump laser. The strong peak labeled “Direct” near 12496.4

cm−1 corresponds to a transition from the directly pumped level (v, j) = (16,30) of

the A1Σ+ state to the (6,29) or (6,31) level of the 31Π state. There are many other

peaks in Fig. 1.3. These peaks are weak and are related to collisions of the NaK

molecules with atomic perturbers. The perturbers are alkali atoms (potassium and

sodium) and atoms of a buffer gas, either helium or argon, which is introduced into

the heat pipe oven to keep the ractive alkali vapor away from the windows. Wolfe et

al. [2] used the full spectra shown in Fig. 1.3, including the satellite peaks, to obtain

information about collisions. The fluorescence from the transitions originating from

collisionally populated levels in the A1Σ+ state accounts for the weak satellites in

Fig. 1.3.
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Figure 1.3: Scan of fluorescence spectroscopy. The peak labeled “Direct” has a
much higher intensity than the others and has been truncated. The smaller
peaks are due to fluorescence from the transitions originating from collision-
ally populated levels in the A1Σ+ state. [2]

The smaller peaks in Fig. 1.3 give information about rotationally inelastic col-

lisions of NaK molecules in the (v, j) rovibrational levels in the A1Σ+ state. Each

satellite line corresponds to a transition from a collisionally populated (v, j′) level

of the A1Σ+ state to the 31Π state. For example, Fig. 1.2 shows a collision that

changes the rotational level of the NaK molecule from the directly pumped (16, 30)

level to (16, 29). The transition out of this collisionally populated level corresponds

to the ∆j = −1 peak shown in Fig. 1.3. The ratio of intensities of the collisional to

the direct violet fluorescence is approximately equal to the ratio of the steady-state

populations of the rotational levels of the A1Σ+ state populated either by collisions

or directly by the pump laser. Experimental spectra can be used to obtain infor-

8



mation about the amount of population that was transferred to the various j′ levels

by one collision with an atomic perturber.

Experimental results from Wolfe et al. [2] for the rate constant for j changing

collisions of NaK with Ar are shown in Fig. 1.4. The initial rotational level was

j = 30. The data show a clear propensity of transitions with even ∆j, but not a

strict selection rule. For a homonuclear diatomic molecule, the rates for transitions

with odd ∆j must be zero. For NaK + Ar, the rate constant for ∆j = 2 is roughly

twice that for ∆j = 1 and ∆j = 3.

1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

k A
r (1

0-1
0  c

m
-1
s-1

)

| j|
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Figure 1.4: Rate constant for the transfer of population j → j′ = j + ∆j due
to collisions of NaK with Ar as a function of ∆j. The initial rotational
level was j = 30. A propensity for ∆j even can be seen by the larger rate
constant for ∆j = 2.
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1.3 Orientation and Alignment

Experiments were also conducted to investigate the change in the m sublevels of

the NaK molecules due to collisions with atomic partners. Figure 1.5 shows several

possible examples of distributions of m for j = 2. The height of each bar represents

the number of molecules in each of the possible m levels. When there are no other

external influences on the system, the angular momenta of all the molecules in the

system are randomly oriented in space. Panel (a) shows an m distribution in which

all the m sublevels are uniformly populated, indicating the random direction of j.

Certain experimental techniques [11] can be used to orient the angular momenta in

space and populate the m sublevels unevenly. The other panels in Fig. 1.5 show a

variety of distributions that will be described below.

Roughly speaking, an ensemble of molecules has an orientation if the angular

momentum vectors of all the molecules tend to point in the same direction. The

Figure 1.5: Various examples of distributions of m for j = 2 as discussed by
Green and Zare [12]. Panel (a) show a population uniformly distributed
among the m sublevels. Panel (b) shows a population with orientation.
Panel (c) shows a population with alignment. Panels (d) and (e) show
other m distributions of population. Panel (f) shows a linear combination
of the distributions in the other panels.
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exact definition [12] can be explained using the well-known vector model for angular

momentum, which is shown in Fig. 1.6 applied to the NaK molecule. The angular

momentum of the NaK molecule is labeled as j. This vector has length ~
√

j(j + 1)

and is precessing around the z-axis with fixed cone angle θ. The projection of the

angular momentum onto the z-axis is m~. When studying m changing collisions

experimentally, it is important to note how the z-axis is defined for a particular

setup. There are two main setups commonly used, the beam and the cell experiment.

The beam experiment directs a beam of incident particles towards the targets. In

this type of experiment, the z-axis is defined along the direction of the particle

beam. The experiments performed by Huennekens’ group more closely resemble a

cell environment, in which the incident He atoms may impact the NaK targets from

any direction within the heat pipe. In experiments with a circularly polarized pump

laser the z-axis is taken to be the direction of propagation of the laser beam. The

orientation is defined by

〈cos θ〉 =

〈

m
√

j(j + 1)

〉

, (1.3.1)

where the average is over the ensemble of molecules. Panel (b) of Fig. 1.5 shows an

ensemble with a non-zero orientation.

Another measure of the distribution of the m levels of an ensemble of molecules

is known as the alignment, which is defined [12] as

Alignment =

〈

1

2

3m2 − j(j + 1)
√

j(j + 1)
[

j(j + 1) − 3
4

]

〉

. (1.3.2)

In the limiting case where j ≫ 1, one can neglect the 3
4

inside the square root and
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transform Eq. 1.3.2 into

Alignment ≈ 1

2

〈

3m2

j(j + 1)
− 1

〉

=

〈

3 cos2 θ − 1

2

〉

. (1.3.3)

The distribution in Panel (c) of Fig. 1.5 is a case of population with alignment,

which is symmetric. Note that average value of m in this case is zero meaning that

the orientation is zero, even though the population distribution is non-uniform.

In general, the distribution of m values may be converted to a distribution of

θ using cos θ = m/
√

j(j + 1). Then in the limit of large j, this distribution of θ

can be described by an expansion of Legendre polynomials in cos θ. The orientation

and alignment are then just the ensemble averages of the Legendre polynomials

P1(cos θ) and P2(cos θ). This idea can be extended to higher moments of the distri-

bution. The remaining panels in Fig. 1.5 show other m distributions of population

that can be described by these higher moments. Panels (d) and (e) for instance

are representations of linear combinations of population with ensemble averages of

P3(cos θ) and P4(cos θ), respectively. Alignment and the other even order moments

do not distinguish between +m and −m and are symmetric about m = 0. Panel

Figure 1.6: Vector diagram of rotational angular momentum in NaK.
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(f) shows a superposition of the first five moments. These moments will be used

to describe the distribution of population among the m sublevels of NaK molecules

that have undergone collisions.

1.4 Polarization Spectroscopy

Dr. Huennekens’ group studies the effect of collisions on orientation of the NaK

molecule using the technique of polarization spectroscopy [10]. As explained ear-

lier, molecules are excited to selected rovibrational levels of the A1Σ+ state of NaK.

In order to study how orientation is affected by collisions, the system is first given

an uneven distribution of m in the A1Σ+ state. To achieve this, the pump beam

is circularly polarized. The z-axis for a circularly polarized beam is defined in the

direction of the laser beam propagation. The arrows in Fig. 1.7 represent the tran-

sitions allowed due to selections rules when the pump beam is circularly polarized.

The circularly polarized light selectively induces transitions for which ∆m = 1 is

positive. Thus, the higher m levels have been selectively populated, creating an

average m which is not zero, and therefore an orientation. The ground state is also

unevenly depleted, creating an orientation in the ground state as well.

After the orientation is established in the molecules in the (v, j) rovibrational

Figure 1.7: Circularly polarized beam selectively populates the higher m levels
of the intermediate state.
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Figure 1.8: Selection rules of linearly polarized probe beam. This diagram shows
how a linearly polarized probe beam is used to determine the orientation of
the intermediate A1Σ+ state. The left circularly polarized pump beam has
selectively populated the higher m levels of the A1Σ+ state, as represented
by the arrows in the lower transition. The selection rules of the left and
right portions of the linearly polarized probe beam are represented as arrows
in the higher transition. The uneven population of the m levels causes the
right and left component of the probe beam to be absorbed and refracted
differently, resulting in a slight ellipticity to the probe beam.

level of the A1Σ+ state, several possible events may occur. Some molecules may be

excited to the higher state by the probe; these transitions contribute to the direct

line. Other molecules may experience a collision that changes the rovibrational level

to (v, j′) before being excited to the highest state. These molecules will contribute

to a satellite line. We consider those molecules that are transferred to the (v, j′)

rovibrational levels by collisions and ask what percent of the orientation originally

present is retained after the collision.

Polarization spectroscopy measures the amount of orientation that is maintained

during a collision. The probe beam passes through a linear polarizer before entering

the heat pipe. Linearly polarized light can be thought of as equal parts left and right

circularly polarized light. The arrows in the upper transition in Fig. 1.8 represent

the selection rules for the transition from the A1Σ+ state to the highest state. Recall

that the higher m levels of the intermediate A1Σ+ state have a larger population
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due to the selective population by the pump beam. This causes the left and right

portions of the probe beam to be absorbed and refracted unequally. Thus, when

the probe beam exits the heat pipe, it has a slight elliptical polarization.

Before the probe beam is detected, it passes through a second polarizer oriented

at 90◦ to the original polarizer. If both components of the probe beam were equally

attenuated as they passed through the system, then none of the probe beam would

reach the detector. However, a probe transition from the directly populated level

(v, j), which has an orientation due to the pump beam, will allow some transmission

through the second polarizer and,therefore, will be detected. In this instance, the

probe beam has been tuned to a transition from a level that has deliberately been

oriented. The probe beam acquires a slight elliptical polarization, allowing it to

be partially transmitted through the second polarizer. If a collision occurs that

causes a change in the rotational level (j → j′) and also preserves the orientation,

the transition from that (v, j′) level will also be detected. However, a collision that

changes the angular momentum (j → j′) but destroys the orientation will not cause

the probe beam to be elliptically polarized, and will not be detected. The ratio

of intensities of the detected probe beam for the collisional to the direct excitation

is proportional to the ratio of the product of the population of the levels and the

average m. By knowing the collisional transfer of population from the fluorescence

spectroscopy experiments, the collisional transfer of orientation can be determined.

Figure. 1.9 shows the results of experiments studying collisions of Ar with

NaK. The plot shows the fraction of orientation destroyed by these collisions, fAr.

Roughly 40%−75% of the orientation created in the direct level of the intermediate

A1Σ+ state was transferred to (v, j′) levels during collisions with Ar.
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Figure 1.9: Experimental results of NaK collisions with Ar. The fraction of
orientation destroyed in a collision, fAr, that transfers population from state
j to j′ is shown as a function of ∆j. Collisions with Ar cause approximately
40% − 75% of the orientation to be preserved.

1.5 Current Experiments

Wolfe’s original experiments [2] involved collisions of NaK molecules in theA1Σ+ state

with Ar and K perturbers. Both systems are more difficult to treat theoretically

than a simpler system such as He + NaK. For this reason, Dr. Huennekens’ group

is currently conducting a series of experiments involving collisions of He with NaK

molecules in either the X1Σ+ or A1Σ+ states. To conduct these experiments, He

is used as a buffer gas in the heat pipe. Performing calculations to compare with

experiment will be easier for He as the collisional partner.

Additional modifications must be made to the experimental procedures to study

the X1Σ+ state of NaK. The experiments discussed previously involved collisions

with NaK in the A1Σ+ state, which was only populated via the pump beam. The

X1Σ+ state of NaK is thermally populated within the heat pipe. A V-type laser
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method shown in Fig. 1.10 is used to study changes in j of the ground state due to

collisions. As before, the pump laser is fixed on a single transition out of the ground

state, however in this setup the pump beam is chopped. Chopping modulates the

population in a particular j level of the ground state. Other j levels will be thermally

populated, but by chopping the pump beam a particular j level is isolated and only

signal modulated at the same frequency as the chopper corresponds to the “tagged”

level. Any population that is transferred into the other j′ levels due to collisions of

Ar with NaK molecules in the tagged j level will be modulated at this frequency.

The probe laser is used to excite transitions out of the ground state, and the

fluorescence is monitored. Transitions from the ground state include the collisionally

populated j′ levels, which again appear as satellite lines and are used to determine

the amount of population transferred to other j′ levels by collisions.

The modifications made to the polarization experiment will be similar to those

Figure 1.10: Diagram of the V-type scheme used by Dr. Huennekens’ group to
study rotationally inelastic collisions of ground state NaK using fluores-
cence spectroscopy. The pump beam is chopped so that the population
in a particular j level of interest will be modulated at a known frequency.
Fluorescence modulated at the same frequency gives information about
transitions out of various j′ levels excited by the probe beam.
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Figure 1.11: Diagram of the V-Type scheme used by Dr. Huennekens’ group to
study orientation transfer during rotationally inelastic collisions of ground
state NaK using polarization spectroscopy. The pump beam is left circu-
larly polarized to create an orientation in the ground state and chopped
to “tag” a particular j level. Polarization signal detected from the probe
beam will only be collected if it is modulated at the same frequency as the
chopper.

made to the fluorescence spectroscopy and can be seen in Fig 1.11. In addition to

being left circularly polarized, the pump beam is now also chopped. The ground

state j level is tagged and oriented using modulated left circularly polarized light of

the pump laser. The linearly polarized probe laser is then scanned over transitions

from the ground state. Any signal from the probe laser that has been slightly ellip-

tically polarized by the vapor will partially pass through the crossed polarizer where

the laser exits the heat pipe, indicating an orientation of the j level. Polarization

signal detected from the probe beam will only be collected if it is modulated at the

same frequency as the chopper. Again, the relative strength of the direct line to

satellite lines gives the relative product of the population and average m.

These planned experiments are expected to provide data that can be directly

compared with the calculations presented in this dissertation.
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Chapter 2

Theory

2.1 The Schrödinger Equation

The basis for quantum mechanics of atoms and molecules is the Schrödinger equa-

tion. The time-independent Schrödinger equation (TISE) is written as

ĤΨ = EΨ, (2.1.1)

where Ĥ is the Hamiltonian operator, Ψ is the wave function describing the quantum

mechanical state of the system, and E is the energy of the system in that state. E

are the eigenvalues and Ψ are the eigenvectors of the TISE.

The Hamiltonian is the sum of operators corresponding to the kinetic, potential

and any other energy terms in the system. Our work focuses on molecular systems of

the general form AB + X. The Hamiltonian that pertains to this system is expressed

as

Ĥ = −~
2

2

3
∑

α=1

∇2
α

Mα

− ~
2

2me

N
∑

k=1

∇2
k + U(R, r1, . . . , rN). (2.1.2)
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The first term is the kinetic energy operator for the nuclei, where Mα is the mass of

the αth nucleus. The second term is the kinetic energy operator of the N electrons,

where me is the electron mass. The final term U(R, r1, . . . , rN) is the Coulomb po-

tential describing the interaction between particles, where R collectively represents

the coordinates of all the nuclei, R1, R2, and R3, and rk (k = 1, . . . , N) describes

the coordinates of the N electrons. Solving Eq. 2.1.1 for this Coulomb interac-

tion is a nontrivial task that involves treating the nuclear and electronic motion

simultaneously. For all but the simplest systems, the complexity of the interactions

between the particles makes finding the exact solution impossible. However, the

Born-Oppenheimer approximation allows for the decoupling of the electronic and

nuclear motions, which makes solving this equation managable.

2.1.1 Born-Oppenheimer Approximation

The physical basis of the Born-Oppenheimer approximation is the significant dif-

ference between the masses of the nuclei and electrons [13]. This mass difference

allows us to make the approximation that the relatively light electrons move instan-

taneously compared to the relatively massive nuclei. Treating the nuclear particles

as stationary allows the separation of the nuclear and electronic motion. The nuclear

and electronic problems can thus be solved independently.

The Hamiltonian in Eq. 4.1.2 can be separated into nuclear and electronic parts:

Ĥ = −~
2

2

∑

α

∇2
α

Mα

+ Ĥelec(R, r1, . . . , rN). (2.1.3)

As before, the first term is the nuclear kinetic energy operator. The second term

Ĥelec(R, r1, . . . , rN) is referred to as the electronic Hamiltonian. Ĥelec describes the
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motion of the electrons for a fixed set of nuclear coordinates R:

Ĥelec = − ~
2

2me

N
∑

k

∇2
k + U(R, r1, . . . , rN). (2.1.4)

Now it is possible to solve the electronic form of the Schrödinger equation,

Ĥelecψn(R, r1, . . . , rN) = En(R)ψn(R, r1, . . . , rN), (2.1.5)

for a set of electronic wave functions ψn and energies En(R) for any fixed R.

Though the problem has been significantly simplified, it is still not simple. An-

other point of consideration is that the electronic Schrödinger equation must be

solved for all relevant nuclear positions. The total molecular wave function can be

written as an expansion involving the ψn wave functions, which are orthogonal for

each fixed R,

Ψ(R, r1, . . . , rN) =
M
∑

n=1

χn(R)ψn(R, r1, . . . , rN), (2.1.6)

where the nuclear wave functions χn(R) will be determined by substitution into the

Schrödinger equation.

Eq. 2.1.6 is now substituted into Eq. 2.1.1. The result is then multiplied by ψm

and integrated over the electronic coordinates rk to yield

∫

ψm(R, r1, . . . , rN)

[

−~
2

2

∑

α

∇2
α

Mα

+Ĥelec

]

M
∑

n=1

χn(R)ψn(R, r1, . . . , rN)dr1 . . . drN

= E

∫

ψm(R, r1, . . . , rN)
M
∑

n=1

χn(R)ψn(R, r1, . . . , rN)dr1 . . . drN . (2.1.7)
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The orthogonality of the electronic wave functions ψm(R, r1, . . . , rN) and the fact

that they are eigenfunctions of the electronic Hamiltonian Ĥelec allows us to write

∫

ψm(R, r1, . . . , rN)Ĥelecψn(R, r1, . . . , rN) dr1 . . . drN

= 〈ψm(R, r1, . . . , rN)|Ĥelec|ψn(R, r1, . . . , rN)〉 = En(R)δmn (2.1.8)

where the δmn is the Kronecker delta function. Eq. 2.1.8 can be used in Eq. 2.1.7

to obtain

~
2

2

∑

α

1

Mα

M
∑

n=1

〈ψm(R, r1, . . . , rN)|∇2
α|χn(R)ψn(R, r1, . . . , rN)〉

= [Em(R) − E]χn(R)

(2.1.9)

The kinetic energy operator on the right hand side of Eq. 2.1.9 acting on the wave

function gives

∇2
α

[

χn(R)ψn(R, r1, . . . , rN)
]

= ∇α·
[

{∇αχn(R)}ψn(R, r1, . . . , rN) + χn(R)∇αψn(R, r1, . . . , rN)
]

=
[

∇2
αχn(R)

]

ψn(R, r1, . . . , rN) + 2
[

∇αχn(R)
]

·∇αψn(R, r1, . . . , rN)

+ χn(R)∇2
αψn(R, r1, . . . , rN).

(2.1.10)

Substituting this expansion into Eq. 2.1.9 and rearranging terms yields a set of
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coupled differential equations:

[

−~
2

2

∑

α

1

Mα

∇2
α + Em(R) − E

]

χm(R)

=
~

2

2

∑

α

1

Mα

M
∑

n=1

[

2∇αχn(R)· 〈ψm|∇α|ψn〉 + χn(R)〈ψm|∇2
α|ψn〉

]

(2.1.11)

Eq. 2.1.11 represents an exact set of coupled equations for the functions χm(R),

m = 1, . . . ,M defined in Eq. 2.1.6. The solution χm(R) for any one of these

functions depends on all of the others because of the coupling on the right hand side

of Eq. 2.1.11. Each of the coupling terms involves derivatives of the electronic wave

functions ψn with respect to the nuclear coordinates. This is the point at which

the Born-Oppenheimer Approximation is applied. As was stated previously, the

electronic wave functions ψn often depend very weakly on the nuclear coordinates.

In those cases, the terms that include ∇αψn can be neglected. This approximation

leaves us with a set of separated, uncoupled equations for each nuclear wave function

χm(R) that correspond to nuclear motion on a single potential surface Em(R):

[

−~
2

2

∑

α

1

Mα

∇2
α + Em(R) − E

]

χm(R) = 0. (2.1.12)

In summary, the Born-Oppenheimer approximation has yielded a set of uncou-

pled equations for the nuclear motion. Each of these equations uses the electronic

energy solutions Em(R) to the electronic Schrödinger equation Eq. 2.1.5 as a po-

tential energy surface. Qualitatively speaking, one can say that the massive nuclei

move very slowly, allowing the individual electrons to react instantaneously to the

nuclear motion. Thus, the electron cloud affects the nuclei as potential energy.
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The potential surface is formed by finding a set of energies Em(R) for systemat-

ically varied values of R, which form a grid of nuclear positions. This potential

surface is then used to solve the uncoupled equations in Eq. 2.1.12. Though the

Born-Oppenheimer approximation has greatly simplified solving the Schrödinger

equation by separating the electronic and nuclear parts, the individual tasks are

still quite formidable.

2.2 Electronic Structure Calculations

To solve the electronic Schrödinger equation Eq. 2.1.5, we employ the General

Atomic and Molecular Electronic Structure Systems (GAMESS)[14] code. GAMESS

is one of many available ab initio quantum chemistry codes used to calculate the

wave functions and energy of a system. This section will give a brief overview of

how these codes work.

2.2.1 Formation of the Molecular Orbitals

In a molecule, the multi-electron wave function is constructed from separate, single

particle wave functions for each electron called molecular orbitals (MOs). The MOs

are linear combinations of atomic orbitals (LCAO) [15]. This form is an obvious

choice when certain limiting cases of the system are considered. When the atoms

are well separated, each atom will have electrons that occupy atomic orbitals. At

closer internuclear separations, the interaction of the electrons and nuclei will cause

the orbitals to deform. The inclusion of multiple atomic orbitals provides a means of

describing this deformation. Thus, an LCAO method with enough atomic orbitals

sufficiently represents the MO for all possible separation limits.
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The first step is to determine which basis functions (called primitive basis func-

tions) will be used to describe the atomic orbitals. There are two common types

of primitive basis sets used in electronic structure calculations; Slater-type orbitals

(STOs) and Gaussian-type orbitals (GTOs). Atomic s type STOs have the form [16]

gSTO(r) =

(

ζ3

π

)
1

2

e−ζr. (2.2.1)

Atomic s type GTOs have the form [17]

gGTO(r) =

(

2γ

π

) 3

4

e−γr2

. (2.2.2)

STOs have the same form as the exact solution for the hydrogen 1s orbital. However,

STOs are not often used because many of the integrals necessary for polyatomic

molecules cannot be evaluated analytically. While integrals involving GTOs can be

evaluated analytically, GTOs do not properly describe the long range behavior of

the hydrogen atomic orbitals. This deficiency can be addressed by using a linear

combination of GTOs, called contracted GTOs, as shown in Eq.2.2.3.

g(r) =
L
∑

j=1

cj

(

2γj

π

) 3

4

e−γjr2

(2.2.3)

The contracted GTOs are comprised of normalized primitive GTOs and are used

as the atomic orbitals for the expansion of the molecular orbitals. Over the years,

extensive work has been done to determine the best possible basis sets for each type

of atom by optimizing the number of terms L, the expansion coefficients cj, and the

exponents γj.
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The example of Gaussian-type primitive basis functions given in Eq. 2.2.2 is

representative of s type atomic orbitals. To describe the electrons in higher atomic

orbitals, other forms of GTOs must be used. These functions have the same radial

form as the s type orbitals, but must include an angular dependence. For example,

the px type orbitals have the form

gpx
(r) =

(

27γ5

π3

)
1

4

xe−γr2

(2.2.4)

and dxy type orbitals have the form

gdxy
(r) =

(

211γ7

π3

)
1

4

xye−γr2

. (2.2.5)

Other forms of contracted GTOs shown in Eq. 2.2.3 can be created using these and

other GTOs.

As previously stated, the contracted basis functions are used to construct opti-

mized atomic orbitals for each element. The chosen contracted GTOs are then used

as a basis set to calculate the MOs of the molecule in question. The general form

of any molecular orbital φ is

φ(R, r) =
M
∑

j=1

ξjgj(r − Rα(j)) (2.2.6)

where ξj is a weighting coefficient, gj is a contracted GTO of type s, px, py, pz, etc.

and Rα(j) is the position of the αth nucleus about which the jth contracted GTO is

centered. The number of linearly independent MOs is the same as the number of

atomic orbitals, M , included in the basis set. Note that the GTO’s dependence on
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Rα(j) causes the molecular orbitals to be dependent on the position of the nuclei of

the atoms as well.

Thus far, we have only considered the spatial portion of the molecular orbitals

necessary to solve the Schrödinger equation. We must also incorporate spin to

describe the electronic states properly. The spin functions α and β will be used to

represent spin up and spin down, respectively. The spin functions are orthonormal.

With the inclusion of the spin functions, each spatial orbital yields two possible spin

orbitals χ

χi(R, r) =











φ(R, r)α

φ(R, r)β
(2.2.7)

Another condition the multi-electron wave function must satisfy is the Pauli

Exclusion Principle, which states that an exchange of all coordinates of any two

electrons must produce a change in sign of the total wave function. Thus, the total

electronic wave function ψ must have the property

ψ(r1, . . . , ri, . . . , rj, . . . , rN) = −ψ(r1, . . . , rj, . . . , ri, . . . , rN). (2.2.8)

To meet this requirement, the total electronic wave function is written as a deter-

minant of spin orbitals, known as a Slater Determinant, which has the form

Φ(R, r1...rN) = (N !)−
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(R, r1) χ1(R, r2) · · · χ1(R, rN)

χ2(R, r1) χ2(R, r2) · · · χ2(R, rN)

...
...

...

χN(R, r1) χN(R, r2) · · · χN(R, rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.2.9)

In the Slater determinant, each row corresponds to a particular spin orbital and
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each column corresponds to each electron. The (N !)−
1

2 term is a normalization

factor. The total electronic wave function has R dependence due to the fact that

each GTO basis function is centered at the nucleus of a specific atom. The Slater

determinant can also be written in a more compact form using the antisymmetrizer

operator

Φ(R, r1...rN) = A{χ1(R, r1) · · ·χN(R, rN)} . (2.2.10)

The important feature of the Slater determinant is that it automatically satisfies

the antisymmetry requirement. An exchange of electrons i and j corresponds to

an exchange of columns i and j, which due to the mathematical nature of the

determinant changes the sign. The Slater determinant also ensures that no two

electrons will have exactly the same quantum numbers, because if two electrons

occupy the same spin orbital (χm(R, ri) = χm(R, rj)) two columns will be identical,

and the determinant will be zero.

2.2.2 Variational Principle

Now that the basic form of the MOs have been reviewed, we will discuss finding

the optimal orbitals for a molecular system. The Variational Principle states that

for any approximate solution to the Schrödinger equation, ψapprox
0 , the expectation

value of the energy, Eapprox
0 , must be greater than or equal to the exact ground state

energy, Eexact
0 :

Eapprox
0 =

∫

(ψapprox
0 )∗ Ĥelec ψ

approx
0 dr = 〈ψapprox

0 |Ĥelec |ψapprox
0 〉 ≥ Eexact

0 .

(2.2.11)
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This result is due to the fact that the approximate wave function ψapprox
0 can be

written as a linear combination of the exact wave functions, ψexact
m ,

ψapprox
0 =

∑

m

cmψ
exact
m , (2.2.12)

because the exact wave functions form a complete, orthonormal basis set. The form

of the approximate wave function Eq. 2.2.12 allows the approximate expectation

energy Eq. 2.2.11 to be written as

Eapprox
0 =

〈

∑

m

cmψ
exact
m |Ĥelec |

∑

n

cnψ
exact
n

〉

(2.2.13)

=
∑

m

∑

n

〈cmψexact
m |Ĥelec |cnψexact

n 〉

=
∑

m

∑

n

c∗mcnE
exact
n 〈ψexact

m |ψexact
n 〉

=
∑

n

|cn|2Eexact
n ≥ Eexact

0 .

If the wave function is exactly the ground state wave function, the energy will be

the actual ground state energy, which is the lowest possible energy. Any other wave

functions will result in an energy higher than the ground state energy. The vari-

ational principle is usually implemented by selecting a physically appropriate trial

wave function that has one or more adjustable parameters. The best approximate

wave function is found by selecting the values of the parameters that minimizes

Eapprox
0 . The best parameters are often found using linear variational theory, which

is described in the next section.
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2.2.3 Linear Variational Theory

The electronic structure calculations used in this research are based on the linear

variational theory. A complete description of the method is provided in McQuarrie

[18]. Linear variational theory applies to cases where one wants to find the best

solution to

(Ĥ − E)Ψ = 0 (2.2.14)

by using a trial wave function Ψtrial that is a linear combination of known functionsfi:

Ψtrial =
∑

i

cifi, (2.2.15)

where the ci are adjustable parameters that are varied to minimize 〈E〉, the expec-

tation value of the energy. Using the trial wave function and the Hamiltonian Ĥelec

we can define matrix elements

Hij = 〈fi|Ĥ|fj〉 and Sij = 〈fi|fj〉. (2.2.16)

Substituting the normalized trial wave function into the Schrödinger equation, mul-

tiplying on the left by the complex conjugate of the wave function, and integrating

over all space yields

〈E〉 =

∑

ij c
∗
i cjHij

∑

ij c
∗
i cjSij

. (2.2.17)

Eq. 2.2.17 is rearranged and differentiated with respect to the ci coefficients to

obtain the minima of the expectation energy. This yields the set of equations

∑

j

(Hij − ESij)cj = 0 (2.2.18)
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where the energies E are the eigenvalues and the cj are the eigenvectors. The

energies can be found by solving the secular determinant det(Hij −ESij) = 0. The

eigenvector cj corresponding to the lowest eigenvalue gives the coefficients for an

approximate ground state wave function in Eq. 2.2.15. This lowest eigenvalue gives

Eapprox
0 for the chosen trial wave function.

Generally speaking, the functions fi used to form the trial wave function are

chosen or mathematically manipulated to be orthonormal [14]. For orthonormal

functions, Sij becomes the Kronecker Delta function Sij = δij. This choice of

orthonormal functions simplifies Eq. 2.2.18 to a standard eigenvalue equation:

∑

j

(Hij − Eδij)cj = 0. (2.2.19)

Again, the determinant of Eq. 2.2.19 is set equal to zero, used to solve for the lowest

energy, which is in turn used to produce the coefficients of the wave function.

2.2.4 Hartree-Fock Approximation

Solving the electronic Schrödinger equation can be achieved with varying degrees of

accuracy. In all cases, some form of approximation must be used. One of the most

fundamental approaches is the Hartree-Fock (HF) approximation [15]. The simplest

form of this method applies only to closed shell systems, for which the number of

electrons N is even. The trial wave function used in the HF method is a single

Slater determinant of the form in Eq. 2.2.9. The total electronic wave function can

be written as

ψHF(R, r1...rN) = Aχ1(R, r1) · · ·χN(R, rN). (2.2.20)
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There are a total of N
2

spatial molecular orbitals, each doubly occupied, which is

why this is sometimes called the closed-shell method.

The main difficulty in solving the Schrödinger equation is treating the electron-

electron interactions. The approximation made in the Hartree-Fock approach is to

assume that each electron experiences the average electric field caused by all the

other electrons. In the mathematical formulation of this approach, one defines an

effective one-electron Schrödinger equation,

(ĥ+ V̂ )φ(r) = Eφ(r), (2.2.21)

where ĥ is a one-electron operator that includes the kinetic energy plus the Coulomb

interaction of the electron with each nucleus, and V̂ is a nonlocal operator repre-

senting the average potential that has an effect on one electron. Linear variational

theory is then used to solve for the optimum electron orbitals that can be con-

structed within a given basis set. If the set has M basis functions gj, where M ≥ N
2

and N is the number of electrons, then there are M orbitals φi(r), i = 1, . . . ,M

defined by

φi(R, r) =
M
∑

j=1

cjigj(r −Rα(j)) (2.2.22)

where the rows of the matrix cji correspond to the M eigenvectors discussed earlier

in section 2.2.3. The N
2

occupied spatial molecular orbitals in the HF approximation

are given by orbitals defined in Eq. 2.2.22, corresponding to the lowest N
2

eigenvalues

determined by linear variational theory.

Because the operator V̂ in Eq. 2.2.21 depends on the molecular orbitals, it is

necessary to solve Eq. 2.2.21 iteratively. An initial set of orbitals is chosen and used
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to compute a potential field felt by each electron. This field is in turn used to find a

new set of orbitals by varying the coefficients of the LCAO. This iterative process is

repeated until the orbitals result in the same field used to find them. This method

is also called the Self-Consistent Field (SCF) method in reference to the properties

of the solution.

While the Hartree-Fock method is appropriately accurate in some cases, it may

not be sufficient in all cases. Approximating all the electron-electron interactions

with a potential field can cause unrealistic behavior. To account for the instan-

taneous repulsion between electrons, a method must be used that correlates the

motion of the electrons.

2.2.5 Configuration Interaction

The HF calculations use a single Slater determinant. The key advantage of the

Configuration Interaction (CI) calculations is that the wave function is a linear

combination of Slater determinants,

ψ(R, r1...rN) =
∑

j

ϑjΦj(R, r1...rN) (2.2.23)

In many cases some of the Φj may be linear combinations of Slater determinants

chosen to be eigenfunctions of the total spin. The general term for the Φj in

Eq. (2.2.23) is configuration state function (CSF).

In Eq. 2.2.23 the first CSF is the Hartree-Fock ground state, which is formed by

having electrons occupy the N
2

lowest orbitals of a N
2
× N

2
determinant. Those oc-

cupied orbitals are referred to as the ground state orbitals, and unoccupied orbitals

above the ground state are referred to as virtual orbitals. Higher energy CSFs can
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be formed by promoting one or more electrons from the ground state orbitals to the

virtual orbitals. These excited CSFs are included in the CI wave function. Including

multiple configurations leads to a more accurate treatment of the electron-electron

interaction. In CI calculations, the molecular orbitals are held constant. The co-

efficients ϑ of Eq. 2.2.23 are the adjustable parameters of a CI calculation and are

varied according to linear variational theory.

The most complete form of the wave function would include all possible excita-

tion states, formed by promoting every electron in the ground state to every possible

virtual orbital, in every possible combination. The total number of configurations

can be determined with a binomial coefficient

(

K

N

)

=
K!

N !(K −N)!
, (2.2.24)

where K is the total possible number of spin orbitals define in Eq. 2.2.7 and N is

the number of electrons in the molecule [18]. As an illustrative example, the He

atom + the NaK molecule system has N = 32 electrons and a typical basis includes

K = 76 spin orbitals. This results in 2.695×1021 possible configurations. Using this

many configurations in a calculation is not possible and in most cases unneccesary.

By only considering excited determinants in which at most two electrons are

promoted to a virtual orbital, one can still obtain reliable results. This is referred

to as a Singles and Doubles CI (SDCI) or a Second Order CI (SOCI). However,

calculations of this nature are very large. Further approximations can be used to

reduce the computer resources needed, but care must be taken to find a balance

between the desired accuracy and available computing resources.

Electrons in higher occupied orbitals are more likely to be promoted from the
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ground state than those in lower energy core occupied orbitals. The electrons in

low energy orbitals will not be allowed to be promoted; those orbitals are called the

frozen core. The orbitals above those occupied in the ground state are called the

virtual orbitals. The orbitals that have electrons that can be promoted are known

as the active space. The electrons in the active space are then excited in single and

double excitations. Finally, promoting any of the electrons to the highest virtual

space orbitals is also very unlikely. Thus, some of the upper virtual space orbitals

can also be frozen. The number of frozen core orbitals is the same number of virtual

space orbitals frozen in our calculations.

2.2.6 Multi-Configuration Self Consistent Field

In systems with open shell atoms or molecules, the single Slater determinant of

the HF method may not sufficient. The Multi-Configuration Self Consistent Field

method also uses a linear combination of Slater determinants. However, in MCSCF

calculations both the coefficients of the molecular orbitals (ξij) and the coefficients

of the CSFs (ϑi) are optimized. The molecular orbitals calculated using the MCSCF

method and those that correspond to the single and double excitations can then be

used in the CI calculations, discussed in subsection 2.2.5.

2.2.7 Concluding Remarks

The needs and restrictions of each individual calculation will determine the size

and type of procedure applied. The calculations in this work include scattering of

helium with both the ground and excited state of NaK. The methods used for each

of the electronic structure calculations will be discussed further in Chapter 3.
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Chapter 3

Calculations of the Potential

Experimental data are available for helium collisions with NaK in the first excited

(A1Σ+) electronic state and will hopefully be available soon for He collisions with

ground state (X1Σ+) NaK [19]. The first step in performing calculations that can

be compared with these experiments is to determine potential energy surfaces for

the interaction of helium with the ground and first excited states of NaK. The

potential energy depends on the bond length of the NaK, rv, the distance of the

helium from the center of mass of the NaK molecule, Rd, and the angle θ as shown

in Fig. 3.1. This work fixed the NaK internuclear distance, rv, at the equilibrium

separation. To determine a full potential surface, calculations must be performed

at multiple values of Rd and θ.

Figure 3.1: The Jacobi coordinate system used to describe He + NaK.
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3.1 Ground State of NaK

3.1.1 Electronic Structure Calculations for the Ground State

We determined the potential energy surface (PES) of the ground state of He + NaK us-

ing standard techniques of electronic structure calculations, as implemented using

the GAMESS code [14]. For the closed-shell ground electronic state of He + NaK we

performed a restricted Hartree Fock calculation and then a configuration interaction

(CI) calculation. The basis set is shown in Table 3.1. A 5s2p/3s2p basis set was

used for He [20] and 6-311G++(3d) (triple zeta plus three d polarization functions)

for Na [20, 21] and K [22]. For the CI calculations, the six lowest core orbitals were

frozen and the six highest orbitals of the virtual space were closed to excitation.

With single and double excitations from the reference state, the total number of

configurations state functions (CSFs) was 160,021.

The NaK separation, rv, was fixed at the equilibrium value of the ground state,

6.612 a0, which was determined experimentally by Russier-Antoine et al. [23]. This

corresponds approximately to the v = 0 vibrational level of the X1Σ+ state. The

calculations described above were performed for various combinations of Rd and

θ. For the ground state, calculations were done at intervals of 0.50 a0 for Rd =

4.00–6.00 a0 and 11.00–20.00 a0. For Rd = 6.00–11.00 a0, calculations were done

at 0.25 a0 intervals. Addtional potential energies were calculated at Rd = 21.00,

22.00, 23.00, 24.00, 25.00, 26.00, 27.50, 29.00, and 30.00 a0.

Calculations were performed for a greater number of θ in regions of Rd where

the potential was particularly sensitive to the angular position. Depending on the

value of Rd, calculations were performed for angles θ between 0◦ and 180◦ with
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Table 3.1: Gaussian type basis functions used for HeNaK. Column three gives the
coefficients of the normalized GTO in the contracted orbital. The d functions
are polarization functions.

He AOs Exponent Coefficient K AOs Exponent Coefficient

s 98.1243000 0.0287452 s 182594.00000 0.00053
14.7689000 0.2080610 27369.00000 0.00408
3.3188300 0.8376350 6229.17000 0.02123

s 0.8740470 1.0000000 1764.58000 0.08649
s 0.2445640 1.0000000 577.05100 0.28183
p 1.5000000 1.0000000 210.24900 0.69044
p 0.3750000 1.0000000 s 82.61780 0.60152

33.23320 0.43432
Na AOs Exponent Coefficient s 8.10649 1.00000

s 3.33403 1.00000

s 36166.40000 0.00103 s 0.84554 1.00000
5372.58000 0.00807 s 0.32822 1.00000
1213.21000 0.04213 s 0.03640 1.00000
339.62300 0.16979 s 0.01765 1.00000
109.55300 0.51462 p 891.05400 0.02294
38.77730 0.37982 211.01600 0.18469

s 38.77730 0.37476 67.67140 0.85867
14.57590 0.57577 p 25.27150 0.26380
5.26993 0.11293 10.13900 0.46604

s 1.82777 1.00000 4.20186 0.38914
s 0.61995 1.00000 p 1.62507 1.00000
s 0.05724 1.00000 p 0.64377 1.00000
s 0.02405 1.00000 p 0.24613 1.00000
p 144.64500 0.01149 p 0.04544 1.00000

33.90740 0.08238 p 0.01616 1.00000
10.62850 0.31966 d 13.37000 0.06259
3.82389 0.70130 3.42100 0.31072

p 1.44429 0.63851 1.06300 0.77361
0.55262 0.42537 d 0.68700 1.00000

p 0.18872 1.00000 d 0.22900 1.00000
p 0.04650 1.00000 d 0.07633 1.00000
p 0.01629 1.00000
d 0.70000 1.00000
d 0.17500 1.00000
d 0.04375 1.00000
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an angular separation of 5◦, 15◦, and 30◦. The table in Appendix A lists all the

results of the GAMESS calculations preformed for the ground state of He + NaK.

Calculations were performed for Rd = 10000.00 a0 to obtain the asymptotic limit

of −764.216454654 Eh. For the calculations of the potential surface, this value was

subtracted from all the calculated potential energies to obtain values relative to the

asymptotic limit.

3.1.2 General Considerations for Fitting the PES

The PES was fit with a Legendre polynomial expansion of the form

V (Rd, θ) =
λmax
∑

λ=0

vλ(Rd)Pλ(cos θ). (3.1.1)

This form of the expansion is required for the coupled channel scattering that will

be discussed in Chapter 4. To determine the vλ(Rd) coefficients at each value of

Rd, we must fit the points calculated for various θ values at that Rd using Legendre

polynomials. Several factors play a roll in determining the details of this fit.

If we regard the potential V (Rd, θ) to be a function of Rd and cos θ, then the

Legendre polynomial expansion of the θ dependence is essentially equivalent to a

polynomial expansion in terms of cos θ. [Pλ(cos θ) is a polynomial in cos θ whose

maximum power is (cos θ)λ]. This equivalence allows us to use standard, readily-

available polynomial least squares fitting routines [24] to find a suitable fit. However,

before performing the fit, one must still decide how many terms (λmax+1) to include.

The simplest approach would be based on the fact that a polynomial of maximum

degree λmax (that is, λmax + 1 terms) can be found that will exactly fit λmax + 1

points. For example, Fig. 3.2(a) shows that for Rd = 25 a0, an exact fit to five
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calculated points is completely satisfactory. For this value of Rd, more calculated

points are available, and 3.2(b) shows that a five term fit to thirteen calculated

points is still satisfactory. The rms deviation of the five term fit to all thirteen

points is 9 × 10−9 Eh (0.002 cm−1), which is very small compared to the probable

uncertainty in the calculation itself.

The situation is not always so simple. For example, Fig. 3.3 shows a 13 term

fit to 13 angular points calculated for Rd = 6.50 a0. In this case, the oscillations

in the fit are obviously unphysical. The reason for this unsatisfactory fit is that

the potential becomes very repulsive for values of θ near 180◦ (cos θ ∼ −1). This

behavior occurs because the He atom is very close to the Na nucleus, and the

potential rises exponentially. A polynomial expansion is not well suited to this

case. Fortunately, a reasonable expansion can still be obtained if we recognize that

a perfect fit to the highly repulsive portion of the PES is not essential. Since the

ultimate goal of our work is to perform scattering calculations that can be compared

with the experimental data, we may take into consideration the energy range of the

planned scattering calculations. The experiments take place in a heat pipe whose

temperature is about 600 K [2]. Knowing this fact allows us to identify the range of

collision energies that should be included in the scattering calculations. The value

of the PES is not critical at molecular geometries for which the PES significantly

exceeds the collision energy, and we can tolerate large deviations of the fit at those

points. Based on this idea, at each Rd we fit only the subset of the angular points

for which the PES was less than a specified energy.

Fig. 3.4 illustrates how the strategy discussed above led to more appropriate fits

for Rd = 6.50 a0. Compared to Fig. 3.3, Fig. 3.4 shows a much smaller energy range
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(a) Five term fit to five calculated points
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(b) Five term fit to all thirteen calculated points

Figure 3.2: Five term fits to the ground state at Rd = 25.00 a0. Panel (a) shows
a five term fit to five calculated points. Panel (b) shows that a five term fit
to all the calculated points is also satisfactory at this value of Rd.
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Figure 3.3: Thirteen term fit to thirteen calculated points of the ground state at
Rd = 6.50 a0. Though the function fits every point exactly, the strongly
repulsive wall causes unphysical oscillations.

because energies higher than 0.012 Eh are omitted. Panel (a) shows a nine term fit

to the angular values such that E ≤ 0.012 Eh. This fit is smooth and accurate for

the portion of the PES needed for scattering calculations at the upper end of the

thermal distribution at 600 K. We also performed a seven term fit to the angular

values such that E ≤ 0.004 Eh. This fit is adequate for calculations at or below the

mean thermal energy at 600 K. Both fits are shown in panel (b); it can be seen that

in this region both fits agree well with the calculated values. The rms deviations

for the nine and seven term fits are 5.05 and 2.33 cm−1, respectively. The number

of terms in the fit and the range of energies considered is based on finding a balance

between an accurate fit and physically realistic behavior. The final fits to the PES

in this work typically had an rms deviation in the range 2–20 cm−1, which is a range
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Figure 3.4: Seven and nine term fits to the ground state at Rd = 6.50 a0. Panel
(a) shows a nine term fit to five calculated points with energies below
0.012 Eh. Panel (b) shows that the seven and nine term fits both suffi-
ciently describe the calculated points below energies of 0.004 Eh.
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consistent with the probable uncertainty in the determination of the PES.

3.1.3 Legendre Expansion of the Ground State Potential

For the ground state, at each fixed Rd, the calculated potentials up to an energy

of 0.004 Eh were fit as a function of cos θ using a seven term polynomial function.

For certain Rd distances, some of the calculated values of the potential for several

angles were above this energy and were omitted from the fit. For Rd ≤ 6.00 a0,

all the calculated values were above 0.004 Eh. To continue the potential smoothly

to smaller Rd, the same angular range used for the fit at Rd = 6.00 a0 was used

to fit Rd ≤ 6.00 a0. For values of Rd ≥ 8.75 a0, the potential energy at every

angle was below 0.004 Eh and all values were included in the fits. A second fit with

nine terms was done to describe higher energies up to 0.012 Eh in regions where

the potential was more repulsive. As with the seven term fit, any energies higher

than this cutoff were omitted. Table 3.2 specifies which of the calculated values

were included in the fits for each Rd. Fig. 3.5 graphically shows the included values

for the seven and nine term polynomial fits. The figure shows that both the seven

and nine term fits accurately fit low energies below both energy cutoffs. The nine

term fit has the correct behavior for the repulsive wall up to 0.012 Eh, but has

some oscillations at low energies. The seven term fit can be used for scattering

calculations at low energies, but does not include energies above 0.0040 Eh and thus

does not accurately represent the repulsive region. Using the appropriate fit in each

energy region allows us to perform scattering calculations that are accurate for all

the energies expected in the experimental setup.
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Figure 3.5: Calculated values of the ground state within the desired energy ranges
that were included in the seven and nine term polynomial fits. The points
indicate the calculated values included in the fit, and the lines represent the
polynomial fits.
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Table 3.2: Range of θ used to fit the calculated ground state potential energies
with seven and nine term polynomials for each Rd. Rd is given in a0, θ in
degrees and rms deviation in cm−1.

7 Term Expansion 9 Term Expansion
Rd ∆θ θ Range rms deviation θ Range rms deviation

4.00 5 50–90 4.4 60–120 0.09
4.50 5 50–90 4.0 60–120 0.29
5.00 5 50–90 4.7 50–130 0.69
5.50 5 50–90 5.2 40–130 0.88
6.00 5 50–90 6.3 25–140 3.8
6.25 5 45–95 2.1 15–145 8.3
6.50 5 40–105 2.3 0–145 5.1
6.75 5 30–110 3.8 0–150 9.6
7.00 5 20–120 4.2 0–155 16.4
7.25 5 0–125 2.8 0–160 21.1
7.50 5 0–130 3.0 0–165 22.5
7.75 5 0–135 0.61 0–180 30.2
8.00 15 0–135 0.12 0–180 16.5
8.25 15 0–150 4.4 0–180 7.7
8.50 15 0–150 5.5 0–180 3.3
8.75 15 0–180 1.7 0–180 1.1

We now briefly describe our procedure for converting the polynomial fit to the

Legendre expansion. For each fixed Rd, the seven term polynomial fit was used to

generate seven equally spaced points as a function of cos θ. These points were then

fit exactly by a seven term Legendre expansion, using a computer code written some

time ago [25] that solves a set of linear algebraic equations to find the expansion

coefficients. Similarly, the nine term polynomial fit was used to generate nine equally

spaced points, which were in turn fit exactly by a nine term Legendre expansion.

A more direct approach is to use known formulas [26] for the Legendre polynomial
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expansion of arbitrary powers:

x2n =
1

2n+ 1
P0(x) +

∞
∑

k=1

(4k + 1)
2n(2n− 2) . . . (2n− 2k + 2)

(2n+ 1)(2n+ 3) . . . (2n+ 2k + 1)
P2k(x)

x2n+1 =
3

2n+ 3
P1(x) +

∞
∑

k=1

(4k + 3)
2n(2n− 2) . . . (2n− 2k + 2)

(2n+ 3)(2n+ 5) . . . (2n+ 2k + 3)
P2k+1(x).

(3.1.2)

(For any given n, the sum over k contains only a finite number of nonzero terms.)

We checked that both methods produced the same Legendre expansions.

For both fits, the calculated values of vλ can be interpolated using cubic splines.

Figures 3.6 and 3.7 show the Legendre polynomial coefficients as a function of

Rd. The points correspond to values of Rd for which GAMESS calculations were

performed and the lines are the cubic splines used to interpolate between the cal-

culations. The (b) panels show the coefficents over a larger range of Rd.

The Legendre expansion coefficients for the seven and nine term expansions are

very different. The seven term expansion λ = odd coefficients are negative and

the λ = even coefficients are positive. The nine term expansion coefficients are

all greater than zero, except for a few very shallow wells around Rd = 6.00 a0.

Also, the absolute values of the seven term expansion coefficients are greater than

those of the nine term expansion. Despite these differences, both the seven and

nine term Legendre expansions produce values of the potentials that agree with

the GAMESS calculations. Fig. 3.8 compares the potential produced by the seven

and nine term Legendre expansions to the calculated points for several values of θ.

Potentials produced by both Legendre expansions agree with the calculated values

of the potential for E ≤ 0.004 Eh. For some angles, the seven term expansion is
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(a) Seven term Legendre polynomial expansion coefficients of the ground state
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(b) Seven term Legendre polynomial expansion coefficients of the ground state: Long range

Figure 3.6: Seven term Legendre polynomial expansion coefficients of the ground
state as a function of Rd. The points represent Legendre coefficients for
calculated points. The lines are the cubic splines between the data. The
coefficients are given in atomic units.
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(a) Nine term Legendre polynomial expansion coefficients of the ground state
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(b) Nine term Legendre polynomial expansion coefficients of the ground state: Long range

Figure 3.7: Nine term Legendre polynomial expansion coefficients of the ground
state as a function of Rd. The points represent Legendre coefficients for
calculated points. The lines are the cubic splines between the data. The
coefficients are given in atomic units.
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nearly as good as the nine term expansion up to 0.012 Eh. At other angles, the

seven and nine term expansions can be seen to diverge above E = 0.004 Eh, which

is expected given the fitting procedure discussed earlier in this section. As can be

seen in Fig. 3.5, values of the potential for Rd ≤ 6.00 a0 were fit with the seven term

polynomial using angles 50◦− 90◦. Thus, the seven term expansion for those angles

is accurate for E ≥ 0.004 Eh. The potential generated by the nine term expansion

agrees well with the calculated values for all E ≤ 0.012 Eh for all angles.

The splines can be used to generate values of the vλ coefficients for any value of

Rd; interpolated values will be needed for the scattering calculations. The interpo-

lated vλ can also be used to evaluate the potential for any position specified by Rd

and θ coordinates. This capability allows us to transform the PES to a form that is

more easily visualized. Since the NaK internuclear distance is fixed, we may regard

the PES as a function of the position of the He atom in a plane containing the NaK.

The origin is the center of mass of NaK, and the x and y coordinates specifying the

He position are

x = Rd cos θ and y = Rd sin θ.

These formulas can be used to determine the PES on a rectangular cartesian grid

for use in a graphics program. A representation of the surface produced by the

nine term Legendre polynomial expansion is shown in Fig. 3.9. As Rd decreases,

the helium is closer to the NaK molecule, and the interaction between the particles

becomes a steep repulsive wall. Larger values of Rd represent the helium at farther

distances from the NaK molecule. As Rd increases, the potential is less repulsive and

has less angular variation. For very large Rd, we expect the Legendre polynomial

coefficients for λ > 2 to fall off very rapidly. Figures 3.6 and 3.7 show that the
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Figure 3.8: Potentials generated by the seven and nine term Legendre polyno-
mial expansion as a function of Rd, for several values of θ. The potentials
produced by both expansions fit the calculated values for E ≤ 0.004 Eh,
and the values of the potential produced by the nine term expansion are in
agreement for energies up to E = 0.012 Eh.
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Figure 3.9: Potential surface for the nine term Legendre polynomial expansion
of the ground state. Cubic splines were used to interpolate the Legendre
polynomial expansion at each of the Rd values used in calculations. The
splines were used to determine the potential on a cartesian grid that made
a surface easy to visualze. The potential is also shown as contours on the
xy-plane with the energy value of each contour line shown in Eh in the
legend in the upper right.

coefficients do exhibit this behavior.

To be useful for scattering calculations, the PES cannot abruptly end at the edge

of the grid defined by the GAMESS calculations. Thus, finding ways to extrapolate

reasonably beyond the values of Rd used in the GAMESS calculations was necessary.

Legendre coefficients for long range interactions (large Rd) are fit with functional

forms that have the desired asymptotic behavior, which is less angularly dependent.

Thus, the higher order Legendre coefficients fall off more quickly and contribute less
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Table 3.3: Values of the constants used for the exponentials fit to higher order
Legendre coefficients of the ground state. The range of Rd and the rms
deviation of the fits are given.

λ Rd
init Rd

final aλ (a.u.) bλ (a.u.) rms deviation

3 24 26 259.1019770 −.8981269 1.0 × 10−9

4 24 26 −351.3897962 −.9203303 2.6 × 10−10

5 23 25 26.44405166 −.8359791 2.2 × 10−9

6 24 26 −6.149757903 −.7873475 1.2 × 10−9

to the total potential. For Rd ≥ 27.00 a0, the potential could have been fit well by a

four or five term Legendre polynomial expansion. For the nine term fit, v7 and v8 at

Rd = 25 a0 were 106 times less than their values at Rd = 4.00 a0. Thus, the v7 and

v8 coefficients were set to zero for Rd larger than 25 a0. The Legendre polynomial

expansion coefficients v3, v4, v5 and v6 of the seven term expansion were fit at long

range with an exponential function of the form

vλ(Rd) = aλ exp(bλRd) (3.1.3)

in the ranges of Rd given in Table 3.3. The values obtained for coefficients aλ and bλ

and the rms deviation of the fits are also given in Table 3.3. The remaining Legendre

coefficents, v0, v1 and v2, were fit at long range by an inverse power expansion of

the form

vλ(Rd) = −C6

R6
d

+
C8

R8
d

. (3.1.4)

Calculated Legendre coefficients at Rd = 26.00 and 27.50 a0 were fit using this form

to obtain the C6 and C8 constants for v0 and v1. Legendre expansion coefficients

at Rd = 25.00 and 30.00 a0 were fit to obtain the C6 and C8 constants for v2. The

values of the C6 and C8 constants are given in Table 3.4.
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Table 3.4: Values of the constants used for the inverse power expansion fit to v0,
v1, and v2 Legendre coefficients of the ground state.

λ C6 (a.u.) C8 (a.u.)

0 37.86456146 -9110.614558
1 21.33587097 24279.68622
2 15.62298730 -25857.19567

These fits were then used to generate points for Rd larger than 25 a0. The recursive

function

(Rd)
n+1 = 1.05 ∗ (Rd)

n, (3.1.5)

where (Rd)
n is the nth value of Rd, was used to generate a set of Rd values separated

by increasing intervals, starting with Rd = 25.0 a0 and continuing to Rd ≈ 80.6 a0.

All the values of Rd generated by Eq. 3.1.5 and the Legendre expansion coefficients

calculated from Eq. 3.1.3 and 3.1.4 for these positions are given in Appendix B.

Finally, it is important that the potential increase in a smooth, monotonic fash-

ion for small values of Rd. To ensure this behavior, the Legendre polynomial coeffi-

cients determined in the regions of the GAMESS calculations must be extrapolated

to smaller values of Rd. We used the interpolated values of each vλ coefficient near

Rd = 4.00 a0 to extrapolate linearly to smaller values of Rd. This linear function

was then used to generate coefficients for Rd = 0.00, 1.00, 2.00, and 3.00 a0. The

values of all the Legendre polynomial expansion coefficients for both the seven and

nine term expansions of the ground state, calculated and extrapolated, are given in

Appendices B and C.
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3.2 Excited State of NaK

3.2.1 Electronic Structure Calculations of the Excited State

For the A1Σ+ state of NaK plus helium, we used the same basis set listed in Ta-

ble 3.1. Using the GAMESS code, we first performed a restricted Hartree-Fock

calculation. Then multi-configuration self-consistent field calculations (MCSCF)

and configuration interaction (CI) calculations were performed. The MCSCF cal-

culations have two active space orbitals and the CI calculations have eight active

space orbitals. As with the ground state, the six lowest orbitals were frozen and the

six highest orbitals of the virtual space were closed to excitation. Single and double

excitations were allowed from the reference state resulting in 3,458,067 CSFs.

The NaK separation, rv, was held fixed at the first excited state equilibrium

distance 7.935 a0, which was found experimentatlly by Ross et al. [27]. Again, this

is a reasonable approximation for the v = 0 vibrational state. The calculations were

performed for systematic combinations of Rd and θ. Due to the larger number of

CSFs, the calculations for the excited state were considerably more costly in terms

of computer time than the ground state calculations. Thus, only a subset of the

Rd and θ combinations used for the ground state calculations were performed for

the excited state. The Rd values were calculated in 0.50 a0 increments for Rd =

3.00–7.00 a0 and 1.0 a0 increments for Rd = 8.00–12.00 a0. Additional points were

calculated at Rd = 15.00, 17.50, 20.00, 22.50, 25.00, 27.50, and 30.00 a0. As before,

the angular dependence of the potential is greater for smaller Rd and calculations

were performed for more angles θ between 0◦ and 180◦ in these regions. The re-

sults of all the calculations performed for the first excited state can be found in
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Appendix D. A calculation at Rd = 10000.00 a0 yielded the asymptotic limit of

−764.164448090 Eh. For use in the scattering calculations, this energy was sub-

tracted from all the calculated values to obtain potential energies relative to the

asymptotic limit.

3.2.2 Legendre Expansion of the Excited State Potential

When fitting the first excited state, the same considerations discussed in Sec-

tion 3.1.2 have to be taken into account; which energy ranges were pertinent to

the comparison with experiment and how many terms to include in the Legendre

expansion. A procedure similar to the one described for the ground state was used

to fit the excited state calculations. For fixed Rd, a seven term polynomial function

of cos θ was fit to potential energies up to 0.004 Eh. At smaller values of Rd, the

potential at some angular positions was greater than 0.0040 Eh. These angles were

omitted from the fit at that Rd. For Rd ≤ 6.00 a0, all the calculated values of the

potential were above 0.0040 Eh. The same angular range used for Rd = 6.00 a0

was used to fit Rd ≤ 6.00 a0. All the calculated potentials were less than 0.004 Eh

for Rd ≥ 10.00 a0. To fit the repulsive regions of the potential up to energies of

0.012 Eh, a second eleven term fit was done. The angular ranges included in each of

these fits are given in Table 3.5. Figure 3.10 graphically shows the calculated values

included in the seven and eleven term fits. Both fits can be used for scattering

calculations with energies lower than 0.004 Eh, and the eleven term fit can be used

for higher energy calculations up to 0.012 Eh.

The calculated points were then fit with the same Legendre polynomial expan-

sion in Eq. 3.1.1. Both the seven and eleven term fits were used to generate equally

56



0.000

0.002

0.004

0.006

0.008

0.010

−1 −0.5  0  0.5  1

P
o

te
n

ti
a

l 
(E

h
)

cosθ

Rd = 4.00 a0
Rd = 4.50 a0
Rd = 5.00 a0

Rd = 6.00 a0
Rd = 7.00 a0
Rd = 8.00 a0

Rd = 9.00 a0
Rd = 10.00 a0
Rd = 15.00 a0

(a) Seven term polynomial

0.000

0.002

0.004

0.006

0.008

0.010

−1 −0.5  0  0.5  1

P
o

te
n

ti
a

l 
(E

h
)

cosθ

Rd = 3.00 a0
Rd = 3.50 a0
Rd = 4.00 a0
Rd = 4.50 a0

Rd = 5.00 a0
Rd = 6.00 a0
Rd = 7.00 a0
Rd = 8.00 a0

Rd = 9.00 a0
Rd = 10.00 a0
Rd = 15.00 a0

(b) Eleven term polynomial

Figure 3.10: Calculated values of the excited state potential within the desired
energy ranges that were included in the seven and eleven term polynomial
fits. The points indicate the calculated values included in the fit, and the
lines represent the polynomial fits.
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Table 3.5: Range of θ used to fit the excited state potential with seven and
eleven term polynomials for each Rd. Rd is given in a0, θ in degrees and rms
deviation in cm−1.

7 Term Expansion 11 Term Expansion
Rd ∆θ θ Range rms deviation θ Range rms deviation

3.00 5 — — 60–135 0.043
3.50 5 — — 60–135 0.022
4.00 5 60–120 2.8 45–135 0.014
4.50 5 60–120 1.4 45–135 0.014
5.00 5 60–120 0.068 45–150 0.12
5.50 5 60–120 0.27 30–150 0.10
6.00 5 60–120 0.10 30–150 0.08
6.50 5 45–135 0.59 15–150 0.28
7.00 15 45–135 1.1×10−13 0–150 25.7
7.50 15 — — 0–165 5.7
8.00 15 30–150 0.67 0–165 10.4
9.00 15 30–150 0.47 0–180 7.8

10.00 15 0–180 8.1 0–180 1.7

spaced points as a function of cos θ, which were then fit exactly by a Legendre ex-

pansion. The conversion from the polynomial fits to the Legendre expansion was

checked using Eq. 3.1.2, and again both methods produced the same expansions.

As before, a cubic spline was used to interpolate the Legendre polynomial expan-

sion coefficients vλ between Rd values used in GAMESS calculations. The Legendre

polynomial coefficients of the two fits are shown in Figs. 3.11 and 3.12 as a function

of Rd. The (b) panels show the coefficents over a larger range of Rd. The points

represent coefficients determined at Rd values for which GAMESS calculations were

performed. The lines correspond to the cubic splines. The Legendre expansion co-

efficients for the two different expansions of the excited state are more similar than

those of the ground state. For the excited state, both expansions have coefficients

that are mostly greater than zero except for shallow wells around Rd = 6.00 a0. The
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(b) Seven term Legendre polynomial expansion coefficients of the excited state: Long
range

Figure 3.11: Seven term Legendre polynomial expansion coefficients of the ex-
cited state as a function of Rd. The points represent Legendre coefficients
for calculated points. The lines are the cubic splines between the data.
The coefficients are given in atomic units.

59



−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 4  4.5  5  5.5  6  6.5  7  7.5  8

L
e

g
e

n
d

re
 C

o
e

ff
ic

ie
n

ts
 (

E
h
)

Rd (a0)

v0
v1
v2
v3
v4
v5
v6
v7
v8
v9

v10
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(b) Eleven term Legendre polynomial expansion coefficients of the excited state: Long
range

Figure 3.12: Eleven term Legendre polynomial expansion coefficients of the ex-
cited state as a function of Rd. The points represent Legendre coefficients
for calculated points. The lines are the cubic splines between the data.
The coefficients are given in atomic units.
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two highest order coefficients of the eleven term expansion, v9 and v10, are relatively

small compared to the other vλ.

The splines of the vλ coefficients can then be used in Eq. 3.1.1 to generate coeffi-

cients for any Rd value, which will be needed for the scattering calculations. In the

same process discussed in Section 3.1.3, the interpolations can be used to evaluate

the potential for Rd and θ corresponding to positions x and y on a rectangular

cartesian grid. Fig. 3.13 shows a representation of the surface generated from the

eleven term Legendre polynomial expansion. Again, as the He is closer to the NaK

molecule and Rd decreases, the potential becomes very repulsive. However, there
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Figure 3.13: Potential surface for the eleven term Legendre polynomial expan-
sion of the first excited state. Cubic splines were used to interpolate the
Legendre polynomial expansion at each of the Rd values used in calcu-
lations. The splines were used to determine the potential on a cartesian
grid that made a surface easy to visualize. The potential is also shown as
contours on the xy-plane with the energy value of each contour line shown
in Eh in the legend in the upper right.
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is a marked difference between the excited state PES and the ground state PES

shown in Fig. 3.9. Around θ = 90◦, the excited state potential has an area where

the repulsive wall begins at relatively small Rd in comparison to other θ. This

causes the potential to look “pinched in” in this region.

As with the ground state, a reasonable extrapolation of the PES beyond the po-

sitions used in the GAMESS calculations was necessary for scattering calculations.

For long range Rd, the coefficients were again fit with functional forms that pro-

duced the desired asymptotic behavior. At large helium separations, the potential

has less angular dependence and the higher order coefficients contributed negligibly

to the potential. At Rd = 17.5 a0, v7, v8, v9, and v10 of the eleven term fit were at

least a factor of 106 times less than their values at Rd =3.00 a0 and fell off rapidly.

For Rd ≥ 20.0 a0, v7, v8, v9, and v10 were set to zero.

The Legendre coefficients, v3, v4, v5, and v6, from the seven term fit were fit

with the same exponential form as Eq. 3.1.3 using the potential energies at Rd =

20.00, 22.50, and 25.00 a0 to obtain the coefficient values in Table 3.6. To extrapolate

the v0, v1, and v2 coefficients of the seven term expansion, the potential energies at

Rd = 27.50 and 30.0 a0 were fit with a three term polynomial function, which had

an rms deviation well within that specified in the GAMESS calculations. The three

Table 3.6: Values of the constants used for the exponentials fit to higher order
Legendre coefficients of the excited state. The rms deviation of the fits are
given.

λ aλ (a.u.) bλ (a.u.) rms deviation

3 65.4854085 −.8302992934 1.2×10−7

4 .104862642 −.5565878502 1.0×10−7

5 .703830725 −.6517641039 7.0×10−8

6 .005323882 −.4826679190 1.1×10−7
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Table 3.7: Values of the constants used for the inverse power expansion fit v0, v1,
and v2 Legendre coefficients of the excited state. The rms deviations are also
given.

λ C6 (a.u.) C8 (a.u.) rms deviation

0 58.5037147 −17751.00260 3.5×10−9

1 31.3515956 30120.52809 6.7×10−9

2 −9.0031635 −57736.76543 3.9×10−9

term polynomial was used to generate a three term Legendre polynomial expansion,

with v0, v1, and v2 coefficients. The Legendre polynomial coefficients for Rd = 25.00,

27.50, and 30.00 a0 were fit with the same inverse power expansion in Eq. 3.1.4 to

obtain the C6 and C8 constants given in Table 3.7 . These fits were used to generate

points for 25.0 ≤ Rd ≤ 80.6 a0 at values given by Eq. 3.1.5.

A smooth extrapolation of the potential for Rd smaller than the calculated points

was also needed to ensure the potential increases monotonically. For the seven term

fit, a cubic spline was used to interpolate the values of the coefficients near Rd =

4.00 a0. This spline was linearly extrapolated to generate points for Rd = 0.00,

1.00, and 2.00 a0. With these fits, Legendre polynomial expansion coefficients of

the seven term expansion could be calculated for any Rd value needed for scattering

calculations. The values of all the Legendre polynomial expansion coefficients of the

seven term expansion are given in Appendix E.

For the eleven term fit, the Legendre polynomial expansion coefficients also had

to be extrapolated smoothly for values of Rd less than 3.00 a0. The Legendre

polynomial expansion coefficients v0, v2, v4, v5, v6, v7, and v8 were extrapolated
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Table 3.8: Values of the constants used for the exponential expansion fit to Leg-
endre coefficients of smaller Rd of the excited state.

λ cλ dλ

0 1.970909 0.7132539
2 4.884395 0.6424510
4 2.242581 0.5179611
5 1.698092 0.6153261
6 0.5044582 0.3701183
7 0.3225516 0.5328718
8 0.06031066 0.2048104

using an exponential fit of the coefficent values at Rd = 3.00 and 3.50 a0

vλ(Rd) = cλ exp(dλRd). (3.2.1)

The coefficients of these fits are listed in Table 3.8. The remaining Legendre poly-

nomial coefficients, v1, v3, v9 and v10, were extrapolated with a linear function

vλ = wλRd + tλ (3.2.2)

fit to the coefficients at Rd = 3.00 and 3.50 a0. The constants used in the liner

fit are given in Table 3.9. These extrapolations were used to generate Legendre

polynomial expansion coefficients at Rd = 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 a0. The

Table 3.9: Values of the constants used for the linear expansion fit to Legendre
coefficients of smaller Rd of the excited state.

λ wλ (a.u.) tλ (a.u.)

1 −0.3544316 1.5753729
3 −0.3553723 1.651716
9 −0.002976065 0.01612675
10 −0.0000073894 0.002869960
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fitting methods described in this section were used to generate coefficients for the

seven and eleven term Legendre polynomial expansion coefficients for Rd from 0.0

to 80.6 a0 given in Appendices E and F.

3.3 Comparison of Ground and Excited State PES

There are several differences between the ground and excited state PES that should

be noted. From Figs. 3.5 and 3.10 it can be seen that smaller values of Rd are in the

available energy range for the excited state than the ground state. In the seven term

Legendre expansion coefficients, the odd vλ of the ground state are negative and

have roughly the same magnitude as the even vλ. All the Legendre coefficients of

the excited state are mostly positive. However, the even vλ are larger in magnitude

than the odd coefficients in most instances. This may cause the propensity for even

∆j at certain energies and correspond to experimental observations.
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Chapter 4

Coupled Channel Scattering

Calculations

4.1 Scattering Theory

This chapter will discuss the coupled channel scattering method used in the ma-

jority of this work. We will begin with a brief discussion of classical scattering as

a means of introducing quantum mechanical scattering. We will then move on to

a formal discussion of the theory of Arthurs and Dalgarno [28] for scattering by

a rigid rotator, which is used to calculate quantum mechanical cross sections. We

have also extended the calculations so that we can determine preservation of the ori-

entation, alignment, and higher moments describing the distribution of the angular

momentum quantum number m. The final section will report the results of using

this method to study inelastic scattering of He with NaK, including a comparison

with experimental results.
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Figure 4.1: Basic diagram of scattering where He is the projectile and NaK is
the target.

4.1.1 Introduction to Scattering

In classical scattering, the incident particle, in the present case helium, moves to-

wards the target, the NaK molecule. Figure 4.1 shows a diagram of the classical

scattering system, in which b is the impact parameter and θ is the angle at which

the projectile is scattered. The goal of scattering calculations is to determine a cross

section, which is related to the effective size that the target presents to the incident

particle. The cross sections depends on the forces exerted on one particle by the

other. Quantum mechanics treats the system using wave functions to represent

particles. The present work calculates quantum mechanical cross sections.

4.1.2 Scattering by a Rigid Rotator

This section will describe the formalism for the scattering calculations that was

developed by Arthurs and Dalgarno [28]. The goal of this work is to determine how

angular momentum from the incident He atom is imparted to the NaK molecule

during a collision. Arthurs and Dalgarno use a coupled angular momentum rep-

resentation. The total angular momentum is ~J = ~j + ~l, where ~j is the rotational

angular momentum of the target and ~l is the orbital angular momentum of the
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incident particle with respect to the target. The combinations of ~j and ~l that can

produce ~J are referred to as a channels. The projection of ~l onto a space-fixed axis

is labeled ml to distinguish it from the projection of ~j, which is labeled m as defined

in Section 1.3. The projection of the total angular momentum ~J onto the z-axis

is labeled M . Using the total angular momentum ~J is advantageous because the

total angular momentum must be conserved throughout the collision that does not

change the vibrational state.

Figure 4.2 shows the space-fixed coordinate system used in this formalism. This

work considers collisions in which the vibrational state does not change. Therefore,

the internuclear separation of the Na and K, r′, can be held fixed, as in the calcula-

tions of the interaction potentials, and the NaK molecule is treated as a rigid rotator

with moment of inertia I. The orientation of the internuclear axis of the diatomic

with respect to a space-fixed axis is represented as r̂′ = (θ′, φ′). The position of the

helium is described using r̂ = (θ′′, φ′′). The angle between r̂′ and r̂ is the same as

the angle θ described by the Jacobi coordinates in Chapter 3. The eigenfunctions

of the rotational Hamiltonian are spherical harmonics Yjm(r̂′)

ĤrotYjm(r̂′) =
~

2

2I
j(j + 1)Yjm(r̂′). (4.1.1)

The angular functions that describe the orbital motion are also spherical harmonics,

Ylml
(r̂).

The total Hamiltonian can be written as a sum of terms corresponding to the

rigid rotator, the kinetic energy of the incident particle, and the interaction between

the atoms:

Ĥ = Ĥrot + Ĥinc = Ĥrot −
~

2

2µ
∇2

r + V (r, θ), (4.1.2)
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Figure 4.2: Coordinate system used for the rigid rotator formalism. r̂′ represents
the orientation of the internuclear axis of the rigid rotator. ~r represents the
position of the incident particle. The angle between these is label θ.

where µ is the reduced mass of He + NaK. By using Clebsch-Gordan coefficients

(jlmml|jlJM), Arthurs and Dalgarno defined the coupled angular momentum func-

tions

YM

Jjl(r̂
′, r̂) =

l
∑

ml=−l

j
∑

m=−j

(jlmml|jlJM)Ylml
(r̂)Yjm(r̂′). (4.1.3)

These coupled functions can be used as basis functions for an expansion of the total

wave function

ΨJM
jl (r̂′, r̂) =

∑

j′

∑

l′

1

r
uJjl

j′l′(r)Y
M

Jj′l′(r̂
′, r̂). (4.1.4)

Using this form of the wave function guarantees that the wave function will be an

eigenfunction of the total angular momentum. For an exact solution, the summa-

tions over j′ and l′ would have to be infinite. However, convergence can normally

be achieved by truncating the sum after a finite number of terms. Section 4.2

will discuss how to determine the number of channels that should be included in a

calculation.

The total energy of the system is the sum of the rotational energy of NaK in a
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given rotational state j and the kinetic energy of the incident particle KE

E = KE +
~

2

2I
j(j + 1). (4.1.5)

The total wave function is an eigenvector of the Schrödinger equation

ĤΨJM
jm (r̂′, r̂) = EΨJM

jm (r̂′, r̂). (4.1.6)

The total wave function is substituted into Eq. 4.1.6. By using Eqs. 4.1.2, 4.1.1,

and 4.1.5, multiplying by the total wave function and integrating over r̂′ and r̂, one

can obtain the coupled equations

~
2

2µ

[

− d2

dr2
+
l′(l′ + 1)

r2
− k2

j′

]

uJjl
j′l′(r)+

∑

j′′

∑

l′′

〈j′′l′′; J |V |j′l′; J〉uJjl
j′l′(r) = 0, (4.1.7)

where

k2
j′ =

2µ

~2

[

E − ~
2

2I
j′(j′ + 1)

]

(4.1.8)

and

〈j′′l′′; J |V |j′l′; J〉 =

∫∫

YM

Jj′′l′′(r̂
′, r̂)V YM

Jj′l′(r̂
′, r̂)dr̂dr̂′, (4.1.9)

in which |j′l′; J〉 represents the coupled angular momentum basis function YM
Jj′l′ .

The matrix elements in Eq. 4.1.9 are independent of M , so it can be omitted from

the notation. The matrix elements can be easily evaluted if the potential can be

expressed as a sum of Legendre polynomials that depend on θ, the angle between

r̂′ and r̂

V (r, θ) =
λmax
∑

λ=0

Vλ(r)Pλ(cos θ). (4.1.10)
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One can use the addition theorem of spherical harmonics [29]:

2λ+ 1

4π
Pλ(cos θ) =

λ
∑

µ=−λ

Y ∗
λµ(r̂)Yλµ(r̂′) (4.1.11)

and the Legendre polynomial expansion of the potential to write the matrix elements

of Eq. 4.1.9 in terms of the Percival-Seaton coefficients [30]:

fλ(jl, j
′l′; J) = 〈jl; J |Pλ(cos θ)|j′l′; J〉

= (−1)j+j′−J
√

(2j + 1)(2j′ + 1)(2l + 1)(2l′ + 1)






l l′ λ

0 0 0













j j′ λ

0 0 0

















j j′ λ

l l′ J











, (4.1.12)

where
(

l l′ λ
0 0 0

)

and
(

j j′ λ
0 0 0

)

are 3j coefficients and
{

j j′ λ

l l′ J

}

is a 6j coefficient. Using

the fact that

f0(jl, j
′l′; J) = δjj′δll′ (4.1.13)

one can explicitly separate the spherically symmetric part of the potential, V0(r),

and write the coupled equations as

~
2

2µ

[

− d2

dr2
+
l′(l′ + 1)

r2
− k2

j′ +
2µ

~2
V0(r)

]

uJjl
j′l′(r)

+
∑

j′′

∑

l′′

λmax
∑

λ=1

fλ(jl, j
′l′; J)Vλ(r)u

Jjl
j′l′(r) = 0. (4.1.14)

This set of coupled equations must be solved numerically. There are N linearly

independent solutions, where N is the number of channels (j′l′). The solutions

can be represented by a matrix with columns denoted by (jl) and rows by (j′l′).
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The next section will discuss the appropriate boundary conditions that must be ap-

plied to the solution for scattering calculations and how they are used to determine

(jmlml) → (j′m′l′m′
l) cross sections.

4.1.3 Application of Boundary Conditions

By taking appropriate linear combinations of the solutions determined numerically

in Section 4.1.2, one can construct solutions that satisfy

uJjl
j′l′(r) = δjj′δll′ exp

[

−i
(

kjr −
lπ

2

)]

−
(

kj

kj′

) 1

2

SJ
jl,j′l′ exp

[

−i
(

kj′r −
l′π

2

)]

.

(4.1.15)

This form determines the scattering matrix SJ and the related transition matrix

TJ , which has elements

T J
jl,j′l′ = δjj′δll′ − SJ

jl,j′l′ . (4.1.16)

Partial cross sections for all the possible scattering processes for a particular total

angular momentum can be written in terms of the T-matrix elements

σJ(j → j′) =
π

k2
j

(2J + 1)
∑

l

∑

l′

∣

∣T J
jl→j′l′

∣

∣

2
. (4.1.17)

A summation over all the total angular momenta yields the total cross section for

a (j → j′) transition,

σ(j → j′) =
∑

J

σJ(j → j′) =
π

k2
j

∑

J

(2J + 1)
∑

l

∑

l′

∣

∣T J
jl→j′l′

∣

∣

2
. (4.1.18)

Cross sections can also be determined for (jm→ j′m′) transitions. These cross

sections are calculated using the Grawert coefficients [31], labeled Bλ, which are
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derived from the T-matrix elements:

Bλ(j, j
′) =

∑

l

∑

l′

∣

∣

∣

∣

∣

∣

∣

∑

J

(2J + 1)(−1)J











j′ j λ

l l′ J











T J
jl→j′l′

∣

∣

∣

∣

∣

∣

∣

2

. (4.1.19)

Note that the Grawert coefficients sum over all the T-matrix elements for all the

partial waves and then square this sum, as opposed to Eqs. 4.1.17 and 4.1.18 which

square the elements of TJ before the summation. The computer code used to

calculate the Bλ values must store a great deal of information in memory. The

Grawert coefficients can then be used to calculate cross sections for a (jm→ j′m′)

transition. For cell-like experiments that use a circularly polarized laser, which

define the z-axis along the direction of laser beam propagation, the σ(jm → j′m′)

are given by the expression [32]

σ(jm→ j′m′) =
π

k2
j

∑

λ

(2λ+ 1)







j′ j λ

m′ −m m−m′







2

Bλ(j, j
′). (4.1.20)

Once the calculations have been performed for all values of J , the code can produce

the cross section for any (jm → j′m′) transition. The next section will describe

transformations necessary to consider m changing collisions using the moment ex-

pansion instead of specific (jm→ j′m′) cross sections.

The cross section for a (j → j′) transition can also be found by calculating the

average over inital m and sum over final m′ of the (jm → j′m′) cross sections in

Eq. 4.1.20

σ(j → j′) =
1

2j + 1

j
∑

m=−j

j′
∑

m′=−j′

σ(j,m→ j′m′). (4.1.21)

The cross section obtained by Eq. 4.1.21 is independent of m and is therefore valid
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for both beam and cell experiments. Substituting Eq. 4.1.20 into Eq. 4.1.21 yields

σ(j → j′) =
π

(2j + 1)k2
j

j+j′
∑

λ=|j−j′|

(2λ+ 1)Bλ(j, j
′). (4.1.22)

Equation 4.1.19 for the Grawert coefficients can be substituted into this equation

to recover the cross section in terms of TJ .

4.1.4 Vibrational Dependence of the Scattering

The rigid rotator model that we have described does not include the vibrational

motion of the molecule. To account for the vibrational motion of NaK, the depen-

dence of the potential on the NaK bond length rv must be included. If the full

potential V (rv, Rd, θ) is known, one can write it in the form

V (rv, Rd, θ) =
∑

λ

Vλ(rv, Rd)Pλ(cos θ). (4.1.23)

For the case that only one vibrational level is included in the coupled channel

expansion, one must average the potential in Eq. 4.1.23 using the square of the

vibrational wave function as a weighting function. The result is that one replaces

the Legendre components in Eq. 4.1.10 by

Vλ(Rd) =

∫

Vλ(rv, Rd)
∣

∣χv(rv)
∣

∣

2
drv. (4.1.24)

(We have neglected the small dependence of the wave function on the rotational

quantum number j.) One must evaluate a different average potential for each

vibrational state, and then perform a set of calculations using that potential.
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For the work described in this chapter, we calculated the NaK potential surface

only at the equilibrium value of the NaK bond length, r0
v. Using the Legendre

expansion determined for this surface, Eq. 4.1.10, corresponds approximately to

considering the v = 0 vibrational state. We are then essentially assuming that the

vibrational wave function for v = 0 is so strongly peaked at r0
v that

Vλ(Rd) =

∫

Vλ(rv, Rd) |χ0(rv)|2 drv ≈ Vλ(r
0
v, Rd). (4.1.25)

4.1.5 Multipole Expansion of m-Changing Collisions

Section 1.3 of the Introduction discussed an alternative method for describing col-

lisionally induced changes in the m-sublevel populations. One uses a multipole

moment expansion of the population in the m-sublevels. This is advantageous be-

cause the experiments of Dr. Huennekens’ group [2] directly measure changes in

orientation and alignment, the second and third moments of the expansion. This

method of expressing the population of the m sublevels requires a transformation

to a new basis. The description of the process in this section will follow that of

Greene and Zare [12].

Let the row vector N = (N−j, · · · , Nj) represent the populations of each of the

m magnetic sublevels of a particular level j. For a particular (j → j′) transition,

the probability that population is transferred from a m to m′ can be represented by

a transition probability matrix, PPP. The elements of the rectangular transition prob-

ability matrix can be calculated from the (jm→ j′m′) cross sections in Eq. 4.1.20.

75



The population of the final m′ sublevels is given by

(N−j, · · · , Nj)













P−j,−j′ · P−j,j′

...
. . .

...

Pj,−j′ · Pj,j′













= (N−j′ , · · · , Nj′). (4.1.26)

Instead of representing the m distribution using the population of the individual

m sublevels, we transform to a different vector, which gives the multipole moments

of the magnetic sublevels. The old labeling index m = −j to j is replaced by the

new index for the multipole moment basis q = 0 to 2j. The first moment (q = 0)

corresponds to population, the second to orientation and the third to alignment.

The m basis is transformed to the q multipole moment basis by the matrix Zj,

which has elements given by

Zj
mq = (−1)q+m+j

√

2q + 1







j q j

m 0 −m






. (4.1.27)

The transformation matrix Z can be used to define a new vector n

∑

m

NmZ
j
mq = n(q). (4.1.28)

Equation 4.1.28 can also be used to transform the population vector N′ of the final

m′ sublevels to n′ in the q′ multipole basis of the final j′ state. For values of j ≫ q,

the transformation in Eq. 4.1.27 can be approximated with Legendre polynomials
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using a relation from Edmonds [33]

Zj
mq ≈

√

2q + 1

2j + 1
Pq

(

m
√

j(j + 1)

)

. (4.1.29)

For j ≫ q, the Legendre polynomial approximation from Eq. 4.1.29 leads to a

simple interpretation in which the moments are the Legendre components of the

distribution of m values. Figure 4.3 shows a comparison of exact transformation the

multipole basis and the Legendre polynomial approximation for j = 2 as a function

of m/
√

j(j + 1). The approximation is exact for q = 1 and fairly good for the

higher moments. The correlation between the moment expansion and the examples

of m distributions shown in Fig. 1.5 is clear; q = 1 corresponds to orientation, q = 2

corresponds to alignment, etc.
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Figure 4.3: Comparison of exact and approximate transformation to the multi-
pole basis for j = 2 as a function of m/

√

j(j + 1). The exact values are
represented as points and the approximate values are shown as lines.
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The N vector components are treated as continuous and the summation is re-

placed by an integral to yield

√

2q + 1

2j + 1

∫ j+ 1

2

−j− 1

2

N(m)Pq

(

m
√

j(j + 1)

)

dm = n(q). (4.1.30)

The probability matrix can also be transformed to the multipole moment basis with

the expression

(Zj)†PPPZj′ = Q. (4.1.31)

The matrix Q represents the transformation from the initial multipole state q to

the final state q′. Q is a rectangular (2j + 1) × (2j′ + 1) matrix comprised of a

diagonal square matrix with side length 2j + 1 (2j′ + 1) for j < j′ (j > j′) and a

remaining rectangular matrix in which all the elements are zero. For j′ > j, Q has

the form













Q0,0 · · · Q0,2j′

...
. . .

...

Q2j,0 · · · Q2j,2j′













=



























d0 0 · · · · · · 0

0 d1 · · · ...
...

...
...

. . .
...

... 0
...

...
... dq−1 0

0 · · · · · · 0 dq



























. (4.1.32)

The elements of the diagonal matrix d0, d1, . . . , dq give the probability for transfer of

population, orientation, alignment, etc. The zero matrix represents moments that

are not present in both the j and j′ levels. For example, if j > j′, the largest moment

in the inital state is q = 2j and the largest moment in the final state is q′ = 2j′.

In this case, some of the moments available in the initial state are not available
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in the final state. Also, if j < j′ then there will be higher moments available in

the final state that will not be collisionally populated because the original level did

not have these moments. The elements dq can be given in terms of the Grawert

coefficients [34]

dq =

j+j′
∑

λ=|j−j′|

(−1)j+j′+λ+q(2λ+ 1)











λ j j

q j′ j











Bλ(j, j
′), (4.1.33)

where the Bλ(j, j
′) are given in Eq. 4.1.19. The code written for the coupled chan-

nel calculations computes the Grawert coefficients, allowing the multipole moment

method to be implemented. This transformation allows us to understand how col-

lisions change the distribution of molecules in the various m sublevels without fo-

cusing on each m→ m′ transfer individually.

4.2 Results of Coupled Channel Calculations

This section will discuss the results of the coupled channel calculations. First, we

will report the cross sections calculated using the coupled channel method. The

results for changes in orientation and alignment obtained with the coupled channel

calculations will then be reported. Finally, the results for (j → j′) transitions will be

compared with experimental measurements. Though the calculations produce rate

constants that have roughly the same magnitude as the experimental rate constants,

the experiments show a propensity for even ∆j transitions that is not present in

the calculated values. We will discuss possible reasons for this discrepancy.
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4.2.1 Convergence of Coupled Channel Calculations

Before any results are presented, there are several specifics of the calculations that

must be discussed. The cross sections given in Eq. 4.1.20 depend on the Grawert

coefficients, which include a summation over the total angular momentum values J .

It is reasonable to only include values of the total angular momentum that contribute

significantly to the cross sections. A semi-classical argument can be made to relate

the impact parameter to energy and total angular momentum b ≈ J/
√

2mE. At

a very large impact parameter, the effect of the incident particle on the target will

be negligible and there will be no significant contribution to the cross section at

this range. If we consider this very large, fixed impact parameter, the number of

J values that contribute to the cross section depends on the total energy of the

system.

We must be sure that enough J values have been included such that the cross

section is converged at each energy. We checked the calculations at various energies

in both the ground and excited state for convergence with respect to J . Figures 4.4,

4.5, 4.6, 4.7, 4.8 and 4.9 demonstrate the convergence of the cross sections for tran-

sitions from j = 0 to various final j′ in the (a) panels and transitions from various

initial j to j′ = j + 1 in the (b) panels. For both the ground and excited states,

calculations at E = 0.0005, 0.0020, and 0.0040 Eh show that the contributions

to the cross sections becomes very small well before J = 95, 127, and 191, respec-

tively. Note that th experiments are conducted at termperatures of 600K so that

the mean thermal energy is 0.0020 Eh. In the (a) panels, one can see that the cross

sections are largest when j only changes by 1 or 2. The (b) panels show that the

cross sections are larger for large initial j values. Initial j = 15 is the highest value
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shown, which is close to the typical initial values of j in transitions investigated

experimentally. In all cases, we have included enough values of J for convergence.

Another important consideration is the number of channels to include in the

calculation. The total wave function given in Eq 4.1.4 includes a summation over

levels j′ and l′. To be sure enough channels were included, calculations were per-

formed for several ranges of j ranging from 0 to a maximum value, called jmax,

and checked for convergence. Experimental measurements investigated transitions

from initial j = 14, so it is important that calculations for transitions from these

levels are converged. Figures 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15 show calculated

cross sections for j = 5, 10, and 15 with various jmax for the first excited state at

E = 0.0005, 0.0020, and 0.0040 Eh. The ground state rotational level spacing is

larger than that of the first excited state, therefore jmax convergence of cross sections

in the first excited state should be sufficient for the ground state. For each range

of j, the cross sections for transitions to j′ = jmax − 2 to jmax are not reliable and

have been omitted. Truncation artifacts cause this unreliability, but there are no

implications of this effect on any other aspect of this work. The cross sections for

E = 0.0005 Eh are very similar for jmax = 25 and 30, indicating convergence with

jmax = 25. At E = 0.0020 Eh, cross sections are nearly identical for jmax = 30 and

35, again indicating convergence. The cross sections calculated at E = 0.0040 Eh

are converged at jmax = 30 for inital j = 5 and 10, however the cross sections for

intial j = 15 are not the same for jmax = 25 and 30. An additional calulation for

j = 15 at E = 0.0040 Eh should be done with jmax = 35 to ensure convergence of

the cross sections, however current computational constraints have made this large

job impossible.
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Figure 4.4: Convergence of cross sections with respect to the number of partial
waves J . These figures show the partial cross section given in Eq. 4.1.17
as a function of J for He + NaK(X1Σ+) calculations at E = 0.0005 Eh.
Panel (a) shows cross sections for transitions from initial j = 0 to various
final j′. Panel (b) shows cross sections for transistions for various initial j
to final j′ = j + 1. For these calculations we included partial waves up to
J = 95, and that was clearly sufficient for convergence of the cross sections.
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Figure 4.5: Convergence of cross sections with respect to the number of partial
waves J . These figures show the partial cross section given in Eq. 4.1.17 as
a function of J for He + NaK(X1Σ+) calculations at E = 0.0020 Eh. Panel
(a) shows cross sections for transitions from initial j = 0 to various final j′.
Panel (b) shows cross sections for transistions for various initial j to final
j′ = j + 1. For these calculations we included partial waves up to J = 127,
and that was clearly sufficient for convergence of the cross sections.
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Figure 4.6: Convergence of cross sections with respect to the number of partial
waves J . These figures show the partial cross section given in Eq. 4.1.17 as
a function of J for He + NaK(X1Σ+) calculations at E = 0.0040 Eh. Panel
(a) shows cross sections for transitions from initial j = 0 to various final j′.
Panel (b) shows cross sections for transistions for various initial j to final
j′ = j + 1. For these calculations we included partial waves up to J = 191,
and that was clearly sufficient for convergence of the cross sections.
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Figure 4.7: Convergence of cross sections with respect to the number of partial
waves J . These figures show the partial cross section given in Eq. 4.1.17
as a function of J for He + NaK(A1Σ+) calculations at E = 0.0005 Eh.
Panel (a) shows cross sections for transitions from initial j = 0 to various
final j′. Panel (b) shows cross sections for transistions for various initial j
to final j′ = j + 1. For these calculations we included partial waves up to
J = 95, and that was clearly sufficient for convergence of the cross sections.
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Figure 4.8: Convergence of cross sections with respect to the number of partial
waves J . These figures show the partial cross section given in Eq. 4.1.17 as
a function of J for He + NaK(A1Σ+) calculations at E = 0.0020 Eh. Panel
(a) shows cross sections for transitions from initial j = 0 to various final j′.
Panel (b) shows cross sections for transistions for various initial j to final
j′ = j + 1. For these calculations we included partial waves up to J = 127,
and that was clearly sufficient for convergence of the cross sections.
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Figure 4.9: Convergence of cross sections with respect to the number of partial
waves J . These figures show the partial cross section given in Eq. 4.1.17 as
a function of J for He + NaK(A1Σ+) calculations at E = 0.0040 Eh. Panel
(a) shows cross sections for transitions from initial j = 0 to various final j′.
Panel (b) shows cross sections for transistions for various initial j to final
j′ = j + 1. For these calculations we included partial waves up to J = 191,
and that was clearly sufficient for convergence of the cross sections.
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Figure 4.10: Convergence with respect to the number of channels. These figures
show the cross section for specific transitions for coupled channel calcula-
tions of three different sizes. The cross sections are shown for transitions
from intial j = 5 or 10 to several final levels j′ for He + NaK(A1Σ+)
at E = 0.0005 Eh. Each calculation included all the channels corre-
sponding to rotational levels between 0 and a maximum value jmax, where
jmax = 20, 25, or 30. The convergence of these cross sections is generally
satisfactory for jmax = 25 or 30.

88



 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

σ(
1

5
−

>
j’)

 (
a

0
2
)

j’

Excited State; E = 0.0005 a.u.; j = 15

jmax=20
jmax=25
jmax=30

(a) j = 15 → j′

Figure 4.11: Convergence with respect to the number of channels. This figure
shows the cross section for specific transitions for coupled channel cal-
culations of three different sizes. The cross sections are shown for tran-
sitions from intial j = 15 to several final levels j′ for He + NaK(A1Σ+)
at E = 0.0005 Eh. Each calculation included all the channels corre-
sponding to rotational levels between 0 and a maximum value jmax, where
jmax = 20, 25, or 30. The convergence of these cross sections is generally
satisfactory for jmax = 25 or 30.
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Figure 4.12: Convergence with respect to the number of channels. These figures
show the cross section for specific transitions for coupled channel calcula-
tions of three different sizes. The cross sections are shown for transitions
from intial j = 5 or 10 to several final levels j′ for He + NaK(A1Σ+)
at E = 0.0020 Eh. Each calculation included all the channels corre-
sponding to rotational levels between 0 and a maximum value jmax, where
jmax = 20, 30, or 35. The convergence of these cross sections is generally
satisfactory for jmax = 30 or 35.
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Figure 4.13: Convergence with respect to the number of channels. This figure
shows the cross section for specific transitions for coupled channel cal-
culations of three different sizes. The cross sections are shown for tran-
sitions from intial j = 15 to several final levels j′ for He + NaK(A1Σ+)
at E = 0.0020 Eh. Each calculation included all the channels corre-
sponding to rotational levels between 0 and a maximum value jmax, where
jmax = 20, 30, or 35. The convergence of these cross sections is generally
satisfactory for jmax = 30 or 35.

91



 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

σ(
5

−
>

j’)
 (

a
0

2
)

j’

Excited State; E = 0.0040 a.u.; j = 5

jmax=20
jmax=25
jmax=30

(a) j = 5 → j′

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

σ(
1

0
−

>
j’)

 (
a

0
2
)

j’

Excited State; E = 0.0040 a.u.; j = 10

jmax=20
jmax=25
jmax=30

(b) j = 10 → j′

Figure 4.14: Convergence with respect to the number of channels. These figures
show the cross section for specific transitions for coupled channel calcula-
tions of three different sizes. The cross sections are shown for transitions
from intial j = 5 or 10 to several final levels j′ for He + NaK(A1Σ+)
at E = 0.0040 Eh. Each calculation included all the channels corre-
sponding to rotational levels between 0 and a maximum value jmax, where
jmax = 20, 25, or 30. The convergence of these cross sections is generally
satisfactory for jmax = 25 or 30.
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Figure 4.15: Convergence with respect to the number of channels. This figure
shows the cross section for specific transitions for coupled channel cal-
culations of three different sizes. The cross sections are shown for tran-
sitions from intial j = 15 to several final levels j′ for He + NaK(A1Σ+)
at E = 0.0040 Eh. Each calculation included all the channels corre-
sponding to rotational levels between 0 and a maximum value jmax, where
jmax = 20, 30, or 35. The convergence of these cross sections is generally
not satisfactory for jmax = 30 or 35.
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We have also performed calculations to check for convergence of the Legendre

expansion of the potential. Coupled channel calculations were performed for

He + NaK(A1Σ+) at E = 0.0016 Eh using the seven term Legendre expansion

including all seven terms (λ = 0 − 6), and the first five and six (λ = 0 − 4 and

0 − 5) terms of the expansion. Figures 4.16 and 4.17 show the cross sections for

j = 0, 5, 10 and 15 for each of these expansions. In each case, the cross sections

are reasonably converged for the λ = 0 − 6 expansion of the potential. The same

procedure was used to check the cross sections for convergence of the eleven term

expansion. Figures 4.18 and 4.19 show the cross sections for j = 0, 5, 10 and 15

using the eleven term Legendre expansion including all eleven terms (λ = 0 − 10),

and the first ten and nine (λ = 0 − 9 and 0 − 8) terms of the expansion.
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Figure 4.16: Convergence with respect to the number of terms in the Legendre
expansion of the potential. The cross sections are shown for transitions
from intial j = 0 or 5 to several final levels j′ for He + NaK(A1Σ+) at
E = 0.0016 Eh. Each calculation included λ = 0 − 4, 0 − 5, or 0 − 6
terms of the seven term expansion. The cross sections are converged for
the λ = 0 − 6 expansion of the potential.
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Figure 4.17: Convergence with respect to the number of terms in the Legendre
expansion of the potential. The cross sections are shown for transitions
from intial j = 10 or 15 to several final levels j′ for He + NaK(A1Σ+) at
E = 0.0016 Eh. Each calculation included λ = 0 − 4, 0 − 5, or 0 − 6
terms of the seven term expansion. The cross sections are converged for
the λ = 0 − 6 expansion of the potential.
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Figure 4.18: Convergence with respect to the number of terms in the Legendre
expansion of the potential. The cross sections are shown for transitions
from intial j = 0 or 5 to several final levels j′ for He + NaK(A1Σ+) at
E = 0.0016 Eh. Each calculation included λ = 0 − 10, 0 − 9, or 0 − 8
terms of the eleven term expansion. The cross sections are converged for
the λ = 0 − 10 expansion of the potential.
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Figure 4.19: Convergence with respect to the number of terms in the Legendre
expansion of the potential. The cross sections are shown for transitions
from intial j = 10 or 15 to several final levels j′ for He + NaK(A1Σ+) at
E = 0.0016 Eh. Each calculation included λ = 0 − 10, 0 − 9, or 0 − 8
terms of the eleven term expansion. The cross sections are converged for
the λ = 0 − 10 expansion of the potential.

98



4.2.2 He + NaK(X1Σ+)

Figures 4.20 and 4.21 show the cross sections for collisions of He with NaK in the

X1Σ+ state with v = 0. The cross sections are given for various energies and initial

j levels as a function of j′. The cross sections calculated for the lowest energy,

E = 0.0005 Eh, fall off faster as a function of j′ than the cross sections for

E = 0.0020 and 0.0040 Eh. This trend can best be seen in panel (a) of Fig 4.20

when the initial level is j = 0. Lower total energies for the system mean that the

He cannot transfer as much energy and the NaK cannot make a transition to levels

with higher rotational energy. For low enough energies, higher rotational levels are

above the available energy, and transitions to these levels are forbidden resulting in

a cross section = 0.

The probability that the orientation will be preserved in a collision that changes

j to j′ is shown in Figs. 4.22 and 4.23 as a function of the average of j and j′,

j = (j+ j′)/2, for several different values of ∆j = j′− j. (This probability depends

only on the absolute values of ∆j.) For E = 0.0005 Eh, shown in panel (a) of

Fig. 4.22, nearly 80% of the orientation is preserved for many of the transitions. As

the energy increases, less orientation is preserved. At all energies, the orientation is

better preserved for larger j for fixed ∆j. For constant values of j, smaller values

of ∆j tend to better preserve the orientation. There is a grouping of ∆j = 2 and

3 and ∆j = 4 and 6 for E = 0.0020 and 0.0040 Eh. Figures 4.24 and 4.25 show

the probability that the alignment will be preserved as a function of the average of

j. Again, the probability is shown for several different values of ∆j = j′ − j and is

independent of the sign of ∆j. Similar trends to those described for the preservation

of orientation can be observed in the preservation of alignment.
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Figure 4.20: Cross sections for He + NaK(X1Σ+) for E = 0.0005, 0.0020, and
0.0040 Eh. The initial level is j = 0 and 5 in panels (a) and (b), respec-
tively.
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Figure 4.21: Cross sections for He + NaK(X1Σ+) for E = 0.0005, 0.0020, and
0.0040 Eh. The initial level is j = 10 and 15 in panels (a)and (b), respec-
tively.
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Figure 4.22: Probability that orientation will be transferred during a collision
of He with NaK(X1Σ+) as a function of the average value of j and j′,
j = (j + j′)/2. Each series corresponds to a specific ∆j = j − j′. The
probability is independent of the sign of ∆j. Panels (a) and (b) show
calculations for total energy E = 0.0005 and 0.0020 Eh, respectively.
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Figure 4.23: Probability that orientation will be transferred during a collision
of He with NaK(X1Σ+) as a function of the average value of j and j′,
j = (j + j′)/2. Each series corresponds to a specific ∆j = j− j′. The total
energy of the calculation is 0.0040 Eh.
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Figure 4.24: Probability that alignment will be transferred during a collision
of He with NaK(X1Σ+) as a function of the average value of j and j′,
j = (j + j′)/2. Each series corresponds to a specific ∆j = j − j′. The
probability is independent of the sign of ∆j. Panels (a) and (b) show
calculations for total energy E = 0.0005 and 0.0020 Eh, respectively.
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Figure 4.25: Probability that alignment will be transferred during a collision
of He with NaK(X1Σ+) as a function of the average value of j and j′,
j = (j + j′)/2. Each series corresponds to a specific ∆j = j− j′. The total
energy of the calculation is E = 0.0040 Eh.

105



4.2.3 He + NaK(A1Σ+)

Figures 4.26 and 4.27 show selected cross sections for collisions of He with NaK in

the first excited state and the v = 0 vibrational state. The cross sections are again

shown for various energies and initial j values. The cross sections for collisions with

excited state NaK are larger and fall off more slowly as a function of ∆j than the

cross sections for collisions with ground state NaK. This may have to do with the

fact that the rotational levels of the first excited state have smaller separations,

and thus transitions to j′ farther from initial j are easier than for the ground state

where the rotational levels are more widely spaced.

The probability that the orientation will be preserved in a collision that changes

j to j′ is shown in Figs. 4.28 and 4.29 as a function of j. Overall, the probability

that the orientation will be preserved is much smaller than for ground state NaK.

Again, larger values of j have a higher probability to preserve orientation for a fixed

∆j, although not as effectively as larger j in the ground state. For constant values

of j, larger values of ∆j tend to destroy the orientation, even more so than in the

ground state, and the probabilities are spread out more over the various ∆j. A

similar grouping as seen in the ground state occurs for ∆j = 3 and 4 and ∆j = 5

and 6 seen in the ground state is present in the excited state as well. As the energy

increases the probability that orientation will be transferred decreases. Figures 4.30

and 4.31 show the probability that the alignment will be preserved during a collision

that changes j as a function of the average of j and j′. Again, there are many

similarities to trends described for the changes in orientation. Compared to ground

state NaK, the alignment is not as effectively transferred for collisions with excited

state NaK.
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Figure 4.26: Cross sections for He + NaK(A1Σ+) for E = 0.0005, 0.0020, and
0.0040 Eh. The initial level is j = 0 and 5 in panels (a) and (b), respec-
tively.

107



 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20  25

σ(
1

0
−

>
j’)

 (
a

0
2
)

j’

E = .0005 a. u.
E = .0020 a. u.
E = .0040 a. u.

(a) j = 10 → j′

 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20  25

σ(
1

5
−

>
j’)

 (
a

0
2
)

j’

E = .0005 a. u.
E = .0020 a. u.
E = .0040 a. u.

(b) j = 15 → j′

Figure 4.27: Cross sections for He + NaK(A1Σ+) for E = 0.0005, 0.0020, and
0.0040 Eh. The initial level is j = 10 and 15 in panels (a) and (b), respec-
tively.
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Figure 4.28: Probability that orientation will be transferred during a collision
of He with NaK(A1Σ+) as a function of the average value of j and j′,
j = (j + j′)/2. Each series corresponds to a specific ∆j = j − j′. The
probability is independent of the sign of ∆j. Panels (a) and (b) show
calculations for total energy E = 0.0005 and 0.0020 Eh, respectively.
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(a) E = 0.0040 Eh

Figure 4.29: Probability that orientation will be transferred during a collision
of He with NaK(A1Σ+) as a function of the average value of j and j′,
j = (j + j′)/2. Each series corresponds to a specific ∆j = j− j′. The total
energy of the calculation is 0.0040 Eh.
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Figure 4.30: Probability that alignment will be transferred during a collision
of He with NaK(A1Σ+) as a function of the average value of j and j′,
j = (j + j′)/2. Each series corresponds to a specific ∆j = j − j′. The
probability is independent of the sign of ∆j. Panels (a) and (b) show
calculations for total energy E = 0.0005 and 0.0020 Eh, respectively.
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Figure 4.31: Probability that alignment will be transferred during a collision
of He with NaK(A1Σ+) as a function of the average value of j and j′,
j = (j + j′)/2. Each series corresponds to a specific ∆j = j− j′. The total
energy of the calculation is E = 0.0040 Eh.
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4.2.4 Comparison with Experimental Results

No measurements are currently available for He collisions with NaK(X1Σ+). Ex-

periments are underway for He collisions with NaK(A1Σ+) in low v vibrational

levels, but preliminary experimental results are already available for He collisions

with NaK(A1Σ+, v = 16) and obtained rate constants for transitions from initial

j = 14 [19]. Note that these results are not directly comparable to the coupled

channel calculations, which correspond to the v = 0 vibrational state, as discussed

in Section 4.1.4. To compare with these results, rate constants must be estimated

from the cross sections obtained by the coupled channel calculations. The rate con-

stant is expressed as the product of the thermal average of the velocity and the

cross section [35]

k = 〈σv〉 ≈ σ v (4.2.1)

where v =
√

8kT
πµ

≈
√

8kT
πmHe

. We used cross sections calculated at the mean thermal

energy within the heat pipe, E = 0.0020 Eh, for σ. Table 4.1 shows a comparison

of rate constants measured experimentally and estimated from the cross sections

obtained with coupled channel calculations. Figure 4.32 shows the comparison

graphically. The numbers reported up to this point have been in atomic units, but

the rate constants are given in units of cm3/s. The experimental results show a

clear propensity for even ∆j transitions, for both positive and negative ∆j. The

calculations do not show this propensity.

There are several reasons that may explain this difference. The first explanation

is the difference between the vibrational states. The coupled channel calculations

were done at the NaK equilibrium separation, corresponding approximately to the
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Table 4.1: Comparison of the experimental and calculated rate constants for
He + NaK(A1Σ+) transitions from the j = 14 level. The experiments used
NaK in v = 16. Panel (a) shows the positive ∆j rate constants and Panel
(b) shows rate constants for negative ∆j.

(a) Positive ∆j

k(10−10 cm3·s−1)
j′ Experimental Theoretical
13 0.163 2.49
12 2.12 1.71
11 0.199 0.978
10 0.920 0.891

(b) Negative ∆j

k(10−10 cm3·s−1)
j′ Experimental Theoretical
15 0.285 2.66
16 2.24 1.98
17 0.134 1.19
18 1.46 1.18

v = 0 vibrational state. The experimental data are from transitions in the v = 16

vibrational state. Currently, GAMESS calculations are being performed for other
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Figure 4.32: Comparison of rate constants for He + NaK(A1Σ+) measured ex-
perimentally and calculated theoretically. Experimental measurements in-
dicate a clear propensity for ∆j even transitions, which is not present in
the theoretical calculations.
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NaK internuclear separations and it has been found that the potential is sensitive to

the value of rv. An average of the vλ coefficients weighted by the square of the wave

function of the vibrational state as shown in Eq. 4.1.24 may improve the agreement.

Future work of this nature will be discussed more thoroughly in Chapter 6. Current

experimental work is focusing on collisions with He that cause j changing transitions

in the A1Σ+ (v = 0) state of NaK.

Another explanation may relate to the procedure for estimating rate constants

from the cross sections. The theoretical rate constants were estimated from cross

sections at an energy corresponding to the mean thermal energy. Instead, the

cross sections should be calculated as a function of energy and convoluted with a

Maxwellian energy distribution [35]. However, as was discussed in Section 4.2.1,

higher energy calculations include more channels and have not been checked for

convergence yet due to the large amounts of computational resources required. Test

calculations have been done for higher energies and seem to show that cross sections

for ∆j = 2 become slightly larger than those of ∆j = 1 as energy increases. This

trend may result in a ∆j even propensity if the rate constants are calculated from the

convoluted cross sections. Figures 4.33 and 4.34 show cross sections for transitions

from j = 0, 5, 10 and 15 to several values of j′ which are converged for the energies

E = 0.0005, 0.0020, and 0.0040 Eh. Cross sections from test calculations not

checked for convergence are shown for several other energies as well.

At this time there are no definitive experimental results for probabilty of orien-

tation transfer during He + NaK(A1Σ+) collisions. However results from Wolfe et

al. [2] showed that collisions of K with NaK(A1Σ+) almost completely destroy ori-

entation, while collisions of Ar with NaK(A1Σ+) for ∆j = ±1− 4 preserve roughly
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Figure 4.33: Cross sections for various energies (of which E = 0.0005, 0.0020.
and 0.0040 Eh have been checked for convergence) as a functions of j′.
Panels (a) and (b) show calculations for j = 0 and 5, respectively. Note
that as the energy increases the ∆j = 1 cross sections decrease while the
∆j = 2 cross sections are fairly constant which may result in a ∆j even
propensity.
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Figure 4.34: Cross sections for various energies (of which E = 0.0005, 0.0020.
and 0.0040 Eh have been checked for convergence) as a functions of j′. Pan-
els (a) and (b) show calculations for j = 10 and 15, respectively. Though
not as dramatic as the change seen in Fig. 4.33, as the energy increases
the ∆j = 1 cross sections decrease while the ∆j = 2 cross sections are
fairly constant which may result in a ∆j even propensity.
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40%− 75% of orientation. The results shown in Figs. 4.28 and 4.29 of Section 4.2.3

show that the probability that orientation is transferred during collisions of He with

NaK(A1Σ+) is larger than 50% for ∆j = 1 − 4 for most j. While this is not a di-

rect comparison, He and Ar are both rare gases and the similiarity of the results is

encouraging.

4.3 Energy Sudden Approximation

Until now, we have presented exact calculations of the cross sections. However,

valuable insights can often be obtained by considering simpler models of the collision

process. A very useful model for the present situation is known as the energy

sudden approximation [36]. The energy sudden approximation assumes that all the

rotational energy levels are degenerate, allowing extremely simple formulas for the

cross sections to be derived. Figure 4.35 shows the rotational energy levels of ground

state NaK. The lower rotational levels have very small spacings compared to the

energies present within the heat pipe. The mean thermal energy of the molecules

in the heat pipe oven, E = 0.0020 Eh, is roughly 160 times the spacing between

the j = 14 and 15 rotational levels.

The result of the energy sudden (ES) approximation is that the cross sections for

all transitions can be constructed from a knowledge of the cross sections σ(0 → λ)

for transitions from the ground state, j = 0, to a final level with j′ = λ:

σES(jm→ j′m′) =

(

k0

kj

)2

(2j + 1)(2j′ + 1)

j+j′
∑

λ=|j−j′|

λ
∑

µ=−λ







j j′ λ

−m m′ µ







2





j j′ λ

0 0 0







2

σ(0 → λ). (4.3.1)
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Figure 4.35: Rotational energy levels of NaK(X1Σ+).

Averaging over the initial m and summing over the final m′ leads to

σES(j → j′) =

(

k0

kj

)2

(2j′ + 1)

j+j′
∑

λ=|j−j′|







j j′ λ

0 0 0







2

σ(0 → λ). (4.3.2)

These results support a picture in which the key factor in the collision is the

transfer of angular momentum from the projectile to the target, rather than the

transfer of energy [9]. For the transition j = 0 to j′ = λ, the magnitude of the

angular momentum transferred is λ~, and so one can interpret σ(0 → λ) as a cross

section for angular momentum transfer. Then the cross section for a transition be-

tween any initial and final states can be represented as a sum of terms corresponding

to the transfer of various amounts of angular momentum; each term is weighted by

the appropriate 3j coefficient. Figure 4.36 shows a vector representation of the
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Figure 4.36: Vector diagram describing how the same (j → j′) transition can
result from different transfers of angular momentum.

different amounts of angular momentum λ~ that can be transferred in a transition

from j to a particular j′.

4.3.1 Accuracy of the Approximation

In order to assess the accuracy of the energy sudden approximation, it is useful to

compare the ES result with the exact result from Eq. 4.1.22 used for the coupled

channel calculations, which is repeated here:

σ(j → j′) =
π

(2j + 1)k2
j

j+j′
∑

λ=|j−j′|

(2λ+ 1)Bλ(j, j
′). (4.3.3)

By equating corresponding terms in the sums over λ in Eqs. 4.3.2 and 4.3.3, one

can relate the values of σ(0 → λ) and the Grawert coefficients:

σeff(0 → λ) =

(

π

k2
0

)

2λ+ 1

(2j + 1)(2j′ + 1)







j′ j λ

0 0 0







−2

Bλ(j, j
′). (4.3.4)
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Equation 4.3.4 is only as accurate as the energy sudden approximation, but one

can exploit it to determine an “effective” σeff(0 → λ) from each Grawert coefficient

Bλ(j, j
′). If many different Grawert coefficients lead to an accurate value of σeff(0 →

λ), one can conclude that the ES approximation is valid. Note that the 3j symbol

in Eq. 4.3.4 is zero if j + j′ + λ is odd, so if j + j′ is even (odd), only even (odd)

values of λ can be determined.

Figures 4.37 and 4.38 compare the effective cross sections σeff(0 → λ) determined

using Eq. 4.3.4 for several values of j and j′ with the accurate values of σ(0 → λ) ob-

tained with the coupled channel calculations. These calculations were performed for

He + NaK(X1Σ+) at E = 0.0005, 0.0010, 0.0020 and 0.0040 Eh, where 0.0020 Eh is

approximately the average thermal energy within the heat pipe. The cross sections

are plotted as a function of the average value of j and j′, j = (j + j′)/2. The exact

cross sections for the (0 → λ) transition are given as straight lines. Effective cross

sections are shown for λ = 2, 3 and 4, which can be formed from various combina-

tions of j and j′. The plot includes j and j′ ranging from 0− 24. Comparison of all

the panels shows that the effective cross section is closer to the exact cross section

for higher energies. The approximation is better for higher energies because the

splitting between the rotational levels is smaller compared to the kinetic energy of

the projectile. For fixed λ, the approximation is better for smaller values of average

j and j′. The approximate values were within 10% of the exact cross sections when

the energy gap between the j and j′ rotational levels was below 5% of the total

energy of the calculation.
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Figure 4.37: Comparison of exact (0 → λ) cross sections calculated with coupled
channel calculations shown as lines and effective cross sections for λ =
2, 3, 4 calculated from the Grawert coefficients as a function of j = (j +
j′)/2. Panel (a) is for calculations at E = 0.0005 Eh and Panel (b)
E = 0.0010 Eh. As expected, the approximation is better for the higher
energy calculations.

122



 15

 20

 25

 30

 35

 40

 45

 50

 0  5  10  15  20  25  30

σ 0
−

>
λ

−
 j

HeNaK; X State; E = 0.0020 a. u.

Exact σ0−>2

Effective σ0−>2 ∆j = 2

Exact σ0−>3

Effective σ0−>3 ∆j = 1

Effective σ0−>3 ∆j = 3

Exact σ0−>4

Effective σ0−>4 ∆j = 2

Effective σ0−>4 ∆j = 4

(a) E = 0.0020 Eh

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30

σ 0
−

>
λ

−
 j

Exact σ0−>2

Effective σ0−>2 ∆j = 2

Exact σ0−>3

Effective σ0−>3 ∆j = 1

Effective σ0−>3 ∆j = 3

Exact σ0−>4

Effective σ0−>4 ∆j = 2

Effective σ0−>4 ∆j = 4

(b) E = 0.0040 Eh

Figure 4.38: Comparison of exact (0 → λ) cross sections calculated with coupled
channel calculations shown as lines and effective cross sections for λ =
2, 3, 4 calculated from the Grawert coefficients as a function of j = (j +
j′)/2. Panel (a) is for calculations at E = 0.0020 Eh and Panel (b)
E = 0.0040 Eh. As expected, the approximation is better for the higher
energy calculations.
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4.3.2 Reduction of Computer Resources Needed

The energy sudden approximation will also be very helpful should the need to

conserve computer resources arise. Table 4.2 illustrates the computer resources

needed for calculations of various sizes. Calculations were performed for various

energies in both the ground and excited electronic states. The number of channels in

each calculation and the time in processor hours on the Blacklight supercomputer at

Pittsburgh Supercomputing Center is given as a function of the included j rotational

states. The computer time in processor hours scales roughly as the number of

channels cubed.

The form of the total wavefunction given in Eq. 4.1.4 depends on a summation

of the j values included in the coupled channel calculation. Reducing the number

of terms in this summation would vastly reduce computational requirements. Also,

for each j level, there are (2j + 1) magnetic sublevels m that must be taken into

account. Using fewer and smaller j values would help reduce the time needed for

orientation and alignment calculations as well. The energy sudden approximation

provides a way to use fewer j values because this approximation would only require

Table 4.2: Time in processor hours on the Blacklight supercomputer for calcu-
lations at various energies and in both electronic states as a function of the
number of included rotational levels.

0.00025 Eh 0.0005 Eh 0.0020 Eh

(Ground State) (Ground State) (Excited State)
max. # processor max. # processor max. # processor

j channels hours channels hours channels hours

0 − 20 — — — — 231 141
0 − 25 351 168 — — 351 531
0 − 30 496 504 496 710 496 1702
0 − 35 666 1834 666 2304 — —
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that jmax be large enough such that all the (0 → λ) transitions be converged.

As was discussed in Section 4.2.1, higher energy calculations must include more

partial waves, greatly increasing the computational resources required. Therefore,

the fact that the approximation is more accurate for higher energies is very useful.

The energy sudden approximation would allow use of fewer channels and less com-

puter resources to obtain the same information, even with a high energy and large

number of partial waves.
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Chapter 5

Multi-Configuration

Time-Dependent Hartree

Scattering Calculations

5.1 Dynamics Calculations

This chapter will compare results from the Multi-Configuration Time-Dependent

Hartree (MCTDH) wave packet dynamics calculations to those resulting from the

coupled channel scattering calculations. The dynamics calculations performed us-

ing the MCTDH method were implemented with the powerful MCTDH code writ-

ten by the Heidelberg group [37]. Unlike the coupled channel method which is

time-independent, the wave packet method solves the time-dependent Schrödinger

equation. Collisions can be treated by calculating the evolution of a wave packet

representing the incident particle’s position with respect to the target on a model

potential surface. For the purposes of this comparison, we have developed a model
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potential that will be used by both types of calculations. The dynamics calcula-

tions provide detailed cross sections for the scattering process which are directly

comparable to the cross sections calculated using the coupled channel method.

This chapter begins by discussing the MCTDH method in general. We then

discuss the specifics of applying the wave packet method to collisions of He atoms

with NaK molecules. This section includes a description of the model potential

developed for this comparison. Finally, cross sections resulting from both the wave

packet and coupled channel methods are presented and compared.

5.1.1 Standard Method for Wavepacket Propagation

The wave function can be determined by solving the time-dependent Schrödinger

equation (TDSE). A straight forward method, known as the standard solution, is

to expand the wave functions in terms of sums of products of fixed basis functions:

Ψ(Q1, Q2, ...; t) =

N1
∑

p1=1

N2
∑

p2=1

· · ·
Nk
∑

pk=1

Cp1,p2,...(t)χ
(1)
p1

(Q1)χ
(2)
p2

(Q2) · · · , (5.1.1)

where Qi are the nuclear coordinates, χ
(i)
pi (Qi) are called primitive basis functions,

and Cp1,p2,...(t) are time-dependent coefficients [37]. Each degree of freedom Qi is

described by Ni basis functions. The ellipsis indicates a summation for each degree

of freedom over all the basis functions used to describe that degree of freedom.

The primitive basis functions are time-independent. The only dependence on time

appears in the coefficients Cp1,p2,...(t). Using a matrix form of the Schrödinger

equation one can solve for these coefficients

ĤC = i
d

dt
C. (5.1.2)
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The matrices of Eq. 5.1.2 have dimension N × N where N is the product of the

number of basis functions of each degree of freedom:

N = N1 ×N2 × · · · ×Nk. (5.1.3)

As the number of degrees of freedom grows, the amount of computer time and

memory needed to solve the problem grows exponentially. The exact method is

usually not feasible for systems with greater than four degrees of freedom.

5.1.2 Multi-Configuration Time-Dependent Hartree Method

Using a different ansatz for the wave function can make solving the TDSE easier

and decrease the computational resources necessary. The multi-configuration time-

dependent Hartree (MCTDH) method uses a wave function of the form [38]

Ψ(Q1, Q2, ...; t) =

n1
∑

p1=1

n2
∑

p2=1

. . . Ap1,p2,...(t)ϕ
(1)
p1

(Q1, t)ϕ
(2)
p2

(Q2, t) · · · (5.1.4)

where ϕ
(i)
pi (Qi, t) are called single particle functions (SPF) and Ap1,p2,...(t) are the

coefficients. In this scheme the single particle functions are expressed as time de-

pendent linear combinations of the primitive basis functions [39]

ϕ(i)
pi

(Qi, t) =

Ni
∑

pi=1

cpi
(t)χ(i)

pi
(Qi). (5.1.5)

Since both the SPFs and the coefficients, Ap1,p2,...(t), are time dependent, the wave

function is not necessarily unique. To guarantee uniqueness, a constraint is imposed

on the single particle functions that ensures normalization.
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At each time step, several sets of coupled equations must be solved to obtain

the SPFs and the coefficients. The single particle functions are optimized by using

a mean field approximation which allows each single particle function ϕ
(i)
pi (Qi, t) to

be solved for individually [39]. This procedure reduces solving for the SPFs for

each Qi to a problem of Ni dimensions. The matrix equation used to solve for the

Ap1,p2,...(t) coefficients at each time step is similar to Eq. 5.1.2:

ĤA = i
d

dt
A. (5.1.6)

The dimensions of these matrices is again N ×N , however this time N is given by

N = n1 × n2 × · · · . (5.1.7)

Usually, ni < Ni, significantly decreasing the computational resources required for

the calculation.

The MCTDH method is particularly advantageous if the Hamiltonian can be

written in a separable form. In separable form, the Hamiltonian is written as the

sum of products of single particle operators. The matrix elements of a separa-

ble Hamiltonian are the product of many one-dimensional integrals, as opposed to

multi-dimensional integrals. This form of the Hamiltonian matrix elements greatly

increases the efficiency of the computational requirements. When written in the

Jacobi coordinates shown in Fig. 3.1, the kinetic energy of this system is a sepa-

rable expression, which is the prime motivation to use this coordinate system for

calculations with MCTDH. Then the total Hamiltonian will be separable if the po-

tential energy can be expressed as a Legendre polynomial expansion as was done
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previously in Eq 3.1.1 of Section 3.1.2.

5.2 Scattering Calculations with MCTDH

The powerful, widely available MCTDH computer program was used to perform

the wave packet calculations in this work. The wave packet describes the position

of the incident atom relative to the target molecule. The calculations assume that

the internuclear separation of the target, rv, has a fixed value, as in the coupled

channel calculations. Thus, the wave packet in the MCTDH calculations has two

degrees of freedom, Rd and θ. The incident particle is positioned far from the target

at large Rd with some initial momentum. The wave packet is propagated until it

has interacted with the target and moved away again. Throughout this process, the

code monitors how the interaction changes the wave packet and quantum numbers.

The kinetic energy Hamiltonian for a fixed value of J used in the calculations

for this system [40] was built into the MCTDH code and has the form

ĤKE = − 1

2µHe+NaK

∂2

∂R2
d

+
J(J + 1) − 2K2 + j2

2µHe+NaKR2
d

+Bj2

−
√

J(J + 1) −K(K + 1)

2µHe+NaKR2
d

j+ −
√

J(J + 1) −K(K − 1)

2µHe+NaKR2
d

j− (5.2.1)

where

j± = ∓ ∂

∂θ
−K cot θ, (5.2.2)

µ is the reduced mass of the specified particles, K is the projection of the total

angular momentum J onto Rd, and B is the NaK rotational constant. Because

the Hamiltonian is dependent on J , a separate wave packet calculation must be
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done for each state (J, j,m). For this comparison with the coupled channel method,

only calculations for inital states (j = 0,m = 0) were performed. In the future,

the energy sudden approximation discussed in Section 4.3 may be employed and

Eq. 4.3.2 may be used to calculate (j → j′) cross sections where j 6= 0 from the

MCTDH results for j = 0.

For the purposes of comparison with the coupled channel results, a model poten-

tial was used that roughly represents the interaction of He with NaK in the ground

state. Preliminary ab initio electronic structure calculations were performed using

GAMESS for rv fixed at 6.77 a0 and various Rd and θ geometries. The θ grid ex-

tended from 0◦ − 180◦ and the Rd grid from 8− 79 a0. A calculation at long range

yielded an asymptotic limit of −763.87 Eh which was subtracted from all other

calculated values. To ensure the separability of the Hamiltonian, the potential was

expressed as a five term sum of products of Legendre polynomials and exponential

functions of the form

V (Rd, θ) =
4
∑

λ=0

aλ exp(−bλRd)Pλ(cos θ). (5.2.3)

This form does not describe the potential determined by the GAMESS calculations

exactly, but it is smoothly varying and easily incorporated into the coupled channel

code. The aλ constants are given in Table 5.1.

To define the wave function that is the solution to the time-dependent Schrödinger

equation, the basis set for each degree of freedom must be specified. The angular

basis is a set of normalized associated Legendre functions. The Rd basis is a set

of normalized Gaussian functions. The initial wave packet is specified by a po-
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Table 5.1: Values of the constants used for the exponential functions in the ex-
pansion of the model potential.

λ aλ bλ

0 1.26100 0.798340
1 −0.99356 0.752171
2 0.8018727 0.717405
3 −01.0 0.817900
4 1.0 0.879588

sition, width and momentum. For scattering calculations the initial wave packet

must appear as though it has undergone free motion towards the scattering center

from infinity. Propagating the wave packet from distances where the interaction

is truly zero would require extremely long propagation times. Instead, the wave

packet can be started closer to the scattering center, but must be corrected so that

it seems to have traveled from infinitely far away [37]. Thus, the initial position

must be choosen with care to ensure that the interaction is sufficiently small at the

starting position, allowing for this correction. For these calculations, we found that

Rd = 64.0 a0 was sufficiently far from the scattering center.

The momentum given to the incident particle for these calculations was 4.0 a.u.

which is equivalent to a center of mass energy of 0.0011 Eh. However, the initial

wave packet can be expressed as a linear combination of incoming waves of different

momenta

Ψ(Qk)=
1√
2π~

∫ ∞

−∞

φ(p) exp(ipQk/~)dp. (5.2.4)

Coordinate-momentum Fourier transformation of the initial wavepacket gives the

initial energy distribution of the wave packet. The results of the calculation are

reliable at the energies within this distribution. Figure 5.1 shows the energy distri-

bution for the initial wave packet specified for these calculations.
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Figure 5.1: This figure shows the energy distribution for the initial wave packet
with momentum 4.0 a.u.

MCTDH provides a means of introducing a complex absorbing potential (CAP)

at the end of the Rd grid, which absorbs the wave packet as it reaches the edge

of the grid and eliminates unphysical reflections. The CAP turns on gradually as

Rd approaches the end of the integration grid. The analytic form of the CAP is

given by [39]

−iW (Rd) = −iη|Rd −R0
d|bΘ

(

±
(

Rd −R0
d

))

, (5.2.5)

where R0
d is the starting point of the CAP, η is the strength, b is the order of

the CAP and Θ is a Heaviside’s step function. The MCTDH program has built-

in routines to determine which CAP parameters are best suited for a particular

calculation. The R0
d, η and b parameters used for these calculations were 69.0 a0,

0.0000043824 Eh/a0, and 4, respectively. As the wave packet interacts with the

CAP, MCTDH determines the contribution of each final state of the system to the

absorbed wave packet, which is referred to as the quantum flux. MCTDH uses the
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flux to calculate the reaction probabilities P (j = 0,m = 0 → j′,m′) for the final

states of the system.

From these probabilities, one can compute cross sections [40]

σJ
0,0→j′m′(E) =

π

k2
j

2J + 1

2j + 1
P (0, 0 → j′,m′). (5.2.6)

To obtain total cross sections for a particular initial (j,m) state, one must sum over

all total angular momenta values J . Thus, a wave packet scattering calculation

must be performed for every J . An approximation can be made by including only

J values that contribute significantly to the (j,m→ j′,m′) cross section. A suitable

Jmax is chosen and a calculation must be performed for every J = 0 to Jmax. The

total (j = 0,m = 0 → j′m′) cross section is

σ0,0→j′m′(E) =
Jmax
∑

J=0

σJ
0,0→j′m′(E). (5.2.7)

Once the MCTDH scattering calculations for every J have been performed, one

can obtain cross sections for any energy within the range defined by the inital wave

packet’s energy distribution. Conversely, each coupled channel scattering calcula-

tion provides cross sections for all included J values for a single specified energy.

To determine cross sections for (j → j′) transitions, one would have to average

over all the initial m values and sum over all the final m′ values. Since the initial

j = 0 in these calculations, the first step has essentially already been done and the

cross sections are given by

σ0→j′(E) =

j′
∑

m′=−j′

σ0,0→j′m′(E). (5.2.8)
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5.3 Comparison of MCTDH and Coupled Chan-

nel Results

In this section we compare the cross sections for a model interaction of He with

NaK(X1Σ+) resulting from the wave packet and coupled channel methods. The

MCTDH calculations were performed for an inital momentum of 4.0 a.u. corre-

sponding to an energy of 0.0011 Eh, which is at the peak of the energy distribution

shown in Fig. 5.1. The total angular momentum, J , included in both the MCTDH

and coupled channel calculations ranged from 0− 79. Coupled channel calculations

were performed at energies of 0.0011 and 0.0014 Eh and included j = 0− 28, which

was sufficiently converged for transitions from j = 0 to j′ = 1 − 10. Only the

initial state j = 0 was investigated with MCTDH due to the limitation mentioned

earlier; 2j + 1 calculations must be performed (one for every possible initial state

(j,m)) to obtain j → j′ cross sections. For j 6= 0 the number of initial states can

add up quickly, requiring many calculations and a great deal of computer time.

Table 5.2 shows the excellent agreement of the cross sections σ0→j′ obtained by the

two different methods for 0.0011 Eh. The agreement of the MCTDH with coupled

channel at E = 0.0008 and 0.0014 Eh is not as good as at the peak of the en-

ergy distribution, but is still within 10% of the coupled channel cross section. For

E = 0.0017 Eh which is nearer the tail of the energy distribution, the agreement

with the coupled channel cross section is worse. These same results can be seen

graphically in Figs. 5.2, 5.3, 5.4 and 5.5.
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Table 5.2: Values of the cross sections σ0→j′ obtained by the multi-configuration
time-dependent Hartree (MCTDH) and the coupled channel (CC) methods.

E = 0.0008 Eh E = 0.0011 Eh E = 0.0014 Eh E = 0.0017 Eh

j′ MCTDH CC MCTDH CC MCTDH CC MCTDH CC

1 74.48104 80.20 77.42588 78.42 82.91642 77.51 89.62784 76.26
2 61.54547 65.08 58.29261 57.74 59.14251 53.76 61.30280 50.17
3 83.64850 87.74 83.79782 82.19 83.72427 77.33 85.44810 74.07
4 16.97689 18.21 18.39406 19.68 20.42743 20.75 22.24276 22.58
5 28.73922 29.98 26.40028 26.15 24.85310 22.67 23.29145 19.90
6 30.76616 32.41 29.54074 31.00 30.09425 32.05 30.92808 31.35
7 10.61924 11.23 10.70287 11.28 10.76221 11.08 10.91099 12.13
8 18.95955 20.02 17.57178 17.41 15.72153 15.35 15.17234 13.95
9 12.03645 12.70 13.45037 14.62 13.76140 14.50 13.26394 14.33
10 9.14720 9.534 8.71614 8.491 8.31846 7.686 8.12050 7.385
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Figure 5.2: Comparison of the cross sections σ0→j′ obtained by the two different
methods for E = 0.0008 Eh.
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Figure 5.3: Comparison of the cross sections σ0→j′ obtained by the two different
methods for E = 0.0011 Eh. This energy is at the center of the distribution
shown in Fig. 5.1
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Figure 5.4: Comparison of the cross sections σ0→j′ obtained by the two different
methods for E = 0.0014 Eh.
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Figure 5.5: Comparison of the cross sections σ0→j′ obtained by the two different
methods for E = 0.0017 Eh.
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Chapter 6

Conclusions, Very Recent Results,

and Future Work

6.1 Conclusions

This dissertation presents theoretical scattering calculations of an atomic perturber

with a diatomic molecule, specifically He + NaK. The work has considered primarily

the v = 0 vibrational state of the target molecule. GAMESS calculations were per-

formed for He + NaK(X1Σ+) and He + NaK(A1Σ+), and a method for fitting these

potentials with Legendre polynomial expansions was developed. As expected, the

potentials of the two different states have considerably different features. Scattering

calculations were performed with the coupled channel method for both electronic

states of NaK and cross sections and information about the probability of orienta-

tion and alignment preservation were obtained. The alternative MCTDH method

was also investigated as tool for scattering calculations using a model potential and

it gave excellent agreement with the couple channel results.
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There is currently no definitive experimental data concerning the probabilty of

orientation transfer during He + NaK(A1Σ+) collisions. Wolfe et al. [2] reported

that collisions of K with NaK(A1Σ+) effectively destroy orientation, while collisions

of Ar with NaK(A1Σ+) for ∆j = ±1,±2,±3, and ±4 have a 40%−75% probability

of preserving orientation. The results of the coupled channel calculations show

collisions of He with NaK(A1Σ+) have a probability of transferring orientation that

is greater than 50% for ∆j = 1 − 4 for most j. This similarity may be related to

the fact that both He and Ar are rare gases.

The rate constants obtained experimentally have shown a propensity for even

∆j transitions in collisions of He + NaK(A1Σ+, v = 16, j = 14) [19]. The scattering

calculations for He + NaK(A1Σ+, v = 0) presented in Fig. 4.32 do not show this

propensity. Very recent calculations (to be described in the next section) have

confirmed that the different ranges of rv in different vibrational levels of the NaK

molecule can account for this difference. The earlier calculations correspond to

v = 0, while the experiments measured rates for v = 16. Recent calculations with

v = 15 show a much greater propensity for even ∆j. At this time, experiments

are being developed to measure rate constants for He + NaK(A1Σ+, v = 0) and

He + NaK(X1Σ+, v = 0), but there is no conclusive data for these collisions at this

time.

Future work will have two main thrusts. Currently, work is underway to inves-

tigate the effect different vibrational levels of NaK have on the propensity for even

∆j transitions. Other future work will study collisions of NaK with different atomic

alkali perturbers, particularly Ar for which there already exists experimental data.
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6.2 Preliminary Results for Vibrational Depen-

dence

To account for the vibrational motion of the NaK, the dependence of the potential

on the NaK bond length, rv, must be included. One can write

V (rv, Rd, θ) =
∑

λ

Vλ(rv, Rd)Pλ(cos θ). (6.2.1)

We showed in Section 4.1.4 that the initial vibrational state of NaK can be taken

into account by averaging this potential over the range of rv appropriate to the state

of interest:

Vλ(Rd) =

∫

vλ(rv, Rd)|χv(rv)|2drv (6.2.2)

where χv(rv) is the vibrational wave function. This new form of the potential

allows us to perform scattering calculations for He + NaK in which the vibrational

quantum number v is varied. The calculations reported in Chapter 4 correspond

approximately to the v = 0 vibrational state of NaK. However, experimental data

were taken for j → j′ transitions in the v = 16 vibrational state. A comparison of

the probability densities of the NaK vibrational states for v = 0 and 16 is shown in

Fig. 6.1. The probability density of v = 0 is strongly peaked about rv = 7.935 a0.

Thus, fixing rv at the equilibrium separation of NaK is a reasonable approximation

for v = 0. The probability density of the v = 16 vibrational state is spread out

over a range of rv = 6 − 11a0. This figure clearly shows that to obtain an accurate

potential for higher vibrational levels, a constant value of rv is not sufficient.

Other members of Dr. Hickman’s group have very recently performed GAMESS
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Figure 6.1: Probability density function of NaK(A1Σ+) for the v = 0 and 16
vibrational states. The v = 0 probability density is peaked about 7.935 a0,
while the v = 16 probability density is spread over a range of rv = 6−11 a0.

calculations for various He + NaK geometries, which includes varying rv from 6

to 11 a0 in 1 a0 increments [41]. These values of rv span the range of the v = 16

probability density shown in Fig. 6.1. For each rv separation, GAMESS calculations

were done for 15◦ increments of θ and Rd = 5 to 12 a0 in 1 a0 increments and

additionally at Rd = 15 a0. For each fixed value of the NaK internuclear separation,

rv, the potential was fit with a 21 term Legendre polynomial expansion of the same

form as Eq. 3.1.1 to obtain the vλ(rv, Rd) coefficients. The vλ(rv, Rd) coefficients

were then weighted with the v = 15 vibrational wave function using Eq. 6.2.2 to

produce Vλ(Rd) coefficients for the Legendre expansion in Eq. 6.2.1. From these

coefficients a potential surface was generated.

142



 0

 10

 20

 30

 40

 50

 60

 70

 0  5  10  15  20  25

σ(
0

−
>

j’)
 (

a
0

2
)

j’

E = .0010 a. u.
E = .0020 a. u.

(a) j = 0 → j′

 0

 10

 20

 30

 40

 50

 60

 70

 0  5  10  15  20  25

σ(
5

−
>

j’)
 (

a
0

2
)

j’

E = .0010 a. u.
E = .0020 a. u.

(b) j = 5 → j′

Figure 6.2: Preliminary calculated cross sections for He + NaK(A1Σ+, v = 15)
for E = 0.0010 and 0.0020 Eh using the vibrationally averaged potential.
The initial level is j = 0 and 5 in panels (a) and (b), respectively. In both
cases, the ∆j = 2 cross section is larger than the ∆j = 1 cross section and
the ∆j = 4 cross section is larger than the ∆j = 3 cross section. This
propensity for even ∆j is similar to that seen experimentally.
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Figure 6.3: Preliminary calculated cross sections for He + NaK(A1Σ+, v = 15)
for E = 0.00010 and 0.0020 Eh using the vibrationally averaged potential.
The initial level is j = 10 and 15 in panels (a) and (b), respectively. In
both cases, the ∆j = 2 cross section is larger than the ∆j = 1 cross section
and the ∆j = 4 cross section is larger than the ∆j = 3 cross section. This
propensity for even ∆j is similar to that seen experimentally.
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Preliminary scattering calculations have been performed using the vibrationally

dependent A1Σ+, v = 15 potential for energies at 0.0010 and 0.0020 Eh. The expan-

sion was truncated because at the time only the first eleven terms of the 21 term

expansion were available. The values of j range from 0 to jmax = 30. Figures 6.2

and 6.3 show the cross sections for collisions of He with NaK (A1Σ+, v = 15) for

j = 0, 5, 10 and 15 as a function of j′. In both energy cases, the ∆j = 2 cross

section is larger than the ∆j = 1 cross section and the the ∆j = 4 cross section is

larger than the ∆j = 3 cross section. The v = 15 vibrational state clearly shows

a propensity for even ∆j transitions that was not present in the v = 0 vibrational

state. The theory predicts that the vibrational level of the target will have a large

effect on the change in j during collision.

By using the cross sections calculated for NaK(A1Σ+, v = 15) to estimate rate

constants as discussed in Section 4.2.4, the results can be compared to the ex-

perimental results for NaK(A1Σ+, v = 16). Table 6.1 shows a comparison of rate

constants measured experimentally and estimated from the cross sections obtained

with coupled channel calculations. Figure 6.4 shows the comparison graphically.

Both the experimental results and theoretical calculations show a clear propensity

for even ∆j transitions, for both positive and negative ∆j. This propensity was not

present in calculations for NaK(A1Σ+, v = 0), suggesting that j changing transitions

have a strong dependence on the vibrational state.
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Table 6.1: Comparison of the experimental and calculated rate constants for
He + NaK(A1Σ+) transitions from the j = 14 level. The vibrational state of
NaK used for the experiments was v = 16. The calculations were performed
for NaK v = 15. Panel (a) shows the positive ∆j rate constants and Panel
(b) shows rate constants for negative ∆j.

(a) Positive ∆j

k(10−10 cm3·s−1)
j′ Experimental Theoretical
13 0.163 1.08
12 2.12 1.89
11 0.199 0.850
10 0.920 0.935

(b) Negative ∆j

k(10−10 cm3·s−1)
j′ Experimental Theoretical
15 0.285 1.19
16 2.24 2.18
17 0.134 1.08
18 1.46 1.31
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Figure 6.4: Comparison of rate constants for He + NaK(A1Σ+) measured exper-
imentally and calculated theoretically. The vibrational state of NaK used
for the experiments was v = 16. The calculations were performed for NaK
v = 15. There is a clear propensity for ∆j even transitions in both the
experimental data and the theoretical calculations.
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The probability that the orientation will be preserved in a collision that changes

j to j′ is shown in Fig. 6.5 as a function of the average of j and j′, j = (j +

j′)/2, for several different values of ∆j = j′ − j. (This probability depends only

on the absolute values of ∆j.) There is a ∆j even propensity observed in the

probability of orientation preservation, which can be seen as the probability of

orientation transfer of ∆j = 2 is larger than that of ∆j = 1. The same trend

is observed for ∆j = 4 and 3. This propensity was not observed in the v = 0

probability of preserving orientation. Note that because we are looking at the

fraction of orientation transferred during a collision, the ∆j even propensity of

population transfer does not necessarily affect the orientation transfer probability.

Figure 6.6 shows the probability that the alignment will be preserved as a function

of the average of j. Again, the probability is shown for several different values of

∆j = j′ − j and is independent of the sign of ∆j. The same even ∆j propensity is

observed in the probability of preservation of alignment.
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Figure 6.5: Probability that orientation will be transferred during a collision of
He with NaK(A1Σ+, v = 15) as a function of the average value of j and
j′, j = (j + j′)/2. Each series corresponds to a specific ∆j = j − j′.
The probability is independent of the sign of ∆j. Panels (a) and (b) show
calculations for total energy E = 0.0010 and 0.0020 Eh, respectively. The
probability of orientation transfer of ∆j = 2 is larger than that of ∆j = 1,
and a similar trend is seen for ∆j = 4 and 3.
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Figure 6.6: Probability that alignment will be transferred during a collision of
He with NaK(A1Σ+, v = 15) as a function of the average value of j and
j′, j = (j + j′)/2. Each series corresponds to a specific ∆j = j − j′.
The probability is independent of the sign of ∆j. Panels (a) and (b) show
calculations for total energy E = 0.0010 and 0.0020 Eh, respectively. The
probability of alignment transfer of ∆j = 2 is larger than that of ∆j = 1.
The same is true fo the probability of alignment transfer for ∆j = 4 and 3.
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6.3 Future Work

The results of these calculations show that the propensity for transitions with even

∆j in collisions of He with NaK may be strongly dependent on the vibrational state

of the NaK target. Further scattering calculations with the potentials adjusted

to include vibrational state dependences will be performed to compare directly

with experimental data. A great deal has been learned about the procedures for

determining potentials and conducting scattering calculations that will be valuable

as this project continues.

Once calculations have been completed for the He + NaK system, they can be

used as a model for calculations of other alkali perturbers. New GAMESS calcula-

tions will have to be conducted for NaK collisions with any other collisional partner.

The next perturber to be investigated will likely be Ar for comparison with the read-

ily available experimental data. Dr. Huennekens’ group also hopes to investigate

NaK collisions with Xe, so this is another likely candidate for calculations. The

potentials will be fit with the methods described above and scattering calculations

will be performed to compare with experimental results.
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Appendix A

Ground State Potential

Table A.1: He + NaK(X1Σ+) potential calculations

Rd θ Energy Rd θ Energy
4.00 0 −762.863357255 4.00 130 −764.181476326
4.00 5 −762.915744606 4.00 135 −764.171088962
4.00 10 −763.056251303 4.00 140 −764.148404876
4.00 15 −763.247863322 4.00 145 −764.096413833
4.00 20 −763.453660256 4.00 150 −763.975854233
4.00 25 −763.646036556 4.00 155 −763.697365728
4.00 30 −763.808360211 4.00 160 −763.069925422
4.00 35 −763.934563027 4.00 165 −761.796840498
4.00 40 −764.026584975 4.00 170 −758.891280455
4.00 45 −764.090451838 4.00 175 −744.549167492
4.00 50 −764.133094893 4.00 180 −744.549167492
4.00 55 −764.160668518 4.50 50 −764.178834414
4.00 60 −764.177981760 4.50 55 −764.190440570
4.00 65 −764.188511986 4.50 60 −764.197507264
4.00 70 −764.194647826 4.50 65 −764.201594345
4.00 75 −764.197973507 4.50 70 −764.203772554
4.00 80 −764.199512925 4.50 75 −764.204745165
4.00 85 −764.199913001 4.50 80 −764.204955783
4.00 90 −764.199573524 4.50 85 −764.204673333
4.00 95 −764.198736580 4.50 90 −764.204054361
4.00 100 −764.197546176 5.00 0 −763.985205681
4.00 105 −764.196084644 5.00 5 −763.993304943
4.00 110 −764.194387094 5.00 10 −764.015670557
4.00 115 −764.192426839 5.00 15 −764.047342809
4.00 120 −764.190049692 5.00 20 −764.082305780
4.00 125 −764.186798702 5.00 25 −764.115434444
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
5.00 30 −764.143547080 5.50 75 −764.210898367
5.00 35 −764.165448805 5.50 80 −764.210686177
5.00 40 −764.181373922 5.50 85 −764.210369280
5.00 45 −764.192300168 5.50 90 −764.209955535
5.00 50 −764.199417019 5.50 95 −764.209441709
5.00 55 −764.203820599 5.50 100 −764.208818855
5.00 60 −764.206388770 5.50 105 −764.208076330
5.00 65 −764.207762598 5.50 110 −764.207204460
5.00 70 −764.208378026 5.50 115 −764.206194432
5.00 75 −764.208514072 5.50 120 −764.205031347
5.00 80 −764.208339267 5.50 125 −764.203668861
5.00 85 −764.207948767 5.50 130 −764.201955949
5.00 90 −764.207391250 6.00 0 −764.185051355
5.00 95 −764.206687601 6.00 5 −764.186031120
5.00 100 −764.205843635 6.00 10 −764.188753844
5.00 105 −764.204858300 6.00 15 −764.192653076
5.00 110 −764.203727476 6.00 20 −764.197016853
5.00 115 −764.202440762 6.00 25 −764.201206664
5.00 120 −764.200962091 6.00 30 −764.204796074
5.00 125 −764.199170184 6.00 35 −764.207599971
5.00 130 −764.196701421 6.00 40 −764.209624410
5.00 135 −764.192541497 6.00 45 −764.210986276
5.00 140 −764.183963199 6.00 50 −764.211840916
5.00 145 −764.163931392 6.00 55 −764.212335151
5.00 150 −764.115212079 6.00 60 −764.212585847
5.00 155 −763.997989614 6.00 65 −764.212675834
5.00 160 −763.727174796 6.00 70 −764.212658265
5.00 165 −763.153403414 6.00 75 −764.212563484
5.00 170 −762.164728242 6.00 80 −764.212405538
5.00 175 −760.956167518 6.00 85 −764.212187407
5.00 180 −760.223645687 6.00 90 −764.211904740
5.50 35 −764.195758603 6.00 95 −764.211548376
5.50 40 −764.201610161 6.00 100 −764.211106150
5.50 45 −764.205586734 6.00 105 −764.210564665
5.50 50 −764.208127791 6.00 110 −764.209911332
5.50 55 −764.209648862 6.00 115 −764.209135993
5.50 60 −764.210484008 6.00 120 −764.208229954
5.50 65 −764.210874208 6.00 125 −764.207177768
5.50 70 −764.210979480 6.00 130 −764.205929110
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
6.00 135 −764.204319931 6.25 145 −764.201254501
6.00 140 −764.201880236 6.25 150 −764.195223492
6.00 145 −764.197389359 6.25 155 −764.182787341
6.00 150 −764.187937851 6.25 160 −764.158289744
6.00 155 −764.167431004 6.25 165 −764.115903703
6.00 160 −764.125477356 6.25 170 −764.056814819
6.00 165 −764.050141763 6.25 175 −763.999064376
6.00 170 −763.940799328 6.25 180 −763.974112347
6.00 175 −763.829880914 6.50 0 −764.204653750
6.00 180 −763.780856056 6.50 5 −764.204974883
6.25 0 −764.197354878 6.50 10 −764.205869869
6.25 5 −764.197918057 6.50 15 −764.207157865
6.25 10 −764.199485276 6.50 20 −764.208607566
6.25 15 −764.201734906 6.50 25 −764.210007306
6.25 20 −764.204259065 6.50 30 −764.211212586
6.25 25 −764.206688095 6.50 35 −764.212158446
6.25 30 −764.208772369 6.50 40 −764.212844253
6.25 35 −764.210401874 6.50 45 −764.213307159
6.25 40 −764.211578426 6.50 50 −764.213597744
6.25 45 −764.212368966 6.50 55 −764.213764021
6.25 50 −764.212863105 6.50 60 −764.213843875
6.25 55 −764.213145580 6.50 65 −764.213863295
6.25 60 −764.213283587 6.50 70 −764.213837639
6.25 65 −764.213324168 6.50 75 −764.213773994
6.25 70 −764.213296572 6.50 80 −764.213673492
6.25 75 −764.213216245 6.50 85 −764.213533111
6.25 80 −764.213088754 6.50 90 −764.213346775
6.25 85 −764.212912884 6.50 95 −764.213105933
6.25 90 −764.212682765 6.50 100 −764.212799820
6.25 95 −764.212389142 6.50 105 −764.212415861
6.25 100 −764.212020245 6.50 110 −764.211940724
6.25 105 −764.211562766 6.50 115 −764.211362258
6.25 110 −764.211003461 6.50 120 −764.210671389
6.25 115 −764.210331112 6.50 125 −764.209861461
6.25 120 −764.209537299 6.50 130 −764.208920087
6.25 125 −764.208612697 6.50 135 −764.207801292
6.25 130 −764.207531183 6.50 140 −764.206353094
6.25 135 −764.206201794 6.50 145 −764.204163992
6.25 140 −764.204349618 6.50 150 −764.200276309
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
6.50 155 −764.192773102 6.75 165 −764.178155883
6.50 160 −764.178648983 6.75 170 −764.161237251
6.50 165 −764.155104382 6.75 175 −764.145615847
6.50 170 −764.123413644 6.75 180 −764.139090318
6.50 175 −764.093375909 7.00 0 −764.211544553
6.50 180 −764.080636271 7.00 5 −764.211647602
6.75 0 −764.208973415 7.00 10 −764.211936243
6.75 5 −764.209155480 7.00 15 −764.212355494
6.75 10 −764.209663908 7.00 20 −764.212833379
6.75 15 −764.210398267 7.00 25 −764.213302117
6.75 20 −764.211228837 7.00 30 −764.213713653
6.75 25 −764.212035502 7.00 35 −764.214044598
6.75 30 −764.212735001 7.00 40 −764.214292220
6.75 35 −764.213288688 7.00 45 −764.214466383
6.75 40 −764.213694520 7.00 50 −764.214581784
6.75 45 −764.213972303 7.00 55 −764.214652601
6.75 50 −764.214149865 7.00 60 −764.214689791
6.75 55 −764.214253790 7.00 65 −764.214700345
6.75 60 −764.214304864 7.00 70 −764.214687617
6.75 65 −764.214316909 7.00 75 −764.214652059
6.75 70 −764.214297473 7.00 80 −764.214591929
6.75 75 −764.214249196 7.00 85 −764.214503777
6.75 80 −764.214171135 7.00 90 −764.214382684
6.75 85 −764.214059729 7.00 95 −764.214222240
6.75 90 −764.213909350 7.00 100 −764.214014320
6.75 95 −764.213712477 7.00 105 −764.213748817
6.75 100 −764.213459640 7.00 110 −764.213413746
6.75 105 −764.213139397 7.00 115 −764.212996352
6.75 110 −764.212738872 7.00 120 −764.212485537
6.75 115 −764.212245357 7.00 125 −764.211874512
6.75 120 −764.211648731 7.00 130 −764.211160740
6.75 125 −764.210942871 7.00 135 −764.210338337
6.75 130 −764.210122399 7.00 140 −764.209373857
6.75 135 −764.209167437 7.00 145 −764.208152891
6.75 140 −764.208000921 7.00 150 −764.206394006
6.75 145 −764.206397846 7.00 155 −764.203554935
6.75 150 −764.203830286 7.00 160 −764.198848183
6.75 155 −764.199266631 7.00 165 −764.191668978
6.75 160 −764.191148409 7.00 170 −764.182635530
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
7.00 175 −764.174495438 7.50 0 −764.214070329
7.00 180 −764.171139933 7.50 5 −764.214103927
7.25 0 −764.213100748 7.50 10 −764.214199106
7.25 5 −764.213159289 7.50 15 −764.214340346
7.25 10 −764.213324012 7.50 20 −764.214506281
7.25 15 −764.213565341 7.50 25 −764.214675518
7.25 20 −764.213843775 7.50 30 −764.214831595
7.25 25 −764.214121197 7.50 35 −764.214965065
7.25 30 −764.214369674 7.50 40 −764.215072782
7.25 35 −764.214574653 7.50 45 −764.215155744
7.25 40 −764.214733107 7.50 50 −764.215216864
7.25 45 −764.214849235 7.50 55 −764.215259327
7.25 50 −764.214930194 7.50 60 −764.215285619
7.25 55 −764.214983085 7.50 65 −764.215297128
7.25 60 −764.215013367 7.50 70 −764.215294076
7.25 65 −764.215024335 7.50 75 −764.215275654
7.25 70 −764.215017218 7.50 80 −764.215240164
7.25 75 −764.214991515 7.50 85 −764.215185084
7.25 80 −764.214945344 7.50 90 −764.215107023
7.25 85 −764.214875665 7.50 95 −764.215001560
7.25 90 −764.214778336 7.50 100 −764.214862935
7.25 95 −764.214647999 7.50 105 −764.214683658
7.25 100 −764.214477792 7.50 110 −764.214454187
7.25 105 −764.214258966 7.50 115 −764.214163160
7.25 110 −764.213980699 7.50 120 −764.213798901
7.25 115 −764.213630722 7.50 125 −764.213352438
7.25 120 −764.213197362 7.50 130 −764.212820623
7.25 125 −764.212672689 7.50 135 −764.212206286
7.25 130 −764.212054523 7.50 140 −764.211511649
7.25 135 −764.211343551 7.50 145 −764.210720909
7.25 140 −764.210530166 7.50 150 −764.209771516
7.25 145 −764.209563634 7.50 155 −764.208529786
7.25 150 −764.208302705 7.50 160 −764.206812175
7.25 155 −764.206470390 7.50 165 −764.204513900
7.25 160 −764.203679505 7.50 170 −764.201863418
7.25 165 −764.199666643 7.50 175 −764.199601218
7.25 170 −764.194811506 7.50 180 −764.198693262
7.25 175 −764.190544953 7.75 0 −764.214699191
7.25 180 −764.188808428 7.75 5 −764.214718842
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
7.75 10 −764.214775053 8.00 75 −764.215706937
7.75 15 −764.214859991 8.00 90 −764.215601514
7.75 20 −764.214962333 8.00 105 −764.215325395
7.75 25 −764.215070078 8.00 120 −764.214725079
7.75 35 −764.215265433 8.00 135 −764.213575663
7.75 40 −764.215343391 8.00 150 −764.211887047
7.75 45 −764.215406426 8.00 165 −764.209583140
7.75 50 −764.215455169 8.00 180 −764.207758656
7.75 55 −764.215490728 8.25 0 −764.215432861
7.75 60 −764.215514053 8.25 15 −764.215497353
7.75 65 −764.215525580 8.25 30 −764.215646717
7.75 70 −764.215525121 8.25 45 −764.215785976
7.75 75 −764.215511878 8.25 60 −764.215862945
7.75 80 −764.215484474 8.25 75 −764.215866949
7.75 85 −764.215440919 8.25 90 −764.215783763
7.75 90 −764.215378504 8.25 105 −764.215563296
7.75 95 −764.215293598 8.25 120 −764.215074139
7.75 100 −764.215181369 8.25 135 −764.214110783
7.75 105 −764.215035424 8.25 150 −764.212676127
7.75 110 −764.214847476 8.25 165 −764.210992999
7.75 115 −764.214607336 8.25 180 −764.209891650
7.75 120 −764.214303894 8.50 0 −764.215661542
7.75 125 −764.213927603 8.50 15 −764.215705853
7.75 130 −764.213473888 8.50 30 −764.215816921
7.75 135 −764.212945189 8.50 45 −764.215928800
7.75 140 −764.212348494 8.50 60 −764.215993216
7.75 145 −764.211685785 8.50 75 −764.215997383
7.75 150 −764.210937298 8.50 90 −764.215931968
7.75 155 −764.210046828 8.50 105 −764.215757530
7.75 160 −764.208934193 8.50 120 −764.215361659
7.75 165 −764.207565371 8.50 135 −764.214561968
7.75 170 −764.206077201 8.50 150 −764.213340097
7.75 175 −764.204852302 8.50 165 −764.212033990
7.75 180 −764.204369056 8.50 180 −764.211319029
8.00 0 −764.215127021 8.75 0 −764.215838772
8.00 15 −764.215226372 8.75 15 −764.215870915
8.00 30 −764.215436913 8.75 30 −764.215956332
8.00 45 −764.215613784 8.75 45 −764.216046728
8.00 60 −764.215704756 8.75 60 −764.216099676
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
8.75 75 −764.216103080 9.50 75 −764.216311063
8.75 90 −764.216051905 9.50 90 −764.216287540
8.75 105 −764.215915292 9.50 105 −764.216226468
8.75 120 −764.215597081 9.50 120 −764.216068421
8.75 135 −764.214939471 9.50 135 −764.215720928
8.75 150 −764.213902368 9.50 150 −764.215120159
8.75 165 −764.212841375 9.50 165 −764.214480742
8.75 180 −764.212337701 9.50 180 −764.214222883
9.00 0 −764.215979618 9.75 0 −764.216260352
9.00 15 −764.216003920 9.75 15 −764.216271446
9.00 30 −764.216070805 9.75 30 −764.216302370
9.00 45 −764.216143436 9.75 45 −764.216336013
9.00 60 −764.216186005 9.75 60 −764.216355084
9.00 75 −764.216188265 9.75 75 −764.216354313
9.00 90 −764.216148495 9.75 90 −764.216336331
9.00 105 −764.216042706 9.75 105 −764.216290916
9.00 120 −764.215788713 9.75 120 −764.216167958
9.00 135 −764.215252725 9.75 135 −764.215891424
9.00 150 −764.214379049 9.75 150 −764.215401693
9.00 165 −764.213491996 9.75 165 −764.214860748
9.00 180 −764.213109086 9.75 180 −764.214641257
9.25 0 −764.216093239 9.80 0 −764.216273510
9.25 15 −764.216112031 9.80 15 −764.216283976
9.25 30 −764.216164552 9.80 30 −764.216313115
9.25 45 −764.216222080 9.80 45 −764.216344792
9.25 60 −764.216255482 9.80 60 −764.216362722
9.25 75 −764.216256567 9.80 75 −764.216361806
9.25 90 −764.216225885 9.80 90 −764.216344763
9.25 105 −764.216144968 9.80 105 −764.216302040
9.25 120 −764.215943763 9.80 120 −764.216185257
9.25 135 −764.215510501 9.80 135 −764.215921329
9.25 150 −764.214781901 9.80 150 −764.215451834
9.25 165 −764.214029835 9.80 165 −764.214929246
9.25 180 −764.213721314 9.80 180 −764.214716523
9.50 0 −764.216185487 10.00 0 −764.216320768
9.50 15 −764.216200053 10.00 15 −764.216328902
9.50 30 −764.216240840 10.00 30 −764.216351473
9.50 45 −764.216285442 10.00 45 −764.216376006
9.50 60 −764.216311003 10.00 60 −764.216389865
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
10.00 75 −764.216388424 10.75 75 −764.216451571
10.00 90 −764.216374635 10.75 90 −764.216444543
10.00 105 −764.216341419 10.75 105 −764.216433274
10.00 120 −764.216246837 10.75 120 −764.216394229
10.00 135 −764.216028606 10.75 135 −764.216293882
10.00 150 −764.215633699 10.75 150 −764.216098652
10.00 165 −764.215180583 10.75 165 −764.215852080
10.00 180 −764.214992924 10.75 180 −764.215741251
10.25 0 −764.216369063 11.00 0 −764.216459778
10.25 15 −764.216374652 11.00 15 −764.216459968
10.25 30 −764.216390222 11.00 30 −764.216461591
10.25 45 −764.216407361 11.00 45 −764.216464936
10.25 60 −764.216417136 11.00 60 −764.216467120
10.25 75 −764.216415118 11.00 75 −764.216463382
10.25 90 −764.216404411 11.00 90 −764.216457323
10.25 105 −764.216380592 11.00 105 −764.216450081
10.25 120 −764.216308819 11.00 120 −764.216422486
10.25 135 −764.216138246 11.00 135 −764.216347506
10.25 150 −764.215822985 11.00 150 −764.216196265
10.25 165 −764.215448168 11.00 165 −764.215999910
10.25 180 −764.215288612 11.00 180 −764.215909795
10.50 0 −764.216407206 11.50 0 −764.216489975
10.50 15 −764.216410634 11.50 15 −764.216488183
10.50 30 −764.216420452 11.50 30 −764.216485038
10.50 45 −764.216431746 11.50 45 −764.216483818
10.50 60 −764.216438355 11.50 60 −764.216482991
10.50 75 −764.216435790 11.50 75 −764.216477967
10.50 90 −764.216427270 11.50 90 −764.216472854
10.50 105 −764.216410609 11.50 105 −764.216470789
10.50 120 −764.216357071 11.50 120 −764.216459240
10.50 135 −764.216225285 11.50 135 −764.216420839
10.50 150 −764.215975990 11.50 150 −764.216333907
10.50 165 −764.215670032 11.50 165 −764.216213633
10.50 180 −764.215536005 11.50 180 −764.216156923
10.75 0 −764.216436934 12.00 0 −764.216506118
10.75 15 −764.216438569 12.00 15 −764.216503226
10.75 30 −764.216443780 12.00 30 −764.216497475
10.75 45 −764.216450558 12.00 45 −764.216493507
10.75 60 −764.216454705 12.00 60 −764.216490346
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
12.00 75 −764.216484133 13.50 75 −764.216479424
12.00 90 −764.216479341 13.50 90 −764.216475542
12.00 105 −764.216480048 13.50 105 −764.216478626
12.00 120 −764.216478208 13.50 120 −764.216487169
12.00 135 −764.216462725 13.50 135 −764.216497873
12.00 150 −764.216417211 13.50 150 −764.216503160
12.00 165 −764.216347549 13.50 165 −764.216499485
12.00 180 −764.216314192 13.50 180 −764.216497379
12.50 0 −764.216513520 14.00 0 −764.216508660
12.50 15 −764.216510064 14.00 15 −764.216505076
12.50 30 −764.216502914 14.00 30 −764.216497172
12.50 45 −764.216497133 14.00 45 −764.216489303
12.50 60 −764.216492122 14.00 60 −764.216482119
12.50 75 −764.216485066 14.00 75 −764.216475358
12.50 90 −764.216480472 14.00 90 −764.216471995
12.50 105 −764.216482620 14.00 105 −764.216475054
12.50 120 −764.216486478 14.00 120 −764.216484045
12.50 135 −764.216484857 14.00 135 −764.216496742
12.50 150 −764.216465360 14.00 150 −764.216506884
12.50 165 −764.216428559 14.00 165 −764.216510175
12.50 180 −764.216410685 14.00 180 −764.216511319
13.00 0 −764.216515279 14.50 0 −764.216502568
13.00 15 −764.216511579 14.50 15 −764.216499258
13.00 30 −764.216503724 14.50 30 −764.216491839
13.00 45 −764.216496728 14.50 45 −764.216484226
13.00 60 −764.216490404 14.50 60 −764.216477373
13.00 75 −764.216482991 14.50 75 −764.216471391
13.00 90 −764.216478685 14.50 90 −764.216468583
13.00 105 −764.216481524 14.50 105 −764.216471442
13.00 120 −764.216488540 14.50 120 −764.216480180
13.00 135 −764.216494936 14.50 135 −764.216493421
13.00 150 −764.216491170 14.50 150 −764.216505880
13.00 165 −764.216475072 14.50 165 −764.216512745
13.00 180 −764.216467050 14.50 180 −764.216515444
13.50 0 −764.216513237 15.00 0 −764.216495795
13.50 15 −764.216509511 15.00 15 −764.216492837
13.50 30 −764.216501433 15.00 30 −764.216486133
13.50 45 −764.216493749 15.00 45 −764.216479118
13.50 60 −764.216486709 15.00 60 −764.216472923
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
15.00 75 −764.216467842 16.50 75 −764.216460503
15.00 90 −764.216465572 16.50 90 −764.216459492
15.00 105 −764.216468128 16.50 105 −764.216460979
15.00 120 −764.216476178 16.50 120 −764.216466015
15.00 135 −764.216489054 16.50 135 −764.216475346
15.00 150 −764.216502332 16.50 150 −764.216487004
15.00 165 −764.216510819 16.50 165 −764.216495927
15.00 180 −764.216514098 16.50 180 −764.216499161
15.50 0 −764.216488981 17.00 0 −764.216472005
15.50 15 −764.216486424 17.00 15 −764.216470588
15.50 30 −764.216480565 17.00 30 −764.216467295
15.50 45 −764.216474368 17.00 45 −764.216463806
15.50 60 −764.216469012 17.00 60 −764.216460986
15.50 75 −764.216464844 17.00 75 −764.216459040
15.50 90 −764.216463064 17.00 90 −764.216458304
15.50 105 −764.216465261 17.00 105 −764.216459483
15.50 120 −764.216472377 17.00 120 −764.216463546
15.50 135 −764.216484338 17.00 135 −764.216471449
15.50 150 −764.216497546 17.00 150 −764.216481949
15.50 165 −764.216506618 17.00 165 −764.216490468
15.50 180 −764.216510007 17.00 180 −764.216493600
16.00 0 −764.216482588 17.50 0 −764.216467964
16.00 15 −764.216480435 17.50 15 −764.216466851
16.00 30 −764.216475468 17.50 30 −764.216464265
16.00 45 −764.216470191 17.50 45 −764.216461539
16.00 60 −764.216465731 17.50 60 −764.216459380
16.00 75 −764.216462413 17.50 75 −764.216457940
16.00 90 −764.216461053 17.50 90 −764.216457418
16.00 105 −764.216462887 17.50 105 −764.216458331
16.00 120 −764.216468964 17.50 120 −764.216461531
16.00 135 −764.216479687 17.50 135 −764.216468059
16.00 150 −764.216492289 17.50 150 −764.216477274
16.00 165 −764.216501424 17.50 165 −764.216485224
16.00 180 −764.216504755 17.50 180 −764.216488233
16.50 0 −764.216476886 18.00 0 −764.216464713
16.50 15 −764.216475119 18.00 15 −764.216463857
16.50 30 −764.216471024 18.00 30 −764.216461869
16.50 45 −764.216466671 18.00 45 −764.216459785
16.50 60 −764.216463075 18.00 60 −764.216458170
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
18.00 75 −764.216457123 19.50 75 −764.216455768
18.00 90 −764.216456763 19.50 90 −764.216455667
18.00 105 −764.216457456 19.50 105 −764.216455951
18.00 120 −764.216459924 19.50 120 −764.216456959
18.00 135 −764.216465186 19.50 135 −764.216459370
18.00 150 −764.216473067 19.50 150 −764.216463581
18.00 165 −764.216480294 19.50 165 −764.216468120
18.00 180 −764.216483132 19.50 180 −764.216470107
18.50 0 −764.216462157 20.00 0 −764.216457629
18.50 15 −764.216461513 20.00 15 −764.216457379
18.50 30 −764.216460015 20.00 30 −764.216456799
18.50 45 −764.216458458 20.00 45 −764.216456210
18.50 60 −764.216457271 20.00 60 −764.216455780
18.50 75 −764.216456523 20.00 75 −764.216455535
18.50 90 −764.216456282 20.00 90 −764.216455473
18.50 105 −764.216456801 20.00 105 −764.216455681
18.50 120 −764.216458665 20.00 120 −764.216456407
18.50 135 −764.216462811 20.00 135 −764.216458191
18.50 150 −764.216469374 20.00 150 −764.216461434
18.50 165 −764.216475758 20.00 165 −764.216465090
18.50 180 −764.216478366 20.00 180 −764.216466737
19.00 0 −764.216460198 21.00 0 −764.216456252
19.00 15 −764.216459721 21.00 15 −764.216456127
19.00 30 −764.216458613 21.00 30 −764.216455842
19.00 45 −764.216457468 21.00 45 −764.216455550
19.00 60 −764.216456610 21.00 60 −764.216455343
19.00 75 −764.216456087 21.00 75 −764.216455231
19.00 90 −764.216455929 21.00 90 −764.216455214
19.00 105 −764.216456314 21.00 105 −764.216455326
19.00 120 −764.216457695 21.00 120 −764.216455693
19.00 135 −764.216460891 21.00 135 −764.216456618
19.00 150 −764.216466216 21.00 150 −764.216458413
19.00 165 −764.216471684 21.00 165 −764.216460580
19.00 180 −764.216474000 21.00 180 −764.216461604
19.50 0 −764.216458723 22.00 0 −764.216455545
19.50 15 −764.216458375 22.00 15 −764.216455486
19.50 30 −764.216457568 22.00 30 −764.216455346
19.50 45 −764.216456741 22.00 45 −764.216455207
19.50 60 −764.216456130 22.00 60 −764.216455108
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
22.00 75 −764.216455059 25.00 75 −764.216454828
22.00 90 −764.216455058 25.00 90 −764.216454833
22.00 105 −764.216455121 25.00 105 −764.216454850
22.00 120 −764.216455303 25.00 120 −764.216454883
22.00 135 −764.216455756 25.00 135 −764.216454938
22.00 150 −764.216456670 25.00 150 −764.216455031
22.00 165 −764.216457825 25.00 165 −764.216455145
22.00 180 −764.216458389 25.00 180 −764.216455202
23.00 0 −764.216455187 26.00 0 −764.216454837
23.00 15 −764.216455158 26.00 15 −764.216454833
23.00 30 −764.216455092 26.00 30 −764.216454821
23.00 45 −764.216455023 26.00 45 −764.216454807
23.00 60 −764.216454974 26.00 60 −764.216454796
23.00 75 −764.216454951 26.00 75 −764.216454791
23.00 90 −764.216454956 26.00 90 −764.216454795
23.00 105 −764.216454994 26.00 105 −764.216454807
23.00 120 −764.216455088 26.00 120 −764.216454829
23.00 135 −764.216455305 26.00 135 −764.216454862
23.00 150 −764.216455738 26.00 150 −764.216454908
23.00 165 −764.216456303 26.00 165 −764.216454960
23.00 180 −764.216456584 26.00 180 −764.216454985
24.00 0 −764.216455002 27.50 0 −764.216454780
24.00 15 −764.216454988 27.50 30 −764.216454770
24.00 30 −764.216454954 27.50 60 −764.216454755
24.00 45 −764.216454918 27.50 90 −764.216454754
24.00 60 −764.216454891 27.50 120 −764.216454776
24.00 75 −764.216454879 27.50 150 −764.216454815
24.00 90 −764.216454884 27.50 180 −764.216454843
24.00 105 −764.216454909 29.00 0 −764.216454744
24.00 120 −764.216454962 29.00 15 −764.216454742
24.00 135 −764.216455068 29.00 30 −764.216454738
24.00 150 −764.216455267 29.00 45 −764.216454732
24.00 165 −764.216455524 29.00 60 −764.216454727
24.00 180 −764.216455653 29.00 75 −764.216454725
25.00 0 −764.216454900 29.00 90 −764.216454726
25.00 15 −764.216454892 29.00 105 −764.216454732
25.00 30 −764.216454873 29.00 120 −764.216454741
25.00 45 −764.216454852 29.00 135 −764.216454753
25.00 60 −764.216454836 29.00 150 −764.216454765
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He + NaK(X1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
29.00 165 −764.216454775 40.00 90 −764.216454664
29.00 180 −764.216454779 40.00 180 −764.216454669
30.00 0 −764.216454727 50.00 0 −764.216454657
30.00 15 −764.216454726 50.00 90 −764.216454657
30.00 30 −764.216454722 50.00 180 −764.216454658
30.00 45 −764.216454717 60.00 0 −764.216454655
30.00 60 −764.216454713 60.00 90 −764.216454655
30.00 75 −764.216454712 60.00 180 −764.216454655
30.00 90 −764.216454713 100.00 0 −764.216454654
30.00 105 −764.216454717 100.00 90 −764.216454654
30.00 120 −764.216454725 100.00 180 −764.216454654
30.00 135 −764.216454734 300.00 0 −764.216454654
30.00 150 −764.216454743 300.00 90 −764.216454654
30.00 165 −764.216454750 300.00 180 −764.216454654
30.00 180 −764.216454752 10000.00 0 −764.216454654
35.00 0 −764.216454682 10000.00 45 −764.216454654
35.00 90 −764.216454677 10000.00 90 −764.216454654
35.00 180 −764.216454690 10000.00 135 −764.216454654
40.00 0 −764.216454667 10000.00 180 −764.216454654
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Appendix D

Excited State Potential

Table D.1: He + NaK(A1Σ+) potential calculations

Rd θ Energy Rd θ Energy
3.00 30 −762.789938909 3.50 70 −764.147037280
3.00 45 −763.787023725 3.50 75 −764.153587206
3.00 60 −764.071927080 3.50 80 −764.156946424
3.00 65 −764.106788051 3.50 85 −764.158322995
3.00 70 −764.128107691 3.50 90 −764.158426009
3.00 75 −764.140877400 3.50 95 −764.157662156
3.00 80 −764.148243030 3.50 100 −764.156258742
3.00 85 −764.152166084 3.50 105 −764.154337988
3.00 90 −764.153856051 3.50 110 −764.151957682
3.00 95 −764.154056249 3.50 115 −764.149135061
3.00 100 −764.153217633 3.50 120 −764.145840957
3.00 105 −764.151609499 3.50 125 −764.141959513
3.00 110 −764.149390629 3.50 130 −764.137177195
3.00 115 −764.146640997 3.50 135 −764.130709173
3.00 120 −764.143379554 3.50 140 −764.120711736
3.00 125 −764.139544553 3.50 165 −763.716401687
3.00 130 −764.134935177 4.00 0 −760.444260666
3.00 135 −764.129088532 4.00 15 −762.343570350
3.00 140 −764.121057229 4.00 30 −763.607558408
3.00 165 −763.963638251 4.00 45 −764.039285174
3.00 180 −763.832918231 4.00 60 −764.141345842
3.50 15 −759.927151116 4.00 65 −764.151633911
3.50 30 −763.200641168 4.00 70 −764.157248618
3.50 45 −763.929122495 4.00 75 −764.160088462
3.50 60 −764.114896124 4.00 80 −764.161259708
3.50 65 −764.135265111 4.00 85 −764.161391510
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He + NaK(A1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
4.00 90 −764.160830739 5.00 165 −762.665237758
4.00 95 −764.159760414 5.50 0 −763.943258362
4.00 105 −764.156396478 5.50 15 −764.017131073
4.00 120 −764.148441844 5.50 30 −764.115394118
4.00 135 −764.134007820 5.50 45 −764.154447128
4.00 150 −764.054607204 5.50 60 −764.163442332
4.00 165 −763.253127341 5.50 65 −764.164241800
4.50 15 −763.310703968 5.50 70 −764.164585203
4.50 30 −763.889779937 5.50 75 −764.164625231
4.50 45 −764.105909886 5.50 80 −764.164442792
4.50 60 −764.155033641 5.50 85 −764.164074634
4.50 65 −764.159647805 5.50 90 −764.163534286
4.50 70 −764.162000573 5.50 95 −764.162819441
4.50 75 −764.163018734 5.50 105 −764.160805878
4.50 80 −764.163222348 5.50 120 −764.155973901
4.50 85 −764.162891859 5.50 135 −764.147795248
4.50 90 −764.162170189 5.50 150 −764.101700639
4.50 95 −764.161122348 5.50 165 −763.109795740
4.50 105 −764.158109656 5.50 180 −752.704262530
4.50 120 −764.151095423 6.00 0 −764.080718979
4.50 135 −764.138497230 6.00 15 −764.107556601
4.50 150 −764.062516825 6.00 30 −764.144547562
4.50 165 −762.745168985 6.00 45 −764.160141692
5.00 0 −763.598547756 6.00 60 −764.164164471
5.00 15 −763.794228459 6.00 65 −764.164571453
5.00 30 −764.044050641 6.00 70 −764.164746436
5.00 45 −764.139636057 6.00 75 −764.164745243
5.00 60 −764.161120981 6.00 80 −764.164598263
5.00 65 −764.163030200 6.00 85 −764.164317754
5.00 70 −764.163924374 6.00 90 −764.163907047
5.00 75 −764.164201923 6.00 95 −764.163361164
5.00 80 −764.164076117 6.00 105 −764.161808087
5.00 85 −764.163656116 6.00 120 −764.157984257
5.00 90 −764.162990810 6.00 135 −764.151579983
5.00 95 −764.162094540 6.00 150 −764.124674046
5.00 105 −764.159573955 6.00 165 −763.626513973
5.00 120 −764.153649703 6.00 180 −761.421601581
5.00 135 −764.143326163 6.50 0 −764.130443178
5.00 150 −764.074895259 6.50 15 −764.140835850
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He + NaK(A1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
6.50 30 −764.155234416 7.50 105 −764.163616448
6.50 45 −764.162043101 7.50 120 −764.161994045
6.50 60 −764.164303197 7.50 135 −764.159024337
6.50 65 −764.164592758 7.50 150 −764.153713277
6.50 70 −764.164734642 7.50 160 −764.142284005
6.50 75 −764.164751586 7.50 165 −764.128058758
6.50 80 −764.164658443 7.50 172 −764.093694238
6.50 85 −764.164461228 7.50 180 −764.072055764
6.50 90 −764.164162119 8.00 0 −764.154090228
6.50 95 −764.163757871 8.00 15 −764.156859013
6.50 105 −764.162592096 8.00 30 −764.160326478
6.50 120 −764.159647813 8.00 45 −764.162824098
6.50 135 −764.154649964 8.00 60 −764.164183200
6.50 150 −764.139825514 8.00 75 −764.164635880
6.50 165 −763.937229992 8.00 90 −764.164498413
6.50 180 −763.230359774 8.00 105 −764.163922404
7.00 0 −764.146962425 8.00 120 −764.162756079
7.00 15 −764.152056593 8.00 135 −764.160527857
7.00 30 −764.158763407 8.00 150 −764.156860736
7.00 45 −764.162586689 8.00 160 −764.151957429
7.00 60 −764.164271545 8.00 165 −764.147243837
7.00 75 −764.164719590 8.00 172 −764.137299394
7.00 90 −764.164331341 8.00 180 −764.131517735
7.00 105 −764.163184530 8.50 0 −764.155354054
7.00 120 −764.160973348 8.50 15 −764.157631025
7.00 135 −764.157095445 8.50 30 −764.160685843
7.00 145 −764.152814996 8.50 45 −764.162942616
7.00 150 −764.148634503 8.50 60 −764.164176231
7.00 160 −764.119056336 8.50 75 −764.164598912
7.00 165 −764.075219474 8.50 90 −764.164529074
7.00 172 −763.956185733 8.50 105 −764.164133018
7.00 180 −763.874144664 8.50 120 −764.163309825
7.50 0 −764.152164232 8.50 135 −764.161678662
7.50 15 −764.155602452 8.50 150 −764.159000474
7.50 30 −764.159875122 8.50 165 −764.154647892
7.50 45 −764.162736155 8.50 180 −764.149871103
7.50 60 −764.164217034 9.00 0 −764.156611173
7.50 75 −764.164677364 9.00 15 −764.158420542
7.50 90 −764.164437410 9.00 30 −764.161094255
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He + NaK(A1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
9.00 45 −764.163101148 12.00 30 −764.163535088
9.00 60 −764.164190439 12.00 45 −764.164087198
9.00 75 −764.164567968 12.00 60 −764.164386024
9.00 90 −764.164540703 12.00 75 −764.164487757
9.00 105 −764.164273639 12.00 90 −764.164496999
9.00 120 −764.163702631 12.00 105 −764.164478843
9.00 135 −764.162538997 12.00 120 −764.164440972
9.00 150 −764.160557671 12.00 135 −764.164349981
9.00 165 −764.158067863 12.00 150 −764.164157949
9.00 180 −764.156302115 12.00 165 −764.163895685

10.00 0 −764.159141614 12.00 180 −764.163765473
10.00 15 −764.160183209 15.00 0 −764.164197693
10.00 30 −764.162027804 15.00 15 −764.164240185
10.00 45 −764.163475110 15.00 30 −764.164331795
10.00 60 −764.164253020 15.00 45 −764.164410639
10.00 75 −764.164525265 15.00 60 −764.164450159
10.00 90 −764.164535621 15.00 75 −764.164460186
10.00 105 −764.164420095 15.00 90 −764.164459528
10.00 120 −764.164160169 15.00 105 −764.164460515
10.00 135 −764.163607749 15.00 120 −764.164466982
10.00 150 −764.162587885 15.00 135 −764.164476303
10.00 165 −764.161373906 15.00 150 −764.164481090
10.00 180 −764.160817566 15.00 165 −764.164479331
11.00 0 −764.161191065 15.00 180 −764.164478512
11.00 15 −764.161762464 17.50 0 −764.164418537
11.00 30 −764.162891602 17.50 15 −764.164424523
11.00 45 −764.163823530 17.50 30 −764.164437085
11.00 60 −764.164326330 17.50 45 −764.164447106
11.00 75 −764.164502047 17.50 60 −764.164451177
11.00 90 −764.164517002 17.50 75 −764.164451405
11.00 105 −764.164469578 17.50 90 −764.164450898
11.00 120 −764.164361859 17.50 105 −764.164451721
11.00 135 −764.164122129 17.50 120 −764.164455307
11.00 150 −764.163656223 17.50 135 −764.164462915
11.00 165 −764.163049838 17.50 150 −764.164473878
11.00 180 −764.162763894 17.50 165 −764.164483739
11.00 190 −764.162895630 17.50 180 −764.164487751
12.00 0 −764.162581381 20.00 0 −764.164447584
12.00 15 −764.162890109 20.00 30 −764.164448973
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He + NaK(A1Σ+) potential calculations continued

Rd θ Energy Rd θ Energy
20.00 60 −764.164449392 25.00 0 −764.164448717
20.00 90 −764.164448979 25.00 30 −764.164448584
20.00 120 −764.164450161 25.00 60 −764.164448375
20.00 150 −764.164457075 25.00 90 −764.164448302
20.00 180 −764.164464940 25.00 120 −764.164448405
22.50 0 −764.164449217 25.00 150 −764.164448731
22.50 30 −764.164449041 25.00 180 −764.164449094
22.50 60 −764.164448655 27.50 0 −764.164448419
22.50 90 −764.164448490 27.50 90 −764.164448211
22.50 120 −764.164448779 27.50 180 −764.164448451
22.50 150 −764.164450321 30.00 0 −764.164448275
22.50 180 −764.164452409 30.00 90 −764.164448163
23.00 0 −764.164449123 30.00 180 −764.164448278
23.00 90 −764.164448439 35.00 180 −764.164448158
23.00 180 −764.164451279 10000.00 0 −764.164448090
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Appendix E

Seven Term Legendre Expansion
of the Excited State Potential
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Appendix F

Eleven Term Legendre Expansion
of the Excited State Potential
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