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Abstract

The determination of the wavelength dependence of the complex third-order po-

larizability of organic molecules delivers information on the mechanisms of reso-

nance enhancement and allows for comparison of the two-photon absorption cross

sections on their peak to the off-resonant third-order polarizabilities. The exper-

imental technique of degenerate four-wave mixing offers several advantages over

other comparable techniques, including sensitivity, background-free signal, autom-

atization, and information on excited state lifetimes. This work uses experimental

data, computational chemistry, and analysis of the relevant terms in the sum-over-

states quantum mechanics expression to analyze the significant contributions to the

third-order polarizability, mechanisms of resonance enhancement, and comparison

of the off resonant values, to peak resonant values. This information provides insight

into the structure-property relationships for the third-order polarizability, allows for

comparison to fundamental limits, and assessment of the potential for molecules to

form solid state materials with a large third-order susceptibility.

The use of donor-acceptor (D/A) substitution allows for the realization of small

molecules with large third-order polarizabilities. However, in contrast to symmetric

non-D/A oligomers that have third-order polarizabilities which scale by a power

law as the molecule is made larger, D/A substituted molecules only scale up to a

certain length, beyond which the molecule is over-extended and the third-order po-

larizability does not increase further. This work will analyze the scaling of non-D/A

and D/A substituted molecules, determine the optimum length for D/A substituted

molecules, and explain the physics of the saturation.

1



Chapter 1

Introduction

The physics of light and matter interaction include an extremely wide range of ob-

servable effects, relevant to many aspects of physics beyond optics. This interaction

can be extremely strong (total absorption, for example) or very weak (refraction). It

is also possible to classify light and matter interaction over a range of energies, from

low-energy phenomena like the photoelectric effect, to very high-energy phenomena

like pair production (nuclear physics). In these examples, energy is conserved and

transferred between light and matter, resulting in the annihilation, modification, or

creation of light (or even the creation of matter!).

The relatively modern field of non-linear optics is concerned with the higher order

effects possible with light in the presence of a non-linear material. This means that

light-light interaction is possible. Many new possibilities exist for interesting physics,

useful devices, and novel experimental techniques. Non-linear optics allows for exotic

imaging methods useful for a wide range of applications, from the microscopy of live

biological cells, to explosion dynamics. Useful devices for applications like optical

limiting, “optical transistors”, optical data storage, and even some cancer therapies

[5] work on the principles of non-linear optics.

As a non-linear medium, organic molecules provide a flexible basis for the in-

vestigation and realization of these physical effects and devices. Their structure

and chemistry can be engineered by skillful chemists to realize novel molecules, or

tweak existing ones. This approach allows for the development of materials suitable

2



for applications, as well as systematic variations to better study the influence of

molecular parameters on the non-linear optical properties.

The molecular origins of the non-linear response are well understood, however

there is much to be learned on the subject of optimizing the structure of molecules

for the best non-linear response. As a relative figure of merit (FOM) we use several

metrics to assess how well a particular molecule performs. The two most common

metrics published in the literature so far provide a measure of a molecule’s off-

resonant third order polarizability per size of molecule (γ̃), and with respect to it’s

fundamental limit (γI). The former reflects a molecule’s potential to form solid

state materials with a large third order susceptibility, and the latter indicates how

efficient the molecular design is, given a number of polarizable π-electrons, and first

excited-state transition energy.

This work introduces two additional metrics, the specific γ̃res and intrinsic γres
I

for the imaginary part of the third-order polarizability on resonance. Because it

is related to the two-photon absorption (TPA) cross section, these metrics provide

a measure of the molecule’s potential to form solid state materials suitable for de-

vices such as optical limiting, and a similar measure of how efficient the molecular

parameters are chosen for such an application.

This thesis will present studies into the non-linear spectroscopy of small organic

molecules, using systematic variations in the structure to study their effect on the

non-linear optical response, relating these properties to fundamental limits, and

assessing the potential for devices suitable for applications.

The use of these molecules in applications requires assembling them into the solid

state. We choose to study the third-order polarizability of molecules in solution for

experimental convience in order to control the number density, but it has been shown

that the third-order polarizability is a good predictor of the third-order susceptibility

of the solid-state. In fact, we can calculate the third-order susceptibility of the solid-

state from the molecular third-order polarizability using a gas model, and it works

[6].

The determination of the wavelength dependence of the complex third-order po-

larizability of organic molecules delivers information on the mechanisms of resonance

3



enhancement and allows one to compare the two-photon absorption cross sections

on their peak to the off-resonant third-order polarizabilities. Computational chem-

istry and an analysis of the quantum mechanical sum-over-states (SoS) expression

provide additional support to the experimental data.
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Chapter 2

Non-Linear Optics

The physics of non-linear light and matter interaction can be explained via several

analogies, or with the development of different physical descriptions. Fundamentally,

the most correct is the quantum explanation, but to reduce the level of abstraction,

some classical analogs are still useful in their descriptive ability, to help illuminate

the physical processes in terms that are more relatable to our common experiences.

2.1 Polarization

For the purposes of this chapter, and within the scope of non-linear optics, the

mechanism by which light and matter interact can be stated as the perturbation of

the equilibrium positions of the constituent charged particles that make up matter.

Because light (in the same reference frame as the material) consists of both an

electric field and a magnetic field, and matter contains atoms with positively charged

nuclei and negatively charged electrons, the electric field will exert a force on the

nuclei and electrons. The light is an electromagnetic wave at some frequency ω so

the system can be described as a driven oscillator. A special case exists at zero

frequency in which there need not be a magnetic field, but a constant electric field

still applies a constant force to the charged particles.

The quantum description is similar, except the atoms have discrete energy levels,

and the incident light contains photons at a certain energy, so it is necessary to

5



consider a certain level of interaction with all possible states. Therefore there is

a sum over all accessible states to take into account all possible paths in which a

system can develop in time. This is the sum-over-states (SoS) approach.

When a bound charge q is displaced from its equilibrium position a distance d,

a dipole p = qd is induced. In the macroscopic definition, the polarization of a

medium of bound charges is defined as a dipole density, in units of dipole moment

per unit volume.

The relationship between an externally applied electric field and the polariza-

tion induced in matter is given by the susceptibility χ, which is a measure of how

polarizable a material is,

~P = ε0χ~E, (2.1)

where ~E is the electric field, ~P is the polarization, ε0 is the permittivity of free

space, defined to be ε0 = 8.85× 10−12 with units of CV−1m−1 in the SI system. The

susceptibility (χ) is unitless in the linear case. Multiplying the units of ε0 by the

units of the electric field (Vm−1) gives Cm−2 which is equal to the units of dipole

per unit volume (Cm / m3).

In a polarizable medium, the response is generally not instantaneous, and de-

pends on the frequency of the electric field. For this reason, χ is a complex valued

function of the applied frequency. In a causal system, the polarization at some

point in time depends only on the electric fields applied up to that point in time,

and Kramers-Kronig relations hold.

In general, the polarization of a material does not consist of only the linear

response, so it can be described as a power series of the field strength.

~P = ~P (0) + ε0~χ
(1) ⊗ ~E + ε0~~χ

(2) ⊗ ~E ⊗ ~E + ε0
~~~χ(3) ⊗ ~E ⊗ ~E ⊗ ~E (2.2)

where ~P is the total macroscopic polarization that can be expressed as a sum of

contributions, ~P (0) is a permanent polarization that may be present in some mate-

rials, ~E is the electric field, and χ(n) is the nth order nonlinear susceptibility, which

is a (n+ 1)th rank tensor.
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2.2 Linear Optics

In a harmonic potential, the solution to a driven, damped harmonic oscillator is

a good description of the linear susceptibility (χ(1)). The motion of the negatively

charged electrons around their equilibrium can be described by the differential equa-

tion

−eE(t)− ξẋ = mẍ, (2.3)

where e is the charge of the electron, E(t) is the time-varying electric field, ξ is

the damping term, m is the mass of the electron, and ẋ and ẍ represent the first

and second time derivatives of the coordinate of the electron, respectively. If we

assume a sinusoidal time dependence for the electric field at a frequency ω so that

E(t) = E0e
−iωt, and therefore a sinusoidal time dependence for the response also at

the same frequency ω, (x(t) = x0e
−iωt), then this equation can be solved to give:

x0 =
E0e

iξω +mω2
0 −mω2

(2.4)

where the real part of E0 and x0 are the amplitudes of the driving electric field

and response respectively, and ω0 is the resonant frequency of the system. The

observable physical effect of these electrons shaking back and forth is that a new

electric field is radiated by these induced dipoles, which combines with the incident

electric field. This leads to a change in the phase velocity of the light which is a

sum of these two electric fields.

The index of refraction for a medium is defined as the ratio of the velocity of

light in the medium to the velocity of light in a vacuum, n = c
v
, and the phase

velocity of a wave is given by v = ω
k
. In the linear case, the electric field (E) and

polarization (P ) have the same frequency (ω) and wavevector (k).

In a polarizable medium, the wave vector of light will be shorter compared to the

wave vector in vacuum. This can be most clearly seen by solving the wave equation

for an electric field and induced polarization in a polarizable medium. Starting with

Maxwell’s equations in matter:
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∇× ~E = − ∂

∂t
~B, (2.5)

∇ · ~D = ρf , (2.6)

∇× ~H =
∂

∂t
~D +~j, (2.7)

∇× ~B = 0, (2.8)

where ~H = 1
µ
~B, ρf is the density of free charges, and ~j is the current density.

Including the effect of material polarization in the electric displacement,

~D = ε0 ~E + ~P (2.9)

provides a set of equations that can be solved for wave solutions in a polarizable

medium. To simplify them, consider the case with no free charges, so ρf = 0 and

~j = 0. In the usual way, we take the curl of Eq. 2.5 and combine the results to get

the wave equation:

∇×∇× ~E +
1

c2

∂2

∂t2
~E = − 1

c2

∂2

∂t2
1

ε0
~P . (2.10)

In the simplest case when the polarization depends linearly on the applied electric

field, we can insert equation 2.1 into the wave equation 2.10. This results in a

differential equation with ~E

∇×∇× ~E +
1

c2

∂2

∂t2
~E = − 1

c2

∂2

∂t2
χ~E (2.11)

which simplifies to

∇×∇× ~E +
1

c2
(1 + χ)

∂2

∂t2
~E = 0. (2.12)

and after taking the time and space derivatives, there are three seperate equations

for each component of the electric field (~E = Exı̂+Ey ̂+Ezk̂). If an optical field with

a transverse electric field traveling in the x direction is assumed, equation 2.12 can
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be simplified to yield,

− ∂2

∂x2
E +

1 + χ

c2
E = 0. (2.13)

At this point, we can assume a harmonic plane wave solution in the form of

E(x, t) = E exp (i(kx− ωt)) (2.14)

which results in the expression

k2E − ω2

c2
(1 + χ)E = 0. (2.15)

Only certain values for the wavevector k and frequency ω can satisfy this equation.

k2 − ω2

c2
(1 + χ) = 0 (2.16)

k =
ω

c

√
1 + χ (2.17)

So one effect of the induced linear polarization P is to increase the wavevector

by a factor of
√

1 + χ, which means that the wavelength of the electric field in a

polarizable medium is shorter then it would be in a vacuum. This factor is the index

of refraction

n =
√

1 + χ (2.18)

which is also responsible for the modification of the phase velocity of light.

Because of the assumption that the polarization P is linearly proportional to the

applied electric field E (2.1), any superposition of solutions to the wave equation

(2.10) is also a solution, and optical waves cannot influence each other. However,

many interesting things happen if we consider higher order effects.

2.3 Non-linear Optics, Classical Description

The previous section shows that the principle effect of a polarizable, linear medium

without free charges (and therefore absorption) on a propagating electromagnetic
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field is the modification of its phase velocity. An assumption was made that the

polarization P was simply linearly proportional to the applied electric field E. When

the polarization is allowed to depend on the electric field in a non-linear way, many

other effects can occur. One significant consequence is that it is then possible for

the presence of one (or more) electric field(s) to influence the propagation of another

electric field. Light-light interaction becomes possible.

To quantify this behavior, we assume that that the polarization can be written as

a linear part plus a non-linear part, and that the non-linear part is a small correction.

Thus, we can write:

~P (~x, t) = ε0~χ · ~E(~x, t) + ~P (NL)(~x, t) (2.19)

where ε0~χ · ~E(~x, t) is the linear polarization discussed in the previous section, and

~P (NL)(~x, t) is the additional non-linear polarization, which depends on higher orders

of ~E.

Generally, the assumption that the non-linear polarization is a small correction

to the total polarization holds true for electric fields that apply forces to electrons

that are much smaller than the forces holding the bound electrons to their respective

nuclei.

We can express ~P (NL) as a series expansion

~P (NL) = ~P (2) + ~P (3) + ~P (4) + · · ·+ ~P (n) (2.20)

where ~P (2) is the second-order component, ~P (3) is the third-order component, and

~P (n) is the nth component.

For clarity, and to simplify the notation, let us consider a scalar version of

equation 2.19 and a material that has a non-zero χ(3) so that it generates a non-

linear polarization proportional to E3 (see equation 2.21). For the interaction of

three separate beams, we allow each optical field to have a different wave vector ~kn,

but will keep each frequency ω the same (and therefore the length of each ~kn is the
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same),

P (3)(~x, t) = ε0χ
(3) [E(~x, t)]3 (2.21)

and the total electric field from three optical waves E with wave vectors kn can be

written as:

E(~x, t) =
1

2

3∑
n=1

(
Enei[

~kn·~x−ωt] + E∗ne−i[
~kn·~x−ωt]

)
(2.22)

where En is the complex amplitude of the field with wave vector ~kn.

If we then insert the sum of three incident optical waves with three different wave

vectors into equation 2.21 we get a result with many mixing terms (see Appendix A).

We can regroup the result into like terms with their respective complex conjugates to

determine the complex amplitudes of various third-order processes. A polarization is

generated at 3ω which is third-harmonic generation (THG) and other combinations

of the fields interact to produce other non-linear polarizations. Of primary interest

here is the one that is phase matched in a homogenous, isotropic material.

There are three polarization waves with a frequency of ω, one with a wave

vector of ~k1 + ~k2 − ~k3, another with a wave vector of ~k1 − ~k2 + ~k3, and the third

with −~k1 + ~k2 + ~k3. However, in general for three non-collinear beams, only one

of these polarizations can be phase matched. In the geometry defined in Fig. 2.1

and Fig. 2.2, only the polarization with a wave vector of ~k1 + ~k2 − ~k3 will radiate a

phase-matched optical beam. This optical wave is

3

4
ε0χ

(3)
(
E1E2E∗3ei[(

~k1+~k2−~k3)·~x−ωt] + c.c.
)

(2.23)

and therefore has a complex amplitude of

3

2
ε0χ

(3)E1E2E∗3 . (2.24)

Because the wave vector has the correct length to satisfy the wave equation, the

dipole radiation from the polarization sums coherently (in-phase) and it can be

inserted as a source term into the wave equation. The radiated wave is further

analyzed in Chapter 3.
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Figure 2.1: A perspective illustration of the forward DFWM geometry, showing the in-
cident beams (k1, k2, k3) overlapping in the sample and the wave radiated
from the non-linear polarization (k4 = k1 + k2 − k3).
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Figure 2.2: End view of the DFWM geometry, looking down the negative z-axis (oppo-
site the direction of propagation).

2.4 Non-linear Optics, Third-order Molecular Po-

larizability

In 1962, Armstrong et al published a SoS expression for the non-linear optical polar-

ization of an isolated system using perturbation theory [7]. Nine years later, Orr and
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Ward published the same expression, but written a different way [8]. In summary,

they start with a perturbation to the Hamiltonian (which may be time-dependent)

and express that additional energy as a dipole interaction with an electric field as

H(t) = H(0) + εH
′
(t) (2.25)

where

εH
′
(t) = −eE(t) · r. (2.26)

E(t) is the externally applied electric field, and e is the charge of the electron. This

can be expressed as a series expansion in electric field, using linear combinations of

solutions to the unperturbed Hamiltonian. For further details, see Appendix B.

We can relate the molecular third-order polarizability (γ) of a molecule to the

third-order susceptibility χ(3) of a solution of those molecules by

χ
(3)
1111(Nd) = χ

(3)
1111(0) + f 4Ndγrot (2.27)

where f = (n2 + 2)/3 is a Lorentz local field factor, n is the refractive index of the

solvent (n = 1.42 for the solvent we will use, CH2Cl2), Nd is the number density of

molecules in solution, and γrot is the effective scalar third-order polarizability that

is obtained from a rotational average of the corresponding molecular tensor [9]. The

number density can be expressed in terms of wt% concentration (C), as mass of

molecule divided by mass of solute, which is more convenient experimentally,

Nd = (C/100)ρ
NA

M
, (2.28)

where ρ is the mass density of the solution, NA is Avogadro’s number, and M is the

molar mass. We assume that the concentration is small (C < 2.0 wt%).

The SoS expression by Orr and Ward for the third-order polarizability is

γxxxx(−ωσ;ω1, ω2, ω3) =
1

ε0~3

(
∞∑
lmn

x0lxlmxmnxn0

D−1
lmn(ω1, ω2, ω3)

−
∞∑
mn

x0mxm0x0nxn0

D−1
mn(ω1, ω2, ω3)

)
(2.29)
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as derived by Ref. [8] and rewritten by Ref. [10]. In this expression, the dispersion

terms are:

(2.30)

Dlmn(ω1, ω2, ω3) =

(
1

(~Ωlg − ~ωσ)(~Ωmg − ~ω1 − ~ω2)(~Ωng − ~ω1)

+
1

(~Ω∗lg + ~ω3)(~Ωmg − ~ω1 − ~ω2)(~Ωng − ~ω1)

+
1

(~Ω∗lg − ~ω1)(~Ω∗mg + ~ω1 + ~ω2)(~Ωng − ~ω3)

+
1

(~Ω∗lg + ~ω1)(~Ωmg + ~ω1 + ~ω2)(~Ω∗ng + ~ωσ)

+ all six permutations of (ω1, ω2, ω3) the above terms

)
and

Dmn(ω1, ω2, ω3) =

(
1

(~Ωmg − ~ωσ)(~Ωmg − ~ω3)(~Ωng − ~ω1)

+
1

(~Ωmg − ~ω3)(~Ω∗ng + ~ω2)(~Ωng − ~ω1)

+
1

(~Ω∗mg + ~ωσ)(~Ω∗mg + ~ω3)(~Ω∗ng + ~ω1)

+
1

(~Ω∗mg + ~ω3)(~Ωng − ~ω2)(~Ω∗ng − ~ω1)

+ all six permutations of (ω1, ω2, ω3) of the above terms

)
(2.31)

In 2008, Moreno, Clays, and Kuzyk derived a new SoS expression using Thomas-

Kuhn sum rules to express the third-order polarizability in an equivalent, but differ-

ent expression to eliminate explicit dependence on dipolar terms. They propose that

their version of the SoS expression could “...be used to develop a three-state model

of the dispersion of the third-order susceptibility that can be applied to molecules in

cases where many more states would have been required” [10]. Their only assump-

tion is that the sum rules hold, which is the case when the unperturbed Hamiltonian

describing the system is conservative.
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The result of their work is

γxxxx(ωσ;ω1, ω2, ω3) =
1

ε0~3

∞∑
n

∞∑
m 6=n

∞∑
l 6=n

(2Em0 − En0)(2El0 − En0)

E2
n0

x0mxmnxnlxl0
D−1
nnn

−
∞∑
n

∞∑
m 6=n

∞∑
l 6=n

(2El0 − Em0)

Em0

x0lxlmxmnxn0

D−1
mmm

−
∞∑
n

∞∑
l 6=n

∞∑
m 6=n

(2Em0 − En0)

En0

x0lxlnxnmxm0

D−1
lnn

−
∞∑
n

∞∑
m 6=n

∞∑
l 6=m

x0lxlmxmnxn0

D−1
lmn

−
∞∑
mn

x0mxm0x0nxn0

D−1
mn

(2.32)

which is an expression that is useful in that it provides a more direct route to the

derivation of fundamental limits of the third-order susceptibility [10].

2.5 Fundamental Limits

From equation 2.32, it is possible to derive expressions for the maximum theoret-

ical third-order polarizability obtainable for a molecule with a given number of π

electrons and a certain energetic difference between the ground and first excited

state. This is a useful comparison for designing molecules with large third-order

polarizabilities to provide a reference of how well a molecule utilizes the available π

electrons, and how well suited the first optical transition is for non-linear optics.

Kuzyk uses the fact that near the fundamental limit, only three levels contribute

to the non-linear response [11–13]. In the off-resonant limit, equation 2.32 reduces

to:

γxxxx(−ωσ;ω1, ω2, ω3)

=
1

ε0~3

(
D111(2E20 − E10)2

E2
10

+D212 −
(2E20 − E10)

E10

(D211 +D112)

)
|x02|2|x12|2 +

e4

(
D222(2E10 − E10 − E20)2

E2
20

+D121 −
(2E10 − E20)

E20

(D122 +D221)

)
|x01|2|x12|2 −

e4
(
D11|x01|4 + (D21 +D12)|x02|2|x01|2 +D22|x02|4

)
(2.33)
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where the dispersion terms become

Doff
lmn = 4

(
1

El0Em0En0

)
(2.34)

and

Doff
mn = 2

(
1

E2
m0En0

+
1

Em0E2
n0

)
(2.35)

when the frequency is zero. This derivation establishes upper bounds on the limits

of the third-polarizability.

The limits are derived separately for two different molecular symmetries, cen-

trosymmetric and non-centrosymmetric. The magnitude of the non-centrosymmetric

limit is four times larger then the centrosymmetric limit, however the centrosym-

metric limit can still be used as a benchmark to compare all molecules, regardless of

their symmetry. The magnitude of the zero-frequency limit (for a centrosymmetric

molecule) is given by the fourth power of the maximum dipole transition matrix

element divided by the third-power of the first optical excitation energy [14]

γk =
1

ε0

[
e2~2Nπ

2m2E10

]2
1

E3
10

=
e4~2

ε0m2

N2
π

E5
10

, (2.36)

where ε0 is the electric constant that is part of the definition of the polarizabil-

ity in the S.I. system, the term in square brackets is the square of the maximum

dipole transition matrix element as determined by sum-rules [14], e is the elementary

charge, Nπ is the number of conjugated electrons, m is the mass of the electron, and

E10 is the energy difference between the first optically accessible excited state and

the ground state.

In addition to the fundamental limit for the off-resonant γk (equation 2.36),

Kuzyk also derived an expression for the fundamental limit for the magnitude of

the third order polarizability on resonance [15].

Kuzyk uses two ratios to derive a resonant limit for the imaginary part of γ from

equation 2.36. The first ratio is obtained from the term in SoS expression which
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becomes dominant at resonance. It is

γ ∝ µ2
02µ

2
12

(E20 − ~ω − iΓ20)2(E10 − 2~ω − iΓ10)
. (2.37)

Note that we define the energy levels differently from his paper, so that E10 is the

first optical transition here.

At resonance, when this term dominates the SoS expression, the ratio of the

imaginary part to the real part of γ has been worked out in Ref. [15]. Re-written

with the alternate definitions of E10 and E20, it is

γI
γR

=
Γ10

E10

+ 2
Γ20

E20

. (2.38)

Kuzyk also works out the ratio for the maximum resonant γres
I to the maximum

off-resonant γI [15] which becomes

γres
I

γoff
I

=

[
E20

E20 − E10

2

]2
 1(

Γ10

E10

)(
2 Γ20

E20
+ Γ10

E10

)
 (2.39)

when written in a consistent way with the above equations. The combination of

these two ratios, with γk, results in an expression for the maximum γres
k that could

be theoretically achieved, derived from sum rules, and in terms of physical quantities

that can be measured for a molecule.

The result is

γres
k = γk

E2
10E20

(E20 − E10/2)2 Γ10

(2.40)

in units of γk.

It is important to note that with our definition of E10 and E20, there is no double

resonance, which would occur when E20 = E10/2. Written this way, E10 is the lowest

optical energy transition, therefore E20 > E10.

To visualize the influence of molecular parameters E10 and E20 on this ratio, see

Fig. 2.3. In the limit E20 → ∞, γres
k /γk → 0 because this particular term does not

allow two-photon absorption in the case of a two-level system. The limit γk is not
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Figure 2.3: Value of the ratio γres
k /γk ploted in terms of E10 and E20/E10, confined to

the region where E20 > E10. For this plot, Γ10 = 3.

independent of E10 because γk ∝ E−5
10 (see equation 2.36). See Fig. 2.4 for a plot

of the maximum theoretical value γres
k as a function of E10 and E20. When the two

states are degenerate, γres
k is a maximum.

These two fundamental limits (off-resonant and resonant) allow assessment of a

molecular design, how well it utilizes the available π electrons, and how well the first

(γk) or first two (γres
k ) optical transitions are suited for achieving large off-resonant,

or on-resonance third-order polarizabilities.
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Figure 2.4: Value of the γres
k as a function of E10 and E20/E10. The maximum value

occurs where E20 = E10.
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Chapter 3

Experimental Techniques

The invention of the laser caused a figurative explosion (or literal, in some cases

[5]) of research into non-linear optical physical effects, materials, and experimental

methods. The ability to generate coherent and intense optical beams opened the

door for new physics and the investigation of new material properties, including

non-linear optics. One of the first demonstrations of non-linear optics was the

observation of second-harmonic generation (SHG) in Ref. [16]. In addition to SHG

and THG, non-linear optics allows for the transfer of energy from one beam into

another (amplification) so that wavelengths other then the laser fundamental (or

harmonics thereof) can be generated. This is the basis for tuneable wavelength

sources such as used in this research. Pulsed lasers also make achieving extremely

peak intensity possible, allowing for the investigation of higher-order non-linear

effects that depend on higher orders of the electric field.

This chapter will discuss degenerate four wave mixing as an experimental method

for measuring the optical wave radiated by the non-linear polarization.

3.1 DFWM

Of particular interest in this research is the case when three incident optical beams

have the same frequency and a fourth beam is generated at the same frequency. This

physical process is called degenerate four-wave mixing (DFWM) and provides some
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experimental advantages. Compared to third harmonic generation (THG), DFWM

is clearly in resonance with one optical transition over a wider spectral range, and

is therefore more suitable for non-linear spectroscopy. It also allows the observation

of time-dynamics, and is more sensitive at the same intensity than Z-scan. We have

the freedom to control the beam polarizations separately, as well as the time-delay

of the three incident pulses with respect to each other. The geometry of a DFWM

arrangement can be chosen to be phase-matched (which is not generally true for

THG) so weak effects can result in strong signals.

Degenerate four-wave mixing measures the non-linear signal radiated by the

third-order polarization ~P (3) discussed in Chapter 2; it is a third order process

because it depends on a mixing process of three incident beams. In DFWM they

have the same frequency (hence degenerate), and the geometry can be chosen so

that the non-linear component of the polarization ~P can radiate a fourth beam in

a phase matched condition. This beam then satisfies the non-linear wave equation

(see Chapter 2).

In the approximation of slowly varying amplitude, and without depletion of the

pump-beams, the polarization will radiate a wave with an electric field that increases

linearly with propagation distance as

E4(z) =
ik4

2ε0
ε−1

4j P
(3)
j z. (3.1)

In the case of linear absorption, the three incident pump beams will be depleted,

and this will impact the DFWM signal radiated by the nonlinear optical polarization.

We start analyzing the effect of linear absorption by defining a length-dependent

polarization as

P (3)(z) = ε0χ
(3)E1E2E

∗
3

[
e−

α
2
z
]3

(3.2)

which takes into account the linear absorption of the 3 incident pump beams with

complex amplitudes E1, E2, and E3 with wave vectors k1,k2,k3, respectively. The

phase-matched DFWM optical wave with amplitude E4 has a wave vector k4 =

k1 + k2 − k3. Inserting this polarization as a source term into the wave equation,
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and making the approximation of slowly varying amplitude to eliminate second-order

space derivatives results in

(3.3)ik4
∂

∂z
E4(z)− k2E4(z) +

ω2n2

c2
E4(z) = −ω

2

c2
χ(3)E1E2E

∗
3

[
e−

α
2
z
]3

which, because it is phase matched, simplifies to

∂

∂z
E4(z) =

i

k4

ω2

c2
χ(3)E1E2E

∗
3

[
e−

α
2
z
]3
. (3.4)

The signal radiated by the polarization at the same frequency is also subject to the

same linear absorption, so we can add one additional term to this equation

∂

∂z
E4(z) =

i

k4

ω2

c2
χ(3)E1E2E

∗
3

[
e−

α
2
z
]3 − α

2
E4(z), (3.5)

which can be solved for E4(z). The result is

E4(z) =

(
1

α

i

k4

ω2

c2
χ(3)E1E2E

∗
3(1− e−αz)

)
e−

α
2
z (3.6)

which shows that the electric field of the wave radiated by the nonlinear polarization

will initially grow linearly with distance z, as

E4(z) =
ik4

2ε0
ε−1

4j P
(3)
j z, (3.7)

but the linear absorption depletes the pump beam, and results in attenuation of the

radiated wave (see Fig. 3.1).

The intensity of the radiated signal wave depends on the intensity of the three

pump waves and on the interaction distance z, as

I4 ∝
z2

ninjnknl
I1I2I3

∣∣χ(3)
∣∣2 [1− e−αz

αz
e−αz/2

]2

. (3.8)

The term in square brackets tends to (1− 2αz) as αz goes to zero, and can also be

well approximated by exp(−2αz), which for a sample of thickness z is equivalent to
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Figure 3.1: Comparison of the relative effects of pump-beam depletion by linear absorp-
tion (α > 0) and TPA (β > 0) with arbitrary values.

saying that the signal intensity is given by I4 ∝ z2I1I2I3 with all intensities taken

in the middle of the sample.

As long as the pump beams are not depleted by two-photon absorption (TPA)

over the thickness of the sample, the imaginary part of the third-order polarizability

contributes significantly to the strength of the DFWM signal. Its only effect is an

additional phase shift of the generated signal wave. In our experimental configu-

ration, with all interacting beams sharing the same polarization, the signal wave

has an intensity proportional to |χ(3)
1111(C)|2. This signal is in contrast to z-scan, in

which one observes the transmission of a single optical wave and the imaginary part

of the third-order susceptibility can only be detected in the form of an attenuation

of the transmitted wave [17].

However, if the pump beams do have such an intensity that they are depleted by

TPA (or cross-TPA), the effect on the wave radiated by the non-linear polarization
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must be considered. In this case, the z dependence of the intensity dependent ab-

sorption is described by the so that differential equation dI
dz

= −βI2 and the solution

is: I(z) = I0/(1 + βI0z). Taking a similar procedure as above, except neglecting

linear absorption, the differential equation for the amplitude of the radiated wave

becomes
∂

∂z
E4(z) =

i

k4

ω2

c2
χ(3)E0E0E

∗
0

[
1

1 + βI0z

]3/2

(3.9)

when each incident pump beam has the same intensity I0. The solution to this

equation is

E4(z) =
2

βI0

i

k4

ω2

c2
χ(3)E0E0E

∗
0

[
1− 1√

1 + βI0x

]
, (3.10)

and the corresponding expression for the DFWM signal intensity is

I4 ∝
z2

ninjnknl
I3

0

∣∣χ(3)
∣∣2 [21− (1 + βI0z)−1/2

βI0z

]2

, (3.11)

with the correction term in square brackets tending to 1−3βId/2 in the limit βId→
0. Examples of signal growth with propagation distance are shown in Fig. 3.1. A

more complete analysis for the case of different intensities between the interacting

beams can be done by numerically integrating equation 3.12,

∂

∂z
E4(z) =

i

k4

ω2

c2
χ(3)E1E2E

∗
3

×
[

1

(1 + βI1z)(1 + βI2z)(1 + βI3z)

]1/2

, (3.12)

which is a well-behaved function allowing quick convergence.

Another consequence (besides depletion of the pump beams) of TPA is that some

energy is deposited in the solution, resulting in some number density of molecules

in an excited state. With DFWM, it is possible to determine the impact of this

excitation, and measure the time dependence of the DFWM signal to determine the

excited-state lifetime.

The experimental setup uses a wavelength-tunable stream of 1-ps light pulses at
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a repetition rate of 1 kHz, which is provided by a TOPAS traveling-wave optical

parametric amplifying system from Light Conversion, pumped by a Clark-MXR

CPA-amplified laser. The DFWM experiment uses a forward configuration, with

the coordinates of the interacting wavevectors in the plane of the sample positioned

at the opposite corners of a square for waves 1 and 2, and in the remaining corner

for wave 3, see Fig. 2.1 and 2.2 on page 12. The arrival time of pulse 1 in the sample

is accurately controlled by a translation stage. At longer delay times of pulse 1, the

setup is sensitive to any population grating left behind by the interference of pulses

1 and 2, which can be used to study the dynamics of the excited states populated

by two-photon absorption.

The molecular third-order polarizabilities of the molecules in Fig. 3.2 are inves-

tigated by dissolving the molecules in CH2Cl2 (DCM) and studying the nonlinear

response of 1-mm-thick solutions prepared in fused-silica spectroscopy cells. Such

solutions have a third-order susceptibility given by equation 2.27. From the non-

linear optical response of the solutions as a function of molecular concentration, we

determine the rotational average of the third-order polarizability. Absolute values

for the third-order susceptibility of the solutions are obtained via DFWM, by com-

paring to a reference measurement. We established the χ
(3)
1111(0) for a 1-mm cell filled

with the pure solvent to be 6 ± 1 times larger than for a 1-mm-thick fused-silica

sample, for which we used a third-order susceptibility of 1.9 × 10−22m2V−2. This

value corresponds to the weighted average of the values given in [18–21] taking into

account dispersion, as well as the different nonlinear process as in the case of [18].

All values are with 10% of each other.

Fig. 3.3 gives an example of the time dependence of the DFWM signal, when

the delay of one beam is varied with respect to the other two beams. A delay of

t = 0 corresponds to all pulses arriving in the sample at the same time.

Fig. 3.4 gives an example of the concentration dependence of the DFWM signal

from a solution, as determined at a wavelength for which the third-order polarizabil-

ity has a significant imaginary part and a negative real part. At the laser intensities

used for this particular experiment, the two-photon absorption is strong enough to
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Figure 3.2: The rotational average of the third-order polarizability γrot was measured
for the above molecules at a wavelength of λ = 1500 nm. This wavelength
was chosen because it is commonly used in telecommunication applications,
and these molecules are expected to be off-resonant.

deplete the intensities of the incident beams in the DFWM experiment, which re-

sults in an additional attenuation of the DFWM signal at higher concentrations and

in a detectable nonlinear transmission of one of the incident beams.

A second example detailing the influence of large intensities on the concentration
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Figure 3.3: A sample of the time dependence of the DFWM signal, when the input beams
to not have sufficient energy to excite the molecules in solution, either by
linear absorption or TPA. In this case, the DFWM signal can be fitted with a
gaussian. The amplitude is proportional to the intensity, and the square root
of the amplitude is proportional to χ(3). The DCM cell with concentration
C = 0 is shown for comparison. The additional signal is due to the presence
of the molecule Iso-3, with a relatively weak concentration of C = 0.1419%.
Even at such a low concentration, the additional signal at 1500 nm is clearly
quantifiable.

dependence of the DFWM measurement is shown in Fig. 3.5. At the measured

wavelength of 1180 nm, the TDMEE molecule is on the lowest two-photon resonance

(λmax = 591 nm). Four sets of data were collected, at different laser powers, and

then simultaneously fit with the intensities of each beam and the real and imaginary

parts of γ as fitting parameters. Because the relative intensities of the three incident

pump beams is different, numerical integration of equation 3.12 is used. The effect

of the partially depleted pump beams is greater at higher intensities, and the fitted

values for Re[γ] (-21.0) and Im[γ] (33.7) agree with other measurements.
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Figure 3.4: A sample of the data for TDMEE taken at 1240 nm, where the imaginary
part is significant, and the intensity is large enough to see the effect of
TPA. The χ(3) ratios are shown in the top plot and indicate a negative real
part, and imaginary part preventing an intercept with the zero axis, and
responsible for non-linear absorption. In the bottom plot, the Transmission
(T ) data for one of the incident beams showing the non-linear absorption,
and can be fit with T = 1/(1 + βIL).

When collecting data on the wavelength dependence of γ, the full time-dependence

of the DFWM signal was not measured at each wavelength. Instead, the delay tracks

which control the arrival time of one beam were programmed to step back and forth

between delay t = 0 and t = −1.5 ps and the difference of the two signal amplitudes

is stored as the amplitude of the DFWM signal. The computer control also steps the

TOPAS through a range of wavelengths where the signal does not change polariza-

tion, allowing one interaction type to be used for the spectral range. Additionally,

the intensity of the transmitted beam (k3) was collected simultaneously to provide

transmission data for evidence of linear or two-photon absorption. This approach

allows for the automatized collection of DFWM signal amplitudes and transmission
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Figure 3.5: The concentration and power dependence of the TDMEE molecule, as mea-
sured at a wavelength of 1180 nm, on top of the first two-photon resonance,
with 4 different laser intensities. The relative intensities of the three incident
beams are different in our experimental setup, so a numerical integration of
equation 3.12 was used, and all four data sets were simultaneously fit with 6
fitting parameters, the real and imaginary parts of γ, as well as the relative
intensity of the laser used for each data set.

data over the wavelength range of 1050 nm to 1680 nm. For most molecules, this

range includes the first TPA transition. The output power from the TOPAS drops

off dramatically below 1080 nm, so frequently the data between 1050 and 1080 nm

was not useable.

Additionally, the transmission data for a cell with zero concentration χ(3)(0)

contains the relative incident beam intensities because our solvent (DCM) is trans-

parent over this wavelength range. So the input data collected consists of two 2D
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data sets

χ(3)

χ
(3)
DCM

(C, λ) (3.13)

T (C, λ) (3.14)

and a 1D set of the relative beam intensity as a function of wavelength (I(λ)).

Samples of the input data are shown in Fig. 3.6 and Fig. 3.7.

Figure 3.6: The χ(3) data as a function of concentration and wavelength.

Figure 3.7: The T data as a function of concentration and wavelength.

The relative beam intensities of the three incident pump beams were measured,
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and their ratios were found to be constant over the wavelength range used.

In order to allow for a smoothly varying function γ(λ), a Bezier paramaterization

was used. It makes physical sense that γ(λ) should vary smoothly and not have

discontinous jumps. An arbitrary number of control points N can be defined to

allow an arbitrary degree of granularity to γ(λ). When N becomes too large, the

model tries to follow noise in the data, and γ(λ) becomes unphysically wrinkly.

If there are insufficient control points, then there is not enough flexibility in the

paramaterization to adequately conform to the data.

The quadratic Bezier curve is a parametric function, defined as

B(t) = (1− t) [(1− t)P0 + tP1] + t [(1− t)P1 + tP2] , t ∈ [0, 1], (3.15)

which amounts to a linear interpolation between two lines, one connecting P0 to P1

and the other connecting P1 to P2 (see Fig. 3.8). For each section of the Bezier

Figure 3.8: Illustration of the Bezier paramaterization. The point P1 is located at one
of the control points, but P0 and P2 are located midway between P1 and the
next adjacent control point.

curve in γ(λ), the point P1 is set at a control point, and the points P0 and P2 are

defined to be midway between two adjacent control points. Defined this way, one

Bezier curve section will also be smoothly continuous with the next Bezier section,

and it will be analytic over the desired range.
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black lines show that the Bezier will be tangent to a line between two control
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3.2 Molecular Solutions

A range of seven concentrations were prepared in 1mm thick optical cuvettes pur-

chased from Starna Cells. The highest concentration depends on the solubility of

the particular molecule, but is always kept below 2%. A very low concentration

is prepared, sufficiently transparent through the optical region to compare the full

range of spectral features with the extinction coefficients. This cell allows for the

detection of decomposition. It was found that with some molecules, trace amounts

of acidity were interacting with the molecules leading to decomposition, and modifi-

cation of the linear absorbance spectrum. See Fig. 3.10 for an example comparison

between the extinction coefficients and an absorbance spectrum showing signs of

modification. To eliminate this problem, the DCM was filtered through a 10 cm
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Figure 3.10: Comparison of the absorbance spectrum with the extinction coefficients
for molecule ISO-3 between 700 nm and 860 nm, showing in detail the
tail of the absorption peak where the mismatch can be observed. The
presence of trace amounts of acids in the solvent were interacting negatively
with the molecule, which could be observed as a modification of the linear
absorbance spectrum.

column of basic Al2O3 to remove all traces of acids.

The resulting solvent provided very good solutions, which remained stable over

time. The plot in Fig. 3.11 shows a comparision of the extinction coefficients with

the linear absorbance spectrum of a very weak concentration of the same molecule,

taken over a 2 month period. There is slight evidence of solvent evaporation, leading

to a small increase in concentration, but the molecule appears to be quite stable,

matching the expected spectrum very well, over a long period of time.
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Figure 3.11: Comparison of the absorbance spectrum of a very weak concentration of
molecule ISO-3 over a period of 2 months with the extinction coefficients.
The important observation in this plot is that the shape of the absorption
spectrum remains unchanged over a long period of time, and still closely
matches the extinction coefficients.

3.3 Error Analysis

Several sources of error in a DFWM experiment can be eliminated (or their impact

on the the experimental accuracy greatly decreased) by measuring quantities as

ratios, with respect to a known quantity which eliminates the dependence on laser

intensity, reflection losses, pulse timing, and slight geometric misalignments.

This section will analyze the impact of a misalignment of the incident pump

beams on the measured DFWM signal. So far, this chapter has assumed that the

forward DFWM geometry is such that the electric field amplitude (E4) radiated

by the polarization is built up in a phase matched way, k4 = k1 + k2 − k3, and

|k4|= |k1|= |k2|= |k3|. However, if the incident beams are slightly misaligned, then

the wave vector k4 will not have the correct magnitude to satisfy the wave equation.
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The DFWM signal can only be coherently amplified over a limited length, which is

the coherence length (lc) given by

lc =
π

∆k
(3.16)

where ∆k = k1 + k2 − k3 − k4. When the beams are phase matched, ∆k = 0 and

lc =∞.

d
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k

k

k
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z

Figure 3.12: Side view of experimental setup, showing three beams crossing in the sam-
ple. The solution has a thickness d, but the glass cuvette has a total
thickness of t.

When the beam k3 is misaligned, the components of the mismatch vector ∆k
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Figure 3.13: Top view of experimental setup, showing three beams crossing in the sam-
ple, and the direction of the DFWM signal. When properly aligned, all
three incident beams cross at the same angle θ with respect to the z-axis.
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Figure 3.14: End view of experimental setup, showing the misalignment considered when
k3 is at an angle θ3 6= θ.

are:

∆kx = k1x + k2x − k3x = 0 + 0− k sin θ3 (3.17)

∆ky = k1y + k2y − k3y = −k sin θ + k sin θ − 0 (3.18)

∆kz = k1z + k2z − k3z = k cos θ + k cos θ − k cos θ3 (3.19)
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Figure 3.15: Perspective view of the DFWM geometry, showing the angle θ3 of incident
beam with wave vector k3 in the xz plane.

so the size of this vector is

|∆k|= k

(
1−

√
(sin2 θ3 + (2 cos θ − cos θ3)2)

)
(3.20)

If |∆k|6= 0, then lc 6=∞, and the intensity of the DFWM signal will grow as

IDFWM ∝ sin2

(
∆kz

2

)
(3.21)

which would not introduce any error if the uknown sample under measurement and

known reference have the same optical path length, but if they are different, then

there could be error. There will always be error if the lc is less then the thickness

of the sample. The reference used to calibrate the DFWM measurements is a 1 mm
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thick piece of fused silica (FS), which is compared to an optical cuvette with a 1

mm thick reservoir for the solution (d in Fig. 3.12), plus the thickness of glass (total

thickness t in Fig. 3.12). Numerous measurements over the years have established

that this ratio equals 6 when the geometry is correct. The average of the last 6

measurements is 5.963± 0.13.

This analysis will estimate the error introduced when the geometry is not cor-

rect, resulting in the z dependence of the DFWM signal to be different for the FS

sample or the solution (DCM), and those samples have different thickness. Note

that
√
IDCM/IFS = 6 is not the same as saying that the χ(3) of DCM is 6 times

greater then the χ(3) of FS. The cuvette has a 1 mm path length of DCM, plus the

walls of fused silica. Their contribution depends on the degree of spatial overlap

from the 3 incident beams which makes this a more complicated problem. Consider

a slightly simplified version of this experimental comparison, in which the DCM

cuvette is simply twice as thick as the FS sample. It should still be possible get a

sense of the amount of error introduced for a phase mismatch caused by an angular

error in the experimental geometry.

Using measured values of the DFWM experimental setup, θ3 = 0.0354 rad,

at λ = 1500 nm, and n = 1.33, it is possible to calculate the error introduced as a

function of angular misalignment, for this slightly slimplified case. The simplification

is that the FS sample has a thickness of 1 mm, and the DCM has a thickness of 2

mm.

In Fig. 3.16, the ratio
√
IDCM/IFS is calculated as a function of angular mis-

alignment. At perfect alignment, the ratio is 6, but the error increases as the

deviation angle increases. At an angular error of about 0.009 rad, the mismatch

results in no radiated wave from the polarization from the 2 mm DCM cuvette.

This comparison over-estimates the error introduced, because the DCM cuvette

is actually 1 mm thick, plus 1 mm thick walls of FS. Since the χ(3) of FS is less then

that of DCM, the actual error should not be as large. This is a worst-case analysis.

For a sense of what misalignment would cause a 20% error which corresponds

to an angular error of 0.002435 rad. Over a distance of 120cm, the position of the

laser is off by 3mm (see Fig. 3.17). When the beam k3 was moved horizontally a
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Figure 3.16: Calculated ratio of
√
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dent beam k3.

distance of 6mm, a ratio of 4.7 was measured, or an error of about 22 %. So this

analysis over-estimates the error.

120 cm

3mm
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Figure 3.17: Geometry of incident beams, showing the 3 mm postioning error over 120
cm, that results in a 20% error in the worst case, when t = 2d and the
cuvette contains only DCM (solvent).
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3.4 Spectroscopy of the third-order polarizability

This section presents the results obtained for two of the molecules presented in Fig.

3.2 on page 26. In each case, the linear absorbance spectrum (at twice the wave-

length) is presented for comparison. Additionally, results from the time-dependence

DFWM measurements at single wavelengths are plotted, usually at 1500 nm for

comparison with the values obtained using the spectroscopy described here.

The TDMEE molecule has among the best polarizability per size of molecule (γ̃),

but tends to form crystals in the solid state and the grain boundaries cause excessive

losses due to scattering. However, it is the best example here of a molecule with one

dominant absorption band in the optical range (λmax = 591 nm), and this makes

it interesting to study spectroscopically (see Fig. 3.18). An unusual feature of this

spectrum is that the real part reaches a most negative value at a wavelength nearly

coincident with the peak imaginary part. This feature has been confirmed by other

measurements [22].

The molecule C-3 has among the highest values for the figure of merits γI =

0.0045, and specific γ̃ = 1.209 which is about 50% better then DDMEBT. Larger

values of γ̃ indicate that the molecule has a higher potential for forming solid state

assemblies with large χ(3) [6]. The peak TPA cross-section is not particularly high

(Im[γ] ≈ 10), which is common when the linear absorbance spectrum shows two

comparable absorption bands (in contrast to TDMEE). In equation 2.4, the maxi-

mum value of γres
k occurs when E20 = E10.

The real part of γ shows a characterstic shape, which reaches its most negative

value at higher photon energies than the maximum in the imaginary part. The data

also suggests a mild resonant enhancement of the value measured at 1500 nm, which

is at the very edge of the imaginary part that starts to increase sharply below 1500

nm (see Fig. 3.19).

Table 3.1 summarizes on-resonant values for TDMEE, DDMEBT, and C-3, and

the two-photon absorption cross-sections and specific TPA cross-sections are com-

pared to AF-50 and 103 from Ref. [23] which have been specifically designed to

achieve very large two-photon absorption cross-sections. Note that TDMEE has a
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Figure 3.18: Spectroscopy of the first TPA transition of TDMEE. The solid line is the
linear absorbance spectrum plotted at twice the wavelength. The band
with the vertical stripes is the imaginary part, and the band with the
cross-hatches is the real part of γ. In both cases, the thickness of the band
represents the approximate error. TDMEE has a linear absorbance peak at
591 nm, and a peak in the imaginary part (which is related to two-photon
absorption) is observed at 1182 nm.

very high TPA cross section, comparable to some of the largest in the literature.

Most significantly, it achieves this very large TPA cross-section with a much smaller

size molecule, leading to an extremely large specific TPA cross-section (σ̃), three

times larger then molecule 103 from Ref. [23].
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Table 3.1: On-resonant properties of TDMEE, DDMEBT, and C-3. The value γres
k /γk is

from equation 2.40, the ratio of the imaginary part on-resonance to the real
part off-resonance, as calculated in the fundamental limit, with estimates for
Γ10 and values for E10 and E20 from the linear absorbance spectrum. The
value γres

k is the fundamental limit of the imaginary part, on-resonance. The
value γres is the experimentally determined value of the imaginary part, on-
resonance, from the spectroscopic data. The value γres

I = γres/γres
k and gives

a relative measure of how close the molecule is to the fundamental limit on
resonance. The value σ is given in units of Göppert-Meyer (G.M.). The final
value is the specific TPA, which is calculated by σ/M where M is the mass
of the molecule in kg, which gives a relative measure of the TPA cross-section
per size of molecule.

Molecule
γres
k /γk γres

k γres γres
I σ σ̃

- [10−48 m5

V2 ] [10−48 m5

V2 ] - [G.M.] [G.M. /kg *1025]

TDMEE 8.371 5541 35 0.0063 284 69.5
DDMEBT 6.249 6158 25 0.0041 256 37.1
C-3 7.485 15076 10 0.0007 76 10.3
AF-50 - - - - 30 2.6
103 - - - - 275 22.5
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Chapter 4

Donor-Acceptor Substitution: The

Influence of Variability in the

Donor/Acceptor Groups and

Molecular Geometries on the

Off-resonant Third-order

Polarizabilities

The aim in creating molecules suitable for applications discussed in Chapter 1 in-

volves designing their structure to have good non-linear optical properties, and then

translating those desirable characteristics to the solid state. In order for a material

to be able to mediate light-light interactions, it must have a large χ(3), sufficent for

one pulse to turn on or off another pulse via refractive-index modification, (cross-

phase modulation) for example. Furthermore, it should have good optical quality

and low loss, which requires a material free from defects and scattering. Also, it

should not absorb energy from the optical waves, as heating of the material would

become a problem.
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One way to make the off-resonant third order polarizability (γrot) larger for a

molecule is to make the molecule larger. However, because the χ(3) of a solid state

material is related to the γrot of the constituent molecules through the number

density, the optical response of the larger molecules will be diluted because the

number density would become smaller. Another problem with larger molecules is

that the energy of the first optical transition (E10) becomes lower (particle in a wide

box), leading to more linear absorption, and the possibility of more two-photon

absorption.

On the other hand, designing smaller molecules with potentially large number

density in the solid state also leads to a host of issues. The main problem is that the

energy of the first excited state becomes very large, and the third order non-linear

optical response decreases dramatically, as the theoretical limit depends inversely

on (E10)5.

It may seem that we are stuck trying to balance between these two limits, but

there is a way to obtain the performance of the large molecules in a small molecules.

Donor-acceptor substitution allows for the tuning of the first optical transition in-

dependently from the size of the molecule.

Donor-acceptor substitution uses chemical groups with high electron affinity on

one end of a system of π − π conjugated electrons, and low ionization potential on

the other. The de-localized π system allows electrons to be pulled easily from the

donor, to the acceptor. As a result, the molecule has a permanent dipole moment

in the ground state, but more importantly it lowers the HOMO-LUMO energy gap,

which is a charge-transfer transition. Examples of donor and acceptor groups are

shown in Fig. 4.1 and Fig. 4.2 respectively.

The strength, number, and location of the donor or acceptor groups can be var-

ied, to tune the optical transition and optimize the non-linear optical response. This

chapter will review several variations in the structure of donor-acceptor substituted

molecules in the zero-frequency limit where the third-order polarizabilities can be

properly compared to each other.
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Figure 4.1: Examples of donor groups, diisopropylamino on the left, and dimethylamino
on the right.

N

N

N

Figure 4.2: Example of three acceptor groups connected together.

N

N

N

N

Figure 4.3: The TDMEE molecule, showing the donor and acceptor groups, with a sys-
tem of conjugated π electrons in between.

4.1 Relevant Figures of Merit

Two good ways to place experimentally determined third-order polarizabilities in

context is to compare them to the size of a molecule, as is done by evaluating
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the specific third-order polarizability [24], and to compare them to the maximum

nonlinear response that a molecule could have by using intrinsic hyperpolarizabilities

[25].

The specific third-order polarizability is defined as:

γ̃ =
γrot

M
(4.1)

where γrot is the experimentally determined value, and M is the molecular mass

that provides an approximate measure of the size of a molecule.

The upper limit to the third-order polarizabilities of a molecule (γk) has been

discussed in Chapter 2 (see equation 2.36 on page 16).

The intrinsic gamma is a unitless quantity defined as

γI =
γrot

γk
, (4.2)

which provides a relative measure of the efficiency of a molecule with respect to the

fundamental limit.

4.2 Varying Donor-Acceptor Substitution Around

a Compact Conjugated System

The following molecules feature variations in structure including the type and loca-

tion of the donor and acceptor groups, as well as the conjugated system of π electrons

involved in the charge transfer. For example, the K-x molecules are characterized

by “homoconjugated push-pull systems” [26]. The C-x molecules are unique in that

there are two main charge-transfer transitions between one of the two methylamino

donor groups, and one of the CN acceptor groups [27]. These two transitions can be

observed as two distinct peaks in the linear absorption spectrum. Notably, C-4 has

only one dimethylamino donor group, and the the second highest optical transition

is dramatically shifted towards shorter wavelengths. (See Fig. C.3 on page 91 in

Appendix C.) Note that some of the C-x molecules form cis/trans isomers which is
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described in more detail in Ref. [27].

The T-x molecules vary the points of attachment of donor groups along the

conjugation. One effect of the additional donor group in T-2 can be observed as a

lower energetic first optical transition.

The J-x molecules utilize ferrocenyl groups as donors, and show that different

types of donor groups can be used effectively to obtain good values for the third-

order polarizability γ.

The third-order polarizability of the molecules in Fig. 3.2 on page 26 were

measured with DFWM at a wavelength of 1500 nm. Because the peak of the lowest

energetic transition in the optical range (λmax) is less then 650 nm, and the tail of

the absorption peak is very weak at 750 nm, it is expected that these values for γrot

are not significantly resonantly enhanced. There was no evidence of TPA during

the measurements.

There are some observations that can be made from this wide assortment of

molecular variations. First the molecules K-1 through K-4 had such small values

of γrot that they were almost not measureable. The molecule K-5 is very similar in

structure to K-1 through K-4, except it is has a conjugated π bond between two

molecular end groups which is responsible for a much lower λmax and a value for

γrot very close to DDMEBT. However, in terms of γ̃, K-5 is only half as high as

DDMEBT because the molecule weighs almost twice as much as DDMEBT.

From an efficiency standpoint, the K-5 molecule is not remarkable. It has a

relatively weak, low-energy, but very wide optical transition (see Fig. C.2 on page

90) in contrast to an efficient molecule like TDMEE, T-1, or T-2, which features

one strong and narrow transition (see Fig. C.1 on page 89 ).

Both the T-1 and T-2 molecules have the highest values of γrot at 1500 nm of

these molecules. The bond structure of both of these molecules extends somewhat

into each dimension, which has been shown to reduce the π−π interaction between

molecules in the solid state, and allow for the formation of good optical quality thin

films with low scattering losses [6].

Also, the T-1 and T-2 molecules have a higher γrot then TDMEE, despite not
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Table 4.1: Molecular and non-linear off-resonant properties of the molecules presented
in Fig. 3.2.

Molecule
Mass Nπ λmax ε @ λmax γk γrot γI γ̃

[ g
mol

] - [nm] 1
mol×cm

[10−48 m5

V2 ] [10−48 m5

V2 ] - [10−23 m5

V2kg
]

TDMEE 246.3 16 591 36990 662 8±1 0.0121 1.956
DDMEBT 416.5 26 527 44856 985 6±1 0.0061 0.868
T-1 276.4 16 567 54077 538 11±2 0.0204 2.397
T-2 301.3 18 610 63998 981 11±2 0.0112 2.198
K-1 372.2 18 529 2555 481 1±1 0.0021 0.162
K-2 386.2 18 541 1567 538 1±1 0.0015 0.125
K-3 397.2 20 528 6945 589 1±2 0.0027 0.243
K-4 512.4 18 539 3671 528 1±2 0.0038 0.235
K-5 795.9 26 625 3070 2311 5±2 0.0024 0.416
C-1 420.2 26 616 37386 2150 6±2 0.0028 0.860
C-2 470.2 30 602 23641 2552 7±2 0.0027 0.896
C-3 448.2 26 608 35065 2014 9±2 0.0045 1.209
C-4 377.2 26 619 47764 2203 5±2 0.0023 0.798
J-1 546.2 38 627 6908 5018 3±2 0.0006 0.331
J-2 481.3 32 612 6817 3153 4±2 0.0013 0.500
J-3 481.3 32 528 33008 1507 5±2 0.0033 0.626

having a triple-bond backbone between the acceptor and donor groups. This indi-

cates that both types of conjugated systems are suitable for non-linear optics. By

varying the number of CN acceptor groups, and moving them to slightly different

locations on the backbone of the molecule, the authors of Ref. [28] are able to

identify multiple charge-transfer (CT) transitions between the donor and acceptor

groups.

The λmax for TDMEE (591 nm) lies almost exactly between the λmax for each

λmax of T-1 (567 nm) and T-2 (610 nm). The additional CN group in T-2 lowers

the energy of the lowest optical transition, as would be expected because it is an

additional acceptor group.

These T-x molecules are interesting because they are less planar then TDMEE,
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maintain the small size of TDMEE, and still improve on the γrot by nearly an

additional 50%. This increase in non-linearity without an increase in size makes

their γ̃ remarkable. They possess among the largest non-resonantly enhanced γ̃

measured in our lab. Only a few molecules have exceeded 2.0 without aid of resonant

enhancement.

The C-1 through C-4 series of molecules are likely the best candidates in this

thesis to meet or exceed properties of DDMEBT in the solid state. Each molecule

has a γ̃ comparable to DDMEBT, and C-3 is notably almost 50% higher. These

molecules have produced highly reflective optical thin films, and preliminary inves-

tigations indicate that they are also of very good optical quality.

The molecules J-1, J-2, and J-3 incorporating ferrocene as an alternate donor

group, but these molecules did not exceed DDMEBT in any metric. The molecules

J-1 and J-2 could be vapor deposited into high optical quality thin films [6] [29] with

optical qualities such as loss and χ(3) comparable to the DDMEBT films.

In conclusion, conjugated π electrons are essential to having a molecule with a

large non-linear response. Several different strategies for achieving a charge tran-

sition across the conjugated π electrons can be effective, including either multiple

transitions, or even a broken conjugation (C-x molecules), and the use of triple or

double bonds. Different chemical donor and acceptor groups can be used (K-5), in

different places on the molecule (T-1 and T-2) to achieve the same effect of relatively

large non-linearities in small molecules.

However, in order to better understand the physics of optimized donor-acceptor

substituted molecules and quantify the influence of these design choices, a systematic

study is needed to modify one parameter in a family of molecules. The next chapter

describes how the non-linear response depends on the number of triple bonds in the

spacer between the donor and acceptor groups and explains the physics involved.
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Chapter 5

The Effect of the Size of the

Conjugated System on

Third-order Nonlinear Optical

Properties: A Systematic Study

The previous chapter showed that donor-acceptor substitution works as a way of

achieving a large third-order optical response from small molecules. However, the

question still remains of how far this can be scaled to larger molecules, with longer

conjugated systems.

Studies of variations of the off-resonant third-order polarizabilities when chang-

ing the size of the conjugated system between the donor and acceptor groups have

been published in Ref. [30] but in that study both size and geometry of the conju-

gated system changed, and only over a limited range. To isolate the effect of varying

the geometric distance between donors and acceptor groups while keeping the ge-

ometry and structure of the conjugated system constant, we decided to concentrate

on molecules where the conjugated system consists of just one single linear chain of

carbon atoms attached to each other by single and triple bonds. An earlier attempt

to extend a one-dimensional conjugated system between a donor and an acceptor
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group has been published in Ref. [2] but the results were inconclusive because of

difficulties related to the stability of the molecules synthesized for that study. Here,

we will discuss the first complete and systematic study of the effects of variations

of the length of a one-dimensional conjugated system on the third-order nonlinear

optical properties. This study was achieved by (1) developing a new molecular fam-

ily with the required stability and solubility properties and by (2) complementing

third-order polarizability measurements at a single wavelength with a full nonlin-

ear optical spectroscopy encompassing the zero-frequency limit as well as the first

two-photon transition.

The molecular families for this study were developed starting with the DDMEBT

molecule, whose robustness has been well-proven, and whose conjugated system sep-

arating donor and acceptor groups is basically a single triple bond. New molecules

have been synthesized by our collaborators [1] with the conjugated system varied

between zero triple bonds to 5 triple bonds. An encouraging hint that this could be

done came from the fact that a 5-triple-bond compound very similar to this design

had already been produced by our collaborators once and has been characterized as

part of the studies presented in Ref. [2], showing a very large, mostly real-valued

third-order nonlinearity of 60± 20 at the 1500 nm wavelength (see Fig. 5.1).

Figure 5.1: The molecule with a measured value of γrot = 60± 20 in Ref. [2].

In combination with measurements of two other molecules similar to DDMEBT,

but with 2 and 3 triple bonds (see Ref. [31]) of γrot = 12±4 and 21±6 respectively,

led to an initial conclusion that the donor-acceptor substituted molecules could be

scaled up to at least 5 triple bonds, without any saturation due to over-extension.

The experimental spectroscopy in this work will show the on and off-resonant
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behavior of the real part of γ, the dispersion of the imaginary part (which is re-

lated to the TPA cross section), relation to the linear absorbance spectrum, and

connection of the dispersion to the dipole matrix elements of the first excited state

transition. From the spectroscopy of the first TPA peak, it is possible to compare

the experimental values with the fundamental limit for the imaginary part of γ, and

from the off-resonant values of the real part, compare to the fundamental limits in

the zero-frequency limit.

5.1 Two Families of Molecules

The successful synthesis and measurement of the 5-triple-bond molecule in Fig. 5.1

indicated that this molecule would be a suitable candidate for a complete study

of the number of triple bonds. In August of 2012, a batch of molecules were suc-

cessfully synthesized for us by the organic chemistry group at ETH-Zürich led by

Professor François Diederich based on a similar structure to DDMEBT, but with

diisopropylamino donors, and featuring n = 0 through n = 5 triple bonds in the

acetylene spacer. These molecules shown in Fig. 5.2 will be referred to as ISO-0

through ISO-5 respectively.

Figure 5.2: The family of molecules synthesized with n = 0 to n = 5 triple bonds in the
acetylene spacer, with diisopropylamino donors, referred to as ISO-0 through
ISO-5 respectively.

We also obtained a similar series of four molecules, but with dimethylamino

donors featuring a variation of n = 0 to n = 3 triple bonds. They are shown in Fig.
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5.3 and will be referred to as METH-0 through METH-3. We received small amounts

of some of the molecules (between 24 mg and 50 mg), and initial measurements were

plagued by trace acids in the solvent, but there was enough material to get good

data.

Figure 5.3: The family of molecules synthesized with n = 0 to n = 3 triple bonds in
the acetylene spacer, with dimethylamino donors, referred to as METH-0
through METH-3 respectively.

5.2 Measurements at 1500 nm

The measurements of both families of molecules at 1500 nm is summarized in table

5.1. The results at this wavelength suggest that the molecules can be scaled up to

at least to n = 5 triple bonds, and at that length the values for γI are among the

highest measured in this study, and γ̃ is more than 3 times larger then any other

molecule in this study.

Plotting the results in Fig. 5.6 shows that the measured values of γrot at 1500

nm can be fit with a power law with exponent of 1.8. This exponent is in marked

contrast to non-D/A substituted molecules that have been found to scale with a

power law of between 4 and 5 [4] [32].

In Ref. [3], the authors describe the synthesis of non-D/A substituted molecules

long enough (n = 22) to identify a saturation point. Their molecules show a scaling

of γ ∝ n2.46±0.1 which is a bit less than the polyyene oligomers in Ref. [4]. They
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Table 5.1: Molecular and non-linear properties of the molecules presented in Fig. 3.2 as
measured at 1500nm.

Molecule
Mass Nπ λmax ε @ λmax γk γrot γI γ̃

[ g
mol

] - [nm] 1
mol×cm

[10−48 m5

V2 ] [10−48 m5

V2 ] - [10−23 m5

V2kg
]

ISO-0 504.67 24 482 67920 537 2±1 0.0037 0.239
ISO-1 528.69 26 541 49759 1123 6±6 0.0053 0.683
ISO-2 552.71 28 586 35613 1943 15±5 0.0077 1.634
ISO-3 576.73 30 614 27053 2817 30±10 0.0107 3.133
ISO-4 600.75 32 628 22596 3587 60±20 0.0167 6.015
ISO-5 624.78 34 631 17112 4147 80±30 0.0193 7.711
Meth-0 392.4 24 470 62114 474 2±1 0.0042 0.307
Meth-1 416.5 26 526 44856 976 6±1 0.0061 0.868
Meth-2 440.5 28 570 33423 1692 12±5 0.0071 1.641
Meth-3 464.5 30 594 25989 2387 20±10 0.0084 2.593

identify a saturation near 60 carbon-carbon bonds, which corresponds to an “ef-

fective conjugation length” of 7.5nm. The red shift in linear absorption stops near

n = 10 [3]. The conjugated system of the poly(triacetylene) molecules is not as sim-

ilar to the conjugated system of the ISO-n and METH-n series, so the comparison

with the polyyene oligomers in Ref. [4] and shown in Fig. 5.5 is more appropriate.

Figure 5.4: The family of poly(triacetylene) oligomers studied in Ref. [3]. Each re-
peat unit contains 2 triple bonds, and 1 double bond. This is counted as 3
conjugated units in each subsystem.
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Figure 5.5: The family of polyyene oligomers studied in Ref. [4].

The power-law scaling with an exponent for the polyyne oligomers can be ex-

plained by examining the fundamental limit (see equation 2.36 on page 16). The

maximum theoretical value for γ is proportional to N2
π and E−5

10 where Nπ is the

number of conjugated π electrons, and E10 is the lowest energy transition. The

symmetric non-D/A molecules have a dramatic decrease in this energy with increas-

ing spacer length (n). The authors of Ref. [4] identify a power law relationship

of E10 ∝ n−0.379. This is similar to other symmetric polyyenes with power laws of

E10 ∝ n−0.5 [33] [34]. Assuming that Nπ scales linearly with n, this relationship

then predicts a scaling law for non-D/A polyynes of

γ ∝ N2
π

E5
10

∝ n3.90 (5.1)

using the E10 ∝ n−0.379 scaling law found in Ref. [4]. The predicted scaling of

γ ∝ n3.90 is close to their measured power law of γ ∝ n4.28. A relationship of

E10 ∝ n−0.5 results in γ ∝ n4.50, which is consistent with other studies [32]. This
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Figure 5.6: The values of γrot for both families of molecules (ISO-n and METH-n) as
measured at 1500 nm plotted on a log-log scale and fit with a power-law
function. Independent fits for each family result in virtually identical ex-
ponents (1.84 and 1.83). The diisopropylamino donors are slightly stronger
than the dimethylamino donors and result in the ISO-n family of molecules
having a slightly larger γrot for the same number of triple bonds.

shows that the experimental studies of the non-D/A substituted polyyenes follow

the power law predicted by the fundamental limit of γ and the observed scaling of

E10.

This analysis also explains why the D/A substituted molecules do not follow the

same power law scaling. For the ISO-n and METH-n molecules, the value for E10

does not scale in the same way. Instead, it can be fit with a power law of exponent

-0.11 (see Fig. 5.7), resulting in a predicted scaling of γ ∝ n2.55, lower then predicted

for the non-D/A substituted polyyenes.

A power law does not fit the the measured values of E10 perfectly. This was done

to compare trends with the non-D/A substituted polyyenes and explain why the
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Figure 5.7: The values of E10 as a function of number of triple bonds n in the ISO-n
series. The trend can be approximately fit with a power law of exponent
-0.11. The data point at n = 5 was left out of the fit because the molecule
is over-extended at this point.

third-order polarizability scales differently between the two, but still in accordance

with the fundamental limit. These values for γrot are based on measurements at

one wavelength, 1500 nm and may be resonantly enhanced which means that the

fundamental limit for off-resonant values is no longer valid. A spectroscopic study

can answer that question, and establish values for γrot off-resonance.

5.3 Zero-frequency Limit

Establishing the wavelength dependence of γrot in the range of photon energies from

slightly above, to well below the first two-photon resonance allows determination

of the mechanisms of resonance enhancement, as well as estimating the values off-

resonance. The spectra of γrot are plotted in Fig. 5.8.
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Spectra of the Third-order Polarizability γ
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Figure 5.8: Collection of plots showing the wavelength dependence of the third-order
polarizability γ for the molecules in Fig. 5.2 and 5.3. The vertical axis is γ
in units of 10−48 m5 V−2 and the horizontal axis is wavelength in nm.
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Table 5.2: Molecular and non-linear off-resonant properties of the ISO-n and METH-
n molecules, with values for γrot as determined to be off-resonant from the
spectroscopy data.

Molecule
Mass Nπ λmax ε @ λmax γk γrot γI γ̃

[ g
mol

] - [nm] 1
mol×cm

[10−48 m5

V2 ] [10−48 m5

V2 ] - [10−23 m5

V2kg
]

ISO-0 504.7 24 482 67920 537 2±1 0.0037 0.239
ISO-1 528.7 26 541 49759 1123 6±2 0.0053 0.683
ISO-2 552.7 28 586 35613 1943 15±5 0.0077 1.634
ISO-3 576.7 30 614 27053 2817 24±10 0.0085 2.506
ISO-4 600.8 32 628 22596 3587 24±10 0.0067 2.406
ISO-5 624.8 34 631 17112 4147 20±10 0.0048 1.928
METH-0 392.4 24 470 62114 474 2±1 0.0042 0.307
METH-1 416.5 26 526 44856 976 6±1 0.0061 0.868
METH-2 440.5 28 570 33423 1692 12±5 0.0071 1.641
METH-3 464.5 30 594 25989 2387 20±10 0.0084 2.593

In table 5.2 the same figures of merit in table 5.1 are presented, but instead

using values of γrot estimated to be off-resonant. The most significant result is that

beyond three triple bonds, the values of γrot decrease in size. The values for γrot

off-resonance are plotted in Fig. 5.9.

Table 5.10 provides a comparison of non-D/A substituted molecules, and the

D/A molecules from Ref. [1] showing the specific third-order polarizability (γ̃)

versus n, which gives a measure of how each design approach influences how the

molecular third-order polarizability grows with the spacer unit between the donor

and acceptor groups.

The physics of the saturation in γrot observed in these donor-acceptor molecules

can be explained qualitatively by examining the frontier molecular orbitals and

quantitatively by the dipole-matrix-transition elements.

The lowest energy optical transition is between the highest occupied molecular

orbital (HOMO) and lowest un-occupied molecular orbital (LUMO). In these donor-

acceptor substituted molecules, this transition is a charge transfer transition between
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Figure 5.9: The values of γrot for both families of molecules (ISO-n and METH-n) as
estimated to be off-resonant from the spectroscopic data plotted on a log-log
scale. Most significant are the lower values for the longest molecules with
n = 4 and n = 5 triple bonds. A power law fit to the ISO-1, ISO-2, and
ISO-3 molecules results in an exponent of 1.23.

the acceptor and donor chemical groups. It is also the energy E10 that appears in

denominator of the fundamental limit for the off-resonant third-order polarizability.

In the numerator of the SoS expression for γ are the dipole transition elements,

and the most relevant one for the off-resonant third-order polarizability is the dipole

transition element between HOMO and LUMO (〈H | p̂ | L〉). In the limit 〈H | p̂ | L
tends towards zero, γ goes to zero.

In symmetric (non-D/A substituted) molecules, the electron density of each

molecular orbital remains symmetric over the length of the molecule (see Fig. 5.11).

The dipole transition elements 〈H | p̂ | L〉 do not get smaller as the molecule gets

larger. The energy difference to the first excited state decreases, and the non-linear

optical response (γ) gets larger as the molecule gets larger. The scaling with respect
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Figure 5.10: Comparison of the specific third-order polarizability (γ̃) versus number of
repeated units. Note that the power power law for non-D/A substituted
molecules is greater then the D/A molecules, but the D/A molecules reach
a larger γ̃ with a few number of repeat units (n). Note that it is a log-log
plot, and the best value for γ̃ among the D/A molecules is more then twice
as large as the best non-D/A molecule presented here.

to number of repeat units (n) is shown in Fig. 5.10 and typically follows a power

law with an exponent between 4 and 5 [4] [32].

In contrast to the symmetric molecules, donor-acceptor (D/A) substituted molecules

suffer a reduction in the overlap matrix between the HOMO and LUMO orbitals,

as the molecule gets too long. However, the energy difference to the first excited

state for a small molecule is less then it would be for a non-D/A molecule, and con-

sequently the non-linear response can be much larger. This design allows for small
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Figure 5.11: A symmetric molecule from the polyyene series studied in Ref. [4]. The
HOMO orbital is on top, and LUMO is below. The symmetric molecule
maintains a symmetric density of electrons in each orbital, the higher energy
levels have additional nodes in the wave function. The orbital is plotted
with an isosurface value of 0.040.

molecules, with a large γ, and consequently very large γ̃. But D/A substitution

prevents the scaling of off-resonant values for γ with the number of repeat units

beyond n = 3 for this series of donor-acceptor substituted molecules.

The results in table 5.3 are compared to a similar calculation using TD-DFT

in [1]. The numbers are slightly different, but the trends are similar (see Figure

5.13). The sudden jump between ISO-2 and ISO-3 as calculated in this work are

suspicious, and may possibly be attributed to insufficient geometry optimization or

the formation of a different isomer of the molecule.
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Figure 5.12: The ISO-5 donor-acceptor substituted molecule studied here. The HOMO
orbital is on top, and LUMO is below. In the HOMO orbital, most of the
electron density is concentrated on the donor group (left side of molecule),
and in the LUMO orbital most of the electron density is concentrated
towards the acceptor groups (right side here). This is typical of donor-
acceptor substituted molecules, in the HOMO-LUMO transition (ground
state to first excited state). The orbital is plotted with an isosurface value
of 0.040.

5.4 Spectroscopy of the First Two-Photon Tran-

sition

The molecules in Fig. 5.2 and 5.3 were measured using the experimental methods

and physical models described earlier in this work to determine the wavelength
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Table 5.3: The calculated energy using B3LYP DFT for the first optical transition in
units of eV, transition dipole norm in units of Debye calculated from a C.I.
using B3LYP / 6-31(g,d), and the same as calculated in Ref. [1] using TD-
DFT (DFT:CAM-B3LYP/6-31G* in Gaussian09)

Molecule EHL 〈H | p̂ | L〉 〈H | p̂ | L〉 from [1]
Iso-0 2.88 8.38 4.60
Iso-1 2.67 10.1 7.19
Iso-2 2.35 11.6 9.63
Iso-3 2.17 7.49 10.96
Iso-4 2.01 7.16 10.80
Iso-5 1.89 7.05 9.87
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Figure 5.13: Comparison of the dipole transition elements for 〈H | p̂ | L〉 calculated with
two different methods. Both show a maximum around n = 2 or n = 3, and
then a decline with each additional triple bond in the spacer.
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Figure 5.14: Comparison of the wavelength dependence of the real part of γrot as addi-
tional triple bonds (n) are added to the spacer between the donor and ac-
ceptor groups. Spectroscopic data was not obtained for the n = 5 molecule,
so a single data point is plotted at 2000 nm where γrot was measured by
time-dependent DFWM.

dependence of γrot. This study made the estimation of off-resonant values possible.

A comparison of four molecules is shown in Fig. 5.14 to show the degree to

which the real part of γrot becomes increasingly resonantly enhanced as additional

triple bonds are added to the acetylene spacer between the donor and acceptor

groups. The spectrum of the METH-4 molecule in Fig. 5.8 shows that the resonant

enhancement may be useful in applications. At a wavelength of 1500 nm γrot is

significantly resonantly enhanced, but the imaginary part is still very small, so the

resonant enhancement could be utilized in a region where the imaginary part is very

small.

The spectroscopy also allows estimation of the peak TPA cross section for each

molecule. The progression of the imaginary part of γrot as additional triple bonds

are added is shown in Fig. 5.15. The peak imaginary value (at wavelengths between

1080 and 1680 nm) is smallest for n=2. This ISO-2 molecule also has two absorption
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Figure 5.15: Comparison of the wavelength dependence of the imaginary part of γrot as
additional triple bonds (n) are added to the spacer between the donor and
acceptor groups.

peaks of approximately equal strength (see Fig. 5.16). Table 5.4 presents a summary

of the values on-resonance.

This comparison of the peak TPA cross section to fundamental limits indicates

that the longer molecules do not perform as well as the shorter ones, in terms of the

figures of merit presented in table 5.4 (γres
I and σ̃). This trend can be related to the

fundamental limits derived in Chapter 2. The plot in Fig. 2.4 shows the influence of

the first two excited state transitions (E10 and E20) on the limit of the imaginary part

of γ on resonance, as taken from equation 2.40. It shows that the largest achievable

Im[γ] occurs when E10 = E20, and the width of the first transition (Γ10) is narrow.

However, as the ISO-n and METH-n molecules grow in size, a second absorption

band becomes larger with the difference in energies (E20 − E10) becoming larger,

The width of the lowest energy absorption band also becomes wider (see Fig. 5.16).

These factors may contribute to the reduction in the peak Im[γ]. The reduction in

the dipole matrix elements would also be expected to reduce the peak Im[γ] because

they appear in the numerator of the relevant terms in the SoS expression.
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Table 5.4: On-resonant properties of the two families (ISO and METH) of molecules,
compared with TDMEE. The value γres

k /γk is from equation 2.40, the ratio of
the imaginary part on resonance, to the real part off resonance, as calculated
in the fundamental limit, with estimates for Γ10 and values for E10 and E20

from the linear absorbance spectrum. The value γres
k is the fundamental limit

of the imaginary part, on resonance. The value γres is the experimentally
determined value of the imaginary part, on resonance, from the spectroscopic
data. The value γres

I = γres/γres
k and gives a relative measure of how close the

molecule is to the fundamental limit on resonance. The value σ is given in
units of Göppert-Meyer (G.M.). The final value is the specific TPA, which is
calculated by σ/M where M is the mass of the molecule in kg, which gives a
relative measure of the TPA cross section per size of molecule.

Molecule
γres
k /γk γres

k γres γres
I σ σ̃

- [10−48 m5

V2 ] [10−48 m5

V2 ] - [G.M.] [G.M. /kg *1025]

TDMEE 8.37 5541 35±10 0.0063 284 69.5
Iso-0 13.09 7036 - - - -
Iso-1 5.63 6329 30±10 0.0047 290 33.0
Iso-2 12.17 23652 - - - -
Iso-3 9.45 26628 30±10 0.0011 225 23.5
Iso-4 10.03 35981 50±10 0.0014 358 25.9
Iso-5 10.06 41729 - - - -
Meth-0 12.20 5780 - - - -
Meth-1 6.71 6551 25±10 0.0038 256 37.1
Meth-2 12.23 20691 20±10 0.0010 174 23.8
Meth-3 11.29 26947 20±10 0.0007 160 20.8
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Figure 5.16: Comparison of the linear absorbance spectra for the ISO-n molecules, plot-
ted in eV. Note that the lowest energy transition gets lower with each
additional triple bond, until n = 4 and n = 5 have almost the same energy.
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Chapter 6

Computational Chemistry

In theory, quantum mechanics provides the tools for obtaining exact solutions to

physical observables, but in practice the expressions become too complex, the ma-

trices become too large, or the differential equations are un-solvable with exact

methods. The art of quantum chemistry is knowing which approximations to make,

and being able to find more accurate solutions as perturbative corrections to simpler

solutions. As computers evolve with larger memories and faster parallel processors,

they become tools able to consider larger computations than could be done previ-

ously. However, there are still many choices to be made such as the level of theory

and size of basis set [35].

In non-linear optics, there are great challenges to getting accurate compuational

results, especially for the third-order polarization. Some good results have been

obtained for small atomic and molecular systems (such as simple gases), but some

theories that work well for some families of molecules, do not work as well for other

molecules.

For the calculations presented here, the software package GAMESS was used

which stands for General Atomic and Molecular Electronic Structure System [36]

[37].
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6.1 Geometry Optimization

The geometries of the molecules studied with computational chemistry were first op-

timized using Density Functional Theory (DFT) with the B3LYP hybrid functional,

and the 6-31(g,d) basis set. For small organic molecules, this choice of theory and

basis set is common, allowing for comparisons with other computational results of

different molecules. Also, in her PhD thesis, Moonen did a very detailed analysis of

the effect of these computational choices on the resulting optimized geometry, and

found that B3LYP / 6-31(g,d) gave the best quionoid character, which is determined

by the ratio of some bond lengths in the ring and stick structure of carbon bonds,

such as found in the very center of the TDMEE molecule [38]. This geometry opti-

mized value was found to be very close to the experimentally measured values found

in the X-ray crystal structure of TDMEE.

There are some other basis sets like MIDI! that are specifically designed for ge-

ometry optimzation of small organic molecules, and the mean bond length difference

was indeed better for this basis set, but the quinoid character was not better, so if

the shape of the molecule is more important than the absolute size, then the choice

made by Moonen seems to be a better one.

A geometry optimization was always performed before each calculation, except

in the case of the molecules with up to 20 triple bonds. The initial coordinates were

either obtained from a crystallographic file (if a crystallization was performed and

measured by the chemists) or the molecule was drawn in Avogadro [39] [40] and a

crude preliminary geometry optmization was performed using force field estimates

based on bond lengths, before the final geometry optimization was done in GAMESS.

In the case of starting from coordinates obtained for crystallographic data, the

geometry is far from the calculated equilibrium. When starting with manually

drawn molecules initially optimized in Avogadro, the optimization in GAMESS

would typically be closer to the final geometry, see Figure 6.1 for an example.
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Figure 6.1: Calculated energy of ISO-1 for each iteration of the geometry optimization,
starting with coordinates manually entered with the Avogadro software, and
initially optimized with a force field estimate between atoms.

6.2 Energy

After the geometry optimization, the molecular orbitals can be determined with an

energy calculation. Typically this is done with with the same level of theory and

basis set as was used for the geometry optimization. The results of this run contain

the energy eigenvalues for the molecular orbitals, and the coefficients of the basis

set that can be used to view the 3D orbital surfaces at a selected iso-surface value.
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6.3 Finite-Field Calculations of Third-Order Po-

larizabilities

The finite field method indirectly determines the first, second and third-order po-

larizabilities using two methods, and the results can be compared to make sure that

the calculation has been converged to a tight enough tolerance. The third-order po-

larizability is significantly more challenging to determine accurately then the linear

(α) and second-order polarizability (β) because it is much more sensitive to small

differences in the wave function shape and energy. For example, electron correlation

has a small effect on the dipole polarizability, but strongly affects the hyperpolar-

izability [41]. Considering even a small molecule of CHCl3, the authors of Ref. [42]

find that very large, diffuse basis sets are necessary to get good convergence. The

resulting values are sensitive to the molecular structure, more so for the hyperpo-

larizability than the linear polarizability. The third-order polarizability would be

expected to have even a greater sensitivity. The choice of basis set and convergence

criteria are more critical to determine the changes in the energy and dipole moment

accurately.

Several specific basis sets have been designed to model the whispy tails of the

wave functions with better accuracy, and lead to better results for the second and

third-order polarizabilities. Their performance with small molecules (HCN and

HCP) has been compared favorably [43], but it is too computationally intensive

for the large molecules studied here.

The two methods iteratively apply electric fields of different strengths to the

molecule in different directions, and establish a relationship between applied electric

field and energy, as well as dipole moment. The dipole moment is expressed as a

Taylor expansion to third order as

µi,j = µstatic
i,j +

∑
k

αi,jkEk +
1

2!

∑
kl

βi,jklEkEl +
1

3!

∑
klm

γi,jklmEkElEm (6.1)
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where µstatic
i,j is the permanent dipole moment. A similar expansion in energy

U = U0 + µiEi +
1

2!
αijEiEj +

1

3!
βijkEiEjEk +

1

4!
γijklEiEjEkEl (6.2)

should give similar quantitative results for α, β, and γ as long as the calculations are

converged sufficiently. If the results do not agree, then it is an indication that the

convergence criteria should be tightened. To get good results for the polarizabilities,

and especially for the higher order of the polarizabilities, it is important to use basis

functions that allow for the accurate determination of the tails of the wave functions,

so additional diffuse function were included in the basis set.

From these equations, the Finite Field method of GAMESS can determine 9 of

the elements of the third-order polarizability.

Two sets of calculations were performed on geometry optimized coordinates of

the ISO-n molecules, with n = 0 to n = 5. One set of calculations used the basic

RHF calculations, and the second set used B3LYP DFT. Both used the same 6-

31(g,d)++ basis set, with the ++ indicating additional diffuse basis sets. The

results are plotted in figure 6.2 and compared to the estimated off-resonant values

for each molecule.

Both sets of calculations indicate an increasing trend, beyond the experimental

values that were estimated for off-resonant values from the spectroscopy data.

Additional calculations were performed to see if this trend calculated by the finite

field method would continue with increasing values for γ as the molecule was made

longer. Because geometry optimization would take prohibitively long for very big

molecules, and to isolate the effect of the molecule length without allowing for the

molecule to bend or twist, a set of synthetic molecules was created with a completely

straight backbone, and the end groups were taken from a geometry optimized ISO-1

molecule. The RHF level of theory was used for this series of calculations because it

is computationally faster, and the B3LYP level of theory appeared to overestimate

the increase in γ with respect to n. Each molecule was aligned so that the acetylene

spacer was placed directly on the z-axis, and the bond length alternation established

from the Iso-5 geometry optimized molecule was continue up to n = 20.
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Figure 6.2: Comparison of the calculated third-order polarizabilities with two different
levels of theory, and the estimated off-resonant values from the spectroscopy
experimental measurements.

In Fig. 6.3 both the rotational average and diagonal tensor component along

the axis of the triple bond acetylene spacer are plotted. The power-law increase for

small molecules transitions to a linear increase with additional triple bonds in the

spacer.

These calculated results do not agree with the experimental results. It is not

clear why this calculation method (finite field) is not suited to calculating the third-

order polarizabilities of these small molecules. Other methods, like Time-Dependent

Hartree-Fock (TDHF) have given better results in the past [22] and it is probably a

better choice for these types of calculations.
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Chapter 7

Conclusion and Discussion

Small organic molecules with large off-resonant polarizabilities have been studied ex-

tensively because of their great potential for applications involving optical switching

[24, 30, 44–53]. The ability to decrease the first excited optical transition by donor-

acceptor substitution is a key tool for optimizing the optical response while keeping

the size of the molecules small. This design approach is the crucial parameter that

allows for the realization of small molecules with a large non-linear response.

In the solid state, for a given density, the χ(3) of a material is related to the

γrot of the constituent (weakly-interacting) molecules through the number density,

so a better measure of a molecule’s potential for applications is given by the specific

parameter (γ̃ = γrot/M , where M is the mass of the molecule in kg) which provides

the relative figure of merit for the non-linear response per size of molecule. We have

shown that it is possible to calculate the third-order susceptibility of the solid-state

from the molecular third-order polarizability using a gas model, and it works [6].

Generally, smaller molecules lead to larger first-excite-state optical transitions,

which in turn results in a decrease of the non-linear response. However, with donor-

acceptor substitution, it is possible to lower the energy of the first optical transition,

allowing small molecules to achieve large non-linearities.

It has been found that non-D/A substituted molecules scale super-linearly with

repeated units (n), fit with a power law exponent near 4 or 5. A saturation effect has

been identified for the very longest molecules, indicating that there is a maximum
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obtainable γ̃ for a given molecular chain.

The polyyne molecules in Ref. [4] follow a very similar power law scaling be-

havior as can be derived from the Kuzyk limit which provides a theoretical upper

bound for γ. The scaling of the D/A-substituted ISO-n and METH-n molecules is

much less then the non-D/A polyyne molecules, but still consistent with the scaling

expected from the fundamental limit because of the reduction on E10 by donor-

acceptor substitution. This trend suggests that both types of conjugated systems

provide a very efficient use of the delocalized π-electrons.

This work investigates the scaling behavior of D/A substituted molecules, and

shows that there is a saturation effect caused by a physical mechanism different from

non-D/A substituted molecules. The D/A substitution allows for obtaining large off-

resonant polarizabilities in small molecules, but then places a corresponding limit on

the maximum off-resonant values due to the isolation and physical separation of the

HOMO and LUMO electronic states on the acceptor and donor groups respectively

which causes saturation of the non-linear response as the molecule is scaled up.

Additional computational chemistry results help support this explanation of the

physical mechanism which causes the saturation effect in D/A molecules. We de-

termine that for this class of molecules, the optimal value occurs at n = 3 units.

In Fig. 7.1 the trends for the specific third-order polarizability (γ̃) of D/A and

non-D/A substituted molecules are compared as additional triple bonds (n) are

added to the molecule. This plot gives an indication of how γ̃ grows with the size

of the conjugated π electrons. The significant result is that the D/A substituted

molecules achieve large third-order polarizabilities with a very small conjugation

size, and reach a maximum specific third-order polarizability better then even the

longest non-D/A substituted molecules found in literature [4]. Attempts to scale

non-D/A molecules to very large lengths has resulted in reaching a saturation point

[3] indicating that they cannot be extended indefinitely.

Experimental spectroscopy identifies the wavelength regime where resonant en-

hancement is significant, and allows for the determination of off-resonant values.

The relationship of the non-linear spectrum of γrot to the linear absorption spec-

trum provides a comparison useful for verifying the expected ranges of TPA.
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Figure 7.1: Schematic comparison of the specific third-order polarizability γ̃ versus num-
ber of triple bonds in the spacer n on a log-log plot. This is a metric
that predicts the potential for molecules to assemble into solid-state supra-
molecular assemblies with a large value of χ(3). The non-D/A substituted
molecules scale with a power law of between 4 and 5, while the D/A sub-
stituted molecules scale with a power law of about half of that. Both types
of molecular systems eventually reach some type of saturation, but the D/A
substituted molecules reach a maximum γ̃ with much smaller molecules,
thanks to donor-acceptor substitution.

Additionally, the spectroscopic data indicate that some degree of resonant en-

hancement could be utilized to further increase the third-order non-linear response

at a wavelength where TPA is still small. The flexibility of the organic molecule

platform allows for the fine-tuning of these energies and for obtaining a desired

non-linear response at a specfic wavelength.
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Appendix A

Expansion of Third-order

Polarization

The expansion of equation 2.21 results in terms representing optical waves at 3ω

and ω. There are 10 waves with a frequency of 3ω, they are:

(A.1)

1

8

(
E3

1e
i[3~k1·~x−3ωt] + E3

2e
i[3~k2·~x−3ωt] + E3

3e
i[3~k3·~x−3ωt]

+ 3E2
1E2e

i[(2~k1+~k2)·~x−3ωt] + 3E2
1E3e

i[(2~k1+~k3)·~x−3ωt]

+ 3E1E2
2e

i[(~k1+2~k2)·~x−3ωt] + 3E1E2
3e

i[(~k1+2~k3)·~x−3ωt] + 3E2E2
2e

i[(~k2+2~k3)·~x−3ωt]

+ 3E2
2E3e

i[(2~k2+~k3)·~x−3ωt] + 6E1E2E3e
i[(~k1+~k2+~k3)·~x−3ωt] + c.c.

)
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There are 18 waves with a frequency of ω, they are:

(A.2)

1

8

(
3E2

1E∗1ei[(2
~k1−~k1)·~x−ωt] + 3E2

1E∗2ei[(2
~k1−~k2)·~x−ωt]

+ 3E2
1E∗3ei[(2

~k1−~k3)·~x−ωt] + 3E2
2E∗1ei[(2

~k2−~k1)·~x−ωt]

+ 3E2
2E∗2ei[(2

~k2−~k2)·~x−ωt] + 3E2
2E∗3ei[(2

~k2−~k3)·~x−ωt]

+ 3E2
3E∗1ei[(2

~k3−~k1)·~x−ωt] + 3E2
3E∗2ei[(2

~k3−~k2)·~x−ωt]

+ 3E2
3E∗3ei[(2

~k3−~k3)·~x−ωt]

+ 6E1E∗1E2e
i[(~k1−~k1+~k2)·~x−ωt] + 6E1E∗1E3e

i[(~k1−~k1+~k3)·~x−ωt]

+ 6E1E∗2E2e
i[(~k1−~k2+~k2)·~x−ωt] + 6E1E∗2E3e

i[(~k1−~k2+~k3)·~x−ωt]

+ 6E1E∗3E2e
i[(~k1−~k3+~k2)·~x−ωt] + 6E1E∗3E3e

i[(~k1−~k3+~k3)·~x−ωt]

+ 6E2E∗2E3e
i[(~k2−~k2+~k3)·~x−ωt] + 6E2E∗1E3e

i[(~k2−~k1+~k3)·~x−ωt]

+ 6E2E∗3E3e
i[(~k2−~k3+~k3)·~x−ωt] + c.c.

)
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Appendix B

Non-linear Polarization P (3):

Quantum Description

A quantum treatment of the non-linear polarization is fundamentally more correct

because it properly describes the discrete nature of the allowable electronic energy

eigenstates of a molecule, as well as the discrete absorption or emission of a photon

with a specific energy. Fundamentally, the origin of light and matter interaction

involves electric fields exerting forces on charged particles. This is the mechanism by

which energy is transferred between light and matter in which photons are absorbed

or emitted, and matter is correspondingly excited or relaxed. We can write the

Hamiltonian for an electromagnetic field and a charged particle using the electric

dipole operator µ̂ = −e~x as

Ĥ = Ĥ0 − µ̂ · ~E(t) (B.1)

where the electric field E(t) may contain oscillating components at different fre-

quencies, so it can be expressed as a sum

~E(t) =
∑
p

1

2
E (ωp) e

−iωpt (B.2)

and E (ωp) is the complex amplitude of each frequency component ωp. With the

assumption that the wavelength of this optical wave is much longer then the size
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of the atom, the electric field is uniform over the space of the atom, so there is no

spatial dependence to the electric field.

We now bring in Schrödinger’s equation and apply the method of perturbation

solution because we cannot solve for externally applied electric fields in general. To

this, we introduce a parameter λ in the Hamiltonian

Ĥ = Ĥ0 − λµ̂ · ~E(t) (B.3)

which varies from 0 to 1, allowing the potential to be introduced into the Hamiltonian

as a small perturbation. The unperturbed Hamiltonian Ĥ0 is the usual Hamiltonian

for a free atom. Since λ can be small, we can write the solution to Schrödinger’s

equation as a power series in λ

ψ(~x, t) = ψ(0)(~x, t)+λψ(1)(~x, t)+λ2ψ(2)(~x, t)+λ3ψ(3)(~x, t)+· · ·+λNψ(N)(~x, t) (B.4)

where ψ(0)(~x, t) is the solution to the unperturbed hamiltonian (Ĥ0). By substituting

this solution into Schrödinger’s equation, and re-arranging to group like powers of

λ together, we get

(B.5)

i~
∂

∂t
ψ(0)(~x, t)− Ĥ0(~x, t)

+ λ

[
i~
∂

∂t
ψ(1)(~x, t)− Ĥ0(~x, t)ψ(1) + µ̂ · ~E(t)ψ(0)(~x, t)

]
+ λ2

[
i~
∂

∂t
ψ(2)(~x, t)− Ĥ0(~x, t)ψ(2) + µ̂ · ~E(t)ψ(1)(~x, t)

]
+ λ3

[
i~
∂

∂t
ψ(3)(~x, t)− Ĥ0(~x, t)ψ(3) + µ̂ · ~E(t)ψ(2)(~x, t)

]
+ · · ·+

+λN
[
i~
∂

∂t
ψ(N)(~x, t)− Ĥ0(~x, t)ψ(N) + µ̂ · ~E(t)ψ(N−1)(~x, t)

]
= 0.

This can be separated into N + 1 equations because each term proportional to λ

must equal zero independently to satisfy Schrödinger’s equation. The solutions to

the unperturbed Hamiltonian (ψ(0)) are called the stationary states of electrons

in a free atom. We can express the set of those solutions as a combination of a
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space-dependent part, and a time-dependent part as

ψ
(0)
k (~x, t) = uk(~x)e−iωkt (B.6)

allowing us to turn the time-dependent Schrödinger’s equation into a time-independent

one

Ekuk(~x) = Ĥ0uk(~x) (B.7)

where Ek = ~ωk is the energy of the eigenstate uk(~x). These stationary states form

a complete and orthogonal basis set for the electronic states of the free atom defined

by Ĥ0. Because we consider the non-linear portion of the solution to be small, and

treat it as a perturbation, we can use linear combinations of the unperturbed basis

set to construct solutions to the perturbed hamiltonian. So we can write a solution

as

ψ(N)(~x, t) =
∑
k

a
(N)
k (t)ψ

(0)
k (~x, t) (B.8)

where a
(N)
k (t) are the time-dependent coefficients of the kth wavefunctions which

construct a solution to the N th-order wavefunction ψ(N)(~x, t).

Each term proportional to λN must independently be equal to zero, so B.5 be-

comes

i~
∂

∂t

(∑
k

a
(N)
k ψ

(0)
k

)
= Ĥ0

(∑
k

a
(N)
k ψ

(0)
k

)
− µ̂ · ~E(t)

(∑
k

a
(N−1)
k ψ

(0)
k

)
= 0 (B.9)

which we want to solve for the respective coefficients a
(N)
k . The next step therefore

is to substitute the stationary states ψ
(0)
k (~x, t) = uk(~x)e−iωt, resulting in

i~
∂

∂t

∑
k

a
(N)
k uk(~x)e−iωkt = Ĥ0

∑
k

a(N)uk(~x)e−iωkt − µ̂ · ~E(t)
∑
k

a
(N−1)
k uk(~x)e−iωkt

(B.10)
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and after taking the derivates and evaluating the unperturbed hamiltonian (Ĥ0)

(B.11)

i~
∑
k

ȧ
(N)
k uk(~x)e−iωkt + i~

∑
k

a
(N)
k uk(~x)(−iωk)e−iωkt

=
∑
k

a(N)~ωkuk(~x)e−iωkt − µ̂ · ~E(t)
∑
k

a
(N−1)
k uk(~x)e−iωkt

which simplifies to

i~
∑
k

ȧ
(N)
k uk(~x)e−iωkt = −µ̂ · ~E(t)

∑
k

a
(N−1)
k uk(~x)e−iωkt. (B.12)

Now this equation can be used to determine the coefficients of the N th non-linear

states by multiplying each side by u∗l (~x)eiωlt, and then integrating over space to

project out the desired coefficients ȧ
(N)
k (t).

i~
∑
k

ȧ
(N)
k (t)δl,ke

i(ωl−ωk)t =
∑
k

a
(N−1)
k (t)

(∫
u∗l (~x)(−µ̂ · ~E(t))uk(~x)d~x

)
ei(ωl−ωk)t

(B.13)

which can be directly solved for ȧ
(N)
l (t) because δl,k = 1 only when l = k. The rest

of the terms in the right side of the sum will be zero. Therefore

ȧ
(N)
l (t) =

1

i~
∑
k

a
(N−1)
k (t)

(∫
u∗l (~x)(−µ̂ · ~E(t))uk(~x)d~x

)
ei(ωl−ωk)t (B.14)

and then a
(N)
l (t) can be obtained by integrating over time from −∞ to t.

a
(N)
l (t) =

1

i~
∑
k

∫ t

−∞

[
a

(N−1)
k (t′)

(∫
u∗l (~x)(−µ̂ · ~E(t′))uk(~x)d~x

)
ei(ωl−ωk)t′

]
dt′

(B.15)

This allows for the computation of any of the N th order coefficients from the known

lower order coefficients, starting with the coefficients a0
k zeroth-order ψ(0) wavefunc-

tion.

The dipole transition integrals between two states ψ1 and ψ2 can be more neatly
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written in Dirac notation as

〈p̂〉 = 〈ψ1 | µ̂ | ψ2〉. (B.16)

Skipping some of the intermediate steps for N = 1 and N = 2, the result for N = 3

is

a(3)
n (t)

=
1

8~3

∑
p,q,r

∑
l,m

〈un|µ̂|um〉〈um|µ̂|ul〉〈ul|µ̂|ug〉E(ωp)E(ωq)E(ωr)e
i(∆ωng−ωp−ωq−ωr)t

(∆ωng − ωp − ωq − ωr) (∆ωmg − ωp − ωq) (∆ωlg − ωp)

(B.17)

where ∆ωng = ωn − ωg. The summation is over all states, but only some of them

are non-zero.

The third-order dipole moment involves transitions between the states ψ(0), ψ(1),

ψ(2), and ψ(3) as defined in equation B.8. The expectation value for the third-order

polarizability is therefore expressed as

〈p̂(3)〉 = 〈ψ(0) | µ̂ | ψ(3)〉+ 〈ψ(1) | µ̂ | ψ(2)〉+ 〈ψ(2) | µ̂ | ψ(1)〉+ 〈ψ(3) | µ̂ | ψ(0)〉 (B.18)

where (as determined above), the states are defined in terms of the unperturbed

eigenstates with the coefficients as calculated in equation B.17.

ψ(0) = ψ(0)
g = uge

−iωgt (B.19)

ψ(1) =
∑
l

a
(1)
l ψ

(0)
l =

∑
l

a
(1)
l ul(~x)e−iωlt (B.20)

ψ(2) =
∑
m

a(2)
m ψ(0)

m =
∑
m

a(2)
m um(~x)e−iωmt (B.21)

ψ(3) =
∑
n

a(3)
n ψ(0)

n =
∑
n

a(3)
n un(~x)e−iωnt (B.22)

Inserting the calculated values for a
(3)
n (t) in equation B.17 into equation B.18 with

wave functions in equation B.22 gives an expression for the third-order polarization

in terms of known quantities which are the spatial wave functions of the unper-

turbed hamiltonian (ul(~x)), energy differences of those states (∆ωmg), energies of
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the incident optical waves (ωk), and amplitudes of those incident fields.

〈p̂(3)〉 =
1

~3

∑
p,q,r

∑
l,m,n

[(
〈ug | µ̂ | un〉〈un | µ̂ | um〉〈um | µ̂ | ul〉〈ul | µ̂ | ug〉

(∆ωng − ωp − ωq − ωr) (∆ωmg − ωp − ωq) (∆ωlg − ωp)

+
〈ug | µ̂ | un〉〈un | µ̂ | um〉〈um | µ̂ | ul〉〈ul | µ̂ | ug〉(

∆ω∗ng + ωp
)

(∆ωmg − ωq − ωr) (∆ωlg − ωr)

+
〈ug | µ̂ | un〉〈un | µ̂ | um〉〈um | µ̂ | ul〉〈ul | µ̂ | ug〉(

∆ω∗ng + ωr
)

(∆ωmg + ωq + ωr) (∆ωlg − ωp)

+
〈ug | µ̂ | un〉〈un | µ̂ | um〉〈um | µ̂ | ul〉〈ul | µ̂ | ug〉(

∆ω∗ng + ωp
) (

∆ω∗mg + ωp + ωq
) (

∆ω∗lg + ωp + ωq + ωr
))×

E(ωp)

2

E(ωq)

2

E(ωr)

2
e−i(ωp+ωq+ωr)t

]
(B.23)
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Appendix C

Extinction Coefficients
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Figure C.1: The extinction coefficients for the T-x molecules.
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Figure C.2: The extinction coefficients for the K-x molecules.
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Figure C.3: The extinction coefficients for the C-x molecules.
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Figure C.4: The extinction coefficients for the J-x molecules.
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Appendix D

GAMESS Input Files

An example input header for a geometry optimization is:

! File created by the GAMESS Input Deck Generator Plugin for Avogadro

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=1 $END

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE DFTTYP=B3LYP

MOLPLT=.TRUE. maxit=50 $END

$SYSTEM MWORDS=50 $END

$STATPT OPTTOL=0.0001 NSTEP=90 $END

$SCF DIRSCF=.TRUE. $END

$DATA

DDMEBT-0 Geometry Optimization using starting coordinates

from Marvin Sketch

C1

C 6.0 -1.02017 2.77229 -2.91129

C 6.0 -1.25148 4.00425 -3.53129

C 6.0 -2.32066 4.18193 -4.41839

Sample input file for a Finite Field calculation using RHF level of theory

$CONTRL

SCFTYP=RHF

RUNTYP=ffield

MOLPLT=.TRUE.

icut=20

itol=30

maxit=50
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qmttol=1e-6

$END

$BASIS

GBASIS=N31

NGAUSS=6

NDFUNC=1

NPFUNC=1

DIFFSP=.TRUE.

DIFFS=.TRUE.

$END

$SYSTEM

MWORDS=10

$END

$SCF

DIRSCF=.TRUE.

CONV=1d-7

FDIFF=.FALSE.

$END

$FFCALC

offdia=.t.

$END

$DATA

Finite Field calculation using coordinates from geometry

optimization run.

C1

C 6.0 -2.9795353282 2.9583579567 -3.0505828786

C 6.0 -2.9435366255 4.1876120382 -3.6790033797

C 6.0 -2.0784616593 4.4379760679 -4.7800923537

Sample excerpt taken from the output file of a Finite Field calculation

----ENERGY BASED RESULTS----

DIPOLE # X Y Z (A.U.)

###################################################################

# -4.0205306E+00 2.4305621E+00 -1.5619378E+00

ALPHA # X Y Z (A.U.)

###################################################################
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X # 4.6102449E+02 6.9836597E+01 -3.1415531E+01

Y # 6.9836597E+01 4.8389535E+02 -5.6060503E+01

Z # -3.1415531E+01 -5.6060503E+01 3.9750307E+02

BETA # X Y Z (A.U.)

###################################################################

XX # -4.5449899E+03 -2.0572675E+03 5.8622186E+02

YY # -3.0764522E+02 3.8341891E+03 -2.1696123E+03

ZZ # 3.1322838E+02 9.6190706E+02 -1.7505067E+02

GAMMA # XX YY ZZ (A.U.)

###################################################################

XX # 4.5173510E+05 7.3661795E+04 3.7671271E+03

YY # 7.3661795E+04 4.0252871E+05 9.8261808E+04

ZZ # 3.7671271E+03 9.8261808E+04 6.9117050E+04

----DIPOLE BASED RESULTS----

DIPOLE # X Y Z (A.U.)

###################################################################

# -4.0205263E+00 2.4305592E+00 -1.5619378E+00

ALPHA # X Y Z (A.U.)

###################################################################

X # 4.6102448E+02 6.9836784E+01 -3.1415702E+01

Y # 6.9836783E+01 4.8389546E+02 -5.6060659E+01

Z # -3.1415440E+01 -5.6060619E+01 3.9750297E+02

BETA # X Y Z (A.U.)

###################################################################

XX # -4.5503062E+03 -2.0609816E+03 5.8792890E+02

YY # -3.0646642E+02 3.8379276E+03 -2.1735348E+03

ZZ # 3.1302375E+02 9.6128377E+02 -1.7512002E+02

GAMMA # XX YY ZZ (A.U.)

###################################################################

XX # 4.5171828E+05 7.3645512E+04 3.9026965E+03

YY # 7.3645512E+04 4.0237920E+05 9.8566298E+04

ZZ # 3.9026965E+03 9.8566298E+04 6.9374701E+04
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Appendix E

Fitting Scripts

An example fitting script for unconstrained real and imaginary parts of γ, for the

Iso-4 molecule which incorporates linear absorption.

Closest = 0.02

Fixed = 0.30

Farest = 0.75

file = "Combined.txt"

set fit errorvariables

FIT_LIMIT = 1.e-8

average(one, two) = (one + two)/2.0

Bezy(x,Ay,By,Cy) = average(Ay,By)*(1-x)**2 + 2*(1-x)*x*By +

average(By,Cy)*x**2

#initial parameters

RealKnot1 = 3.43

RealKnot2 = 2.13

RealKnot3 = -12.8

RealKnot4 = -1.6

RealKnot5 = 17.8

RealKnot6 = 41.3

RealKnot7 = 76.6

RealKnot8 = 38.5

RealKnot9 = 34.4
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RealKnot10 = 29.7

RealKnot11 = 34.7

RealKnot12 = 31.1

RealKnot12_err = 1.0

ImagKnot1 = 448.5

ImagKnot2 = 113.2

ImagKnot3 = 103.7

ImagKnot4 = 34.9

ImagKnot5 = 32.9

ImagKnot6 = 17.2

ImagKnot7 = 13.2

ImagKnot8 = 0.91

ImagKnot9 = -0.11

ImagKnot10 = 0.14

ImagKnot11 = -2.6

ImagKnot12 = 0.2

ImagKnot12_err = 1.0

Absorption = 5.07e+06

#array of the relative intensities

Intensities = " 1.809210525E-005 0.0004671053 0.0042516447

0.0079029605 0.0119358553 0.0149884868 0.0202598684

0.0228388158 0.0261792763 0.0267927632 0.0247845395

0.0248273026 0.0307483553 0.0299724107 0.0362763158

0.0410921053 0.0434671053 0.0442648026 0.0472582237

0.0465263158 0.04459375 0.0504391447 0.0542203947

0.0542697368 0.0546628289 0.0586430921 0.0572391739

0.0597138158 0.0605970395 0.0649424342 0.0649819079

0.0671842105 0.0575838816 0.0588817674 0.0616858553

0.0687976974 0.0745411184 0.0563026316 0.0829884868

0.0828338816 0.0746348684 0.0779917763 0.0809490132

0.0791217105 0.0774358553 0.0802697368 0.0755148026

0.0783503289 0.0787730263 0.0790411184 0.07821875

0.079948962 0.0819309211 0.0796708718 0.0794671053

0.0809884868 0.0834731818 0.0847911184 0.094875

0.0918486842 0.0223519737 0.0547845395 0.0695276963
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0.0264358553 "

intensity(n) = word(Intensities,n)

#This is the fitted absorbance at the highest concentration

#as a function of wavelength

A(y) = exp(-(y-956.146)/155.41)+0.0854-0.036

#function returns alpha for a given wavelength, and concentration

alpha(x,y) = 2.303 * A(y) * x / (0.001*1.25)

#Given an index between 0 and 63, this returns the

corresponding wavelength

WL(y) = int(y)%64*10+1050

gamma_R(x) =

(x < 1105) ? Bezy(((x-1035)/70.0),RealKnot1,RealKnot2,RealKnot3) :

(x<1175) ? Bezy(((x-1105)/70.0),RealKnot2,RealKnot3,RealKnot4) :

(x<1245) ? Bezy(((x-1175)/70.0),RealKnot3,RealKnot4,RealKnot5) :

(x<1315) ? Bezy(((x-1245)/70.0),RealKnot4,RealKnot5,RealKnot6) :

(x<1385) ? Bezy(((x-1315)/70.0),RealKnot5,RealKnot6,RealKnot7) :

(x<1455) ? Bezy(((x-1385)/70.0),RealKnot6,RealKnot7,RealKnot8) :

(x<1525) ? Bezy(((x-1455)/70.0),RealKnot7,RealKnot8,RealKnot9) :

(x<1595) ? Bezy(((x-1525)/70.0),RealKnot8,RealKnot9,RealKnot10) :

(x<1665) ? Bezy(((x-1595)/70.0),RealKnot9,RealKnot10,RealKnot11) :

(x<1735) ? Bezy(((x-1665)/70.0),RealKnot10,RealKnot11,RealKnot12)

: 0

gamma_I(x) =

(x < 1105) ? Bezy(((x-1035)/70.0),ImagKnot1,ImagKnot2,ImagKnot3) :

(x<1175) ? Bezy(((x-1105)/70.0),ImagKnot2,ImagKnot3,ImagKnot4) :

(x<1245) ? Bezy(((x-1175)/70.0),ImagKnot3,ImagKnot4,ImagKnot5) :

(x<1315) ? Bezy(((x-1245)/70.0),ImagKnot4,ImagKnot5,ImagKnot6) :

(x<1385) ? Bezy(((x-1315)/70.0),ImagKnot5,ImagKnot6,ImagKnot7) :

(x<1455) ? Bezy(((x-1385)/70.0),ImagKnot6,ImagKnot7,ImagKnot8) :

(x<1525) ? Bezy(((x-1455)/70.0),ImagKnot7,ImagKnot8,ImagKnot9) :

(x<1595) ? Bezy(((x-1525)/70.0),ImagKnot8,ImagKnot9,ImagKnot10) :

(x<1665) ? Bezy(((x-1595)/70.0),ImagKnot9,ImagKnot10,ImagKnot11) :

(x<1735) ? Bezy(((x-1665)/70.0),ImagKnot10,ImagKnot11,ImagKnot12)

: 0
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ns=1.42

f=(ns**2 + 2)/3

rho=1.3266

Na=6.022

M=600.75

chi3s=12

terms=10*f**4*rho*Na/M

Tclosest(x,y) = (x>0.01) ? alpha(x,WL(y))/(x*gamma_I(WL(y))*Closest*

intensity(int(y)%64+1)*Absorption*(exp(alpha(x,WL(y))*0.001)-1.)

/(WL(y)) + alpha(x,WL(y))*exp(alpha(x,WL(y))*0.001)) : 1.

Tfixed(x,y) = (x>0.01) ? alpha(x,WL(y))/(x*gamma_I(WL(y))*Fixed*

intensity(int(y)%64+1)*Absorption*(exp(alpha(x,WL(y))*0.001)-1.)

/(WL(y)) + alpha(x,WL(y))*exp(alpha(x,WL(y))*0.001)) : 1.

Tfarest(x,y) = (x>0.01) ? alpha(x,WL(y))/(x*gamma_I(WL(y))*Farest*

intensity(int(y)%64+1)*Absorption*(exp(alpha(x,WL(y))*0.001)-1.)

/(WL(y)) + alpha(x,WL(y))*exp(alpha(x,WL(y))*0.001)) : 1.

Tsignal(x,y) = exp(-alpha(x,WL(y))*0.001)

chi(x,y) = (y<512) ? sqrt((chi3s+terms*gamma_R(WL(y))*x)**2+

(terms*gamma_I(WL(y))*x)**2)/chi3s*sqrt(Tclosest(x,y)*Tfixed(x,y)*

Tfarest(x,y)*Tsignal(x,y)) : Tfarest(x,y)

fit chi(x,y) file using 1:0:2:(1) via RealKnot1, RealKnot2, RealKnot3,

RealKnot4, RealKnot5, RealKnot6, RealKnot7, RealKnot8, RealKnot9,

RealKnot10, RealKnot11, ImagKnot1, ImagKnot2, ImagKnot3, ImagKnot4,

ImagKnot5, ImagKnot6, ImagKnot7, ImagKnot8, ImagKnot9, ImagKnot10,

ImagKnot11, Absorption

set print "gamma_scan.txt"

do for [ i = 0:63] {

print i*10+1050,gamma_R(i*10+1050),gamma_R(i*10+1050)*0.3,

gamma_I(i*10+1050),gamma_I(i*10+1050)*0.3+10,Absorption

*intensity(i+1)

}
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unset print

set print "parameters.txt"

print 1000, RealKnot1, RealKnot1_err, ImagKnot1, ImagKnot1_err

print 1070, RealKnot2, RealKnot2_err, ImagKnot2, ImagKnot2_err

print 1140, RealKnot3, RealKnot3_err, ImagKnot3, ImagKnot3_err

print 1210, RealKnot4, RealKnot4_err, ImagKnot4, ImagKnot4_err

print 1280, RealKnot5, RealKnot5_err, ImagKnot5, ImagKnot5_err

print 1350, RealKnot6, RealKnot6_err, ImagKnot6, ImagKnot6_err

print 1420, RealKnot7, RealKnot7_err, ImagKnot7, ImagKnot7_err

print 1490, RealKnot8, RealKnot8_err, ImagKnot8, ImagKnot8_err

print 1560, RealKnot9, RealKnot9_err, ImagKnot9, ImagKnot9_err

print 1630, RealKnot10, RealKnot10_err, ImagKnot10, ImagKnot10_err

print 1700, RealKnot11, RealKnot11_err, ImagKnot11, ImagKnot11_err

print 1770, RealKnot12, RealKnot12_err, ImagKnot12, ImagKnot12_err

unset print

set grid

set title "ISO-4"

set xlabel "Wavelength (nm)"

plot [1080:1680][-50:140] gamma_R(x) lw 3 title "Real",

gamma_I(x) lw 3 title "Imaginary",

’parameters.txt’ using 1:2:3 with yerror title "Real Knots",

’’ using 1:4:5 with yerror title "Imaginary Knots"

An example fitting script for the imaginary part constrained to be the scaled

linear absorbance spectrum, at twice the wavelength.

Closest = 0.02

Fixed = 0.30

Farest = 0.75

file = "Combined-err.csv"

set fit errorvariables

FIT_LIMIT = 1.e-8

average(one, two) = (one + two)/2.0
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Bezy(x,Ay,By,Cy) = average(Ay,By)*(1-x)**2 + 2*(1-x)*x*By +

average(By,Cy)*x**2

RealKnot1 = 3.43

RealKnot2 = 2.13

RealKnot3 = -12.8

RealKnot4 = -1.6

RealKnot5 = 17.8

RealKnot6 = 41.3

RealKnot7 = 76.6

RealKnot8 = 38.5

RealKnot9 = 34.4

RealKnot10 = 29.7

RealKnot11 = 34.7

RealKnot12 = 31.1

RealKnot12_err = 1.0

ImagScale = 0.0012

Absorption = 4.8e06

Intensities = " 1.809210525E-005 0.0004671053 0.0042516447 0.0079029605

0.0119358553 0.0149884868 0.0202598684

0.0228388158 0.0261792763 0.0267927632 0.0247845395

0.0248273026 0.0307483553 0.0299724107 0.0362763158

0.0410921053 0.0434671053 0.0442648026 0.0472582237

0.0465263158 0.04459375 0.0504391447 0.0542203947

0.0542697368 0.0546628289 0.0586430921 0.0572391739

0.0597138158 0.0605970395 0.0649424342 0.0649819079

0.0671842105 0.0575838816 0.0588817674 0.0616858553

0.0687976974 0.0745411184 0.0563026316 0.0829884868

0.0828338816 0.0746348684 0.0779917763 0.0809490132

0.0791217105 0.0774358553 0.0802697368 0.0755148026

0.0783503289 0.0787730263 0.0790411184 0.07821875

0.079948962 0.0819309211 0.0796708718 0.0794671053

0.0809884868 0.0834731818 0.0847911184 0.094875

0.0918486842 0.0223519737 0.0547845395 0.0695276963

0.0264358553 "
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intensity(n) = word(Intensities,n)

LinearData = "13509.02859 12984.87093 12976.98077 13228.71168

13661.59879 14235.49559 14909.00573 15600.07594 16339.77331

17034.99258 17787.38387 18480.74421 19178.88969 19840.28704

20449.48936 21009.58489 21483.65043 21910.12539 22236.48503

22438.69193 22581.51397 22583.70444 22450.19935 22206.19284

21848.27812 21366.41927 20779.71958 20087.29987 19321.79928

18474.62356 17576.73733 16616.56238 15642.24996 14658.78915

13667.8759 12683.44466 11719.03406 10791.85028 9880.587456

9048.211388 8234.835231 7472.686006 6774.891169 6114.727352

5487.589631 4931.871314 4413.813818 3934.185021 3522.715531

3122.933442 2774.744294 2446.549712 2192.798536 1925.96484

1679.16331 1557.746902 1344.836201 1199.433348 1050.052466

912.6404181 791.0843125 686.2136069 590.053678 509.2141219"

Linear(n) = word(LinearData,n)

#This is the fitted absorbance at the highest concentration

# as a function of wavelength

A(y) = exp(-(y-956.146)/155.41)+0.0854-0.036

alpha(x,y) = 2.303 * A(y) * x / (0.001*1.25)

#Given an index between 0 and 63, this returns the

corresponding wavelength

WL(y) = int(y)%64*10+1050

gamma_R(x) =

(x < 1105) ? Bezy(((x-1035)/70.0),RealKnot1,RealKnot2,RealKnot3) :

(x<1175) ? Bezy(((x-1105)/70.0),RealKnot2,RealKnot3,RealKnot4) :

(x<1245) ? Bezy(((x-1175)/70.0),RealKnot3,RealKnot4,RealKnot5) :

(x<1315) ? Bezy(((x-1245)/70.0),RealKnot4,RealKnot5,RealKnot6) :

(x<1385) ? Bezy(((x-1315)/70.0),RealKnot5,RealKnot6,RealKnot7) :

(x<1455) ? Bezy(((x-1385)/70.0),RealKnot6,RealKnot7,RealKnot8) :

(x<1525) ? Bezy(((x-1455)/70.0),RealKnot7,RealKnot8,RealKnot9) :

(x<1595) ? Bezy(((x-1525)/70.0),RealKnot8,RealKnot9,RealKnot10) :

(x<1665) ? Bezy(((x-1595)/70.0),RealKnot9,RealKnot10,RealKnot11) :

(x<1735) ? Bezy(((x-1665)/70.0),RealKnot10,RealKnot11,RealKnot12)
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: 0

gamma_I(x) = ImagScale * Linear(int((x-1040)/10))

ns=1.42

f=(ns**2 + 2)/3

rho=1.3266

Na=6.022

M=600.75

chi3s=12

terms=10*f**4*rho*Na/M

Tclosest(x,y) = (x>0.01) ? alpha(x,WL(y))/(x*gamma_I(WL(y))*Closest*

intensity(int(y)%64+1)*Absorption*(exp(alpha(x,WL(y))*0.001)-1.)

/(WL(y)) + alpha(x,WL(y))*exp(alpha(x,WL(y))*0.001)) : 1.

Tfixed(x,y) = (x>0.01) ? alpha(x,WL(y))/(x*gamma_I(WL(y))*Fixed*

intensity(int(y)%64+1)*Absorption*(exp(alpha(x,WL(y))*0.001)-1.)

/(WL(y)) + alpha(x,WL(y))*exp(alpha(x,WL(y))*0.001)) : 1.

Tfarest(x,y) = (x>0.01) ? alpha(x,WL(y))/(x*gamma_I(WL(y))*Farest*

intensity(int(y)%64+1)*Absorption*(exp(alpha(x,WL(y))*0.001)-1.)

/(WL(y)) + alpha(x,WL(y))*exp(alpha(x,WL(y))*0.001)) : 1.

Tsignal(x,y) = exp(-alpha(x,WL(y))*0.001)

chi(x,y) = (y<512) ? sqrt((chi3s+terms*gamma_R(WL(y))*x)**2+

(terms*gamma_I(WL(y))*x)**2)/chi3s*sqrt(Tclosest(x,y)*

Tfixed(x,y)*Tfarest(x,y)*Tsignal(x,y)) : Tfarest(x,y)

fit chi(x,y) file using 1:0:2:3 via RealKnot1, RealKnot2, RealKnot3,

RealKnot4, RealKnot5, RealKnot6, RealKnot7, RealKnot8,

RealKnot9, RealKnot10, RealKnot11, Absorption, ImagScale

set print "gamma_scan.txt"

do for [ i = 0:63] {

print i*10+1050,gamma_R(i*10+1050),

gamma_R(i*10+1050)*0.3,gamma_I(i*10+1050),

gamma_I(i*10+1050)*0.3+10,Absorption*intensity(i+1)
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}

unset print

set print "parameters.txt"

print 1000, RealKnot1, RealKnot1_err

print 1070, RealKnot2, RealKnot2_err

print 1140, RealKnot3, RealKnot3_err

print 1210, RealKnot4, RealKnot4_err

print 1280, RealKnot5, RealKnot5_err

print 1350, RealKnot6, RealKnot6_err

print 1420, RealKnot7, RealKnot7_err

print 1490, RealKnot8, RealKnot8_err

print 1560, RealKnot9, RealKnot9_err

print 1630, RealKnot10, RealKnot10_err

print 1700, RealKnot11, RealKnot11_err

print 1770, RealKnot12, RealKnot12_err

unset print

set grid

set title "ISO-4"

set xlabel "Wavelength (nm)"

plot [1050:1680][-50:140] gamma_R(x) lw 3 title "Real",

gamma_I(x) lw 3 title "Imaginary", ’parameters.txt’

using 1:2:3 with yerror title "Real Knots"

The plots.sh bash script to successively call gamma_plot.sh in order to plot

cross-sections of the data at each wavelength point and compare with the fitted

function.

#!/bin/bash

let "num = 2"

while read line;

do

# python landscape.py $WL

WL=$(echo "$line" | cut -d" " -f1)

a=$(echo "$line" | cut -d" " -f2)

a_err=$(echo "$line" | cut -d" " -f3)
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b=$(echo "$line" | cut -d" " -f4)

b_err=$(echo "$line" | cut -d" " -f5)

Absorption=$(echo "$line" | cut -d" " -f6)

./gamma_plot.sh $WL $a $a_err $b $b_err $num $Absorption

let "num += 1"

# bash contour.sh $WL $a $b

done < gamma_scan.txt

#convert -delay 20 -loop -0 plot*.gif animated_plots.gif

#convert -delay 20 -loop -0 *contour.gif animated_contour.gif

The gamma.sh script to create the individual plots, with the parameters as

passed from the plots.sh file, containing the fits from gammaBez12.p, or gammaBez12F.p

#!/bin/sh

gnuplot << EOF

Closest = 0.02

Fixed = 0.30

Farest = 0.75

ns=1.42

f=(ns**2 + 2)/3

rho=1.3266

Na=6.022

M=600.75

chi3s=12

terms=10*f**4*rho*Na/M

A = exp(-($1-956.146)/155.41)+0.0854-0.036

alpha(x) = 2.303*A*x/(0.001*1.25)

Tclosest(x) = (x>0.01) ?

alpha(x)/(x*Closest*$4*$7*(exp(alpha(x)*0.001)-1.)/($1) +

alpha(x)*exp(alpha(x)*0.001)) : 1.

Tfixed(x) = (x>0.01) ?
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alpha(x)/(x*Fixed*$4*$7*(exp(alpha(x)*0.001)-1.)/($1) +

alpha(x)*exp(alpha(x)*0.001)) : 1.

Tfarest(x) = (x>0.01) ?

alpha(x)/(x*Farest*$4*$7*(exp(alpha(x)*0.001)-1.)/($1) +

alpha(x)*exp(alpha(x)*0.001)) : 1.

Tsignal(x) = exp(-alpha(x)*0.001)

chi(x,y) = (y<1) ? sqrt((chi3s+terms*$2*x)**2+(terms*$4*x)**2)/chi3s*

sqrt(Tclosest(x)*Tfixed(x)*Tfarest(x)*Tsignal(x)) : Tfarest(x)

unset key

set terminal gif

set output "plot$1.gif"

set border

set grid

set multiplot layout 3, 1

set lmargin 7

set tmargin 0.5

set bmargin 1

set bars

set xzeroaxis lt -1

set datafile separator whitespace

set arrow from $1,-50 to $1,140 nohead

set label "ISO-4 Jan 24, 2013" at 1500,80

set label "$1 nm" at 1400,-20

set label "Real: $2" at 1550, -15

set label "Imag: $4" at 1550, -35

unset xlabel

plot [1050:1700] [-50:140] ’gamma_scan.txt’ using 1:2:3 axes x1y1

with errorbars, ’’ using 1:4:5 with errorbars,

’’ using 1:2:3 smooth bezier

set bmargin 0

unset xtics

set ytics 0.0,1.0,2.0

set ylabel "Chi3/Chi3_DCM" offset 2
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plot [0:1.5] [-0.5:2.5] ’DFWM.txt’ using 1:$6,

’’ using 1:(\$$6-chi(\$1,0)) with impulse lw 3, chi(x,0)

set tmargin 0

set bmargin 2

set xtics

set ylabel "T"

plot [0:1.5] [-0.5:1.2] ’T.txt’ using 1:$6,

’’ using 1:(\$$6-chi(\$1,1)) with impulse lw 3, chi(x,1)

EOF

The following is a script to fit a power dependence set of data, at 4 or 5 different

intensities, and integrate the polarization wave to properly account for different

intensities in each of the three incident beams.

file = ’power_data4.txt’

set key spacing 1.8

#Closest = 0.02

#Fixed = 0.30

#Farest = 0.75

Closest = 0.1

Fixed = 0.5

Farest = 0.75

distance = 10.0

set fit errorvariables

FIT_LIMIT = 1.e-9

set grid

ns=1.42

f=(ns**2 + 2)/3

rho=1.3266

Na=6.022

M=246.27
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chi3s=12

terms=10*f**4*rho*Na/M

#intensity1 = 2.845

#intensity2 = 3.278

#intensity3 = 4.977

#intensity4 = 7.644

#intensity5 = 8.816

intensity1 = 4.537

intensity2 = 4.845

intensity3 = 8.19

intensity4 = 12.7

intensity5 = 21.4

Scaling = 0.004

# the function integral_f(z) approximates

# the integral of f(z) from 0 to z.

#

# the integral is calculated using Simpsons rule as

# ( f(z-delta) + 4*f(z-delta/2) + f(z) )*delta/6

# repeated z/delta times (from z down to 0)

delta = 1.0

beta(x)=gamma_I*x*Scaling

############################################################

#intensity1

f1(x,z) = 1/sqrt(1+beta(x)*intensity1*Closest*z) *

1/sqrt(1+beta(x)*intensity1*Fixed*z) *

1/sqrt(1+beta(x)*intensity1*Farest*z)

f2(x,z) = 1/sqrt(1+beta(x)*intensity2*Closest*z) *

1/sqrt(1+beta(x)*intensity2*Fixed*z) *

1/sqrt(1+beta(x)*intensity2*Farest*z)

f3(x,z) = 1/sqrt(1+beta(x)*intensity3*Closest*z) *
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1/sqrt(1+beta(x)*intensity3*Fixed*z) *

1/sqrt(1+beta(x)*intensity3*Farest*z)

f4(x,z) = 1/sqrt(1+beta(x)*intensity4*Closest*z) *

1/sqrt(1+beta(x)*intensity4*Fixed*z) *

1/sqrt(1+beta(x)*intensity4*Farest*z)

f5(x,z) = 1/sqrt(1+beta(x)*intensity5*Closest*z) *

1/sqrt(1+beta(x)*intensity5*Fixed*z) *

1/sqrt(1+beta(x)*intensity5*Farest*z)

############################################################

#integral_f1

integral_f1(x,z) = (z>0)?int1a(x,z,z/ceil(z/delta)):

-int1b(x,z,-z/ceil(-z/delta))

int1a(x,z,d) = (z<=d*.1) ? 0 :

(int1a(x,z-d,d)+(f1(x,z-d)+4*f1(x,z-d*.5)+f1(x,z))*d/6.)

int1b(x,z,d) = (z>=-d*.1) ? 0 :

(int1b(x,z+d,d)+(f1(x,z+d)+4*f1(x,z+d*.5)+f1(x,z))*d/6.)

integral_f2(x,z) = (z>0)?int2a(x,z,z/ceil(z/delta)):

-int2b(x,z,-z/ceil(-z/delta))

int2a(x,z,d) = (z<=d*.1) ? 0 :

(int2a(x,z-d,d)+(f2(x,z-d)+4*f2(x,z-d*.5)+f2(x,z))*d/6.)

int2b(x,z,d) = (z>=-d*.1) ? 0 :

(int2b(x,z+d,d)+(f2(x,z+d)+4*f2(x,z+d*.5)+f2(x,z))*d/6.)

integral_f3(x,z) = (z>0)?int3a(x,z,z/ceil(z/delta)):

-int3b(x,z,-z/ceil(-z/delta))

int3a(x,z,d) = (z<=d*.1) ? 0 :

(int3a(x,z-d,d)+(f3(x,z-d)+4*f3(x,z-d*.5)+f3(x,z))*d/6.)

int3b(x,z,d) = (z>=-d*.1) ? 0 :

(int3b(x,z+d,d)+(f3(x,z+d)+4*f3(x,z+d*.5)+f3(x,z))*d/6.)

integral_f4(x,z) = (z>0)?int4a(x,z,z/ceil(z/delta)):

-int4b(x,z,-z/ceil(-z/delta))

int4a(x,z,d) = (z<=d*.1) ? 0 :

(int4a(x,z-d,d)+(f4(x,z-d)+4*f4(x,z-d*.5)+f4(x,z))*d/6.)

int4b(x,z,d) = (z>=-d*.1) ? 0 :

(int4b(x,z+d,d)+(f4(x,z+d)+4*f4(x,z+d*.5)+f4(x,z))*d/6.)
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integral_f5(x,z) = (z>0)?int5a(x,z,z/ceil(z/delta)):

-int5b(x,z,-z/ceil(-z/delta))

int5a(x,z,d) = (z<=d*.1) ? 0 :

(int5a(x,z-d,d)+(f5(x,z-d)+4*f5(x,z-d*.5)+f5(x,z))*d/6.)

int5b(x,z,d) = (z>=-d*.1) ? 0 :

(int5b(x,z+d,d)+(f5(x,z+d)+4*f5(x,z+d*.5)+f5(x,z))*d/6.)

Term(x,y) = (y<0.5) ? integral_f1(x,distance)/distance :

(y<1.5) ? integral_f2(x,distance)/distance :

(y<2.5) ? integral_f3(x,distance)/distance :

(y<3.5) ? integral_f4(x,distance)/distance :

(y<4.5) ? integral_f5(x,distance)/distance : 1.

chi(x,y) = (sqrt((chi3s+terms*gamma_R*x)**2+

(terms*gamma_I*x)**2)/chi3s)*Term(x,y)

gamma_R=-21.8

gamma_I=31.2

#fit chi(x,y) file using 1:-2:2:(1) via gamma_R,gamma_I,Scaling

fit [x=0.1:3.0] chi(x,y) file using 1:-2:2:3 via

intensity1, intensity2, intensity3,intensity4,

gamma_R, gamma_I

#, gamma_R, gamma_I

set key at 1, 3.5

set bars

set xzeroaxis lt -1

set xlabel "concentration"

set ylabel "Chi3/Chi3DCM"

#set label 1 file at 0.5, 3.2

set label 2 sprintf("Real = %2.1f ",gamma_R) at 1.55,0.8

set label 3 sprintf("Imag = %2.1f ",gamma_I) at 1.55,0.6

plot [0:2.5][0:3.5] ’2.845.txt’ using 1:2:3 axes x1y1

with errorbars title "Data 1" lt 7 linecolor rgb "red",

chi(x,0) lt 1 linecolor rgb "red" title
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sprintf("%2.2f ",intensity1), ’3.278.txt’ using 1:2:3

axes x1y1 with errorbars title "Data 2" lt 7

linecolor rgb "blue", chi(x,1) lt 1 linecolor rgb "blue"

title sprintf("%2.2f ",intensity2), ’4.977.txt’ using 1:2:3

axes x1y1 with errorbars title "Data 3" lt 7

linecolor rgb "green", chi(x,2) lt 1 linecolor rgb "green"

title sprintf("%2.2f ",intensity3), ’7.644.txt’ using 1:2:3

axes x1y1 with errorbars title "Data 4", chi(x,3) lt 1

linecolor rgb "black" title sprintf("%2.2f ",intensity4)

set output "powerfit_3int4.png"

set terminal pngcairo size 640,480

replot

set output "powerfit_3int4.tex"

set terminal tikz size 4.5in,3.5in

replot

unset output

set terminal wxt
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