
Lehigh University
Lehigh Preserve

Theses and Dissertations

2015

Exploring Initial Condition Effects on Variable
Acceleration Rayleigh Taylor Instability using
Impilicit Large Eddy Simulations
Denis Aslangil
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Aslangil, Denis, "Exploring Initial Condition Effects on Variable Acceleration Rayleigh Taylor Instability using Impilicit Large Eddy
Simulations" (2015). Theses and Dissertations. 2497.
http://preserve.lehigh.edu/etd/2497

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F2497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2497?utm_source=preserve.lehigh.edu%2Fetd%2F2497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


 

 

 

Exploring Initial Condition Effects on Variable Acceleration Rayleigh 

Taylor Instability using Implicit Large Eddy Simulations 

by 

 

Denis Aslangil 

 

 

A Thesis 

Presented to the Graduate and Research Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

 

in 

Mechanical Engineering & Mechanics 

 

 

 

Lehigh University 

August 2015



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2015 

Copyright 

Denis Aslangil  



 

iii 

 

 

This thesis is accepted and approved in partial fulfillment of the requirements 

for the Master of Science in Mechanical Engineering. 

 

Exploring Initial Condition Effects on Variable Acceleration Rayleigh Taylor 

Instability using Implicit Large Eddy Simulations 

Denis Aslangil 

 

 

____________________________ 

Date Approved 

 

 

 

 

__________________________________ 

Prof. Arindam Banerjee 

Thesis Advisor 

Department of Mechanical Engineering & Mechanics 

Lehigh University 

 

 

 

 

__________________________________ 

Prof. Gary Harlow 

Department Chair Person 

Department of Mechanical Engineering & Mechanics 

Lehigh University 

 

 

 

 

 



 

iv 

 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere appreciation and deep-felt gratitude to my 

advisor Prof. Arindam Banerjee who has always patiently guided me throughout this 

project. He has always been a great source of help and motivation for my work. Without 

his invaluable suggestions, encouragement and financial support this project would have 

never been possible. I wish to express my sincere gratitude to Prof. Andrew G.W. Lawrie 

at the University of Bristol, U.K. for providing us access to his code (MOBILE) and his 

constant help and guidance about various issues with the computations. I would also like 

to acknowledge the financial support from the Department of Energy –Stewardship 

Science Academic Alliance grant # DE-NA-0001975. 

Special thanks go to my lab members: Mohammed, Nitin, Ashwin, Rinosh, Rahul 

Andrew and Pranav. I am deeply and forever indebted to my dad, sister, brother-in-law 

and my lovely niece for the inspiration and support they provided throughout the 

program.  

  



 

v 

 

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS IV 

LIST OF FIGURES vi 

ABSTRACT 8 

NOMENCLATURE 9 

1.INTRODUCTION 11 

          1.1.      RTI with Variable Acceleration        14 

2.NUMERICAL METHOD AND PROBLEM SET 17 

2.1. MOBILE 17 

2.2. Advection Algorithm 18 

2.3. Problem Setup 20 

2.3.1. Initial Conditions 21 

2.3.2. Acceleration Histories 23 

3.RESULTS 26 

3.1 Second Order Moments 34 

3.2 Anisotropy Tensors 40 

3.3 Spatial Profiles 42 

4.CONCLUSION 53 

APENDIX-A                  56 

APENDIX-B                  59 

REFERENCES 72 

VITA                   75 



 

vi 

 

LIST OF FIGURES 

 

Figure 1 Bubble and spike evolution of the single mode RTI [16].................................. 12 

Figure 2. (a) Schematic of computational domain used in simulations. The box size is 1 × 

1 × 3 cm (in the x-, y- and z- directions) with densities ρ1= 3.0 g/cm
3
 (red: heavy), 

ρ2= 1.0 g/cm
3
 (blue: light). (b) Contour plot of initial amplitudes at center-plane (z 

= 0); the amplitudes correspond to annular narrowband ICs with energy in modes 

32-64. .................................................................................................................... 19 

Figure 3. Azimuthally averaged initial conditions for all simulation cases listed in Table 

1 with a root mean square amplitude of 3.15×10
-4

 L (where domain size is L×L×L)

............................................................................................................................... 22 

Figure 4. Profiles of (a) acceleration, (b) velocity, and, (c) Z(t) length-scale for the accel-

decel-accel (A-D-A) acceleration history. ............................................................ 25 

Figure 5. Density contours of the RT mixing layer (i) –XZ vertical slices taken along the 

center of the domain, where case I corresponds to CG_AS-0 and case II 

corresponds to AS-0. The vertical red dashed lines indicating the edge of the 

mixing layer width. (ii) corresponding  –XY horizontal slices taken along the 

interface................................................................................................................. 28 

Figure 6. Evolution of the bubble (hb) and spike heights (hs) versus interface 

displacement (Z). .................................................................................................. 30 

Figure 7. Evolution of the growth constant ( s ) for spikes versus interface displacement 

(Z). ........................................................................................................................ 32 

Figure 8. Evolution of the global mix parameter () versus interface displacement (Z). 34 



 

vii 

 

Figure 9. Evolution of scalar variance (<cc>) versus interface displacement (Z). .......... 36 

Figure 10. Evolution of non-dimensional mass flux (<u3c>/htot
0.5

) versus interface 

displacement (Z). .................................................................................................. 37 

Figure 11. Evolution of non-dimensional vertical velocity variance (<u3u3>/htot) versus 

interface displacement (Z). ................................................................................... 39 

Figure 12. Evolution of Anisotropy Tensors B33, B11 and B22 for constant acceleration 

case versus interface displacement (Z).. ............................................................... 41 

Figure 13. Evolution of Anisotropy Tensor B33 versus interface displacement (Z). ....... 42 

Figure 14. Spatial profiles of a) <u1u1>, b) <u2u2> and c) <u3u3> for both CG_AS-0 and 

AS-0 at different Z values. .................................................................................... 44 

Figure 15.  Spatial profiles of B33 for both CG_AS-0 and AS-0 at different Z values. ... 45 

Figure 16. Spatial profiles of <cc> for both CG_AS-0 and AS-0 at different Z values. . 45 

Figure 17. Spatial profiles of <u1u1> at a) Z= 8 cm b) Z =16 cm and c) Z=24 cm for all 

ICs. ........................................................................................................................ 48 

Figure 18. Spatial profiles of <u3u3> at a) Z= 8 cm b) Z =16 cm and c) Z=24 cm for all 

ICs. ........................................................................................................................ 49 

Figure 19. Spatial profiles of B33 at a) Z= 8 cm b) Z =16 cm and c) Z=24 cm for all ICs.

............................................................................................................................... 50 

Figure 20.  Spatial profiles of <cc> at a) Z= 8 cm b) Z =16 cm and c) Z=24 cm for all 

ICs. ........................................................................................................................ 51 



 

8 

 

 

 

ABSTRACT 

 

Rayleigh Taylor Instability (RTI) occurs at the interface between a light fluid and a heavy 

fluid due to the gravitational impact and is commonly observed in several natural and 

engineering processes like internal confinement fusion (ICF), Type Ia supernova formation and 

in turbulent combustion processes.  Traditionally, RTI has been studied under a constant 

acceleration frame-work, primarily due to the need of understanding the instability as it occurs in 

climate and geologic dynamics as well as in deep sea oceanic currents. However, there exists 

several applications like blast waves, ICF and stellar dynamics where gravitational variability 

alters the dynamics of the RTI induced mixing process. It is thus important to understand the 

late-time evolution of RTI under variable acceleration and in cases where the acceleration 

changes sign.  

Our primary motivation is to investigate of the effects of initial conditions on self-similar 

evolution to turbulence of RTI under variable acceleration histories. Incompressible, three 

dimensional RTI is modeled using a massively parallel high resolution code, MOBILE which 

uses an Implicit Large Eddy Simulation (ILES) technique. In the current work, four different 

initial conditions are investigated to understand the effect of spectral bandwidth and spectral 

index on the late time evolution of the instability as it undergoes multiple acceleration reversals. 

Our goal is to identify the similarities and differences between the Rayleigh–Taylor turbulence 

and the more general forms of quasi-stationary turbulence. We will discuss on our results, 

include low order metrics like, growth constant, molecular mixing parameter and second order 

moments and anisotropy tensors. 
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NOMENCLATURE 

SYMBOL   DESCRIPTION   

 

g    Acceleration 

Bii    Anisotropy tensors 

At    Atwood number 

b    Bubbles growth rate 

hb    Bubble height 

     Global atomic mix parameter 

H     Heavy fluid density field 

htot:     Height of total mixing layer 

Z    Interface displacement 

L     Light fluid density field 

<u3c>    Mass flux 

k    Mode number 

<cc>    Scalar variance 

s    Spikes growth rate 

hs    Spikes height  

<u3u3>   Vertical component of velocity variance 
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ABBREVIATIONS  DESCRIPTION 

 

ADA    Accel-Decel-Accel 

AS     Annular Spectra 

BB     Broadband 

CG    Constant Gravity 

DNS    Direct Numerical Simulation 

Eq.    Equation 

Fig.    Figure 

ILES    Implicit Large Eddy Simulation 

ICF    Inertial Confinement Fusion 

ICs    Initial Conditions  

LES     Large Eddy Simulations 

LEM    Linear Electric Motor 

RTI/RT   Rayleigh Taylor Instability 

TVB    Total Variation Bounded 
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1. INTRODUCTION  

Rayleigh-Taylor [1, 2] instability (RT/RTI) occurs at a perturbed interface between a 

light fluid ( L ) and a heavy fluid ( H ) due to the acceleration caused by gravity. The 

perturbations are infinitesimal and are characterized by height, h0, and wavelength, k 2 . The 

instability commonly occurs in various natural and industrial flows like combustion and 

chemical reactor processes [3, 4], pollutant dispersion [5], internal confinement fusion (ICF) [6, 

7], and in stellar dynamics such as Type Ia supernova explosions [8-11]. For small enough initial 

perturbations ( kh /1 ), mixing width grows exponentially as [12] 

),cosh()( 0 thth                  (1) 

where gkAt  is defined as the classical growth rate. Here, At, the Atwood Number, is the 

non-dimensional density difference between the two fluids and is defined as: 

)()( LHLHtA   ,  which can range between values of 0 and 1 [13]. At late-times (

kh /1 ), the growth saturates and the evolution of the mix-width can be defined based on 

dimensional analysis as [14, 15] 

2

,, gtAh tsbsb  ,             (2) 

where hb is the bubble height which signifies the light fluid’s penetration into the heavier one, 

and hs is the spike height which signifies the heavy fluid’s penetration into the lighter one 

(subscript b indicating bubbles and s indicating spikes) seen in Figure 1; g is the acceleration; t is 

the time; and b,s is the growth rate parameter. At low At numbers, the mix is symmetric as 
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bubbles grow similar to spikes resulting in b ≈s. As the density difference between the two 

fluids increases, the symmetry at the interface breaks, and spikes penetrate faster through 

bubbles; this results in s > b with s→ ½ as At → 1. In this study, a moderate At number (At = 

0.5), where the symmetry is no longer prevented at the interface, has been investigated.  

 

Figure 1. Bubble and spike evolution of the single mode RTI [16]. 

 Eq. (2) shows that the mixing width grows quadratically with time and reaches a self-

similar length scale ( 2gtAt ) at late-times where the flow has lost memory of its initial conditions 

(ICs) [12]. However, there is no universal value for this growth parameter, and it has been 



 

13 

 

demonstrated in computations to be strongly dependent on the ICs [12, 17, 18]. The need to 

investigate the ICs’ effects on the evolution of conventional RTI (under constant acceleration) 

has appeared due to the differences between the calculated alpha values from numerical and 

experimental studies in which the latter systematically reported larger alpha values [17]. The 

discrepancy between experiments and numerical studies was related with the presence of the 

long wave-length in the experiments, an aspect that was not represented in earlier numerical 

studies [19].  

 Ramaprabhu and Andrews [17] ran simulations to study initial-condition effects on 

conventional RTI with ICs obtained from experiments and demonstrated that simulations 

initialized with long wave-length perturbations, as evidenced in most experiments, reported 

larger alpha values. These values were in good agreement with the results from experiments [20, 

21]. Meanwhile, Dimonte et al. [22] in their  -Group study, investigated RTI with different 

available numerical codes using the Implicit Large Eddy Simulation (ILES) and Large Eddy 

Simulation (LES) techniques and imposed initial perturbations with short wave-lengths, where 

perturbations had energy only in their high mode-numbers (32-64) at a grid resolution of 

256×256×512. In the current work, a representative case similar to the  -Group study was used 

as IC1; the original attempt was to limit the asymptotic self-similar evolution of the shorter 

wavenumbers’ progress by the nonlinear coupling of saturated modes in order to reduce ICs 

effects on the RT problem. The  -Group study reported smaller values of b ~0.025±0.003that 

contrasted relevant experimental results, which were explained as a consequence of fine-scale 

dilution and/or presence of long wave-length perturbations in the experiments.  

 



 

14 

 

1.1. RTI with Variable Acceleration 

Compared to RTI with constant acceleration, RTI with varying acceleration histories that 

include acceleration reversals is a relatively uncharted and mostly ignored problem. Several 

practical applications that includes blast waves, ICF capsules, and those of Type Ia supernova 

formations [23-25] involve RTI driven by a time-varying acceleration history. To date, there is 

only one experiment (that uses miscible fluids) [26] and only a couple of simulation efforts [13, 

24, 25] that explore RTI effects under variable acceleration. The effect of initial conditions on 

the late-time evolution of a time varying RTI is largely unexplored and is a focus of this thesis.  

We explore the role of initial conditions on RTI undergoing multiple acceleration reversals and 

compare it to the classical case of RTI undergoing a constant acceleration. Acceleration is 

reversed multiple times; the flow starts with an initially destabilizing acceleration (Accel phase, 

g>0) followed by a first reversal to a stabilizing acceleration (Deccel phase g<0). This is then 

followed by a second reversal to the Accel phase (g>0). Such a time varying RTI problem is 

called the ADA or accel-deccel-accel problem [23, 25]. The first acceleration reversal is selected 

arbitrarily and is sufficiently early in time such that the flow has reached self-similarity (as in Eq. 

2). In the second case, acceleration is kept constant as in conventional RTI and is used for 

comparison purposes. Computational studies on RTI with constant acceleration by Ramabraphu 

et al. [18] and Banerjee and Andrews [12] have investigated the effect of spectral bandwidth, 

spectral shape, and discrete banded spectra; our choice of ICs closely matches ICs used by these 

studies. This allows us to verify and validate our constant gravity simulations while exploring 

new physical insights with the ADA acceleration history. 
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RTI with variable acceleration histories has been investigated using the Linear Electric Motor 

(LEM) experiment [23, 26]; however, the experiments used immiscible fluids at Atwood 

numbers 0.48 [23] and 0.22 [26]. In their 1996 experimental study, Dimonte and Schneider [26] 

investigated four different acceleration histories that included a constant-, increasing-, 

decreasing-, and impulsive- accelerations generated using the LEM. They reported that 

increasing acceleration (dg/dt>0) leads to faster growth of hb than constant and in decreasing 

acceleration (dg/dt>0) histories. A subsequent publication by Dimonte et al. [23] used the 

gradual accel-decel-accel profile (not a step function) in which they observed shredding, i.e. 

decomposition of the modes of dominant bubbles and spikes during the deceleration phase. This 

shredding led to an increase in molecular mixing leading to a delay in the initiation of the growth 

of the mixing layer upon the second reacceleration.  

 Recently, Ramaprabhu et al. [25] simulated RTI using a similar accel-deccel-accel profile 

to the Dimonte experiment [23] for both a single wavenumber for Atwood numbers 0.15 and 0.9, 

as well as a spectrum of wavenumbers with Atwood number 0.5. The results were obtained using 

a massively parallel ILES code, MOBILE, and were in good agreement with reported 

experimental results. The study concluded that swapping acceleration rapidly changes the 

structure of the flow; decelerating the system induces a rapid increase in the rate of molecular 

mixing and increases the isotropy within the region, whereas re-accelerating recovers the self-

similar RT anisotropic mixing problem. Livescu et al. [13] and Livescu and Wei [24] ran direct 

numerical simulations (DNS) of RTI with acceleration reversal and similarly reported that after 

acceleration reversal the molecular mixing increases within the flow. Their preliminary results 

also showed that the large-scale anisotropy decreases within the inner region of the mixing layer; 

although, interestingly, at the edge regions of the mixing layer, small-scale anisotropy increases 
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related to buoyancy forces. The reported physics occurring on the edge regions of the mixing 

layer encourage the idea that ICs would continue to play an important role on the flow evolution 

even during deceleration and re-acceleration periods.  

 The primary motivation of the current work is to investigate the effects of ICs similar to 

those used in the traditional (constant acceleration) RTI studies to evaluate self-similar evolution 

to turbulence of RTI under variable acceleration histories. Three different ICs were carefully 

imposed on the RT problem under variable acceleration histories to investigate the effects of: (a) 

spectral bandwidth and (b) spectral shape on RT dynamics. The objective was to investigate the 

mechanisms that are common to the accelerating and re-accelerating period and to unravel how 

ICs affect the flow evolution under acceleration reversals. In this study global RTI metrics, the 

mean concentration, the mixing layer growth rate, the molecular mixing parameter, second order 

moments, and anisotropy tensors are presented with second order moments' their spatial profiles 

as well. The thesis is organized as follows: in § 2 the numerical method and problem setup are 

described. The results of the self-similar analyses and effects of ICs for two different 

acceleration histories are given in § 3. Finally, we summarize our findings in  § 4.  
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2. NUMERICAL METHOD AND PROBLEM SET 

2.1. MOBILE 

 MOBILE is an incompressible Navier-Stokes solver for three dimensional, 

incompressible flows with density based finite volume approach [27-29]. Mass and momentum 

equations are solved based on the fractional step method by separating the components as 

hyperbolic (advective transport), parabolic (scalar diffusion and viscous dissipation) and elliptic 

(pressure and velocity correction). The nonlinear velocity-based advection algorithm is 

monotonic and converges between 2
nd

 and 3
rd

 orders. The parabolic operators automatically 

choose a semi-implicit or explicit method regarding computational efficiency. The projection of 

an intermediate velocity field onto the nearest divergence-free vector field exactly conserves 

discrete angular momentum, though not discrete linear momentum using the well-known Hodge 

decomposition. The pressure Poisson equation, an output of the projection, was solved by means 

of full multi-grid acceleration. For parallelization the MPI protocol was applied. A macro 

language interpreter, being transparent to the parallelization, was used for post processing of 

flow fields, calculating derived quantities, reducing them to concise statistics, and visualization. 

The interpreter syntax saved for the initial serial/parallel distribution of memory allocated for 

interpreted variables. 
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2.2.  Advection Algorithm 

 The fractional step method is implemented in MOBILE, where the three-dimensional 

(3D) problem is split into sequences of x-y-z-z-y-x one dimensional update instructions, 

following the approach of Strang [30] to improve temporal orders of convergence. These one-

dimensional advection sub-problems are total variation bounded (TVB), where even without 

properly solving the gradients, the unphysical oscillations are eliminated and the full 3D 

numerical stability is maintained. To achieve higher spatial order, the left and right states of the 

Riemann problem are modified by using piecewise polynomial reconstruction of the spatial field, 

and Godunov’s exact solution is used to solve the local Riemann problem across cell faces. 

 Instead of using the most obvious linear gradient: 

x
m ii

i



 


2

2
1


            (3) 

to choose for a linear reconstruction in the cell at xi-1, MOBILE, by default, uses a higher order 

estimate of the gradient, which is given in Eq.4. The fluxed volume per unit area, ui-1/2 Δt, is used 

to reconstruct the gradient and serves as a weighting that tends the gradient toward a central 

difference over the cell face. 

3
)2(

3
)1( 12/1212/1

1
















 iiiiii

i
x

tu

x

tu
m


                     (4) 

 The domain is carefully divided into staggered grids, which allows the code to accurately 

calculate scalar fluxes with only one elliptic pressure solver by storing scalar quantities at cell 

centers and storing face-normal velocities on their respective faces; however, each momentum 

component of the fluxes are calculated conservatively on each of the displaced grids. According 

to local velocity gradients, the method, which is applied in the flow, is not spatially independent, 

and a van-Leer-type limiter interpolates the flux between low and high order. The error scales is  
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Figure 2. (a) Schematic of computational domain used in simulations. The box size is 1 × 1 

× 3 cm (in the x-, y- and z- directions) with densities ρ1= 3.0 g/cm
3
 (red: heavy), ρ2= 1.0 g/cm

3
 

(blue: light). (b) Contour plot of initial amplitudes at center-plane (z = 0); the amplitudes 

correspond to annular narrowband ICs with energy in modes 32-64. 
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approximately observed as O(Δx
n
) where n is between 2 and 3 by empirical tests, even though 

the stencil retains the spatial compactness of the standard stencil for second order. 

 The current work used the ILES technique, in which small-scale dissipation is modeled 

numerically. The method eliminates the need for an explicit sub-grid filter with tunable 

coefficients and has been validated in a large number of flow conditions. Additionally, the 

monotonicity of the solution is preserved in RT problems by the ILES technique, even with 

discontinuous sharp flow features such as shocks or material interfaces. MOBILE, in use of ILES 

mode, produces dissipative spectra consistent with the expected E(k) ∼ k
−3

 scaling, which is 

compatible with observed values in experiments [31, 32] and Direct Numerical Simulation 

(DNS) calculations [33, 34]. Considering that the ILES technique is not grid independent—

because of its ability in resolution to represent aspects of the physical problem and effects of the 

initial conditions—we made a conscious choice to use MOBILE in ILES mode. 

2.3.Problem Setup 

 In the current work, a three dimensional computational domain was used, as seen in 

Figure 2, and has L×L×3L dimensions in the x-, y- and z- directions, respectively, with L = 1.0 

cm. The gravity was applied in the z-direction (0, 0, zg ), and the interface of the fluids was at z = 

0. In the x- and y- directions, periodic boundary conditions were used while zero-flux conditions 

were imposed in the z-direction. The Atwood number of 0.5 was chosen by assigning densities 

for the lighter fluid, L =1.0 g/cm
3
, and for the heavier fluid, H =3.0 g/cm

3
. The initial 

conditions were created as perturbations h0 (x,y) and then they were switched to volume fraction 

fluctuations as follows [12]: 
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       h /x, yhx, yf

   h/x, yhx, yf

0for ,

0for ,1

001

001




                               (5) 

where ∆ is the width of the computational cell. The resolutions were selected as 256×256×768 in 

x-, y- and z-directions, respectively, for all simulations.  

 The simulations were run on an HPz820 workstation at Lehigh University. A total of 

twelve cores were used for the runs. Each of these simulations required 8 GB of RAM, and the 

run-times on the PC averaged around 1-2 weeks per simulation. The validation of the MOBILE 

code and convergence study was reported in Ramaprabhu et al. [25], where increasing resolution 

causes little change on simulations. 

2.3.1. Initial Conditions 

 The simulations were initialized to understand the effects of spectral index and spectral 

bandwidth (see Fig. 3). That all simulations have the same initial energy is a crucial property for 

comparing the initial condition effects. The perturbation function (Eq.6) [22] is used to initialize 

the simulations (detailed information and the FORTRAN script of the ICs can be found in 

Appendix A): 

       

       ykxkdykxkc

ykxkbykxkayxh

yxkyxk

kk

yxkyxk

yx

sinsincossin

sincoscoscos),(
,



 
                   (6)   

where 
22

yx kkk   and the ak, bk ck and dk are Fourier amplitude coefficients. The spectral 

amplitudes are chosen randomly but give the same r.m.s. amplitude of ~ 3.15×10
-4

 L for all 

simulations and the energy density spectrum is calculated as: 
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                                   (7) 

 

Figure 3. Azimuthally averaged initial conditions for all simulation cases listed in Table 1 with a 

root mean square amplitude of 3.15×10
-4

 L (where domain size is L×L×L) 
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The initial condition 1 (IC 1) with mode numbers ( 2kLn  ) 32-64 and spectral index (ps) 

of 0 was selected as a base case and used for comparison purposes; this was also used in the 

“alpha-group” study [22]. The simulation initialized with IC1, which is also our narrow band 

case, was named AS (0). IC 2, referred to as AS (-2), had modes 32-64, and a spectral index 

value of -2, indicating higher energy in large wavelengths. IC 3 with spectral index 0 differed in 

terms of mode numbers and had a minimum value of 4. It was meant to investigate the effect of 

spectral bandwidth, which has greater ability to represent the ICs are seen in experiments, and is 

called BB. Finally, the case abbreviated as CG [CG-AS (0)] represents simulation under constant 

gravity initialized with the corresponding IC. Table 1 summarizes the simulations presented in 

this study: 

Table 1. List of simulations in the current work 

IC # IC type Modes SI  Acceleration History 

IC1 CG-AS (0) 32-64 0 Constant Gravity 

IC2 AS (0) 32-64 0 A-D-A 

IC3 AS (-2) 32-64 -2 A-D-A 

IC4 BB 4-64 0 A-D-A 

 

2.3.2. Acceleration Histories  

 Variable acceleration histories are important in validating mix problems [23] and have 

been previously studied by various researchers [13, 23, 25, 35-37]. In the current work, we use a 

time varying acceleration-deceleration-acceleration (ADA) history on the evolution of RT 

instability with the ICs listed in Table 1. The results are compared with constant gravity (CG) 

computations which use similar initial conditions, thereby providing us a direct one-to-one 

comparison.  
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The ADA profile is chosen to represent the acceleration profile of the Linear Electric Motor 

experimental study [23] and also is similar with the profile used in the Ramaprabhu et al. [25] 

study. Ramaprabhu et al.[25] used three different acceleration values: 2cm/s
2, 

4cm/s
2 

and 8cm/s
2
; 

whereas, here, 0g was selected as 4cm/s
2
 to study ICs effects on defined ADA profile. The 

acceleration profile was approximated by the Heaviside (step) function as: 

)}2)(4()2)(2(1{0  tHtHgg z                                         (8). 

 The H(t-2) step function represents the time scale for the first swapping of acceleration; 

H(t-2) is assigned a value of 0 for t<2s and a value of 1 for t≥2. The H(t-4) step function 

represents a second swapping of the acceleration and acts similarly. The system switches from a 

mixing problem to a partial de-mixing problem at t = 2s (Z = 8cm) and returns to a classic RT 

problem by re-swapping acceleration at t = 4s (Z = 16cm). All simulations stopped when the 

bubble height reached 1.35 cm in order to prevent boundary conditions in z- direction. 

Otherwise, simulations were continued until time t = 7.2s. 

 Corresponding velocities are derived as [23, 25, 38]:  


t

dttgtU
0

,')'()(                          (9) 

By integrating velocity once, we obtain the related length-scale interface displacement Z(t) as 

[25]: 

  

t t t

dtdttgdttUtZ
0

''

0

,''')'('')''()(                                             (10) 
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where t’ and t’’ are  integrands and arbitrary. It is well-known that bubble and spike heights and 

Z (t) vary quadratically with respect to time [25, 38]; hence, sbh ,  will grow linearly with the 

length scale Z (t) as )(2 ,, tZAh tsbsb   for constant acceleration histories. Acceleration, velocity, 

and length scale Z (t) profiles versus time can be seen in Fig.4. 

 
 

Figure 4. Profiles of (a) acceleration, (b) velocity, and, (c) Z(t) length-scale for the accel-

decel-accel (A-D-A) acceleration history. 
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3. RESULTS 

 In this section, we discuss IC effects on the self-similar evolution of global RTI 

parameters that include the growth-rate parameter ( sb, ) and the global atomic mix parameter () 

under ADA acceleration history. As in the case of other turbulent flows, self-similarity is an 

important concept in RTI as the attainment of self-similarity simplifies the analyses. Self- similar 

analysis also provides a deeper understanding on the RTI turbulence structure. These detailed 

data sets can be used for modeling RTI and similar physical problems such as material mixing of 

two fluids under a framework of variable acceleration. Previous studies have identified two 

physical approaches to reach self-similarity in multimode RTI with constant acceleration [21, 

22]. In the first approach, which is known as bubble merger, two or more bubbles may merge 

and form larger structures as a part of a continuous and repetitive process during the evolution of 

the RT mixing layer [18, 22]. In contrast, the concept of bubble competition involves 

amplification and saturation of long wavelengths and they lead the flow. Haan [39] postulated 

that the transition to nonlinearity is triggered when the sum of modal amplitudes reaches ~σ/k, 

implying that individual modes may become non-linear even before their amplitudes reach the 

non-linear threshold (σ) due to the interaction of adjacent modes.  

 Constant acceleration RTI studies [12, 16-18] have shown that it is possible to change the 

time to non-linearity, i.e. it is possible to saturate modes at earlier or later times by changing the 

initial amplitude which results in changes to the growth rate of the mixing layer. In this study, the 

growth rate of the mixing layer width (b,s) is calculated by using Ristorcelli and Clark’s [40] 

definition: 
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whose self-similar analysis for early time concluded with a quadratic form of the mix-width: 

                                  2

0 0 0 0 0 0

1
( ;, , )

4
h t C h AgC t AgC h t h                                                   (12)  

which determines the early time evolution of half width of the mixing layer (for low A numbers, 

hb ~ hs ~ h). In eq.12, h0 accounts for initial condition effects during the linear growth period; for 

late time, the equation turns into the well-known empirical form: 
2

00
4

1
),;( AgtCCth  , which 

exhibits the growth rate: 0
4

1
C . Ristorcelli and Clark [40] also indicated that the asymptotic 

growth rate (which can be calculated using Eq.11) is not universal. Moreover, the flow is not 

self-similar in a conventional sense and depends on initial conditions.  

 A computational technique based on Implicit Large Eddy Simulations (ILES) has been 

used to study ICs effects on RTI [12, 17, 18].  Using the RTI-3D code [41], the majority of these 

studies showed that the ICs with longer wavelengths lead to a faster growth of the mixing layer 

width, indicating values of the growth constant similar to that reported in experiments [31, 42]. 

In the present study, we initialized our simulations with ICs similar to Banerjee and Andrews 

[12]. This allowed us to compare the ADA results with their [12] constant gravity results and also 

offered a mode of a secondary validation for the MOBILE code. In addition to the broad-band 

effect, Banerjee and Andrews also reported that their simulation, which was initialized with a 

negative spectral index value (the representative case being NB-(-2) in this study), received alpha 

values between those measured from narrow band and broad-band cases. We observed similar 

behavior through MOBILE during the first acceleration period, which will be discussed 

subsequently.  
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 Recent studies by Ramaprabhu et al. [25] investigated RTI under a variable acceleration 

ADA profile. The simulation was initialized with multi-mode annular ICs similar to those used in 

the -Group study [22]. The corresponding case used for comparison in our study was AS-0. In 

fig.4, the volume fraction contours of the density field are shown for AS (0) by means of (i)  

 

Figure 5. Density contours of the RT mixing layer (i) –XZ vertical slices taken along the 

center of the domain, where case I corresponds to CG_AS-0 and case II corresponds to AS-0. 

The vertical red dashed lines indicating the edge of the mixing layer width. (ii) corresponding  –

XY horizontal slices taken along the interface.   

 

vertical slices taken along the center of the domain and corresponding (ii) horizontal slices taken 

along the interface at different time steps for constant gravity and the ADA profile; at constant 
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acceleration, the mixing layer continued to grow (bubble competition) and the bubbles and spikes 

merged to form larger structures (bubble merger). 

The first acceleration reversal, leads to a stable stratification for the RT mixing layer (by 

ignoring local density variations)and conventional self-similarity mechanisms for constant 

acceleration RTI like bubble merger and bubble competition  appear to be suspended. This 

decreased growth of the mixing layer (see fig. 5-i) and a decrease of total kinetic energy resulting 

in an increase of isotropy within the flow. The first acceleration reversal also caused a rapid 

change in the range of length scale observed in the flow; large structures evident at early time 

disintegrates due to collisions and were replaced by well-mixed small structures (see fig. 5-ii). 

This new scale distribution is caused by the inertia of the sudden acceleration reversal. The 

decomposition of the bubble and spike structures also increased the saturation of the newly 

formed modes.  

 In figure 6, bubble and spike heights are plotted as a function of the length-scale Z(t), 

defined in eq.10. These heights are defined by the z- location of the 99% and 1% plane-averaged 

volume fraction values of the heavy fluid (fh); the individual heights are measured relative to the 

original position of the interface (z = 0).  hf  is estimated as follows: 

 2/ Ldxdyff hh      (13) 

and plane averaging <•> of other presented quantities are done in the same manner. The vertical, 

dashed lines shown in figures 6-13 indicate the time-instants at which the acceleration was 

reversed for our ADA problem. At the end of first acceleration period (Z = 8), both the bubble 

and spike heights for the BB case remained at the highest level for bubble height (lowest level 

for spike height), followed by the AS--2 case whose bubble and spike heights remained between 

BB and AS-0 cases, and the AS-0 case which resulted in the lowest bubble and spike heights. 
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These three cases were all in good agreement with conventional RTI studies (see fig 6). 

Ramaprabhu and Andrews [21] and Banerjee and Andrews [12] reported that the simulations 

initialized with longer wave-lengths lead to larger growth constant values than narrow band 

cases. Broad band cases have larger scales at early time of the flow evolution which cause 

greater inertia as well as larger growth. The simulations initialized with negative spectral index 

values, whose mode numbers were the same as the narrow band, exhibited growth constant 

values that fell between those of the narrow band cases and the broad band cases. This behavior 

was explained due to the appearance of a higher energy proportion in its smaller mode numbers 

compared to narrow band cases and shorter wavelengths compared to broad band cases. 

 
 

Figure 6. Evolution of the bubble (hb) and spike heights (hs) versus interface displacement 

(Z). 
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 Corresponding s values for spike heights are shown in fig. 7 and reveal that during the 

deceleration period the growth rate of the mixing layer was IC independent. Also, for all cases, 

the growth speed decayed similarly. Afterward, the growth rate showed damped oscillations due 

to viscous effects and secondary shear. The flow, however, retained some memory of its ICs over 

the first acceleration and subsequent deceleration period. The mixing layer width during the re-

acceleration period retained memory of the ICs and continued to play an important role in the re-

growth period, which will be detailed in subsequent paragraphs. 

 As reported by Ramaprabhu et al. [25], after re-acceleration, the RT problem re-emerges, 

the mixing layer width starts to expand, molecular mixing decreases, and bubble and spike 

structures remerge to form larger structures. This physical process can be seen in fig. 5. 

Eventually, after an ICs dependent delay period (the deceleration phase), RTI self-similarity 

mechanisms restore themselves. On the other hand, in this study we noticed that the flow still 

retained the ICs information even after acceleration reversals. Moreover, the reversals not only 

affected the response time of the flow for new acceleration but also the behavior of the flow 

during this period. Since during the deceleration period the flow is mixed well, a long time is 

necessary to re-accelerate the fluids by re-applying positive acceleration, which leads to a delay 

in growth parameters (see fig.s 6 and 7), as reported by Dimonte et al. [23]. This might be 

attributed to the inertia of the mixed flow in the mixing layer and/or by the need for time to “un-

saturate” the modes, as they are all shredded and “over-saturated” due to the first acceleration 

reversal.  

 In simulations initialized with longer wave-lengths, pure heavy and pure light fluids 

stayed at farther levels from the interface as the simulations grew faster during first acceleration 

period, which caused a longer delay time to un-saturate and to re-accelerate the flow within the 
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mixing layer during re-acceleration. As a consequence of this, the BB case started to re-grow 

after the longest delay, followed by AS-(-2) and AS-0 (see fig.6-8). BB displayed the largest 

structures as well as the most fully mixed volume due to its largest mixing layer width, which 

caused the flow to respond more gradually during re-acceleration. Thus, as seen in fig. 6, BB was 

not leading the flow during the re-acceleration period; AS-(-2) acted more like the BB case 

during late evolution of the flow, even though its response time was between those of BB and 

AS-0. The distinctive result from the conventional RTI studies was that at the end of simulations’ 

run time, AS_0 led to a larger pure flow penetration and larger volume of mixing after 

acceleration reversals.  

 

Figure 7. Evolution of the growth constant ( s ) for spikes versus interface displacement (Z). 
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 In addition to the growth parameters, the global atomic mix parameter   was also 

calculated in this study.   values at interface is defined as: 

hl

hl

ff

ff
       (14) 

An asymptotic value of   = 0.8 was reported for the constant acceleration RTI problem [40]. 

The value for   reaches 1 during deceleration, corresponding to the fully mixed flow at 

interface, and can be seen in fig. 8 which shows the evolution of the mixing at interface versus 

interface displacement (Z). During the first acceleration period, as the BB case grew faster, the 

amount of pure fluid passing from the interface was greater, which resulted in lower   values 

(leading to less molecular mixing) for this case. During the deceleration period, all of the cases 

take an asymptotic value of   equal to 1 which reiterates the observations made on mixing and 

over-saturation within the mixing layer that were previously made based on the density contours 

in a plane parallel to the direction of the mix. Upon reacceleration, the mixing layer, containing 

different modes and amplitudes due to variations in the ICs, went through a delay phase before it 

starts to re-grow. As expected,   showed behavior similar to that observed with growth-rate 

parameters; since, in buoyancy driven instabilities, mass flux is the most important parameter to 

capture the growth of the mixing layer [43, 44] and also by definition larger mass flux causes 

lower   values. For the BB case the pure fluids were farther from the interface and required a 

longer time to reach this boundary. As a result, the BB case started to re-grow latest and   

decreased later than other cases. Meanwhile, the AS-0 case responded to new acceleration 

earliest. 

 



 

34 

 

 
Figure 8. Evolution of the global mix parameter () versus interface displacement (Z). 

 

3.1 Second Order Moments 

 In the current work, second order moments were also investigated as they provide 

detailed information about the nature of the mixing and the concept of self-similarity in flows 

with acceleration reversals. A self-similar flow requires constant values for non-dimensional 

second order moments at the geometric center-plane, scalar (density) variance <cc>, non-

dimensional mass flux <u3c>/h
0.5

tot, and non-dimensional vertical velocity variance <u3u3>/h
2

tot 

[40]. In this study the second order moments were averaged at the center plane (x-y plane at z = 

0) that corresponded to the initial interface location for the calculations. The parameters were 
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non-dimensionalized by dividing the scalar by the square root of the total mix width (htot 

=hb+hs); the variance was divided by the htot.  

 From the definition of scalar variance, a low variance value corresponds to higher 

molecular mixing; the limiting case of fully mixed fluid has a scalar variance of zero. During the 

deceleration phase, where we observed a nearly fully mixed fluid within the mixing layer width, 

all ICs cases tend a value of zero for the scalar variance. Interestingly, the ICs effects are 

retained for the scalar field on reacceleration of the mixing layer. As expected, the observed 

effects for the scalar variance are very similar with those observed for the molecular mix 

parameter since both parameters are higher-order statistics of the scalar (density) field. Our next 

parameter is the non-dimensional <u3c>/h
0.5

tot  mass flux. It has been reported in various studies 

that the mass flux plays a crucial role in the conversion of potential energy to kinetic energy of 

buoyancy driven flows [43, 44]. By reversing the acceleration (as we have stable flow) mass flux 

fluctuated around a value of zero (see Fig. 10) due to the secondary instabilities. The zero value 

indicates that there is no incoming pure fluid into the core of mixing layer width, which leads to 

an increase of the molecular mixing within the mixing layer.  

 By reaccelerating the system, we again gained positive values of the mass flux (see Fig. 

10). The increase of mass-flux indicates that non-mixed fluids are again feeding the core of the 

mixing layer as the flow is again instable. This behavior was also related with the drop of   seen 

in Fig. 8 in the previous section and also was related with the increase of the scalar variance in 

Fig. 9. 
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Figure 9. Evolution of scalar variance (<cc>) versus interface displacement (Z). 
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Figure 10. Evolution of non-dimensional mass flux (<u3c>/htot
0.5

) versus interface 

displacement (Z). 
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 The final second order moment presented is the non-dimensional variance of the vertical 

component of velocity field. The mass flux values observed during the deceleration period 

indicates that there is no significant conversion of potential energy to kinetic energy; the residual 

kinetic energy in the flow undergoes decay due to viscous effects. As illustrated in figure 11, a 

reduction in the value of < u3u3> was observed during the deceleration phase. Mass flux is also a 

key parameter to make a connection between second order moments of scalar and velocity 

variances. Thus, all three moments behaved similarly by means of ICs dependency.  

 During deceleration all parameters showed an increase of molecular mixing and ICs 

effects were not visible during this period. For reacceleration, these parameters showed some 

dependence on ICs and they did not reach self-similarity even at late run time's of the 

simulations. Our AS-(-2) case whose energy spectra had a peak over a narrow range of mode 

numbers reached self-similarity in a short time without much fluctuations of density field. 

However, by comparing its scalar and velocity variance, we noticed that its velocity field led to 

some fluctuation on parameters, such as mass flux and anisotropy tensor. The response time—

which might be defined as: the time between the second acceleration instant to the point where 

the parameter first touches its asymptotic value observed—was shortest for our narrow-band case 

(AS-0), which had shorter wavelengths compared to other cases. The BB case, which was 

composed by smaller and more gradual acts compared to other cases, presented a delayed 

response. AS-(-2) case’s response time was observed to be between these two cases. By means 

of self-similarity during the first acceleration period, we have reached to the self-similarity at 

interface in terms of second order moments. However, acceleration reversal, which leads to 

suspension of RTI self-similar mechanisms, also broke the self-similarity. Thus self-similarity 

was not able to be reassumed during the second-acceleration period in our simulation run time. 
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Figure 11. Evolution of non-dimensional vertical velocity variance (<u3u3>/htot) versus 

interface displacement (Z). 
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3.2 Anisotropy Tensors 

 The anisotropy tensor provides information about the rate of total kinetic energy in the 

corresponding direction, which is always bounded between -1/3 and +2/3. -1/3 implies no energy 

in the measured component whereas 2/3 implies all energy is in that component. As a result, B33 

indicates the amount of total energy in the vertical component while B11and B22 refer to the 

horizontal components and are calculated as: 

     ij
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3

1





          (15) 

Isotropic flow requires the components of anisotropic tensor components to be equal: B11 = B22 = 

B33 = 0, so from eq. 15 all components should be zero. RTI requires horizontally isotropic flow 

where B11=B22 and vertically anisotropic flow. The asymptotic value of B33 was reported as 

~0.30 in Ristorcelli and Clark’s study [40] which is ~%66 of the total energy. The rest of the 

total energy lies in horizontal components of the anisotropy tensor and each of them approaches 

a value of -0.15. Figure 12, shows all of the components of the anisotropy tensor for our 

comparison case, CG_AS-0, under constant acceleration. During the deceleration period, as the 

total kinetic energy decayed, the isotropy within the flow increased. Here the anisotropy tensor 

presented a difference from the other presented parameters, showing ICs dependence even 

during the deceleration period indicating that the flow does not lose the memory of the initial 

conditions even after acceleration reversal. We attribute this to the fact that horizontal 

movements and their statistics are as important as the vertical ones in preserving ICs 

information, especially during the deceleration period. This ICs dependency is also a valuable 

proof for the idea that ICs’ effects will appear somehow after second reversal. 

 Fig. 13 reveals similar behaviors between anisotropy tensor and the parameters already 

presented. The broad-band case acted more gradual even during the deceleration period and it 
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responded to re-acceleration with a longer delay. In terms of self-similarity, even anisotropy 

tensor did not reach self-similarity at the end of our simulation time after acceleration reversals. 

Our narrow band case with spectral index value -2 (AS-(-2)) stayed at lower values, indicating 

more isotropy within the flow. This can be explained by its non-flat spectra (unstable distribution 

of energy between mode numbers), which caused larger horizontal movements than other cases 

and decreased the anisotropy of the flow. 

 

 

Figure 12. Evolution of Anisotropy Tensors B33, B11 and B22 for constant acceleration case 

versus interface displacement (Z).  
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Figure 13. Evolution of Anisotropy Tensor B33 versus interface displacement (Z). 

 

3.3 Spatial Profiles 

Spatial profiles of the second order moments provide information about the structure of 

the flow. Ristorcelli and Clark [40] report spatial profiles of the parameters reported in §3.2 and 

for their RTI simulations under constant acceleration history.  The reported simulations were 

Boussinesq (At=0.01) resulting in highly symmetric profiles on both sides of the geometric 

centerline. However, in our study, the Boussinesq assumption is no longer valid at our moderate 

Atwood (At = 0.5) numbers. Non-Boussinesq effects are observed to significantly affect the 

spatial profiles, and the symmetry at the interface is lost.. 
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We start the discussion by reporting spatial profiles of parameters for our base case (AS-

0) for both CG and ADA profiles for the case of the annular spectrum (AS-0); the objective is to 

understand the spatial evolution of the profiles for CG and ADA histories without the additional 

complexity of IC effects (see fig.s 14, 15 and 16). The –x axes of the figures, which display the 

profiles, correspond to the non-dimensional height of the domain. For non-dimensionalizing in 

figures 14, 15 and 16 the domain height –z was divided with the value of (hb+hs)/2 for CG_AS-0 

case at Z=32; and for figures 17, 18, 19 and 20 the domain height –z was divided with the value 

of (hb+hs)/2 for AS-0 at corresponding Z values. The boundary condition was no-flux in the –z 

direction; therefore, horizontal and vertical velocity variances and scalar variance values were 

zero at the edges of the domain (see fig.s 14 and 16) as the vertical component of the anisotropy 

tensors was negative 0.33, indicating no energy in that component (see fig. 15). For Boussinesq 

case spatial profiles of the second order, moments correspond fairly well with a Gaussian 

distribution [40], whereas non-Boussinesq effects led to a flat peak of spatial profiles as seen in 

fig. 14. The flat region might be called a “mixing core”, which starts and ends where the mean 

concentration is 40% and 60% of the field. Additionally, there is an edge region, defined as 

where the mean concentrations are 5% and 95% of the far field [40], the transition region, 

between the edge region and mixing core, and which is defined as where the mean concentration 

is between 5% to 40%, and 60% to 95% of the field, and the flat region of the velocity variances, 

(see fig 14) called the mixing core.  
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Figure 14. Spatial profiles of a) <u1u1>, b) <u2u2> and c) <u3u3> for both CG_AS-0 and AS-0 at 

different Z values. 
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Figure 15.  Spatial profiles of B33 for both CG_AS-0 and AS-0 at different Z values. 

 
 

Figure 16. Spatial profiles of <cc> for both CG_AS-0 and AS-0 at different Z values. 

 

non dimensional -z height

-1.0 -0.5 0.0 0.5 1.0

<
c
c
>

0.0

0.1

0.2

0.3

0.4

CG Z= 8cm

CG Z= 16cm

CG Z= 32cm

ADA Z= 16cm

ADA Z= 24cm



 

46 

 

Besides the flat peak, there is an additional significant difference between Boussinesq 

and non-Boussinesq cases having symmetry at interface. As it was seen in Figure 6, heavier fluid 

is penetrating into the lighter fluid faster than the lighter fluid's penetration. This disparity is also 

clearly observable in the spatial profiles (see fig.s. 14, 15, and 16), as the edge region of mixing 

layer starts at different levels for heavier and lighter fluids' sides, such as in fig. 16 in which the 

edge region of the red line, corresponding to the spatial profile of the scalar variance for CG_AS-

0 case at Z=32 cm, starts from non-dimensional -z value of  -1.2 but ends at value of 1. The 

asymmetric profiles in fig. 16 might be also attributed to the difference between light and heavy 

fluids' involvement of material mixing like that in Livescu and Ristorcelli [45], who found that 

light fluid mixes faster than heavier. Since the molecular mixing was increasing during the 

deceleration period, the asymmetry increased at the end of deceleration period. By looking at 

anisotropy tensor plot (see fig. 15), it is seen that except at the edges of the domain, the flow is 

not isotropic even at pure fluids' levels where the vertical component of the anisotropy tensor is 

around 0.1 beyond  the mixing layer width. Opposite to the velocity and scalar variances' spatial 

profiles, the spatial profile of the anisotropy tensor has a step function profile and immediately 

increases to values around 0.3, the asymptotic value of B33 for RTI flow, within the mixing 

layer width. 

Spatial profiles are also presented in figures 17, 18, 19 and 20 to study ICs effects. The 

edge region and mixing core are important to determine the differences between ICs; whereas, 

the transition region of the spatial profiles are similar for all cases. At the end of first acceleration 

period (Z=8cm), the BB case had the longest height of non-zero velocity variance, having the 

fastest mixing layer growth, and was followed by AS-(-2) and then AS-0 (see fig. 18). These 

were consistent with mixing layer width calculations (see fig. 6). Similar to the time evolution of 
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second order moments at the interface, second order moments' spatial profiles also did not give 

any detailed information by means of ICs' role during the deceleration period. At the end of this 

period (Z=16cm), velocity and scalar variances tended to reach the value of zero as the flow is 

conventionally stable.  
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Figure 17. Spatial profiles of <u1u1> at a) Z= 8 cm b) Z =16 cm and c) Z=24 cm for all ICs.  
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Figure 18. Spatial profiles of <u3u3> at a) Z= 8 cm b) Z =16 cm and c) Z=24 cm for all ICs. 
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Figure 19. Spatial profiles of B33 at a) Z= 8 cm b) Z =16 cm and c) Z=24 cm for all ICs. 
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Figure 20 Spatial profiles of <cc> at a) Z= 8 cm b) Z =16 cm and c) Z=24 cm for all ICs. 
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The asymmetric behavior of the scalar variance increased. Due to the lighter fluid and the 

fact that its involvement in molecular mixing is greater than the heavier fluid's involvement, the 

scalar variance had lower values at lighter fluid's side (see fig. 20). On the other hand, the 

anisotropy tensor did not settle (see fig. 19) and continued fluctuating with large amplitudes even 

after the declaration period. However, the fluctuations seen in these spatial profiles were not 

enough to clearly distinguish the ICs effects.  

After the second acceleration reversal where the interface displacement was 24cm, spatial 

profiles of velocities' and scalar variances showed some ICs dependency; meanwhile, the 

anisotropy tensor's spatial profile did not give any information about the ICs effects. The vertical 

component of the anisotropy tensor was arbitrarily fluctuating within the mixing layer for all ICs 

around its asymptotic value of 0.3. The edge regions' of the BB case's velocity and scalar 

variances did not start from lower values than other cases anymore, as the velocity had been 

increasing more slowly after acceleration reversals (see fig.s 17, 18, 19, and 20). Thus, the AS-0 

case had a wider spectra of spatial profiles, followed by the AS-(-2) and BB cases. Finally, the 

magnitude of the vertical velocity variance at the mixing core did not provide any information 

about the ICs' effects since they are not total velocity and are only fluctuations of the velocity.  
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4. CONCLUSION 

 The RTI problem was investigated in order to understand the late time evolution due to 

turbulence with different ICs under the ADA profile, by a massively parallel three–dimensional, 

variable-density, in-compressible flow solver (MOBILE) that uses the ILES technique. Narrow-

band with SI=0, narrow-band with different spectral shape (SI=-2), and broad-band cases were 

compared to identify ICs effects on self-similar evolution of RTI under ADA.  

  During the first acceleration period, results were consistent with literature investigating 

ICs effects on classical RTI (no acceleration reversal) [12, 13, 18]; the cases with longer 

wavelengths grew faster than the narrow band cases. The SI value was -2, falling between the 

narrow and broad band cases, had larger energy proportion in its smaller wave numbers. After 

the first acceleration reversal (A→D), growth and mixing parameters reached their asymptotic 

values after only a short time, with oscillations due to viscous effects observed in all cases. The 

growth of the mixing layer stopped after a while and the global atomic mix parameter 

approached a value of 1, indicating “fully mixed” flow at the interface. From this A-D segment, 

it is expected that the molecular mixing volume might be changed by altering the IC, and as from 

the results presented, it is seen that the mixing layer width stays at different levels for different 

ICs.  

  After the second acceleration reversal (D→A), the RTI problem reemerges and the 

atomic mix parameter by mode dependently where the mixing layer started to grow again. 

Bubble and spike structures merged to form larger structures, which was one of the self-

similarity mechanisms for RTI. As was explained in the results section, the response time to the 

acceleration reversals were directly affected by ICs. For this reason, the narrowest band case 

(AS-0) had shorter delays than the AS-(-2) and BB cases. The most remarkable result occurred 
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during the re-acceleration period. In addition to exhibiting a delayed response, the flow in BB 

acted significantly more gradual and did not dominate the growth during re-acceleration. 

Additionally, it was observed that during the re-acceleration period the mixing layer width grew 

faster than during the first acceleration period; although, the comparison rates were directly 

affected by initial conditions. Finally, we noticed that at the end of our simulations’ run time, 

even alpha values tended to reach their asymptotic values for all cases, and theta still continued 

to fluctuate around its asymptotic value 0.8. 

Spatial profiles of the second order moments (<uiui> and <cc>) and the vertical 

component of the anisotropy tensor (B33) were also investigated to improve the understanding of 

the flow's structure. Spatial profiles of the second order moments reinforced the role of non-

Boussinesq effects and revealed the asymmetric structure of the flow. The asymmetry explains 

the difference between light and heavy fluids' involvement of material mixing reported by 

Livescu and Ristorcelli [45], and reinforces the different values of the bubbles' and spikes' 

heights. It is shown that the starting and ending points of the edge regions of the spatial profiles 

are directly related to the cases' hb and hs. On the other hand, the transition region and mixing 

core of the spatial profiles did not reveal any information about the ICs effects.   

  The results showed that ICs continued to strongly affect the RT mixing, even after 

reversals in acceleration histories. The study serves as a motivation for further detailed 

investigations of ICs effects on RTI under variable acceleration. After acceleration reversals, the 

ICs’ behavior dramatically changed compared to the conventional RTI studies, which promises a 

great opportunity to understand the physics ongoing in applications such as ICF capsules where 

RTI is driven by time-varying acceleration, albeit with the consideration  that the results 

presented need to be further validated using larger simulations/direct numerical simulations and 
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with a wider range of parameters such as higher order moments, RTI energetics, and spatial 

parameters. 
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APENDIX A  

The FORTRAN script of Annular Spectra (AS) ICs’ numeric: 

 
c234567---------------------------------------------------------------

------- 

c#####################################################################

##### 

c 

c#####################################################################

##### 

      

      program amplitude 

      implicit real*8(a-h,o-z) 

 

c#####################################################################

##### 

c Choose max and min wave number for ICs. A 128x128 calculation should 

not 

c have kmax > 32. 

c#####################################################################

##### 

 

      parameter (kmin=16,kmax=32) 

      parameter (nx=128, ny=128) 

c      parameter (nx=256, ny=256) 

      dimension h(nx,ny) 

 

c#####################################################################

##### 

c Parameter trms is the target rms for the initial perturbations. 

Refer to 

c  Dimonte et al (POF - 2004) for definition. The parameter SI is the  

c  spectral index. Please refer to Banerjee & Andrews (IJHMT, 2009) 

c#####################################################################

##### 

 

      parameter (trms=0.000315) 

      parameter (SI=0)  

 

c#####################################################################

##### 

c Seed for random number generator 

c#####################################################################

##### 

 

      idum=-1 

      pi=4.0*atan(1.0) 

      dx=2.0*pi/float(nx) 

      dy=2.0*pi/float(ny) 
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c#####################################################################

##### 

c Initialize the perturbation 

c#####################################################################

##### 

 

      do 100 j=1,ny 

      do 100 i=1,nx 

 h(i,j)=0.0 

100      continue 

c Outer loop where we add each wavenumber perturbation 

       do 1010 iwave=1,5000 

   if(mod(iwave,100).eq.0) write(*,*) ' Done',iwave,' waves' 

c Randomly select the wavenumber, then the amplitude of the wave 

       fk=float(kmin)+int(float(kmax-kmin)*ranmja(idum)) 

            amp=2.0*(0.5-ranmja(idum))*(fk)**(SI) 

c Now randomly select the angle of the wave trajectory in x-y space 

        angle=ranmja(idum)*2.0*pi 

c       angle=0.0 

c Assign x-y wavenumbers 

        fkx = int(fk*cos(angle)) 

        fky = int(fk*sin(angle)) 

   

c Randomly select the phase and its associated x-y phase displacements 

c        pxy=2.0*pi*ranmja(idum) 

        pxy=0.0 

 px=pxy*fkx/fk 

 py=pxy*fky/fk 

 

c#####################################################################

##### 

c Loop over domain and assign the wave 

c#####################################################################

##### 

 

        do 500 j=1,ny 

          y=dy*float(j)-dy/2.0 

           do 500 i=1,nx 

            x=dx*float(i)-dx/2.0 

            h(i,j)=h(i,j)+amp*(cos(fkx*x+px)*cos(fky*y+py)- 

     &                        sin(fkx*x+px)*sin(fky*y+py)) 

500          continue 

1010    continue 

 

c#####################################################################

##### 

c Compute RMS of the perturbation 

c#####################################################################

##### 

 

  do 1200 j=1,ny 

  do 1200 i=1,nx 
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     rms=rms+h(i,j)**2 

1200    continue 

  rms=sqrt(rms/float(nx*ny)) 

 

c#####################################################################

##### 

c Adjust h values to target rms 

c#####################################################################

##### 

 

         do 5 j=1,ny 

          do 5 i=1,nx 

           h(i,j)=h(i,j)*trms/rms 

5        continue 

 

c#####################################################################

##### 

c Compute new RMS of the perturbation 

c#####################################################################

##### 

 

  do 1500 j=1,ny 

  do 1500 i=1,nx 

    nrms=nrms+h(i,j)**2 

1500    continue 

  nrms=sqrt(nrms/float(nx*ny)) 

 

c#####################################################################

##### 

c  Write to data file - name date file according to your 

specifications 

c  Example: A 128x128 data file with modes 4-16 (SI=0) can be named 

as: 

c   "M128k4-16SI0.dat" 

c#####################################################################

##### 

 

        write(*,*) ' rms=',nrms,' rms^2=',nrms*nrms 

  write(*,*) ' About to write perturbation file' 

  open(9,file='M128k4-16SI0.dat') 

  do 2000 j=1,ny 

  do 2000 i=1,nx 

  write(9,*) h(i,j) 

2000    continue 

  close (9) 

  stop 

  end   

 

c#####################################################################

##### 

      function ranmja(idum) 

c 
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c Function:    A Random generator from Numerical Recipies 

c Author:      M.J. Andrews 

c Date:        Sept 1991 

c 

      implicit real*4 (m) 

      parameter (mbig=4000000.0, mseed=1618033.0, mz=0.0, fac=1./mbig) 

      dimension ma(55) 

c NEXT line added by MJA because my complier does not 

c automatically save values between function calls! 

      save inext, inextp, ma 

      data iff/0/ 

      if(idum.lt.0 .or. iff.eq.0) then 

        iff=1 

        mj=mseed-iabs(idum) 

        mj=mod(int(mj),int(mbig)) 

        ma(55)=mj 

        mk=1 

        do 11 i=1,54 

          ii=mod(21*i,55) 

          ma(ii)=mk 

          mk=mj-mk 

          if(mk.lt.mz) mk=mk+mbig 

          mj=ma(ii) 

11      continue 

        do 13 k=1,4 

          do 12 i=1,55 

            ma(i)=ma(i)-ma(1+mod(i+30,55)) 

            if(ma(i).lt.mz) ma(i)=ma(i)+mbig 

12        continue 

13      continue 

        inext=0 

        inextp=31 

        idum=1 

      endif 

      inext=inext+1 

      if(inext.eq.56) inext=1 

      inextp=inextp+1 

      if(inextp.eq.56) inextp=1 

      mj=ma(inext)-ma(inextp) 

      if(mj.lt.mz) mj=mj+mbig 

      ma(inext)=mj 

      ranmja=mj*fac 

      return 

      end 
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APENDIX B 
 

The MOBILE is calculating density and velocity fields as well as pressure term. The rest of 

calculations (presented parameters) were explicitly calculated by the following FORTRAN 

script. The mathematical operators are written in the code and can be found in Lawrie, A.G.W.’s 

Doctorate Dissertation [27]. 

 

Apendix B-i 

input_postp_interface.dat : 

 
begin(); 

iz:=variable(matrix[1]); 

iz:=assign(0); 

control:=variable(matrix[1]); 

control:=assign(0); 

rho:=variable(matrix[tnz]); 

rho:=assign(0); 

#f_lf_h:=variable(matrix[tnz]); 

#f_lf_h:=assign(0); 

theta_1:=variable(matrix[tnx,tny]); 

theta_1:=assign(0); 

rho_1:=variable(matrix[1]); 

rho_1:=assign(0); 

theta:=variable(matrix[1]); 

theta:=assign(0); 

h:=variable(matrix[tnz]); 

h:=assign(0); 

 

 

uvel:=variable(matrix[tnx,tny]); 

uvel:=assign(0); 

vvel:=variable(matrix[tnx,tny]); 

vvel:=assign(0); 

wvel:=variable(matrix[tnx,tny]); 

wvel:=assign(0); 

scal:=variable(matrix[tnx,tny]); 

scal:=assign(0); 

 

###width calculations 

# 

 

label('zz1loop'); 

rho[iz]:=meanvalue(scal0[:,:,iz]); 

#f_lf_h[iz]:=multiply(scal0[:,:,iz],scal1[:,:,iz]); 

iz:=add(iz,1); 

if(iz,GE,tnz,'print','zz1loop'); 
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# 

label('print'); 

h:=add(rho,-1); 

h:=multiply(h,rho); 

h:=multiply(h,-6); 

h:=divide(h,tnx); 

h[tnz/2]:=meanvalue(h); 

h[tnz/2]:=multiply(h[tnz/2],tnz); 

rho_1:=meanvalue(scal1[:,:,tnz/2]); 

theta_1:=multiply(scal0[:,:,tnz/2],scal1[:,:,tnz/2]); 

theta:=meanvalue(theta_1); 

theta:=divide(theta,rho[tnz/2]); 

theta:=divide(theta,rho_1); 

'theta':=print(theta,TIMEFORMAT); 

'rho':=print(rho,TIMEFORMAT); 

#'f_lf_h':=print(f_lf_h,TIMEFORMAT); 

'h_Z':=print(h[tnz/2],TIMEFORMAT); 

iz:=assign(0); 

 

####### 

 

label('cont'); 

#out_put_files 

 

 

cc:=variable(matrix[1]); 

cc:=assign(0); 

c^3:=variable(matrix[1]); 

c^3:=assign(0); 

c^4:=variable(matrix[1]); 

c^4:=assign(0); 

u_3c:=variable(matrix[1]); 

u_3c:=assign(0); 

u_3u_3:=variable(matrix[1]); 

u_3u_3:=assign(0); 

u_1u_1:=variable(matrix[1]); 

u_1u_1:=assign(0); 

u_2u_2:=variable(matrix[1]); 

u_2u_2:=assign(0); 

 

u_3jc_j:=variable(matrix[1]); 

u_3jc_j:=assign(0); 

u_ku_k:=variable(matrix[1]); 

u_ku_k:=assign(0); 

u_jku_jk:=variable(matrix[1]); 

u_jku_jk:=assign(0); 

c_jc_j:=variable(matrix[1]); 

c_jc_j:=assign(0); 

u_3ku_3k:=variable(matrix[1]); 

u_3ku_3k:=assign(0); 

u_\alpha^2_H:=variable(matrix[1]); 

u_\alpha^2_H:=assign(0); 

u_\alpha^2_V:=variable(matrix[1]); 

u_\alpha^2_V:=assign(0); 



 

62 

 

u_\alpha^3_H:=variable(matrix[1]); 

u_\alpha^3_H:=assign(0); 

u_\alpha^3_V:=variable(matrix[1]); 

u_\alpha^3_V:=assign(0); 

u_\alpha^4_H:=variable(matrix[1]); 

u_\alpha^4_H:=assign(0); 

u_\alpha^4_V:=variable(matrix[1]); 

u_\alpha^4_V:=assign(0); 

u_\alpha\alpha^3_H:=variable(matrix[1]); 

u_\alpha\alpha^3_H:=assign(0); 

u_\alpha\alpha^3_V:=variable(matrix[1]); 

u_\alpha\alpha^3_V:=assign(0); 

 

#index 

 

North:=variable(index[1]); 

South:=variable(index[1]); 

Middle:=variable(index[1]); 

North:=add(tnz/2,1); 

#Middle:=subtract(tnz/2,1); 

Middle:=assign(tnz/2); 

South:=subtract(tnz/2,1); 

 

#meanvalue_matrix 

 

U_mean:=variable(matrix[1]); 

U_mean:=meanvalue(u_vel[:,:,Middle]); 

V_mean:=variable(matrix[1]); 

V_mean:=meanvalue(v_vel[:,:,Middle]); 

W_mean:=variable(matrix[1]); 

W_mean:=meanvalue(w_vel[:,:,Middle]); 

U_meanN:=variable(matrix[1]); 

U_meanN:=meanvalue(u_vel[:,:,North]); 

V_meanN:=variable(matrix[1]); 

V_meanN:=meanvalue(v_vel[:,:,North]); 

W_meanN:=variable(matrix[1]); 

W_meanN:=meanvalue(w_vel[:,:,North]); 

U_meanS:=variable(matrix[1]); 

U_meanS:=meanvalue(u_vel[:,:,South]); 

V_meanS:=variable(matrix[1]); 

V_meanS:=meanvalue(v_vel[:,:,South]); 

W_meanS:=variable(matrix[1]); 

W_meanS:=meanvalue(w_vel[:,:,South]); 

 

# Densities_mean 

 

C_mean:=variable(matrix[1]); 

C_mean:=meanvalue(scal0[:,:,Middle]); 

C_mean:=multiply(C_mean,2); 

C_mean:=subtract(C_mean,1); 

C_meanN:=variable(matrix[1]); 

C_meanN:=meanvalue(scal0[:,:,North]); 

C_meanN:=multiply(C_meanN,2); 

C_meanN:=subtract(C_meanN,1); 
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C_meanS:=variable(matrix[1]); 

C_meanS:=meanvalue(scal0[:,:,South]); 

C_meanS:=multiply(C_meanS,2); 

C_meanS:=subtract(C_meanS,1); 

C_mean_3:=variable(matrix[1]); 

C_mean_3:=subtract(C_meanN,C_meanS); 

C_mean_3:=multiply(C_mean_3,tnz/4); 

 

# mean_for_calculations 

 

mean_matrix:=variable(matrix[1]); 

 

 

 

 

 

u_ku_k_U:=variable(matrix[tnx,tny]); 

u_ku_k_U:=assign(0); 

u_ku_k_V:=variable(matrix[tnx,tny]); 

u_ku_k_V:=assign(0); 

u_ku_k_W:=variable(matrix[tnx,tny]); 

u_ku_k_W:=assign(0); 

u_ku_k_U_2:=variable(matrix[tnx,tny]); 

u_ku_k_U_2:=assign(0); 

u_ku_k_V_2:=variable(matrix[tnx,tny]); 

u_ku_k_V_2:=assign(0); 

u_ku_k_W_2:=variable(matrix[tnx,tny]); 

u_ku_k_W_2:=assign(0); 

u_ku_k_U_3:=variable(matrix[tnx,tny]); 

u_ku_k_U_3:=assign(0); 

u_ku_k_V_3:=variable(matrix[tnx,tny]); 

u_ku_k_V_3:=assign(0); 

u_ku_k_W_3:=variable(matrix[tnx,tny]); 

u_ku_k_W_3:=assign(0); 

u_ku_k_U_4:=variable(matrix[tnx,tny]); 

u_ku_k_U_4:=assign(0); 

u_ku_k_V_4:=variable(matrix[tnx,tny]); 

u_ku_k_V_4:=assign(0); 

u_ku_k_W_4:=variable(matrix[tnx,tny]); 

u_ku_k_W_4:=assign(0); 

U_x_der:=variable(matrix[tnx,tny]); 

U_x_der:=assign(0); 

U_y_der:=variable(matrix[tnx,tny]); 

U_y_der:=assign(0); 

U_z_der:=variable(matrix[tnx,tny]); 

U_z_der:=assign(0); 

V_x_der:=variable(matrix[tnx,tny]); 

V_x_der:=assign(0); 

V_y_der:=variable(matrix[tnx,tny]); 

V_y_der:=assign(0); 

V_z_der:=variable(matrix[tnx,tny]); 

V_z_der:=assign(0); 

W_x_der:=variable(matrix[tnx,tny]); 

W_x_der:=assign(0); 
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W_y_der:=variable(matrix[tnx,tny]); 

W_y_der:=assign(0); 

W_z_der:=variable(matrix[tnx,tny]); 

W_z_der:=assign(0); 

C_mean_x_der:=variable(matrix[tnx,tny]); 

C_mean_x_der:=assign(0); 

C_mean_y_der:=variable(matrix[tnx,tny]); 

C_mean_y_der:=assign(0); 

C_mean_z_der:=variable(matrix[tnx,tny]); 

C_mean_z_der:=assign(0); 

C_mean_x_der_2:=variable(matrix[tnx,tny]); 

C_mean_x_der_2:=assign(0); 

C_mean_y_der_2:=variable(matrix[tnx,tny]); 

C_mean_y_der_2:=assign(0); 

C_mean_z_der_2:=variable(matrix[tnx,tny]); 

C_mean_z_der_2:=assign(0); 

U_x_der_2:=variable(matrix[tnx,tny]); 

U_x_der_2:=assign(0); 

U_y_der_2:=variable(matrix[tnx,tny]); 

U_y_der_2:=assign(0); 

V_x_der_2:=variable(matrix[tnx,tny]); 

V_x_der_2:=assign(0); 

V_y_der_2:=variable(matrix[tnx,tny]); 

V_y_der_2:=assign(0); 

W_x_der_2:=variable(matrix[tnx,tny]); 

W_x_der_2:=assign(0); 

W_y_der_2:=variable(matrix[tnx,tny]); 

W_y_der_2:=assign(0); 

U_x_der_3:=variable(matrix[tnx,tny]); 

U_x_der_3:=assign(0); 

V_y_der_3:=variable(matrix[tnx,tny]); 

V_y_der_3:=assign(0); 

U_vel_dif:=variable(matrix[tnx,tny]); 

U_vel_dif:=assign(0); 

U_vel_dif_2:=variable(matrix[tnx,tny]); 

U_vel_dif_2:=assign(0); 

 

V_vel_dif:=variable(matrix[tnx,tny]); 

V_vel_dif:=assign(0); 

V_vel_dif_2:=variable(matrix[tnx,tny]); 

V_vel_dif_2:=assign(0); 

 

W_vel_dif:=variable(matrix[tnx,tny]); 

W_vel_dif:=assign(0); 

W_vel_dif_2:=variable(matrix[tnx,tny]); 

W_vel_dif_2:=assign(0); 

W_vel_dif_3:=variable(matrix[tnx,tny]); 

W_vel_dif_3:=assign(0); 

cc_2:=variable(matrix[tnx,tny]); 

cc_2:=assign(0); 

cc_3:=variable(matrix[tnx,tny]); 

cc_3:=assign(0); 

cc_4:=variable(matrix[tnx,tny]); 

cc_4:=assign(0); 
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u_3c_h:=variable(matrix[tnx,tny]); 

u_3c_h:=assign(0); 

u_3jc_j_x:=variable(matrix[tnx,tny]); 

u_3jc_j_x:=assign(0); 

u_3jc_j_y:=variable(matrix[tnx,tny]); 

u_3jc_j_y:=assign(0); 

u_3jc_j_z:=variable(matrix[tnx,tny]); 

u_3jc_j_z:=assign(0); 

C_mean_dif:=variable(matrix[tnx,tny]); 

C_mean_dif:=assign(0); 

C_mean_dif_2:=variable(matrix[tnx,tny]); 

C_mean_dif_2:=assign(0); 

c_jc_j_z:=variable(matrix[tnx,tny]); 

c_jc_j_z:=assign(0); 

c_jc_j_z_2:=variable(matrix[tnx,tny]); 

c_jc_j_z_2:=assign(0); 

C_mean_x_der_22:=variable(matrix[tnx,tny]); 

C_mean_x_der_22:=assign(0); 

C_mean_y_der_22:=variable(matrix[tnx,tny]); 

C_mean_y_der_22:=assign(0); 

C_mean_z_der_22:=variable(matrix[tnx,tny]); 

C_mean_z_der_22:=assign(0); 

 

 

Middle_2:=variable(index[1]); 

#Middle_2:=subtract(tnz/2,1); 

Middle_2:=assign(tnz/2); 

 

 

U_x_der:=gradient_x(u_vel[:,:,Middle_2]); 

U_y_der:=gradient_y(u_vel[:,:,Middle_2]); 

U_z_der:=gradient_z(u_vel[:,:,Middle_2]); 

V_x_der:=gradient_x(v_vel[:,:,Middle_2]); 

V_y_der:=gradient_y(v_vel[:,:,Middle_2]); 

V_z_der:=gradient_z(v_vel[:,:,Middle_2]); 

W_x_der:=gradient_x(w_vel[:,:,Middle_2]); 

W_y_der:=gradient_y(w_vel[:,:,Middle_2]); 

W_z_der:=gradient_z(w_vel[:,:,Middle_2]); 

C_mean_x_der:=gradient_x(scal0[:,:,Middle_2]); 

C_mean_y_der:=gradient_y(scal0[:,:,Middle_2]); 

C_mean_z_der:=gradient_z(scal0[:,:,Middle_2]); 

uvel:=assign(u_vel[:,:,Middle_2]); 

vvel:=assign(v_vel[:,:,Middle_2]); 

wvel:=assign(w_vel[:,:,Middle_2]); 

scal:=assign(scal0[:,:,Middle_2]); 

 

 

###################### 

# 

label('forloop_ix'); 

 

 

 

C_mean_x_der_22:=multiply(C_mean_x_der,2); 
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C_mean_y_der_22:=multiply(C_mean_y_der,2); 

C_mean_z_der_22:=multiply(C_mean_z_der,2); 

 

 

U_x_der_2:=power(U_x_der,2); 

U_y_der_2:=power(U_y_der,2); 

V_x_der_2:=power(V_x_der,2); 

V_y_der_2:=power(V_y_der,2); 

W_x_der_2:=power(W_x_der,2); 

W_y_der_2:=power(W_y_der,2); 

U_x_der_3:=power(U_x_der,3); 

V_y_der_3:=power(V_y_der,3); 

C_mean_x_der_2:=power(C_mean_x_der_22,2); 

C_mean_y_der_2:=power(C_mean_y_der_22,2); 

C_mean_z_der_2:=power(C_mean_z_der_22,2); 

u_ku_k_U:=subtract(uvel,U_mean); 

u_ku_k_U_2:=multiply(u_ku_k_U,u_ku_k_U); 

u_ku_k_U_3:=power(u_ku_k_U,3); 

u_ku_k_U_4:=power(u_ku_k_U,4); 

u_ku_k_V:=subtract(vvel,V_mean); 

u_ku_k_V_2:=multiply(u_ku_k_V,u_ku_k_V); 

u_ku_k_V_3:=power(u_ku_k_V,3); 

u_ku_k_V_4:=power(u_ku_k_V,4); 

u_ku_k_W:=subtract(wvel,W_mean); 

u_ku_k_W_2:=multiply(u_ku_k_W,u_ku_k_W); 

u_ku_k_W_3:=power(u_ku_k_W,3); 

u_ku_k_W_4:=power(u_ku_k_W,4); 

 

 

mean_matrix:=meanvalue(u_ku_k_U_2); 

u_ku_k:=add(u_ku_k,mean_matrix); 

u_\alpha^2_H:=add(u_\alpha^2_H,mean_matrix); 

mean_matrix:=meanvalue(u_ku_k_U_3); 

u_\alpha^3_H:=add(u_\alpha^3_H,mean_matrix); 

mean_matrix:=meanvalue(u_ku_k_U_4); 

u_\alpha^4_H:=add(u_\alpha^4_H,mean_matrix); 

mean_matrix:=meanvalue(u_ku_k_V_2); 

u_ku_k:=add(u_ku_k,mean_matrix); 

u_\alpha^2_H:=add(u_\alpha^2_H,mean_matrix); 

mean_matrix:=meanvalue(u_ku_k_V_3); 

u_\alpha^3_H:=add(u_\alpha^3_H,mean_matrix); 

mean_matrix:=meanvalue(u_ku_k_V_4); 

u_\alpha^4_H:=add(u_\alpha^4_H,mean_matrix); 

mean_matrix:=meanvalue(u_ku_k_W_2); 

u_ku_k:=add(u_ku_k,mean_matrix); 

u_\alpha^2_V:=add(u_\alpha^2_V,mean_matrix); 

u_3u_3:=add(u_3u_3,mean_matrix); 

# 

mean_matrix:=meanvalue(u_ku_k_U_2); 

u_1u_1:=add(u_1u_1,mean_matrix); 

# 

mean_matrix:=meanvalue(u_ku_k_V_2); 

u_2u_2:=add(u_2u_2,mean_matrix); 

# 
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mean_matrix:=meanvalue(u_ku_k_W_3); 

u_\alpha^3_V:=add(u_\alpha^3_V,mean_matrix); 

mean_matrix:=meanvalue(u_ku_k_W_4); 

u_\alpha^4_V:=add(u_\alpha^4_V,mean_matrix); 

 

 

scal:=multiply(scal,2); 

scal:=subtract(scal,1); 

scal:=subtract(scal,C_mean); 

cc_2:=power(scal,2); 

cc_3:=power(scal,3); 

cc_4:=power(scal,4); 

cc:=meanvalue(cc_2); 

c^3:=power(scal,3); 

c^4:=meanvalue(cc_4); 

u_3c_h:=multiply(u_ku_k_W,scal); 

u_3c:=meanvalue(u_3c_h); 

 

 

 

mean_matrix:=meanvalue(U_x_der_2); 

u_jku_jk:=add(u_jku_jk,mean_matrix); 

mean_matrix:=meanvalue(U_y_der_2); 

u_jku_jk:=add(u_jku_jk,mean_matrix); 

mean_matrix:=meanvalue(V_x_der_2); 

u_jku_jk:=add(u_jku_jk,mean_matrix); 

mean_matrix:=meanvalue(V_y_der_2); 

u_jku_jk:=add(u_jku_jk,mean_matrix); 

mean_matrix:=meanvalue(W_x_der_2); 

u_jku_jk:=add(u_jku_jk,mean_matrix); 

mean_matrix:=meanvalue(W_y_der_2); 

u_jku_jk:=add(u_jku_jk,mean_matrix); 

 

mean_matrix:=meanvalue(C_mean_x_der_2); 

c_jc_j:=add(c_jc_j,mean_matrix); 

mean_matrix:=meanvalue(C_mean_y_der_2); 

c_jc_j:=add(c_jc_j,mean_matrix); 

 

 

u_3jc_j_x:=multiply(C_mean_x_der,W_x_der); 

u_3jc_j_x:=multiply(u_3jc_j_x,2); 

u_3jc_j_y:=multiply(C_mean_y_der,W_y_der); 

u_3jc_j_y:=multiply(u_3jc_j_y,2); 

 

 

mean_matrix:=meanvalue(U_x_der_3); 

u_\alpha\alpha^3_H:=add(u_\alpha\alpha^3_H,mean_matrix); 

mean_matrix:=meanvalue(V_y_der_3); 

u_\alpha\alpha^3_H:=add(u_\alpha\alpha^3_H,mean_matrix); 

 

 

U_vel_dif[0,0]:=subtract(U_meanN,U_meanS); 

U_vel_dif[0,0]:=multiply(U_vel_dif[0,0],tnz/4); 
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U_vel_dif:=subtract(U_z_der,U_vel_dif[0,0]); 

V_vel_dif[0,0]:=subtract(V_meanN,V_meanS); 

V_vel_dif[0,0]:=multiply(V_vel_dif[0,0],tnz/4); 

V_vel_dif:=subtract(V_z_der,V_vel_dif[0,0]); 

W_vel_dif[0,0]:=subtract(W_meanN,W_meanS); 

W_vel_dif[0,0]:=multiply(W_vel_dif[0,0],tnz/4); 

W_vel_dif:=subtract(W_z_der,W_vel_dif[0,0]); 

 

C_mean_dif[0,0]:=subtract(C_meanN,C_meanS); 

C_mean_dif[0,0]:=multiply(C_mean_dif[0,0],tnz/4); 

C_mean_dif:=subtract(C_mean_z_der,C_mean_dif[0,0]); 

U_vel_dif_2:=power(U_vel_dif,2); 

V_vel_dif_2:=power(V_vel_dif,2); 

W_vel_dif_2:=power(W_vel_dif,2); 

 

 

W_vel_dif_3:=power(W_vel_dif,3); 

 

C_mean_dif_2:=power(C_mean_dif,2); 

mean_matrix:=meanvalue(U_vel_dif_2); 

u_jku_jk:=add(u_jku_jk,mean_matrix); 

mean_matrix:=meanvalue(V_vel_dif_2); 

u_jku_jk:=add(u_jku_jk,mean_matrix); 

mean_matrix:=meanvalue(W_vel_dif_2); 

u_jku_jk:=add(u_jku_jk,mean_matrix); 

 

u_3ku_3k:=add(u_3ku_3k,mean_matrix); 

 

 

 

mean_matrix:=meanvalue(W_vel_dif_3); 

 

u_\alpha\alpha^3_V:=add(u_\alpha\alpha^3_V,mean_matrix); 

 

 

u_3jc_j_z:subtract(C_mean_z_der_2,W_vel_dif); 

u_3jc_j_z:=power(u_3jc_j_z,2); 

 

 

 

mean_matrix:=meanvalue(u_3jc_j_x); 

u_3jc_j:=add(u_3jc_j,mean_matrix); 

mean_matrix:=meanvalue(u_3jc_j_y); 

u_3jc_j:=add(u_3jc_j,mean_matrix); 

mean_matrix:=meanvalue(u_3jc_j_z); 

u_3jc_j:=add(u_3jc_j,mean_matrix); 

 

 

c_jc_j_z:=add(C_mean_z_der,C_mean_dif); 

c_jc_j_z_2:=power(c_jc_j_z,2); 

mean_matrix:=meanvalue(c_jc_j_z_2); 

c_jc_j:=add(c_jc_j,mean_matrix); 
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################ 

label('u_ku_k_print'); 

 

'u_ku_k':=print(u_ku_k,TIMEFORMAT); 

u_\alpha^2_H:=multiply(u_\alpha^2_H,0.5); 

'u_alpha^2_H':=print(u_\alpha^2_H,TIMEFORMAT); 

'u_alpha^2_V':=print(u_\alpha^2_V,TIMEFORMAT); 

u_\alpha^3_H:=multiply(u_\alpha^3_H,0.5); 

'u_alpha^3_H':=print(u_\alpha^3_H,TIMEFORMAT); 

'u_alpha^3_V':=print(u_\alpha^3_V,TIMEFORMAT); 

u_\alpha^4_H:=multiply(u_\alpha^4_H,0.5); 

'u_alpha^4_H':=print(u_\alpha^4_H,TIMEFORMAT); 

'u_alpha^4_V':=print(u_\alpha^4_V,TIMEFORMAT); 

'u_3u_3':=print(u_3u_3,TIMEFORMAT); 

'u_1u_1':=print(u_1u_1,TIMEFORMAT); 

'u_2u_2':=print(u_2u_2,TIMEFORMAT); 

'C':=print(C_mean,TIMEFORMAT); 

'C__3':=print(C_mean_3,TIMEFORMAT); 

'cc':=print(cc,TIMEFORMAT); 

'u_3c':=print(u_3c,TIMEFORMAT); 

'c^3':=print(c^3,TIMEFORMAT); 

'c^4':=print(c^4,TIMEFORMAT); 

'u_jku_jk':=print(u_jku_jk,TIMEFORMAT); 

u_\alpha\alpha^3_H:=multiply(u_\alpha\alpha^3_H,0.5); 

'u_alphaalpha^3_H':=print(u_\alpha\alpha^3_H,TIMEFORMAT); 

'u_alphaalpha^3_V':=print(u_\alpha\alpha^3_V,TIMEFORMAT); 

'c_jc_j':=print(c_jc_j,TIMEFORMAT); 

'u_3ku_3k':=print(u_3ku_3k,TIMEFORMAT); 

'u_3jc_j':=print(u_3jc_j,TIMEFORMAT); 

 

############ 

label('end'); 

############ 

end(); 

 

  



 

70 

 

Apendix B-ii 

input_postp_whole_domain.dat : 

 
begin(); 

iz:=variable(matrix[1]); 

iz:=assign(0); 

uvel:=variable(matrix[tnx,tny]); 

uvel:=assign(0); 

vvel:=variable(matrix[tnx,tny]); 

vvel:=assign(0); 

wvel:=variable(matrix[tnx,tny]); 

wvel:=assign(0); 

scal:=variable(matrix[tnx,tny]); 

scal:=assign(0); 

massf:=variable(matrix[tnx,tny]); 

massf:=assign(0); 

 

###width calculations 

# 

 

label('zz1loop'); 

U_mean:=variable(matrix[1]); 

U_mean:=meanvalue(u_vel[:,:,iz]); 

V_mean:=variable(matrix[1]); 

V_mean:=meanvalue(v_vel[:,:,iz]); 

W_mean:=variable(matrix[1]); 

W_mean:=meanvalue(w_vel[:,:,iz]); 

scal:=variable(matrix[tnx,tny]); 

scal:=assign(scal1[:,:,iz]); 

scal:=multiply(scal,2); 

scal:=add(scal,1); 

C_mean:=variable(matrix[1]); 

C_mean:=meanvalue(scal1[:,:,iz]); 

C_mean:=multiply(C_mean,2); 

C_mean:=add(C_mean,1); 

end(); 

scal:=subtract(scal,C_mean); 

uvel:=subtract(u_vel[:,:,iz],U_mean); 

vvel:=subtract(v_vel[:,:,iz],V_mean); 

wvel:=subtract(w_vel[:,:,iz],W_mean); 

massf:=multiply(scal,wvel); 

uvel:=power(uvel,2); 

vvel:=power(vvel,2); 

wvel:=power(wvel,2); 

cc:=variable(matrix[tnz]); 

cc[iz]:=meanvalue(scal[:,:]); 

uc:=variable(matrix[tnz]); 

uc[iz]:=meanvalue(massf[:,:]); 

uu:=variable(matrix[tnz]); 

uu[iz]:=meanvalue(uvel[:,:]); 

vv:=variable(matrix[tnz]); 

vv[iz]:=meanvalue(vvel[:,:]); 

ww:=variable(matrix[tnz]); 
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ww[iz]:=meanvalue(wvel[:,:]); 

iz:=add(iz,1); 

if(iz,GE,tnz,'print','zz1loop'); 

 

# 

label('print'); 

'cc_w':=print(cc,TIMEFORMAT); 

'massf_w':=print(uc,TIMEFORMAT); 

'uu_w':=print(uu,TIMEFORMAT); 

'vv_w':=print(vv,TIMEFORMAT); 

'ww_w':=print(ww,TIMEFORMAT); 

############ 

end(); 

 

 

 



 

72 

 

REFERENCES 

 

1. Rayleigh, L., Investigation of the equilibrium of an incompressible heavy fluid of variable 

density. Proceedings of Royal Society of London, 1884. 14: p. 170-177. 

2. Taylor, G.I., The instability of liquid surfaces when accelerated in a direction 

perpendicular to their planes I. . Proceedings of Royal Society of London Series A, 1950. 

201: p. 192-196. 

3. Veynante, D., et al., Gradient and counter-gradient scalar transport in turbulent 

premixed flames. Journal of Fluid Mechanics, 1997 332: p. 263-293. 

4. Veynante, D. and L. Vervisch, Turbulent combustion modeling. Progress in Energy 

Combustion Science, 2002. 28: p. 193-266. 

5. Britter, R.E. and S.R. Hanna, Flow and dispersion in urban areas. Annual Review of 

Fluid Mechanics, 2003. 35: p. 469-496. 

6. Nakai, S. and H. Takabe, Principles of inertial confinement fusion-physics of implosion 

and the concept of inertial fusion energy. Report of Progress in Physics, 1996. 59: p. 

1071-1131. 

7. Lindl, J.D., Inertial confinement fusion: the quest for ignition and energy gain using 

indirect drive. 1998, Berlin: Springer. 

8. Wunsch, C. and F. R., Vertical mixing, energy, and the general circulation of oceans. 

Annual Review of Fluid Mechanics, 2004. 36: p. 281-314. 

9. Adkins, J.F., K. McIntyre, and D.P. Schrag, The salinity, temperature, and 18
O of the 

glacial deep ocean. Science, 2002. 298: p. 1769-1773. 

10. Gull, S.F., The X-ray, optical and radio properties of young supernova remnants. Royal 

Astronomical Society Monthly Notices, 1975. 171: p. 263-278. 

11. Colgate, S.A. and R.H. White, The hydrodynamic behavior of supernova explosions. 

Astrophysical Journal, 1966. 143: p. 626-681. 

12. Banerjee, A. and M.J. Andrews, 3-D Simulations to investigate initial condition effects on 

the growth of Rayleigh-Taylor mixing. International Journal of Heat and Mass Transfer, 

2009. 52: p. 3906-3927. 

13. Livescu, D., T. Wei, and M.R. Petersen, Direct Numerical Simulations of Rayleigh-

Taylor instability. Journal of Physics: Conference Series, 2011. 318(8): p. 082007. 

14. Anuchina, N.N., et al., Turbulent mixing at an accelerating interface between liquids of 

different densities. Fluid Dynamics, 1978. 13(6): p. 916-920. 

15. Youngs, D.L., Numerical simulation of turbulent mixing by Rayleigh-Taylor instability. 

Physica D, 1984. 12: p. 32-44. 

16. Wei, T. and D. Livescu, Late-time quadratic growth in single-mode Rayleigh-Taylor 

instability. Physical Review E, 2012. 86(4): p. 046405. 

17. Ramaprabhu, P. and M.J. Andrews, On the initialization of Rayleigh-Taylor simulations. 

Physics of Fluids, 2004. 16: p. L59-L62. 

18. Ramaprabhu, P., G. Dimonte, and M.J. Andrews, A numerical study of the influence of 

initial perturbations on the turbulent Rayleigh-Taylor instability. Journal of Fluid 

Mechanics, 2005. 536: p. 285-319. 



 

73 

 

19. Dimonte, G., Dependence of turbulent Rayleigh-Taylor instability on initial 

perturbations. Physical Review E, 2004. 69(5): p. 056305. 

20. Banerjee, A., W.N. Kraft, and M.J. Andrews, Detailed measurements of a Rayleigh-

Taylor mixing layer from small to intermediate Atwood Numbers. Journal of Fluid 

Mechanics, 2010. 659: p. 129-190. 

21. Ramaprabhu, P. and M.J. Andrews, Experimental investigation of Rayleigh- Taylor 

mixing at small Atwood numbers. Journal of Fluid Mechanics, 2004. 502: p. 233-271. 

22. Dimonte, G., et al., A comparative study of the turbulent Rayleigh-Taylor (RT) instability 

using high-resolution 3D numerical simulations: The Alpha-Group collaboration,. 

Physics of Fluids, 2004. 16: p. 1668-1693. 

23. Dimonte, G., P. Ramaprabhu, and M.J. Andrews, Rayleigh-Taylor instability with 

complex acceleration history. Physical Review E, 2007. 76: p. 046313. 

24. Livescu, D. and T. Wei, Direct Numerical Simulations of Rayleigh-Taylor instability with 

gravity reversal. Seventh International Computationl Fluid Dynamics (ICCFD7), 2012: p. 

9-13. 

25. Ramaprabhu, P., V. Karkhanis, and A.G.W. Lawrie, The Rayleigh-Taylor Instability 

driven by an accel-decel-accel profile. Physics of Fluids (1994-present), 2013. 25(11): p. 

-. 

26. Dimonte, G. and M. Schneider, Turbulent Rayleigh-Taylor instability experiments with 

variable acceleration. Physical Review E, 1996. 54: p. 3740-3743. 

27. Lawrie, A.G.W., On Rayleigh-Taylor mixing: confinement by stratification and 

geometry. 2009, University of Cambridge. 

28. Lawrie, A.G.W. and S.B. Dalziel, Turbulent diffusion in tall tubes. I. Models for 

Rayleigh-Taylor instability. Physics of Fluids (1994-present), 2011. 23(8): p. -. 

29. Lawrie, A.G.W. and S.B. Dalziel, Turbulent diffusion in tall tubes. II. Confinement by 

stratification. Physics of Fluids (1994-present), 2011. 23(8): p. -. 

30. Strang, G., On the Construction and Comparison of Difference Schemes. SIAM Journal 

on Numerical Analysis, 1968. 5(3): p. 506-517. 

31. RAMAPRABHU, P. and M.J. ANDREWS, Experimental investigation of Rayleigh–

Taylor mixing at small Atwood numbers. Journal of Fluid Mechanics, 2004. 502: p. 233-

271. 

32. MUESCHKE, N.J., M.J. ANDREWS, and O. SCHILLING, Experimental 

characterization of initial conditions and spatio-temporal evolution of a small-Atwood-

number Rayleigh–Taylor mixing layer. Journal of Fluid Mechanics, 2006. 567: p. 27-63. 

33. Cabot, W.H. and A.W. Cook, Reynolds number effects on Rayleigh-Taylor instability 

with possible implications for type-Ia supernovae. Nature Physics, 2006. 2: p. 562-568. 

34. Young, Y.N., et al., On the miscible Rayleigh-Taylor instability: two and three 

dimensions. Journal of Fluid Mechanics, 2001. 447: p. 377-408. 

35. LLOR, A., Bulk turbulent transport and structure in Rayleigh–Taylor, Richtmyer–

Meshkov, and variable acceleration instabilities. Laser and Particle Beams, 2003. 21(03): 

p. 305-310. 

36. Poujade, O. and M. Peybernes, Growth rate of Rayleigh-Taylor turbulent mixing layers 

with the foliation approach. Phys Rev E Stat Nonlin Soft Matter Phys, 2010. 81(1 Pt 2): 

p. 26. 



 

74 

 

37. Gréa, B.-J., The rapid acceleration model and the growth rate of a turbulent mixing zone 

induced by Rayleigh-Taylor instability. Physics of Fluids (1994-present), 2013. 25(1): p. -

. 

38. Mikaelian, K.O., Analytic approach to nonlinear hydrodynamic instabilities driven by 

time-dependent accelerations. Physical Review E, 2010. 81(1): p. 016325. 

39. Haan, S.W., Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of 

a full spectrum of modes. Physical Review A, 1989. 39(11): p. 5812-5825. 

40. Ristorcelli, J.R. and T.T. Clark, Rayleigh-Taylor turbulence: self-similar analysis and 

direct numerical simulations. . Journal of Fluid Mechanics, 2004. 507: p. 213-253. 

41. Andrews, M.J., Accurate Computation of Convective Transport in Transient Two-Phase 

Flow. International Journal for Numerical Methods in Fluids 1995. 21(3): p. 205-222. 

42. Dimonte, G. and M. Schneider, Density ratio dependence of Rayleigh-Taylor mixing for 

sustained and impulsive acceleration histories. Physics of Fluids, 2000. 12: p. 304-321. 

43. Livescu, D. and J.R. Ristorcelli, Buoyancy-driven variable density turbulence. Journal of 

Fluid Mechanics, 2007. 591: p. 43-71. 

44. Cook, A.W., W. Cabot, and P.L. Miller, The mixing-transition in Rayleigh-Taylor 

instability. Journal of Fluid Mechanics, 2004. 511: p. 333-362. 

45. LIVESCU, D. and J.R. RISTORCELLI, Variable-density mixing in buoyancy-driven 

turbulence. Journal of Fluid Mechanics, 2008. 605: p. 145-180. 

 

 

  



 

75 

 

VITA 

 

 

Denis Aslangil was born on April 7th, 1989 in Istanbul, Turkey. He earned his bachelor’s 

degrees in both mechanical engineering and industrial engineering (double major) from the 

Istanbul Technical University. He attended Lehigh University, Mechanical Engineering and 

Mechanics Department in the Fall 2012 to pursue MSc and PhD degrees in Mechanical 

Engineering. He joined to Turbulent Flow Design Group in January 2013; and currently, he is a 

PhD student under Prof. Arindam Banerjee's guidance at Lehigh University. 

 


	Lehigh University
	Lehigh Preserve
	2015

	Exploring Initial Condition Effects on Variable Acceleration Rayleigh Taylor Instability using Impilicit Large Eddy Simulations
	Denis Aslangil
	Recommended Citation


	-

