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ABSTRACT 
 

In this study, Brownian dynamics simulations of a single polymer chains are 

performed. The polymer chain is modeled by a sequence of beads connected by 

finitely extensible non-linear elastic springs. Coarse-grained molecular dynamic 

simulations are conducted to investigate flow induced conformational changes of 

a single polymer chain in a simple shear flow. The present model includes 

Brownian dynamic force, FENE spring force, Lennard-Jones potential for bead-

bead and spring-spring interaction and hydrodynamic interaction of beads with 

flowing solvent. Different cases are simulated by using different combination of 

interactions; spring force and Brownian dynamic force are throughout included. 

Simulations are performed for various shear flow conditions. In some cases, 

springs are forced to be uncrossable, a soft potential is used to account for the 

repulsive force between springs. The dependence of bead radius and the coil size 

of the chain have been tested. Full hydrodynamic interaction is applied along with 

spring force, Brownian dynamic force and Lennard-Jones potential. Spring-spring 

repulsion helps the unfolding process, while HI impedes this process. As the 

intensity of shearing increases, the extension of unfolding increases. 
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Chapter 1. Introduction 

In human bodies, bleeding is stopped by forming a clot at the site of vascular 

damage. Critical steps in the process are the accumulation and aggregation of 

platelets at the damaged vessel wall, forming so called platelet "plugs" [1].  Under 

rapid flow condition such as in arteries and arterioles, however, platelets cannot 

adhere themselves to vessel wall due to the strong hydrodynamic force imposed 

by the flowing fluid. In such scenarios the plasma protein von Willebrand Factor 

(vWF) plays an indispensable role in sticking to both platelets and vessel wall, 

allowing the formation of platelet plugs [2] [3]. Research shows that DNA 

molecules such as vWF act as a flow sensor, responding to strong hydrodynamic 

forces by changing its conformation [4]. In 1990s, Perkins and co-workers 

stretched single DNA molecules by a flow [5]. The fluctuating chain was imaged 

have a cone-like envelope and shows a sharp increase in intensity at the free end. 

Similar phenomenon has been observed that vWF changes conformation under a 

certain shear rate, becoming unfolded. However, the exact mechanism of how 

vWF senses flow by presumably switching between the two conformations is still 

exclusive.  

 

Figure 1(a) Schematic illustration of vWF’s domain arrangement. Cysteines are shown 

as vertical lines and are connected for chemically defined disulfides. Each monomer 

contains 12 domains. Domains interacting with Gplbα, α11bβ3 (both on platelets) and 

collagen (on damaged vessel wall) are indicated by double-sided arrows.  A2domin 
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(indicated by asterisk) unfolds when it is subject to pulling forces. (b) Possible 

mechanism of flow-induced conformational change. vWF is a long multimer 

containing up to 200 monomers. Each monomer is modeled as sphere. (X. Zhang 

2011) 
 

The overall goal of this study is to use molecular dynamics simulation to study the 

mechanism of flow induced conformational change in biopolymers. Theoretical 

modeling will be conducted to attain a clear picture of how vWF molecules 

achieve flow sensing at the single polymer level. 

As is well known, the Gaussian chain model is the simplest model for polymer 

simulation, which allows an indefinite extension when increasing shear rate or 

other force. Freely-jointed chain (FJC), introduced by Peterlin in 1966, is the 

modification of Gaussian model [6]. The real chain is replaced by a set of points 

connected by rigid robs of fixed length. Kratky and Porod modified the Gaussian 

model of the worm-like chain (WLC) [7]. In this model, beads are connected by 

flexible, inextensible robs, which have fixed length. Worm-like chain is more 

complicated, but it is better than freely-jointed chain when describing helical 

structures.  Bead-Spring chain model replace robs in FJC and WLC by completely 

flexible springs, also called "Rouse model" [8]. This model is the simplest 

idealization of a polymer molecule that captures the essential physics required to 

simulate polymer dynamics. One main limitation of this model is that 

Hydrodynamic interaction (HI) is neglected. It has been reported that HI plays an 

important role in polymer dynamics. Bird perfected this model by including 

Hydrodynamic interaction in 1987 [4]. Katz further examined the behavior of a 

single polymer by Bead-Spring model with HI, and confirmed that 

hydrodynamics interaction is very important to accurately model the dynamics of 
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polymer [9]. In Katz's model, beads are connected with each other by a simple 

Hooke spring, and the Rotne-Prager tensor along with Lennard-Jones potential is 

used to simulate HI. Even when HI has been fixed, due to numerical limitation, 

the bonds (springs) can pass through each other, and hence the topological 

integrity of a chain is not maintained. Larson and co-workers presented a cross-

check process to avoid spring-spring crossing [10]. A FENE spring model is 

applied in Larson's model, and intromolecular interaction has been separated into 

two parts, Lennard-Jones potential and a soft potential that presents the repulsive 

springs. However, Larson did not included HI into his model. 

In this study, Larson's Bead-Spring model will be used to capture the feature of a 

single polymer chain and to investigate the flow induced conformational changes 

of the polymer by including hydrodynamic interaction of beads. 
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Chapter 2. Model and Methods 

The simplest realization of a Bead-Spring model is to consider only one spring 

and two beads, known as the Dumbbell Model [11]. Dumbbell model replace the 

whole chain by a single spring, captures the important physics: chain flexibility 

and drag due to solvent. It is widely used, but the simple Dumbbell model is not 

sufficient to indicate the conformation change of the polymer, especially under 

imposed flow fields [8] [4]. It is necessary to have multiple beads connected with 

multiple springs, and to include complete solvent effects. 

The following effects are primary important for rheological properties, ordered 

based on their importance [12]. 

(1) Viscous drag 

(2) Entropic elasticity 

(3) Brownian forces 

(4) Hydrodynamics interaction (HI) 

(5) Excluded-volume (EV) interactions 

(6) "Internal viscosity" (IV) and 

(7) "Self-entanglement" (SE) 

Effects (1) to (4) are the essential parts of the polymer dynamics, and they will be 

discussed later. EV interactions present the repulsive forces between beads that 

prevent their overlap, which can be cancelled out in some solvent under their theta 

temperature, at which the repulsion is weak enough compared with effect of the 

solvent [13]. Although few investigators have considered IV and SE, it is not 
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clear about their importance and even reality, and hence these two effects will not 

be included in this study. 

In Bead-Spring chain models, chains consist of N beads connected by N-1 

flexible springs. The governing equations in the inertia free limit are obtained by a 

force balance on each bead: 

 0,   1,2,....,D S In B
i i i iF F F F i N      (1) 

where the subscript i refers the bead number and DF ,
SF , INF , BF  are the 

hydrodynamic (viscous) drag force, the spring force, the intermolecular 

interaction and the Brownian force, respectively.  

2.1 Drag force 

The hydrodynamic drag force is the friction force that flowing solvent exerts on 

the polymer and is given by [4], 

  F i i

D v
i

  r  (2) 

where  is the drag coefficient, ir  is the velocity of the bead and iv  is the 

undisturbed velocity field at the position of bead i .  By assuming that the polymer 

will not change the flow field, iv  is simplified as the solvent velocity at bead i . 

ri iv   , where   is transpose of the velocity gradient tensor,  u
T

   , 

and hence,  

  F ( )T

i i

D
i

    r u r  (3) 
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. 

After substituting and rearranging, the force balance becomes 

  1
( )T

i i

S In B
i i iF F F


     r u r  (4) 

This equation is commonly called a Langevin equation, governing the motion of 

the particle. 

2.2 Spring force 

Entropic elasticity is important when the flow is strong enough to stretch or shrink 

the chain, and spring force is perfect to present such effect. Consider a chain of 

beads connected by springs, each bead (other than two ends) is bounded by two 

springs, which leads to the following 

 _ _ 1,      2 1S S S

i spring i spring iF F F i N      (5) 

where _

S

spring iF is the force that acts on bead i  by spring i . For the end beads, 

 
1 _1

_ 1

S S

spring

S S

N spring N

F F

F F 



 
 (6) 

The simplest spring force law is Hookean spring law, a linear spring that is 

infinitely extensible. The Hookean spring is governed by 

 _

S

spring i iF HQ  (7) 

where H  is the spring constant,
1i i i Q r r . Two other realistic spring law are 

commonly used, Warner spring law (finitely extensible nonlinear elastic, FENE) 
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and Marko-Siggia spring law [14]. Most flexible synthetic polymers and single 

stranded DNA should be modeled using FENE spring law 

 
_ 2 2

01 /

S i
spring i

H
F

Q Q




Q
 (8) 

where Q  is the magnitude of 
iQ  and 

0Q is the maximum extended length for the 

spring. Many biopolymers resist local bond torsion (e.g. duplex DNA) and are 

more appropriate to be described with Marko-Siggia spring law [15] 

 

2

_

0 0

1 1
1

4 4

S B
spring i

p

k T Q Q
F

l Q Q

  
     
   

 (9) 

where 
pl is the persistence length. 

Since this study considers only a single polymer chain, FENE spring law is more 

convenient and sufficient. However, it is important to note that parameter in the 

spring force are directly related to the polymer dynamics [16].  

2.3 Brownian force 

The Brownian force is taken from a random distribution and fluctuates extremely 

rapidly. According to fluctuation-dissipation theorem, over a long time scale, the 

average of the random force should tend to zero; a relationship must exist 

between Brownian motion and drag, since the rate of Brownian motion reflects 

the diffusion coefficient, which is related to the drag coefficient [12]. 

A general form of fluctuation-dissipation theorem is given by, 
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 

   

0,

6 ( )

B

i

B B

i i B

F t

F t F t k T t t



  
 (10) 

where ( )t t   is the Dirac delta function. Thus, the Brownian force averaged 

over a time scale t  becomes 

 

1/2
6B Bk T

F n
t

 
  

 
 (11) 

where n is a random three-dimensional vector, each component of which is 

uniformly distributed in the interval [-1, 1] [17]. 

2.4 Hydrodynamic interaction 

Hydrodynamic interaction is the interaction between beads by the solvent. As a 

bead moves, it exerts a force on the solvent, which changes the velocity field from 

its undisturbed value iv , and hence changes the hydrodynamic drag force exerted 

on other beads. According to Newton's second law, the hydrodynamic drag force 

is equal and opposite to the hydrodynamic force, and is balanced by all other 

forces exerted on that bead, 

 D S In B
i i i iF F F F     (12) 

2.4.1 Diffusion tensor 

The velocity disturbance iv   is a linear function of the hydrodynamic drag force, 

  i ij ij

D S In B
j j j jv F F F F      (13) 
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where ij  is the hydrodynamic interaction tensor between two beads. Ermak and 

McCammon shown that the disturbance velocity can be included into the 

Langevin equation by introducing  B
ij ij ij

k T
 


 I +D  , the diffusion tensor 

[18]. The stochastic differential equation including HI becomes 

 
  1/2

1 1 1

6
( )

N N iij
ijT

i i ij j

j j jj B

S In
i i

k T t

F F

  

  
       

  


  r u r n

r

DD
  (14) 

where 
ij is the weighting factor and can be related to ijD  by 

1

N

ij il lj

l

D   . 

Thus the derivative of ijD  with respect to 
jr  is zero,  

 
1

( )
N

ijT

i i

j j


   


r u r

r

D  0
1/2

1 1

6N iij

ij j

j jB

S In
i i

k T t

F F

 


 

   
 


  n

D
  (15) 

In general, the diffusion tensor D  is complicated because it is related to the 

instantaneous positions of all beads in a nonlinear way.  In polymer modeling, the 

diffusion matrix is often approximated by its far-field asymptotes [19]. The lowest 

order of approximation is the Oseen-Burgers tensor [20] [21] [4], 

 
6

8

B
ij

ij ijB
ij

ij ij

k T

a

k T

r r







 
   

 

I

r r
I +

D

D
 (16) 

where ij i j r r r , and 
ij ijr  r . When the distance between beads is less than the 

bead diameter (close to each other), the tensor becomes negative, and the Oseen-
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Burgers tensor is then not suitable for Brownian dynamics simulations. The next 

level of approximation corresponds to the Rotne-Prager tensor [22], 

 
6

B
ii

k T

a
 ID  (17) 

 

2 2

2 2 2

2 2

2 2
1 1 ,             2

31

8 38
,                 2

2 3 4 4

ij ij

ij

ij ij ij
B

ij

ij
ij ij ij ij ij

ij

ij

a a
r a

r r rk T

r r r r
r a

a a a r



    
                 

 
   

    
    

r r
I

r r
I

D  (18) 

As the ratio of bead radius to the distance between beads becomes small, the 

Rotne-Prager tensor can be reduced to the Oseen-Burgers tensor. Note that free 

draining (without HI) model can be obtained easily by setting ij iiD D .  

2.4.2 Intermolecular interaction 

As mentioned above, the intermolecular force is the effect exerted on a bead due 

to the intermolecular interactions from all other beads, including bead-bead 

interaction and spring-spring repulsion (Larson 2010), 

  , ,
In BB SS
i i j i j

j i

 F F F   (19) 

where ,
BB
i jF  and ,

SS
i jF  are contributions due to bead-bead and spring-spring 

interactions. 

I. Bead-bead interaction 
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Bead-bead interaction presents the potential between beads, and a Lennard-Jones 

potential is used to model this interaction, 

 

13 7

, ,

,
ˆ12 6 r

4 ev ev

ijev

i j i j

BB
i j

d d

r rd


    
             

F  (20) 

where r̂ij
is the unit vector along  ijr ,  and evd are the energy and length 

parameters. 

II. Spring-spring repulsion 

In Bead-Spring model, the connections between particles are simplified to 

springs. In real polymer chain, this connection cannot be broken; however, 

springs can pass through each other due to finite time step size. In order to 

eliminate the unrealistic crossing, a spring-spring repulsion is used, which based 

on the distance of closest approach between springs [10]. Consider two springs 

referred to as i and j, which have two line equations describing their positions. 

 
r

rj j

i i i i

j j

p

p

 

 

S Q

S Q
 (21) 

Where ip and jp are parameters that indicate scaled position along each spring, 

from 0 to 1. The distance vector between these lines,
,i jD , is given by,

,i j ji D S S . By solving the equations 
,

0
i j

ip






D
and

,
0

i j

jp






D
, the expressions 

of ip and jp can be obtained which correspond to the distance of closest 

approach [23].  
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   

   

2

2 2 2

2

2 2 2

1

2

1

2

i j ij j j i

i j ij

i j i j ij i

i j ij

i

j

Q Q

Q Q Q

Q Q

Q Q Q

p

p

  




  




r r Q Q

r r Q Q
 (22) 

where 2

i i iQ  Q Q , 2

j j jQ  Q Q and 
ij i jQ  Q Q . A soft potential is applied for 

the repulsive force between springs. A simple lever rules is used to convert the 

spring force to bead forces. For spring i and spring j , the beads of the first spring 

are bead i and 1i  , which experience effects from spring j , 

 

 

 

, ,

,

, ,

,

,

1,

1
exp

exp

i
i j i j

i j

i
i j i j

i j

SS
i j

SS
i j

p
K D

D

p
K D

D






  

  

D

D

F

F

 (23) 

Where K and   are parameters of the strength and range of the repulsive 

potential. 
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Chapter 3. Numerical Approach 

In order to solve the Langevin equation, an explicit time-stepping algorithm is 

used. All of the forces depend on the positions of beads at the beginning of each 

time interval, and remaining the same during that time-step. Since only finite size 

of time intervals can be achieved, the choice of t  is always very important. 

Different values of t  (between 10
-4

 - 10
-6

) have been used in the simulation. 

Generally, the results are insensitive to the size of the time step. However, in few 

cases (e.g. large bead number and high shear rate), smaller t  is required 

(between 10
-5

 - 10
-6

) to obtained accurate solutions. 

3.1 Dimensionless scale 

In this study, variables are made dimensionless by scaling length in units of  

/Bk T H , 

 force in units of  

Hk T
B  

and time in units of  

/ H . 

The drag coefficient  is defined as  

6 a  , 
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 where   denoted the viscosity of the fluid. Weissenberg number is introduced to 

present the intensity of shear flow [9] [10], 

 Wi   (24) 

where   is the shear rate (in unit of 1s ) and  is the longest relaxation time of 

the polymer (in unit of s ).  

3.2 Spring force 

By applying of time and length dimensionless units, the dimensionless spring 

force has the form 
 

 
21 /

i

i

S
i

Q b




Q
F  (25) 

with 

2

0 ,/ 3B K sb HQ k T N 
 

where NK,s is the number of Kuhn steps in a spring [4]. In this study, b  is set to 

56, and the fully extended length of each spring becomes 7.5. One main limitation 

is that the spring force becomes non-positive when the length extends beyond the 

maximum limit, as displayed in Figure 2. 
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Figure 2 Dependence of the FENE spring force on spring extension 
 

Beyond this limit, the spring becomes repulsive instead of attractive. That will 

cause further separation of beads. A truncated FENE spring law is used to avoid 

the switch, 
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Q

Q
F  (26) 

. 

The depending of spring force on the spring length is illustrated in Figure 3 for a 

truncated FENE spring law. 
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Figure 3 Dependence of the FENE spring force on spring extension with truncated 

FENE spring law 
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3.3 Lennard-Jones potential 

A truncated Lennard-Jones potential is used to model bead-bead interaction [10]: 
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F  (27) 

Where r̂ij
is the unit vector along  ijr , and  and evd are the energy and length 

parameters. The reason using a truncated potential is that when beads are very 

close to each other, the standard Lennard-Jones model leads to an unrealistically 

high potential, as shown in Figure 4.  

 

Figure 4 Dependence of the LJ potential force on the distance between beads 
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Due to the computational limitation, finite time step size makes it impossible to 

capture and update the potential energy timely. In this case, the simulation would 

be defective by unrealistic level of potentials at the beginning of a time step. The 

modified Lennard-Jones force has a "cut-off" point after which the force will 

become independent of the separation distance between beads, as depicted in 

Figure 5. 

 

Figure 5 Dependence of the truncated LJ potential force on the distance between beads 
 

 

3.4 Random force generator 
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Brownian force is taken from a random distribution, however, "random" is 

practically impossible to achieve. In numerical computation, random function 

depends on environment variables, such as CPU clock or other processor-

dependent values, and it always has a period. In this study, call Random_Number 

() is used to generate the random vector, distributed in [0, 1]. This function of 

Intel FORTRAN Compiler has two separate congruential generators together to 

produce a period of approximately 10
18

. By mapping the range to [-1, 1], the 

random vector has the distribution: 

 

Figure 6 Distribution of one thousand random value generated by call 

Random_Number()  



 

21 

3.5 Cross elimination process 

3.5.1 Cross check 

To completely avoid spring-spring crossing, a time-stepping algorithm is used 

[23]. First, a trial move is made with the original time step; a check is then made 

as to whether any pairs of springs crossed during this time step. The checking 

process is done by solving the equation 

    i ij j ijt t t t     S S  (28) 

which assumes that two springs cross at time
ijt t  . Utilizing x and y

components, expressions for
ip and 

jp  are developed 

 
     
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1 1
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p
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 

   

    


    
 (30) 

It is also assumed that the beads move linearly during the time step  ,t t t  ; 

thus, the positions of each bead can be obtained from 

         i ij i ij i it t t t t t      r r r r  (31) 

with 0 1ij  . Substitution ip , jp  and the linear motion equation into the line 

equation give the following cubic equation in ij , 
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 (32) 

where 

, ( ) ( )j i j ix x t x t   

       ,j i j j i ix x t t x t x t t x t           . 

y- and z-components are analogous. By solving the above equation, three 

parameters are obtained,
ij ,

ip and 
jp . If all of these three parameters lie between 

0 and 1, the two springs intersected in the preceding time step. The intersection 

point will be ri i ip Q  for spring i ; r j j jp Q for spring j , and the intersection 

happen at the time of 
ijt t  . After establishing the values of 

ij for different 

spring pairs, the time step for the real move is then set to min f t  , where 

min min( )ij  and f is a factor which is less than 1. The above adaptive time step 

ensures no spring pairs cross; each new time step resets the original time step and 

begins the new process. 

3.5.2 Spring-Spring repulsion force 
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To completely eliminate spring cross, a soft potential is applied as the interaction 

between each spring, and this force is converted into bead forces by a lever rule 

[12]. The force between each two springs will become four forces on each end of 

the springs. The forces on spring i due to repulsion from spring j is given by   
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 (33) 

Where K  and   determine the strength and range of the repulsive potential. In 

this study, K  is set to 2 and  is 0.25. 

3.6 Explicit time-stepping method 

The ideal simulation method is updating all of the information timely, however, 

due to numerical limitation; data can only be obtained after each time step.  An 

explicit time-stepping method is used in the simulation, by updating all of the 

variables at the beginning of each time step and assuming unchanged during each 

time step.  
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By applying dimensionless units of length, force and time, and using an explicit 

time-stepping method, the Langevin equation can be rearranged as  
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Chapter 4. Result and discussion 

In this study, chains are modeled by combining different interactions. Since the 

spring force and the Brownian dynamic force are the most components in bead-

spring model, these two interactions will be included in all of the simulations.  

In each simulation, 25 different initial conformations are used to reduce the 

influence of randomness and improve the statistics. The initial conformations are 

generated by placing the first bead at the origin and subsequent beads at random 

locations 3  away from the preceding one.   

Simulations explore the use of different time step t  (between
4 610 10  ), time 

step selection is dependent upon flow conditions modeled.  Typically, the higher 

the flow rate, the smaller t  required; most simulations conducted here utilized 

time step size t  = 410 . Total time steps used in the simulation is at least 72 10 , 

with the first 610  time steps worth of data discarded to allow the system to reach 

steady state. The data obtained for first 10
6
 time steps is excluded in calculating 

the time averaged proper of system.  

The radius-of-gyration is used to present the conformation of the polymer chain, 

 

2

. .

1

N

i c m

i

gR
N







 r r

 (36) 

where ir  is the position of i th bead, 
. .c mr is the center of mass of the chain and .  

denotes an ensemble average.  
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4.1 Free draining 

In the free draining fluid field, hydrodynamics interaction (HI) is neglected. 

Chains are modeled with different combinations of interactions in quiescent 

solvent or in flow. Bead volumes are not considered. However, as an important 

part in HI model, the relationship between bead radius and radius-of-gyration is 

significant. Simulations with different bead radius are included when HI is 

included in the model.  

4.1.1 No shear flow 

Temporal characteristics 
gR  are displayed in Figure 7 for the radius-of-gyration 

as a function of time for a 20-bead chain in no flow condition: (a) no interaction, 

(b) Lennard-Jones (LJ) potential (bead-bead interaction), (c) spring-spring (SS) 

repulsion and (d) both spring-spring repulsion and Lennard-Jones potential. Data 

are stored every 50000 time steps, thus 400 data points lead to 2 ×10
7
 time steps. 

Averages are taken over the second half of the whole simulations, 10
7 
 time steps, 

with the first 10
7 

 time steps discarded for equilibration. 
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Figure 7(a) Time dependence of no interaction case for a 20-bead chain 

 

 

Figure 7(b) Time dependence of LJ case for a 20-bead chain 
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Figure 7(c) Time dependence of SS case for a 20-bead chain 

 

 

Figure 7(d) Time dependence of SS & LJ case for a 20-bead chain 
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Figure 8 shows the dependence of the radius-of gyration on length in no flow 

condition.  The cases where spring-spring repulsions are not included are plotted 

in Fig.8 (a). The results are obtained with and without Lennard-Jones potential. 

The Lennard-Jones parameters are 0.8evd   and 0  . 
gR  versus bead number 

(N) including Spring-spring repulsions with and without LJ bead interaction are 

displayed in Fig.8 (b). The parameters are 2K   and 0.25  , and 0.8evd   and 

5.6  . By comparing Figs.8 (a) and 8 (b), it is apparent that both the absolute 

coil size for a given chain length and the difference in coil size are larger when 

spring-spring repulsion are. Due to the size of computation, simulations with SS 

only consider up to 50 beads. 

 

Figure 8(a) Dependence of the radius-of-gyration gR  on chain length N without 

spring-spring repulsions 
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Figure 8(b) Dependence of the radius-of-gyration 
gR  on chain length N without 

spring-spring repulsions 

Figure 9 shows the conformation of the chain before and after the simulations 

with different combinations of interactions. As shown in the Fig. 9(c), spring-

spring repulsions play a significant part in the simulation. When spring-spring 

repulsion is included without LJ potential, the chain is unfolding even without 

flow. One possible reason is that the strength and range parameter are not chosen 

appropriately, which makes the repulsions slightly too strong, compared with 

spring force or Brownian dynamics force.  Fig. 9(b) and 9(d) show the results 

with LJ potential. Since 0   in Fig. 9(b) while 5.6   in Fig. 9(d), LJ potential 

change from repulsion (Fig. 9(b)) to attraction (Fig. 9(d)). 
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Figure 9(a) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation without intermolecular interactions 

 

Figure 9(b) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation with LJ potential when 0.8evd   and 0   . 
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Figure 9(c) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation with spring-spring repulsion when 2K   and 0.25  . 

 

Figure 9(d) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation with both LJ potential when 0.8evd   and 5.6   and spring-

spring repulsion when 2K   and 0.25  . 
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4.1.2 Shear flow 

In this part, a polymer chain is placed in a simple shear flow. The velocity 

gradient of the flow field is given by 

0 0

0 0 0

0 0 0

 
 

  
 
 

∇u , 

and   is the shear rate. Weissenburg number (Wi) is used to present the intensity 

of shear flow, Wi  , where   is the longest relaxation time of a polymer chain. 

The relaxation time is obtained by 

 
28 sin ( / 2 )H N





  (37) 

. 

For a 20-bead chain, the longest relaxation time   is 20.3 in units of / H . 

Figure 10 shows the convergence of the radius-of-gyration for a 20-bead chain at 

Weissenberg number 10Wi  : (a) no interaction, (b) LJ potential (bead-bead 

interaction). Averages are taken over the last quarter of the whole simulations, a 

total number of 2 ×10
7 

 time steps is used in simulations. Transient response of 

the polymer chain in flow in much longer than that of the polymer chain in 

quiescent solvent. 
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Figure 10 (a) Time dependence of no interaction case for a 20-bead chain at 10Wi   

 

 

Figure 10 (b) Time dependence of LJ case for a 20-bead chain at 10Wi   
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Figure 11 displays the ensemble average of 
gR  as a function of Wi  with and 

without the bead-bead interaction. At a fixed Wi , 
gR  is larger when LJ potential 

is included as repulsion, but with the increasing of Wi , the difference between 

with and without LJ potential is decreasing. The impact of LJ potential is 

relatively small when there is a shear flow with high shear rate, as shown in 

Figure 11. In both cases, unfolding happen when Wi  is around 1, and completely 

unfolded when Wi  is greater than 10. The conformations of each case on 1Wi   

and 10Wi   are shown in figure 12 and 13. Despite the chains are unfolded on 

10Wi  in both cases, the coil size is larger when LJ potential is included.  There 

is a clear transition in conformations of the polymer chain occurring Wi  around 

unity for both cases (with and without LJ bead interaction). 

 

Figure 11 Dependence of the radius-of-gyration gR  for a 20-bead chain at 

Weissenberg number Wi  
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Figure 12(a) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation without intermolecular interactions at 1Wi   
 

 

 

Figure 12(b) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation without intermolecular interactions at 10Wi   
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Figure 13 (a)Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation with LJ potential at 1Wi   
 

 

Figure 13 (b) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation with LJ potential at 10Wi   
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4.1.3 Modification of considering radius 

Since HI model is based on the Rotne-Prager tensor, which requires a non-zero 

volume fir beads, it is important to test the effect of bead radius on the 

conformational behavior of the polymer chain before it is included in HI model. 

Based on the maximum length of each spring, bead radius should be in the range 

of 0.1 to 0.5. 

 

Figure 14 Dependence of the radius-of-gyration 
gR  for a 20-bead chain on the bead 

radius 
 

The equilibrium end-to-end distance of each spring is kept constant while the 

bead radius is varied. It is reasonable that gR  increases with the increasing bead 

radius while the impact of LJ potential decreases. Since LJ potential is short-range 
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repulsion, the magnitude of LJ decreases when the distance between the center of 

mass of each bead increases. 
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4.2 Hydrodynamics interaction model 

Next, hydrodynamics interaction will be included into the simulations. As 

discussed earlier, bead radius is an important part of HI. Katz and his colleagues 

simulated HI by using the Rotne-Prager tensor. The present study employs the 

Rotne-Prager tensor as well to model HI. Due to different length scale and 

different spring-bead model, their choice of bead radius may not be appropriate 

for this study. The Lennard-Jones potential used by Katz and his co-workers is 

    12 6

2 / 2 2 /LJ B ij ij

ij

U k T a r a r  , which is very similar to LH bead 

potential used by the present work. The difference is 2a  in Katz's model is 

replaced by evd  in present study. Since evd  is equal to 0.8, a  can be simply set as 

0.4 to make both LJ bead potential to be identical. 

Figure 15 shows the convergence of the radius-of-gyration gyration for a 20-bead 

chain at Weissenberg number 10Wi  : (a) free-draining (FD) cases, (b) 

hydrodynamics interaction (HI) cases. Transient response of the polymer chain 

for FD is much shorter than that for HI. Average of 
gR is determined over 10

7
 

time steps for FD while the average of 
gR is calculated over 1.25×10

9
 time steps 

when HI is included. 
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Figure 15(a) Time dependence of FD case for a 20-bead chain at 10Wi   
 

 

Figure 15(b) Time dependence of HI case for a 20-bead chain at 10Wi   



 

41 

In HI simulations, spring force, Lennard-Jones force and Brownian dynamics 

force are always included, while spring-spring repulsion is not. The coil size 

increases in both cases, but HI delays unfolding of the polymer chain. For 2Wi  , 

the coil size of the chain with HI is larger than the one of FD case, and for 2Wi  , 

the coil size of FD case is larger. As seen in Fig. 16, under no or low shear flow, 

HI serves as repulsive force, intensifying the unfolding process; with the 

increasing of Wi , HI serves as attractive force at higher shear rates. 

 

Figure 16 Dependence of the radius-of-gyration 
gR  for a 20-bead chain at 

Weissenberg number Wi  
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Figure 17(a) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation in FD at 1Wi   

 

 

Figure 17(b) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation in FD at 10Wi   
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Figure 18(a) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation in HI at 1Wi   

 

 

Figure 18(a) Snapshots showing the conformation of the chain at the initial and at the 

end of the simulation in HI at 10Wi   
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HI was shown to play a hindering role. A higher shear rate is required to unfold 

the chains with HI than without. Rzehak first presented this phenomenon in terms 

of the no-draining effect: the residues hidden inside the protein are shielded from 

the flow and thus only a small fraction of the residues experience the full drag 

force. In contrast, this drag force will effect on all residues. 

  

Fig. 4.10 The shielding effect: the particles inside a cluster experience a smaller drag 

force than those on surface [24]. 
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Chapter 5. Conclusion 

5.1 Conclusion 

Brownian dynamics simulations of single polymer chains are performed in this 

study. Four kinds of interactions are discussed, viscous drag, entropic elasticity, 

Brownian forces and hydrodynamics interaction. The viscous drag force is 

simulated by Stokes Drag Law, and FENE spring model is applied to as the 

entropic elasticity. Hydrodynamics interaction is separated into two parts, 

intermolecular interaction and diffusion tensor. A spring-cross elimination 

process is included in this study, and spring-spring repulsion is used to avoid the 

situation that the springs cross each other. Different cases are simulated by using 

different combination of interactions; spring force and Brownian dynamic force 

are throughout included. 

In free-draining cases, Lennard-Jones potential and spring-spring repulsion are 

included when needed. Both no flow and shear flow cases are simulated. When 

the polymer chain is in quiescent solvent, the coil size increases with increasing 

bead number, and spring-spring repulsion helps the chain to be unfolded. When 

the polymer chain is in shear flow, LJ bead interaction cause more unfolding of 

the polymers. The onset of unfolding of the chain is about Wi  of 1 with or 

without the LJ bead interaction presents. As the size of bead increases the coil 

size becomes larger. 

To made hydrodynamic interaction, Lennard-Jones force and HI diffusion tensor 

are considered. Including HI effect is important to model flow induced 
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conformational changes of biological systems. Due to the shielding effect, the 

residues hidden inside the protein are shielded from the flow and only a small 

fraction of residues experience the full drag. When no HI are present, this fraction 

is applied on all residues [19]. HI were shown to restrain the unfolding, thus a 

higher intensity of shear flow is required to unfold the chains. 

5.2 Future work 

Due to the tremendous computing required by spring-cross elimination, this 

process only presents in FD- no-flow case, and the largest bead number simulated 

is 50. It will be interesting to see how the inclusion of spring-cross elimination 

process affects the HI simulations.  

It is still not clear how other flow field will affect the chains. Mr. Wenli Ouyang 

and Mr. Haolin Ma from Lehigh University are simulating polymer behavior near 

wall or inside a cavity. Boundary effect can be included into the simulations along 

with HI and/or spring-cross elimination. 

This study is focused on the simulations of single polymer chain, and it will be 

interesting to have multi-chain simulations. These simulations require even more 

computer resources, and it cannot be done until parallel computing embedded. 

Finally, conformational changes of a single chain polymer in shear flow is studied 

here. It is also important to understand how the dynamics of the polymer chain in 

extensional flows and in combination of shear and extensional flows. 
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