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Abstract 

Research undertaken at Lehigh University into the design of sponsons for high 

speed racing boats is described. Sponsons from a commercially available RC racing 

boat, the Eagle SGX-45, along with custom built sponson designs underwent wind 

tunnel testing. The aerodynamic stability of these sponsons was examined particularly 

as related to “ground” effects near the water surface. 

Two different concepts for sponsons for high-speed boats were conceived with two 

overarching objectives - low drag and vehicle stability. The two different sponson 

concepts had very different behaviors, each benefitting a particular usage. 

The goal of the first type of sponson design was to minimize lift gradient (lift 

force as a function of angle of attack) to effectively increase the longitudinal pitch 

stability of the boat. The results show that a new, more aerodynamically "neutral" 

sponson (with a lift coefficient nearly independent of angle of attack) could be made, 

and that it had considerably better aerodynamic performance than the commercial 

sponson. 

The goal of the second type of sponson was to provide substantial aerodynamic 

lift, but only in ground effect. The boat would then be able to "fly" at an essentially 

constant height above the water surface, thus eliminating hydrodynamic drag and 

accordingly have very low total drag. Results from wind tunnel tests showed that a 

sponson in the shape of a small aspect ratio wing equipped with end plates had the 

desired characteristics.  
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Nomenclature 

 

AR Aspect ratio (-) 

b Wingspan (m) 

CL   Lift coefficient (-) 

c Wing chord length (m) 

D   Drag force (N) 

FoT Total drag area (m2) 

h Height above water surface (m) 

L   Lift force (N) 

L/D   Lift/drag ratio (-) 

q   Dynamic pressure (Pa) 

S Planform area (m2) 

v  Air velocity (m/s) 

𝛼 Angle of attack (°) 

ρair  Air density (kg/m3) (1.204 kg/m3 @ 20 °C) 
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1. Introduction 

The high-speed boats presently considered are manned or unmanned outriggers 

and hydroplanes. These tend to be the fastest boats at the present time, although some 

catamarans are also very fast. Outriggers generally consist of a center hull that is not 

in contact with water and two or more sponsons that ride in or on the water. The 

sponsons may be rigidly attached, or attached via a suspension system to the center 

hull [1]. Outriggers have proven to be very efficient for high speed racing boats, 

though a major challenge is to keep the craft stable and prevent them from flipping 

over. 

It is well known that the glide ratio or lift-over-drag ratio, L/D, in water at high 

speed is considerably lower than in air. Extreme glider aircraft can have maximum 

L/D on the order of 70 [2]. From a rough estimate, the L/D of modern offshore race 

boats appears to be in the range 1.5-41. However, tow tank tests on rectangular blocks 

show that L/D on the order 10 can be achieved in water for higher trim angles (on the 

order of 6 degrees) and lower lift coefficients [3]. High trim angles tend to lead to very 

high forces on the sponsons, and these can often make the boat pitch up so drastically 

that it flips over unless the sponsons are mounted with an adequate suspension.  

Since L/D is likely to be considerably higher in air than in water, the total drag of a 

boat can often be reduced drastically if the air is carrying a substantial part of the 

weight of the vehicle. Aerodynamic support of the boat can be achieved with wings (in 

                                                           
1 Based on published numbers and the formula L/D=mgv/(Peng) where m is mass, g is gravitational 

acceleration, v is speed, Peng is engine power, and  is propeller and driveline efficiency (estimated at 

75%). 
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ground effect or free stream), high pressure under the vehicle, lifting bodies, etc. A 

major difficulty is that many of these schemes lead to vehicles which are inherently 

unstable aerodynamically, in particular in pitch. 

The present paper deals with two kinds of vastly different sponsons. The goal of 

the first design (Sponson A) was to minimize lift gradient (lift force as a function of 

angle of attack), whereas the goal of the second sponson (Sponson B) was to provide 

substantial aerodynamic lift but only in ground effect. These sponsons and the goals 

are discussed further below in two separate sections. 

The sponsons discussed in the following sections operate at very low altitudes in 

the strong surface effect zone (SEZ), typically at values of h/c < 0.1, where h is height 

above water surface and c is wing chord length. Operating in SEZ, properly designed 

ground effect wings can have increased lift, reduced drag, and an increased lift to drag 

ratio over conventional wings in free stream [4]. The lift to drag ratio of Wing in 

Ground Effect (WIG) craft increases significantly as the flying height is decreased 

within the SEZ. Flying close to the water surface creates a region of higher pressure 

under the wing due to the blockage created between the wing and water surface. This 

effect can increase the lift significantly. Also the wing tip wash down velocity is 

decreased, therefore reducing induced drag and increasing the effective aspect ratio for 

the wing [5] [6]. The advantages and technology of WIG craft can be directly applied 

to the aerodynamics of high speed racing boats. The majority of a high speed boat is 

completely above the water surface and experiences aerodynamic ground effects 

similar to WIG craft. 
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2.  Aerodynamic Pitch Stability and Sponson A 

Aircraft are made aerodynamically stable in pitch by placing the center of mass 

ahead of the aerodynamic center of the vehicle, e.g. [7]. The aerodynamic center is the 

point around which the pitching moment does not change when the pitching angle of 

the aircraft is changed. The aerodynamic center of a large-aspect ratio unswept wing is 

at 25% of the chord behind the leading edge. With a horizontal tail mounted behind 

the wing the aerodynamic center is moved backwards.  

Outriggers often have two sponsons mounted well ahead of the center of mass of 

the vehicle, plus some sponson(s) towards the rear. If the front sponsons provide an 

aerodynamic lift force which increases with angle of attack, then they are highly 

destabilizing for the vehicle in pitch. Sponson A, which is shown in Figure 1, was 

designed to provide very little lift, and in particular a small lift gradient. Ideally the lift 

gradient would be zero for a wide range of angles of attack, or  

 

𝜕𝐿

𝜕𝛼
= 0    

 

where L is lift (perpendicular to the free stream far ahead of the sponson) and α is 

angle of attack. Low lift gradient was achieved by letting the tail converge into a point, 

thus avoiding any trailing edge which could provide a Kutta condition.  

Further requirements on a forward sponson are good hydrodynamic performance 

and low aerodynamic drag. Hydrodynamic performance is achieved using mainly flat 

running surfaces with sharp edges (avoiding any Coanda effect). Low drag was 
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achieved using an elongated teardrop shape with a well-rounded bow, and a long tail 

cone. The aerodynamic performance of this sponson is shown in Figure 2, Figure 3, 

and Figure 4. The details of the wind tunnel testing are described in Appendix A.  

The aerodynamic performance of Sponson A was compared with that of a sponson 

from a common high-speed RC boat, the Eagle SGX-45 from Competition Marine 

Designs, Inc. in free stream and in ground effect, simulating all typical operating 

conditions. 
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2.1 Sponson A  

A new sponson, called Sponson A in this paper, was developed to be 

"aerodynamically neutral", such that the lift was almost independent of angle of 

attack. Sponson A was 375 mm from tip to tail and had a max width of 86 mm with a 

planform area of 0.0236 m2. It is shown in Figure 1. 

 

 

Figure 1: Sponson A: designed to have no aerodynamic lift and low aerodynamic 

drag, yet good hydrodynamic performance. 
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2.1 (a) Sponson A in Free Stream 

Figure 2 shows Sponson A results from free stream wind tunnel testing. For 

angles of attack (as measured between the water surface and the sponson's flat bottom) 

between approximately 0° and 10° the lift and drag are almost constant. Between 0° 

and 10° the lift coefficient increases from 0 to 0.027. The total drag area between 

these angles increases from approximately 0.00075 m2 to 0.0009 m2. For these angles 

of attack the sponson can be considered nearly aerodynamically neutral in free stream. 

The increases in lift and drag with angle of attack are not significant.   

 

 

Figure 2: Aerodynamic lift and drag of Sponson A in free stream   
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2.1 (b) Sponson A in Ground Effect 

To determine the aerodynamic characteristics of Sponson A in ground effect a 

second model was manufactured. This model was placed below the sponson being 

measured to simulate the symmetric ground plane as shown in Appendix A. The 

separation distance was measured between the back of the two bottom running 

surfaces of the sponsons. The measured separation distance between the sponsons is 

equivalent to twice the distance between the sponson and the symmetric simulated 

ground plane (i.e., the simulated distance above the water surface is half of the 

separation distance). 

As shown in Figure 3, at an elevation of 10 mm, the lift coefficient variance 

between 1° and 7° angle of attack was approximately 0.03, similar to the variance in 

lift coefficient in free stream. The change in lift force with angle of attack was not 

significant in ground effect, therefore Sponson A meets the stability criteria for being 

essentially aerodynamically neutral also in ground effect. For higher angles of attack, 

the lift force decreased with increasing elevation, also making the sponson height 

stable; this will be discussed in more detail in conjunction with Sponson B. 

The total drag area (Figure 4) did have a dependence upon angle of attack, 

which is unfavorable, however the dependence was small for small angles of attack.  

 



10 

  

 

Figure 3: Aerodynamic lift for Sponson A in ground effect 

 

 

Figure 4: Aerodynamic drag for Sponson A in ground effect  
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2.2 Eagle SGX-45  

The Eagle SGX-45 is a modern RC boat capable of speeds approaching 

200km/hr. The model boat is an outrigger with an engine mounted in the center hull 

and a prop mounted at the rear of the center hull. It is commonly used for RC boat 

racing.  

Sponsons from the Eagle SGX-45 were purchased and mounted with 

attachments for use in the wind tunnel. The attachments were made to be small and at 

the rear of the models to minimally interfere with the sponson aerodynamics. The 

SGX-45 sponsons are shown in Figure 5. Each sponson had a maximum width of 70 

mm and a length of 424 mm with a planform area of 0.0257 m2. Compared to the 

planform area of Sponson A (0.0236 m2) the difference was less than 10%.  

 

 

Figure 5: Sponson from commercially available RC outrigger race boat, the Eagle 

SGX-45.   
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2.2 (a)  SGX-45 Sponson in Free Stream 

As shown in Figure 6, the coefficient of lift for the Eagle SGX-45 sponson in 

free stream (without ground effect) is heavily dependent upon angle of attack (again 

defined between the water surface and the sponson's bottom running surface). 

Between 0° and 10° the lift coefficient varied between approximately -0.015 and 

0.090, a change of 0.105. Between 0° and 10° Sponson A varied 0.027, or about a 

quarter of the amount of the SGX-45 sponson variance in lift coefficient. The total 

drag area of the Eagle sponson, shown in Figure 7, was also dependent on angle of 

attack, having a total drag area of approximately 0.00115 m2 at 0° and 0.00155 m2 at 

10° (an increase of 35%).  

The lift and drag of Sponson A depends much less on angle of attack than the 

SGX-45 sponson. Also the total drag area of Sponson A was approximately 40% less 

than the SGX-45 sponson at low angles of attack in free stream. The reduced drag 

advantage increased with increasing angle of attack. In free stream, the SGX-45 

sponson is far from aerodynamically neutral. Due to the strong dependence of lift on 

angle of attack, the sponson would move the aerodynamic center forward and thus 

contribute to longitudinal instability in pitch.  
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Figure 6: Aerodynamic lift of Sponson A and SGX-45 sponson in free stream 

 

 

 
Figure 7: Aerodynamic drag of Sponson A and SGX-45 sponson in free stream 
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2.2 (b)  SGX-45 Sponson in Ground Effect  

To test the SGX-45 sponson in ground effect as a function of angle of attack 

and elevation above the water surface the reflection method was again used. The 

SGX-45 right sponson was mounted to the sting probe and the SGX-45 left sponson (a 

mirror of the right sponson) was mounted upside down underneath the right sponson. 

The results of testing the SGX-45 sponson at multiple angles of attack and at varying 

heights above the simulated water surface are shown in Figure 8 and Figure 9. 

 

 

Figure 8: Aerodynamic lift for the Eagle SGX-45 sponson in ground effect 
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Figure 9: Aerodynamic drag for Eagle SGX-45 sponson in ground effect 

 

 

The lift coefficient was dependent upon angle of attack in ground effect for the 

SGX-45 sponson. At 12.5 mm elevation above the water surface the lift coefficient 

varied from -0.037 to 0.032 for angles from -0.5° to 6.7°. The lift coefficient also 

increased as the elevation above the water surface increased. This is an unfavorable 

result as will be discussed in more detail in the next section. The total drag area of the 

SGX-45 sponson was also dependent upon angle of attack in ground effect. The drag 

increased over 20% between -0.5° and 6.7° angle of attack. The SGX-45 sponson is 

not aerodynamically neutral in ground effect either. 

Sponson A had approximately 43% the variance in lift coefficient (0.03) of the 

SGX-45 sponson (0.07) between 1° and 7° at 10 mm elevation. The lift coefficient for 

Sponson A is thus less dependent of angle of attack than the SGX-45 sponson in 

ground effect.  
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Sponson A had less drag for every angle of attack at each separation distance, 

Figure 4 and Figure 9. The SGX-45 sponson had approximately 30% more drag than 

Sponson A. This effect is favorable for Sponson A as less drag on the sponsons 

increases boat efficiency. 

 

3. Aerodynamic Lift and Sponson B 

Sponson B was designed with a completely different set of goals. This sponson 

was designed for relatively calm water where pitch excursions of the boat are expected 

to be small. The goal was to get essentially all required lift of the sponson from 

aerodynamics. In other words, the sponson should be flying over the water with no 

part touching the water surface. The total drag would then be expected to be extremely 

low. The main requirement apart from large aerodynamic lift and low drag is that the 

sponsons should remain at a desired altitude above the surface in a stable fashion. This 

requires that the lift increases when the sponson approaches the water surface, and that 

it decreases when the sponson climbs to higher elevations. For a sponson to maintain a 

stable height above the water surface, the slope of the lift coefficient as a function of 

increasing elevation must be negative: 

𝜕𝐿

𝜕ℎ
< 0 

 

where h is the elevation (or the distance between the trailing edge of the sponson's 

bottom and the water surface, disregarding the end plates). To achieve this objective a 
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sponson in the shape of a small aspect ratio wing with end plates was created. The end 

plates force the flow to be relatively two-dimensional (2D) when in close proximity to 

the water surface. Air underneath the airfoil is forced into a channel bounded by the 

end plates, the water surface, and the airfoil. As the height above the water is 

increased the 2D channel is allowed to disperse into three-dimensional (3D) flow. The 

2D flow was expected to yield higher lift than the 3D flow, thus being able to provide 

the desired lift reduction with increasing altitude.  

The airfoil NACA-4418 was chosen due to its relatively flat bottom surface at 

moderate angles of attack. A wooden model (and later a PLA rapid prototype plastic 

model) was created. The planform area was 0.023187 m2 and the chord and width (or 

wingspan) were 152.27 mm. This results in an aspect ratio of 1, as shown in the 

equation below: 

𝐴𝑅 =
𝑏2

𝑆
 

 

where b is span and S is planform area.  
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3.1 Sponson B in Free Stream 

Sponson B without end plates was first tested in free stream in the wind tunnel 

at various angles of attack. From these results, shown in Figure 10, the highest 

lift/drag ratio was found to occur at approximately 5.5° angle of attack. End plates 

were created for the NACA-4418 airfoil at this angle to maximize lift/drag ratio for 

Sponson B. The end plates on the airfoil can be seen in Appendix A. 

 

 

Figure 10: Lift/drag ratio for Sponson B in free stream 

 

For the NACA-4418 sponson in free stream the ∂CL/∂α was found to be 

approximately 0.034 deg-1 without the end plates and 0.046 deg-1 with the end plates, a 

35% increase. The lift coefficient was also found to increase with the addition of the 

end plates. With end plates the CL was 64% higher at 0° angle of attack.  
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3.2 Sponson B in Ground Effect with and without End Plates 

The potential advantages of ground effect aerodynamics are clearly shown in 

Figure 11. When the airfoil is flying very close to the simulated ground plane (i.e. the 

water surface) the drag is low and the lift is high. As the elevation is increased the 

drag increases and the lift decreases. Both with and without end plates the airfoil has 

the desired characteristic that the aerodynamic lift decreases as the height above the 

water surface increases. 

 

 

Figure 11: Aerodynamic lift and drag for Sponson B at 5.5° angle of attack 

 

The height stability of the sponson without side plates is only found at small 

separation distances. The bare airfoil has a steep negative slope between elevations 

distances of 0mm and about 7mm, Figure 11. An airfoil would likely have difficultly 

running at this small of a distance above the water surface. Any small wave or water 
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disturbance would bring the airfoil into contact with the water, greatly increasing drag 

momentarily.  

Using end plates on Sponson B, the lift/drag ratio was increased significantly 

at elevation heights between 8 mm and 20 mm as shown in Figure 12. Elevation 

heights lower than 8 mm were not possible in the reflection testing as the bottoms of 

the end plates were nearly in contact when the trailing edge was at 8 mm. At 11.5 mm 

elevation, the lift coefficient was increased by approximately 114% by the addition of 

end plates, while the drag was decreased by approximately 8%. Part of the drag is 

likely parasitic and caused by the large end plates. 

 

 

Figure 12: Lift/drag ratio for Sponson B at 5.5° angle of attack with and without end 

plates 

 

As shown in Figure 12, the airfoil with the end plates displayed a more 

favorable negative slope at higher separation distances than the sponson without end 

plates. The negative slope for the sponson with end plates continued for a larger total 
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separation distance than without end plates. The lift/drag slope for the bare sponson 

declined to ∂(L/D)/∂(h) = -0.70 mm-1 at 5 mm elevation while with end plates the 

slope declined to -0.70 mm-1 at approximately 16.5 mm. 

For 5.5° angle of attack Sponson B was found to be height stable in ground 

effect with and without end plates. However, the sponson was height stable at much 

higher elevations with the end plates. Varying angles of attack were not tested with 

end plates, though a similar investigation using smaller end plates suggests negative 

angles of attack could result in instabilities [8]. 
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3.3 Sponson B End Plate Effects Using Flaps 

The trailing edge of the airfoil (Sponson B) was made with a moveable flap. 

The flap length was 30% of the chord, with a pivot on the camber line of the airfoil. 

Trials were performed on Sponson B with the flap at different angles to examine the 

changes in lift and drag from these positions. The flap angle was measured from the 

original chord line. Testing of the airfoil with end plates and flaps down at various 

angles is shown in Figure 13-Figure 15. Note: The models used for flap angle had 

increased parasitic drag due to the attachment of the end plates to the flap models. The 

pivot and attachment screws extended past the end plates as shown in Appendix A.  

 

 

Figure 13: Aerodynamic lift for Sponson B with end plates and flaps down at angles 

from 0° to 30° 
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Figure 14: Aerodynamic drag for Sponson B with end plates and flaps down at angles 

from 0° to 30° 

 

 

Figure 15: Lift/drag ratio for Sponson B with end plates and flaps down at angles 

from 0° to 30° 
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The trailing edge of the flap was even with the bottom of the end plates at 10° 

downward deflection. At flap angles more than 10° downward (i.e. 20° and 30°) the 

flap hung below the bottom of the end plates. The flap hanging below the end plates at 

30° is shown in Appendix A. When the flap was angled below the bottom of the end 

plate the drag was greatly increased (Figure 14), thus reducing the lift/drag ratio 

significantly. Also, as shown in Figure 13, increasing the flap angle past the bottom of 

the plate (10°) reduced the lift coefficient for small elevations.  

The lift/drag ratio at flap angles from 0° to 10° was very similar at elevations 

above 20 mm (Figure 15). At low separation distances the flap at 0° would likely have 

produced the greatest lift/drag ratio however this flap angle could not be tested below 

11 mm elevation due to the physical constraint of the end plates in contact using the 

reflection method. Thus the flap at 0° produced the greatest lift/drag ratio above 11 

mm. Flaps at 6° downward produced the greatest lift/drag ratio between 7 mm and 11 

mm. The 10° downward flap produced the highest lift/drag ratio below 7 mm 

separation distance. In order to maintain a relatively constant lift/drag ratio in flight, 

the flap should not be angled below the bottom edge of the end plates, i.e. 10° 

 

  



25 

  

4. Conclusions 

The goal of creating an aerodynamically neutral sponson was essentially 

achieved. The new sponson design (Sponson A), in lift and drag, was nearly 

independent of angle of attack for angles from approximately 0° to 10° in free stream 

testing. In ground effect, the sponson lift coefficient was found to have some 

dependence on angle of attack at low heights above the water surface, however the 

dependence diminished as the sponson approached free stream conditions. An 

aerodynamically neutral sponson would effectively move the aerodynamic center of 

the boat towards the aft, increasing boat stability in pitch.  

The secondary goal of low drag for sponson A was also accomplished. The 

drag at all angles of attack was significantly lower than that of the commercially 

available SGX-45 sponson. 

Sponson A was also found to have a negative slope of lift coefficient vs. 

elevation above the water surface at higher angles of attack. This effect is favorable as 

it would promote height stability of the sponson, bringing it to a neutral height above 

the water surface where the lift force matches the weight.  

The SGX-45 sponson was found to contribute to the aerodynamic longitudinal 

instability of a boat in free stream and in ground effect. The sponsons displayed a 

strong dependence of lift on angle of attack, which would effectively move the 

aerodynamic center of the boat forward, decreasing pitch stability. The sponson also 

displayed a positive slope of the lift coefficient as the height above the water surface 
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was increased. This trend leads to an unstable sponson height above the water surface 

in ground effect. 

Sponson B was designed with the goal to provide considerable aerodynamic 

lift in ground effect, but have the lift reduce drastically as the sponson climbed to 

higher heights. It could then "fly" in a self-regulating fashion a small distance above 

the water. These goals were achieved. The NACA-4418 airfoil at 5.5° angle of attack 

showed height stability as the lift decreased with increasing elevation. However, this 

effect was strong only at a very low elevation above the water surface. Now, addition 

of large end plates to the airfoil resulted in this property (reduction of lift with increase 

in elevation) extending to higher elevations. The end plates also greatly increased the 

lift/drag ratio, especially at low elevations. 

 

5. Future Work 

Sponson A appears to have very favorable and predictable behavior. However, 

for Sponson B a wider range of testing may be desirable. Stability of Sponson B with 

end plates at negative angles of attack should be tested (or avoided) before this kind of 

sponson is run on a prototype as some literature suggests they may become unstable at 

negative angles of attack. Further, smaller end plates could likely be used to obtain a 

similar height stability effect. More testing would be needed to confirm this. 
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Appendix A: Wind Tunnel Testing 

A1: Ground Effect Reflection Method 

Simply testing an object in a wind tunnel at a distance above a flat plate does 

not properly simulate ground effects as the plate (ground) is stationary with respect to 

the object instead of with respect to the wind. To simulate the aerodynamic effects 

between the water surface and the moving sponson the reflection method was used. 

The airfoil being measured was connected to the probing equipment and a mirror 

image model was mounted upside down below the top model. This setup creates a 

horizontal plane of symmetry between the airfoils that, unaffected by boundary layer 

effects, continues at the free stream velocity and thus simulating the ground plane. The 

separation distance between the models is twice the simulated height above the water 

surface. At high angles of attack the refection method can produce slight errors as the 

symmetric simulated ground plane is interrupted by vortices; however, it has still been 

found to be more accurate than a flat plate method [9]. 

 

A2: Model Mounting Methods and Data Collection 

To test a sponson or airfoil in free stream the model was mounted in the 

Lehigh University wind tunnel with a 460 mm x 460 mm test section. The model was 

attached to an Aerolab 3-component internal strain gage force / moment balance, 

model AEROLAB EWT “Pistol Grip” Sting Balance. A custom probe mounting 
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fixture, with adjustable model angles of attack and a separation distance screw was 

manufactured and mounted in the wind tunnel as shown in Figure A1. 

 

 

Figure A1: Sting Probe and model mounting fixture 

 

The data from this probe, when processed through a LabView program, output 

a lift force and drag force. The lift force and drag force of the model were measured at 

three different speeds spanning the range of the wind tunnel capability, 14.4 m/s, 21.7 

m/s, and 29.3 m/s. The max wind speed was chosen due to vibrations caused at higher 

speeds. These vibrations were due to the fixture setup and not the stability of the 
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sponsons. The velocity of the wind was calibrated using a pitot tube and a manometer. 

The angle of attack for sponsons was measured from the bottom running surface of the 

sponson with respect to the horizontal. For airfoils, the angle of attack was measured 

between the chord line and the horizontal. 

To test a sponson or airfoil in ground effect, the model was mounted using the 

free stream procedure then a second mirror model was mounted upside down 

underneath the model being measured. This second model was moved up and down 

(simulating varying heights above the water surface) using a linear slider on the 

attachment to the model. Sponson A reflection method testing is shown in Figure A2. 

Sponson B reflection method testing is shown A3. Sponson B with flaps down 

reflection method testing is shown in Figure A4. 

 

 

 

Figure A2: Sponson A (top) and its mirror image (bottom). Only the top model was 

mounted to the force balance. 
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Figure A3: Sponson B (top) and its mirror image (bottom). Only the top model was 

mounted to the force balance. 

 

 

Figure A4: Sponson B (top) and its mirror image (bottom) with end plates and flaps 

deflected down 30° from original chord line 
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A3: Data Reduction 

The lift force and drag force data was reduced to lift coefficient (CL), total drag 

area (FoT), and lift/drag ratio (L/D). These values were then averaged between the 

three air velocities for each angle of attack or elevation. The coefficient of lift (CL) is 

defined as: 

𝐶𝐿 =
𝐿

𝑞 ∗ 𝑆
 

 

where S is the projected planform area of the sponson, and q is dynamic pressure,  

 

𝑞 =
1

2
𝜌air𝑣

2 

 

where ρair is air density and v is airspeed.  

The total drag area (FoT) is defined in this paper as  

 

𝐹oT =
𝐷

𝑞
 

 

where D is total (measured) aerodynamic drag. Note that in this paper FoT is not zero-

lift drag area, but total drag area (including induced drag).  
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