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Abstract 

This work investigates the single-relaxation-time Lattice Boltzmann Method and how to 

develop it into a full hydrodynamic and thermal modeling scheme. First the single-

relaxation time isothermal Lattice Boltzmann Method is outlined, beginning with the 

fundamentals of the lattice model and then proceeding through the necessary governing 

equations for the two-dimensional, nine-directional lattice. The governing equations are 

then presented in a discretized form to be used for simulation, followed by treatment of 

boundary conditions. Fluid and dimensional properties are explained in terms of both 

lattice units and physical units via conversion factors. Next is an introduction to thermal 

Lattice Boltzmann, discussing the changes as well as going through new governing 

equations pertaining to the internal energy density distribution function. Then the thermal 

scheme is shown in discretized form along with thermal boundary conditions and updated 

hydrodynamic boundary conditions. Fluid properties are reviewed alongside thermal 

properties, as they are essential to know when designing a simulation. Finally, results are 

shown for some two-dimensional channel flow geometries with hot and cold surfaces: a 

uniform-width channel, a channel that undergoes sudden expansion, and a channel 

featuring sudden contraction. The flow within the channel could be dominated by the 

density stratification or the forced flow introduced at the inlet. These mixed flows of 

natural and forced convection are characterized by the Reynolds and Rayleigh numbers, 

the Rayleigh numbers above critical value to allow for formation of natural convection 
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cells when experiencing low-Reynolds flows. The results are presented as contour plots 

of temperature and stream function. 

Introduction 

The Lattice Boltzmann Method (LBM) is a numerical method for fluid simulation with a 

relatively young history, not gaining popularity until the 1990’s. The backbone of LBM 

is the Boltzmann Equation, which dictates particle transportation on a microscopic level, 

but can be used to find macroscopic quantities such as the velocity or temperature fields 

of a moving fluid. LBM is considered a modern descendant of the Lattice Gas Automata 

Method (or HPP Method) developed by Hardy, Pomeau and De Pazzis in the 1970’s 

which modeled the streaming and collision process of discrete particles as they moved 

amongst each other [Hardy, 1976]. The primary improvement of LBM over the HPP 

Method is that LBM no longer manages a large quantity of individual particles, but 

instead works in terms of a density distribution function that represents the number of 

particles per unit volume that are travelling in each direction along a lattice [Succi, 1991]. 

Interest in LBM soon grew as it was found to provide accurate results just as efficiently 

as pre-existing computational schemes such as spectral methods [Martínez, 1994; Hou, 

1995]. 

Early attempts at a thermal model, for scenarios involving heat transfer, included that of a 

multispeed approach and a passive-scalar approach. The goal of the multispeed approach 

was to get a thermal evolution equation using only the density distribution, but this 
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required accounting for higher-order velocity terms and also had a relatively narrow 

range of numerical stability [Alexander, 1993; McNamara, 1995]. On the other hand, 

the passive-scalar approach worked under the assumption that both viscous heating and 

compression work were negligible, and thus the temperature could be modeled by 

evolving a separate distribution function independent of the typical density distribution 

function. Although these assumptions gave it a limited range of use, it proved to be 

accurate within this range while maintaining better numerical stability compared to the 

multispeed approach [Bartoloni, 1993; Shan, 1997; Eggels, 1995]. 

The search was on for a thermal method that could account for viscous heating and 

compression work while achieving a wide range of stability. After further derivation of 

the Boltzmann Equation, an expression for the internal energy distribution was found that 

could be used as a discretized evolution equation, capable of accounting for all heat 

transfer while still possessing the same amount of numerical stability and similar 

execution to the passive-scalar approach [He, 1997 a; Abe, 1997]. This discovery was 

soon put to work and used to tackle some benchmark problems such as thermal Couette 

flow and Rayleigh-Bénard convection [He, 1998]. 

The subsequent sections will describe the original single-relaxation-time Lattice 

Boltzmann Method made purely for hydrodynamic modeling, followed by an explanation 

of the He-Chen-Doolen adaptation that accounts for full hydrodynamic and thermal flow. 
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The Single-Relaxation-Time Lattice Boltzmann Method 

The Lattice Model 

LBM simulations operate on a discretized lattice structure of nodes. The lattice can be 

described using a naming system that consists of two properties: the dimensions of the 

lattice, and the number of directions to be considered at each node. This thesis shall cover 

problems conducted on square grid arrangements under a D2Q9 architecture, meaning 

two-dimensional lattices with nine directions analyzed at each node. For two-dimensional 

simulations, D2Q9 is the most commonly used configuration and is shown below in 

Figure 1. 

 

Figure 1  D2Q9 arrangement 

The lattice possesses a characteristic lattice speed �. On a square grid, � = ��/��, where 

�� is the orthogonal spacing between lattice nodes and �� is the lattice time-step size 

[Succi, 2001]. In many simulations �� and �� are both chosen to be equal to 1 for the 
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sake of simplicity. As will be explained later, �� and �� can take on other values if the 

goal is to simulate a model with specified physical properties or achieve greater 

numerical stability when needed. The parameter �� is known as the lattice sound speed 
and is equal to �/√3. 
Governing Equations 

The foundation of LBM simulation is the Boltzmann Equation. Expressed in terms of a 

fluid’s single-particle density distribution, this evolution equation is written as 

��� + �� ⋅ � � = !��  (1) 

where � is the particle density distribution, � is the microscopic (particle) velocity, and ! 
is the collision operator. The distribution function � represents the particles per unit 
volume that possess a microscopic velocity between � and � + d�. Then the macroscopic 
density # and bulk velocity $ are calculated using the first and second moments of � 
# = ∫ � d� (2) 

#$ = ∫ �� d� (3) 

The collision term ! is a rather complex term, and for most common purposes can be 
replaced with a single-relaxation-time approximation. This style of LBM is referred to as 

single-relaxation-time LBM, or SRTLBM. The collision approximation is known as the 

Bhatnagar-Gross-Krook (BGK) model [Bhatnagar, 1954] 
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!�� = −� − �'(
)  (4) 

The constant ) is the relaxation time of the model and �'( is the equilibrium distribution 

function. In general form, the equilibrium distribution is expressed as a Maxwell-

Boltzmann distribution 

�'( = #
�2*�+ ,∕. �/��/$ 0.12  (5) 

Here, � is the gas constant, + is the temperature, and 3 is the dimension of the model. In 
isothermal LBM, the product �+ is simply equal to �./3. More information on these 
governing equations can be found in the work of He and Luo [He, 1997 b]. 

Discretized Equations 

Combining equations (1) and (4), the discretized evolution equation is represented as 

��4 + 5��, 6 + �� − ��4, 6 = −1
) 7��4, 6 − �'(�4, 6 8 (6) 

where 6 is the current lattice time and 5 is the lattice microscopic velocity vector. It 
should be noted here that for the D2Q9 arrangement (Fig. 1), both � and 5 are each split 
into 9 directional components which shall be denoted as 0 ≤ : ≤ 8. The full vector 5 is 
then 

5 = <0 � 00 0 �				−� 0 �0 −� �				
−� −� �� −� −�> (7) 
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where each column represents 5?, the x- and y-components for a single direction :. 
Similarly, each direction of � is written as �? and essentially represents the particles per 
unit volume travelling in the direction :. Since SRTLBM is a completely explicit 
method, and each direction : is calculated individually at each node during simulation, 
the discretized evolution equation can be more appropriately expressed as 

�?�4 + 5?��, 6 + �� = �?�4, 6 − 1
) @�?�4, 6 − �?'(�4, 6 A (8) 

Note that equation (8) will not work for some directions of �? along boundaries, as it 
would require knowing �? at a non-fluid node. The next section will describe boundary 
conditions that can be applied at such nodes in order to update values for the remaining 

�? there. Once all �? have been calculated at all nodes for the current iteration, the density 
# and bulk velocity $ can then be updated at each node: 

# = B�?
?

 (9) 

#$ = B5?�?
?

 (10) 

Now the only variable left to update before the next time-step is �'( for each node in 

each direction :. The discretized form of �?'( is represented by the Chapman-Enskog 
expansion 

�?'( = C?# D1 + 35? ∙ $
�. + 9

2
�5? ∙ $ .

�G − 3
2
$.
�.H (11) 
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where C? is a direction-based weighting coefficient [Succi, 2001] 

I = J49
1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36L (12) 

With new values of �'( everywhere, the time-step is now increased and the simulation 

continues on to the next iteration. 

Hydrodynamic Boundary Conditions 

There are many boundary nodes within a lattice where equation (8) cannot be used to 

solve for �? in all directions, as certain directions would depend on nodes in which there 
is no fluid (a solid wall boundary, for example). Using periodic boundaries bypasses this 

problem, as the unknown directions for a node on one boundary are simply equal to the 

known directions for the corresponding node on the opposite boundary. For all other 

boundaries where either the density or velocity is known, equations (9) and (10) still hold 

true and can be useful for such situations. Expanding equations (9) and (10), as well as 

separating equation (10) into an x-component relation and y-component relation, leads to 

three equations at one’s disposal: 

# = �M + �N + �. + �O + �G + �P + �Q + �R + �S (13) 

# T�� = �N + �P + �S − �O − �Q − �R (14) 

# TU� = �. + �P + �Q − �G − �R − �S (15) 
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In most cases, the above three equations are insufficient when trying to solve for the 

unknown �?’s, especially since the node’s density or velocity may be unknown as well. 
He and Zou developed a simple way to remedy this by assuming that the non-equilibrium 

part of the density distribution normal to the boundary will bounce back in the opposite 

direction [Zou, 1997]. In other words, for two opposing directions V and W at a boundary 
node: 

�X − �X'( = �Y − �Y'( (16) 

This non-equilibrium bounce-back is a widely-used condition and works very well in 

most places. For instance, consider a node along the top solid wall of a two-dimensional 

channel. Assuming a stationary no-slip boundary, both T� and TU must be zero. After 

evolution using equation (8), the remaining unknowns are �G, �R, �S, and #. Applying the 
non-equilibrium bounce-back normal to the wall gives �G − �G'( = �. − �.'(. Since T� 

and TU are both zero, �G'( = �.'( and thus �G = �.. Equations (13), (14), and (15) can then 
be solved to obtain �R, �S, and #. 
Another common boundary condition is a specified density or velocity at an opening such 

as an inlet or outlet. For example, take the case of a two-dimensional channel once again, 

this time focusing on a node along the inlet on the left end. Suppose that the velocity is 

specified as T� = � and TU = 0, making the unknowns �N, �P, �S, and #. The non-
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equilibrium bounce-back condition states that �N = �O − ��O'( − �N'( , this time resulting 
in �N = �O + .

O # Z
[ . Combine this with equations (13-15) to solve for the four unknowns. 

Corner nodes can be solved in a very similar fashion. Now consider the upper-left corner 

of the same channel, where the inlet meets the top wall. Since this corner node is 

technically along the top wall, the no-slip condition dictates that T� and TU are zero. The 

unknown variables are �N, �G, �P, �R, �S, and #. Non-equilibrium bounce-back can be 
applied in both the horizontal and vertical directions, since both are normal to a 

boundary, giving �N = �O and �G = �.. Combining this with equations (14) and (15) 
reveals that �P = �R and �S = �Q, allowing for solution of the system. 
Property Calculation and Relation to Physical Units 

When the time comes to run a SRTLBM simulation, there is often a desire to model a 

specific scenario given non-dimensional parameters or physical properties. The most 

common non-dimensional quantities specified are the Reynolds number �� and lattice 
Mach number \�, each given by 

�� = �]
^  (17) 

\� = |$|
�� = √3 |$|

�  (18) 

where � is the characteristic velocity, ] is the characteristic length (for 2D channel flow, 
this is the height of the channel), and ^ is the kinematic viscosity. In lattice units, the 
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channel height ] is really the number of nodes spanning across the channel multiplied by 
��, since �� is the “lattice distance” between each node, resulting in a lattice-unit length. 

The kinematic viscosity given in terms of lattice units [He, 1997 b] is 

^ = `) − 1
2a ��.�� = �2) − 1 

6
��.��  

(19) 

Please note that a slightly different expression is used for ^ in the Thermal SRT method 
discussed later in this paper. The relaxation time ) has a significant impact on the 
stability of the simulation, and must be greater than ½. As long as the simulation is stable, 

) can be selected in order to satisfy the specified constraints; the range for best 
performance is typically between 0.6 and 0.8 for isothermal SRTLBM. 

For incompressible flow, it is important to keep the Mach number below 0.1 or 0.15 for 

accurate results. This is another constraint to keep in mind when setting up a simulation. 

All in all, the goal of running a successful simulation in the least amount of time is to 

model the designated Reynolds number while using the smallest node grid possible, 

while making sure that ) is within a stable range and the flow is incompressible 
throughout the domain. 

Since all SRTLBM variables have been presented in terms of lattice units up to now, 

developing a correlation to physical units would prove more meaningful to those 

interested in realistic scenarios. Of course, all non-dimensional quantities such as the 

Reynolds number still hold whether expressed in lattice units or physical units. Thus one 
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useful relationship is 
Zb
c = Zdbd

cd , where the left side is the Reynolds number in terms of 

lattice quantities and the right-hand side in terms of physical quantities. To differentiate 

between lattice and physical units in this work, the author will designate all physical 

quantities with the subscript e. The characteristic length ]f is divisible by the number of 

node spaces along its characteristic direction to give ��,f, the representative physical 

spacing between each node in the square lattice. One can then define a length conversion 

factor ]M = gh,d
gh  [Llewellin, 2010; Latt, 2008]. Using a time conversion factor 6M = gi,d

gi  

as the ratio of actual time passing between each time-step to “lattice time” between each 

step also proves beneficial. These form a relationship between the viscosities, ^f = bj0
�j ^, 

as well as a relationship between the characteristic velocities, �f = bj
�j �. In addition, a 

mass conversion factor \M can be conceived such that #f = kj
bjl #. These unit conversion 

relations make it possible to set up a simulation by first selecting a particular set of 

desired physical properties, then deriving the necessary lattice parameters to use during 

execution. If the chosen parameter set does not produce a stable simulation, then the user 

will have to adjust elements such as the number of nodes, time-step size, and node 

spacing. 
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Thermal SRTLBM: The Novel Thermal Model 

Introduction to Thermal LBM 

The proceeding explanation of thermal LBM will follow the “novel thermal model” 

scheme proposed by He, Chen, and Doolen [He, 1998]. The foundation of this method is 

to introduce a second distribution function m, which is the internal energy density 
distribution within the lattice. The function m shares the same dimensions and directions 
as �, and undergoes evolution similar to �. Some other changes occur due to the fact that 
the model is no longer isothermal; for instance, the lattice speed and lattice sound speed, 

� and ��, will now vary at each node as they are dependent on the local temperature. This 
means that the microscopic velocity vector 5 can also vary throughout the lattice now as 
it is dependent on �. The lattice speed � at a node is � = √3�+ and the sound speed is 
�� = √�+, where � is the gas constant and + is the node’s local temperature. The 
relationship to the constants �� and �� still exists as �[nop = gh

gi , where �[nop is the 
characteristic lattice speed defined by a characteristic temperature +[nop: 

�[nop = ���� = q3�+[nop (20) 

Likewise, the characteristic sound speed is ��,[nop = q�+[nop. The characteristic 

quantities play an important role in setting up parameters for a thermal simulation, to be 

discussed later on; the following is an explanation of the thermal method itself. 
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Governing Equations 

In thermal LBM, the evolution equation defined in equation (1) still holds for the particle 

density distribution �, but now with the addition of an external force term r: 
��� + �� ⋅ � � = !�� + r (21) 

The force term r is based on s, a vector signifying the external force per unit mass: 

r = s ∙ �� − $ 
�+ �'( (22) 

Taking the first and second moments of r gives ∫rd� = 0 and ∫r�d� = #s, 
respectively. The relaxation time )t for evolution of � is now designated with a subscript 
because there is a separate relaxation time )u for the evolution of m. 
The assumption of a constant collision operator in the BGK approximation produces a 

second-order truncation error. Normally the viscosity ^ is given by ^ = )t�+ but 
modifying this relationship into equation (19) absorbs this error for isothermal LBM. In 

thermal LBM however, viscosity plays a part in the energy evolution as well via a 

viscous heating term. This viscous heating term is based on a simpler first-order 

approximation of the Boltzmann Equation and thus does not experience the same second-

order truncation error, so the viscosity must remain ^ = )t�+ for viscous heating. A 
technique used to address the truncation error without modifying the viscosity equation 

above is to perform a second-order temporal integration on the Boltzmann Equation to 

form a new evolution equation for �: 
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��4 + ���, �, 6 + �� − ��4, �, 6 
= − ��2)t 7��4 + ���, �, 6 + �� − �'(�4 + ���, �, 6 + �� 8

− ��2)t 7��4, �, 6 − �'(�4, �, 6 8 + ��2 r�4 + ���, �, 6 + �� + ��2 r�4, �, 6  
(23) 

This new version of the density evolution is both long-winded and implicit, but a quick 

substitution solves both of these issues: 

�̅ = � + ��2)t �� − �'( − ��2 r (24) 

The � ̅substitution produces the more manageable density evolution equation: 
��̅4 + ���, �, 6 + �� − ��̅4, �, 6 

= − ��
)t + �� 2w

@��̅4, �, 6 − �'(�4, �, 6 A + )t��
)t + �� 2w

r�4, �, 6  (25) 

On the other hand, the derivation of the energy density distribution begins by going 

another step beyond equations (2) and (3) and now taking the third moment of �: 
#3�+

2 = x �� − $ .
2 �d� (26) 

Again, 3 is the dimension of the lattice (two-dimensional for this thesis), � is the gas 
constant, and + is the local temperature. The internal energy density distribution m is then 
defined to be 
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m = �� − $ .
2 � (27) 

so that 

#3�+
2 = xmd� (28) 

The Boltzmann Equation adjusted to represent the evolution of m is 

��m + �� ∙ ∇ m = �� − $ .
2 !�� − �z (29) 

where the collision term can be approximated as 

�� − $ .
2 !�� = −m − m'(

)u  (30) 

and the equilibrium energy distribution is 

m'( = #�� − $ .
2�2*�+ ,/. �/��/$ 0.12 = �� − $ .

2 �'( (31) 

The term �z on the right-hand side of equation (29) represents viscous heat dissipation, 
where 

z = �� − $ ∙ 7��$ + �� ∙ ∇ $8 (32) 

although the problems presented in this paper will neglect the effects of viscous heating. 

The evolution equation for m undergoes the same time-wise integration that created 
equation (23). The result is very similar to (23) and also requires a substitution in order to 

maintain explicitness: 
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m̅ = m + ��2)u �m − m'( + ��2 �z (33) 

Substituting in m̅ produces an energy evolution equation in terms of m̅: 
m̅�4 + ���, �, 6 + �� − m̅�4, �, 6 

= − ��
)u + �� 2w

7m̅�4, �, 6 − m'(�4, �, 6 8 − )u��
)u + �� 2w

��4, �, 6 z�4, �, 6  (34) 

where )u is the relaxation time for the energy density collision operator. 
Discretized Equations 

From equation (25), the discretized evolution of � ̅is 
�?̅�4 + 5?��, 6 + �� 

= �?̅�4, 6 − ��
)t + �� 2w

@�?̅�4, 6 − �?'(�4, 6 A + )t��
)t + �� 2w

r?�4, 6  (35) 

and from (34) the discretized evolution of m̅ is 
m̅?�4 + 5?��, 6 + �� 

= m̅?�4, 6 − ��
)u + �� 2w

@m̅?�4, 6 − m?'(�4, 6 A − )u��
)u + �� 2w

�?�4, 6 z?�4, 6  (36) 

The particle velocity vector 5 still follows its definition given by equation (7), except that 
the lattice speed � is no longer a constant throughout the lattice and is now dependent on 
the local node temperature: � = √3�+. 
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The directional force r? is dependent on s, the external force per unit mass. In the 
following study, s is the buoyancy force based on the Boussinesq approximation 

s = mMW�+ − +| } (37) 

where mM is gravitational acceleration, W is the coefficient of thermal expansion, +| is the 
characteristic temperature, and } is the unit vector in the direction opposing gravity. Then 
the directional force r? is represented by 

r? = s ∙ �5? − $ 
�+ �?'( (38) 

Note that the viscous heating term �z in equation (36) is based on � and not �.̅ If the 
inclusion of viscous heat effects is necessary for a simulation, then � can be calculated by 
simply reversing the substitution introduced in equation (24): 

�? = )t�?̅ + ��2 �?'( + )t��2 r?
)t + ��2

 (39) 

The second component of the viscous heat dissipation term, z, is 
z = �5? − $ ∙ 7��$ + �5? ∙ ∇ $8 (40) 

which will require the partial derivatives ��$, ��$, and �U$ for 2D simulation. These can 
be calculated each time-step by using an approximation technique like finite differencing. 

The density #, bulk velocity $, and temperature + of a node are then respectively 
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# = B�?̅
?

 (41) 

#$ = B5?�?̅
?

+ #s��2  (42) 

#3�+
2 = Bm̅?

?
− ��2 B�?z?

?
 (43) 

The last required calculation for the time-step is the determination of �'( and m'(. This 

can be done easily by calculating all directions of �'( using equation (11) which still 

holds true for thermal LBM, then finding m'( as 

m?'( = �5? − $ .
2 �?'( (44) 

Hydrodynamic and Thermal Boundary Conditions 

Thermal LBM simulation requires both hydrodynamic and thermal boundary conditions. 

Fortunately, the hydrodynamic boundary conditions developed for isothermal LBM 

earlier still apply. Equations (13-16) are still functional except for one slight difference: 

the y-component balance of equation (15) would now have the term 
~sgi

.  added to the 

end. This is due to buoyancy modifying the y-direction of the velocity field as seen in 

equation (42). 

The approach for thermal boundary conditions described here is rather straightforward 

guess-correction method [Liu, 2010]. The first step is to specify the desired local 

boundary temperature +�. For boundaries where the condition is not constant-
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temperature, then +� can be determined through an approximation based on surrounding 

nodes in such a way to satisfy the condition. Next, a preliminary guess +∗ for node 

temperature is made by using equation (43) and replacing each unknown m̅? direction 

with a guess value m̅?∗ . Then define a correction factor �[ as 

�[ = #3�
2

�+� − +∗ 
∑ C??  (45) 

where ∑ C??  is the sum of the weighting coefficients C? for each of the unknown m̅? 

directions involved. For instance, for a south-side wall with unknown m̅? in the directions 

: = 2,5,6, then ∑ C?? = C. + CP + CQ. Corner nodes can be handled the same way but 

will have more unknown directions to solve for. The final step is to use �[ to correct each 

of the m̅?∗  guess values: 

m̅? = m̅?∗ + C?�[ (46) 

There are a few different methods for selecting the initial guesses m̅?∗ , all of which have 

been shown to have negligible differences between each other when used for simulation: 

m̅?∗�4, 6 = m̅?�4,−5?, 6 , m̅?∗�4, 6 = m̅?�4, 5?, 6 − �� , m̅?∗�4, 6 = m?'(�4, 5?, 6 , and 
m̅?∗�4, 6 = 0. The author chose to consistently use the condition m̅?∗�4, 6 = m?'( for this 

work. 

Property Calculation 

It is time to revisit useful property relations, but now for thermal LBM. To begin, the 

Reynolds number and the Mach number shown by equations (17) and (18) still hold as 
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such. However, as explained previously, the kinematic viscosity ^ is no longer given by 
equation (19) but rather by 

^ = )t�+ (47) 

Similarly, the coefficient of thermal conductivity � is 

� = 3 + 2
3 )u�+ (48) 

or merely � =2)u�+ in two dimensions. This results in a simple expression for the 
Prandtl number as �� = c

� = ��
.��. 

The scenarios presented in this paper will deal with convection-driven situations 

characterized by their Rayleigh number, given as 

�� = mMW∆+]O
^�  (49) 

where the characteristic length ] is the height of the channel and ∆+ is the temperature 
difference between hot and cold surfaces. This is further constrained by using an 

incompressibility condition, mMW∆+] = 0.1, suggested by He et al. [He, 1998]. 

The buoyancy acceleration magnitude is mMW�+ − +|  as seen in equation (37), where 
the characteristic temperature +| is the mean temperature between the specified hot and 
cold surfaces. +| is also used as the characteristic temperature for obtaining a �[nop, 
��,[nop, and ^[nop, such that �� = Zb

c���� and �[nop = gh
gi   (see equation 20). In this thermal 
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scheme, both relaxation times )t and )u should be at least 0.1 to avoid numerical 
instability in simulations, not to be confused with the recommendation given earlier for 

isothermal LBM. Since the constants � and W are always seen in conjunction with +, they 
are both set to be 1 for all proceeding simulations presented here. This is acceptable since 

physical properties will not be specified. 

Thermal LBM Simulation Results 

Benchmark Tests 

The time has come to demonstrate some of the capabilities of thermal LBM. To serve as  

benchmark tests, simulations were performed for two elementary flows: isothermal 

Poiseuille flow to exhibit purely hydrodynamic behavior, and Rayleigh-Bénard 

convection to show purely heat-driven convective flow. 

The isothermal Poiseuille flow example to be demonstrated here was modeled as a two-

dimensional channel of uniform width, with a uniform (characteristic) velocity specified 

at the inlet and a constant uniform pressure (density #) specified at the outlet. Both solid 
walls are treated with the no-slip bounce-back condition described previously. Shown 

below in steady-state, a lattice grid size of 300x31 was sufficient to simulate flow with a 

Reynolds number of 30. Other parameters include: �� = �� = 1, )t = 0.15, specified 
��	 = 0.05, and specified #��� = 1. 
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Figure 2 shows the streamlines of the modeled Poiseuille flow in steady-state after about 

20,000 time-steps, as well as the x-directional velocity profile across the width of the 

channel at a location downstream. Two-dimensional Poiseuille flow gives a solved 

solution that the maximum velocity �|o�, occurring through the center of the channel, 

should be 1.5 times the average velocity, in this case 1.5 ∗ ��	 or 0.075. The observed 
data is �|o� = 0.0742 compared to the accepted value of �|o� = 0.075, giving an error 
of just 1.1% even for a relatively low lattice resolution of 300x31. 

 

 

Figure 2  Streamlines and x-directional velocity profile for fully-developed Poiseuille 

flow at �� = 30, ��	 = 0.05 
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The second benchmark test, Rayleigh-Bénard convection, was performed in a channel of 

the same shape and grid dimensions, but this time with near-zero specified motion. The 

inlet and top wall have a constant temperature +[��� and the bottom wall has a constant 

temperature +n��. Parameters were chosen to model a Rayleigh number of 3,000 as this is 

well beyond the critical value of 1707 and should give rise to convection cells. For a 

channel aspect ratio of 10 such as the one being simulated, there should be enough space 

for five convection cells to appear, and the results show exactly that. Key parameters 

include: �� = �� = 1, )u = 0.15, specified +n�� = 0.383�, +[��� = 0.283�, and mM = 0.03�. 
The fixed outlet density #��� is once again set to 1 and will remain so for all future 

simulations discussed. 

See figures 4, 5, and 6 below for temperature, vorticity, and stream function contours, 

respectively. All temperature contour plots displayed in this paper will show temperatures 

non-dimensionally as 
2/2����

2��i/2����. Also note that stream function values near the inlet of 

each channel are somewhat distorted due to the boundary condition applied and the 

method of stream function approximation used there. This is currently being investigated 

and fortunately has negligible effect on the rest of the channel. 

As a side-experiment to see if the critical Rayleigh number could be determined using 

thermal LBM, prior simulations were run in a smaller channel were a single convection 

cell was developed with periodic boundary conditions applied to the inlet and outlet. As 

the Rayleigh number approached the range of 1700-1730, simulation time became a 
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serious burden as it required a larger lattice and a longer runtime to see if any motion 

would ever actually occur. Nonetheless, the critical Rayleigh number would fall between 

1700 and 1730 according to the thermal LBM trials; this is within about one percent of 

the actual value.
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Figure 3  Flat-channel temperature contours for Re = 0.1, �� = 3000 
at time steps 1000, 2000, 3000, 4000, 5000, and 6000  
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Vorticity: 3000 and 6000 time steps 

 

 

 

Stream function: 3000 and 6000 time steps 

 

 

Figure 4  Flat-channel vorticity and stream function contours for Re = 0.1, �� = 3000 
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Uniform-Width Channel 

With verification against elementary flows, now some more interesting flows can be 

examined with both pressure-driven and heat-driven motion. The first is a revisit of the 

uniform-width channel as seen in the previous section. Now there is both a specified 

Reynolds number and specified Rayleigh number. The inlet conditions are a specified 

uniform velocity ��	 and constant temperature +[���. The outlet conditions consist of the 

constant density #���, and temperature bounce-back based on a backwards approximation 

using the previous two nodes. Solid walls are again given no-slip bounce-back; the top 

wall is fixed at +[��� and the bottom wall is fixed at +n��. 

The first set of results on this geometry is for �� = 3000, �� = 20. The second set is for 
�� = 3000, �� = 54. It can be seen that for �� = 20, convection cells have more time 
to develop than at �� = 54,	but still get swept away by the pressure-driven flow in the 
channel. 

Data from �� = 20 are shown below in Figures 5 and 6. The lattice grid size is 1000x101 
nodes and key parameters are: �� = 1, �� = 0.5, )t = 0.4125, )u = 0.22727, ��	 =
0.11, mM = 0.01, +n�� = 1.383�, and +[��� = 1.283�. 
The data from �� = 54 are shown below in Figures 7 and 8. The lattice grid size is 
2000x201 nodes and key parameters are: �� = 1, �� = 0.25, )t = 0.138�, )u = 0.16875, 
��	 = 0.2, mM = 0.005, +n�� = 5.383�, and +[��� = 5.283�.
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Figure 5  Flat-channel temperature contours for Re = 20, �� = 3000 
at time steps 2000, 5000, 10000, 15000, 20000, and 30000 
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Figure 6  Flat-channel stream function contours for Re = 20, �� = 3000 
at time steps 2000, 5000, 10000, 15000, 20000, and 30000  
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Figure 7  Flat-channel temperature contours for Re = 54, �� = 3000 
at time steps 5000, 10000, 15000, 20000, 30000, and 40000 
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Figure 8  Flat-channel stream function contours for Re = 54, �� = 3000 
at time steps 5000, 10000, 15000, 20000, 30000, and 40000 
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Channel with Sudden Expansion 

The next geometry to be studied is that of a channel that suddenly doubles in width at a 

position 40% downstream. The top wall is to remain straight and level with constant 

temperature +[��� while the bottom wall undergoes the change in height. The entire 

bottom wall, including the vertical segment located at the drop-off, is kept at constant 

temperature +n��. The inlet and outlet conditions remain the same as before. 

To keep a similar theme going, the three cases simulated on this geometry correspond to 

a Rayleigh number of 3000 and Reynolds numbers of 0.1, 20, and 54. The characteristic 

length is taken to be the full expanded width of the channel downstream, which means 

the Rayleigh number is significantly smaller (well below critical value) in the initial 

narrow section of the channel. This implies that convection cells cannot form within it, as 

will be seen in Figure 9. 

The sudden-expansion channel data for �� = 0.1 is shown below in Figures 9 and 10,  
�� = 20 shown in Figures 11 and 12, and �� = 54 shown in Figures 13 and 14. The 
lattice grid size, as well as all key parameters, share the same values as their uniform-

width geometry counterparts that were modeled previously at the same Rayleigh-

Reynolds combinations.
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Figure 9  Expanded-channel temperature contours for Re = 0.1, �� = 3000 
at time steps 1000, 2000, 3000, 4000, 5000, and 6000 
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Figure 10  Expanded-channel stream function contours for Re = 0.1, �� = 3000 
at time steps 1000, 2000, 3000, 4000, and 5000 
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Figure 11  Expanded-channel temperature contours for Re = 20, �� = 3000 
at time steps 3000, 5000, 8000, 10000, 20000, and 50000 
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Figure 12  Expanded-channel stream function contours for Re = 20, �� = 3000 
at time steps 3000, 5000, 8000, 10000, 20000, and 50000 
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Figure 13  Expanded-channel temperature contours for Re = 54, �� = 3000 
at time steps 15000, 20000, 30000, 40000, 50000, and 75000 



 

39 

 

 

 

 

 

 

Figure 14  Expanded-channel stream function contours for Re = 54, �� = 3000 
at time steps 15000, 20000, 30000, 40000, 50000, and 75000
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Channel with Sudden Contraction 

The final geometry examined here is a channel undergoing sudden contraction at a 

location 60% downstream. The heated bottom wall sharply rises and constricts the 

channel to half of its original width. Boundaries are treated the in the same fashion as 

those for the sudden-expansion channel. The characteristic length is once again the width 

of the widest section of channel, so the Rayleigh number in the constricted section of 

channel near the outlet is well below critical value and similarly does not allow formation 

of convection cells there. 

Lattice dimensions and simulation parameters are still the same values as their 

corresponding Rayleigh-Reynolds combinations shown for the previous geometries. See 

Figures 15 and 16 for �� = 0.1 data, and Figures 17 and 18 for �� = 20 data, both for 
the contracted channel.  
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Figure 15  Contracted-channel temperature contours for Re = 0.1, �� = 3000 
at time steps 1000, 2000, 3000, 4000, 5000, and 6000 
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Figure 16  Contracted-channel stream function contours for Re = 0.1, �� = 3000 
at time steps 1000, 2000, 3000, 4000, and 5000 
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Figure 17  Contracted-channel temperature contours for Re = 20, �� = 3000 
at time steps 3000, 5000, 8000, 10000, 20000, and 50000 
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Figure 18  Contracted-channel stream function contours for Re = 20, �� = 3000 
at time steps 3000, 5000, 8000, 10000, 20000, and 50000 
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Conclusion 

The Lattice Boltzmann method, extended to simulate both hydrodynamic motion and heat 

transfer, has proven to be a powerful and versatile modeling tool. Trials performed 

against accepted elementary flows were shown to be accurate within about 1% error on 

relatively small grid sizes. As illustrated here, thermal LBM can effectively capture the 

behaviors of both natural and forced convection in action. Fairly simple methods for 

applying hydrodynamic and thermal boundary conditions prove to be sufficient for all 

common situations. Relations to physical properties are also determinable if desired. 

There are certainly opportunities to further build on this research, as LBM has many 

more capabilities to improve stability and versatility. Additional techniques include a 

multi-relaxation-time scheme to aid in stability, extension to three-dimensional space, 

conditions for curved and membrane boundaries, evolution and interaction for multiphase 

scenarios, an entropic method for high-Reynolds flows, and much more.  
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