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Abstract

Integrins are a family of transmembrane adhesion proteins that mediate cell attach-

ment to extracellular matrix or to another cell. The T cell LFA-1 integrin and its

interaction with its predominant ligand, ICAM-1, is known to regulate antigen-driven

differentiation of naive T cells into effector T cells, a process that is fundamental

to adaptive immunity. The activation of LFA-1 on effector and naive T cells is still

unclear and requires further investigation for a more detailed understanding. In this

work we quantitatively study primary T cells (both naive and effector) and their

interaction with ICAM-1 using atomic force microscopy (AFM). Measurements show

that adhesion of the effector T cell is in general at least one order of magnitude

higher than that of the naive T cells. OKT3 treatment has a profound impact on T

cell–ICAM-1 interaction, resulting in at least a 2-fold increase in both detachment

force and work. Our conclusions corroborate past research that shows that there is a

higher expression of LFA-1 on effector T cells than naive T cells and that LFA-1 on

effector T cells is predominantly in the high affinity state. Our results also possibly

indicate that a mixed population of high and low affinity LFA-1 is present on naive

cells. Furthermore, given the response to OKT3 treatment, it is likely that it induces

populations of LFA-1 to change from low affinity to high affinity on both effector

and naive T cells. Taken together, our studies reveal in more detail the regulation

and conformational states of high affinity LFA-1 on T cells which is critical to T cell

activation. Additionally, we use AFM to look at the interaction between neuropilin-2
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(NRP-2), a type I transmembrane glycoprotein, which is expressed on cancer cells

and show that it interacts with α5 integrin on endothelial cells. Most importantly,

our studies reveal that the interaction mediates cancer cell vascular extravasation and

promotes metastasis. This research further supports the highly promising route of

preventing cancer metastasis by therapeutically blocking NRP-2 and thereby greatly

improving the prognoses of cancer patients.
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Part I

Integrin mediated cell adhesion in

primary T lymphocytes
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Chapter 1

Introduction

Integrins are obligate heterodimeric transmembrane adhesion molecules that contain

both a distinct α- and β-subunit (of which 18 α-subunits and 8 β-subunits have been

found) and are broadly expressed on a large variety of cells [1, 2, 3]. They function

both as adhesion molecules and as receptors for outside-in signalling, a process

that involves sending into the cell information about the mechanical and chemical

properties of the extracellular milieu. Integrin is unique in that it usually remains

in an inactive form on the surface of the cell until it is activated by the action of

inside-out signaling in which stimulating signals from other receptors are received.

The activation of integrin involves a dramatic conformation change from a closed,

bent shape to an extended, open one [4, 5]. There are a few distinct conformations

that integrin is capable of and each has its own ligand binding affinity based on

conformational [6, 7, 8, 9, 10, 11] and structural [12, 13, 14, 15] studies.

The main integrin in T cells/lymphocytes is lymphocyte function-associated

antigen-1 (LFA-1; CD11a/CD18, αLβ2) which is part of the β2 subclass of integrins

[16, 17]. LFA-1 is known to be involved in two T cell activities: cell arrest and

subsequent migration on surfaces expressing the main LFA-1 ligand, intercellular

adhesion molecule-1 (ICAM-1; CD54), and formation of immunological synapses
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by interacting with antigen-presenting cells (APCs). ICAM-1, mentioned earlier,

is a cell surface glycoprotein that is the predominant ligand of LFA-1 and their

interaction controls certain key lymphocyte roles such as cell migration, antigen

presentation and lymphocyte extravasation [18, 19, 20, 21, 22, 23].

LFA-1 is expressed on the leukocyte surface in an inactive state. In order to

bind to ICAM-1 with strong affinity, cellular activation is required; in particular

certain avidity (receptor clustering) and affinity (molecule conformational change)

enhancements are required [24, 25, 26]. In humans, modulation of LFA-1 activation

performs a key role during inflammatory and immune responses [27, 28, 29, 30].

The ICAM-1 binding site of LFA-1 has been localized to the metal ion-dependent

adhesion site (MIDAS) on the inserted-domain (I-domain) of the LFA-1 αL subunit

[31]. The I-domain changes conformation upon activation from the low affinity (closed

conformation) state to the high affinity (extended conformation) state, resulting

in increased affinity for ligand binding [32, 33]. In T lymphocytes, a cascade of

intracellular progressions that increase the affinity of LFA-1 for ICAM-1 occurs when

the T cell receptors (TCRs) are engaged [34].

After T cell development, matured naive T cells, T lymphocytes that have not

yet encountered the antigen they are programmed to respond to, leave the thymus

and spread throughout the body. Fundamental to adaptive immunity is the direction

of developmental cues from cells of the innate immune system for antigen-driven

differentiation of naive T cells into effector T cells. It is known that this process

is regulated by LFA-1 on the T cell and its interaction with ICAM on the APC

through the immunological synapse [35, 36, 37]. Effector T cell LFA-1 is important

in effector functions and migration and it has been shown that in effector T cells

LFA-1 is highly expressed. Conversely, it has been also been shown that in naive

cells there is a lower LFA-1 expression [38]. Recent research provides evidence that

in primary effector T cells the I-domain of LFA-1 changes to the high affinity state
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and that high affinity LFA-1 is crucial in T cell activation [39].

The activation of LFA-1 on the effector and naive T cells is still unclear and

requires further investigation for a more detailed understanding. Herein, we study

whole primary T lymphocytes (both naive and effector T cells) and their interaction

with ICAM-1 in a more quantitative method utilizing atomic force microscopy (AFM)

[40, 41].
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Chapter 2

Materials and methods

2.1 T cells

Primary effector and naive T cells were kindly provided by the Ma Group at the

MD Anderson Cancer Center. The cells were maintained at 37 ºC in RPMI 1640

medium supplemented with 10% serum prior to AFM measurements.

2.2 T cell–ICAM-1 adhesion measured by atomic

force microscopy

The experimental apparatus used to measure cell adhesion is schematically illustrated

in Figure 2.1. ICAM-1 was coated on standard 35mm tissue culture dishes while

a single T cell was coupled to the end of the cantilever via poly-L-lysine-mediated

linkages. In order to prepare the poly-L-lysine-functionalized cantilevers, they

were soaked in acetone for 5min, irradiated by UV for 30min, incubated in 100mM

NaHCO3 (pH 8.6) for 20min at room temperature, washed three times with phosphate

buffered saline (PBS, 10mM PO3−
4 , 150mM NaCL, pH 7.3) and incubated in poly-

L-lysine (PLL, 0.1mg/mL in PBS; Sigma P4832) overnight at 4 ºC in a humidified

7



Figure 2.1: AFM schematic for measuring contact forces between T cells
and ICAM-1. Shown in this schematic are the major components of a custom-
built AFM coupled to an inverted optical microscope, which allows for viewing
of the cells. A single T cell (designated in orange in the figure) is attached to a
poly-L-lysine-functionalized cantilever and is lowered onto the portion of the dish
coated with ICAM-1 (designated in blue) by the action of the piezoelectric translator.
A laser (~635 nm) is reflected off the cantilever into the photodiode. The voltage
difference between segments A and B of the photodiode gives the amount of cantilever
deflection.
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(a) (b)

Figure 2.2: Cycle of AFM measurement and retraction trace. (a) Schematic
representation of a typical cycle of the AFM measurement: 1) approach of the T cell
to the ICAM-1 coated spot, 2) contact between the T cell and the ICAM-1 coated
spot, 3) retraction of the T cell, and 4) separation of the T cell from the ICAM-1
coated spot. Arrows indicate the direction of cantilever movement. (b) Typical force
spectrum trace after a 5 s contact and with a compression force limit set at 500 pN.
Grey and black curves are approach and retract traces, respectively. Two-headed
arrow indicates the magnitude of detachment force on the retract (black) trace.

chamber.

Measurements of T cell–ICAM-1 interaction were conducted in RPMI 1640

medium at 25 °C. With the aid of an optical magnification system situated below the

AFM, the tip of the poly-L-lysine-functionalized cantilever was positioned above a T

cell in the medium and gently lowered to the surface of the dish for approximately

1 s to attach the cell to the cantilever. At the onset of the measurements the T cell,

coupled to the AFM cantilever, was positioned directly above the portion of the dish

coated with ICAM-1.

The relative position of the interacting T cell and ICAM-1 surface was controlled

via expansion or contraction of the piezoelectric translator. The force acting between

the surface and cell was derived from the deflection of the AFM cantilever, which

was monitored by reflecting a focused laser beam off the back of the cantilever

into a 2-segment photodiode. Cantilevers were individually calibrated by thermal

fluctuation analysis [42] and had spring constants of approximately 0.015N/m.

As illustrated in Figure 2.2a, AFM measurements of the interaction between an

individual T cell and ICAM-1 involves a series of four steps. First, the cantilever

with an attached T cell is lowered onto the ICAM-1 coated spot. At a certain point
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contact is made, allowing for ICAM-1–receptor interaction to take place. A trigger

signal is set so that the piezoelectric translator will stop its downward motion and

prevent crushing of the cell or damaging the cantilever. The cantilever is subsequently

retracted via the contraction of the piezoelectric translator, pulling the T cell and

ICAM-1 apart until complete separation is achieved. During this process, the AFM

continuously monitors the force of the cantilever in order to report on the interaction

between the T cell and ICAM-1.

A typical AFM force-displacement record of AFM single cell adhesion assay is

presented in Figure 2.2b. In this figure, the y-axis plots the cell–surface interaction

force as a function of the relative distance between the base of the cantilever and

surface (i. e. the ICAM-1). At the beginning of the force measurement, when the

attached cell (T cell) is several microns above the surface, there is no strain on the

cantilever. At this position, which is marked by the lower dashed line, the force

is zero. Expansion of the piezoelectric translator lowers the attached cell onto the

surface. Following cell–surface contact, further expansion of the translator presses

the attached cell against the spot on the dish coated with ICAM-1. The compression

force felt by the cells is determined from the upward deflection of the cantilever. For

the measurements of T cell–ICAM-1 adhesion, the predefined limit of the compression

force was set at 500 pN. Once this force value is reached the expansion of the translator

ceases. This compression force is held for a predefined cell–surface contact time

before the translator contracts to initiate cell–surface separation. We used a contact

duration of 5 s. Upon retraction of the cantilever, molecular linkages established

between the cell and surface pull the cantilever downward. The cell detachment

process typically involves a series of rupture events. Each of these rupture events

resulted in a rapid jump in force and may correspond to the unbinding of one or

more adhesive ligand–receptor bonds.

To quantify the adhesion between the T cells and ICAM-1, we measure the
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“detachment force” and “detachment work.” As indicated by the double-headed arrow

in Figure 2.2b, the detachment force is the maximal pulling force applied by the

cantilever during the detachment process. The detachment work is derived from

integrating the adhesive force over the distance traveled by the cantilever up to the

point of the last bond rupture. Both parameters have been used to quantitate single

cell adhesion in the literature.

2.3 Statistical analysis

ANOVA or t-test was used for statistical analysis, with p < 0.05 considered statisti-

cally significant. Standard error mean is indicated in the data.
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Chapter 3

Results

Figure 3.1 shows the detachment force and work of T cells bound to the ICAM-1

coated surface. In general, adhesion of the effector T cell is at least one order of

magnitude higher than that of the naive T cell. OKT3 treatment, a mAb which

leads to T cell action [43], has a profound impact on T cell–ICAM-1 interaction,

resulting in at least a 2-fold increase in both detachment force and work. MHM24,

a mAb for the I-domain of human LFA-1, was used for a negative control and its

addition significantly reduced adhesion, suggesting that the measurements being

made are primarily of LFA-1–ICAM-1 interactions.

12



Naive cells Effector cells
0

2

4

6

8

Normal OKT3 MHM24

D
e
ta

tc
h

m
e
n

t 
fo

rc
e
 (

n
N

)

***

**

(a)

Naive cells Effector cells
0

1

2

3

4

Normal OKT3 MHM24

**

D
e
ta

tc
h

m
e
n

t 
w

o
rk

 (
x
 1

0
-1

5
J
)

(b)

Figure 3.1: Detachment force and work between T cells and ICAM-1. (a)
Average detachment forces between T cell and ICAM-1 coated surfaces. (b) Average
detachment work between T cell and ICAM-1 coated surfaces. A 5 s contact time was
used. Error bars are standard error mean from several sets of ~100 measurements.
The error bar is standard error with n ≥ 3 in each case. **p < 0.01 and ***p < 0.001
between the indicated groups.
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Chapter 4

Discussion

Our research quantitatively investigated LFA-1 expression on both primary effector

and primary naive T cells. Adhesion to ICAM-1 is much greater in the effector T

cells than naive T cells and it is likely that there exists a large population of high

affinity LFA-1 on effector T cells. Based on the results it is possible that a large

population of LFA-1 on naive T cells is in the low affinity state or a mixture of low

and high affinity states. The OKT3 treatment induced significant enhancement of

detachment force and work in naive cells which suggests that a population of low

affinity LFA-1 changes to a high affinity state with the treatment. The increased

adhesion in effector cells after OKT3 treatment also suggests that extra adhesion

results from further activation of an inactive population of LFA-1 and/or the induced

clustering of LFA-1 on the cell surface. Another question worth pondering and

investigation is whether there is rebinding during the pulling of multiple bonds.

Furthermore, to fully understand the molecular mechanism of LFA-1 mediated T

cell adhesion more research utilizing molecular dynamic simulations and specific

monoclonal antibodies and/or site-directed mutagenesis is necessary.

Overall, our results confirmed and elaborated in greater detail past studies of LFA-

1 expression and confirmation on naive and effector T cells. Further investigation,

14



particularly in single molecule conditions will further reveal greater details of LFA-1

affinity state in various conditions and is currently in progress.
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Part II

Neuropilin-2 promotes

extravasation and metastasis by

interacting with endothelial α5

integrin
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Chapter 5

Introduction

Metastasis, the spread of tumor cells from the primary neoplasm to a non-adjacent

organ, is the leading cause of death in cancer patients. The spread of the cancer cells

occurs through multistep processes that are sequential and interrelated. In brief,

it involves cancer cells from the primary tumor acquiring the ability pass through

the walls of the blood and/or lymphatic vessels, intravasting into the blood stream,

traveling through and extravasting the circulation, and subsequently colonizing a

non-adjacent organ [44, 45]. Up to now, limited details on the molecular mechanisms

that regulate the extravasation process and re-entry of the circulating cancer cells

into distal tissues have been seen in the literature. As 90% of mortality from solid

tumors is a result of metastasis [45], a greater comprehension of how this mechanism

functions which will aid in developing effective treatments to halt and treat cancer

metastasis which will lead to a pronounced improvement in prognoses of cancer

patients.

Recently, there has been mounting evidence that implicates neuropilins (NRPs)

as playing a role in extravasation and metastasis of tumor cells. NRPs are type I

transmembrane glycoproteins which include neuropilin-1 (NRP-1) and neuropilin-2

(NRP-2). The two neuropilins were initially identified as multi-functional non-kinase

17



receptors for ligands of the class 3 semaphorin, vascular endothelial growth factor

and other growth factors [46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. Both aforementioned

neuropilins have parallels and differences in their functions and share a 45% homology

in their protein sequences. NRP-2 is seen to be less developmentally crucial, as

homozygous NRP-2 mutant mice are still viable with only slight defects [56, 57, 58].

In contrast, NRP-1 homozygous knockout mice suffer significant vascular and neural

issues which lead to mortality [59]. Due to the more benign effects resulting from

a lack of NRP-2, less is currently known about the biological attributes of NRP-2

than NRP-1.

NRP-2 is highly expressed on the surface of certain varieties of tumor cells, such as

those of colorectal carcinoma [60], endocrine pancreatic tumors [61], and pancreatic

adenocarcinoma [62]. The research suggests that NRP-2 expression is correlated in

some form to cancer metastasis [63, 60, 64, 65]. In breast cancer [66] and osteosarcoma

[67], a poor prognosis is associated with NRP-2 expression. Lymph node metastasis

in papillary thyroid carcinoma [64] and breast cancer [66] has also been shown to be

associated with NRP-2 expression. Additionally, endothelial cells of lymphatic vessels

in tumor tissue show expression of NRP-2. It has been shown that administering

blocking antibody to target NRP-2 on lymphatic endothelial cancer cells hinders

tumor lymphogenous metastasis as it inhibits tumor lymphangiogenesis [63]. It

is still unclear what molecular mechanisms with which NRP-2 influences tumor

metastasis. However, regulation of CXCR4 [66] and survival signaling [62, 60, 68]

has been shown to be correlated with NRP-2.

The following work was part of a collaborative effort with the Mukhopadhyay

Group at the Mayo Clinic which resulted in a paper which was recently accepted for

publication [69]. NRP-2 expression in renal cell carcinoma (RCC) and pancreatic can-

cer models was studied and together with our collaborator’s data, cancer metastasis

was shown to be promoted by NRP-2. This occurs uniquely through an interaction

18



between α5 integrin on the surface of endothelial cells and NRP-2 expressed on

tumor cells, where NRP-2 functions as an adhesion molecule. The studies expose

a potential mechanism for tumor cell vascular adhesion and extravasation which is

mediated by NRP-2 and ultimately uncover the clinically important role of NRP-2

in promoting cancer metastasis.
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Chapter 6

Materials and methods

6.1 Cell culture

Human RCC cell line 786-O (ATCC) was maintained in DMEM medium (10% FBS,

1% penicillin/streptomycin). Likewise, pancreatic cancer cell line AsPC-1 (ATCC)

was maintained in RPMI-1640 (10% FBS). Variants of these cell lines, in particular

those with knocked down or overexpressed NRP-2 expression were prepared and

provided by our collaborators [69]. All experiments used 5mM EDTA in PBS to

detach the cancer model cells from the culture dish as NRP-2 was found to be a trypsin

sensitive membrane protein. Human umbilical vein endothelial cells (HUVECs; Lonza,

San Diego, CA) were cultured in endothelial basal medium supplemented with EGM-

MV Bullet kit (5% fetal bovine serum (FBS), 12 μg/ml bovine brain extract, 1 μg/ml

hydrocortisone, and 1 μg/ml GA-1000). In the experiments, HUVECs of passages 3–5

were used. Bovine collagen type I (BD Biosciences) was used to coat the dishes used

in the HUVEC culture. α5 integrin antibody (Clone: 5H10-27(MFR5); Biolegend)

was used for blocking.
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Figure 6.1: AFM schematic for measuring contact forces between 787-
O/AsPC-1 cells and HUVECs. Shown in this schematic are the major com-
ponents of a custom-built AFM coupled to an inverted optical microscope, which
allows for viewing of the cells. A single 786-O cell (designated in orange in the
figure) is attached to a Con A-functionalized cantilever. This in turn is lowered
onto the plated HUVECs (designated in yellow) by the action of the piezoelectric
translator. A laser (~635 nm) is reflected off the cantilever into the photodiode. The
voltage difference between segments A and B of the photodiode gives the amount of
cantilever deflection.

6.2 786-O/AsPC-1 cell–HUVEC adhesion measured

by Atomic force microscopy

Atomic force microscopy (AFM) is a technique used to measure the mechanical

contact force between cells [40, 41] and is utilized in this experiment to study the role

NRP-2 plays in mediating interaction between cancer cells and endothelial cells. The

experimental apparatus used to measure cell adhesion is schematically illustrated

in Figure 6.1. In methods previously described [70, 71], HUVECs were plated on

standard 35mm tissue culture dishes while a single 786-O/AsCP-1 cell was coupled

to the end of the AFM cantilever (MLCT, Bruker Nano, Camarillo, CA). Atomic

force microscopy was used to control the relative position of the interacting cells via

expansion or contraction of the piezoelectric translator. The force acting between
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the cells was derived from the deflection of the AFM cantilever, which was monitored

by reflecting a focused laser beam off the back of the cantilever into a 2-segment

photodiode. Cantilevers were individually calibrated using the equipartition theorem

[42] and had spring constants ranging from 0.015N/m to 0.025N/m.

The AFM force measurements were carried out by a custom-built AFM with the

individual cancer cells attached to the tip of an AFM cantilever via Concanavalin A

(Con A)-mediated linkages. In order to prepare the Con A-functionalized cantilevers,

they were soaked in acetone for 5min, irradiated by UV for 30min, incubated

in biotinamidocaproyl-labeled bovine serum albumin (biotin-BSA, 0.5mg/mL in

100mM NaHCO3, pH 8.6; Sigma, St. Louis, MO) overnight at 37 °C, rinsed three

times with phosphate-buffered saline (PBS, 10mM PO3−
4 , 150mM NaCl, pH 7.3)

and incubated in streptavidin (0.5mg/mL in PBS; Pierce, Rockford, IL) for 30min

at room temperature. Unbound streptavidin was removed by rinsing the cantilevers

with PBS and the cantilevers were incubated in biotinylated Con A (0.5mg/mL in

PBS; Sigma) for 15min at room temperature and rinsed with PBS. With the aid

of an optical magnification system situated below the AFM, the tip of the Con A-

functionalized cantilever was positioned above the center of a cell and gently lowered

onto the cell for approximately 1 s to attach the cell to the cantilever. Measurements

of cancer cell–endothelial cell interaction were conducted in EBM medium at 25 °C.

At the onset of the measurements the cancer cell, coupled to the AFM cantilever,

was positioned directly above either the center of an isolated HUVEC, or a HUVEC–

HUVEC cell junction in a Petri dish seeded with HUVECs to approximately 50%

confluency.

As illustrated in Figure 6.2a, AFM measurement of the interaction between an

individual 786-O cell and a HUVEC involves a series of four steps. The cantilever

with an attached 786-O/AsPC-1 cell is first lowered onto a HUVEC. A trigger

signal is set so that the piezoelectric translator will stop its downward motion and
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(a) (b)

Figure 6.2: Cycle of AFM measurement and retraction trace. (a) Schematic
representation of a typical cycle of the AFM measurement: 1) approach of the cancer
cell to the HUVEC, 2) contact between the cancer cell and the HUVEC, 3) retraction
of the cancer cell, and 4) separation of the cancer cell from the HUVEC. Arrows
indicate the direction of cantilever movement. (b) Typical force spectrum retraction
trace for a cancer cell bound to a HUVEC cell body. Measurements were acquired
with a compression force of 500 pN, 1 s contact, and a cantilever retraction speed
of 3.5 μm/s. Shaded area in the trace is the “detachment work.” Arrows point to
rupture events, i. e. breakage of adhesive bond(s). Dashed line indicates zero forces.

prevent crushing of the cell or damaging the cantilever. Following a 1 s contact

at a compression force of 500 pN, the cantilever is subsequently retracted with a

speed of 3.5 μm/s, pulling the 786-O/AsPC-1 cell–HUVEC pair apart until complete

separation of the two cells is achieved. During this process, the AFM continuously

monitors the force of the cantilever in order to report on the interaction between the

786-O/AsPC-1 cell and the HUVEC. A typical AFM retraction trace is presented

in Figure 6.2b. Upon retraction of the cantilever, molecular linkages established

between the cells pull the cantilever downward. The cell detachment process typically

involves a series of rupture events, as indicated by arrows, and may correspond to the

detachment of one or more adhesive ligand–receptor bonds. To quantify the adhesion

between 786-O/AsPC-1 cells and HUVECs, we measured the “detachment work,”

which is derived from integrating the adhesive force over the distance traveled by

the cantilever up to the point of the last bond rupture (shaded area in Figure 6.2b)

[72, 73]. In the experiments the detachment work was determined for 786-O/AsPC-1

cells that had normal NRP-2 expression (control), NRP-2 knocked down, and NRP-

2 overexpressed. These measurements were also performed with anti-α5 integrin
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antibody added at a concentration of 10 μg/mL and preincubated for 30min before

commencing measurements.

6.3 Statistical analysis

ANOVA or t-test was used for statistical analysis, with p < 0.05 considered statisti-

cally significant. Standard error mean is indicated in the data.
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Chapter 7

Results

7.1 Quantification of cancer cell–endothelial cell

interaction mediated by NRP-2

Figure 7.1a shows the detachment work of HUVEC bound to 786-O control, NRP-2

knockdown or overexpressing 786-O cells. In general, HUVEC cell–cell junctions

are about 40% to 60% more adhesive to the 786-O cell. Compared to NRP-2

knockdown 786-O cells, an approximately 200% increase (p < 0.05) of detachment

work was detected on NRP-2 overexpressed 786-O cells. Anti-α5 integrin antibody

has a profound impact on 786-O cell–HUVEC adhesion. In both HUVEC bodies and

cell junctions, incubation of the 786-O cells with the antibody completely diminished

the enhanced adhesion induced by NRP-2 overexpression. In addition, α5 integrin

blockages also inhibited adhesion between 786-O control cells and HUVEC cell

junctions. Figure 7.1b shows that in AsPC-1 pancreatic cancer cells, knockdown of

NRP-2 significantly decreased detachment work of HUVEC junctions. Furthermore,

AsPC-1 cell–HUVEC adhesion in bodies and junctions was abrogated by anti-α5

integrin antibody. These findings suggest that NRP-2 is an adhesion molecule which

promotes the adhesion between cancer cells and endothelial cells and that α5 integrin
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(a) (b)

Figure 7.1: Detachment work between cancer cells and HUVEC. (a) Adhe-
sion strength between a single pair of 786-O cell and HUVEC (upper panel: HUVEC
cell body; lower panel: HUVEC cell junctions) measured by the detachment work.
(b) Adhesion strength between a single pair of AsPC-1 cell and HUVEC (upper
panel: HUVEC cell body; lower panel: HUVEC cell junctions) measured by detach-
ment work. The error bar is standard error with n > 5 in each case. *p < 0.05
and **p < 0.01 between the indicated groups. CTRL, control 786-O; KD, NRP-2
knockdown; OE, NRP-2 overexpression.
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is a trans-binding partner of NRP-2.

7.2 Results of collaborators

Our collaborators performed a variety of other approaches to studying NRP-2 which

were further complemented and supported by the results of our experiments. They

used an in vivo RCC xenograft tumor model (nude mice with subcutaneously injected

tumor cells, 786-O among them) to show that NRP-2 depletion decreased metastasis

but did not influence primary tumor growth. To further extend these results the

collaborators examined clear cell RCC (ccRCC) patient samples utilizing a tissue

microarray (TMA) and found that NRP-2 expression was higher in patients with

more a more advanced tumor stage. Using another TMA they also found that NRP-2

was notably higher in metastatic carcinoma than primary tumors. This suggests

that NRP-2 is involved particularly in cancer metastasis.

An important step in metastasis is extravasation of the cancer cells from the

circulation to colonize a distant site from the original organ. To study NRP-2’s role

in this step the collaborators used an in vivo cancer metastasis extravasation model.

Zebrafish embryos were injected with 786-O cells and they later found that cells with

NRP-2 overexpressed were actively extravasating while the control cells exhibited

none of this behavior. These results single out that a role in cancer metastasis that

NRP-2 plays a part in is extravasation of cancer cells. Following this another study

was done using an in vitro cell adhesion assay which further expounded upon the

gathered data by showing that the interaction between cancer cells and endothelial

cells is mediated by surface expression of NRP-2.

To bridge the above experiments to other types of tumor cells, the extremely

metastatic pancreatic cancer cell line, AsPC-1 was similarly studied. in vitro NRP-2

depletion was found to reduce the ability of AsPC-1 to adhere to an endothelial
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monolayer. In the same zebrafish extravastion model, knockdown of NRP-2 in AsPC-

1 showed similar results as before, with an observation of reduced extravasation

of cancer cells. In a similar mouse xenograft model, NRP-2 knockdown noticeably

reduced cancer metastasis. In addition, a prospectively acquired cohort of patients

with pancreatic cancer showed that high NRP-2 expression correlated with poor

patient survival.

Finally, our collaborators hypothesized that during cancer metastasis, an integrin

expressed on the surface of endothelial cells interacts with NRP-2. They were able

to identify α5 integrin as one that interacts with NRP-2 and that HUVECs have a

much higher expression of it then 786-O cells.
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Chapter 8

Discussion

The results that we obtained confirmed and quantified the data that our collaborators

collected. Taken together, it reveals a mechanism in which NRP-2 on a variety of

tumor cells promotes cancer metastasis by mediating the interaction with α5 integrin

on endothelial cells, particularly during the stage of metastasis in which the tumor

cell adheres to the endothelium and extravasates from the circulation to colonize

a distant organ. Other recent research [64, 66, 74] in addition to ours point to

high expression of NRP-2 being correlated with cancer metastasis. Therapeutically

targeting NRP-2 has already been shown to reduce metastasis in some cases in an

in vivo model [63]. Our research uncovers the previously unknown mechanism of

NRP-2 action and the players involved which aids in developing therapeutics to

block NRP-2. This is a highly promising method of preventing cancer metastasis

and greatly improving the prognoses of cancer patients.
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Chapter 9

Concluding remarks

In this work we quantified, using a highly sensitive method, the adhesive strength

of T cells and cancer cells on a substrate and interacting cells, respectively. This

technique is not limited to the chosen systems and can potentially be used to study

a wide range of cell–cell and cell–substrate interactions in various disease-oriented

settings. Our characterization of the T cell–ICAM-1 interaction is far from complete.

A more thorough investigation under single molecule conditions will be needed to

identify the affinity state of LFA-1 under various conditions. We hypothesize that on

naive T cells, most LFA-1 molecules are in an inactive state. Upon OKT3 activation,

some populations of LFA-1 will be induced to high affinity. In effector cells, the

enhanced adhesion compared to naive cells suggests a significant population of LFA-1

is maintained in the high affinity state. Since OKT3 treatment further increased

adhesion in effector cells, the extra adhesion may stem from further activation of

the inactive population of LFA-1 and/or the induced clustering of LFA-1 on the cell

surface. Another open question is the possibility of rebinding during the pulling of

multiple bonds. Although AFM can reveal the dissociation kinetics of cell adhesion

bonds, the association kinetics might be relevant in some cases such as after OKT3

treatment. Moreover, while AFM measurements reveal the force required to pull T
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cells from the substrate, complementary studies using molecular dynamic simulations

and specific monoclonal antibodies and/or site-directed mutagenesis will be necessary

to fully address the molecular mechanism of LFA-1 mediated T cell adhesion.
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