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Abstract

In the present work, we study autocatalytic pathways which contain reactions that need the use of one of

their own productions. These pathways are common in biology; one of the simplest and widely studied

autocatalytic pathways is Glycolysis. This pathway produces energy by breaking down Glucose. It is

shown that this pathway can be simplified as a network of three biochemical reactions. We first revisit

some conditions on the underlying structure of the autocatalytic network, which guarantee the existence of

fundamental limits on the output energy of such networks. Then we focus on autocatalytic pathways with

several biochemical reactions. Our aim is to characterize the zero-dynamics for a class of autocatalytic

networks and then study the fundamental limitations of feedback control laws, using their associated zero-

dynamics. For this aim, it is shown that the zero-dynamics of autocatalytic networks play an important role

in studying the fundamental limits on performance. Zero-dynamics is defined as the dynamics of a system

restricted to the control input and initial conditions such that the output of the system remains zero for all

future time instances. We characterize the zero-dynamics for a class of unperturbed autocatalytic networks

based on the structure of the original network. It is well-known that by knowing the zero-dynamics of a

specific class of systems, one can obtain lower bounds on the best achievable performance (L2-norm of the

output) for the system. For a specific class of autocatalytic networks, we characterize their zero-dynamics

in terms of the state-space matrices of the underlying network. This can be utilized to quantify inherent

fundamental limits on performance (the level of disturbance attenuation) for this class of network. In

general, one should apply numerical algorithms to obtain such fundamental limits. We explain our method

using a simple but illustrative example.
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Chapter 1

Introduction

A biochemical autocatalytic network (pathway) is a collection of biochemical reactions, such that the

network’s product is necessary to power its own production. This class of networks are common in biology

and engineering; one of the simplest and widely studied autocatalytic pathway is glycolysis, which is

conserved from bacteria to human [18, 19, 22, 25, 26]. This pathway produces energy by breaking down

glucose. The free energy released in this process is used to form adenosine triphosphate (ATP), which is

considered as the cell’s energy currency.

There have been several recent studies on models of glycolysis pathways which are examples of auto-

catalytic networks in biology. We refer to [5–8,18,19,22,25,26,28] and reference in there for more details

and discussions. In [19], it is shown that glycolysis pathway can be simplified as a network of three bio-

chemical reactions. For a linearized model of simple two-state model of glycolysis, the authors use Bode’s

sensitivity integral to explicitly derive equation for hard-tradeoffs between robustness and efficiency. In

reference [6], the authors employ a two-state model of Glycolysis pathway to study inherent fundamental

limits on the minimum achievable L2-gain disturbance attenuation and the minimum achievable output

energy. Later on in reference [5], these results are generalized for a cyclic model of the glycolysis path-

way with several intermediate biochemical reactions. Schwartz et al. show that for the first-order linear

systems, optimal disturbance attenuations can be calculated based on the zero-dynamics of the system [2].

In this work, we revisit the minimal model for glycolysis pathway which is presented in [5, 6, 19] and

also a higher dimensional model of interconnected pathways [5], to obtain their underlying zero-dynamics

in order to use them to obtain fundamental limits on performance. We will only present a simple example

2



to explain the main idea. Zero-dynamics is defined as the dynamics of a system restricted to the control

input and initial conditions such that the output of the system remains zero for all future time instances.

In this thesis, we briefly review fundamental limits on the output energy for a class of autocatalytic

networks (e.g., ATP or Energy) when the control effort is free. Then, we discuss about the results in

[5, 6] which explains how the smallest achievable L2 norm of the output relates to structural property of

the network. It is well known that the smallest achievable L2 norm of the output is equal to the least

needed amount of control energy to stabilize the unstable part of the underlying zero-dynamics [2]. Next,

we investigate the zero-dynamics for a class of autocatalytic networks in presence of disturbances and

we review some of the results in the literature that shows such fundamental limits can be related to the

general structure of the zero-dynamics of the system. It is shown that for first-order linear systems, optimal

disturbance attenuations can be calculated based on the zero-dynamics of the system, such that the hard

limit function (L2 gain from disturbances to output) is zero if and only if disturbance does not affect the

unstable mode of the zero-dynamics of the system [1–4, 12–14].

The underlying zero-dynamics of dynamicsl networks plays an important role in emergence of fun-

damental limits on performance in such networks. Due to such foundational role, we characterize the

zero-dynamics for a class of autocatalytic networks based on the structure of the original network. For

this aim, we focus on a specific class of autocatalytic networks and calculate state-space matrices of asso-

ciated zero-dynamics using matrix projections of the original state-space matrices of the network. Then,

we review the existing results in the literature that show how one can use the resulting zero-dynamics

to characterize limits of performance in such networks. In general, one should employ numerical tools

to compute such limits. We show that how an approximate bound can be calculated in terms of design

parameters.

The rest of the thesis is organized as follows. Chapter 2 reviews some preliminaries in matrix analysis

and biology. Based on [5, 18, 19], a minimal glycolysis model is introduced which will be used through

the thesis.

In Chapter 3, we characterize the zero-dynamics for a class of autocatalytic networks based on the state

space matrices of the original network. Then we extend our results for a class of autocatalytic networks

in presence of disturbances. Finally, in this chapter some necessary and sufficient conditions under which,

the autocatalytic network has meaningful fixed points are reviewed.

3



In Chapter 4, we first consider some characteristics of the underlying structure of the autocatalytic

network to discuss a sufficient condition for the existence of fundamental limits on the output energy. Then,

we revisit an approach to obtain fundamental limits (lower bounds) on the L2-gain from disturbance input

to regulated output for two classes of nonlinear and linear systems with internal stability [2–4]. Finally, we

discuss that by knowing the state-space matrices of zero-dynamics of a linear dynamical network one can

calculate the limits of performance numerically. In general, finding closed-form solution for such limits is

difficult, if not impossible. Moreover, some numerical examples are provided in Chapter 4.

We end in Chapter 5 with some conclusion remarks as well as discussion of some open questions.

4



Chapter 2

Preliminaries

The following notations and definitions from reference book [23] will be used throughout the thesis.

2.1 Matrix Analysis

Definition 2.1.1. A symmetric n×n real matrixA is said to be positive-semidefinite if xTAx is nonnegative

for all non-zero vector x ∈ Rn. Here xT denotes the transpose of x.

Definition 2.1.2. A symmetric n×n real matrix A is said to be positive definite if xTAx is positive for all

non-zero vector x ∈ Rn. Here xT denotes the transpose of x.

Definition 2.1.3. The non-negative orthant consists of all vectors in Rn whose elements are all non-

negative: Rn+ = {x : xi ≥ 0 ∀i = 1, ..., n}.

Definition 2.1.4. The positive orthant consists of all vectors in Rn whose elements are all positive: Rn++ =

{x : xi > 0 ∀i = 1, ..., n}.

Definition 2.1.5. For any vector x ∈ Rn, a diagonal n× n matrix is defined by

diag(x) =


x1 · · · 0

...
. . .

...

0 · · · xn

 . (2.1)

Definition 2.1.6. A matrix is called anti-stable if all its eigenvalues have positive real parts.
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Definition 2.1.7. The class of Zn matrices are those matrices whose off-diagonal entries are less than or

equal to zero, i.e., a matrix Z = [zij ] in Zn satisfies zij ≤ 0 if i 6= j.

Definition 2.1.8. M-matrix is a Z-matrix with eigenvalues whose real parts are positive. In other word,

matrix A is called an M -matrix if A ∈ Zn and A is anti-stable. Whenever A is invertible and A−1 is an

M -matrix, A is called inverse M -matrix.

Definition 2.1.9. LetA be a complex n×n matrix, with entries aij . LetRi =
∑

i 6=j |aij | be the sum of the

absolute values of the non-diagonal entries in the i − th row. The closed disc centered at aii and radius

Ri is called the Gershgorin disc and shown by D(aii, Ri).

Theorem 2.1.10. Gershgorins Theorem: Every eigenvalue of n× n matrix A, lies within at least one of

the Gershgorin discs D(aii, Ri).

2.2 Biological Preliminaries

A chemical reaction is a process that leads to the transformation of one set of chemical species to another.

Chemical reactions are graphically illustrated by using chemical equations, which consist of chemical

formulas of the reactants on the left and chemical formulas of the products on the right. A k−→ B denotes

a chemical reaction that converts the chemical species A to the chemical species B at rate k. In a more

general form, the following chemical equation shows that the collection of ai copies of chemical reactants

xi, 1 ≤ i ≤ n, converts to the collection of bi copies of chemical produts yi, 1 ≤ j ≤ m at rate r:

a1x1 + · · ·+ anxn
k−→ b1y1 + · · ·+ bmym. (2.2)

Here ai, 1 ≤ i ≤ n, and bi, 1 ≤ j ≤ m are the stoichiometric coefficients of chemical reaction. The

reaction rate (rate of reaction) r, for a reactant or product in a particular reaction is defined as how fast or

slow a reaction takes place which is defined as:

r = − 1

a1

dX1

dt
= · · · = − 1

an

dXn

dt
=

1

b1

dY1

dt
= · · · = 1

bm

dYm
dt

, (2.3)

where X denotes the concentration of the substance x.
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To determine the reaction rate r, we consider the most common kinetics model, mass-action kinetics,

which link the rate of a reaction to the concentration of each reactant as follow:

r = kXa1
1 · · ·X

an
n , (2.4)

where k is the reaction rate coefficient or rate constant which is given by Arrhenius equation. Arrhenius’

equation gives the dependence of the rate constant k of a chemical reaction on the absolute temperature T

(in kelvin)

k = Ae
−Ea
RT , (2.5)

where A is the non-negative pre-exponential factor, Ea is the activation energy, and R is the Universal gas

constant.

Remark 2.2.1. According to equation (2.5), the reaction rate coefficient k is always a non-negative num-

ber.

Remark 2.2.2. For convenience of notation, from now on we will use x to denote the chemical species x

as well as its concentration X .

2.2.1 Dynamical Representation of Biochemical Reactions

For a set of biochemical reactions, the stoichiometry matrix denoted by S, is an n ×m matrix, where m

equals to the number of reactions and n is the number of species. Each row corresponds to a species, and

each column corresponds to a reaction. The stoichiometry matrix indicates which species and reactions are

involved as reactants and products. Reactants are represented in the matrix with their stoichiometric coef-

ficients at the appropriate location with a negative sign; row of species and column of reaction. Products

are represented in the matrix with their stoichiometric coefficients with a positive sign; at the appropriate

location; row of species and column of reaction. All other locations in the matrix contain a zero. Then for

a set of chemical reactions R1, R2, · · · , Rm that involves chemical species x1, x2, · · · , xn, we have

dX

dt
= Sr, (2.6)

7



where X , (X1, · · · , Xn)T , the vector of the concentrations of the species, and r = (r1, · · · , rm)T

denotes the reaction rate vector, such that the rate of reaction i, 1 ≤ i ≤ m is given by ri.

Example 2.2.3. Consider the following autocatalytic network

s+ αx3
f1→ x1 (2.7)

x1 + αx4
f2→ x2

x2
k1→ (1 + α)x3

x3
k2→ (1 + α)x4

x4
k3→ �

Figure 2.1: Diagram of four-state autocatalytic model of Example 2.2.3

For this set of reactions, the Stoichiometry matrix is given by:

S =



1 −1 0 0 0

0 1 −1 0 0

−α 0 1 + α −1 0

0 −α 0 1 + α −1


. (2.8)
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The system dynamics can be considered as

ẋ = S



f1

f2

k1x2

k2x3

k3x4


, (2.9)



ẋ1

ẋ2

ẋ3

ẋ4


=



1 −1 0 0 0

0 1 −1 0 0

−α 0 1 + α −1 0

0 −α 0 1 + α −1





f1

f2

k1x2

k2x3

k3x4



=



f1 − f2

f2 − k1x2

−αf1 + (1 + α)k1x2 − k2x3

−αf2 + (1 + α)k2x3 − k3x4



=



0 0 0 0

0 −k1 0 0

0 (1 + α)k1 −k2 0

0 0 (1 + α)k2 −k3


x+



1 −1

0 1

−α 0

0 −α


f1

f2

 .

2.2.2 A Minimal Glycolysis Model

Glycolysis is a metabolic pathway that converts glucose C6H12O6 into pyruvate CH3COCOO
− + H+.

The free energy released in this process is used to form adenosine triphosphate (ATP), which is consid-

ered as the cell’s energy currency, and NADH (reduced nicotinamide adenine dinucleotide). Glycolysis

produces the high-energy compound ATP from glucose. The energy of ATP molecule stores in the bonds

between its three phosphate groups. During the glycolysis pathway, two molecules of ATP are consumed

in the early steps (hexokinase, phosphofructokinase/PFK) and four ATPs are generated later. ATP is also

a regulator for PFK reaction, such that PFK is inhibited by high cellular ATP concentration. Since the

9



product of glycolysis pathway, ATP, is necessary to catalyze its own production, therefore the glycolysis

pathway can be considered as an autocatalytic network [5, 19, 26]. Among different discussed models for

glycolysis autocatalysis, we consider the minimal 2-state model from [5, 19, 26]. This minimal system

contains three reactions with a single intermediate metabolite reaction as follows

s+ αy
f−−→ x1

kx−−→ (α+ β)y + x′1, (2.10)

y
ky−−→ ∅. (2.11)

In the first reaction, s is the source of energy for the pathway, without any dynamics associated and y

denotes the product of the pathway (ATP). Regarding the rate of the first reaction, we choose f(y) = V yα

1+γyh

which is consistent with experimental data in the case of the glycolysis pathway [17, 20], where V > 0

depends on s. Parameter α > 0 is the number of y molecules that are invested in the pathway and captures

the strength of autocatalysis, while γ, h > 0 capture the strength of inhibition. Therefore, the function

f captures the interplay between the autocatalysis and inhibition. In (2.10), x1 shows an intermediate

metabolites, α + β is the total number of y molecules produced and x′1 is one of the by-products of the

second biochemical reaction. In (2.11) ∅ is a null state.

Based on [5], the following 2-state minimal model is associated to the three biochemical reactions

(2.10)-(2.11) and it governs the changes in concentrations x1 and y

ẋ1 = −kxx1 +
V yα

1 + γyh
, (2.12)

ẏ = −kyy + (α+ β)kxx1 −
αV yα

1 + γyh
. (2.13)

for x1 ≥ 0 and y ≥ 0. In [5], by normalizing the concentration such that steady states are ȳ = 1 and

x̄ =
ky
βkx

, and also considering the expression 1
1+γyh

as the regulatory feedback control employed by

nature, the minimal model (2.12)-(2.13) is reformulated as the following control system

ẋ = −kxx+ V yαu, (2.14)

ẏ = −kyy + (α+ β)kxx− αV yαu. (2.15)

We will use this model in Chapters 3 and 4.

10



Chapter 3

Zero-dynamics of Autocatalytic Networks

Autocatalytic networks are one of the most interesting dynamical networks, in which the systems product

is necessary to produce its own production. This class of networks are common in biology and engineering.

Glycolysis is one of the most common autocatalytic networks in biology, which conserved from bacteria

to humans and has been discussed in section 2.2.2. It is shown that the zero-dynamics plays an important

role to obtain the fundamental limits on the performances (e.g., L2 norm of the output and the level

of disturbance attenuation) of the autocatalytic networks [2, 6], which will be discussed in chapter 4.

Therefore, in this chapter we characterize the zero-dynamics for a class of autocatalytic networks based

on the state space matrices of the original network. Moreover, we revisit the necessary and sufficient

conditions under which, the autocatalytic network has meaningful fixed points. Finally, we investigate the

zero-dynamics for a class of autocatalytic networks in presence of disturbances, based on its state space

matrices.

3.1 Zero-dynamics of LTI Systems

Consider the following minimal linear time invariant system

ẋ = Ax+Bu, (3.1)

y = Cx,

11



where

A =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1


n×n

, (3.2)

B =



0

0

...

0

k


n×1

, C =

(
b0 b1 · · · bn−r−1 1 0 · · · 0

)
1×n

.

The corresponding transfer function of (3.1) is obtained by

G(s) = k
b0 + b1s+ · · ·+ bn−r−1s

n−r−1 + sn−r

a0 + a1s+ · · ·+ an−1sn−1 + sn
. (3.3)

Note that the relative degree of G(s) is r. Using the state transformation matrix T , this system can be

transformed into the normal form state-space representation as follow:



ż = Azz +Bzy,

ξ̇1 = ξ2,

...

ξ̇r−1 = ξr,

ξ̇r = Wz + V ξ + ku,

y = ξ1,

12



where the state transformation matrix T is given by

T =



I(n−r)×(n−r) 0r×r

−C

−CA
...

−CAr−1


n×n

, (3.4)

and

z =



z1

z2

...

zn−r


=



x1

x2

...

xn−r


, (3.5)

ξ =



ξ1

ξ2

...

ξr


=



Cx

CAx

...

CAr−1x


,

Az =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−b0 −b1 −b2 · · · −bn−r−1


,

Bz =



0

...

0

1


.
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Zero-dynamics is defined as the dynamics of system (3.1) restricted to the set of control input u and initial

conditions x0 such that y(t) = 0, ∀t ≥ 0. In terms of normal form coordinates, the output is:

y(t) = ξ1(t). (3.6)

Therefore, in order to keep y(t) = 0 for all t, we must have

ξ̇1 = ξ̇2 = · · · = ξ̇r = 0, (3.7)

which leads to ξ(t) = 0 for all t. So we conclude that the zero dynamics is a linear system represented by

ż = Azz +Bzy, (3.8)

which is defined on the subspace

Z∗ , {x : CAix = 0, i = 0, · · · , r − 1}. (3.9)

Note that eigenvalues of Az corresponds to the zeros of the system’s transfer function G(s).

3.2 Zero-dynamics for Autocatalytic Networks

Consider the following system with x ∈ Rn and y ∈ Rm:

ẋ = Ax+Bg(x, u), (3.10)

y = Cx.

Zero-dynamics is defined as the dynamics of system (3.10) restricted to the control input g(x, u) and

initial conditions x0 such that y(t) = 0, ∀t ≥ 0. According to (3.10), ẏ is given by

ẏ = CAx+ CBg(x, u). (3.11)
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Based on the definition for a zero-dynamic system we have ẏ = 0, therefore

g(x, u) = −(CB)−1CAx. (3.12)

Now, by substituting (3.12) in (3.10) we get

ẋ = Ax−B(CB)−1CAx (3.13)

= (In×n −B(CB)−1C)Ax

= PAx,

where P = In×n −B(CB)−1C.

Remark 3.2.1. Note that matrix P is a projection matrix (i.e.,P 2 = P ).

Proof. It is enough to show that

P 2 = (In×n −B(CB)−1C)(In×n −B(CB)−1C) (3.14)

= In×n −B(CB)−1C −B(CB)−1C +B(CB)−1CB(CB)−1C

= In×n −B(CB)−1C −B(CB)−1C +B(CB)−1C

= In×n −B(CB)−1C

= P.

In our approach, we define output y as a vector in Rm which elements are m selective elements of

x. These elements are chosen as the system’s autocatalysis reactants. Therefore, the full rank matrix C

has exactly one 1 in each row and the rest elements are zero. We now define matrix D such that vector

x̄ = Dx gives us the rest n−m elements of x and DCT = 0. Similar to matrix C, matrix D is full rank

with exactly one 1 in each row and the zero as the rest elements. The zero-dynamics state vector, z, is

defined as

z = (D +MC)x = Dx+My, (3.15)
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where matrix M need to be chosen appropriately, such that input function does not have any effect on the

zero-dynamics.

For this parameters the following equation holds:

C
D

x =

y
x̄

 , (3.16)

→ x =

(
CT DT

)y
x̄


= CT y +DT x̄. (3.17)

Since ẏ = 0,

ż = Dẋ

= DPAx

= DPACT y +DPADT x̄.

Therefore, the zero-dynamics of (3.10) can be written as follows

ż = Azz +Bzy, (3.18)

where 
Az = DPADT ,

Bz = DPA(CT −DTM).

(3.19)

Example 3.2.2. Consider the following autocatalytic network, in which both autocatalysis and regulating

control feedbacks applies on the same biochemical reaction.

s+ αx2
f1→ x1

x1
k1→ (1 + α)x2
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x2 + αx4
f2→ x3

x3
k2→ (1 + α)x4

x4
k3→ �

Figure 3.1: Diagram of four-state autocatalytic model of Example 3.2.2

For this set of reactions, the Stoichiometry matrix is given by:

S =



1 −1 0 0 0

−α 1 + α −1 0 0

0 0 1 −1 0

0 0 −α 1 + α −1


.

Dynamic of the system can be considered as

ẋ = S



f1

k1x1

f2

k2x3

k3x4


,



ẋ1

ẋ2

ẋ3

ẋ4


=



1 −1 0 0 0

−α 1 + α −1 0 0

0 0 1 −1 0

0 0 −α 1 + α −1





f1

k1x1

f2

k2x3

k3x4


17



=



f1 − k1x1

−αf1 + (1 + α)k1x1 − f2

f2 − k2x3

−αf2 + (1 + α)k2x3 − k3x4



=



−k1 0 0 0

(1 + α)k1 0 0 0

0 0 −k2 0

0 0 (1 + α)k2 −k3


x+



1 0

−α −1

0 1

0 −α


f1

f2

 . (3.20)

y =

x2

x4

 =

0 1 0 0

0 0 0 1

x,

D =

1 0 0 0

0 0 1 0

 .

P = I −B(CB)−1C =



1 1
α 0 − 1

α2

0 0 0 0

0 0 1 1
α

0 0 0 0


,

Az = DPADT =

k1
α −k2(1+α)

α2

0 k2
α

 .


λ1 = k1

α > 0,

λ2 = k2
α > 0.

(3.21)

The zero-dynamics of autocatalytic network (3.20) is unstable.
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With following assumptions


k1 = k2 = k3 = k,

u1 = u2 = 1,

x1 = 1
k ,

by solving ẋ = 0, fixed points of system (3.20) can be calculated as follow:


x1 = x2 = x3 = x4 = 1

k ,

u1 = u2 = 1.

(3.22)

3.3 Interconnected Networks of Pathways

In this section, we consider the problem of determining meaningful equilibrium points for an arbitrary

interconnection of n autocatalytic pathways with minimal representations as shown in Fig.(3.2). This

problem first has been studied in [5]. Now we are going to revisit this problem in more details and extend

their results.

The model of each pathway consists of three biochemical reactions as follows

αi1y1 + · · ·+ αinyn
fi−−→ xi (3.23)

xi
kxi−−−→ (αi + βi)yi + x′i (3.24)

yi
kyi−−−→ ∅ (3.25)

where αi = α1i + · · ·+ αni, parameter αij is the number of yi molecules that are invested in the pathway

j and αi + βi is the number of yi molecules produced in pathway i. Since the by-product of a pathway

is a necessary reactant in several other pathways, hence perturbation in one pathway will affect the sub-

sequence ones. This interconnection topology appears in various pathways in cell. The interconnection

between the pathways can be represented by a directed graph G with n nodes. Each node of the graph

represents a pathway and the directed edge from node i to node j shows that the product of node i is a

necessary reactant to produce the output of node j.
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Remark 3.3.1. Note that kxi and kyi are the chemical reaction rate constants of (3.24) and (3.25) respec-

tively, which are always a nonnegative constant according to remark 2.2.1.

We assume that in the interconnected network of pathways, all biochemical reactions occur instanta-

neously and simultaneously. The corresponding stoichiometry matrix to (3.23)-(3.25) is a 2n× 3n matrix

and denoted by S

S ,

 −In×n 0n×n In×n

diag
[
(β1 + α1), . . . , (βn + αn)

]
n×n −In×n −

[
αij
]T
n×n

 . (3.26)

The dynamics of interconnected network of autocatalytic pathways (3.23)-(3.25) is given by

ẋ
ẏ

 = S


diag(kx)x

diag(ky)y

f(y,u)

 = S̃


x

y

f(y,u)

 , (3.27)

in which x = [x1, x2, . . . , xn]T , kx = [kx1 , kx2 , . . . , kxn ]T , y = [y1, y2, . . . , yn]T , ky = [ky1 , ky2 , . . . , kyn ]T ,

u = [u1, u2, . . . , un]T , and the modified stoichiometry matrix is defined as follows

S̃ ,

A1 B1 C1

A2 B2 C2

 , (3.28)

where 

A1 = −diag(kx),

B1 = 0n×n,

C1 = In×n,

A2 = diag
[
(β1 + α1)kx1 , . . . , (βn + αn)kxn

]
,

B2 = −diag(ky),

C2 = −
[
αij
]T
,

(3.29)

and f(y,u) = [f1(y, u1), · · · , fn(y, un)]T , where the reaction rate functions are considered as fi(y, ui) =
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Figure 3.2: An schematic diagram of autocatalytic pathway i defined by (3.23)-(3.25). The variables xi
and yi denote internal states of the pathway.

Ki
∏n
j=1 y

αij
j ui. Using (3.27) − (3.28), dynamics of interconnected network of autocatalytic pathways

(3.23)-(3.25) can be recast as follows

ẋ
ẏ

 =

A1 0n×n In×n

A2 B2 C2




x

y

f(y,u)

 . (3.30)

We should highlight that matrix C2 is the adjacency matrix of the corresponding underlying weighted

structure of the interconnected network of autocatalytic pathways (3.23)-(3.25). Fig. 3.2 illustrates details

of the interconnection graph of the entire network in node level. Each autocatalytic pathway is treated as a

node in this representation. In order to characterize fundamental tradeoffs of system (3.27), we need to cast

the system in a canonical form so that the zero-dynamics of the system appears in the new representation.

Let us introduce new set of variables by z = x + Qy. We assume that matrix C2 is invertible. To obtain

the zero-dynamics, we consider f(y,u) = C−1
2 (A2x−B2y) which comes from ẏ = 0. Then we get

ẋ = (−A1 + C1C
−1
2 A2)x+ (B1 − C1C

−1
2 B2)y, (3.31)

ż = (−A1 + C1C
−1
2 A2)z + (B1 − C1C

−1
2 B2 +A1Q− C1C

−1
2 A2Q)y. (3.32)
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By Considering Q = C1C
−1
2 = C−1

2 , the dynamics of the system with respect to y and z is given by

ż
ẏ

 =

A0 B0 0

Ā2 B̄2 C̄2




z

y

f(y,u)

 , (3.33)

in which

A0 = −A1 + C−1
2 A2, (3.34)

B0 = A1C
−1
2 − C−1

2 A2C
−1
2 − C−1

2 B2. (3.35)

In Lemmas 3.3.2, 3.3.3 and 3.3.4, we extend the results in [5], to show that under what conditions the

autocatalytic network (3.27) has meaningful fixed points. The following lemma presents a relationship

between concentrations of biochemical species at meaningful equilibrium points.

Lemma 3.3.2. Let x̄ and ȳ be the vectors of concentrations of biochemical species xi and yi, i = 1, · · · , n,

in the steady-state respectively. According to the dynamics of interconnected network of autocatalytic

pathways (3.30), the relation between x̄ and ȳ is given by

(A2 − C2A1)x̄ = −B2ȳ. (3.36)

Proof. According to (3.30) we have

ẋ = A1x+ f(y,u), (3.37)

ẏ = A2x+B2y + C2f(y,u). (3.38)

In the steady-state we have ẋ = ẏ = 0, therefore f(ȳ,ū) = −A1x̄ and we get

(A2 − C2A1)x̄+B2ȳ = 0. (3.39)

Since x̄ and ȳ indicates the concentrations of biochemical species in the autocatalytic network, there-
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fore to obtain a meaningful biological equilibrium points we need to have x̄ ≥ 0 and ȳ ≥ 0.

The following lemmas characterize necessary and sufficient conditions under which meaningful equi-

libria exist. From now on we assume that the equilibrium of interest for the output vector is ȳ ∈ Rn++.

Lemma 3.3.3. The autocatalytic network (3.30) has a meaningful equilibrium point, i.e., x̄ ∈ Rn+ and

ȳ ∈ Rn++, if and only if

Ā0 , C2A0, (3.40)

is an M -matrix.

Proof. From the definition of matrices A1, A2, C2, one can easily show that

Ā0 = C2A0 = A2 − C2A1,

therefore Ā0 ∈ Zn. Then according to Theorem 2.5.3 of [23], matrix Ā−1
0 is nonnegative if and only if Ā0

is anti-stable. In addition, since kyi ≥ 0 for 1 ≤ i ≤ n, then B2 = diag
[
ky1 , . . . , kyn

]
is nonnegative and

since the equilibrium of interest for the vector of outputs is ȳ ∈ Rn++, therefore

x̄ = Ā−1
0 B2ȳ, (3.41)

is nonnegative if and only if Ā0 is an M -matrix. �

Lemma 3.3.4. Consider autocatalytic network (3.30). Then matrix Ā0 is an M -matrix if βi > 0 for all

i = 1, · · · , n.

Proof. One can show that

Ā0 = [B + (A− C2)]diag
[
kx1 , . . . , kxn

]
= (B + LG)diag

[
kx1 , . . . , kxn

]
, (3.42)

where B , diag[β1, . . . , βn], A , diag[α1, · · · , αn] and LG , A − C2 is the Laplacian matrix of the

underlying graph G. By Gersgorins Theorem (2.1.10), the real parts of eigenvalues of LG are nonnegative.

Moreover, B is a positive definite matrix. Thus, according to Theorem 2.5.4 of [23], B + LG is an M -
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matrix and since all kxi ≥ 0, it follows that Ā0 = (B + LG)diag
[
kx1 , . . . , kxn

]
is an M -matrix as well.

�

The results of Lemmas 3.3.2, 3.3.3 and 3.3.4 imply that the autocatalytic network (3.27) has meaning-

ful fixed points, if B > 0, i.e., the net production of all pathways are positive.

3.4 Zero-dynamics of Autocatalytic Networks in Presence of Disturbances

In this section, we are going to obtain the zero-dynamics for the following system with external distur-

bances based on its state-space representation

ẋ = Ax+Bg(x, u) +Qδ, (3.43)

y = Cx.

Since we are trying to omit the input control in the zero-dynamics, it should be calculated as a function

of other matrices in state-space representation. To this end, in the following we use a straightforward

conclusion from the definition of the zero-dynamics, y = 0 and ẏ = 0.

ẏ = CAx+ CBg(x, u) + CQδ = 0, (3.44)

g(x, u) = −(CB)−1(CAx+ CQδ). (3.45)

By substitution of (3.45) in (3.43), we obtain

ẋ = PAx+ PQδ. (3.46)

Here P = I −B(CB)−1C. The zero-dynamics state vector, z, is defined as

z = (D +MC)x = Dx+My, (3.47)
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where matrix M need to be chosen appropriately, such that input function does not have any effect on the

zero-dynamics. We define a new variable x̄ = Dx, then the following equation holds:

C
D

x =

y
x̄

 , (3.48)

x =

(
CT DT

)y
x̄


= CT y +DT x̄. (3.49)

Since ẏ = 0, therefore ż = Dẋ. Then (3.46) can be recast as follow:

ż = DPAx+DPQδ

= DPACT y +DPADT x̄+DPQδ.

Therefore the zero-dynamics of (3.43) is given by

ż = Azz +Bzy +Qzδ, (3.50)

where 
Az = DPADT ,

Bz = DPA(CT −DTM),

Qz = DPQ.

(3.51)

In this chapter, we characterize the zero-dynamics for the class of unperturbed autocatalytic networks,

as well as the class of autocatalytic networks in presence of disturbances. In chapter 4, we show that how

these associated zero-dynamics help us to obtain the fundamental limits on the performances (e.g., L2

norm of the output for unperturbed network and the level of disturbance attenuation for perturbed one) of

the autocatalytic networks.
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Chapter 4

Characterization of fundamental limits

In this chapter, we consider the characteristics of the underlying structure of the autocatalytic network

and review a sufficient condition for the existence of fundamental limits on the output energy [5]. Then,

we revisit an approach to obtain lower bounds on the L2-gain from disturbance input to regulated output

for two classes of nonlinear and linear systems with internal stability [2–4]. It is shown that for first-

order linear systems, optimal disturbance attenuations can be calculated based on the zero-dynamics of

the system, such that the hard limit function (L2 gain from disturbances to output) is zero if and only if

disturbance does not affect the unstable mode of the zero-dynamics of the system [2]. Then based on the

resulting zero-dynamics in chapter 3 one can calculate the fundamental limits on the performances (e.g.,

L2 norm of the output for unperturbed network and the level of disturbance attenuation for perturbed one)

of the autocatalytic networks. Finally, a numerical example is provided.

4.1 Fundamental Limits on Output Energy

In this section, we study the characteristics of the underlying structure of the autocatalytic network to

discuss a sufficient condition for the existence of fundamental limits. The following theorem in [5] states

that under what conditions there is a fundamental limit on the performance of the autocatalytic network

(3.23)-(3.25).

Theorem 4.1.1. Assume that the zero-dynamics of network (3.27) is anti-stable. Then the output energy

of the network (3.27) is lower bounded by a constant which only depends on the underlying structure of
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the system, i.e., ∫ ∞
0

(y(t;u0)− ȳ)T (y(t;u0)− ȳ) dt ≥ z̄T0 P0z̄0, (4.1)

where z0 = (x(0) − x̄) + Q(y(0) − ȳ), u0 is an arbitrary stabilizing feedback control law for system

(3.27), y(t;u0) is the output of the system with respect to u0, and P0 > 0 is the unique positive definite

solution of the following algebraic Riccati equation

AT
0P0 + P0A0 = P0B0B

T
0 P0. (4.2)

Lemma 4.1.2. Suppose that in network (3.27) all kxi are equal, then the zero-dynamics of (3.27) is anti-

stable (i.e., A0 is anti-stable).

Proof. First, assume that all kxi are nonzero and equal to kx. Then, using Gershgorin theorem 2.1.10,

we obtain that all Gershgorins disks of A−1
2 C2 have the real parts less than k−1

x . Therefore, as a conse-

quence, we get that all Gershgorins disks of C−1
2 A2 have the real parts greater than kx. Using 3.29 and

Re
{
λ
(
C−1

2 A2

)}
> kx, it follows that A0 is anti-stable. �

We note that the result of Lemma 4.1.2 recovers the result of Lemma 5 in [5]. The following lemma

in [5] presents an important relation between the underlying graph of (3.27) and its zero-dynamics.

Lemma 4.1.3. If the adjacency matrix of underlying graph of (3.27) is an inverse M -matrix, then the

zero-dynamics of (3.27) is anti-stable. Moreover, the matrix A0 is an M -matrix if and only if C2 is an

inverse M -matrix.

Keep in mind that all M -matrices are anti-stable, therefor if A0 is M -matrix then the zero-dynamics

is anti-stable. Therefore Lemma 4.1.3 states a sufficient condition to have an anti-stable zero-dynamics.

Remark 4.1.4. Consider a cascade interconnection of n autocatalytic pathways as shown in Fig. 4.1 with

βi > 0 for i = 1, . . . , n. Then, according to Lemmas 3.3.3 and 3.3.4, this network has a meaningful fixed

point. Moreover, in the case that all reaction rates kxi’s are equal, based on Lemma 4.1.2 and Theorem

4.1.1, it follows that the network has a fundamental limit on the output energy.
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Figure 4.1: Cascade interconnection of autocatalytic pathways.

4.2 Fundamental Limit on L2-gain Disturbance Attenuation

4.2.1 L2-gain Disturbance Attenuation Problem

Now, we want to quantify fundamental limits using lower bounds on L2-gain disturbance attenuation of

the following nonlinear system, which is affine in the control and disturbance input:

ẋ = f(x) + g(x)u+ p(x)δ, (4.3)

y = h(x). (4.4)

Here x ∈ Rn, u ∈ R, δ ∈ R and y ∈ R. In this case, our approach to quantify fundamental limits for

the system (4.3)-(4.4), is based on formulating and solving the corresponding regional state feedback L2-

disturbance attenuation problem with stability which consists of determining a control law u = u(x) such

that the closed loop system has following properties. First, the zero equilibrium of the system (4.3)-(4.4)

with δ(t) = 0, for all t ≥ 0, is asymptotically stable with region of attraction containing Ω (an open

set containing the origin of Rn). Second, for every δ ∈ L2(0, T ) such that the trajectories of the system

remain in Ω, the L2-gain of the system (1) from δ to y, is less than or equal to γ, i.e.,

∫ T

0
|y(t)|2dt ≤ γ2

∫ T

0
|δ(t)|2dt, (4.5)

for all T ≥ 0 and zero initial state. It is well-known that there exists a solution to the static state feedback

L2-disturbance attenuation problem with stability, in some neighborhood of the origin, if there exists a

smooth positive definite solution of the Hamilton-Jacobi inequality (see [3], [4]).
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More specifically, using the strict feedback form [11], the system can be represented by



ż = f0(z, ξ1) + q0(z, ξ1)δ,

ξ̇1 = ξ2 + p1(z, ξ1)δ,

...

ξ̇r−1 = ξr + pr−1(z, ξ1, ξ2, . . . , ξr−1)δ,

ξ̇r = u+ pr(z, ξ1, ξ2, . . . , ξr)δ,

y = ξ1,

(4.6)

where z ∈ Rn−r and f0(0, 0) = 0. Here our fundamental limits problem reduces to the disturbance atten-

uation problem for the zero dynamics with cost on the control. Because, as shown in [12–14] disturbance

attenuation to a given level γ can be achieved for the system (4.6) if there exists a smooth real-valued

function v(z), with v(0), a smooth proper real-valued function V (z) > 0 such that

∂V

∂z
f0(z, v(z)) +

1

2γ2

[∂V
∂z

p0(z, v(z))
]2

+ v2(z) < 0. (4.7)

The interesting fact is that γ∗, the optimal disturbance attenuation is indeed a hard limit function for system

(4.3)-(4.4). This fundamental limit quantifies a fundamental obstruction to performance of the system.

4.2.2 L2-gain Disturbance Attenuation for LTI Systems

For linear systems, optimal disturbance attenuations can be calculated based on the zero-dynamics of the

system. The hard limit function (ideal performance) is zero if and only if the disturbance δ does not affect

the unstable mode of the zero-dynamics of the system. the zero-dynamic can be split as an stable and

unstable part as follows

żs = Azszs + Czsy +Qzsδ, (4.8)

żu = Azuzu + Czuy +Qzuδ,
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where λ(Azs) ∈ C− and λ(Azu) ∈ C+.

Schwartz et al. [2] presented a formula to compute the optimal value of γ, which reduces to the following

form if the system does not have any zero with zero real part

γ∗ =
(
λmax(L−1

c Ld)
) 1

2
. (4.9)

Here the control and disturbance Gramians define as follow

Lc ,
∫ ∞

0
e−Azu tCzuC

T
zue
−ATzu tdt, (4.10)

Ld ,
∫ ∞

0
e−Azu tQzuQ

T
zue
−ATzu tdt. (4.11)

Therefore, from (4.9) we conclude that γ∗ = 0 if and only if the disturbance does not enter the unstable

zero dynamics (4.8).

We now study how to calculate the optimal value of γ through an example.

Example 4.2.1. Consider autocatalytic network described in Example 3.2.2 in presence of disturbance δ1

on x2 and δ2 on x4.

Figure 4.2: Diagram of four-state autocatalytic model of Example 4.2.1

The systems dynamic is given by


ẋ = Ax+Bg(x, u) +Qδ,

y = Cx,

(4.12)
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where

A =



−k1 0 0 0

(1 + α)k1 0 0 0

0 0 −k2 0

0 0 (1 + α)k2 −k3


, (4.13)

B =



1 0

−α −1

0 1

0 −α


,

C =

0 1 0 0

0 0 0 1

 ,

Q =



0 0

1 0

0 0

0 1


.

For autocatalytic network (4.12), the zero-dynamics vector z is defined by

z =
[
D +

1

α

1 − 1
α

0 1

C
]
x,



ż1 = ẋ1 + 1
α ẋ2 − 1

α2 ẋ4

= k1x1
α − (1+α)k2x3

α2 + k3x4
α2 + δ1

α −
δ2
α2 ,

ż2 = ẋ3 + 1
α ẋ4

= k2x3
α − k3x4

α + δ2
α .
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By assuming k1 = k2 = k3 = k and considering

 x1 = z1 − 1
αx2 + 1

α2x4,

x3 = z2 − 1
αx4,

we get the following representation:

ż =
k

α

1 − (1+α)
α

0 1

 z − k

α2

1 −2(1+α)
α

0 1 + α

 y +
1

α

1 − 1
α

0 1

 δ. (4.14)

Calculated matrices Az , Bz and Qz can be also obtained directly from (3.51). To calculate control

Gramian from (4.10), first we need e−Azt

e−Azt =

e− kα t kt(1+α)
α2 e−

k
α
t

0 e−
k
α
t

 .

By substitution of e−Azt in (4.10), Lc is derived as follow

Lc =

 k
4α5 (α4 + 4α2 + 8α+ 5) − (1+α)k

4 (−α3 + 2α2 + 3α)

− (1+α)k
4 (−α3 + 2α2 + 3α) k(1+α)2

2α3

 . (4.15)

To calculate disturbance Gramian from (4.11), first we need e−A
T
z t

e−A
T
z t =

 e−
k
α
t 0

kt(1+α)
α2 e−

k
α
t e−

k
α
t

 .

By substitution of e−A
T
z t in (4.11), Ld is derived as follow

Ld =


3α2+1
4kα3

α−1
4kα2

α−1
4kα2

1
2kα

 . (4.16)
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From (4.15) and (4.16), the largest eigenvalue of L−1
c Ld is obtained by

λmax(L−1
c Ld) =

1

k2

a(α)

b(α)
,

where a(α) is a polynomial of degree 11 and b(α) is a polynomial of degree 16. Therefore, by assuming

large α from (4.9) γ∗ is a polynomial of degree −2.5 with respect to α:

γ∗ ≈ α−2.5

k
, as α→∞.

To find the relation between γ∗, α and k without solving (4.15) and (4.16), we can simplify these equations

as α→∞:

Lc ≈

 k
α kα4

kα4 k
α

 , (4.17)

Ld ≈
1

kα

1 1

1 1

 .

Then, it follows that

L−1
c Ld ≈

α5 − 1

k2(α10 − 1)

1 1

1 1

 ,

λmax(L−1
c Ld) ≈

2(α5 − 1)

k2(α10 − 1)
≈ α−5

k2
,

→ γ∗ ≈ α−2.5

k
. (4.18)

Remark 4.2.2. According to (4.18) the optimal disturbance attenuation γ∗ is a decreasing function with

respect to α. It means that increasing α can result in a better performance. From (4.18), γ∗ is also a

decreasing function with respect to k, which shows a tradeoff between robustness and efficiency. For a

larger k, γ∗ is smaller and therefore the glycolysis mechanism is more robust. On the other hand, large k

requires either a more efficient or a higher level of enzymes, which decreases the efficiency.
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4.2.3 A motivation Example (rabbit and wolf)

In Example 4.2.1, we considered 4 states which can be interpreted as baby rabbit, rabbit, baby wolf and

wolf. In presence of enough nutrition source for bunnies (i.e., carrot), they grow up and become adult

rabbits. A disturbance δ1 is considered on the number of rabbits, which can be a natural death or any other

kind of increasing or decreasing in their population. Wolves are nourished by predating rabbits, then they

grow up and give birth to another wolf, or they die without any parturition. Similar to rabbits, disturbance

δ2 is considered on the number of wolfs, which can be interpreted as any other kind of increasing or

decreasing in their population rather than their natural death.
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Chapter 5

Conclusions and Future Directions

This work studies the zero-dynamics for a class of autocatalytic networks, in which the network’s product

is necessary to power its own production. We review conditions on the underlying structure of the network,

which guarantee the existence of fundamental limits on the output energy. As it is discussed in this thesis,

the zero-dynamics of the autocatalytic network plays an important role in studying the fundamental limits

in autocatalytic networks. We propose a method to characterize the zero-dynamics based on the state-

space matrices of the original network, for a class of unperturbed autocatalytic networks as well as a class

of autocatalytic networks in presence of disturbances on consumptions of some biochemical species. Then

based on the resulting zero-dynamics, we show that one can calculate the fundamental limits on the global

performance (e.g., L2 norm of the output for unperturbed network and the level of disturbance attenuation

for perturbed one) of autocatalytic networks.

For the future work, my plan is to explore relationships between combinatorial properties of underlying

structure of biochemical reactions and the global performance of the network or explicitly derive the

fundamental limits on the performances.
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