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Abstract

The steady aerodynamic loads on a flat plate with uniform porosity in a uniform

background flow are determined in closed form by an extension of classical thin airfoil

theory. The porous boundary condition on the airfoil surface assumes a linear Darcy

law relationship, which furnishes a Fredholm integral equation for the bound vorticity

distribution over the airfoil. The solution to this singular integral equation yields a

single dimesionless group that determines when porosity effects are important. The

pressure distribution, integrated lift, and pitching moment for the uniformily-porous

airfoil are shown to be the product of the corresponding impermeable airfoil results

and a simple function of the new dimensionless group.
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Chapter 1

Introduction

The aerodynamic performance of fluid-loaded blades is of paramount importance

in engineered structures such as aircraft wings, rotorcraft blades, and wind turbines.

However, these applications also produce sound as a consequence of the blade pass-

ing through the air. Many researchers [1] have noted that changing the acoustical

impedance of the wing can lead to significant reductions in turbulance-generated

noise. One of the ways to affect acoustical impedance is the introduction of porosity

at the surface or through the thickness of a wing or blade. Recently, Jaworski and

Peake [2] show analytically that trailing-edge porosity and elasticity can be tuned

to effectively eliminate the predominant scattering mechanism of trailing edge noise.

However, for such an approach to be viable in application, one must quantify the

tradeoff between the acoustical advantages of porosity versus its potentially negative

impact on aerodynamic performance. The present work seeks to begin to address this

tradeoff on the aerodynamic side by extending classical thin airfoil theory in steady

flow to include a uniform porosity distribution across its chord.

The present work first reviews the derivation of aerodynamic forces acting on an

impermeable airfoil in a steady flow. To determine uniquely the vorticity distribution

across the airfoil before solving those forces, we have recourse to Kutta’s hypothesis
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of smooth flow off of the sharp trailing edge. Continuous motion of the fluid in that

region exists only if no pressure discontinuity is met by the flow when passing rearward

off of the airfoil. With Kutta’s condition, we can solve the aerodynamic problem by

appropriate Fourier series substitutions for the known and unknown quantities [3].

The analysis for the limiting case of an uncambered, thin airfoil in steady flow is

reviewed in §2 to motivate its extension to porous airfoils. The solution to the steady

aerodynamic problem hinges on the ability to perform an inversion of an integral

equation, which in the impermeable case is handled by the method of Söhngen [4].

In §3, the introduction of porosity changes the character of the essential equation

involving Cauchy-type singular integrals to a Fredholm integral equation of the second

kind. We use the inversion procedure of Ioakimidis [5] to solve this equation exactly,

which furnishes a general result for thin airfoils with uniform porosity. As in the case

of an impermeable airfoil, we obtain its chordwise pressure distribution, the lift, and

pitching moment. A comparison between the impermeable and porous coefficients of

lift and moment, as well as the pressure distribution across the airfoil, are made in

§4. This comparison demonstrates the impact of uniform porosity on an airfoil in

steady flow and identifies a new dimensionless parameter and important parameter

regimes. Furthermore, the differences between impermeable and porous airfoil and

how constant porosity affects pressure distribution, lift and moment are highlighted.

Conclusions from this work and avenues for future research are presented and in §4

1.1 Research questions

This thesis seeks to answer the following research questions. Full details of the

analysis to address these questions are given in §3.

1. What are the governing equations of permeable airfoils in a uniform flow?
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2. Can the vorticity and pressure distributions for a uniformily-porous airfoils be

found in closed form?

3. Can new result for the porous airfoil be linked to the integrated aerodynamic

loads of impermeable airfoils?
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Chapter 2

Impermeable thin airfoil theory in

steady flow

Aircraft structures rely on many different wing configurations, such as delta,

swept, straight, and low-aspect-ratio wings, where the wings can be idealized as a

collection of two-dimensional airfoils. In this chapter, the analysis of impermeable

airfoils is reviewed, following closely the presentation by Bisplinghoff, Ashley, and

Halfman [6] (cf. pp. 208-218), to establish known results and motivate the extension

to porous airfoils made in §3.

2.1 Governing equations and boundary conditions

The standard airfoil nomenclature is sketched in figure 2.1 [7], which introduces

the principal geometric elements of the airfoil, such as mean camberline, chord line,

leading edge, trailing edge, camber, and chord. A typical airfoil cross-section and its

coordinate system are illustrated in figure 2.2 [7].

Based on the assumption of small disturbances, the so-called thin airfoil theory

is established. Suppose a thin airfoil at small incidence to a uniform flow associated
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Figure 2.1: Airfoil nomenclature

Figure 2.2: Coordinate system definition of the thin airfoil

with a steady, incompressible flow with a linear disturbance velocity potential φ. The

governing equation for this two-dimensional potenial is Laplace’s equation [6]:

∇2φ = 0. (2.1)

For steady flow, the flow tangency conditions at the upper and lower airfoil surfaces

z = zU(x) and z = zL(x) are, respectively,

w

U
=
dzU
dx

, −b ≤ x ≤ b, (2.2)

and

w

U
=
dzL
dx

, −b ≤ x ≤ b. (2.3)

for where c = 2b is the chord.
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Figure 2.3: Thin airfoil illustrates as the superposition of a symmetrical body at zero
incidence and a cambered and inclined mean line

zU and zL are functions of x only since the airfoil is two-dimensional. The bound-

ary conditions for a thin airfoil in the x-direction in a uniform flow of speed U can

be simplified to

w = U
dzU
dx

, (2.4)

for

z = 0+, −b ≤ x ≤ b, (2.5)

and

w = U
dzL
dx

, (2.6)

for

z = 0−, −b ≤ x ≤ b. (2.7)

We can split zU and zL into an even part za and an odd part zt,

zU = za + zt, zL = za − zt (2.8)

where za contains the angle of attack and camber, where zt gives the chordwise dis-

tribution of thickness and describes a shape symmetrical about the x-axis,as pictured

figure 2.3 [7]. We now have
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w = U
dzU
dx

, zU = za + zt, (2.9)

w = U
dzL
dx

, zL = za − zt. (2.10)

Conditions (2.9) and (2.10) can also be applied to a finite wing in steady motion.

The functions zU , zL, za and zt are related to both x and y, and the aforementioned

derivatives become partials with respect to x. The linear small disturbance assump-

tion enables us to specify the boundary conditions on z = 0±, provided that the slopes

of the airfoil surface in the chordwise direction are sufficiently small. The flow field

due to the airfoil thickness can be found by solving Laplace’s equation (2.1) subject

to boundary conditions.

w =
∂φ

∂z
= U

∂zt
∂x

; for z = 0+, (x, y) ∈ Ra (2.11)

w =
∂φ

∂z
= −U ∂zt

∂x
; for z = 0−, (x, y) ∈ Ra, (2.12)

where Ra is a region consisting of the projection of the planform for the xy-plane.

Since we are not presently interested in the effects of variations in airfoil thickness,

we shall not pursue this further here and will now focus on the lifting solution.

2.2 Vorticity and pressure distribution

The flow field is continuous in velocity and pressure across the xy-plane, except for

the jump of 2U ∂zt
∂x

in w specified over Ra [6]. Following the procedure outlined in [6],

the bound vorticity on the airfoil can be found using a continuous distribution of

point-source solutions to Laplace’s equation. A single, concentrated source centered

at x = ξ, y = η, z = ζ has the velocity potential

φs =
−H
4π

1√
(x− ξ)2 + (y − η)2 + (z − ζ)2

, (2.13)
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where H is the strength of the source. The source produces a volume of liquid per unit

time H into the surrounding space with spherical symmetry. A sheet having strength

H(ξ, η) per unit area in the neighborhood of the point (ξ,η,0) over the surface Ra has

the disturbance potential

φ(x, y, z) =
−1

4π

∫ ∫
Ra

H(ξ, η)dξdη√
(x− ξ)2 + (y − η)2 + z2

. (2.14)

In order to satsify the condition

w =
∂φ

∂z
= U

∂zt
∂x

; for z = 0+, (x, y) ∈ Ra, (2.15)

we must calculate

w(x, y, 0+) =
∂φ

∂z
(x, y, 0+) (2.16)

=
−1

4π
lim
z→0+

∂

∂z

∫ ∫
Ra

H(ξ, η)dξdη√
(x− ξ)2 + (y − η)2 + z2

(2.17)

=
1

4π
lim
z→0+

z

∫ ∫
Ra

H(ξ, η)dξdη

((x− ξ)2 + (y − η)2 + z2)3/2
. (2.18)

The integral vanishes when z goes smaller positive values, except in the vicinity of

point ξ = x, η = y, where the integrand tends to infinity. Isolating this region with

a small square of side 2ε, (2.18) becomes

w(x, y, 0+) =
1

4π
lim
z→0+

z

∫ y+ε

y−ε

∫ x+ε

x−ε

H(ξ, η)dξdη

((x− ξ)2 + (y − η)2 + z2)3/2
(2.19)

H(ξ, η) over the entire square and its center value H(x, y) differ by an amount

of order ε, since H is a continuous function. Neglecting these O(ε) variations and
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applying the temporary integration variables ξ′ = (x− ξ), η′ = (y − η), we have

w(x, y, 0+) =
H(x, y)

4π
lim
z→0+

z

∫ ε

−ε

∫ ε

−ε

dξ′dη′

[ξ′2 + η′2 + z2]3/2
(2.20)

=
H(x, y)

4π
lim
z→0+

[
2 arctan

ε2

z
√

2ε2 + z2
− 2 arctan

−ε2

z
√

2ε2 + z2

]
. (2.21)

The inverse tangents approach −π/2 and π/2, leading to

w(x, y, 0+) =
H(x, y)

2
(2.22)

= w(x, y, 0−). (2.23)

Now it is easy to see that the symmetrical discontinuity specified by

w =
∂φ

∂z
= U

∂zt
∂x

; for z = 0+, (x, y) ∈ Ra (2.24)

and

w =
∂φ

∂z
= −U ∂zt

∂x
; for z = 0−, (x, y) ∈ Ra (2.25)

can both be satisfied by setting

H(x, y) = 2U
∂zt(x, y)

∂x
. (2.26)

The solution for the velocity potential due to a distribution of sources Ra is com-

pleted by substituting (2.26) into (2.15) to get

φ(x, y, z) =
U

2π

∫ ∫
Ra

∂zt(ξ, η)

∂x

dξdη√
(x− ξ)2 + (y − η)2 + z2

. (2.27)

From this equation we can deduce all properties of the flow. For two-dimensional flow,

a similar procedure yields the following solution to the disturbance velocity potential.
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φ(x, z) =
U

2π

∫ b

−b

dzt(ξ)

dx
ln[(x− ξ)2 + z2]dξ. (2.28)

In general the boundary conditions can depend on time, in which case (2.26) must

be changed to

H(x, y, t) = 2
Dzt(x, y, t)

Dt
. (2.29)

where is the D/Dt is the convective derivative.

The velocity must drop off inversely with distance by large circles surrounding a

body with circulation, and the remote flow pattern approximates that due to a line

vortex. whose velocity potential in cartesian coordinates is

φv = − γ

2π
arctan

[
z − ζ
x− ξ

]
. (2.30)

A distributed potential along ζ = 0 with circulation γa(ξ) per unit length is

φ(x, z) =
1

2π

∫ b

−b
γa(ξ) arctan

z

x− ξ
dξ. (2.31)

We make use of the relationship between γa and the local disturbance velocity u

to decide what should be the extent of the vortex sheet [6]. This can be done by

differentiating the last equation with respect to x and letting z approach zero. If the

streamline distribution velocity volume is u = uU on the upper surface z = 0+, then

by antisymmetry it must be u = uL = −uU on z = 0−. Calculating the circulation

using a rectangular contour constructed about a differential length of airfoil dx yields

(U + uU)dx− wdz − (U − uU)dx+ wdz = 2uUdx. (2.32)

The circulation must also equal γadx with the definition of γa, so that uU = γa/2.

Thus, the pressure discontinuity across the vortex sheet and the bound vorticity are
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locally related by

pU − pL
1/2ρU2

=
−2γa
U

. (2.33)

2.3 Integrated lift and pitching moment for an im-

permeable airfoil

An integral equation for γa is derived by calculating w on the airfoil surface and

applying the boundary condition

w =
∂φ

∂z
= U

dza
dx

; for z = 0, −b ≤ x ≤ b (2.34)

to get

w(x, z) =
∂φ

∂z
=
−1

2π

∫ b

−b

[x− ξ]γa(ξ)dξ
(x− ξ)2 + z2

. (2.35)

As z → 0, the singularity of the integrand at ξ = x leads this integral to be math-

ematically undefined. However, as before, we require on physical grounds that w

must remain a continuous function of z throughout the limiting process. Thus,fr the

uniquely correct w is found by taking the Cauchy principal value of the integral:

w(x, 0) = U
dza
dx

=
−1

2π

∮ b

−b

γa(ξ)

x− ξ
dξ. (2.36)

Cauchy’s principal value is calculated by isolating the singular point ξ = x with a

small interval symmetrical about the point (i.e. x − ε ≤ ξ ≤ x + ε), evaluating each

piece of the integral, and then letting ε approach zero.

We now introduce the following dimensionless variables for convenience,

x∗ =
x

b
, ξ∗ =

ξ

b
, (2.37)
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which lead to

w(x∗, 0) =
−1

2π

∮ 1

−1

γa(ξ
∗)

x∗ − ξ∗
dξ∗. (2.38)

From [6], it is recalled that arbitrary amount of circulation can be placed around

the airfoil without violating the boundary conditions, and by defining the vorticity

distribution as

γac(ξ∗) =
Γc
bπ

√
1− ξ∗2 , (2.39)

it can be shown that ∮ 1

−1

γac(ξ
∗)

x∗ − ξ∗
dξ∗ = 0. (2.40)

Thus, the solution for (2.39) matches the boundary conditions. We note that this

solution puts a circulation Γc on the airfoil, which is found by summing the contri-

butions of all bound vortices along the chord around the airfoil, which is

Γ =

∫ b

−b
γadξ = b

∫ 1

−1
γacdξ

∗ =
Γc
π

∫ 1

−1

dξ∗√
1− ξ∗2

=
Γc
π

∫ π

0

dθ = Γc. (2.41)

We employ Kutta’s hypothesis of smooth flow off the sharp trailing edge determine

the exact magnitude of Γc. If no pressure discontinuity is met when passing rearward

of the airfoil, continuous motion of the liquid can occur in that region. Hence,

2(PU − PL)

ρU2
=
−2uU
U

+
2(−u′U)

U
=
−2γa
U

(2.42)

turns out to be

γa = 0; for x = b (x∗ = 1). (2.43)

With condition (2.43) at the trailing edge, (2.38) can be solved by appropriate Fourier-

series substitutions for the known and unknown quantities [6]. However, Söhngen [4]

proved that for any two functions f and g of engineering interest, the unique solution

13



to the integral equation

g(x∗) =
1

2π

∮ 1

−1

f(ξ∗)

x∗ − ξ∗
dξ∗, (2.44)

for which f(1) is finite or zero, is

f(x∗) =
−2

π

√
1− x∗
1 + x∗

∮ 1

−1

√
1 + x∗

1− x∗
g(ξ∗)

x∗ − ξ∗
dξ∗. (2.45)

Since f can be identified with γa, and g with −w, the inverted form of (2.38) becomes

[6]

γa(x
∗) =

−2

π

√
1− x∗
1 + x∗

∮ 1

−1

√
1 + x∗

1− x∗
w(ξ∗, 0)

x∗ − ξ∗
dξ∗ (2.46)

=
2U

π

√
1− x∗
1 + x∗

∮ 1

−1

√
1 + x∗

1− x∗
dza(ξ

∗)/dx

x∗ − ξ∗
dξ. (2.47)

We are able to integrate this equation and insert the answer into

g(x∗) =
1

2π

∮ 1

−1

f(ξ∗)

x∗ − ξ∗
dξ∗ (2.48)

to find the chordwise pressure distribution once we know the camber line and angle

of attack of the airfoil. The lift and pitching moment (about an axis at x = ba) per

unit span are then computed directly using

L = −
∫ b

−b
[pU − pL]dx = ρU

∫ b

−b
γadx = ρUΓ, (2.49)

My =

∫ b

−b
[pU − pL][x− ba]dx. (2.50)

Γ therefore denotes the actual bound circulation on the airfoil. Substituting (2.46)

and (2.49) gives the general lift result

L = −2ρU2b

∫ 1

−1

√
1 + ξ∗

1− ξ∗
dza(ξ

∗)

dx
dξ∗ (2.51)
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in turns of prescribed airfoil geometry. For the simple case of a flat plate at angle of

attack α,

za = −αx = −αbx∗. (2.52)

Inserting this equation into (2.46) yields the flat-plate chordwise loading

γa = 2Uα

√
1− x∗
1 + x∗

. (2.53)

This equation exhibits the well-known singularity at the leading edge, x∗ = −1.

The leading edge singularity is integrable, by elementry integration (2.49) and (2.50)

give the following lift and pitching moment coefficients per unit span and pressure

distribution:

(cL)NP =
L

1
2
ρU2c

= 2πα, (2.54)

(
cMy

)
NP

=
My

1
2
ρ2U2c2

= −πα
[
a+

1

2

]
(2.55)

(
∆p

1
2
ρU2

)
NP

= 4α

√
1− x∗
1 + x∗

. (2.56)

The subscript NP denotes solutions for the non-porous flat plate, which will be later

compared with the porous airfoil results.
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Chapter 3

Analytical analysis of a porous

airfoil in steady flow

We now move on to the analysis of an airfoil of uniform porosity in a steady, uni-

form flow. As shown in the previous chapter, the mathematical problem for the flow

around an impermeable, thin airfoil problem is reduced to a linear, one-dimensional,

singular Cauchy integral equation of the first kind. In that case, the central tech-

nical challenge was the solution of the integral equation by inversion, which for the

impermeable case was accomplished by Söhngen [4]. However, the problem of the

flow around a permeable thin airfoil can lead generally to the solution of a singular,

variable-coefficient integral equation of the second kind on a segment, or to a system

of such equations [8]. In this chapter, the essential Fredholm integral equation is de-

rived and inverted to solve the permeable airfoil problem, which appears by assuming

a linear Darcy-type porosity boundary condition. We define a porosity constant C,

which when C = 0, the impermeable case discussed in §2 is recovered. For increasing

values of C, the airfoil is effectively more porous. For the case of the uniformily-

porous airfoil, we build upon the theory for an impermeable airfoil, where careful

attention is paid to the edge conditions for the porous case. The inversion solution
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of the Fredholm integral equation then furnishes the pressure distribution as well as

the integrated lift and momment, which are proportional to the impermeable results

by a function of a new dimensonless porosity parameter.

3.1 Governing equations and boundary conditions

Suppose a thin, and uniform porous airfoil immersed in a uniform, ideal, incom-

pressible flow with a velocity U at infinity. As in §2 the perturbed velocity potential

φ due to the pressure of the airfoil obeys Laplace’s equation (2.1) at any point. The

boundary condition for a permeable airfoil,

(∇φ+ U) · n̂ = Ws (3.1)

is a generalization of the problem of a flow about its impermeable counterpart, where

Ws is a local flow rate directed along the unit normal to the airfoil surface n̂. If

Ws = 0, we recover the impermeable limit examined in §2.

To close the problem considered, it is assumed that the flow rate Ws depends only

on the pressure difference on the surface:

Ws = f0(∆p). (3.2)

We solve this problem with a method of singularities, by placing on the airfoil sec-

tion surface an attached vorticity layer whose velocity potential automatically obeys

Laplace’s equation and satisfies the extinction condition at infinity.

From the Zhukovsky theorem [9], after linearization, it follows that:

∆p = ρU0γa. (3.3)

17



Here ρ is the fluid density, and γa is the intensity of the bound vorticity layer on

airfoil. If we write the problem in two dimension, it will be

(∇φ+ U) · n̂ = (
∂φ

∂x
+ U,

∂φ

∂z
+W )(̇

dz

dx
, 1) (3.4)

= U
dza
dx

+W +H.O.To (3.5)

and then

U
dza
dx

+W = Ws. (3.6)

We will assume here only a streamwise background flow IE:W = 0. From the last

chapter, we are already aware of that (2.54) and the order of −∂φ
∂x

dza
dx

is negligible to

linear approximation. We now assume W is a linear function of the pressure gradient:

W = f0(∆p) (3.7)

= −C(pU − pL) (3.8)

= C(ρUγa). (3.9)

Here C denotes the degree of porosity, which we will compare to Darcy’s law to

determine its value. Darcy’s law is

q =
−k
µ
∇p (3.10)

v =
q

n
(3.11)

where q is the flow rate (discharge per unit area), n is the open area fraction, v is

the velocity, µ is the viscosity, k is the intrinsic permeablility of the medium, and

∇p is the pressure gradient in the z-direction across a uniform airfoil thickness l.
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Combining (3.10) and (3.11), yields

v =
−k
µn
∇p, (3.12)

which when compared to (3.7), identifies the porosity parameter C in terms of physical

quantities, which is

C =
kl

µn
. (3.13)

Recall that the airfoil is impermeable when C = 0. In general, C is an arbitrary

positive constant. Then we can revise the boundary condition (3.6) to furnish the

essential integral equation for a uniformily porous airfoil.

−1

2π

∫ b

−b

γa(ξ)dξ

(x− ξ)2
= C(ρUγa) + U

dza
dx

. (3.14)

3.2 Fredholm integral equation

To solve the integral equation (3.14), we have recourse to the theory of Cauchy-

type singular integral equations [10]. The Cauchy principal value representation of a

function is [6]

F (x) =

∫ b

a

f(t)

t− x
dt = lim

ε→0

(∫ x−ε

a

f(t)

t− x
dt+

∫ b

x+ε

f(t)

t− x
dt

)
, a < x < b. (3.15)

The function f(t) is assumed to be Hölder-continuous in the neighborhood of point

x [11]. A more general definition of the same integral has been formulated by

Ioakimidis [12] as

F (x) = lim
ε′,ε′′→0

(∫ x−ε′

a

f(t)

t− x
dt+

∫ b

x+ε′′

f(t)

t− x
dt

)
, a < x < b. (3.16)
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This definition does not give a unique value to F (x), as its value depends on the ratio

ε′/ε′′, or, more precisely, on the limit

k = lim
ε′,ε′′→0

ε′

ε′′
, k > 0. (3.17)

If k = 1, we obtain the principal value of the integral. If not, we obtain some secondary

value of the same integral, depending on the value of k, a positive number [12].

We identify (3.14) as a Fredholm integral equation, of which there are two kinds.

The first kind is written as:

φ(x) =

∫ b

a

K(x, t)φ(t)dt, (3.18)

from the form of we obtained last section. Our focus is on Fredholm equation of

second kind, with the form [13]

φ(x) = f(x) + λ

∫ b

a

K(x, t)φ(t)dt. (3.19)

Given the kernel K(x, t), and the function f(x), the problem is typically to find the

function φ(x).

Now consider a general singular integral equation,

Aw(x)g(x) +
B

π

∫ 1

−1

w(t)g(t)

t− x
dt = h(x), (3.20)

where

w(x)g(x) = f(x), (3.21)
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and A and B are constants. The solution of this equation has the form frequently

called the inversion formula [14, 15], which is

(A2 +B2)g(t) = A
h(t)

w(t)
− B

π

∫ 1

−1

h(x)

w(x)(x− t)
dx. (3.22)

Using the relation

(s)

∫ 1

−1

f(t)

t− x
dt =

∫ 1

−1

f(t)

t− x
+ sf(x), (3.23)

where s = πA/B, that results from using the generalized Cauchy-type singular inte-

gral [12]

F (x) =

∫ 1

−1

f(t)− f(x)

t− x
dt+ f(x)

(
ln

1− x
x+ 1

+ s

)
, −1 < x < 1 (3.24)

we are able to rewrite (3.22) as

(A2 +B2)g(t) = −B
π

(−s) ∫ 1

−1

h(x)

w(x)(x− t)
dx. (3.25)

We can now rewrite (3.14) as

2CπρUγa −
∫ b

−b

γa(ξ)

ξ − x
dξ = −2πU

dza
dx

, (3.26)

into the form for which an inversion solution exists,

Aw(x)g(x) +
B

π

∫ 1

−1

w(t)g(t)

t− x
dt = h(x). (3.27)

However, in order to use this formula, we still need further details about the edge

conditions, which will be addressed in the next section.
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3.3 Edge conditions for inversion

From §3.2, if h(x) is a Hölder-continuous function along x ∈[-1,1], then the solution

of f(x) of the function behaves near the endpoints of the integration interval [-1,1]

like We can then assume f(t) = w(t)g(t), where g(t) remains bounded for t → ±1

and w(t) is given by [16]

w(t) = (1− t)α(1 + t)β. (3.28)

Let κi = −(αi + βi)(cf.[ [15]]). In order to have integrable singularities, which are

required on physical grounds, κ must be restricted to values κ ∈ [−1, 0, 1]. Each value

of κ implies the possible values for α and β.

κ = −1 α < 0, β < 0, (3.29)

= 0 α = β, (3.30)

= 1 α > 0, β > 0. (3.31)

Now compare equation (3.26) with (3.27) to get A = 2CπρU,B = −π, h(x) =

−2πU dza
dx

, and f(x) = w(x)g(x) = γa(x). However, α and β need to be determined.

A set of possible values of α and β can be determined by considering the special

case of an impermeable airfoil. In that case, C = 0 implies A = 0, and the integral

equation (3.27) simplies to

B

π

∫ 1

−1

w(t)g(t)

t− x
dt = h(x), (3.32)

and the solution changes to

g(t) = − 1

πB

∫ 1

−1

h(x)

w(x)(x− t)
dx. (3.33)
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Therefore, the possible exponent values for (3.28) are α = ±1/2 and β = ±1/2 where

the specific values values of α and β follow from κ. If κ = 1, then α = β = −1/2, if

κ = 0; then α = −β = ±1/2; if κ = −1, then α = β = 1/2 [16, 17]. We must choose

the correct value of κ to recover the vorticity distribution in the impermeable case,

γa(x
∗) =

2U

π

√
1− x∗
1 + x∗

∮ 1

−1

√
1 + ξ∗

1− ξ∗
dza(ξ

∗)/dx

x∗ − ξ∗
dξ∗, (3.34)

The choice of κ ∈ [−1, 1] leads to an expression that is consistent with (3.34).

For κ = 0, α and β can be either 1/2 or -1/2. From the equation (2.43), the Kutta

condition implies zero pressure jump (zero vorticity) at the trailing edge, and γa(x
∗)

is not singular. These conditions are met only when α = −1/2 and β = 1/2, leading

to w(x∗) =
√

1+x∗

1−x∗ , and g(ξ∗) = γa(ξ
∗)
√

1−ξ∗
1+ξ∗

, and noting the leading-edge singularity

at x∗ = −1. To check that this choice is correct, substitute these values for α and β

to get

γa(x
∗)

√
1− x∗
1 + x∗

=
2

π

∫ 1

−1

√
1 + ξ∗

1− ξ∗
dza/dx

x∗ − ξ∗
dξ∗. (3.35)

Thus, we recover the same vorticity distribution equation as before (2.47) for the

impermeable case, with the proper behavior of the leading and trailing edges. We

can now use the inversion equation (3.33) to solve the porous case, for when C 6= 0,

using the following substitutions.

A = 2CπρU ; (3.36)

B = −π; (3.37)

h(x) = −2πU
dza
dx

; (3.38)

w(x∗) =

√
1− x∗
1 + x∗

; (3.39)
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g(ξ∗) = γa(ξ
∗)

√
1 + ξ∗

1− ξ∗
. (3.40)

Direct substitution of these relations into (3.25) yields

((2CπρU)2 + π2)

√
1 + x∗

1− x∗
γa(x

∗) = 2πU

∫ 1

−1

√
1 + ξ∗

1− ξ∗
dza/dx

x∗ − ξ∗
dξ∗ − 4CρU2

4C2ρ2U2 + 1

dza
dx

.

(3.41)

Defining the dimensionless group

ψ = 2CρU = 2
ρUkl

un
, (3.42)

(3.41) can be rearranged to get the vorticity distribution γa(x
∗) for the uniformily

porous airfoil

γa(x
∗) =

2U

(1 + ψ2)π

√
1− x∗
1 + x∗

∫ 1

−1

√
1 + ξ∗

1− ξ∗
dza/dx

x∗ − ξ∗
dξ∗ − 2ψU

ψ2 + 1

dza(x
∗)

dx
. (3.43)

3.4 Integrated lift and pitching moment for a per-

meable airfoil

We observe that the solution (3.43) for the vorticity distribution differs from the

impermeable case (2.47) by the constant factor (1 + ψ2)−1 and by an addition terms

of the right hand side involing the dimensionless porosity parameter ψ and the airfoil

shape. In the limit of impermeable case, ψ → 0 and this term is of no consequence.

However, for airfoil with finite porosity this term leads to a violation of the Kutta

condition and must be removed by this requirement. Further work [18] is underway

to examine any potential issues with special porous edge conditions, which at present

are not expected to affect the results of this thesis.
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With this caveat, the pressure distribution, lift, and moment are all directly pro-

portional to the vorticity distribution, we anticipate that these metrics for the im-

permeable case will also be modified by the factor (1 + ψ2)−1 given the same airfoil

shape. It is now sufficient to state the pressure distribution and aerodynamic loads

for the porous airfoil in terms of the impermeable results (2.54) and (2.55).

(cL)P =
1

ψ2 + 1
(cL)NP =

2πα

ψ2 + 1
, (3.44)

(
cMy

)
P

=
1

ψ2 + 1

(
cMy

)
NP

=
−πα

[
a+ 1

2

]
ψ2 + 1

, (3.45)

(
∆p

1
2
ρU2

)
P

=
1

ψ2 + 1

(
∆p

1
2
ρU2

)
NP

=
4α

ψ2 + 1

√
1− x∗
1 + x∗

. (3.46)

The crucial porosity function f(ψ) = (1 + ψ2)−1, relating the results for the

impermeable airfoil to those of the porous airfoil, is shown in figure 3.1. Simple

asymptotic analysis on this function indicates four parameter regimes of interest.

f(ψ) = 1 as ψ → 0, (3.47)

f(ψ) = 1− ψ2 for ψ2 � 1, (3.48)

f(ψ) = ψ−2 for ψ2 � 1, (3.49)

f(ψ) = 0 as ψ →∞. (3.50)

Clearly, the impermeable limit is recovered in (3.47), and no pressure jump across

the airfoil can be sustained in the limit of zero solid fraction in (3.50). However, the

results (3.48) and (3.49) indicate intermediate ranges of interest to the porous airfoil

problem. For ψ2 � 1, the effect of porosity is simply a second-order correction to the

impermeable case. In the opposite limit, ψ2 � 1 (but not infinite), it is clear to see

the dominant effect of porosity, as illustrated in figure 3.1.
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Figure 3.1: Porosity function relating the impermeable airfoil results to those of a
uniformily porous airfoil, with asymptotic approximations for low and high effective
porosity ψ.
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Chapter 4

Conclusion and future work

The aerodynamic loads on a flat plate with a uniform porosity distribution are

predicted by extension of classical thin airfoil theory. The established analysis of

the impermeable case is reviewed in §2 to motivate the extension to the porous case

in §3, where the existence of porosity furnishes a Fredholm integral equation for

the bound vorticity distribution. This equation is solved by appeal to an inversion

formula, and it is found that the pressure distribution, as well as the integrated

lift and moment coefficient, of the porous airfoil are directly proportional to the

results for the impermeable case. The derived proportionality constant is a function

of a dimensionless porosity parameter, which can be related to measurable physical

quantities.

Future study is needed to analyze an extra term that arises during the inversion

process for a porous airfoil, which if retained leads to a contradiction with the Kutta

condition. Future work is also warranted to investigate functional gradients of poros-

ity on the airfoil aerodynamics and how such a distribution can be optimized for noise

reduction by complementary aeroacoustic analysis.
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