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Abstract

We consider performance analysis of interconnected lineardynamical networks subject to external stochas-

tic disturbances. For stable linear networks, we define scalar performance measures by considering

weightedH2–norms of the underlying systems, which are defined from the disturbance input to a desired

output. It is shown that the performance measure of a generalstable linear network can be tightly bounded

from above and below using some spectral functions of the state matrix of the network. This result is ap-

plied to a class of cyclic linear networks and shown that the performance measure of such networks scales

quadratically with the network size. Next, we focus on first–and second–order linear consensus networks

and introduce the notion of Laplacian energy for such networks, which in fact measures the expected

steady-state dispersion of the state of the entire network.We develop a graph-theoretic framework in order

to relate graph characteristics to the Laplacian energy of the network and show that how the Laplacian

energy scales asymptotically with the network size. We quantify several inherent fundamental limits on

Laplacian energy in terms of graph diameter, node degrees, and the number of spanning trees, and several

other graph specifications. Particularly we characterize several versions of fundamental tradeoffs between

Laplacian energy and sparsity measures of a linear consensus network, showing that more sparse networks

have higher levels of Laplacian energies. At the end, we showthat several existing performance measures

in real–world applications, such as total power loss in synchronous power networks and flock energy of a

group of autonomous vehicles in a formation, are indeed special forms of Laplacian energies.
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Chapter 1

Introduction

The issue of fundamental limits and their tradeoffs in large-scale interconnected dynamical systems design

lies at the very core of theory of distributed feedback control systems as it reveals what is achievable and

conversely what is not achievable by distributed feedback control laws. Improving global performance

as well as robustness to external disturbances in dynamicalnetworks are crucial for sustainability, from

engineering infrastructures to living cells; examples include a group of autonomous agents such as UAVs

in a formation, distributed emergency response systems, interconnected transportation networks, energy

and power networks, metabolic pathways and even social networks [1–9]. One of the fundamental design

problems in dynamical networks is to develop a mathematicalframework to study and characterize intrinsic

fundamental limits and their tradeoffs in networks of interconnected systems. This enables us to devise

underpinning principles to design robust-by-design dynamical networks that are less fragile to external

disturbances.

The focus of this thesis is on revealing foundational role ofunderlying graph of dynamical networks in

emergence of severe theoretical hard limits on the global performance and robustness. The structure of the

underlying graph of a dynamical network depends on the coupling structure among the subsystems which

are usually imposed by physical laws or global objectives. We consider the class of linear time-invariant

networks in closed-loop operation, i.e., the linear dynamical network is stabilized by a linear state feedback

control law. The topology of an information structure in a spatially distributed feedback system determines

the communication requirements in the controller array, i.e., each subsystem should communicate with

which of the neighboring subsystems to exchange state information with regard to global objectives. As a
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result, the controller architecture usually imposes a sparsity-constraint on the structure of underlying graph

of the closed-loop dynamical network.

The impacts of such fundamental limits usually appear as fundamental tradeoffs between various mea-

sures of performance and robustness in the presence of external disturbances, subsystem addition or dele-

tion and various modeling uncertainties. In this thesis, weare particularly interested in linear networks

driven by a stochastic disturbances. We propose a comprehensive approach based on ideas from graph

theory to quantify limits of performance and robustness dueto the structure of the underlying graph of

linear dynamical networks.

There have been several recent works on the performance and robustness analysis of first- and second-

order linear consensus networks; only to name a few, we referto [1,5,7,10–14] and references in there. The

reference papers [1,10–12,15] study performance of a classof linear consensus networks under influence

of some external stochastic disturbances. The common approach of the above-mentioned papers is to

adopt theH2–norm of the system (from the disturbance input to the performance output of the system) as

a scalar performance measure. The basic assumption in thesepapers is that the state matrix of the system is

normal. Based on this assumption, theH2–norm of the system can be exactly calculated as a function ofthe

eigenvalues of the state matrix of the system [1]. When statematrix of the system is the Laplacian matrix

of the underlying graph of the system, this scalar measure isproportional to the total effective resistance of

the system. The concept of effective resistance has been used in several disciplines and applications. In the

context of electric circuit analysis, the effective resistance of an edge is the resistance measured between

endpoints of that edge. In the context of random walks and Markov chains on networks, the effective

resistance of an edge can be interpreted as the commute time between the endpoints of that edge. Another

interesting version of the notion of effective resistance appears in the context of graph scarification, where

the goal is to approximate a given graph by a sparse graph. In this setting, the effective resistance is defined

as probability of appearing an edge in a random spanning treeof the graph (see [16] and references in

there). In [17], the authors demonstrate a physical interpretation of the effective resistance in least-squares

estimations as well as motion control problems.

TheH2–norm of a system can be interpreted as a macroscopic performance measure, that captures the

notion of coherence in dynamical networks. In [1], the asymptotic scaling of upper bounds on this scalar

performance measure is investigated in terms of the networksize for linear networks withd-dimensional
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discrete torus interconnection topologies. In [12], the authors consider theH2 performance measure for

a class of first-order consensus networks with exogenous inputs in the form of process and sensor noises.

The performance measure used in [12] is different from thosescalar measures considered in [1, 3, 5, 10].

The proposed analysis method in [12] applies the edge agreement protocol by considering a minimal

realization of the edge interpretation system. Another related work is reported in [15], where the authors

use the2-norm coefficient of ergodicity to find upper bounds on theH2 performance measure.

In this thesis, we propose a graph–theoretic approach to analyze global performance of linear con-

sensus networks using trace operator. We introduce the notions of first-order and second-orderLaplacian

energiesfor linear consensus networks, which are indeed weightedH2–norms of the system. This new

performance measure depends linearly or quadratically on the pseudo–inverse of the Laplacian matrix of

the underlying graph of the network. This formulation has several advantages. First, the Laplacian energy

of a linear consensus network is well-defined and the marginally stable mode of the system is not observ-

able through this performance measure. Second, the trace representation of the Laplacian energy enables

us to reveal the foundational role of the topology of the underlying graph of the network in quantifying

tight lower and upper bounds for the Laplacian energy in terms of various characteristics of the underlying

graph.

In Chapter 3, we consider general closed-loop linear dynamical networks and calculate new tight lower

bound for theH2–norm of the system in terms of the eigenvalues of the closed-loop matrix. This main

result enables us to quantify inherent fundamental limits on theH2–norm of several interesting dynamical

networks, in particular linear networks with nonnormal matrices. In Section 3.2, we apply our main result

to analyze global performance of the class of cyclic dynamical networks. This class of networks usually

arises in modeling biological networks such as Glycolysis pathway [3, 4, 18]. We show that theH2–

norm of a cyclic dynamical network scales quadratically with the size of the system. In Chapter 4, we

define the notion of first-order Laplacian energy for first-order consensus linear networks. We characterize

inherent fundamental limits on the best achievable Laplacian energy. Several lower and upper bound

for Laplacian energy have been obtained in terms of graph diameter, node degrees, and the number of

spanning trees. Specifically, we identify an uncertainty principle like inequality in order to show interplay

between Laplacian energy and sparsity measures of the underlying graph of the network. It is shown

that Laplacian energy times a sparsity measure of the network is lower bounded by a constant that scales
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with the size of the network. This implies that networks withmore sparse topologies incur higher levels of

Laplacian energies. In Chapter 5, we introduce the notion ofsecond-order Laplacian energy for two classes

of second-order linear consensus networks. In Section 5.1,it is shown that several existing performance

measures in real-world applications are special forms of the second-order Laplacian energy. In particular,

we show that in synchronous power networks the concept of Laplacian energy can be interpreted as the

total resistive power loss, and the flock energy of controlled vehicles in a formation is a second-order

Laplacian energy [19]. We characterize a fundamental limitin the form of an inequality that explains

interplay between the second-order Laplacian energy of a group of autonomous vehicles in a formation

and a sparsity measure of the formation graph.
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Chapter 2

Mathematical Preliminaries

The set of all nonnegative real numbers is denoted byR+. The n × 1 vector of all ones is denoted

by 1n = [1, 1, . . . , 1]T , the n × n identity matrix byIn, and then × n matrix of all ones byJn =

1n1
T
n . Throughout this thesis, it is assumed that all graphs are finite, simple, undirected and connected.

A weighted graphG is represented by a trebleG = (V (G), E(G), w(G)), whereV (G) is the set of nodes,

E(G) ⊂
{

{i, j}
∣

∣ i, j ∈ V (G), i 6= j
}

is the set of edges, andw(G) : E(G) → R+ is the weight function.

For each nodei ∈ V (G), the degree ofi is defined by

di ,
∑

e={i,j}∈E(G)

w(G)(e).

For a given graph, we assume that the degree sequence of the graph is indexed in ascending orderd1 ≤

d2 ≤ · · · ≤ dn. The adjacency matrixA = [aij ] of graphG is defined by settingaij = w(G)(e) if

e = {i, j} ∈ E(G), otherwiseaij = 0. The Laplacian matrix ofG is defined byLG , ∆ − A, where

∆ = diag(d1, . . . , dn) is a diagonal matrix. The eigenvalues ofLG are indexed in ascending order

λ1 ≤ λ2 ≤ · · · ≤ λn andλ1 = 0. The eigenvalue decomposition of the Laplacian matrix is given by

LG = UΛUT whereΛ = diag(λ1, . . . , λn) andU = [u1,u2, · · · ,un] is the corresponding orthonormal

matrix of eigenvectors.

The class of all connected graphs withn nodes is denoted byGn. A dumbbell graphD(n;n1, n2)

in Gn is a graph consisting of two node-disjoint starsSn1
andSn2

and a pathPn−n1−n2+2 joining them

having only its end-nodes in common with the center of the twostars (See Fig. 4.4(b) and [20]). A tree
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is a connected graph onn nodes and with exactlyn − 1 edges. For comparison purposes throughout the

thesis, we consider the standard graphs in Table 2.1 in several occasions. Everyone of these graphs has its

own comparable characteristics. For instance, among all graphs inGn a complete graph has the maximum

number of edges and a star graph has the maximum number of nodes of degree one. A path graph is a tree

with minimum number of nodes of degree one. We refer to reference [21] for more details and discussions.

An edge is called acut-edgewhose deletion increases the number of connected components (see Fig. 4.3).

Definition 2.0.1. For a given Laplacian matrixLG, theLG–semi–norm of a vectorx ∈ R
n is defined by

‖x‖2LG
, xTLGx =

∑

e={i,j}∈E(G)

w(e)
(

xi − xj
)2
, (2.1)

wherew(e) is the weight of edgee = {i, j} ∈ E(G),

Definition 2.0.2. The Moore-Penrose pseudo-inverse ofLG is denoted byL†
G = [l†ji] which is a square,

symmetric, doubly-centered and positive semidefinite matrix.

Definition 2.0.3. For a given Laplacian matrixLG , the corresponding resistance matrixRG = [rij ] is

defined using the Moore-Penrose pseudo-inverse ofLG by settingrij = l
†
ii + l

†
jj − l

†
ji − l

†
ij, whererij is

called the effective resistance between nodesi andj.

Definition 2.0.4. For a given Laplacian matrixLG , the total effective resistancertotal is defined as the sum

of the effective resistances between all distinct pairs of nodes, i.e.,

rtotal =
1

2
1TnRG1n =

1

2

n
∑

i,j=1

rij. (2.2)

Theorem 2.0.5.For a givenn× n Laplacian matrixLG , the following equalities hold

rtotal = n

n
∑

i=2

1

λi

, (2.3)

∑

e={i,j}∈E(G)

rijw(e) =
1

2
Tr(LGRG) = n− 1, (2.4)

whererij andw(e) are the effective resistance and the weight of edgee = {i, j} ∈ E(G), respectively.

Proof. We refer to [22, Lemma 2] for a proof.
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Graph Families inGn Notation

Complete graph Kn

Star graph Sn

Cycle graph Cn
Path graph Pn

Dumbbell graph D(n;n1, n2)

Complete bipartite graph of size(n1, n2) Kn1,n2

Table 2.1:For comparison purposes throughout the thesis, we considerthe standard graphs in this table in several
occasions.

In the rest of this section, we review some concepts from majorization theory. The following definition

is from [23].

Definition 2.0.6. For everyx ∈ R
n
+, let us definex↓ to be a vector whose elements are a permuted version

of elements ofx in descending order. We say thatx majorizesy, which is denoted byx ☎ y, if and only if

1Tx = 1T y and
k
∑

i=1

x
↓
i ≥

k
∑

i=1

y
↓
i , (2.5)

for all k = 1, . . . , n− 1.

We should emphasize that majorization is not a partial ordering. This is because from relationsx☎ y

andy ☎ x one can only conclude that the entries of these two vectors are equal, but not necessarily in the

same order. Therefore, relationsx☎ y andy☎ x do not implyx = y. The following theorem is from [24]

which suggests equivalent methods to verify majorization.

Theorem 2.0.7.For everyx, y ∈ R
n
+, the following statements are equivalent:

(i) x☎ y;

(ii) For all scalar convex functionsf , F (x) ≥ F (y) whereF (x) =
∑n

i=1 f(xi); and

(iii) y = Dx for some doubly stochastic matrixD.

Definition 2.0.8. The real-valued functionF : Rn
+ → R is called Schur–convex ifF (x) ≥ F (y) for every

two vectorsx andy with propertyx☎ y. Similarly, a functionF is Schur–concave if−F is Schur–convex.

8



Chapter 3

Performance Measures for General Linear

Dynamical Networks

The steady-state variance of outputs of linear systems driven by external stochastic disturbances can be

regarded as a measure of performance. We consider a linear time-invariant network

ẋ = Ax+ ξ, (3.1)

y = Cx, (3.2)

with x(0) = 0, wherex ∈ R
n is the state andy ∈ R

m the output of the system. The input signalξ ∈ Rn

is a white noise process with zero mean and identity covariance, i.e.,

E
[

ξ(t)ξ(τ)T
]

= Inδ(t− τ),

whereδ(.) is the delta function. It is assumed that the state matrixA is Hurwitz.

Definition 3.0.9. TheH2–norm of linear system(3.1)-(3.2) from ξ to y is defined as the square root of the

following quantity

HQ(A) , lim
t→∞

E[y(t)T y(t)] = lim
t→∞

E[‖x(t)‖2Q]. (3.3)

whereQ = CTC.

For unstable linear systems, the outputs of the system have finite steady state variance as along as the
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unstable modes of the system are not observable from the output of the system (cf. [1]). The value of

HQ(A) for (3.1)-(3.2) can be quantified as

HQ(A) = Tr(PcQ), (3.4)

wherePc is the controllability Grammian of linear system (3.1)-(3.2) which is the unique solution of

APc + PcA
T + In = 0. (3.5)

One can also calculate theHQ(A) using the observability GrammianPo,

HQ(A) = Tr(Po), (3.6)

wherePo is the unique solution of the Lyapunov equation

PoA+ATPo +Q = 0. (3.7)

3.1 The Main Result

We show that theH2–norm of a general linear system (3.1)-(3.2) from external disturbance input to the

output of the system can be bounded from above and below usingsome real-valued functions of the

eigenvalues of the state matrixA. The following result was originally reported in [3,5].

Theorem 3.1.1.Suppose that in linear system(3.1)-(3.2) the disturbance input is a white stochastic pro-

cessxi with zero mean and identity covariance, the state matrixA is Hurwitz, andC = In. Then, we

have

−
n
∑

i=1

1

2Re{λi(A)}
≤ HQ(A) ≤ −

n
∑

i=1

1

2λi(As)
, (3.8)

whereAs =
AT+A

2 is the systematic part of matrixA.

Proof. We refer the reader to the Appendix for a proof.
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The following corollaries explore several special cases and show that how the performance measure

HQ(A) depends on the general properties ofA and the size of the network.

Corollary 3.1.2. Suppose that the assumptions of Theorem 3.1.1 hold. Furthermore, if we assume that

matrixA is normal, i.e.,ATA = AAT , then(3.8) reduces to

HQ(A) = −
n
∑

i=1

1

2Re{λi(A)}
= −

n
∑

i=1

1

2λi(As)
. (3.9)

Proof. According to the Schur decomposition for normal matrices, there exists a unitaryV ∈ C
n×n, such

thatA = V ΓV H whereΓ = diag{λ1, . . . , λn} andV H denotes the conjugate transpose of matrixV .

Using this we have

As =
A+AH

2
= V

(

Γ + ΓH

2

)

V H

= V diag
(

Re{λ1}, . . . ,Re{λn}
)

V H . (3.10)

This implies thatλi(As) = Re{λi} for all i = 1, . . . , n. Thus, the lower and upper bounds in (3.8)

coincide.

Corollary 3.1.3. Suppose that the assumptions of Theorem 3.1.1 hold. Then, itfollows that

n1.5

2
√

Tr(AAs)
≤ HQ(A). (3.11)

Proof. From the definition of trace operator, we have

Tr(A2) =
n
∑

i=1

Re{λi(A)}2 −
n
∑

i=1

Im{λi(A)}2. (3.12)

According to the definition of the Frobenius norm, we have

Tr(AAT ) = ‖A‖2F

≥
n
∑

i=1

|λi(A)|2

=
n
∑

i=1

Re{λi(A)}2 +
n
∑

i=1

Im{λi(A)}2. (3.13)

11



x1 x2 x3 xn

ξ1 ξ2 ξ3 ξn

Figure 3.1: Schematic diagram of negative feedback noisy cyclic system. The dashed link indicates a negative
(inhibitory) feedback signal.

Therefore based on (3.12) and (3.13), it follows that

n
∑

i=1

Re{λi(A)}2 ≤ ‖A‖2F +Tr(A2)

2
= Tr(AAs). (3.14)

By applying the root-mean square and harmonic mean inequalities and (3.14), one can conclude inequality

(3.11).

A more conservative lower bound can be obtained by considering the following inequality

Tr(AAs) ≤ n2 max
i,j

|aij |2, (3.15)

which leads to the following inequality

n0.5

2maxi,j |aij |
≤ HQ(A). (3.16)

3.2 Example of a Linear Network with Nonnormal Matrix

In this part, we apply our main result to a nontrivial example. We consider the class of linear dynamical

networks with cyclic interconnection topologies. An example of a cyclic network is an autocatalytic

pathway in biology with ring topology which consists of a sequence of biochemical reactions where the

system’s product (output) is necessary to power and catalyze its own function [3, 4, 25]. We consider a

cyclic linear dynamical network consists of a group of linear-time invariant systemsSi with state-space

representations

ẋi = −aixi + ui + ξi, (3.17)

vi = cixi, (3.18)
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for i = 1, . . . , n, whereai, ci are strictly positive numbers. The scalar quantitiesui, vi, xi are the input,

output and state variables of subsystemSi, respectively. By considering series interconnection of subsys-

temsSi for i = 1, 2, · · · , n and applying the output of subsystemi as the input of subsystemi + 1 (see

Fig. 3.1), we obtain the dynamics of the cyclic network as follows

ẋ1 = −a1x1 − vn + ξ1,

ẋ2 = −a2x2 + v1 + ξ2,

...

ẋn = −anxn + vn−1 + ξn, (3.19)

whereξi for i = 1, 2, · · · , n are independent white stochastic processes with identicalstatistics. The

resulting dynamical system can be represented in the following compact form

ẋ = Ax+ ξ, (3.20)

y = Cx, (3.21)

where

A =



























−a1 0 . . . 0 −cn

c1 −a2 . . . 0 0

...
...

. . .
...

...

0 0 . . . −an−1 0

0 0 . . . cn−1 −an



























(3.22)

andC = I andξ ∈ R
n is a zero-mean white stochastic process with identity covariance. Our goal is to

investigate robustness properties of the cyclic linear dynamical network (3.19) driven by external white

stochastic disturbances.

Theorem 3.2.1. For the cyclic linear dynamical network (3.19) driven by a zero-mean white stochastic

13



processξ ∈ R
n with identity covariance, we define

a , n
√
a1a2 · · · an, (3.23)

c , n
√
c1c2 · · · cn. (3.24)

If γ > cos(π
n
) whereγ = a

c
, then the cyclic linear dynamical network is stable. Moreover, if we assume

thata = a1 = · · · = an, then

HQ(A) ≥ −
n
∑

i=1

1

2Re{λi(A)}
=



















































n tan β
2

2c sin β
n

, γ < 1

n2

4c , γ = 1

n tanh β
2

2c sinh β
n

, γ > 1

(3.25)

where

β ,











arcos(γ)n , γ ≤ 1

arcosh(γ)n , γ > 1
. (3.26)

Proof. The stability conditionγ > cos(π
n
) implies thatA is Hurwitz. Therefore, theH2–norm squared is

finite and given byTr(P ) (see [10, 26] for more details), whereP is the unique positive definite solution

of the Lyapunov equation

AP + PAT = −In. (3.27)

Whena = a1 = a2 = · · · = an, it is straightforward to verify that the characteristic equation ofA is given

by

(λ+ a)n + c1c2 · · · cn = 0.

Therefore, the eigenvalues of the matrix are

λk = −a + cei(
π
n
+ 2πk

n
),

14



for k = 0, 1, · · · , n− 1. By substituting these eigenvalues into the lower bound of (3.8), we get

−
n
∑

i=1

1

2Re{λi(A)}
=

n−1
∑

k=0

1

2Re
{

−a+ cei(
π
n
+ 2πk

n
)
}

=

n−1
∑

k=0

1

2c
(

γ − cos(π
n
+ 2πk

n
)
) . (3.28)

First, let us assume thatγ < 1 and substituteγ = cos(β
n
) in (3.28). It follows that

−
n
∑

i=1

1

2Re{λi(A)}
=

1

2c

n−1
∑

k=0

1

cos(β
n
)− cos(π

n
+ 2πk

n
)

=
1

4c

n−1
∑

k=0

csc( (2k+1)π
2n + β

2n) csc(
(2k+1)π

2n − β
2n)

=
n tan β

2

2c sin β
n

,

where the Birkhoff Ergodic theorem is used to conclude the last equation. Similar steps can be taken when

γ ≥ 1. In each case by substitutingγ from (3.26) in (3.28), one can obtain the desired result in the right

hand side of (3.25).

The classical secant criterion reported in [27] and [28] forcyclic linear dynamical network (3.19) pro-

vides a stability condition when allai for i = 1, . . . , n are identical and implies that the unperturbed system

with ξ = 0 in (3.19) is stable if and only ifγ > cos(π
n
). For a fixed parameterβ, the stability condition

of the cyclic network is not affected when the number of intermediate subsystems changes. However, the

result of Theorem 3.2.1 asserts that the lower bound of the performance measureHQ(A) increases when

the size of network increases. We show that the lower bound ofthe performance measureHQ(A) is in
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Figure 3.2:The lower bound in (3.19), which is depicted by small red circles (◦), is compared asymptotically to its
approximation in (3.29). It can be observed that (3.29) tightly approximates the lower bound in (3.19).

order ofO(n2) when parameterβ is fixed. More explicitly, we obtain the following approximation

−
n
∑

i=1

1

2Re{λi(A)}
≈































































tan β
2

2cβ n2 , γ < 1

1
4cn

2 , γ = 1

tanh β
2

2cβ n2 , γ > 1

. (3.29)

From this result, we conclude that the lower bound onH2–norm of the network scales withO(n).

Figure 3.2 depicts such linear relationship.

Corollary 3.2.2. Suppose that the following condition holds for the cyclic linear dynamical network(3.19)

a

c
> cos

(π

n

)

, (3.30)
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wherea , a1 = . . . = an, c , c1 = . . . = cn, and the output of the system is defined by

y = Cx =

[

0 . . . 0 1

]

x.

Then, the steady-state output dispersion is bounded from above by

HQ(A) , lim
t→∞

E[y(t)2] ≤ 1

2(a − c cos(π
n
))
.

Proof. The steady-state output dispersion is given by

HQ(A) = Tr(CPCT ),

whereP is the unique solution of the Lyapunov equation (3.5). According to Theorem 3.2.1, our assump-

tion (3.30) implies that all the eigenvalues ofA have strictly negative real parts. Therefore, the unique

solution of (3.5) can be written in the following closed form

P =

∫ ∞

0
eA

T teAtdt. (3.31)

The state matrix defined by (3.22) is normal, i.e.,ATA = AAT . According to the spectral theorem,

there exists a unitary matrixV ∈ C
n×n such thatA = V ΛV H whereΛ = diag(λ1, · · · , λn). We now

consider the integrand of (3.31)

P =

∫ ∞

0
eA

HteAtdt

=

∫ ∞

0
V eΛ

HteΛtV Hdt

= V diag

(

1

2Re{λ1}
, · · · , 1

2Re{λn}

)

V H (3.32)

Since‖C‖2 = ‖CT ‖2 = 1, it follows that

Tr(CPCT ) ≤ max
i

λi(P )

= max
i

1

2Re{λi}

17



=
1

2(a− c cos(π
n
))
. (3.33)

In the following chapters, we apply the main result of this section to linear consensus algorithms in

large-scale dynamical networks.
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Chapter 4

First-Order Linear Consensus Networks

We consider linear networks with first-order consensus dynamics over a weighted connected graphG =

(V (G), E(G), w(G)) with n nodes andm edges. For this class of networks, each node (i.e., subsystem)

corresponds to a scalar state variable. Therefore, the state of the entire network can be represented by

x =

[

x1 x2 . . . xn

]T

wherexi for i = 1, . . . , n is the state variable ofi’th node. We assume that

the dynamics of this class of dynamical networks is given by the following continuous-time first-order

linear consensus dynamics

ẋ = −LGx+ ξ, (4.1)

whereLG is the Laplacian matrix of the underlying graphG andξ ∈ R
n is an external stochastic white

noise with zero-mean and identity covariance. The output ofthe network is defined using the incidence

matrix of the output graphQ = (V (Q), E(Q), w(Q)) as follows

y = CQx, (4.2)

where

LQ = CT
QCQ, (4.3)

is the Laplacian of graphQ. We should emphasize that, in general, the output matrixCQ may not be

an incidence matrix. The only requirement forCQ is to satisfy (4.3). For example, let us consider the
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following output matrix

CQ = In − 1

n
Jn.

It is straightforward to verify that

LQ = CT
QCQ = In − 1

n
Jn

is the Laplacian matrix of a complete graph. Thus, the corresponding output graph isQ = Kn with weight

functionw(Q)(e) = 1
n

for all e ∈ E(Q).

Definition 4.0.3. The first-order Laplacian energy of the linear consensus network (4.1)-(4.2) is defined

as the steady state variance of the output signal, i.e.,

H
(1)
Q (LG) = lim

t→∞
E
[

y(t)T y(t)
]

= lim
t→∞

E
[

‖x(t)‖2LQ

]

= lim
t→∞

E





∑

e={i,j}∈E(Q)

w(Q)(e)
(

xi(t)− xj(t)
)2



 ,

wherew(Q)(e) is the weight of edgee = {i, j} in the output graphQ.

We recall that the Laplacian matrixLG has a simple zero eigenvalue with eigenvector1n =

[

1 1 . . . 1

]T

.

This implies that the linear consensus network (4.1)-(4.2)is marginally stable. SinceLQ1n = 0, the

marginally stable mode of the system does not affect the Laplacian energy of the linear consensus net-

work.

Theorem 4.0.4.For the linear consensus network (4.1)-(4.2), the first-order Laplacian energy is given by

H
(1)
Q (LG) =

1

2
Tr(LQL

†
G). (4.4)

whereL†
G is the Moore–Penrose pseudoinverse of the underlying graphof the network.

Proof. According to (3.6), we need to calculate the unique solutionof the Lyapunov equation

LGP + PLG = LQ. (4.5)
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By multiplying each side of (4.5) byL†
G , we get

L
†
GLGP + L

†
GPLG = L

†
GLQ. (4.6)

One can verify thatL†
GLG = In − 1

n
Jn. By applying trace operate to the left hand side of (4.6), it follows

that

Tr
(

(In − 1

n
Jn)P

)

+Tr(PLGL
†
G) = 2Tr((In − 1

n
Jn)P ).

SinceLQ andLG are both symmetric matrices with zero row and column sums, wehave

H
(1)
Q (LG) = Tr (P ) =

1

2
Tr(LQL

†
G).

When output graphQ is a complete graph with weight functionw(Q)(e) = 1
n

for all e ∈ E(Q), then

LQ = In − 1
n
Jn. The first-order Laplacian energy of the corresponding network is given by

H
(1)
Kn

(LG) =
n
∑

i=2

1

2λi

. (4.7)

Therefore, the first-order Laplacian energy of the first-order linear consensus network (4.1)-(4.2) reduces

to the concept of first-order network coherence and the expected dispersion of the state of the system in

steady state [1,10]. It turns out that the total effective resistance of (4.1)-(4.2) depends on the spectrum of

the Laplacian matrix that is given by

rtotal = n

n
∑

i=2

1

λi

. (4.8)

We refer to [1] for more details. Therefore, the first-order Laplacian energy for linear consensus network

(4.1)-(4.2) is

H
(1)
Kn

(LG) =
rtotal

2n
. (4.9)

In the next section, we derive several combinatorial and graph-theoretical lower and upper bounds on
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the first-order Laplacian energy (4.4).

4.1 Graph-Dependent Scaling Laws for the First-Order Laplacian Energy

We consider a class of first-order linear consensus networks(4.1)-(4.2) that are defined over a simple

connected unweighted graph. In order to apply our results from Subsection 3.1, we will treat an unweighted

graph as a weighted graph with constant weight values equal to 1 for all edges, i.e.,w(G)(e) = 1 for all

e ∈ E(G). It is also assumed that the output graph is a complete graph with w(Q)(e) = 1
n

for all e ∈ E(Q).

For simplicity of our notation, we adopt the simple notationH(1)(LG) instead ofH(1)
Kn

(LG) whenever the

output graph is a complete graph. In the following subsections, we consider several scenarios and reveal

the foundational role of the underlying graph of the networkon how the first-order Laplacian energy of a

linear consensus network depends on various characteristics of the underlying graph.

4.1.1 General Lower and Upper Bounds

The result of the following theorem relates the first-order Laplacian energy to the diameter of the under-

lying graph of the network. The diameter of a graph is one of the key features of a graph and defined as

the largest distance between every two nodes in a graph. The diameter of a simple connected graphG is

denoted bydiam(G).

Theorem 4.1.1.For the linear consensus network (4.1)-(4.2), the first-order Laplacian network is bounded

by

LLG
≤ H(1)(LG) ≤ ULG

, (4.10)

where

LLG
=

(n− 1)1.5

2
√
s1 + s2

(4.11)

ULG
=

n− 1

2n

[

1 +

((

n

2

)

−m

)

diam(G)
]

(4.12)

wherem is the number of edges,di the degree of nodei, andsα ,
∑n

i=1 d
α
i for α = 1, 2.
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Proof. For the lower bound, we apply the result of Theorem 3.1.3 and the fact that‖LG‖F =
√
s1 + s2 to

obtain

(n− 1)1.5

2
√
s1 + s2

≤ H(1)(LG). (4.13)

For the upper bound, according to [29, Th. 1] it follows that

n

1 +
((

n
2

)

−m
)

diam(G) ≤ λ2. (4.14)

From (4.7) and the fact thatλ2 is the smallest nonzero eigenvalue ofLG , we get

H(1)(LG) =
n
∑

i=2

1

2λi

≤ n− 1

2λ2
, (4.15)

By combining inequalities (4.14) and (4.15), we get the desired upper bound

H(1)(LG) ≤
n− 1

2n

[

1 +

((

n

2

)

−m

)

diam(G)
]

.

For a complete graphG = Kn, both lower and upper bounds in Theorem 4.1.1 coincide and wehave

H(1)(LKn) =
n− 1

2n
.

Proposition 1. For the linear consensus network (4.1)-(4.2) defined over a graphG = (V (G), E(G), w(G)),

the corresponding first-order Laplacian energy is bounded from below by

(n− 1)2

2Tr(LG)
≤ H(1)(LG). (4.16)

Proof. It can be shown thatH(1)(LG) is a Schur–convex function respect to(λ2, . . . , λn)
T ∈ R

n−1
++ where

λi for i = 2, . . . , n are eigenvalues ofLG . On the other hand, we have

Tr(L)

n− 1
1Tn ✂ (λ2, . . . , λn)

T .
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(a) (b) (c)

Figure 4.1: According to Theorems 4.1.3 and 4.1.10, we can consider the following extreme cases: the
first-order Laplacian energy is (a) maximal forP5 among all connected graphs with five nodes as well
as among all graphs with tree structures with five nodes, (b) minimal for S5 among all graphs with tree
structures with five nodes, and (c) minimal forK5 among all graphs with five nodes.

Therefore, according to the definition of Schur–convex functions, we can conclude inequality (4.16).

The next theorem shows that the Laplacian energy of a graph isalways less than or equal to the

Laplacian energy of its connected spanning subgraphs.

Theorem 4.1.2.Suppose that connected graphG is the underlying graph of the linear consensus network

(4.1)-(4.2) withn nodes. IfP is a connected spanning subgraph ofG, then

H(1)(LG) ≤ H(1)(LP), (4.17)

and the equality holds if and only ifG = P.

Proof. For everyx ∈ R
n, we have

xTLGx =
∑

e={i,j}∈E(G)

w(e) (xi − xj)
2

≥
∑

e={i,j}∈E(P)

w(e) (xi − xj)
2

= xTLPx. (4.18)

This inequality implies that

LP ≤ LG, (4.19)

and equivalently, we have

L
†
G ≤ L

†
P . (4.20)
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From the linearity property of the trace operator and the fact that L†
P − L

†
G is a positive semi-definite

matrix, we get

1

2
Tr(L†

P − L
†
G) =

1

2
Tr(L†

P)−
1

2
Tr(L†

G)

= H(1)(LP )−H(1)(LG)

≥ 0.

In the following theorem, we characterize the maximal and minimal values of the first-order Laplacian

energy over all graphs withn nodes.

Theorem 4.1.3.The maximal and minimal values of the first-order Laplacian energy for the class of linear

consensus networks (4.1)-(4.2) are given by

(n− 1)

2n
≤ H(1)(LG) ≤

n2 − 1

12
. (4.21)

Furthermore, the lower bound is achieved if and only ifG = Kn, and the upper bound is reached if and

only if G = Pn.

Proof. According to Theorem 4.1.2, the lower bound in (4.21) can be achieved for a complete graph. The

reason is that every connected graph withn nodes is a spanning subgraph ofKn. On the other hand,H(1)

reaches its maximal value when the underlying graph is a tree. We refer to Theorem 4.1.10 in Subsection

4.1.4 for more details and a proof.

The result of Theorem 4.1.3 is applied to different graphs with five nodes and the result is compared

in Figure 4.1.

4.1.2 Tradeoffs Between Sparsity and the Laplacian Energy

In this subsection, we show that a fundamental limit emergesbetween sparsity of the underlying graph of

the network and its first-order Laplacian energy. First, we consider the total number of nonzero elements

of a Laplacian matrixLG = [lij ] as a sparsity measure for the underlying graph. In fact, thismeasure is
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equal to the total number of edges in the underlying graph anddenoted by

‖LG‖0 =
1

2

n
∑

i 6=j

|lij |0. (4.22)

Corollary 4.1.4. For the linear consensus network(4.1)-(4.2), there is a fundamental tradeoff between

the first-order Laplacian energy and the sparsity measure(4.22)that is characterized in the multiplicative

form by the following inequality

H(1)(LG) ‖LG‖0 ≥ (n− 1)2

4
, (4.23)

and in the additive form by

(

2H(1)(LG)− 1

diam(G)

)

+ ‖LG‖0 ≤ n(n− 1)

2
. (4.24)

Proof. The proof is a direct consequence of Proposition 1 and Theorem 4.1.1.

Let us consider the class of graphs with identical number of nodes and compare several scenarios. The

inequality (4.23) asserts that the minimum achievable levels of first-order Laplacian energy for sparse net-

works is higher. For all networks with identical diameters,inequality (4.24) implies that graphs with more

edges have smaller levels of first-order Laplacian energies. Among all networks with identical number of

edges, the ones with larger diameters have higher levels of first-order Laplacian energies.

Corollary 4.1.5. Let us consider the class of all linear consensus networks(4.1)-(4.2)with identical first-

order Laplacian energies, the sparsity measure(4.22)can be bounded by

(n− 1)2

4H(1)(LG)
≤ ‖LG‖0 ≤ n(n− 1)

2
− 2H(1)(LG)− 1

diam(G) . (4.25)

Proof. The proof is a direct consequence of Proposition 1 and Theorem 4.1.1.

This result provides us with a criterion to determine what the minimum and maximum number of

required edges are for a linear consensus network with a priori given level of first-order Laplacian energy.
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We can also consider the following sparsity measure for linear consensus networks

‖LG‖S0,1
, max

{

max
1≤i≤n

‖LG(i, .)‖ℓ0 , max
1≤j≤n

‖LG(., j)‖ℓ0
}

whereLG(i, .) represents thei’th row andLG(., j) thej’th column of matrixLG . The value ofℓ0–measure

‖ .‖ℓ0 returns the total number of nonzero elements in a vector. In fact, the value of theS0,1–measure of

a sparse matrix is the maximum number of nonzero elements among all rows and columns of that matrix.

We refer to [30] for more details and discussions on this sparsity measure. TheS0,1–measure of incidence

matrix of an unweighted graph is equal to the maximum node degree in that graph. The result of the

following theorem provides us with a mean to quantity tradeoffs between the Laplacian energy and this

sparsity measure.

Theorem 4.1.6.For the class of linear consensus networks(4.1)-(4.2)with n ≥ 3 nodes, we have

2H(1)(LG) ≥ (d1 + d2 − 1)−1 +

n−1
∑

i=2

d−1
i + (dn + 1)−1,

whered1 ≤ d2 ≤ . . . ≤ dn are the node degrees in ascending order. Moreover, the equality holds if and

only if G = Sn or G = K3.

Proof. For a given convex functionf : R+ → R, let us defineF (x) =
∑n

i=1 f(xi) wherex =

[x1, x2, . . . , xn]
T ∈ R

n
+. According to [23, Sec. 3.C],F (x) is a Schur–convex function. Therefor, it

follows that

H(1)(LG) =

n
∑

i=2

1

2λi

is a Schur–convex function. This is because functionf(λi) = 1
2λi

is a convex function fromR+ to R.

Moreover, the following relationship holds

(λ2, . . . , λn)☎ (d1 + d2 − 1, d2, . . . , dn−1, dn + 1)

according to [31, Lemma 2]. From this relationship and the definition of Schur–convex function, we get

2H(1)(LG) = f(λ2, . . . , λn)
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≥ 1

d1 + d2 − 1
+

1

d2
+ . . .+

1

dn + 1

= (d1 + d2 − 1)−1 +

n−1
∑

i=2

d−1
i + (dn + 1)−1.

The interested reader is referred to [31] for more details and similar arguments.

Corollary 4.1.7. For the class of linear consensus networks(4.1)-(4.2)with n ≥ 3 nodes, we have

H(1)(LG)SG ≥ n− 1

2
, (4.26)

where

SG = max
{

‖LG‖S0,1
+ 1, 2‖LG‖S0,1

− 1
}

(4.27)

is a measure of sparsity.

Proof. The proof is a direct consequence of Theorem 4.1.6 and the definition of SG.

For the class of first-order linear consensus networks with identical number of nodes, the result of

this corollary asserts that by improving local connectivity in a network the minimum achievable level of

first-order Laplacian energy decreases.

Remark 4.1.8. The value of theS0,1 sparsity measure reveals some valuable information about sparsity

as well as the spatial locality features of a given sparse matrix, while (4.22)does not. Moreover,(4.22)

does not exhibit any interesting algebraic property and cannot be used in infinite-dimensional settings.

4.1.3 Role of the Characteristic Polynomial of the Laplacian.

The first-order Laplacian energy of the linear consensus network (4.1)-(4.2) depends on the coefficients

of the characteristic polynomial of the Laplacian matrix ofthe underlying graph of the network, which is

represented by

ΦLG
(λ) =

n
∑

k=0

(−1)n−k ck(LG)λ
k. (4.28)
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From (4.7) and Vieta’s formulas for (4.28), it follows that

H(1)(LG) =
c2(LG)

2c1(LG)
. (4.29)

The total number of spanning trees of graphG can be characterized by

T(G) = 1

n
λ2 · · · λn =

1

n
c1(LG). (4.30)

This result can be deducted from the following formula that establishes a relationship between the coeffi-

cients of the characteristic polynomial (4.28) and the structure of graphG

ck(LG) =
∑

F∈Fk(G)

γ(F ), (4.31)

in which F stands for a spanning forest,Fk(G) the set of all spanning forests ofG with exactlyk com-

ponents, andγ(F ) the product of the number of nodes of the components ofF [32, 33]. Therefore, from

(4.29) and (4.30) one can conclude that

H(1)(G) = c2(LG)

2nT(G) .

It is worth mentioning that there are methods to compute the coefficients of (4.28) in an iterative

manner. For instance, the following recursive formulae is proposed by Fadeev (see [34] for more details)

cn−k =
1

k
Tr(L(k)

G ), (4.32)

where

L(k)
G = Lk

G − (−1)k−1cn−1L
k−1
G − · · · − (−1)1cn−k+1LG .

The next theorem shows that a lower bound in terms of the totalnumber of spanning trees can be

obtained for the first-order Laplacian energy of a linear consensus network.

Theorem 4.1.9.For the linear consensus network (4.1)-(4.2), the first-order Laplacian energy is bounded
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(a) (b)

Figure 4.2:Two symmetric lattices of order3: (a) Triangular lattice (b) Honeycomb lattice which is the planar dual
of triangular lattice.

from below by
n− 1

2 n−1

√

nT(G)
≤ H(1)(LG). (4.33)

Proof. By applying the inequality of arithmetic and geometric means to (4.7) and using equation (4.30),

we get

H(1)(LG)

n− 1
=

∑n
i=2

1
2λi

n− 1

≥ n−1

√

√

√

√

n
∏

i=2

1

2λi

=
1

2 n−1
√

nT(G)
. (4.34)

For a complete graphG = Kn, it can be shown thatT(G) = nn−2. Therefore, complete graphs

achieve the lower bound in (4.33). The result of this theoremimplies that if the number of spanning

trees increases, the minimum achievable levels of first-order Laplacian energy decreases accordingly. The

result of Theorem 4.1.9 can be applied to graphs with regularlattice topologies and show that the first-

order Laplacian energy scales asymptotically with networksize. Let us consider the number of spanning

trees in a finite subgraph of a lattice. It can be shown thatT(G) grows exponentially with the number of

nodes. We refer to [35] for detailed discussions and proofs.

4.1.4 Graphs with Tree Structure

In this subsection, we assume that the underlying graph of the linear consensus network (4.1)-(4.2) is a

tree graph that is denoted byT . One of the invariant characteristics of a graph is its Wiener number which
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is denoted byW(T ) [33] and is equal to the sum of distances between all pairs of nodes ofT . It is well

known that the second coefficient of the Laplacian characteristic polynomial of a tree coincides with the

Wiener number, i.e.,

c2(LT ) = W(T ).

According to this fact and (4.29), it follows that

H(1)(LT ) =
c2(LT )

2n
=

W(T )

2n
. (4.35)

We apply this result in order to characterize trees that haveminimal and maximal first-order Laplacian

energies among all trees withn nodes.

Theorem 4.1.10.For the class of linear consensus networks(4.1)-(4.2)with underlying tree graphs with

at least five nodes, the first-order Laplacian energy is bounded by

(n− 1)2

2n
≤ H(1)(LT ) ≤ n2 − 1

12
, (4.36)

Moreover, the lower bound is achieved if and only ifT = Sn, and the upper bound is achieved if and only

if T = Pn.

Proof. According to reference [36], ifT is a tree withn nodes that is neitherPn norSn, then

W(Sn) < W(T ) < W(Pn). (4.37)

Furthermore, it is shown that (see [36] for more details)

W(Pn) =

(

n+ 1

3

)

, and W(Sn) = (n− 1)2. (4.38)

From (4.37) and (4.35), we have

(n− 1)2

2n
< H(1)(LT ) <

n2 − 1

12
,
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On the other hand, it follows from (4.38) and (4.35) that

H(1)(Pn) =
n2 − 1

12
, and H(1)(Sn) =

(n − 1)2

2n
. (4.39)

Therefore, the lower bound in (4.36) is achieved if and only if T = Sn, and the upper bound is achieved if

and only ifT = Pn.

For comparison purposes, the result of Theorem 4.1.10 is applied to three different graphs with five

nodes and the result is explained in Figure 4.1.

Remark 4.1.11.We should note that there is a connection between our resultsin this subsection and those

of [12]. However, our results are more general. In [12], the authors consider theH2–norm of the system

as a performance measure for first-order consensus networksdriven by white stochastic process. This

class of systems are marginally stable as the Laplacian matrix of the underlying graph of the network has

a simple zero eigenvalue. It turns out that due to the existence of this marginally stable mode, theH2–

norm of the consensus network is unbounded. In [12], this analysis is performed using the edge agreement

protocol by considering a minimal realization of the edge interpretation system. The result of [12] shows

that all spanning trees have identicalH2–norm. More specifically, their results imply that graphs with

path and star topologies have identicalH2–norm. On the other hand, the result of Theorem 4.1.10 show

that tree graphs with largerλ2 have lower levels of first-order Laplacian energy.

4.1.5 Graphs with Cut Edges

An edge is called a cut edge of the graphG if removing that edge fromG results in more components than

G.

Theorem 4.1.12.Suppose that the underlying graph of the linear consensus network (4.1)-(4.2) has ex-

actlyk cut edges. Then the Laplacian energy is bounded from below by

H(1)(LG) ≥ k + 1

2
− n+ k

2n(n− k)
.

The equality holds if and only ifG = Sn(Kn−k;K1, · · · ,K1), i.e., G is a star graph that is formed by

replacing the center of the star with a cliqueKn−k.
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Figure 4.3:S4(K4;K1,K1,K1) has the minimalH(1) index among all connected graphs of order 7 with exactly 3
cut edges (red edges).

Proof. In equation (4.40), we show that the first-order Laplacian energy for linear consensus network

(4.1)-(4.2) is

H
(1)
Kn

(LG) =
rtotal

2n
. (4.40)

In reference [37], it is shown that thertotal can be bounded from below as

rtotal ≥ n(k + 1) + 1− 2n

n− k
, (4.41)

for all connected graphs withn nodes andk cut edges. The lower bound can be achieved if and only if

G = Sn(Kn−k;K1, · · · ,K1).

If the underlying graph of the linear consensus network (4.1)-(4.2) is a tree graph, thenk = n − 1.

In this case, the result of Theorem 4.1.12 reduces to that of Theorem 4.1.10, which gives explicit lower

bounds for the first-order Laplacian energy among all trees with n nodes. On the other hand, complete

graphs has no cut edge,k = 0. In this case, the result of Theorem 4.1.12 reduces to that ofTheorem 4.1.3,

which provides explicit lower bounds on the first-order Laplacian energy among all connected graphs with

n nodes.

4.1.6 Bipartite Graphs

We characterize the minimal and maximal achievable levels of the first-order Laplacian energy among all

linear network consensus networks with bipartite graphs topologies. For instance, Figure 4.4 shows graphs

with minimal and maximal Laplacian energies among all(2, 7)–bipartite graphs.

Theorem 4.1.13.Suppose that the underlying graph of the linear consensus network (4.1)-(4.2) is a bi-
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partite graph withn nodes. Then, the Laplacian energy is bounded by

(n − 1)
(

n2 − 2n⌊n2 ⌋+ 2⌊n2 ⌋2
)

2n⌊n2 ⌋
(

n− ⌊n2 ⌋
) ≤ H(1)(LG) ≤ n2 − 1

12
.

Furthermore, the lower bound is achieved if and only ifG = K⌊n
2
⌋,n−⌊n

2
⌋, and the upper bound is achieved

if and only ifG = Pn, where⌊.⌋ is the floor operator.

Proof. According to Theorem 4.1.3, a path graphPn has the maximal level of first-order Laplacian energy

among all graphs withn nodes. Moreover,Pn is in fact a bipartite graph. Therefore, we get

H(1)(LG) ≤ n2 − 1

12
.

The best achievable lower bound can be obtained from (4.40) and the result of [20, Th. 3.1].

Theorem 4.1.14.For the linear consensus network(4.1)-(4.2)with a(n1, n2)–bipartite underlying graph

wheren1 ≤ n2, the first-order Laplacian energy is bounded by

mLG
≤ H(1)(LG) ≤ MLG

(4.42)

where

mLG
=

(n1 + n2 − 1)(n2
1 + n2

2)− n1n2

2n1n2(n1 + n2)
(4.43)

and

MLG
=



















−3+n1+3n2

1
−n

3

1
−6n1n2+6n2

1
n2+3n2

2
+3n1n

2

2

12(n1+n2)
if n2

2≡ 1 + n1

−2n1+3n2

1
−n

3

1
−6n1n2+6n2

1
n2+3n2

2
+3n1n

2

2

12(n1+n2)
if n2

2≡ n1

in which
2≡ is the modulo operation with divisor2. The lower bound is achieved if and only ifG = Kn1,n2

,

and the upper bound is achieved if and only if

G = D
(

n1 + n2,

⌊

n2 − n1 + 1

2

⌋

+ 1,

⌊

n2 − n1 + 1

2

⌋

+ 1

)

.
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(a) (b)

Figure 4.4: As a consequence of Theorem 4.1.14, (a)K2,7 has the least first-order Laplacian energy, and (b)
D(9, 4, 4) has the highest level of first-order Laplacian energy among all linear consensus networks with(2, 7)-
bipartite graphs.

Proof. The proof is based on using equality (4.40) and the result of [20, Th. 2.6].
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Chapter 5

Second-Order Linear Consensus Networks

In this Chapter, we turn our attention to the class of second-order linear consensus networks. We consider

the following class of controlled linear time-invariant networks







ẋ

v̇






=







0 In

F G













x

v






+







0

In






ξ, (5.1)

y = C







x

v






(5.2)

where

C =







CQx 0

0 CQv






, (5.3)

andF andG are some stabilizing static linear feedback matrices. It isassumed thatξ ∈ R
2n is a zero-

mean white noise process with identity covariance [1]. We associate two output graphs in order to define

the second-order Laplacian energies. The output matrixCQx is the incidence matrix of the position output

graphQx with Laplacian matrix

LQx = CT
Qx

CQx , (5.4)

and the output matrixCQv is the incidence matrix of the velocity output graphQv with Laplacian matrix

LQv = CT
Qv

CQv . (5.5)
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Definition 5.0.15. The second-order Laplacian energy of the linear dynamical network (5.1)-(5.2) is de-

fined as the steady state variance of the output signal, i.e.,

H
(2)
Q (A) = lim

t→∞
E
[

y(t)T y(t)
]

= lim
t→∞

E
[

‖x(t)‖2LQx

]

+ lim
t→∞

E
[

‖v(t)‖2LQv

]

.

whereQ = CTC and

A =







0 In

F G






. (5.6)

Depending on how the output matrixC in (5.2) is defined, we can define more specific Laplacian

energies. The second-order Laplacian energy of the linear dynamical network (5.1)-(5.2) with respect to

the position output graphQx is defined by

H
(2)
x,Qx

(A) = lim
t→∞

E
[

‖x(t)‖2LQx

]

= lim
t→∞

E





∑

e={i,j}∈E(Qx)

w(Qx)(e)
(

xi(t)− xj(t)
)2



 ,

wherew(Qx)(e) is the weight of edgee = {i, j} in the position output graphQx. This case corresponds to

CQv = 0. Similarly, the second-order Laplacian energy of the linear dynamical network (5.1)-(5.2) with

respect to the velocity output graphQv is defined by

H
(2)
v,Qv

(A) = lim
t→∞

E
[

‖v(t)‖2LQv

]

= lim
t→∞

E





∑

e={i,j}∈E(Qv)

w(Qv)(e)
(

vi(t)− vj(t)
)2



 ,

wherew(Qv)(e) is the weight of edgee = {i, j} in the position output graphQv. This case corresponds

toCQx = 0.

From the above definitions, the second-order Laplacian energy of (5.1)-(5.2) can be expressed as

H
(2)
Q (A) = H

(2)
x,Qx

(A) + H
(2)
v,Qv

(A). (5.7)
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The specific structure of the state feedback matricesF andG depend on the types of sensor mea-

surements available to form the feedback loop. We refer to [1] for more discussion and details on this.

Therefore, we consider two specific class of second-order linear consensus networks. Suppose thatLG is

the underlying graph of the consensus network.

In the first case, we assume thatF = −LG andG = −βIn for some design parameterβ > 0. In this

scenario, the dynamics of the second-order linear consensus network is governed by







ẋ

v̇






=







0 In

−LG −βIn













x

v






+







0

In






ξ. (5.8)

For this case, the state matrixA given by (5.6) only depends on the underlying Laplacian matrix LG and

parameterβ. Therefore, we simplify our notation by replacingH(2)
Qx

(A) andH(2)
Qv

(A) by H
(2)
Qx

(LG) and

H
(2)
Qv

(LG), respectively. Thus, the second-order Laplacian energiesare given by

H
(2)
x,Qx

(LG) =
1

2β
Tr(LQxL

†
G) (5.9)

and

H
(2)
v,Qv

(LG) =
1

2β
Tr(LQv). (5.10)

In the second case, we consider linear dynamical networks (5.1)-(5.2) for whichF = −LG andG =

−βLG for some design parameterβ > 0. The dynamics of the second-order linear consensus networkis

given by







ẋ

v̇






=







0 In

−LG −βLG






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



x

v






+







0

In






ξ. (5.11)

For this case, the second-order Laplacian energies are given by

H
(2)
x,Qx

(LG) =
1

2β
Tr
(

LQx(L
†
G)

2
)

, (5.12)

and

H
(2)
v,Qv

(LG) =
1

2β
Tr(LQvL

†
G). (5.13)
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In the following chapter, we consider two important class ofdynamical networks and show how one

can compute their second-order Laplacian energies. Then, we obtain several scaling laws on how the

Laplacian energies depend on the structure of the underlying graph and scale with the size of the network.

5.1 The Second-Order Laplacian Energy of Some Real-World Dynamical

Networks

In this section, we evaluate the second-order Laplacian energy for an interconnected power networks and

a controlled group of vehicles in a formation.

5.1.1 Total Power Loss in Synchronous Power Networks

We consider an interconnected network of synchronous generators with underlying graphG that consists

of n buses (nodes) andm transmission lines (edges). A synchronous generatorGi is associated to each

nodei for i = 1, . . . , n with inertia constantMi, damping constantβi, voltage magnitudeVi. It is assumed

that a reduced order model of synchronous generatorGi can be expressed using only two state variables:

rotor angleθi and angular velocityωi. Moreover, we assume that all damping constants are identical, i.e.,

β = β1 = . . . = βn. For each edgee ∈ E(G), we denote the admittance overe by

ye = ge − jbe, (5.14)

wherege andbe are the conductance and susceptance of the corresponding transmission line, respectively,

andj =
√
−1. For each edgee, the ratio of its conductance to its susceptance is denoted by

αe =
ge

be
. (5.15)

We define two graphs based on equation (5.14): conductance and susceptance graphs. The conductance

graph is denoted and defined byGg = (V (G), E(G), w(Gg )) wherew(Gg)(e) = ge for all e ∈ E(G).

Similarly, the susceptance graph is denoted and defined byGb = (V (G), E(G), w(Gb )) wherew(Gg)(e) =

be for all e ∈ E(G). In fact, the conductance and susceptance graphs are two identical copies ofG but with

different weight functions.
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The governing nonlinear rotor dynamics of the interconnected network of synchronous generators (also

known as swing equations) can be linearized around the zero equilibrium operating point of the network

in order to obtain


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

θ̇

ω̇






=







0 I

−LGb
−βI


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
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ω
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
+







0

I




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ξ, (5.16)

whereθ =

[

θ1 . . . θn

]T

andω =

[

ω1 . . . ωn

]T

are the state vectors of the entire network and

ξ is a zero-mean white noise process with identity covariancethat models external disturbances [38,39].

The resistive power loss over each edgee = {i, j} can be expressed as the following quantity

Pe = ge |Vi − Vj|2, (5.17)

wherege is the the conductance of edgee. Therefore, the total resistive power loss in the power network

is given by

Ploss=
∑

e={i,j}∈E(G)

Pe. (5.18)

If we consider the swing equations of the power network around its equilibrium point, we may apply the

small angle approximation and replace the coupling termssin(θi − θj) by θi − θj to obtain the following

relationship

P̃loss=
∑

e={i,j}∈E(G)

ge |θi − θj |2. (5.19)

According to our definitions in Section 5, the total resistive power loss̃Ploss given by (5.19) is equal to the

second-order Laplacian energy of the linearized swing equations (5.16) with respect to the angle output

graphQθ = Gg, whereGb is the corresponding conductance graph. Thus, we have

H
(2)
θ,Gg

(LGb
) = P̃loss. (5.20)

Theorem 5.1.1.The second-order Laplacian energy (5.20) of the linearizedswing equations (5.16) with
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respect to the angle output graphGg is given by

H
(2)
θ,Gg

(LGb
) =

ᾱ

2β
(n− 1), (5.21)

and

ᾱ =

∑

e∈E(G) νeαe
∑

e∈E(G) νe
=

∑

e∈E(G) νeαe

n− 1
. (5.22)

in which νe = rebe and re and be are the line resistance and the susceptance of edgee, respectively.

Furthermore, the total resistive power loss is bounded by

αmin

2β
(n− 1) ≤ H

(2)
θ,Gg

(LGb
) ≤ αmax

2β
(n− 1), (5.23)

where

αmin = min
e∈E(G)

αe, αmax = max
e∈E(G)

αe. (5.24)

Proof. From (3.3) and (3.4), we have

H
(2)
θ,Gg

(LGb
) =

1

β
Tr(P2), (5.25)

whereP2 is the solution of the following Lyapunov equation

LGb
P2 + P2LGb

= LGg .

The trace ofP2 can be written as

Tr(P2) =

∫ ∞

0
Tr(e−LGb

tLGge
−LGb

t)dt

= Tr

(∫ ∞

0
e−2LGb

tdtLGg

)

=
1

2
Tr(L†

Gb
LGg), (5.26)

whereL†
Gb

is the Moore-Penrose generalized inverse of the Laplacian matrix LGb
. According to reference
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[32], we have

L
†
Gb

= −1

2

(

RGb
− 1

n
(RGb

Jn + JnRGb
) +

1

n2
JnRGb

Jn

)

whereRGb
is the resistance matrix of the Laplacian matrixLGb

. For a given Laplaican matrixLGg , it is

straightforward to verify thatLGgJn = JnLGg = 0. Therefore, we get

Tr(L†
Gb
LGg)

= −1

2
Tr

(

(RGb
− 1

n
(RGb

Jn + JnRGb
) +

1

n2
JnRGb

Jn)LGg

)

= −1

2
Tr
(

RGb
LGg

)

=
∑

e∈E(G)

rebe
ge

be

=
∑

e∈E(G)

νeαe, (5.27)

whereνe = rebe. From the result of Theorem 2.0.5, we have that
∑

e∈E(G) νe = n− 1. Using this, we can

define the weighted mean of the edge parametersαe for all e ∈ E(G) as follows

ᾱ =

∑

e∈E(G) νeαe
∑

e∈E(G) νe
=

∑

e∈E(G) νeαe

n− 1
. (5.28)

From (5.28), (5.27) and (5.25), we conclude that the desiredresult (5.21).

According to (5.21), the total resistive power loss dependson the specific structure of the underlying

graph of the power network through̄α. However, the inequality (5.23) shows that the lower and upper

bounds of the total resistive power loss does not depend on the specific topology of the underlying graph

of the network. For the special case whenα1 = · · · = αm, the result of Theorem 5.1.1 reduces to the

results reported in reference [38]. Under the assumption that allαe are identical, the process of calculating

the total resistive power loss benefits greatly from the symmetric structure of normal matrices [1].

Definition 5.1.2. We say that graphG is an edge-transitive graph if there is an automorphism ofG that

mapse1 to e2 for all edgese1, e2 ∈ E(G).

Intuitively Speaking, in an edge-transitive graph all edges have identical local environments, such that

an edge can not be distinguished from other edges based on itsneighboring nodes and edges. Examples of

edge-transitive graphs include biregular, star, cycle andcomplete graphs [40].
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Theorem 5.1.3.Suppose that the underlying graph of the linearized power network (5.16) is edge-transitive

and the internal conductances of all edges are identical. Then, the total resistive power loss is given by

H
(2)
θ,Gg

(LGb
) =

∑

e∈E(G) αe

2βm
(n− 1). (5.29)

Proof. Similar to the proof of Theorem 5.1.1 we have

H
(2)
θ,Gg

(LGb
) =

1

β
Tr(P2) =

1

2β
Tr(L†

Gb
LGg). (5.30)

Based on (5.27) we obtain

Tr(L†
Gb
LGg) =

∑

e∈E(G)

νeαe. (5.31)

Since the underlying graph is edge-transitive and
∑

e∈E(G) νe = n − 1, it follows thatνe = n−1
m

. This

completes the proof.

Theorem 5.1.4.Suppose that the underlying graph of the linearized power network (5.16) is a tree. Then,

the total resistive power loss is given by

H
(2)
θ,Gg

(LGb
) =

∑

e∈E(G) αe

2βm
(n− 1). (5.32)

Proof. Similar to the proof of Theorem 5.1.1, we have

H
(2)
θ,Gg

(LGb
) =

1

β
Tr(P2) =

1

2β
Tr(L†

Gb
LGg). (5.33)

From (5.27), we get

Tr(L†
Gb
LGg) =

∑

e∈E(G)

νeαe. (5.34)

Since the underlying graph is a tree graph and
∑

e∈E(G) νe = n− 1, it follows thatνe = 1.
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5.1.2 Flock Energy of Controlled Vehicles in a Formation

We consider the formation control problem forn vehicles. It is assumed that each vehicle can be modeled

using two state variables: position and velocity. The global objective is for each vehicle to travel at a

constant given velocity while maintaining a fixed pre-specified distance from its neighboring vehicles [11].

We assume that the dynamics of the vehicles in the group formation is given by the following second-order

linear consensus network model
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ξ, (5.35)

whereLG is the Laplacian matrix of the underlying graph of the group formation andx =

[

x1 . . . xn

]T

andv =

[

v1 . . . vn

]T

are the position and velocity state vectors of the entire network.

TheLQv–semi–norm of the velocity vector is given by

‖v‖2LQv
=

∑

e={i,j}∈E(Qv)

w(Qv)(e)(vi − vj)
2, (5.36)

wherew(Qv)(e) is the weight of each edgee ∈ E(Qv). It is interesting to note that this quantity coincides

with the energy of flock (cf. [19]). According to (5.13), the second-order Laplacian energy with respect to

the velocity output graphQv = Kn with weight functionw(Qv)(e) = 1
n

for all e ∈ E(Qv) is given by

H
(2)
v,Kn

(LG) = lim
t→∞

E
[

‖v(t)‖2LKn

]

=
1

2
Tr(L†

G) =
n
∑

i=2

1

2λi

.

The above interpretation implies that the results of Section 4.1 also hold for the second-order consensus

network (5.35) with the second-order Laplacian energyH
(2)
v,Kn

(LG).

The second-order Laplacian energy of the linear dynamical network (5.1)-(5.2) with respect to the

position output graphQx = Kn is given by

H
(2)
x,Kn

(LG) =
n
∑

i=2

1

2λ2
i

, (5.37)

which coincides with the second-order network coherence (cf. [11]).
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Theorem 5.1.5.Suppose that the underlying graph of the second-order consensus network(5.35) is con-

nected and denoted byG. The second-order Laplacian energy(5.37)satisfies the following inequality

(2m)4

2(s2 + s1)3
≤ H

(2)
x,Kn

(LG), (5.38)

wherem is the number of edges,di the degree of nodei, andsα ,
∑n

i=1 d
α
i for α = 1, 2.

Proof. From the Hölder’s inequality, it follows that

n
∑

i=2

λi =
n
∑

i=2





1

λ
1

2

i





(

λ
3

2

i

)

≤





n
∑

i=2





1

λ
1

2

i





4



1

4 (
n
∑

i=2

(

λ
3

2

i

) 4

3

)
3

4

=

(

n
∑

i=2

1

λ2
i

) 1

4

(

n
∑

i=2

λ2
i

) 3

4

. (5.39)

The inequality (5.39) can be rewritten in the following form

∑n
i=2 λi

(
∑n

i=2 λ
2
i

) 3

4

≤
(

n
∑

i=2

1

λ2
i

) 1

4

. (5.40)

By combining (5.37) and (5.40) and using the facts that
∑n

i=2 λi = 2m and‖LG‖2F =
∑n

i=2 λ
2
i = s1+s2,

we have

2m

(s2 + s1)
3

4

≤
(

2H
(2)
x,Kn

(LG)
)

1

4

. (5.41)

Thus, one can conclude that (5.38) holds.

Theorem 5.1.6.Suppose that the underlying graph of the second-order linear consensus networks(5.35)

is connected and denoted byG. If P is a connected spanning subgraph ofG, then

H
(2)
x,Kn

(LG) ≤ H
(2)
x,Kn

(LP), (5.42)

H
(2)
v,Kn

(LG) ≤ H
(2)
v,Kn

(LP), (5.43)
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and the equalities hold if and only ifG = P. This result also holds for linear consensus network(5.11).

Proof. From our assumptions, we have

LP ≤ LG. (5.44)

From the definition, one can verify that

(L†
G)

2 ≤ (L†
P )

2. (5.45)

By using the fact that the trace of a positive semi-definite matrix is always nonnegative, we get

1

2
Tr
(

(L†
P)

2 − (L†
G)

2
)

=
1

2
Tr
(

(L†
P)

2
)

− 1

2
Tr
(

(L†
G)

2
)

= H
(2)
x,Kn

(LP)−H
(2)
x,Kn

(LG).

≥ 0.

From linearity property of the trace operator, one can conclude that inequality (5.42) holds.

Theorem 5.1.7.Suppose that the underlying graph of the second-order consensus network(5.35) is con-

nected with at least three nodes and denoted byG. Then, the second-order Laplacian energy(5.37) is

bounded by

2H
(2)
x,Kn

(LG) ≥ (d1 + d2 − 1)−2 +

n−1
∑

i=2

d−2
i + (dn + 1)−2.

Moreover, the equality holds if and only ifG = Sn or G = K3.

Proof. Let us define a composite functionF (x) =
∑n

i=1 f(xi), wherex = [x1, x2, . . . , xn]
T ∈ R

n
+

andf : R+ → R is a convex function. According to reference [23, Sec. 3.C],F (x) is a Schur–convex

function. Sincef(λi) = (2λi)
−2 is a convex function fromR+ to R, we can conclude that

H
(2)
x,Kn

(LG) =
n
∑

i=2

1

2λ2
i
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is a Schur–convex function. According to the result of [31, Lemma 2], it follows that

(λ2, . . . , λn)☎ (d1 + d2 − 1, d2, . . . , dn−1, dn + 1).

Using this relationship and the definition of a Schur–convexfunction, we get

2H
(2)
x,Kn

(LG) =
1

λ2
+ . . .+

1

λn

≥ 1

(d1 + d2 − 1)2
+

1

d22
+ . . .+

1

(dn + 1)2

= (d1 + d2 − 1)−2 +

n−1
∑

i=2

d−2
i + (dn + 1)−2.

The interested reader is referred to reference [31] for somerelated discussions and results

Corollary 5.1.8. For the class of second-order linear consensus networks(5.35)with connected underly-

ing graphs and at least three nodes, the second-order Laplacian energy(5.37)satisfies

H
(2)
x,Kn

(LG)S
2
G ≥ n− 1

2
. (5.46)

where the sparsity measureSG is defined by(4.27).

Proof. The proof is a direct application of Theorem 5.1.7 and the definition of SG .
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Chapter 6

Conclusions and Future Directions

We exploit structural properties of the underlying graph oflinear dynamical networks in order to charac-

terize their inherently existing fundamental limits on performance with respect to stochastic disturbances.

Several performance measures are defined based on weightedH2–norms of the network. We develop a

graph-theoretic framework in order to relate underlying graph characteristics to the Laplacian energy of

the network. It is shown that these performance measures depend on various characteristics of the under-

lying graph of the network such as graph diameter, node degrees, and the number of spanning trees, and

several other graph specifications. Specifically we show howthese measures scale asymptotically with the

network size. More importantly, we establish a connection between sparsity and performance measures of

linear dynamical networks, and prove several uncertainty principle like inequalities.

In this thesis, we study the first- and second-order laplacian energies as performance and robustness

measures, future research includes extensions to the case of more general class of performance measures

that have been used in control theory. Moreover, the generalization of this work to the case of time-varying

underlying graph seems more useful for analyzing real-world dynamical networks.
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Chapter 7

Appendix

PROOF OF THEOREM 3.1.1

In this appendix, we consider a more general case than the statement of Theorem 3.1.1. Suppose that

A is a Hurwitz matrix and its corresponding Lyapunov equationis given by

ATP + PA+Q = 0, (7.1)

whereQ is a positive semidefinite matrix. For simplicity of our notations, we represent the eigenvalues

λi(A) andλi(Q) by αi andβi, respectively. Furthermore, it is assumed thatα1 ≥ . . . ≥ αn andβ1 ≥

. . . ≥ βn.

Lemma 7.0.9. The trace of the positive semidefinite solution of the Lyapunov equation (7.1) is bounded

from below by

Tr(P ) ≥ −
n
∑

i=1

βn

2Re{αi}
. (7.2)

Proof. Every symmetric matrixQ can be decomposed asQ = UDUT whereUUT = UTU = I and

D = diag[β1, · · · βn]. Using this fact, we can rewrite (7.1) in the following form

ĀT P̄ + P̄ Ā+D = 0, (7.3)

whereĀ = UTAU and P̄ = UTPU . SinceA is a Hurwitz matrix, all eigenvalues of̄A have strictly
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negative real parts. Therefore, the unique solution of (7.3) can be expressed in the following closed form

P̄ =

∫ ∞

0
eĀ

T tDeĀtdt. (7.4)

According to Schur decomposition, there exists a unitary matrix V ∈ C
n×n such thatĀ = V (Γ +N)V H

whereΓ = diag(α1, · · · , αn), N is strictly upper triangular, andV H is the conjugate transpose ofV .

Next, let us consider the integrand of (7.4)

Tr(eĀ
T tDeĀt) = Tr(eĀ

HtDeĀt)

= Tr(e(Γ
H+NH)tV HDV e(Γ+N)tV HV )

= Tr(V HDV e(Γ
H+NH)te(Γ+N)t)

= Tr(DV e(Γ
H+NH)te(Γ+N)tV H)

≥ βnTr(V e(Γ
H+NH)te(Γ+N)tV H)

= βnTr(e
(ΓH+NH)te(Γ+N)t). (7.5)

Furthermore, we have

e(Γ+N)t = eΓt +Mt, (7.6)

e(Γ
H+NH)t = eΓ

Ht +MH
t , (7.7)

whereMt is an upper-triangular Nilpotent matrix. From (7.6) and (7.7), we have

Tr(e(Γ
H+NH)te(Γ+N)t) = Tr(eΓteΓ

Ht +MtM
H
t )

≥ Tr(e(Γ
H+Γ)t). (7.8)

From (7.5) and (7.8), it follows that

Tr(eĀ
T tDeĀt) ≥ βnTr(V e(Γ

H+NH)te(Γ+N)tV H)

≥ βnTr(e
(ΓH+Γ)t)

= βnTr(e
2Re{Γ}t). (7.9)
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SinceRe{αi} 6= 0 for all i = 1, . . . , n, from (7.4) and (7.9) we have

Tr(P ) = Tr(P̄ )

=

∫ ∞

0
Tr(eĀ

T tDeĀt)dt

≥ −
n
∑

i=1

βn

2Re{αi}
. (7.10)

In the above inequality, we apply the fact that the trace and sum operators are linear and they can commute

with the integral.

Remark 7.0.10. We should emphasize that ifQ = qIn×n for q > 0, the lower bound in Theorem 7.0.9 is

tighter than the lower bounds reported in reference papers [41–44].
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