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Abstract

We consider performance analysis of interconnected lidgaamical networks subject to external stochas-
tic disturbances. For stable linear networks, we defineasgag¢rformance measures by considering
weighted#,—norms of the underlying systems, which are defined from isteirtbance input to a desired
output. Itis shown that the performance measure of a gesttale linear network can be tightly bounded
from above and below using some spectral functions of the statrix of the network. This result is ap-
plied to a class of cyclic linear networks and shown that #rgsmance measure of such networks scales
guadratically with the network size. Next, we focus on firatd second—order linear consensus networks
and introduce the notion of Laplacian energy for such netgjowhich in fact measures the expected
steady-state dispersion of the state of the entire netwilekdevelop a graph-theoretic framework in order
to relate graph characteristics to the Laplacian energh®fietwork and show that how the Laplacian
energy scales asymptotically with the network size. We tilyaseveral inherent fundamental limits on
Laplacian energy in terms of graph diameter, node degredsha number of spanning trees, and several
other graph specifications. Particularly we characterxesl versions of fundamental tradeoffs between
Laplacian energy and sparsity measures of a linear consaeswork, showing that more sparse networks
have higher levels of Laplacian energies. At the end, we ghatseveral existing performance measures
in real-world applications, such as total power loss in Bymgous power networks and flock energy of a

group of autonomous vehicles in a formation, are indeedialfcms of Laplacian energies.



Chapter 1

Introduction

The issue of fundamental limits and their tradeoffs in lasgale interconnected dynamical systems design
lies at the very core of theory of distributed feedback aurgystems as it reveals what is achievable and
conversely what is not achievable by distributed feedbamkrol laws. Improving global performance
as well as robustness to external disturbances in dynamétalorks are crucial for sustainability, from
engineering infrastructures to living cells; exampledude a group of autonomous agents such as UAVs
in a formation, distributed emergency response systentercionnected transportation networks, energy
and power networks, metabolic pathways and even socialonk$w}1—9]. One of the fundamental design
problems in dynamical networks is to develop a mathemdtiaalework to study and characterize intrinsic
fundamental limits and their tradeoffs in networks of iatarnected systems. This enables us to devise
underpinning principles to design robust-by-design dyicatmetworks that are less fragile to external
disturbances.

The focus of this thesis is on revealing foundational rolaraterlying graph of dynamical networks in
emergence of severe theoretical hard limits on the globdpeance and robustness. The structure of the
underlying graph of a dynamical network depends on the aogigkructure among the subsystems which
are usually imposed by physical laws or global objectiveg ddhsider the class of linear time-invariant
networks in closed-loop operation, i.e., the linear dyreimetwork is stabilized by a linear state feedback
control law. The topology of an information structure in atsally distributed feedback system determines
the communication requirements in the controller array, ieach subsystem should communicate with

which of the neighboring subsystems to exchange statenaftion with regard to global objectives. As a



result, the controller architecture usually imposes asifyaconstraint on the structure of underlying graph
of the closed-loop dynamical network.

The impacts of such fundamental limits usually appear addorental tradeoffs between various mea-
sures of performance and robustness in the presence ohaixtisturbances, subsystem addition or dele-
tion and various modeling uncertainties. In this thesis,ane particularly interested in linear networks
driven by a stochastic disturbances. We propose a compsikeapproach based on ideas from graph
theory to quantify limits of performance and robustness tuthe structure of the underlying graph of
linear dynamical networks.

There have been several recent works on the performancebnstness analysis of first- and second-
order linear consensus networks; only to name a few, wet@fér5,7,10—-14] and references in there. The
reference papers [1,10-12, 15] study performance of a ofdsgear consensus networks under influence
of some external stochastic disturbances. The common agprof the above-mentioned papers is to
adopt theH,—norm of the system (from the disturbance input to the peréorce output of the system) as
a scalar performance measure. The basic assumption inghpses is that the state matrix of the system is
normal. Based on this assumption, #ie-norm of the system can be exactly calculated as a functitreof
eigenvalues of the state matrix of the system [1]. When stateix of the system is the Laplacian matrix
of the underlying graph of the system, this scalar measymmjortional to the total effective resistance of
the system. The concept of effective resistance has bedrnmseveral disciplines and applications. In the
context of electric circuit analysis, the effective resigte of an edge is the resistance measured between
endpoints of that edge. In the context of random walks andkMachains on networks, the effective
resistance of an edge can be interpreted as the commuteeimedn the endpoints of that edge. Another
interesting version of the notion of effective resistanppears in the context of graph scarification, where
the goal is to approximate a given graph by a sparse graphisiedtting, the effective resistance is defined
as probability of appearing an edge in a random spanningofréiee graph (see [16] and references in
there). In [17], the authors demonstrate a physical ingtgtion of the effective resistance in least-squares
estimations as well as motion control problems.

TheH.—norm of a system can be interpreted as a macroscopic pemfieermeasure, that captures the
notion of coherence in dynamical networks. In [1], the asiotip scaling of upper bounds on this scalar

performance measure is investigated in terms of the netaiaekfor linear networks witld-dimensional



discrete torus interconnection topologies. In [12], ththats consider th&{, performance measure for
a class of first-order consensus networks with exogenougsrp the form of process and sensor noises.
The performance measure used in [12] is different from tlsasdar measures considered in [1, 3,5, 10].
The proposed analysis method in [12] applies the edge agmepnotocol by considering a minimal
realization of the edge interpretation system. Anotheateel work is reported in [15], where the authors
use the2-norm coefficient of ergodicity to find upper bounds on #ig performance measure.

In this thesis, we propose a graph—theoretic approach tigzanglobal performance of linear con-
sensus networks using trace operator. We introduce thensotif first-order and second-ordeasplacian
energiesfor linear consensus networks, which are indeed weightednorms of the system. This new
performance measure depends linearly or quadraticallhempseudo—inverse of the Laplacian matrix of
the underlying graph of the network. This formulation hasesal advantages. First, the Laplacian energy
of a linear consensus network is well-defined and the mdtgistble mode of the system is not observ-
able through this performance measure. Second, the tracesentation of the Laplacian energy enables
us to reveal the foundational role of the topology of the ulyiteg graph of the network in quantifying
tight lower and upper bounds for the Laplacian energy in seshvarious characteristics of the underlying
graph.

In Chapter 3, we consider general closed-loop linear dyoaimietworks and calculate new tight lower
bound for theH,—norm of the system in terms of the eigenvalues of the clésag-matrix. This main
result enables us to quantify inherent fundamental limitshe#,—norm of several interesting dynamical
networks, in particular linear networks with nonnormal ricats. In Section 3.2, we apply our main result
to analyze global performance of the class of cyclic dynafmetworks. This class of networks usually
arises in modeling biological networks such as Glycolysithway [3, 4, 18]. We show that thH,—
norm of a cyclic dynamical network scales quadraticallyhwvitie size of the system. In Chapter 4, we
define the notion of first-order Laplacian energy for firaterconsensus linear networks. We characterize
inherent fundamental limits on the best achievable Lapta@nergy. Several lower and upper bound
for Laplacian energy have been obtained in terms of grapmetier, node degrees, and the number of
spanning trees. Specifically, we identify an uncertaintpqple like inequality in order to show interplay
between Laplacian energy and sparsity measures of thelvindegraph of the network. It is shown

that Laplacian energy times a sparsity measure of the nktiwdower bounded by a constant that scales



with the size of the network. This implies that networks witbre sparse topologies incur higher levels of
Laplacian energies. In Chapter 5, we introduce the noti@@obnd-order Laplacian energy for two classes
of second-order linear consensus networks. In Sectiontislshown that several existing performance
measures in real-world applications are special formsett#tond-order Laplacian energy. In particular,
we show that in synchronous power networks the concept ofacam energy can be interpreted as the
total resistive power loss, and the flock energy of contdollehicles in a formation is a second-order
Laplacian energy [19]. We characterize a fundamental limithe form of an inequality that explains

interplay between the second-order Laplacian energy obapgof autonomous vehicles in a formation

and a sparsity measure of the formation graph.



Chapter 2

Mathematical Preliminaries

The set of all nonnegative real numbers is denotedRhy Then x 1 vector of all ones is denoted
by 1, = [1,1,...,1]T, then x n identity matrix byI,, and then x n matrix of all ones byJ, =
1,17, Throughout this thesis, it is assumed that all graphs aite fisimple, undirected and connected.
A weighted grapty is represented by a trebig = (V(G), E(G),w'9)), whereV (G) is the set of nodes,
E(G) c {{i,j}|i,j € V(G), i # j} is the set of edges, and9) : E(G) — R is the weight function.

For each node € V' (G), the degree of is defined by

d; £ Z w9 (e).
e={i,j}€E(G)

For a given graph, we assume that the degree sequence offfite igrindexed in ascending ordér <
dy < --- < d,. The adjacency matrixt = [a;;] of graphg is defined by setting;; = w(¥)(e) if
e = {i,j} € E(G), otherwisea;; = 0. The Laplacian matrix of is defined byLg = A — A, where
A = diag(dy,...,d,) is a diagonal matrix. The eigenvalues b§ are indexed in ascending order
A < A < --- < Ay and A = 0. The eigenvalue decomposition of the Laplacian matrix veigiby
Lg = UAUT whereA = diag(\1,...,\,) andU = [uy,us, - - - ,u,] is the corresponding orthonormal
matrix of eigenvectors.

The class of all connected graphs witmodes is denoted b§,,. A dumbbell graphD(n;n;,n2)
in G, is a graph consisting of two node-disjoint st&s andS,,, and a pathP,_,,, _,,+2 joining them

having only its end-nodes in common with the center of the stews (See Fig. 4.4(b) and [20]). A tree



is a connected graph onnodes and with exactly — 1 edges. For comparison purposes throughout the
thesis, we consider the standard graphs in Table 2.1 inalewezasions. Everyone of these graphs has its
own comparable characteristics. For instance, amongahgrinG,, a complete graph has the maximum
number of edges and a star graph has the maximum number of nbdegree one. A path graph is a tree
with minimum number of nodes of degree one. We refer to refaré¢21] for more details and discussions.

An edge is called aut-edgewhose deletion increases the number of connected comofseat Fig. 4.3).

Definition 2.0.1. For a given Laplacian matrixg, the Lg—semi—norm of a vectar € R" is defined by
2
lzli, &2 Loz = Y wle)(wi —a5), 1)
e={i,7}€E(G)
wherew(e) is the weight of edge = {7, j} € E(9),

Definition 2.0.2. The Moore-Penrose pseudo-inverselgfis denoted b)Lg = [l}i] which is a square,

symmetric, doubly-centered and positive semidefiniteirmatr

Definition 2.0.3. For a given Laplacian matrix_g, the corresponding resistance matig = [r;;] is
defined using the Moore-Penrose pseudo-inversegaby settingr;; = ZL + l}j - l}i - lZTj, wherer;; is
called the effective resistance between nacksd ;.

Definition 2.0.4. For a given Laplacian matrix.g, the total effective resistanagyy is defined as the sum

of the effective resistances between all distinct pairsooles, i.e.,

1., 1<
Ttotal = 5 1nRg1n = 5 ijz_:l rij- (22)

Theorem 2.0.5.For a givenn x n Laplacian matrixLg, the following equalities hold

"1
I'total = nz/\_7 (2-3)
i=2 "
1
Z rijw(e) = §’I‘r(LgRg):n—1, (2.4)

e={i.,j}€E(9)
wherer;; andw(e) are the effective resistance and the weight of edge{s, j} € E(G), respectively.

Proof. We refer to [22, Lemma 2] for a proof. O



Graph Families irG,, | Notation |

Complete graph Kn
Star graph Sn
Cycle graph Cn
Path graph P,
Dumbbell graph D(n;ny,ng)
Complete bipartite graph of siZeq, n9) K ns

Table 2.1:For comparison purposes throughout the thesis, we cortsidestandard graphs in this table in several
occasions.

In the rest of this section, we review some concepts from rizgtion theory. The following definition

is from [23].

Definition 2.0.6. For everyz € R}, let us definer* to be a vector whose elements are a permuted version
of elements af in descending order. We say thamajorizesy, which is denoted by > y, if and only if

17z =17y and

Sat=d (2.5)
i=1 i=1

forallk=1,...,n—1.

We should emphasize that majorization is not a partial @ndefThis is because from relations> y
andy > x one can only conclude that the entries of these two vecters@ual, but not necessarily in the
same order. Therefore, relation$> y andy > = do not implyx = y. The following theorem is from [24]

which suggests equivalent methods to verify majorization.

Theorem 2.0.7.For everyz,y € R, the following statements are equivalent:

i) z>y;

(i) For all scalar convex functiong, F'(z) > F(y) whereF(z) = >_" | f(z;); and
(i) y = Dz for some doubly stochastic matrix.

Definition 2.0.8. The real-valued functio’ : R} — R is called Schur—convex i (z) > F'(y) for every

two vectorse andy with propertyz = . Similarly, a functionf” is Schur—concave i F' is Schur—convex.



Chapter 3

Performance Measures for General Linear

Dynamical Networks

The steady-state variance of outputs of linear systememliby external stochastic disturbances can be

regarded as a measure of performance. We consider a lineairtvariant network

& = Ax+E, (3.1)

y = Cu, (3.2)

with 2(0) = 0, wherex € R" is the state ang € R™ the output of the system. The input siggat R"

is a white noise process with zero mean and identity covegiare.,

whered(.) is the delta function. It is assumed that the state matrig Hurwitz.

Definition 3.0.9. TheHs—norm of linear syster(8.1)(3.2) from £ to y is defined as the square root of the
following quantity

Ho(A) £ lim Bly(t)y(r)] = lim E[[lz(1)]/3] (3.3)

t—o00
where@Q = CTC.
For unstable linear systems, the outputs of the system haite $teady state variance as along as the

9



unstable modes of the system are not observable from theitootghe system (cf. [1]). The value of

Hg(A) for (3.1)-(3.2) can be quantified as
Ho(A) = Tr(FQ), (3.4)
whereP, is the controllability Grammian of linear system (3.1)2Bwhich is the unique solution of
AP, + P.AT + 1, =0. (3.5)
One can also calculate ti#g(A) using the observability Grammiah,,
Ho(4) = Tr(F), (3.6)
whereP, is the unique solution of the Lyapunov equation

PA+ATP, +Q=0. (3.7)

3.1 The Main Result

We show that thé{,—norm of a general linear system (3.1)-(3.2) from exteristudoance input to the
output of the system can be bounded from above and below ssin@ real-valued functions of the

eigenvalues of the state matuk The following result was originally reported in [3, 5].

Theorem 3.1.1.Suppose that in linear systef®.1)(3.2) the disturbance input is a white stochastic pro-
cessxi with zero mean and identity covariance, the state mafrilss Hurwitz, andC = I,,. Then, we

have

n

1 n 1
_;m < Hold) < = ; M (AL’ (3:8)

whereA, = 474 s the systematic part of matris.

Proof. We refer the reader to the Appendix for a proof. O

10



The following corollaries explore several special cases glrow that how the performance measure

Hg(A) depends on the general propertiesdodind the size of the network.

Corollary 3.1.2. Suppose that the assumptions of Theorem 3.1.1 hold. Fuortrer if we assume that

matrix A is normal, i.e.,A” A = AAT, then(3.8)reduces to

n

1 1
HoA) = =2 sepnia)] = 2= on(Ay) (3.9)

i=1 i=1

Proof. According to the Schur decomposition for normal matriclkerd exists a unitary € C**™, such
that A = VI'VH wherel' = diag{\1,...,\,} andV¥ denotes the conjugate transpose of malfix

Using this we have

H H
4, = 2414 :V<F+F >VH
2 2
= Vdiag(Re{\i},...,Re{)\,}) V. (3.10)

This implies that\;(4;) = Re{\;} foralli = 1,...,n. Thus, the lower and upper bounds in (3.8)

coincide. O

Corollary 3.1.3. Suppose that the assumptions of Theorem 3.1.1 hold. THelgits that

n < Hg(A). (3.11)

2 /Tr(A4,) ~

Proof. From the definition of trace operator, we have

Tr(A?%) = zn: Re{)\;(A)}? — zn: Im{);(A)}2. (3.12)
i=1 =1

According to the definition of the Frobenius norm, we have

Tr(AAT) = |Al%
> AP
i=1
= iRe{Ai(A)}ZJrf:Im{MA)}Q- (3.13)
i=1 i=1

11
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Figure 3.1: Schematic diagram of negative feedback noisy cyclic syst&éhre dashed link indicates a negative
(inhibitory) feedback signal.

Therefore based on (3.12) and (3.13), it follows that

- Al|Z + Tr(A?
> Re(n(a)y? < T _ g, (3.14)
=1
By applying the root-mean square and harmonic mean ineémpsadind (3.14), one can conclude inequality

(3.11). O

A more conservative lower bound can be obtained by consigéhie following inequality

Tr(AA;) <n? max a;;[, (3.15)

)

which leads to the following inequality

n0-5

< HQ (A) (316)

Zmaxi7jlaijl -
3.2 Example of a Linear Network with Nonnormal Matrix

In this part, we apply our main result to a nontrivial examplée consider the class of linear dynamical
networks with cyclic interconnection topologies. An exdmpf a cyclic network is an autocatalytic
pathway in biology with ring topology which consists of a seqce of biochemical reactions where the
system’s product (output) is necessary to power and caatgzown function [3, 4, 25]. We consider a
cyclic linear dynamical network consists of a group of linéne invariant systems; with state-space

representations

& = —aiwi tu + &, (3.17)

Vi = Gy (3.18)

12



fori = 1,...,n, wherea;, ¢; are strictly positive numbers. The scalar quantitie;, z; are the input,
output and state variables of subsyst&mrespectively. By considering series interconnectionuisys-
temsS, for i = 1,2,--- ,n and applying the output of subsystems the input of subsysteir4- 1 (see

Fig. 3.1), we obtain the dynamics of the cyclic network akofes

T = —a1r1 —vp + &,

Ty = —agwe + v + &2,

i'n = —GpnTp +Up-1+ §n7 (319)
where¢; for ¢ = 1,2,--- ,n are independent white stochastic processes with idergtesistics. The

resulting dynamical system can be represented in the foilpaompact form

& = Ax+E, (3.20)
y = Cu, (3.21)
where
—aq 0 0 —cp,
. —as ... 0 0
A= : : : : (3.22)
0 0 ... —ap—1 O
0 0 e Cp—1 —Qp,

andC = I and¢ € R™ is a zero-mean white stochastic process with identity ¢amae. Our goal is to
investigate robustness properties of the cyclic linearadyisal network (3.19) driven by external white

stochastic disturbances.

Theorem 3.2.1. For the cyclic linear dynamical network (3.19) driven by aazenean white stochastic

13



processt € R™ with identity covariance, we define

a & Yajas - an, (3.23)
¢ £ eies-cp. (3.24)

If~ > cos(%) wherey = %, then the cyclic linear dynamical network is stable. Morxpif we assume

thata = a; = --- = a,, then
ntanE
2csinE T <1
= 1
Hp(A) > — S — n? — 3.25
old) = ; 2Re{\i(A)} i 0 1=l (3.25)
ntanhg
2csinh§ » 72 1
where

arcos(y)n , <1

g A (3.26)

arcosh(y)n , y>1

Proof. The stability conditiony > cos(Z) implies thatA is Hurwitz. Therefore, thé{o—norm squared is
finite and given byI'r(P) (see [10, 26] for more details), whefeis the unique positive definite solution

of the Lyapunov equation
AP + PAT = —1,. (3.27)

Whena = a; = a2 = - -+ = ay, itis straightforward to verify that the characteristicuatjon of A is given

by
(/\+a)n+6162"'6n:0.

Therefore, the eigenvalues of the matrix are

. 27k
i(G+25)

AL =—a -+ ce

14



for k =0,1,--- ,n — 1. By substituting these eigenvalues into the lower boun@®&)( we get

n

1
e T

n
i=1 k

= (3.28)

I U B o !
= Re{Xi(4)} 2 k=0 Cos(g) — cos(f + %%)
1 n—1
2k+1)7 2k+1)7
N
k=0
B
_ ntanj
2csin§’

where the Birkhoff Ergodic theorem is used to conclude thedguation. Similar steps can be taken when

~ > 1. In each case by substitutingfrom (3.26) in (3.28), one can obtain the desired result ertght

hand side of (3.25). O

The classical secant criterion reported in [27] and [28]clic linear dynamical network (3.19) pro-
vides a stability condition when all fori = 1, ..., n are identical and implies that the unperturbed system
with £ = 0in (3.19) is stable if and only # > cos(Z). For a fixed parametes, the stability condition
of the cyclic network is not affected when the number of imtediate subsystems changes. However, the
result of Theorem 3.2.1 asserts that the lower bound of tifenpeance measurH(A) increases when

the size of network increases. We show that the lower bourileoperformance measulgg(A) is in

15
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Figure 3.2:The lower bound in (3.19), which is depicted by small redlesdo), is compared asymptotically to its
approximation in (3.29). It can be observed that (3.29)thglpproximates the lower bound in (3.19).

order ofO(n?) when parametes is fixed. More explicitly, we obtain the following approxitian

—2CB2 n? , y<1
n 1,2
1 yrals y V= 1
N e~ A . (3.29)
P 2Re{)\;(A)}
B
ta;:;f n? , y>1

From this result, we conclude that the lower bound?s-norm of the network scales witf(n).

Figure 3.2 depicts such linear relationship.

Corollary 3.2.2. Suppose that the following condition holds for the cyctietir dynamical networ{3.19)

% > cos (%) , (3.30)
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wherea £ a; = ... =a,, ¢ = ¢, =... = ¢,, and the output of the system is defined by

Then, the steady-state output dispersion is bounded fraweaby

Ho(A) 2 lim E[y(t)?] < !

t—00 ~ 2(a—ccos(X))

Proof. The steady-state output dispersion is given by

Ho(4) = Te(CPCT),

whereP is the unique solution of the Lyapunov equation (3.5). Adaayg to Theorem 3.2.1, our assump-

tion (3.30) implies that all the eigenvalues Afhave strictly negative real parts. Therefore, the unique

solution of (3.5) can be written in the following closed form

o0 T
P:/ e teAt gt
0

(3.31)

The state matrix defined by (3.22) is normal, i.47,4 = AA”. According to the spectral theorem,

there exists a unitary matrix € C™*" such thatd = VAVH whereA = diag(\1,---,\,). We now

consider the integrand of (3.31)

o
P = / eAHteAtdt
0

= /OO Vel ety H gy
0
1 1
— Vdi H
Vdiag <2Re{)\1}’ ’ 2Re{>\n}> v

Since||C||z = ||CT |2 = 1, it follows that

Tr(CPCT) < max)\(P)

= Imnax

1
i 2Re{\;}

17
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- 2(a —ccos(Z))’ (3:33)

0

In the following chapters, we apply the main result of thist&m to linear consensus algorithms in

large-scale dynamical networks.
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Chapter 4

First-Order Linear Consensus Networks

We consider linear networks with first-order consensus ahyes over a weighted connected graph=
(V(G), E(G),w¥)) with n nodes andn edges. For this class of networks, each node (i.e., sulbsyste
corresponds to a scalar state variable. Therefore, the atahe entire network can be represented by
T=| 2 Ty ... Tn ' wherex; for i = 1,...,n is the state variable afth node. We assume that
the dynamics of this class of dynamical networks is givenhwy following continuous-time first-order

linear consensus dynamics
&= —Lgx + &, (4.1)

where Lg is the Laplacian matrix of the underlying graphand¢ € R” is an external stochastic white
noise with zero-mean and identity covariance. The outpubh®metwork is defined using the incidence

matrix of the output grapl® = (V(Q), E(Q), w'?)) as follows
Yy = OQ£> (42)

where

Lg = C4Co, (4.3)

is the Laplacian of grapl). We should emphasize that, in general, the output matgxmay not be

an incidence matrix. The only requirement f0p, is to satisfy (4.3). For example, let us consider the
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following output matrix

It is straightforward to verify that

1
Lo=ChCg=1,— ~Jn

is the Laplacian matrix of a complete graph. Thus, the cpmeding output graph i® = K,, with weight

functionw(¥(e) = L forall e € E(Q).
Definition 4.0.3. The first-order Laplacian energy of the linear consensusvaek (4.1)-(4.2) is defined
as the steady state variance of the output signal, i.e.,
1 _ T
Hy'(Lg) = lim E[y(t) y(t)]
— : 2
— Jim E [ll2(t)|3]

= lmE > we)(wlt) xj(t))2] )

t—o0
e={i,j }€E(Q)

wherew(9) (e) is the weight of edge = {i, j} in the output graptQ.

We recall that the Laplacian matrix; has a simple zero eigenvalue with eigenveaipr= [ 11 ... 1 r.
This implies that the linear consensus network (4.1)-(&2parginally stable. Sincéol1,, = 0, the
marginally stable mode of the system does not affect thedcigoh energy of the linear consensus net-

work.

Theorem 4.0.4.For the linear consensus network (4.1)-(4.2), the firsteoidaplacian energy is given by
1 1
HY)(Lg) = 5tnv(LQLg). (4.4)

whereLTg is the Moore—Penrose pseudoinverse of the underlying goéitie network.

Proof. According to (3.6), we need to calculate the unique solutibiine Lyapunov equation

LgP + PLg = Lo. (4.5)

20



By multiplying each side of (4.5) byfg, we get
LLLgP + LEPLg = L] Lo. (4.6)

One can verify thaLng =1, — %Jn. By applying trace operate to the left hand side of (4.6)libfvs

that
1 i 1
Tr((I, — EJn)P) + Tr(PLgLj) = 2T ((I, — EJH)P).
SinceLg andLg are both symmetric matrices with zero row and column sums)ave
1 1
Hy)(Lg) = Tr (P) = JTr(LoL}).

O

When output grapl® is a complete graph with weight functianl<) (¢) = L for all e € E(Q), then

Lo=1,— %Jn. The first-order Laplacian energy of the corresponding ogtvs given by
"1
Hy) (Lg) =3 5y 4.7)

1=2

Therefore, the first-order Laplacian energy of the firsteodthear consensus network (4.1)-(4.2) reduces
to the concept of first-order network coherence and the ézpeatispersion of the state of the system in
steady state [1, 10]. It turns out that the total effectiv@atance of (4.1)-(4.2) depends on the spectrum of

the Laplacian matrix that is given by
1
Ttotal = N Z )\— (4-8)
i=2 7

We refer to [1] for more details. Therefore, the first-ordaplacian energy for linear consensus network

(4.1)-(4.2) is

(Lg) _ I'total' (4.9)

2n

)

In the next section, we derive several combinatorial anglgtheoretical lower and upper bounds on
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the first-order Laplacian energy (4.4).

4.1 Graph-Dependent Scaling Laws for the First-Order Laplacian Energy

We consider a class of first-order linear consensus netwdriig-(4.2) that are defined over a simple
connected unweighted graph. In order to apply our resuia Bubsection 3.1, we will treat an unweighted
graph as a weighted graph with constant weight values equafdr all edges, i.e.;(9) (e) = 1 for all

e € E(G). Itis also assumed that the output graph is a complete graphoA®) (e) = Lforalle € E(Q).

For simplicity of our notation, we adopt the simple notatif!) (Lg) instead oﬁ{,(éi(Lg) whenever the
output graph is a complete graph. In the following subsestiave consider several scenarios and reveal
the foundational role of the underlying graph of the netwamnkhow the first-order Laplacian energy of a

linear consensus network depends on various charaaterddtihe underlying graph.

4.1.1 General Lower and Upper Bounds

The result of the following theorem relates the first-ordaplacian energy to the diameter of the under-
lying graph of the network. The diameter of a graph is one efiy features of a graph and defined as
the largest distance between every two nodes in a graph. i@heeter of a simple connected gra@hs

denoted bydiam(G).

Theorem 4.1.1.For the linear consensus network (4.1)-(4.2), the firsteoldaplacian network is bounded

by
L1, <HW(Lg) < 4, (4.10)
where
_ (TL _ 1)1.5
N e .10
n—1 n .
Up, = 5 [1 + <<2> - m> dlam(g)} (4.12)

wherem is the number of edges; the degree of nodg ands,, = Yo ddfora=1,2.
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Proof. For the lower bound, we apply the result of Theorem 3.1.3 baddct that| Lg|| 7 = v/s1 + s2 tO

obtain

(n —1)Lo

o) < HO(Le). 4.13
2mtm - ) @23

For the upper bound, according to [29, Th. 1] it follows that

1+ ((g) — m) diam(G) < e (4.14)

From (4.7) and the fact that, is the smallest nonzero eigenvaluelgf, we get

n

1 n—1
HY(Lo) =Y 5 < 55 (4.15)

=2

By combining inequalities (4.14) and (4.15), we get the mesupper bound

HO(Lg) < ”2—;1 {1 + ((Z) - m> diam(g)] .

O
For a complete grapé = K,,, both lower and upper bounds in Theorem 4.1.1 coincide andawve

n—1
o2n

HY (Lg,) =

Proposition 1. For the linear consensus network (4.1)-(4.2) defined oveaphG = (V(G), E(G), w'9)),

the corresponding first-order Laplacian energy is boundedfbelow by

(n—1)? 1)
g = B (4.16)
Proof. It can be shown thail(!) (L) is a Schur—convex function respect(to, ..., \,)” € R;! where

A fori=2,... n are eigenvalues dfg. On the other hand, we have

Tr(L)

17 <9 (Mg, )T
n_1 n—(2’ ) )
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oves obe <l
(a) (b) ()

Figure 4.1: According to Theorems 4.1.3 and 4.1.10, we casider the following extreme cases: the
first-order Laplacian energy is (a) maximal fBf among all connected graphs with five nodes as well
as among all graphs with tree structures with five nodes, {bjnmal for S5 among all graphs with tree
structures with five nodes, and (c) minimal 65 among all graphs with five nodes.

Therefore, according to the definition of Schur—convex fioms, we can conclude inequality (4.16)

The next theorem shows that the Laplacian energy of a graplwizys less than or equal to the

Laplacian energy of its connected spanning subgraphs.

Theorem 4.1.2. Suppose that connected gra@hs the underlying graph of the linear consensus network

(4.1)-(4.2) withn nodes. IfP is a connected spanning subgraphdofthen
HY(Lg) <HY(Lp), (4.17)

and the equality holds if and only @ = P.

Proof. For everyr € R", we have

2TLgr = Z w(e) (x; — l‘j)2

e={i,7}€E(G)

> Y w(e) (@)

e={1,j}€E(P)
= 2TLpx. (4.18)

This inequality implies that
Lp < Lg, (4.19)
and equivalently, we have

g = Lp (4.20)
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From the linearity property of the trace operator and the flaat L;) — LTg is a positive semi-definite

matrix, we get

1
STr(Lp — L) =

O

In the following theorem, we characterize the maximal andimal values of the first-order Laplacian

energy over all graphs with nodes.

Theorem 4.1.3.The maximal and minimal values of the first-order Laplaciaargy for the class of linear

consensus networks (4.1)-(4.2) are given by

(n—1)
2n

n?—1

<HW <
< (Lg) < 15

(4.21)

Furthermore, the lower bound is achieved if and onlg i KC,,, and the upper bound is reached if and

only if G = P,.

Proof. According to Theorem 4.1.2, the lower bound in (4.21) candhéexed for a complete graph. The
reason is that every connected graph withodes is a spanning subgraph/@f. On the other handd ™)
reaches its maximal value when the underlying graph is a Weerefer to Theorem 4.1.10 in Subsection

4.1.4 for more details and a proof. O
The result of Theorem 4.1.3 is applied to different graphth five nodes and the result is compared

in Figure 4.1.

4.1.2 Tradeoffs Between Sparsity and the Laplacian Energy

In this subsection, we show that a fundamental limit emebgéaeen sparsity of the underlying graph of
the network and its first-order Laplacian energy. First, wesider the total number of nonzero elements

of a Laplacian matrix.g = [l;;] as a sparsity measure for the underlying graph. In fact,nigasure is
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equal to the total number of edges in the underlying graphdandted by
1 & 0
ILgllo = 5> Il (4.22)
i#j
Corollary 4.1.4. For the linear consensus netwo(#.1)(4.2), there is a fundamental tradeoff between

the first-order Laplacian energy and the sparsity meagdrg2)that is characterized in the multiplicative

form by the following inequality

(n— 1)?

HY (Lg) || Lglly = (4.23)
and in the additive form by
2HW (Lg) — 1 n(n —1)
_— L S h—— 4.24
( diam Q) + gl = — (4.24)
Proof. The proof is a direct consequence of Proposition 1 and Thedré.1. O

Let us consider the class of graphs with identical numbepdes and compare several scenarios. The
inequality (4.23) asserts that the minimum achievablel$evEfirst-order Laplacian energy for sparse net-
works is higher. For all networks with identical diameteéngquality (4.24) implies that graphs with more
edges have smaller levels of first-order Laplacian enerdgiesong all networks with identical number of

edges, the ones with larger diameters have higher levelsstbiider Laplacian energies.

Corollary 4.1.5. Let us consider the class of all linear consensus netw@ks-(4.2) with identical first-

order Laplacian energies, the sparsity meas{#&2)can be bounded by

(n—1)2 nin—1) 2HW(Lg) -1
— 2 <L < — 4.25
O (Lg) = IFelo = =5 diam(G) (#.25)
Proof. The proof is a direct consequence of Proposition 1 and Thedré.1. O

This result provides us with a criterion to determine wha thinimum and maximum number of

required edges are for a linear consensus network with & gii@n level of first-order Laplacian energy.
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We can also consider the following sparsity measure foalim®nsensus networks

A . .
g0, 2 max { mae [|Lg(é. )l mase [1Lg(. 5]}

whereLg(i,.) represents théth row and Lg( ., 7) the j'th column of matrixLg. The value of’—-measure

|| . ||leo returns the total number of nonzero elements in a vectoradh the value of the, ;—measure of
a sparse matrix is the maximum number of nonzero elements@aibrows and columns of that matrix.
We refer to [30] for more details and discussions on thisspameasure. Thé, ;—measure of incidence
matrix of an unweighted graph is equal to the maximum nodeegem that graph. The result of the
following theorem provides us with a mean to quantity trdffebetween the Laplacian energy and this

sparsity measure.

Theorem 4.1.6. For the class of linear consensus netwogsl}(4.2) with n > 3 nodes, we have

n—1
2HW(Lg) > (dy+dp — 1)+ ) d ' + (dn + 1),
=2

whered; < ds < ... < d,, are the node degrees in ascending order. Moreover, the #ggumdlds if and

onlyifG =S8, 0orG = Ks.

Proof. For a given convex functiorf : Ry — R, let us defineF(z) = >, f(z;) wherez =

[x1,22,...,2,)7 € R, According to [23, Sec. 3.CJF(z) is a Schur—convex function. Therefor, it
follows that
1
HY(Lo) = —
(Lg) ;2/\2-

is a Schur—convex function. This is because functign;) = % is a convex function fronR, to R.

Moreover, the following relationship holds
A2soo o M) B (di 4+ dg — 1,ds, ... dp_1,dn + 1)
according to [31, Lemma 2]. From this relationship and thicnd@n of Schur—convex function, we get
oHV (Lg) = f(ha.. s )
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1 1 1
> -+ — 4 ...
B d1+d2—1+d2+ +dn—|—1

n—1

= (di+d—1)7"+> dt 4+ (dn+ 1)
=2

The interested reader is referred to [31] for more detaitksamilar arguments. O
Corollary 4.1.7. For the class of linear consensus netwog4sl)-(4.2) with n > 3 nodes, we have

n—1

HY (Lg) Sg > ——, (4.26)
where
Sg = max { | Lgllso, + 1, 2 Lgllsos — 1} (4.27)
is a measure of sparsity.
Proof. The proof is a direct consequence of Theorem 4.1.6 and theitetediof Sg. O

For the class of first-order linear consensus networks wigmtical number of nodes, the result of
this corollary asserts that by improving local connedjivit a network the minimum achievable level of

first-order Laplacian energy decreases.

Remark 4.1.8. The value of theS, ; sparsity measure reveals some valuable information aboarsgy
as well as the spatial locality features of a given sparserixatvhile (4.22) does not. Moreove(4.22)

does not exhibit any interesting algebraic property andrgzrbe used in infinite-dimensional settings.

4.1.3 Role of the Characteristic Polynomial of the Laplacia.

The first-order Laplacian energy of the linear consensuwarkt(4.1)-(4.2) depends on the coefficients
of the characteristic polynomial of the Laplacian matrixioé underlying graph of the network, which is

represented by

Org(N) =D (—1)" Fer(Lg) A", (4.28)
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From (4.7) and Vieta’s formulas for (4.28), it follows that
HY (Lg) = =222 (4.29)

The total number of spanning trees of graphan be characterized by

T(G) = Lageedp = %cl(Lg). (4.30)

This result can be deducted from the following formula ttsiaiblishes a relationship between the coeffi-

cients of the characteristic polynomial (4.28) and thecstme of graphg

cr(Lg)= > ~(F), (4.31)

FeF,(9)

in which F' stands for a spanning foresk (G) the set of all spanning forests gfwith exactly £ com-
ponents, and (F') the product of the number of nodes of the component& {82, 33]. Therefore, from

(4.29) and (4.30) one can conclude that

HOG) = G

It is worth mentioning that there are methods to compute thefficients of (4.28) in an iterative

manner. For instance, the following recursive formulaertppsed by Fadeev (see [34] for more details)

= %ﬁ(cg“)), (4.32)

where

k _ _
E(g) =L — (1) e LG = = (=) en ki L.

The next theorem shows that a lower bound in terms of the tataiber of spanning trees can be

obtained for the first-order Laplacian energy of a linearsemsus network.

Theorem 4.1.9.For the linear consensus network (4.(#)-2), the first-order Laplacian energy is bounded
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(a) (b)

Figure 4.2:Two symmetric lattices of ordeX: (a) Triangular lattice (b) Honeycomb lattice which is tHarmr dual
of triangular lattice.

from below by

nml o HO(L). (4.33)

2 " /n%(G)
Proof. By applying the inequality of arithmetic and geometric me#m(4.7) and using equation (4.30),

we get

HO(Lg) i o

n—1
n
1
n—1
\ H 2
=2
1

- (4.34)

2" /n%(G)

n—1

v

O

For a complete graplf = K, it can be shown thak(G) = n"~2. Therefore, complete graphs
achieve the lower bound in (4.33). The result of this theomplies that if the number of spanning
trees increases, the minimum achievable levels of firstrdrdplacian energy decreases accordingly. The
result of Theorem 4.1.9 can be applied to graphs with redattice topologies and show that the first-
order Laplacian energy scales asymptotically with netwsizk. Let us consider the number of spanning
trees in a finite subgraph of a lattice. It can be shown #{gt) grows exponentially with the number of

nodes. We refer to [35] for detailed discussions and proofs.

4.1.4 Graphs with Tree Structure

In this subsection, we assume that the underlying grapheofinkear consensus network (4.1)-(4.2) is a

tree graph that is denoted By. One of the invariant characteristics of a graph is its Wienenber which
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is denoted byW (7)) [33] and is equal to the sum of distances between all pair@dés of 7. It is well
known that the second coefficient of the Laplacian chartieipolynomial of a tree coincides with the
Wiener number, i.e.,

co(Lr) = W(T).
According to this fact and (4.29), it follows that

HO (L) = (L) _ W(T) (4.35)

2n 2n

We apply this result in order to characterize trees that h@wémal and maximal first-order Laplacian

energies among all trees withnodes.

Theorem 4.1.10.For the class of linear consensus netwof#sl)-(4.2) with underlying tree graphs with

at least five nodes, the first-order Laplacian energy is bednoly

n2—1
12 7’

(n—1)?
2n

< HW(Ly) < (4.36)

Moreover, the lower bound is achieved if and onlf i= S,,, and the upper bound is achieved if and only

if 7 =P
Proof. According to reference [36], if is a tree withn nodes that is neithéP,, nor S,,, then
W(S,) < W(T) < W(P,). (4.37)
Furthermore, it is shown that (see [36] for more details)
W(P,) = (” : 1), and W(S,) = (n— 1) (4.38)

From (4.37) and (4.35), we have
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On the other hand, it follows from (4.38) and (4.35) that

n%—1

HY(P,) = —5— and HY(S,) =

(n—1)?
2n

(4.39)

Therefore, the lower bound in (4.36) is achieved if and ohfff = S,,, and the upper bound is achieved if

and only if 7" = P,. O

For comparison purposes, the result of Theorem 4.1.10 ikedpip three different graphs with five

nodes and the result is explained in Figure 4.1.

Remark 4.1.11. We should note that there is a connection between our rasaithss subsection and those

of [12]. However, our results are more general. In [12], thethors consider thé{,—norm of the system

as a performance measure for first-order consensus netwiken by white stochastic process. This
class of systems are marginally stable as the Laplacianimafrthe underlying graph of the network has

a simple zero eigenvalue. It turns out that due to the extstasf this marginally stable mode, thé,—
norm of the consensus network is unbounded. In [12], thidyaisis performed using the edge agreement
protocol by considering a minimal realization of the edgeipretation system. The result of [12] shows
that all spanning trees have identicél,—norm. More specifically, their results imply that graphghwi
path and star topologies have identicHb—norm. On the other hand, the result of Theorem 4.1.10 show

that tree graphs with largei, have lower levels of first-order Laplacian energy.

4.1.5 Graphs with Cut Edges

An edge is called a cut edge of the grapif removing that edge frong results in more components than

Gg.

Theorem 4.1.12.Suppose that the underlying graph of the linear consenstygonke (4.1)-(4.2) has ex-

actly k cut edges. Then the Laplacian energy is bounded from below by

E+1 n+k
1) > _
H(Lg) 2 2 2n(n — k)’

The equality holds if and only § = S,,(K,,—x; K1,--- , K1), i.e., G is a star graph that is formed by

replacing the center of the star with a cliqg,_y.
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a's

Figure 4.3:5,(K4; K1, K1, K1) has the minimaH(") index among all connected graphs of order 7 with exactly 3
cut edges (red edges).

Proof. In equation (4.40), we show that the first-order Laplaciaargy for linear consensus network

(4.1)-(4.2) is

HY (Lg) = Do (4.40)

In reference [37], it is shown that the, can be bounded from below as

2n

I 4.41
- (4.41)

T'total Z n(k + 1) + 1 -

for all connected graphs with nodes and: cut edges. The lower bound can be achieved if and only if

g:Sn(ICn—MICl»"' 7IC1)' =

If the underlying graph of the linear consensus network){#41?) is a tree graph, thelh = n — 1.
In this case, the result of Theorem 4.1.12 reduces to thahebfiem 4.1.10, which gives explicit lower
bounds for the first-order Laplacian energy among all treiéls wnodes. On the other hand, complete
graphs has no cut edge= 0. In this case, the result of Theorem 4.1.12 reduces to thEhebrem 4.1.3,
which provides explicit lower bounds on the first-order laagin energy among all connected graphs with

n nodes.

4.1.6 Bipartite Graphs

We characterize the minimal and maximal achievable levieiseofirst-order Laplacian energy among all
linear network consensus networks with bipartite grappsltmies. For instance, Figure 4.4 shows graphs

with minimal and maximal Laplacian energies amond 2ll7)—bipartite graphs.

Theorem 4.1.13.Suppose that the underlying graph of the linear consenstygonie (4.1)-(4.2) is a bi-
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partite graph withn nodes. Then, the Laplacian energy is bounded by

Furthermore, the lower bound is achieved if and onl§ = ’CL%Jvn—L%J , and the upper bound is achieved

if and only ifG = P,,, where| . | is the floor operator.

Proof. According to Theorem 4.1.3, a path graph has the maximal level of first-order Laplacian energy

among all graphs with nodes. MoreoverP,, is in fact a bipartite graph. Therefore, we get

n2—1
12

HY(Lg) <

The best achievable lower bound can be obtained from (4rDjtee result of [20, Th. 3.1]. O

Theorem 4.1.14.For the linear consensus netwof.1)-(4.2) with a (n, ny)—bipartite underlying graph

wheren, < nsy, the first-order Laplacian energy is bounded by

mr, < HY(Lg) < My, (4.42)
where
(n1 +ng — 1)(n? +n2) — ning
= 4.43
ng 2711712(711 + ng) ( )
and

My, =
—34n1 +3n?—n:f—6n1n2+6n?n2+3n§+3n1n§ if n é 1 +n
12(n1+n2) 2= 1
72n1+3n?771‘;’76n1n2+6nfn2+3n§+3n1n§ |f n % n
12(71] +77,2) 2 ="

in which= is the modulo operation with divis@: The lower bound is achieved if and onlit= IC,,, .,

and the upper bound is achieved if and only if

no —nq +1 no—mni1+1
g:p<n1+n2, {%J“’ {%FQ
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(a) (b)

Figure 4.4: As a consequence of Theorem 4.1.14, &); has the least first-order Laplacian energy, and (b)
D(9,4,4) has the highest level of first-order Laplacian energy amdhinaar consensus networks witf2, 7)-
bipartite graphs.

Proof. The proof is based on using equality (4.40) and the resuR@fTh. 2.6]. O
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Chapter 5

Second-Order Linear Consensus Networks

In this Chapter, we turn our attention to the class of seamdéy linear consensus networks. We consider

the following class of controlled linear time-invarianttwerks

T 0 I, T 0
— + 57 (5.1)
0 F G v I,
X
y = C (5.2)
v
where
Co. O
o — Qe , (5.3)
0 Co,

and F and G are some stabilizing static linear feedback matrices. #issumed thag € R?" is a zero-
mean white noise process with identity covariance [1]. Wmeisite two output graphs in order to define
the second-order Laplacian energies. The output mé¥ixis the incidence matrix of the position output
graph@,. with Laplacian matrix

Lo, = C§.Co,, (5.4)

and the output matriK’y, is the incidence matrix of the velocity output gra@) with Laplacian matrix

Lo, = 04 Co,. (5.5)
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Definition 5.0.15. The second-order Laplacian energy of the linear dynamiedivork (5.1)-(5.2) is de-
fined as the steady state variance of the output signal, i.e.,

HE (4) = lim B [y(t)"y(#)]

t—o0

~ lim E [Hm(t)“%gz] + lim B [Hv(t)HZLQ,J] :

whereQ = CTC and

0 I,
A= . (5.6)

F G

Depending on how the output matriX in (5.2) is defined, we can define more specific Laplacian
energies. The second-order Laplacian energy of the lingaardical network (5.1)-(5.2) with respect to

the position output grapB,. is defined by

Hy'o,(4) = Jim B[l

. ) 2
= lim E > we)(mi(t) —z()7
e={i,j}€E(Qx)
wherew(2=)(e) is the weight of edge = {i, j} in the position output grap,.. This case corresponds to
Co, = 0. Similarly, the second-order Laplacian energy of the lirsdmamical network (5.1)-(5.2) with

respect to the velocity output gragh, is defined by

L, (4) = Jim E [[lo()]13,,

. 2
= lim E > we)(uilt) — v (1)
e={i,j}€E(Qv)
wherew(Qv)(e) is the weight of edge = {3, j} in the position output grapk,,. This case corresponds
toCg, = 0.
From the above definitions, the second-order Laplaciarggrafr(5.1)-(5.2) can be expressed as

H(2)(A) .= 1))

g (4) + HZ) (4). (5.7)

vaw VU, %
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The specific structure of the state feedback matricesnd G depend on the types of sensor mea-
surements available to form the feedback loop. We refer Jtéoflmore discussion and details on this.
Therefore, we consider two specific class of second-ordeati consensus networks. Suppose thais
the underlying graph of the consensus network.

In the first case, we assume thiat= —Lg andG = — (1, for some design parametgr> 0. In this

scenario, the dynamics of the second-order linear conseretwork is governed by

T 0 I, T 0
= + €. (5.8)

) —Lg —pI, v I,
For this case, the state matukgiven by (5.6) only depends on the underlying Laplacian mdig and
parameter3. Therefore, we simplify our notation by replacimﬁgi (A) anngZ (A) by H(in(Lg) and

HSi(Lg), respectively. Thus, the second-order Laplacian eneggigiven by

1
H), (Lg) = a5 (La. L) (5.9)

and
H?. (Lo) = LTv(L 5.10
vav( g) 25 ( Q”U)' ( . )

In the second case, we consider linear dynamical network$-(5.2) for whichF' = —Lg andG =
—pBLg for some design parametgr> 0. The dynamics of the second-order linear consensus netaork
given by

T 0 I, T 0

_ n . (5.11)
b —Lg —BLg | | v I,

For this case, the second-order Laplacian energies are give

1
HY, (L) = ﬁTr(LQw(LE)Q)’ (5.12)
and
1
Hf)gv(Lg) = %TT(LQULL)- (5.13)
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In the following chapter, we consider two important classlphiamical networks and show how one
can compute their second-order Laplacian energies. Themb#tain several scaling laws on how the

Laplacian energies depend on the structure of the undgrbyiaph and scale with the size of the network.

5.1 The Second-Order Laplacian Energy of Some Real-World Dyamical

Networks

In this section, we evaluate the second-order Laplaciarggrier an interconnected power networks and

a controlled group of vehicles in a formation.

5.1.1 Total Power Loss in Synchronous Power Networks

We consider an interconnected network of synchronous gtarerwith underlying grapty that consists

of n buses (nodes) and transmission lines (edges). A synchronous gener@ias associated to each
nodei fori = 1,...,n with inertia constanfi/;, damping constant;, voltage magnitud®;. It is assumed
that a reduced order model of synchronous genef@taran be expressed using only two state variables:
rotor angled; and angular velocitw;. Moreover, we assume that all damping constants are idgdntie.,

B =p1=...= pB,. Foreach edge € F(G), we denote the admittance oveby

Ye = Ge — jbe, (5-14)

whereg, andb, are the conductance and susceptance of the corresponairsgiission line, respectively,

andj = +/—1. For each edge, the ratio of its conductance to its susceptance is dengted b
o = ge (5.15)

We define two graphs based on equation (5.14): conductadcguaneptance graphs. The conductance
graph is denoted and defined By = (V(G), E(G),w9)) wherew9s)(e) = g, for all e € E(G).
Similarly, the susceptance graph is denoted and defineg} by (V (G), E(G), w()) wherew(99) (e) =
be forall e € E(G). In fact, the conductance and susceptance graphs are tat@aleopies ofj but with

different weight functions.
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The governing nonlinear rotor dynamics of the interconegcietwork of synchronous generators (also
known as swing equations) can be linearized around the zrrititeium operating point of the network

in order to obtain

9 0 I 9 0
= + &, (5.16)
w —Lg, —pI w I
T T
wheref = [ 6, ... 0, } andw = [ Wi ... Wy } are the state vectors of the entire network and

£ is a zero-mean white noise process with identity covaridhaemodels external disturbances [38, 39].

The resistive power loss over each edge {i, j} can be expressed as the following quantity
Pe:ge|‘/i_‘/j|2> (5.17)

whereg. is the the conductance of edgeTherefore, the total resistive power loss in the power natw

is given by

Poss= Z Pe. (5.18)
e={i,j}€E(G)

If we consider the swing equations of the power network adatsequilibrium point, we may apply the
small angle approximation and replace the coupling teim@; — 6,) by ¢; — 6, to obtain the following

relationship

Boss= Y gelti — 0, (5.19)
e={i,j}€E(G)

According to our definitions in Section 5, the total resistpower lossPss given by (5.19) is equal to the
second-order Laplacian energy of the linearized swing tamng (5.16) with respect to the angle output

graphQy = G,, whereg, is the corresponding conductance graph. Thus, we have
H) (Lg,) = D 5.20
97gg( gb) loss: ( : )

Theorem 5.1.1. The second-order Laplacian energy (5.20) of the linearwthg equations (5.16) with
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respect to the angle output gragh is given by

(6%
Hg, (La,) = 55(n—1)

and

. ZeEE(g) VeOQle _ ZeEE(g) VeOle

> ecE(g) Ve n—1

(5.21)

(5.22)

in whichv, = r.b. andr. and b, are the line resistance and the susceptance of eggespectively.

Furthermore, the total resistive power loss is bounded by

Qmin (2) Omax

where

Qmin = MiN e, Qmax = Max Q.
c€E(G) € E(G)

Proof. From (3.3) and (3.4), we have
H{Y, (L) = 5Tx(P),
whereP; is the solution of the following Lyapunov equation
Lg, P>+ P,Lg, = Lg,.
The trace of%, can be written as

o
Te(P) = / Tr(e Fo! Lg e Lont)dt
0

= ’I‘r< / e_2L9btdtng>
0

1
= §T‘I‘(Lgbng)7

(5.23)

(5.24)

(5.25)

(5.26)

whereLTgb is the Moore-Penrose generalized inverse of the Laplacanix.g,. According to reference
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[32], we have

1 1 1
Lgb =3 <Rgb — ~(Bg,Jn + JnRg,) + mJnRngn>

where Rg, is the resistance matrix of the Laplacian matkiy, . For a given Laplaican matriXg,, it is

straightforward to verify that.g, J,, = J, Lg, = 0. Therefore, we get

rI‘r(LTgbng)
1

1 1
= —§TI‘ <(Rgb — E(Rgbjn + JnRgb) + mJnRngn)ng>

1 .
= —3Tr (Ro, Lg,) = 3 rebe“Z—
e€E(Q) ¢

= Z VeQle, (5.27)

e€E(Q)

wherer, = r.b.. From the result of Theorem 2.0.5, we have tﬁ;geE(g) v. = n — 1. Using this, we can

define the weighted mean of the edge parametefsr all e € E(G) as follows

ZeeE(Q) VeQe ZeGE(g) VeQte

a = —
ZeEE(g) Ve n—1

(5.28)

From (5.28), (5.27) and (5.25), we conclude that the deseedlt (5.21). O

According to (5.21), the total resistive power loss depamtshe specific structure of the underlying
graph of the power network throughh However, the inequality (5.23) shows that the lower andenpp
bounds of the total resistive power loss does not dependeospécific topology of the underlying graph
of the network. For the special case when= --- = «,,, the result of Theorem 5.1.1 reduces to the
results reported in reference [38]. Under the assumptiaatha,. are identical, the process of calculating

the total resistive power loss benefits greatly from the sgtimstructure of normal matrices [1].

Definition 5.1.2. We say that graplg/ is an edge-transitive graph if there is an automorphisng; dhat

mapse; to e, for all edgese;, e; € E(G).

Intuitively Speaking, in an edge-transitive graph all exigave identical local environments, such that
an edge can not be distinguished from other edges basedr@igtsoring nodes and edges. Examples of

edge-transitive graphs include biregular, star, cycleamdplete graphs [40].
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Theorem 5.1.3.Suppose that the underlying graph of the linearized powkvaok (5.16) is edge-transitive

and the internal conductances of all edges are identicaénTlthe total resistive power loss is given by

D ecE(g) Qe

Hg, (L) = =550 (0= 1),

Proof. Similar to the proof of Theorem 5.1.1 we have

H{) (Lg,) = =Tr(Py) = —5Tr<L* Lg,).

1
g
Based on (5.27) we obtain

Lg

; E VeQle.

e€E(Q)

Since the underlying graph is edge-transitive @QEE(Q) ve = n — 1, it follows thatv,

completes the proof.

(5.29)

(5.30)

(5.31)

=l This
m

O

Theorem 5.1.4. Suppose that the underlying graph of the linearized powavoik (5.16) is a tree. Then,

the total resistive power loss is given by

ZEEE(Q) Ce

Hg, (La) = =557 (n—1).

Proof. Similar to the proof of Theorem 5.1.1, we have

o)

1
5.0, (La,) = —=Tr(Lf, Lg,).

STe(P2) = o

B

From (5.27), we get

ng Z VeQle.-

e€E(G)

Since the underlying graph is a tree graph @geE(g) v, = n — 1, it follows thatv, = 1.
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5.1.2 Flock Energy of Controlled Vehicles in a Formation

We consider the formation control problem fowvehicles. It is assumed that each vehicle can be modeled
using two state variables: position and velocity. The glaii@ective is for each vehicle to travel at a
constant given velocity while maintaining a fixed pre-spedidistance from its neighboring vehicles [11].
We assume that the dynamics of the vehicles in the group teymi given by the following second-order

linear consensus network model

& 0 I, x 0
= + £, (5.35)
0 —Lg —Lg v I,
T
whereLg is the Laplacian matrix of the underlying graph of the gromprfation and: = | », ... =z, ]

T
andv = [ v ... vy ] are the position and velocity state vectors of the entireodt.

The Lg,—semi—norm of the velocity vector is given by

iz, = > w®(e) (v —vy)? (5.36)
e={i,j}eE(Qu)
wherew(9)(e) is the weight of each edgec E(Q,). Itis interesting to note that this quantity coincides
with the energy of flock (cf. [19]). According to (5.13), thecend-order Laplacian energy with respect to

the velocity output grap®,, = K, with weight functionw (<) (e) = 1 for all e € E(Q,) is given by

) o S R N
H, (Lo) = Jim B |01, | = 5Tr(Lh) = 3 5

1=2

The above interpretation implies that the results of Sactid also hold for the second-order consensus
network (5.35) with the second-order Laplacian endrlﬁ,)cn (Lg).
The second-order Laplacian energy of the linear dynamietlork (5.1)-(5.2) with respect to the

position output grapi®, = K,, is given by
H? (L) =3 — 5.37
o (La) =D o (5.37)
2
which coincides with the second-order network coherentdl(t]).
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Theorem 5.1.5. Suppose that the underlying graph of the second-order cusenetwork5.35)is con-

nected and denoted I8y The second-order Laplacian ener(y37)satisfies the following inequality

(2m)*

_E) o g® (f 5.38
2(82+81)3 = x,lCn( 9)7 ( )

n

wherem is the number of edged; the degree of nodg ands,, = Y"1, d¢ for a = 1,2.

2

Proof. From the Holder’s inequality, it follows that

,Z:;Ai - i(;) (Af

(AN
~
Ngb
>:>\>—‘| =
N——
S
ST
POUER
[~]=
N
>
St olw
N————
IS
N——
ST

— (i%)%iv) . (5.39)

The inequality (5.39) can be rewritten in the following form

Yiahi <§:%>4 (5.40)

3
(Z?:z )‘?) ! i=2
By combining (5.37) and (5.40) and using the facts gt , \; = 2m and||Lg||% = Y 5 A2 = 51+ 59,
we have
2m i

— < (282 (L))" (5.41)

(32 + 81)Z —n
Thus, one can conclude that (5.38) holds. O

Theorem 5.1.6. Suppose that the underlying graph of the second-order tineasensus networks.35)

is connected and denoted 8y If P is a connected spanning subgraphdofthen

HY) (Lg) < H (Lp), (5.42)
HY (L) < HJY (Lp), (5.43)
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and the equalities hold if and onlyd = P. This result also holds for linear consensus netw(@&i 1)

Proof. From our assumptions, we have
Lp < Lg. (5.44)
From the definition, one can verify that
(LE)? < (L)) (5.45)

By using the fact that the trace of a positive semi-definitérixés always nonnegative, we get

1 1 1
L V2 _ 2 - 2 ty2) _ 1 IRY
ST ()= (2p7) = 5o ((h)) - 5™ ((26))
= H%, (Lp) — H, (Lg)
> 0
From linearity property of the trace operator, one can agtelthat inequality (5.42) holds. O

Theorem 5.1.7.Suppose that the underlying graph of the second-order csusenetwork5.35)is con-

nected with at least three nodes and denoted;byThen, the second-order Laplacian enel§y37)is

bounded by
n—1
oH?) (Lg) > (di+d2 —1)2+ Y d7? + (dy +1)72
=2

Moreover, the equality holds if and onlygf= S,, or G = K.

Proof. Let us define a composite functidfi(z) = Y., f(z;), wherez = [z1,29,...,2,]T € R
andf : R,y — R is a convex function. According to reference [23, Sec. 3IQ}) is a Schur—convex

function. Sincef()\;) = (2);)~2 is a convex function froniR, to R, we can conclude that
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is a Schur—convex function. According to the result of [3&nima 2], it follows that

(/\2,...,/\n)|2 (d1—|—d2—1,d2,...,dn_1,dn—|—1).

Using this relationship and the definition of a Schur—corfugction, we get

(@) _ 1 €
2H$7’Cn(Lg) — )\2 + P + An
> ! TR
= (i +dy—1)2  d3 T (dy+1)?
n—1
= (di+da—1)72+) d?+ (dn+1)72
=2
The interested reader is referred to reference [31] for sataged discussions and results O

Corollary 5.1.8. For the class of second-order linear consensus netw(@kd5)with connected underly-

ing graphs and at least three nodes, the second-order Lapiaenergy(5.37)satisfies

n—1
H) (Lg)SE > . (5.46)
where the sparsity measufg; is defined by{4.27)
Proof. The proof is a direct application of Theorem 5.1.7 and thende&fn of Sg. O
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Chapter 6

Conclusions and Future Directions

We exploit structural properties of the underlying graphiredar dynamical networks in order to charac-
terize their inherently existing fundamental limits onfpemance with respect to stochastic disturbances.
Several performance measures are defined based on weldhtebrms of the network. We develop a
graph-theoretic framework in order to relate underlyingpdr characteristics to the Laplacian energy of
the network. It is shown that these performance measurendegn various characteristics of the under-
lying graph of the network such as graph diameter, node degend the number of spanning trees, and
several other graph specifications. Specifically we showthese measures scale asymptotically with the
network size. More importantly, we establish a connectietwleen sparsity and performance measures of
linear dynamical networks, and prove several uncertairitciple like inequalities.

In this thesis, we study the first- and second-order laptaeizergies as performance and robustness
measures, future research includes extensions to the tasw® general class of performance measures
that have been used in control theory. Moreover, the gdnatiain of this work to the case of time-varying

underlying graph seems more useful for analyzing real-dvdyhamical networks.
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Chapter 7

Appendix

PROOF OF THEOREM 3.1.1

In this appendix, we consider a more general case than ttesstat of Theorem 3.1.1. Suppose that

A'is a Hurwitz matrix and its corresponding Lyapunov equatsgiven by
ATP+PA+Q =0, (7.1)

where( is a positive semidefinite matrix. For simplicity of our niddas, we represent the eigenvalues
Ai(A) and A\ (Q) by «; and 3;, respectively. Furthermore, it is assumed that> ... > «, and; >

> B

Lemma 7.0.9. The trace of the positive semidefinite solution of the Lyapwequation (7.1) is bounded

from below by

n

Bn
Tr(P) > —Z;ﬁggﬁ. (7.2)

Proof. Every symmetric matrixQ can be decomposed 85 = UDU” whereUU” = UTU = I and

D = diag[f1, - - - fn]. Using this fact, we can rewrite (7.1) in the following form
ATP+PA+ D=0, (7.3)

whereA = UTAU and P = UTPU. SinceA is a Hurwitz matrix, all eigenvalues of have strictly
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negative real parts. Therefore, the unique solution of) (@ad be expressed in the following closed form

o0 _ _
p= / At Dy, (7.4)
0

According to Schur decomposition, there exists a unitaryrim® ¢ C™*" such thatd = V(I' + N)V"
wherel' = diag(ay,--- ,a,), N is strictly upper triangular, an##™ is the conjugate transpose bf

Next, let us consider the integrand of (7.4)

Tr(ed 'DeM) = Tr(eAHtDeAt)
_ Tr(e(rHJrNH)tVHDVe(HN)tVHV)
_ Tr(VHDVe(FH+NH)t€(F+N)t)
= 'I‘I'(DVe(FH+NH)te(F+N)tVH)

> ﬁn’I‘I'(VG(FH+NH)t€(F+N)tVH)

= BpTr(eM N +N)y (7.5)

Furthermore, we have
6(F+N)t — ert + M,, (76)
eI = I (7.7)

whereM; is an upper-triangular Nilpotent matrix. From (7.6) and’{7we have

rI\r(e(I‘H—i-NH)te(F—i-N)t) _ Tr(el"tel"Ht_i_MtMtH)

Tr (e 0. (7.8)

v

From (7.5) and (7.8), it follows that

rI\I,(eATtDeAt) 2 5an‘I'(V€(FH+NH)t€(F+N)tVH)

5an‘I'(€(FH+F)t)

v

5 Tr(e2RelThy, (7.9)
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SinceRe{a;} #0foralli =1,...,n, from (7.4) and (7.9) we have
Tr(P) = Tr(P)
= / Tr(eATtDeAt)dt
0

- Bn
> _;m. (7.10)

In the above inequality, we apply the fact that the trace and@perators are linear and they can commute

with the integral. O

Remark 7.0.10. We should emphasize thatjf = ¢l «, for ¢ > 0, the lower bound in Theorem 7.0.9 is

tighter than the lower bounds reported in reference papéfs-fi4].
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