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Abstract 

 The work presented here describes a method for calibrating a recently designed 

device that will measure the thermal conductivity of liquids at elevated temperatures. 

Molten salts are addressed in this research, as they are becoming a highly researched 

topic as phase change materials and heat transfer fluids in relation to thermal energy 

storage in the solar industry. Because there is no conclusive experiment in which the 

thermal conductivity of molten salts has been measured, a device has been designed and 

calibrated for this specific task. The function introduced herein is an asymptotic solution 

to the transient diffusion equation and is used to curve fit the experimentally determined 

temperature versus time data to calculate the thermal conductivity of the test liquids at 

various elevated temperatures. Experiments were conducted on water and propylene 

glycol as part of the calibration procedure. For water at 23 C, the measured thermal 

conductivity values were within 3 % of the literature value for all experimental trials. For 

propylene glycol over a temperature range from 24 C to 100 C, percent errors of up to 19 

% were found. The high error found in the propylene glycol experiments is due to the 

poor temperature control of the available test furnace. In order to reduce error a furnace 

with a higher degree of temperature control must be used in order to achieve equilibrium 

within in the test liquid.  
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Chapter 1: Introduction 

1.1 Motivation 

 As the energy crisis becomes a more serious global issue, new technology for 

renewable energy and energy storage is being pursued. Methods of harvesting solar 

energy have become popular all over the world; the problem is that there is no highly 

efficient method to store the energy that is collected. The promise of storing thermal 

energy in phase change materials and transferring this energy in high efficiency heat 

transfer fluids is a driving force behind the current research in advanced thermal energy 

storage techniques. 

 Taking advantage of the latent heat of phase change properties in any phase 

change material can increase the efficiency of an energy storage system significantly. 

Latent heat yields a much more efficient means of storage than sensible heat, which has 

been a more popular method of energy storage in the past. The most common phase 

change materials are water, metals, salts, and salt mixtures. The properties of water and 

metals have been well documented for years. Current research shows that salts and salt 

mixtures are ideal candidates for phase change materials to be used in thermal energy 

storage applications. The issue here is that the properties of these salts and salt mixtures 

are not well known. In order to calculate and simulate the performance of these materials, 

the thermal conductivity must be determined. Therefore, the motivation for this research 

is to reliably measure the thermal conductivity of select molten salts in order to be able to 

further advance the current research in thermal energy storage and heat transfer. 
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1.2 Literature Review 

1.2.1 Measuring the Thermal Conductivity of Solids 

 Currently, research in the measurement of the thermal conductivity of solids is 

being widely pursued. Measuring the thermal conductivity of solids at both high and low 

temperatures is important, especially when the solids being considered may be used as 

phase change materials for energy storage purposes. It is crucial to have accurate thermal 

conductivity data for the solids in questions at the range of temperature that will be 

encountered during the solid’s use as a storage medium. 

 Many experimental techniques have been employed to measure the thermal 

conductivity of solids, specifically solid salts such as nitrates. Bloom, et al [1] used the 

concentric cylinder apparatus to measure the thermal conductivity of alkali nitrates. 

White and Davis also did comparable experiments using the concentric cylinder 

apparatus [2]. Turnbull, on the other hand, used the hot wire method to measure the 

thermal conductivity of the same alkali nitrates [3]. White concluded in his paper, that the 

hot wire method used by Turnbull was not accurate due to the electrical conductivity of 

the salts being tests, therefore yielding inaccurate results. 

 The concentric cylinder apparatus described above, is displayed below, in Figure 

1. 
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Figure 1: Concentric Cylinder Apparatus 
 

 This device is used by McDonald and Davis to verify the experiments of Bloom, 

White, and Turnbull [4]. The results of McDonald and Davis’ experiments are compared 

to Bloom, White, and Turnbull below, and demonstrate how different measurement 

techniques yield varying results for the same test medium. The variation in results is not 

only a function of the differing techniques, but it is relative to the uncertainty of each 

technique as well. 
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Figure 1 ,  Concentric cylinder apparatus. 

to the nichrome heater was calcuIated by measuring the 
voltage drop across the heater and a precision 1-ohm 
resistor in series with the heater. The cell was housed 
inside a furnace constructed from a design by Klep- 
pa.' The simple calculation of the thermal conductiv- 
ities was made possible largely by the low thermal end 
losses which made an exact knowledge of the cell geom- 
etry in these regions unnecessary and made a standardi- 
zation procedure quite sufficient. 

We have obtained the thermal conductivity of binary 
mixtures of alkali nitrates for the cation pairs Na-K, 
Na-Cs, Li-Cs, K-Rb, and Rb-Cs. The experimental 
data have been fitted to a linear dependence of thermal 
conductivity on temperature by means of a least-mean- 
squares calculation. A small nonlinear dependence if 
present cannot be distinguished due to the inevitable 
small devia,tions of data from the best fitting line, caused 
by consistent and random experimental errors. The 
thermal conductivities of the pure and binary systems 
are given in Table I. We have approximated the data 
of and of Gustafsson, et ~ l . , ~  by a linear curve 
fitting. Their data and the corresponding linear fits 
together with those of White and Davis3b and of this 
paper are given in Figure 2 for pure KNOa. The equa- 
tions for the linear fits are given in Table I1 along with 
the standard deviations u of the least-mean-squares 
fits. As can be seen from Figure 2 and Table 11, our 
data are intermediate between those of the other authors 
and the standard deviation of our results is small. 

The thermal conductivities for the Li-Cs system at 
450" are shown in Figure 3. For our purposes, the 
excess thermal conductivity of mixing (or deviation 
from "ideality") is defined by the equation 

AX = x m i x  - X ~ H I  - XZHZ (2) 

Table I: Thermal Conductivities of Pure and 
Binary Alkali Nitrate Systems" 

Salt % Salt % X 

Li 100 13.30 + 0.00502' 
Na 100 11.36 + 0.00642' 
K 100 8.04 + 0.00872' 
Rb 100 6.28 + 0.00672' 

6.57 + 0.00192' cs 100 
Li 25 cs 75 4.07 + 0.00812' 
Li 50 Cs 50 6.77 + 0.00412' 
Li 75 cs 25 9.17 + 0.00412' 
Na 25 K 75 9.01 + 0.00752' 
Na 50 K 50 IO. 50 + 0.00482' 
Na 75 K 25 11.61 + 0.00342' 
Na 25 cs 75 4.83 + 0.00682' 
Na 50 c s  50 6,46 + 0.0064T 

8.32 + 0.00552' Na 75 Cs 25 
K 25 Rb 75 7.71 + 0.00452' 
K 50 Rb 50 8.16 + 0.00422' 
K 75 Rb 25 7.73 + 0.00722' 
Rb 50 c s  50 6.20 + 0.00452' 

a Compositions are in molar percentages. Conductivity units 
are 10-4 cal/cm sec deg, and temperature T ,  degrees. 2' < 460". 

~~ ~~ ~ ~~ 

Table I1 : Least-Mean-Squares Fi t  of Thermal 
Conductivity for KNOs 

Source x(10-4 cal/cm BOO deg) 2 

This work 8.04 4- 0.00877'" 0.14 

Bloom, et  al. 5.14 + 0.01942' 0.28 
White 7.46 + 0.00882' 0 .23 

T ,  "C. b Standard deviation. 

Gustafsson, et al. IO. 76 4- 0.00222' 0.25 

where xmix is the thermal conductivity of the mixture 
and xi is the mole fraction of the i th salt. As can be 
seen from Figure 3, which is typical for the systems 
studied, the values of Ax are negative. Palyvos, et aZ.,* 
have predicted a negative value of Ax for binary mix- 
tures of argon, methane, krypton, and xenon in the liquid 
state. Experimental results for the thermal conductiv- 
ity of liquid mixtures (usually organic) have been ob- 
tained by Filippov and Novoselova.e The excess ther- 
mal conductivities that they report are also negative. 

In Figure 4, the values of the excess thermal conduc- 
tivities of mixing are plotted vs. the mole fraction of the 
salt having the heavier cation. Smooth curves have 
been drawn through the experimental points by sight 
with the tacit assumption that the points lie on almost 
parabolic curves. All of the curves in Figure 4 are 
skewed toward the lighter cation-rich portion of the 

(7) 0. J. Kleppa, J .  Phys. Chem., 59,  175 (1955). 
(8) J. Palyvos, K. D. Luks, I. L. McLaughlin, and H. T. Davis, 
J .  Chem. Phys., 47,2082 (1967). 
(9) L. P. Filippov and N. C. Novoselova, Vestn. Mosk.  Univ. No. 3, 
37 (1955). 

The Journal of Physical Chemistry 
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Figure 2: Comparison of Thermal Conductivity Data for Solid Potassium Nitrate 
 

 As shown in Figure 2, the data for these experiments differ significantly. This is 

the main reason that further research into more accurate thermal conductivity 

measurements is necessary.  

1.2.2 Measuring the Thermal Conductivity of Liquids 

 Similarly to the thermal conductivity measurements of solids, explained in section 

1.2.1, the thermal conductivity measurements of liquids are of equal importance. The 

measurement of this property for liquids at varying temperatures is of greater importance 

because it has been historically more difficult to achieve accurate, repeatable, thermal 

conductivity measurements of liquids, especially at high temperatures. The measurement 

of the thermal conductivity for any liquid is relatively more difficult to obtain than a 
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Thermal conductivity of the (Li-Cs) NO3 

(3) 

where xi is the mole fraction of the i th  component of the 
mixture, D is a quantity (perhaps temperature depen- 
dent) having the same value for all the mixtures studied, 
and XI is the sum of the cation and anion radii of the 
i th component of the mixture. A correlation similar to 
eq 3 was also observed by Powers, Katz, and Kleppa" 
for the volumes of mixing of the alkali nitrates. The 
form of eq 3 has been predicted by Reiss, Katz, and 
Kleppa12 by developing a conformal solution theory 
based on a simple potential model in which the short- 
range repulsive interactions between like ions are 
ignored and the potential energy is assumed to  be pair- 
wise additive with the pair potentials of the form 

where the form of fcrB depends only on whether a@ is a 
like ion pair or an unlike ion pair. An example of the 
model defined by eq 3 is the Coulomb potential between 
like ions and the Coulomb potential plus a hard core 
cutoff at  distance X for unlike ions. The RKK theory 
has been to predict that all the excess thermo- 
dynamic quantities of mixing are of the form illustrated 
by eq 3. 

Due to the fact that transport properties depend on 
the masses of the ions as well as the potential energy of 
interaction between the ions, there is no reason to expect 
that the excess transport properties can be correlated in 

3 

graph. The corresponding curves plotted by Murgule- 
scu and Zuca2 for excess viscosities are less skewed. It 
should be noted, however, that  the curve for which the 
experimental error is least important due to relatively 
large Ax, namely the Li-Cs curve, is fairly symmetric. 
Thus, if the excess thermal conductivities could be 
measured as accurately as the excess viscosities, the 
qualitative differences between the two quantities as ti 
function of composition might be reduced. 
111. Correlations of Excess Thermal Conductivities 
and Viscosities with Molecular Parameters 

Kleppa and Hersch'O have found experimentally that 
the enthalpies of mixing of binary alkali nitrates obey 
the formula 

\ 

\ 
\ 

VQ H E A V I E R  C A T I O N  

Figure 4. 
of alkali nitrates a t  various compositions. T = 450". 

Excess thermal conductivity of binary mixtures 

(IO) 0. J. Kleppa and L. 9. Hersh, J. Chem. Phys., 34, 351 (1961). 
(11) B. F. Powers, J. L. Katz, and 0. J. Kleppa, J .  Phys. Chem., 66, 
103 (1962). 
(12) H. Reiss, J. Katz, and 0. J. Kleppa, J .  Chem. Phys., 36, 144 
(1962). 
(13) H. T. Davis and J. McDonald, {bid., 48, 1644 (1968). 

Volume 74,  Number 4 February 19, 1970 



 6 

solid, but the thermal conductivity of liquids, near the melting point of the material is 

more difficult to obtain because environmental control systems need to be used. 

 The most popular method for measuring the thermal conductivity of liquids is the 

transient hot wire method. This method is the most widely used because convective heat 

transfer does not exist in these experiments. By eliminating convective heat transfer; only 

conduction and radiation need to be addressed. Furthermore, radiation can be neglected at 

relatively low temperatures, as it is only dominant at higher temperatures [5]. Pittman, 

Haarman, and Mani have all performed experiments measuring the thermal conductivity 

of liquids at varying temperatures with high accuracy and repeatability [6, 7, 8]. All of 

their experimental results compliment each other and prove the accuracy and 

repeatability of the hot wire method. 

 Much research has been conducted in improving the hot wire method and 

correcting any small inaccuracies that might exist. It has been determined that the 

insulation layer of the metallic wire, the insulation layer on the test basin, the thermal 

contact resistance between the wire and insulation layer, and finite wire length all lead to 

inaccuracies in the hot wire method [5]. This is due to the fact that the mathematical 

model behind the transient hot wire method assumes that the device consists of an infinite 

wire located in an infinite domain with no need for insulation on either the wire or test 

basin. Because this ideal device cannot be designed, the corrections for each of these 

sources of inaccuracies have been researched significantly. The typical configuration for 

a hot wire cell is shown here in Figure 3. 
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Figure 3: Hot Wire Assembly, 1 – Terminal, 2 – Cu Packaging, 3 – Teflon Packing, 4 
– Pressure Vessel, 5 – Insulated Pt Wire, 6 – Sus Rod, 7 – ABS Disk, 8 – Grand 

Retaining Ring, 9 – Insulated Cu Rod 
 

It is important to note the aspect ratio of the length of the wire compared to the diameter 

of the cell. If the aspect ratio is too low, then wall effects need to be considered when 

correcting the temperature data of the platinum wire. Therefore, in the design of these 

cells it is crucial that the cell diameter be large enough that wall effects are not a source 

of data inaccuracy. 

 In addition to the inaccuracies in the design of typical hot wire devices, the 

calibration used to calculate thermal conductivity is classically formulated using a one-

term series solution to the infinite wire in an infinite medium problem. This problem is 

Y Nagasaka and A Nagashima 

0 
X 

0 1 2 3 4 5 
Time I s )  

Figure 6 Magnitude of l / t  term in equation (13). 

I 

Figure 4 The hot-wire cell assembly, 1, terminal; 2, Cu 
packing; 3, teflon packing; 4, pressure vessel; 5, insulated 
Pt wire; 6, sus rod; 7, ABS disc; 8, grand retaining ring; 
9, insulated Cu rod. 

Digi ta l  
v o l t m e t e r  

b I 
Pulse 
g e n e r a t o r  r - -  

, 

Computer 

Figure 5 Block diagram of electrical system. 

measured voltage changes are recorded and deduced to ther- 
mal conductivity values using a desktop computer (HP-85). 
R2 is a 1 0 standard resistor and the current through the 

wire is measured by the voltage across it. RD is used for 
stabilising the current through the wire before initiating the 
measurement. 

4 Estimation of accuracy 
In the following, the applicability of the instrument to 
electrically conducting liquids, an aqueous NaCl solution in 
the present work, is analysed using the results in 82 and the 
overall accuracy is estimated. 

Firstly, the deviation from the linear relationship of A TI- 
In t ,  owing to the heat capacity of the wire and the insulation 
layer, is calculated from equation (13). An example of this 
calculation, in the case of measuring the aqueous NaCl 
solution at 45"C, is shown in figure 6. The properties of each 
layer used in the calculation are AI = 71.5 (W m-1 K-l), KI = 
2.5 x 10-5 (m2 s-1) (estimated error f 5 %) (Touloukian et a1 
1970), hz=0.141, ~ 2 = 8 . 3 2 x  lo-*, (estimated error f 10%) 
(Brandrup and Immergut 1967), =0.619, K3= 1.57 x lo-' 
(estimated error f 1 %) (density from Rowe and Chou 1970 
and specific heat from Washburn 1928). As shown in figure 6, 
the l / t  term of equation (13) decreases with time and after 
a certain period of time, the variation of this term becomes 
small enough so that the thermal conductivity A3 can be 
determined by equation (15). This conclusion is valid for the 
measurement of liquids in which thermal conductivities and 
thermal diffusivities do not differ drastically compared with 
the sample liquid in the present measurement. 

It is very difficult to measure the magnitudes of the thermal 
contact resistance between the metallic wire and insulation 
layer in situ. However, according to the correlation of 
Veziroglu (1967) h is roughly estimated to be in the order of 
10-6 (m2 K W-1) thus the relative magnitudes of the term 
involving h compared with ( B  In t +  C) can be calculated to 
about 10%. This causes only negligible effect to hT1-h t 
relation. 

In order to demonstrate that the instrument operates in 
accordance with the mathematical description of it, figure 7 
represents deviations of the measured AT1 from the fitted 
straight line for a typical run. As shown in this figure devia- 
tions never exceed 0.15 % during the available time duration 
1-5 s. The average deviations from linearity is about 0.05 %. 

The accuracy of the thermal conductivity value in the 
present measurement is estimated as follows. The temperature 

I 
0 1  0 I 

& p - 0 1  I 
I c - 

0 0 

0 

, 
I O  

Q, - 0 2  I 
0 0 5  1 0  1 5  I 

I n f  

Figure 7 Deviations of measured A TI from fitted straight 
line. 

1438 
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well defined and the solution that is historically used is the one-term solution for large 

times. The problem with this calibration is that when the platinum wire is heated for large 

times (t > 1000 s) the entire test medium temperature is affected, causing the test 

apparatus to heat. This evolving temperature field leads to convective heat transfer. Once 

natural convection begins, the calculation of an accurate thermal conductivity value is 

much more difficult. Therefore, the research herein demonstrates a method for measuring 

the thermal conductivity of liquids at high and low temperatures within a time period 

short enough that natural convection does not occur. 
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Chapter 2: Measuring Thermal Conductivity 

2.1 Definition of Thermal Conductivity 

 Thermal conductivity is a way to describe a material’s ability to conduct heat. 

Fourier’s law of heat conduction explains that the time rate of heat transfer through a 

material is proportional to the thermal conductivity, temperature gradient, and area of the 

material. Therefore, in order to successfully measure thermal conductivity, one must be 

able to measure the heat transfer and temperature gradient in the material being studied. 

Steady state and transient methods are primarily used to measure thermal conductivity. 

2.2 Steady State Thermal Conductivity Measurement 

 Steady state thermal conductivity measurement techniques mainly apply to solids. 

The most popular steady state method of measuring thermal conductivity is the Divided 

Bar Method. This method has been used by geologists and material scientists to measure 

the thermal conductivity of solid materials using the principle of a constant temperature 

difference across the test material [9].  The temperature gradient across the test material 

is compared with that of a material with a known thermal conductivity. This comparison 

leads to the calculation of the thermal conductivity of the test material through the 

following formulation: 

𝑘! =
!!!

! ∆!!
∆!!!∆!!

!!!!
 (2.2.1) 

Where ks is the conductivity of the sample, kg is the conductivity of the reference 

material, d is the thickness of the sample, l is the total thickness of the reference material, 

the three differential temperatures are the temperature differences across various parts of 
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the apparatus that are displayed in Figure 4, and R is the bar resistance which is 

determined by calibration. 

 

Figure 4: Schematic of cross-section of divided-bar apparatus 
 

2.3 Transient Thermal Conductivity Measurement 

 Although steady state methods of measuring thermal conductivity are simple in 

theory, it is difficult to successfully engineer an apparatus that can apply truly steady 

state conditions. Therefore, although more difficult to model mathematically, transient 

methods of measuring thermal conductivity are chosen more frequently in order to 

successfully measure the thermal conductivity of solids and fluids. Three main methods 

of measuring thermal conductivity will be studied here. 

Nuraerical Simulation o£ Divided-Bar Thermal Conductivity ... 

The purpose of the present work is to develop a numerical model of the divided-bar method in 
order to investigate the nature of the device and to determine what properties of the bar and the 
sample influence the measurements and so may lead to inconsistencies in the observed results. 

2. THE DIVIDED-BAR DEVICE 

The divided bar is described in detail by Jessop [4] and is illustrated in the schematic 
of Fig. 1. If  axial heat flow is assumed, when equilibrium is reached we have [4] 

I Coamm Tempem~m ~tk i 
I l i ~ ~  ' 

Cueal ~ t  T~pc~an ~a~ 

T! 
r2- rj - ~r~ 

r 3 - 'q = nr 2 

~ h  
T 4 -  T3 = A T  1 

X4 

fI!!i!~!!!!~!!!!!!-~!il i o, 

Fig. 1. Schematic of cross-section of divided-bar 
device. 

dKg (1) 

t.a +hr3 ) 
where Ks is the conductivity of the 
sample, Kg is the known conductivity 
of the reference material, d is the 
thickness of the sample, g is the total 
thickness of the reference material, 
ATI, AT2 and z~T3 are the temperature 
differences across the various parts of 
the divided bar as shown in Fig. 1, 
and 9t is the bar resistance. The bar 
resistance can be determined by 
calibration, and so the thermal 
conductivity of the sample is 
determined from the known physical 
characteristics of the bar and sample 
and the temperature differences 
across the reference material and 
sample. If the cell method is 
employed for measuring rock 
fragments, a correction must be 
applied for the presence of the cell 
material. 

The device measures the thermal 
conductivity, Ks, of the whole sample. If the sample has porosity ¢, and so consists of 
rock material with thermal conductivity KR saturated with fluid (e.g. water) of thermal 
conductivity Kw, the rock conductivity can be obtained from [3]: 

q = ) ~ 1 ( 2 )  

Studia geoph, et geod. 37 (1993) 2 3 5  
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 First, the Transient Plane Source Method uses a flat sensor that typically utilizes 

nickel etched out of thin foil and clad between two layers of polyamide film Kapton. A 

current is passed through the nickel and creates a temperature rise in the test material. 

The sensor records the temperature vs. time response and the thermal properties of the 

material can then be derived from this data [10]. This method is easily applied to both 

solid and liquid samples and is typically used in the building industry to measure the 

thermal properties of building materials and other slurries. 

 The second method being studied is the Transient Line Source Method. This 

method is the most popular and frequently utilized method of measuring thermal 

conductivity. The ideal model of a transient line source device is an infinite line source 

with constant power per unit length that is applied to an infinite medium of test material. 

This ideal model can be used to solve for the temperature distribution in the material as a 

function of radial distance from the line source and time. The governing equation behind 

this model can be formulated as follows: 

𝜌𝑐!
!"
!"
= 𝑘∇!𝑇 + 𝑄 (2.3.1) 

Where ρ is density, cp is specific heat capacity, T is temperature, t is time, k is thermal 

conductivity, and Q is heat generation. This equation has a solution in the following form 

for the transient line source method: 

∆𝑇 𝑟!, 𝑡 = !
!!"

ln !!"
!!!!!

+ !!!

!!"
− !

!
!!!

!!"

!
+⋯  (2.3.2) 
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Where r0 is the wire radius, t is time, q is the heat flux per unit length of the wire, k is 

thermal conductivity, a is the test material thermal diffusivity, and γ is Euler’s constant. 

The terms in the square brackets are the expansion of the exponential integral [11]. 

 This solution for the temperature at the probe surface is typically used to calculate 

the temperature rise in the test material. Then, this temperature vs. time data is used to 

calculate the thermal conductivity of the test material according to the following derived 

relation: 

𝑘 = !
!!"

!"#(!)
!"

 (2.3.3) 

Where q is the heat input into the wire of length l, t is the time elapsed during testing, and 

T is the wire temperature. 

 The final, most recently employed method of transient thermal conductivity 

measurement is the laser flash method. This method measures the thermal diffusivity of a 

thin disc of the test material in the thickness direction. The laser creates a temperature 

rise produced by a short laser energy pulse. The temperature data is collected and the 

thermal conductivity can be calculated as follows: 

𝑘 𝑇 = 𝑎 𝑇 𝑐!(𝑇)𝜌(𝑇) (2.3.4) 

Where k is the thermal conductivity of the test material, a is the thermal diffusivity of the 

test material, cp is the specific heat capacity, and ρ is the density. 

 This method is applicable over a wide range of temperatures and for a wide range 

of materials. Therefore, it has been successfully applied to high temperature melts such as 

molten salts with mean deviations of about 3.8% [12]. The typical apparatus 

configuration for the laser flash method is shows below in Figure 5 [13].  
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Figure 5: Laser Flash Apparatus Design 
 

 The current laser flash technology operates and collects accurate data under five 

important conditions. Firstly, the duration of the laser pulse must be negligibly short 

compared with the characteristic time of heat diffusion. Secondly, the laser pulse must 

uniformly heat the front face of the specimen. Thirdly, the specimen must be adiabatic 

during the measurement after the laser pulse is completed. Fourthly, the specimen must 

be geometrically uniform and homogeneous. Finally, the specimen must be opaque to the 

pulse of the laser and to thermal radiation. If these five conditions are met, then the 

analytic solution to the temperature in the specimen will be perfectly accurate. Due to the 

nature of conducting these experiments it is impossible to create an ideal environment 

where these five conditions are met. Therefore, there are inaccuracies in measuring the 

thermal conductivity of both solids and liquids with the laser flash technology. 

2.4 Choice of Measurement Technique for Current Research 

 As described in the previous section, there are numerous ways to measure the 

thermal conductivity of both solids and liquids. Because the focus of the research 

Improvement of the laser flash method

ThermometerSpecimenUniform pulse heating

d

Figure 1. The principle of the laser flash method.

carbon, which is a candidate reference material for a thermal
diffusivity standard to be supplied by the NMIJ.

2. The present state and problems with the laser
flash method

2.1. Ideal condition

Figure 1 shows the basic configuration of the laser flash
method. The front face of a parallel plate specimen is
uniformly heated by a pulse of light. Then, the heat absorbed
at the front face diffuses one-dimensionally towards the rear
face of the specimen and the transient rise in temperature at
the rear face is observed.

The analytical solution for laser flash thermal diffusivity
measurements has been given by Parker et al [1] assuming the
following conditions.

(i) The duration of the laser pulse is negligibly short
compared with the characteristic time of heat diffusion.

(ii) The front face of the specimen is uniformly heated by a
pulse of light.

(iii) The specimen is adiabatic during the measurement after
heating by the pulse of light.

(iv) The specimen is uniform (in geometry) and homogeneous.
(v) The specimen is opaque (nontransparent and nontranslu-

cent) to the pulse of light and to thermal radiation.

If these conditions are satisfied, the heat flow becomes one-
dimensional and the temperature of the rear face of the
specimen changes according to the following equation:

T (z, t) = !T

[

1 + 2
∞

∑

n=1

(−1)n exp
(

−(πn)2 t

τ0

) ]

(1)

where !T = Q/C, Q is the total energy absorbed by the
specimen, C is the heat capacity of the specimen, τ0 = d2/α is
the characteristic time for diffusion of heat across the specimen,
d is the thickness of the specimen and α is the thermal
diffusivity of the specimen.

2.2. Initial and boundary conditions in real measurements

2.2.1. Radiative heat losses. The heat loss boundary
condition is introduced instead of the adiabatic boundary
condition in order to formulate an analytical solution under
conditions involving radiative heat losses. The other
assumptions (i), (ii), (iv), (v) are the same as the ideal
conditions.

Radiative heat loss
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Figure 2. Plots of equation (4) with various values of the Biot
number Y .

Heat losses from the specimen are expressed by invoking
the Newtonian cooling law and the Biot number is defined.
There are a few algorithms that can be used to calculate thermal
diffusivities from the data obtained by the laser flash methods
which take the radiative heat loss into consideration [12–16].
The contribution of the radiative heat loss is expressed by a
non-dimensional parameter called a Biot number. The Biot
number is defined as

Yx = 4εσT 3
0 d/λ (2)

for the front and the rear faces of the specimen and

Yr = 4εσT 3
0 r0/λ (3)

for the radiative heat loss from the cylindrical side face of
the specimen, where ε is the total hemispherical emissivity
of the specimen, d is the thickness of the specimen, r0 is the
radius of the specimen, T0 is the steady state temperature of the
specimen before pulse heating, λ is the thermal conductivity
of the specimen and σ is the Stefan–Boltzmann constant.

For cases in which the Biot number is considerably
smaller than 1, Cape and Lehman presented an approximate
formula for their general solution [15]. Josell et al found
that coefficients of higher order terms in Cape and Lehman’s
equation are not correct and presented the corrected equation
as follows [17]:

T (t) = !T
∞

∑

n=0

An exp
(

−X2
n

t

τ0

)

An = 2(−1)nX2
n(X

2
n + 2Y + Y 2)−1

X0 = (2Y )1/2(1 − Y/12 + 11Y 2/1440)

Xn = nπ + 2Y/(nπ) − 4Y 2/(nπ)3

+{16/(nπ)5 − 2/[3(nπ)3]}Y 3

+{−80/(nπ)7 + 16/[3(nπ)5]}Y 4 (n ! 1) (4)

where !T = Q/C, Q is the total energy absorbed by the
specimen, C is the heat capacity of the specimen, τ0 = d2/α is

2047
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presented in this paper is the thermal conductivity of liquids, specifically molten salts, at 

elevated temperatures, a modified transient hot wire method is chosen. This choice is 

made for a few specific reasons. The transient hot wire device that is being used has been 

designed to operate at high temperatures. Also, because of the current inaccuracies in the 

laser flash method the transient hot wire method can be more easily calibrated for 

accurate results. A custom calibration is described in this paper because the current 

method of measuring temperature, as described in section 2.3, for most transient hot wire 

devices uses equation 2.3.2, but only with the choice of one term. Because a one-term 

solution is used, there are inaccuracies in the data analysis. The calibration described in 

this paper, coupled with the high accuracy of the Keithley source-meter and voltmeter 

being used, yields results in a shorter time period, with a higher order of accuracy than 

the current method of data acquisition and analysis. 
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Chapter 3: Mathematical Model and Solutions 

3.1 Theoretical Solution 

 In order to calculate the thermal conductivity of any medium with the transient 

hot wire device that is being used, a reliable and accurate calibration method needs to be 

determined. The device being used can be modeled as a platinum wire in an infinite 

cylindrical medium [14]. With the geometry shown below in Figure 6: 

 

Figure 6: Model Geometry 
 

A current will be passed through the wire, which will lead to a temperature 

increase in the wire. The measured resistance in the wire is converted to temperature and 

a temperature verses time plot is produced when performing the experiments. Therefore, 

 

r0 

Platinum Wire 

Liquid Medium 
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a way to calculate the thermal conductivity of the medium with this temperature versus 

time data needs to be established. 

 The device being used can be modeled using the one-dimensional, transient 

diffusion equation, in cylindrical coordinates. This equation is as follows: 

!!!(!,!)
!!!

+ !
!
!"(!,!)
!"

= !
!
!"(!,!)
!"

 (3.1.1) 

Where T(r,t) is the temperature of the platinum wire as a function of radius and time 

measured in degrees Kelvin, r is the radial distance from the center of the wire measured 

in meters, t is time measured in seconds, and α is the thermal diffusivity of the medium 

measured in square meters per second. 

 This equation is subject to the following boundary conditions and initial 

condition: 

1)  𝑟 = 𝑟!;   −𝑘
!"
!"
= 𝑄 (3.1.2) 

2)  𝑟 → ∞;𝑇 = 0 (3.1.3) 

3)  𝑡 = 0;𝑇 = 0 (3.1.4) 

Boundary condition one states that at a radial value of r0 the derivative of 

temperature with respect to radius follows Fourier’s law of conduction. Here r0 is the 

radius of the platinum wire measured in meters, k is the thermal conductivity of the 

medium measured in Watts per meter per degree Kelvin, and Q is the heat input into the 

platinum wire measured in Watts per square meter. 
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Boundary condition two states that as the radial distance from the center of the 

platinum wire approached infinity, the value of the temperature approaches zero or the 

initial temperature of the system. 

The initial condition states that at the value of time equal to zero, the temperature 

is equal to zero or the initial temperature of the system. 

In order to solve this equation for the temperature of the platinum wire interface 

with the medium, Laplace transforms will be utilized. First, proper scaling needs to be 

applied in order to manipulate the equation into a solvable form. The following non-

dimensional variables are introduced in order to perform this manipulation: 

𝑅 = !
!!
;   𝜏 = !

!!!
𝑡;   𝜃 = !

!!!
𝑇 (3.1.5) 

Where R is the non-dimensional length scale, τ is the non-dimensional time scale, and θ is 

the non-dimensional temperature scale. Applying these scaling variables, the governing 

equation becomes: 

!!!(!,!)
!!!

+ !
!
!"(!,!)
!"

= !"(!,!)
!"

 (3.1.6) 

This equation is subject to the following boundary conditions and initial condition: 

1)  𝑅 = 1;   !"
!"
= −1 (3.1.7) 

2)  𝑅 → ∞;𝜃 = 0 (3.1.8) 

3)  𝜏 = 0;𝜃 = 0 (3.1.9) 

 Now, Laplace transforms can be applied in order to solve the governing equation. 

The Laplace transform of the temperature will be defined as: 
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𝛩(𝑅, 𝑠) = 𝜃(𝑅, 𝜏)𝑒!!"𝑑𝜏!
!  (3.1.10) 

Therefore, the Laplace transform of the governing equation becomes: 

!!!(!,!)
!!!

+ !
!
!"(!,!)
!"

= 𝑠𝛩 (3.1.11) 

This equation has a solution in the form of: 

𝛩 𝑅, 𝑠 = 𝛩!(𝑠)
!! !!
!! !

 (3.1.12) 

Where Θ0(s) is the temperature at the interface of the wire and the medium as a function 

of time in the s-domain. This equation automatically satisfies the second boundary 

condition stated above, because the modified Bessel function, K0, approaches zero as its 

argument approaches infinity. In order to apply the first stated boundary condition, the 

solution above needs to be differentiated with respect to R. Taking this derivative yields: 

!"(!,!)
!"

= 𝑠𝛩!(𝑠)
!! !!
!! !

 (3.1.13) 

Applying the boundary condition at the radial value of one yields: 

− !
!
= − 𝑠 !! !

!! !
𝛩!(𝑠) (3.1.14) 

Simplifying this equation and solving for the interface temperature gives the solution: 

𝛩! 𝑠 = !
!! !

!! !
!! !

 (3.1.15) 

This equation is the well-documented equation for the temperature at the wire 

surface where constant heat flux per unit time per unit area is applied. This equation has 
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been transformed into the real time domain by Carslaw and Jaeger, and the integral form 

of the solution in the real time domain for large and small times is as follows [15]: 

𝑇 = − !!
!"

1 − 𝑒!!!!! !! !" !! !" !!!(!")!!(!")
!! !!! !" !!!!(!")

𝑑𝑢!
!  (3.1.16) 

Where Q is the heat flux in the wire measured in Watts per meter, k is the thermal 

conductivity of the medium measured in Watts per meter per degree Kelvin, α is the 

thermal diffusivity of the medium measured in square meters per second, t is time 

measured in seconds, r is the radius of the wire measured in meters, and u is the variable 

of integration. 

This integral form of the temperature distribution at the wire interface as a 

function of time will yield accurate results, but cannot be used for curve fitting purposes 

when deriving thermal conductivity values from experimental data. Therefore, the 

solution in the s-domain is approximated by a polynomial series and then the inverse 

Laplace transform is taken in order to yield a usable solution. 

In order for the inverse Laplace transform to be applied to this equation and then 

scale it back into the real time and temperature domains, it is approximated by a 

polynomial series. Maple is used to expand this function into a polynomial series. Below 

is the first four terms of the series in the s-domain: 

𝛩! 𝑠 = !
!

!
! − !

!!!
+ !

!
!
!

!
! − !

!!!
+ !"

!"#
!
!

!
! + 𝛰 !

!!
 (3.1.17) 

The inverse Laplace transform of this series can now be easily applied, and yields 

the following series in the non-dimensional time domain: 
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𝜃! 𝜏 = 2 !
!
− !

!
𝜏 + !

!
!
!
!

!
− !

!"
𝜏! + !"

!"
!
!
!

!
 (3.1.18) 

Finally, using the non-dimensional variables stated above, this equation is now 

transferred back into the real time and temperature domain. The final form of the solution 

to this problem is as follows: 

𝑇! =
!!!
!

2 !"
!!!!

− !
!
!"
!!!
+ !

!

!"
!!
!

!
!

!
− !

!"
!"
!!!

!
+ !"

!"

!"
!!
!

!
!

!
+⋯  (3.1.19) 

This representation of the temperature at the wire-medium interface is used to 

calibrate the thermal conductivity-measuring device. Using this equation, the temperature 

versus time data taken from the device can be fit to a curve made with this equation, and 

then the thermal conductivity of the medium can be determined as it is the only unknown 

variable in the equation. 

3.1.1 Theoretical Solution Sensitivity Analysis 

 The aforementioned final equation for the interface temperature as a function of 

time is represented by a series solution. Any number of terms can be taken in formulating 

this solution, but the correct number of terms needs to be used in order for the solution to 

be accurate for the correct period of time. The following analysis demonstrates the 

sensitivity of the series solution to the number of terms that are used. 

 In order to plot the series solution without the effect of the medium properties, the 

non-dimensional form of the solution is used for plotting in this section. The plot below 

details the behavior of the solution for three, seven, and fifteen terms. 
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Figure 7: Theoretical Sensitivity Analysis For "Long" Times 
 

In Figure 7 is it shown that from τ from 0 to about 0.25 all three series solution yield 

identical results. At this point the series solution that utilizes fifteen terms begins to 

diverge from the solutions that utilize three and seven terms. Then at about 0.5 the 

solution with seven terms diverges in a similar fashion to that of the solution with fifteen 

terms. Then the three-term solution seems to continue on in a relatively linear fashion, 

but diverges from that path as well at larger times. Below, in Figure 8 is a closer look at 

the three different series. 
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Figure 8: Theoretical Sensitivity Analysis For "Short" Times 
 

 Again, the divergence of the fifteen and seven term solutions from the three-term 

solution can be seen in Figure 8 with more detail. It is important to note that the three 

forms of the solution provide identical data up to about 0.2 on the τ-axis. 

 In order to use the part of the solution that is accurate for the time of the 

experiment without diverging, the three-term series is chosen. A numerical solution to the 

same partial differential equation is demonstrated in the next section to prove the 

accuracy of the three-term series solution, but the following equation is the final form of 

the three-term solution to the partial differential equation above, when converted into the 

real time and real temperature domain: 
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𝑇! =
!!!
!

2 !"
!!!!

− !
!
!"
!!!
+ !

!

!"
!!
!

!
!

!
 (3.1.20) 

Where T is the temperature as a function of time at the wire/medium interface in degrees 

Celsius, Q is the heat input into the system in Watts per unit surface area (square meter) 

of wire, r0 is the wire radius in meters, k is the thermal conductivity of the medium in 

Watts per meter per degree Kelvin, α is the thermal diffusivity of the medium in square 

meters per second, and t is time in seconds. 

3.2 Numerical Simulation 

 In order to use the theoretical solution above, its accuracy must be proven. In 

order to do so, a numerical simulation is created to solve the same governing partial 

differential equation using the finite difference method. The governing equation is shown 

here: 

!!!(!,!)
!!!

+ !
!
!"(!,!)
!"

= !"(!,!)
!"

 (3.2.1) 

 To solve this equation numerically, the method of finite differences is used to 

discretize this equation and its related boundary conditions. The discretization technique 

is shown here, as the governing equation becomes: 

!!
!!!!!!

!

∆!
= !

!!

!!!!
! !!!!!

!

!∆!
+ !!!!

! !!!!
!!!!!!

!

∆!!
 (3.2.2) 
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This equation will define the temperature at each sequential time step for all interior 

nodes of the designed mesh. The boundary and initial conditions for this simulation are as 

follows: 

1)  𝜃!! = 0,     2)  𝜃!! = 0,      3)   !!!
!!!!!!!!!!

!∆!
= −1 (3.2.3) 

Where condition one is the initial condition stating that the temperature across the entire 

mesh at time is equal to zero is zero. The second condition states that the temperature at 

the radial value of infinity is equal to the initial temperature. Finally, the third condition 

is the discretized form of the conduction condition at the wire/medium interface in 

discretized for with second order error. The source code for this simulation is written in 

Maple and can be found in Appendix A. 

3.3 Comparison of Numerical and Series Solutions 

 Comparing the plots of the two solutions together compares the accuracy of the 

series solution demonstrated above to the numerical solution. The plot below displays the 

two solutions together in terms of non-dimensional variables, including the series 

solution with one, two, three, and seven terms to prove the most usable solution lies with 

the three-term solution. 
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Figure 9: Series Solution Plotted with Numerical Solution 
 

 It is clearly demonstrated in Figure 9 that the three-term series solution and the 

numerical solution have the closest relation. This also demonstrates the validity of the 

series solution. Therefore, the three-term series solution can be used to calibrate the 

desired thermal conductivity-measuring device by curve fitting experimental data with 

the series solution.  



 26 

Chapter 4: Experimental Analysis 

4.1 Calibration Experiment Procedure 

 In order to determine the accuracy of the chosen thermal conductivity-measuring 

device, proper calibration experiments must be performed. Using liquids with well-

documented properties will allow for this calibration and verification of results to be 

completed. It is proposed that verification experiments be performed on well-known 

liquids at varying temperatures to verify the devices response and results at both room 

temperature and elevated temperatures. This is because in order to measure the thermal 

conductivity of molten salts, the test temperatures can approach values above six hundred 

degrees Celsius. 

 The experimental procedure for testing the device will be as follows. First, the test 

liquid will be poured into the measuring device, which will then be placed in a 

temperature controlled environment at the desired initial testing temperature. Once the 

temperature probe in the test material shows that the entire system has reached 

equilibrium the test can begin. A current will be supplied to the circuitry, which will 

cause the platinum wire to heat. This will cause a temperature response in the test liquid. 

The platinum wire will also be used as a thermometer in order to measure the temperature 

at the wire/medium interface throughout the experiment. The temperature versus time 

data will be recorded in a LabVIEW program, which will then output a data file including 

the temperature verses time results. The slope of the results will then be curve fit to the 

slope of the three-term series solution described above. Using this equation, the thermal 
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conductivity of the test liquid can be determined, because it will be the only unknown 

variable in the formula. The slope, or derivative, of the series solution is as follows: 

!"(!)
!"

= !!!

!"#!!!!"
− !

!!"!!
+ !!!! ! !

!!"!! !
!

!"!!!
 (4.1.1) 

 This procedure will be performed for water and propylene glycol at varying 

temperatures. These two liquids are chosen because their properties are well documented 

for a wide range of temperatures and can be used for calibration purposes.  

4.2 Calibration Experiments 

4.2.1 Water at 23 Degrees Celsius 

 This experiment is performed on water at 23 degrees Celsius. The parameters and 

properties of the experiment are as follows: 

Property Value 
Thermal Conductivity, k [W/m-K] 0.604 [16] 
Specific Heat, c [J/kg-K] 4.145 [16] 
Density, ρ [kg/m3] 997.5 [16] 
System Power, P [W] 0.0270 

 
Table 1: Property Table for Water at 23 C 

 

Using the properties listed in Table 1, the following temperature response plot was 

created using the series solution and experimental data: 
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Figure 10: Temperature Response of Water at 23 C 
 

As demonstrated in Figure 10, it is shown that the temperature response of the fluid in the 

experiment has a lag compared to the series solution. Although this is the case, the slope 

of the two curves can be compared to calculate the thermal conductivity of the test liquid 

using the experimental results. Below, the slope of the two curves are compared: 
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Figure 11: Slope Comparison of Experimental Data to Series Solution for Water at 
23 C 

 

In Figure 11 it is shown that the slope of the two curves, after the initial lag, is 

comparable. Because this is part of the device calibration, the portion of the data that 

matches most closely to the series solution will be used to calculate the thermal 

conductivity of the liquid. Therefore, between 6.5 and 7.5 seconds will be considered in 

the thermal conductivity calculation. 
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Using a non-linear least squares fit custom curve-fitting program written in 

MATLAB, which can be found in Appendix B, the thermal conductivity of the test liquid 

is calculated.  

The summary of results from the three trials at this temperature is as follows: 

Trial Calculated Thermal 
Conductivity, k [W/m-K] 

% Error 

1 0.617 2.1 
2 0.617 2.1 
3 0.586 3.1 
4 0.597 1.1 

Table 2: Summary of Results for Water at 23 C 
 

4.2.2 Propylene Glycol at 24 Degrees Celsius 

 This experiment is performed on propylene glycol at 24 degrees Celsius. Three 

trials are performed at this temperature in order to determine the repeatability of the 

results. The parameters and properties of the experiment are as follows, and the analysis 

for one trial is explained below. 

Property Value 
Thermal Conductivity, k [W/m-K] 0.200 [17] 
Specific Heat, c [J/kg-K] 2.51 [17] 
Density, ρ [kg/m3] 1,032 [17] 
System Power, P [W] 0.249 

 
Table 3: Property Table for Propylene Glycol at 24 C 

 

Using the properties listed in Table 3, the following temperature response slope plot was 

created using the series solution and experimental data: 
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Figure 12: Temperature Response Slope of Propylene Glycol at 24 C 
 

As demonstrated in Figure 12, it is shown that the temperature response slope of the fluid 

in the experiment and the slope of the series solution converge to a similar value 5.5 and 

7 seconds of heating. Therefore, the data between 5.5 and 7 seconds is used in calculating 

the thermal conductivity of the propylene glycol. 

Using the non-linear least squares fit custom curve-fitting program written in 

MATLAB, which can be found in Appendix B, the thermal conductivity of the test liquid 

is calculated.  

The summary of results from the three trials at this temperature is as follows: 
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Trial Calculated Thermal 
Conductivity, k [W/m-K] 

% Error 

1 0.220 10.1 
2 0.210 5.0 
3 0.213 6.7 

 
Table 4: Summary of Results for Propylene Glycol at 100 C 

 

Here it is shown that the percent error for each trial is between five and ten 

percent when compared to the documented literature value. 

4.2.3 Propylene Glycol at 60 Degrees Celsius 

 This experiment is performed on propylene glycol at 60 degrees Celsius. Three 

trials are performed at this temperature in order to determine the repeatability of the 

results. The parameters and properties of the experiment are as follows, and the analysis 

for one trial is explained below. 

Property Value 
Thermal Conductivity, k [W/m-K] 0.1996 [17] 
Specific Heat, c [J/kg-K] 2.51 [17] 
Density, ρ [kg/m3] 928.2 [17] 
System Power, P [W] 0.256 

 
Table 5: Property Table for Propylene Glycol at 60 C 

 

Using the properties listed in Table 5, the following temperature response slope plot was 

created using the series solution and experimental data: 
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Figure 13: Temperature Response Slope of Propylene Glycol at 60 C 
 

As demonstrated in Figure 13, it is shown that the temperature response slope of the fluid 

in the experiment and the slope of the series solution converge to a similar value between 

5.5 and 7 seconds of heating. Therefore, the data between 5.5 and 7 seconds is used in 

calculating the thermal conductivity of the propylene glycol. 

Using the non-linear least squares fit custom curve-fitting program written in 

MATLAB, which can be found in Appendix B, the thermal conductivity of the test liquid 

is calculated.  

The summary of results from the three trials at this temperature is as follows: 
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Trial Calculated Thermal 
Conductivity, k [W/m-K] 

% Error 

1 0.227 13.8 
2 0.211 5.9 
3 0.221 10.9 

 
Table 6: Summary of Results for Propylene Glycol at 60 C 

 

Here it is shown that the percent error for each trial is between five and fourteen 

percent when compared to the documented literature value. 

4.2.4 Propylene Glycol at 80 Degrees Celsius 

 This experiment is performed on propylene glycol at 80 degrees Celsius. Three 

trials are performed at this temperature in order to determine the repeatability of the 

results. The parameters and properties of the experiment are as follows, and the analysis 

for one trial is explained below. 

Property Value 
Thermal Conductivity, k [W/m-K] 0.1986 [17] 
Specific Heat, c [J/kg-K] 2.51 [17] 
Density, ρ [kg/m3] 901.8 [17] 
System Power, P [W] 0.262 

 
Table 7: Property Table for Propylene Glycol at 80 C 

 

Using the properties listed in Table 7, the following temperature response slope plot was 

created using the series solution and experimental data: 
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Figure 14: Temperature Response Slope of Propylene Glycol at 80 C 
 

As demonstrated in Figure 14, it is shown that the temperature response slope of the fluid 

in the experiment and the slope of the series solution converge to a similar value between 

5.5 and 6.75 seconds of heating. Therefore, the data between 5.5 and 6.75 seconds is used 

in calculating the thermal conductivity of the propylene glycol. 

Using the non-linear least squares fit custom curve-fitting program written in 

MATLAB, which can be found in Appendix B, the thermal conductivity of the test liquid 

is calculated.  

The summary of results from the three trials at this temperature is as follows: 
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Trial Calculated Thermal 
Conductivity, k [W/m-K] 

% Error 

1 0.236 18.9 
2 0.215 8.3 
3 0.214 8.1 

 
Table 8: Summary of Results for Propylene Glycol at 100 C 

 

Here it is shown that the percent error for each trial is between eight and twenty 

percent when compared to the documented literature value. 

4.2.5 Propylene Glycol at 100 Degrees Celsius 

 This experiment is performed on propylene glycol at 100 degrees Celsius. Three 

trials are performed at this temperature in order to determine the repeatability of the 

results. The parameters and properties of the experiment are as follows, and the analysis 

for one trial is explained below. 

Property Value 
Thermal Conductivity, k [W/m-K] 0.1968 [17] 
Specific Heat, c [J/kg-K] 2.51 [17] 
Density, ρ [kg/m3] 901.8 [17] 
System Power, P [W] 0.268 

 
Table 9: Property Table for Propylene Glycol at 100 C 

 

Using the properties listed in Table 9, the following temperature response slope plot was 

created using the series solution and experimental data: 
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Figure 15: Temperature Response Slope of Propylene Glycol at 100 C 
 

As demonstrated in Figure 15, it is shown that the temperature response slope of the fluid 

in the experiment and the slope of the series solution converge to a similar value 5.75 and 

7 seconds of heating. Therefore, the data between 5.75 and 7 seconds is used in 

calculating the thermal conductivity of the propylene glycol. 

Using the non-linear least squares fit custom curve-fitting program written in 

MATLAB, which can be found in Appendix B, the thermal conductivity of the test liquid 

is calculated.  

The summary of results from the three trials at this temperature is as follows: 
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Trial Calculated Thermal 
Conductivity, k [W/m-K] 

% Error 

1 0.207 5.4 
2 0.222 12.8 
3 0.205 4.2 

 
Table 10: Summary of Results for Propylene Glycol at 100 C 

 

Here it is shown that the percent error for each trial is between five and thirteen 

percent when compared to the documented literature value. 

4.4 Summary of Calibration Experiments 

 As described in the calibration experiments for both water and propylene glycol, 

it is shown that the thermal conductivity of the test medium can be calculated using the 

slope of the experimental temperature data. It is found that the properties of the test 

material are closely related to the portion of heating time that should be used for the 

thermal conductivity calculation. With water, as shown above, between 5 and 7 seconds 

is used, and a percent error of less than 3% is found for all trials. With the propylene 

glycol the liquid needs to be heated for 9 seconds in order for the experimental and 

theoretical data to converge to a similar value. Even with 9 seconds of heating the percent 

error in all propylene glycol cases can be as high as 18.9 % and as low as 4.2 %. 

 The main source of error in these results is the temperature control of the test 

environment. The furnace being used cannot control the ambient temperature accurately 

enough to get the proper data necessary. The reason the temperature control is determined 

to be the main source of error is because the room temperature results are most accurate. 

For water, at room temperature the percentages of error are less than 3% but as high as 

19% for the propylene glycol at an elevated controlled temperature. 
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Therefore, it is suggested that a more accurately controlled furnace be obtained to 

perform these experiments. Also, a multitude of calibration liquids, with well-known 

properties should be tested in order to determine the range of time in which the test data 

should be analyzed. The factors that should be considered in this analysis are the specific 

heat and density of the liquid, as these two properties must be known for the thermal 

conductivity of any liquid to be measured with this device. 
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Chapter 5: Summary and Conclusions 

After analyzing the mathematical model of the infinite wire in the test liquid 

medium, an accurate analytic solution has been found to model the temperature profile at 

the platinum wire interface. This formulation can now be used to calibrate the thermal 

conductivity-measuring device and then measure the thermal conductivity of any test 

liquid over a wide range of temperatures. The solution that has been found is in the 

following form: 

𝑇! =
𝑄𝑟!
𝑘 2

𝛼𝑡
𝜋𝑟!!

−
1
2
𝛼𝑡
𝑟!!
+
1
2

𝛼𝑡
𝑟!!

!
!

𝜋
 

Where T is the temperature as a function of time at the wire/medium interface in degrees 

Celsius, Q is the heat input into the system in Watts per cubic meter of wire, r0 is the wire 

radius in meters, k is the thermal conductivity of the medium in Watts per meter per 

degree Kelvin, α is the thermal diffusivity of the medium in square meters per second, 

and t is time in seconds. 

 This solution has been verified with a numerical simulation, which is described in 

section 2.3. In section 2.3 it is demonstrated that the numerical solution matches the 

analytic solution sufficiently. Because this solution is verified, it is then used to curve fit 

the experimental data of the calibration experiments explained above. 

It was found that the properties of the test material are closely related to the 

portion of heating time that should be used for the thermal conductivity calculation. With 

water, as shown above, between 5 and 7 seconds of heating time is used, and a percent 
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error of less than 3% is found for all trials. With the propylene glycol the liquid needs to 

be heated for 9 seconds in order for the experimental and theoretical data to converge to a 

similar value. Even with 9 seconds of heating the percent error in all propylene glycol 

cases can be as high as 18.9 % and as low as 4.2 %. 

 The main source of error in these results is the temperature control of the test 

environment. The furnace being used cannot control the ambient temperature accurately 

enough to get the proper data necessary. The reason the temperature control is determined 

to be the main source of error is because the room temperature results are most accurate. 

For water, at room temperature the percentages of error are less than 3% but as high as 

19% for the propylene glycol at an elevated controlled temperature. 

Therefore, it is suggested that a more accurately controlled furnace be obtained to 

perform these experiments. Also, a multitude of calibration liquids, with well-known 

properties should be tested in order to determine the range of time in which the test data 

should be analyzed. The factors that should be considered in this analysis are the specific 

heat and density of the liquid, as these two properties must be known for the thermal 

conductivity of any liquid to be measured with this device. 
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Appendix A – Numerical Solution of Governing PDE 

Numerical solution to partial differential equation governing the heat transfer in the 
thermal conductivity measuring device wire, written in Maple 14: 
 
> restart; with(plots); 
 
> dt := 0.1e-1; f0 := proc (r) options operator, arrow; 0*r end proc; 
 
> for i to 100 do sln := dsolve({diff(f(r), r, r)+(diff(f(r), r))/r = (f(r)-f0(r))/dt, f(10) = 0, 
(D(f))(1) = -1}, {f(r)}, numeric, output = listprocedure); f0 := subs(sln, f(r)); f1[i] := f0(1) 
end do; 
 
> plot([seq([i*dt, f1[i]], i = 1 .. 100)]); 
 
> `&theta;series2` := 1.128379167*sqrt(tau)-.5000000000*tau+.2820947918*tau^(3/2); 
 
> plot(`&theta;series2`, tau = 0 .. 1); 
 
> p1 := plot([seq([i*dt, f1[i]], i = 1 .. 100)], color = "red"); 
 
> p2 := plot(`&theta;series2`, tau = 0 .. 1, color = "blue"); 
 
> `&theta;series3` := 1.128379167*sqrt(tau)-.5000000000*tau+.2820947918*tau^(3/2)-
.1875000000*tau^2+.1480997657*tau^(5/2); 
 
> p3 := plot(`&theta;series3`, tau = 0 .. 1, color = "black"); 
 
> `&theta;series1` := 1.128379167*sqrt(tau); 
 
> p4 := plot(`&theta;series1`, tau = 0 .. 1, color = "green"); 
 
> `&theta;series7` := 1.128379167*sqrt(tau)-.5000000000*tau+.2820947918*tau^(3/2)-
.1875000000*tau^2+.1480997657*tau^(5/2)-
.1406250000*tau^3+.1594339314*tau^(7/2)-
.2109375000*tau^4+.3168686419*tau^(9/2)-
.5277832031*tau^5+.9573817389*tau^(11/2)-
1.866741943*tau^6+3.874960991*tau^(13/2); 
 
> p5 := plot(`&theta;series7`, tau = 0 .. 1, color = "yellow"); 
 
> display({p1, p2, p3, p4, p5}, axes = boxed, scaling = constrained, title = 
'Series*vs*Numerical*Solution'); 
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Appendix B – Curve Fitting and Data Analysis 

MATLAB code written to curve fit experimental data to series solution and calculate the 
thermal conductivity of the test liquids 
 
clear all 
clc 
  
N=100; 
Ttheory2=zeros(N,1); 
Texp=zeros(N,1); 
Ttp=zeros(N,1); 
Tep=zeros(N-2,1); 
t=zeros(N,1); 
tep=zeros(N-2,1); 
  
%%%%%%%%%%%%%%%% Parameter Input %%%%%%%%%%%%%%%%%% 
  
k=0.602; 
rho=997.8; 
c=4149; 
alpha=k/(rho*c); 
r=0.5*10^-3; 
L=25.6*10^-3; 
V=pi*L*r^2; 
q=5.342*10^6; 
P=q*V; 
Q=P/(2*pi*r*L); 
Ti=22; 
  
%%%%%%%%%%%%%%%%% Experimental Data %%%%%%%%%%%%%%%% 
  
load data.txt; 
  
for i=1:1:N 
    t(i,1)=data(i,1); 
    Texp(i,1)=data(i,2); 
end 
  
dt=t(2)-t(1); 
  
%%%%%%%%%%%%%%%%%%% Series Solution %%%%%%%%%%%%%%%% 
  
for i=1:1:N     
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    Ttheory2(i,1)=(2*sqrt(alpha*t(i)/(pi*r^2))-(1/2)*alpha*t(i)/r^2+... 
        (1/(2*sqrt(pi)))*(alpha*t(i)/r^2)^(3/2))*Q*r/k+Ti; 
    Ttp(i,1)=Q*r/sqrt(rho*c*pi*r^2)*1/sqrt(k)*1/sqrt(t(i))-... 
        Q/(2*rho*c*r)+3*Q/(4*sqrt(pi)*rho*c*r)*sqrt(1/(rho*c*r^2))*... 
        k^(3/2)*sqrt(t(i)); 
end 
  
figure(1) 
plot(t,Ttheory2,'LineWidth',2); 
hold on 
plot(t,Texp,'r+'); 
axis([0 3 22 23.5]); 
title('Simulation vs. Experiment - Water at 22 C, 5A'); 
xlabel('Time [s]'); 
ylabel('Temperature [C]'); 
legend('Simulation', 'Experimental'); 
grid on; 
  
%%%%%%%%%% Numerical Derivative of Experimental Data %%%%%%%%%%% 
  
for i=2:1:N-1 
    Tep(i,1)=(Texp(i+1)-Texp(i-1))/(2*dt); 
end 
  
for i=2:1:N-1 
    tep(i,1)=t(i); 
end 
  
[C,I]=max(Tep); 
  
figure(2) 
plot(t,Ttp,'LineWidth',2); 
hold on 
plot(tep,Tep,'r+'); 
title('Simulation vs. Experiment - Water at 22 C, 5A - Derivative'); 
xlabel('Time [s]'); 
ylabel('dT/dt'); 
legend('Simulation', 'Experimental'); 
grid on; 
  
%%%%%%%%%%%%%%%% Curve Fitting %%%%%%%%%%%%%%%%%%%% 
  
start=round(3.75*N/5); 
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a1=Q*r/sqrt(rho*c*pi*r^2); 
a2=Q/(2*rho*c*r); 
a3=3*Q/(4*sqrt(pi)*rho*c*r)*sqrt(1/(rho*c*r^2)); 
  
a1 
a2 
a3 
  
tcf=zeros(N-1-start,1); 
Tcf=zeros(N-1-start,1); 
  
for i=1:1:N-1-start 
    tcf(i,1)=t(i+start); 
    Tcf(i,1)=Tep(i+start); 
end 
  
myfun=inline('0.3703*1/sqrt(beta(1))*tcf.^(-1/2)-
0.3226+0.2684*(beta(1))^(3/2)*tcf.^(1/2)',... 
    'beta','tcf'); 
  
beta=nlinfit(tcf,Tcf,myfun,1); 
kcalc=beta(1); 
  
kcalc 
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