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ABSTRACT 

The space hopper simulator project drew its origin from a partnership with Penn State 

University to compete in the Google Lunar XPRIZE competition. Lehigh University is tasked with 

the exploring the guidance, navigation and control (GN&C) system of the hopper spacecraft. To 

simulate the dynamics and flight behavior of the concept, Earth-based multirotor flying 

platforms were developed with the end goal of executing the hopping maneuver.  

The overall project has been ongoing for more than 5 years and went through several major 

revisions to fix flaws discovered in the previous design. As older students graduate and new 

teams are form, knowledge and experience are lost in the process. Due to the time it take to 

relearn and redesign the simulators, the project progress only get as far as achieving radio 

controlled flight. The current and 3rd generation development team aims to change that by 

developing both the hardware and software using modular design.      

With modular design, the manufacturing, repair and modification process for the multirotor 

speed up significantly. The damaged component can be replaced with little effort. In addition to 

the hardware advantages, the software modules enable concurrent development of both a PID 

and a Fuzzy Logic based flight control system using similar avionics and software architecture. 

Since the flight operating system function by linking the various software modules, individual 

modules can easily be swapped to test different control laws, electronic devices, etc. The 

software modules are also capable of being reused in other applications, such as running the 

thrust test stand and logging data with the wireless ground station.       

In theory and simulation, the GN&C system is quite simple. The hopping guidance trajectory can 

be generated by a set of linear and trigonometric equations. The trajectory can be optimized by 
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minimizing the total energy consumption at the end of the hopping maneuver. The navigational 

data can be collected from the GPS and localized for the cascade PID controllers to achieve the 

desired trajectory. In the ideal world, everything is simple and easy.  

In the real world, a range of problems arise during implementation. Factors such as time delay 

and noises significantly impact the performance of the control system, making stable aggressive 

tuning very difficult to achieve. In an attempt to improve the condition, a number of digital 

filters such as the moving average filter and the Kalman filter were explored. In addition, every 

sub-system was analyzed in depth to optimize for speed. This resulted in 3 major revisions in 

changing flight computer and programming languages.  

Even though the main topic of this research is the guidance, navigation and control system, the 

project quickly expanded into a systems engineering problem. Everything must work well 

together in order for the aircraft to achieve stable flight.  
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Chapter 1: PROJECT BACKGROUND OVERVIEW 

The foundation of the Hopper Spacecraft Simulator project drew its origin from the Google 

Lunar XPRIZE Competition. Lehigh University and Pennsylvania State University formed a 

partnership in collaborating in the mission of sending a robot to the moon. Lehigh University is 

tasked the guidance, navigation and control system while the Penn State Applied Research Lab 

and students in the Penn State Lunar Lion team lead development in the remainder of the 

spacecraft along with logistics such as public relation and fundraising.   

GOOGLE LUNAR XPRIZE COMPETITION 

The Google Lunar XPRIZE (GLXP) Competition is an international space technology competition 

organized by the X Prize foundation and sponsored by Google.  The competition was announced 

on September 13, 2007. The mission is for privately funded teams to safely land a robot on the 

Moon, maneuver 500 meters across the Lunar surface and transmit data such as images and 

video back to Earth. There are additional awards for spacecraft that travel greater than 5000 

meters, capture images of legacy Apollo program hardware, surviving a lunar night, etc.   

The Lunar Lion team along with Lehigh University decided to enter the competition and 

conducted a mission analysis with the COMPASS team at NASA Glenn Research Center (GRC) to 

investigate the space hopper concept. The Collaborative Modeling for Parametric Assessment of 

Space Systems (COMPASS) is an interdisciplinary team that drew engineers from various 

divisions and branches across GRC. The team initially layout the overall architecture of the 

spacecraft design and mission, including areas such as mechanical system, thermal, propulsion, 

power, GN&C and communications. The cost, mass, power and delta V budget are iterated as 

the design changes to meet the mission specifications.  
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FIGURE 1-1: LUNAR LION MISSION CONCEPT OF OPERATION 

 

The Lunar Lion mission concept of operations (ConOps) is illustrated in Figure 1-1 based on the 

collaborative studies with COMPASS. In general, the spacecraft will be lifted into a parking orbit 

by a launch vehicle, possibly SpaceX Falcon 9, before using the main engine from the transfer 

vehicle to enter a lunar transfer orbit. After cursing for 4 days, the space hopper's main engine 

along with the thrusters will be used for a powered descends onto the lunar surface.  After 

capturing and transfer some visual data back to Earth, the space hopper will execute a hop to its 

destination 500 meters away using its thrusters.  

There are many robots currently exploration the solar systems. Almost all of the mobile robotic 

platforms take the form of rovers. A disadvantage of rovers is that they can easily become 

damaged or stuck on the surface due to rocks, uneven terrain and soft soil. A famous example is 
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NASA's Spirit rover, which ended its mission in around 7 years while its identical twin rover, 

Opportunity, is still going on to explore Mars. The hopper spacecraft overcome this problem by 

flying over the rough terrain and going directly to the points of interest. The tradeoff is that due 

to the lack of thick atmospheres in celestial bodies like the Moon and Mars, propulsion can only 

be done with thrusters. As oppose to the renewable electric energy, which can be recharged 

from solar panels, thruster consume the limited amount of fuel onboard the spacecraft. Hence, 

only a limited number of maneuvers can be executed. For the GLXP, this is a perfect choice since 

it only requires the spacecraft to do one maneuver to a location 500 meters away.  

1ST GENERATION HOPPER SIMULATOR 

At its current stage, the hopper spacecraft simulator project went through 3 major revisions. 

The previous thesis and reports resulted from this project have detail documentation on 

technical matters such as the target specifications and requirements of each revision. Therefore, 

the section here will only briefly discuss the history and overview of each generation. 

 

FIGURE 1-2: 1ST GENERATION HOPPER SIMULATOR CAD MODEL 
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The first generation hopper spacecraft simulator, as shown in Figure 1-2, began as part of an 

undergraduate student Integrated Product Development course project. The hardware and 

project was later transferred to Andrew Abraham, a PhD student studying orbital mechanics, 

who led a team consisted of several graduate and undergraduate students including Evan 

Mucasey, Anthony Dzaba, Zachary Rambo, Nick Graber and myself.  The project provided great 

cross-disciplinary research opportunities for students for the simulator involve not only 

mechanical system, but also electrical, power and software development as well.  

 

FIGURE 1-3: 1ST GENERATION HOPPER SIMULATOR ON SINGLE-AXIS TEST RIG 

As shown in Figure 1-2, the first generation hopper was manufactured out of aluminum. The 

four ducted fan were also partially manufactured in-house with carbon fiber and provide 

approximately 4.5 kg of thrust each. The system is powered by four 37 volts lithium polymer 

(LiPo) batteries wired in parallel and weigh approximately 22.5 kg in total.  

One of the unique designs in the first generation hopper simulator is its thrust vectoring system. 

Each ducted fan is connected to a servo, allowing it to rotate in a single axis. Theoretically, the 

thrust vectoring system could allow the aircraft to maneuver while maintaining level flight. The 
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level flight capability could be advantageous in situations like capturing image and video. The 

thrust vectoring system later became part of Anthony Dzaba's PhD dissertation research.      

One of the major design flaws of the first generation hopper is the thrust to weight ratio. The 

four motor can only output a maximum thrust of roughly 18 kg, however, the total aircraft 

weigh around 22.5 kg. Therefore, the thrust to weight ratio is only about 1.25:1. Along with 

thrust vectoring, this cause the actuator to saturate as the overall system loose controllability. 

Another problem is the vibration caused by the ducted fan. Since the fans are partially 

manufactured by students, the qualities were not the best. Some of the fan blades were not 

balance correctly hence while operating sometime cut into the side wall. In one case during the 

test, the vibration was so great that the top of the ducted fan broke off and flew across the lab.  

The power consumed by the fans was also enormous. The system is regularly drawing the 

maximum 12.8 kW of power, due to the low thrust to weight ratio. This requires the batteries to 

have high capacity and output at a dangerously high current at around 345 Amps in total. There 

are several incidents where solder joints were melted and accident shorts causing power failure. 

Due to the many design flaws of the first generation hopper, the second generation hoppers 

were created. 

2ND GENERATION HOPPER SIMULATOR 

The second generation hopper simulator was an effort to improve the previous generation led 

by Evan Mucasey along with other graduate and undergraduate students including Melissa Dye, 

Nick Tashjian and Andrew Papazian.   
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FIGURE 1-4: 2ND GENERATION HOPPER SIMULATOR CAD MODEL 

 

In order to address the first generation's thrust to weight ratio problem, the second generation 

hopper was constructed primarily with composite material in order to reduce the overall mass. 

The propulsion system was also transitioned from a 4 tilt-rotor design to a 3-point fixed rotor 

design to reduce system complexity and reflect development changes in Penn State's hopper 

spacecraft. As shown in Figure 1-3, the rotors are set up in 3 groups of 2 counter rotating 

motors. This allow more authority in yaw control and overall provide more thrust.  

In order to test the new flight configuration and gain experience in the manufacturing the 

hopper with composite material, a proof-of-concept hexacopter was constructed. This 

prototype simulator later became the primary experimental platform during the early stages of 

the current project team for learning the basics of controls and system integration. A picture of 

the 2nd generation prototype was included in Figure 1-4 in the modified test rig.  
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FIGURE 1-5: 2ND GENERATION PROOF-OF-CONCEPT HOPPER SIMULATOR 

The manufacturing process for the 2nd generation simulators was rather complicated and time 

consuming. This involved cutting the primary structure out of a rigid PVC foam, while wet-laying 

unidirectional carbon and fiberglass tape with epoxy. In addition, the epoxy was mixed with 

micro glass spheres and brushed into the foam to ensure that the surface was filled. Finally, the 

entire structure was vacuum cured. An image of the completed 2nd generation hopper 

simulator can be found in Figure 1-5. 

The overall mass of the hexacopter was around 4 kg. The 6 AXL 2826/12 motors from the 

aircraft are able individually output a thrust of 2.6 kg, combining to a total of 15.6 kg of thrust. 

This yield a 3.90:1 thrust to weight ratio.   

In order for the flying platform to carry additional payloads, the hexacopter is designed so that a 

JetCat P200 gas turbine engine can be attached to the center of aircraft as seen in the circular 

cutaway in Figure 1-5. The P200 jet engine weigh around 2.8 kg and can output 23.5 kg of thrust. 

Along with 5 kg of additional scientific payload, the 2nd generation hopper was estimated to 

have a combine thrust to weight ratio of 3.12:1.  
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FIGURE 1-6: 2ND GENERATION HOPPER SIMULATOR 

In the end of the development phase, the second generation simulator was a success in that 

controlled flight was achieved via radio command with reasonable flight time. However, 

additional problems arise even though design flaws in the first generation hopper were mostly 

corrected.  

The composite materials used in the hexacopter were rather rigid and can easily be damaged. As 

the material starting to wear, repair became very difficult due to the lengthy manufacturing 

process and that the primary structure was essentially one single part. Even if one of the arms 

was damaged, then it will be necessary to manufacture an entirely new frame. In addition, due 

to the design's high center of mass, it was easy for the aircraft to tumble over or damage its 

landing struts during landing. Unfortunately, the jet engine was also never used in flight due to 

the difficulties in implementation and the hazards of carrying jet fuel onboard in a lab and 

outdoor campus test.  
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3RD GENERATION HOPPER SIMULATOR 

The third and current generation project team was led by Brian Wisniewski and myself. The 

undergraduate members include Chen Xi Liu, Joachim Amoah, and Trevor Hayes. The team's 

goal is to redesign the simulators with "modular" components in both hardware, electronics and 

software so that they can easily be repair, replace and reuse. The flight configuration had 

reverted back to the four thruster configuration due to Penn State's development changes, 

hence, the Quad+ (Figure 1-6) and QuadX flying platform were created. In addition, the team 

had begun development in the guidance and navigation system, hoping to achieve the hopping 

maneuver at the end of the research.  

While Brian Wisniewski focused on developing enhanced landing struts and investigating the 

fuzzy logic control system for the Quad+ platform, I focused on developing the avionics systems 

and implementing the commonly used PID controller on the QuadX platform. The modular 

software architecture allow similar avionics and flight operating systems be used on the two 

flying platforms, swapping only the Attitude Controller module and other customary settings. 

 

FIGURE 1-7: 3RD GENERATION HOPPER SIMULATORS (QUAD+) 
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Chapter 2: SPACE HOPPER SIMULATOR 

MULTIROTOR FLYING PLATFORM 

In order to physically test the guidance, navigation and control (GNC) system for the space 

hopper, an Earth based simulator is necessary. The simulator should be safe, low cost and have 

similar dynamics. Hence, the multirotor flying platforms are created.   

 

FIGURE 2-1: PENN STATE LUNAR LION HOPPER SPACECRAFT DESIGN 

The 3-thrusters configuration of the Penn State Lunar Lion Hopper Spacecraft is illustrated in 

Figure 2-1. In an overview, the spacecraft is consisted of a main rocket engine for a powered 

descends to the lunar surface. There are 3 sets reaction control thrusters along the body of the 

spacecraft to control attitude and the hopping maneuver from the landing site to another point 

of interest.  
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The hopper simulator flying platforms simulate the space hopper by taking the form of a 

multirotor aircraft. The thrusters are simulated by brushless motors and propellers for their 

similar pulsing operation control. The main rocket engine is simulated by a jet turbine. However, 

it is later determined that using a jet engine to test control design is not feasible for the 

difficulty in implementation and hazardous nature. 

 

FLIGHT CONFIGURATIONS 

The original design of the hopper spacecraft is consisted of 4 sets of thrusters. The design is later 

revised to a 3-set configuration but revert back to a 4-set design in the Fall of 2013. Several 

multirotor flight configurations are illustrated in Figure 2-2 to reflect the changes in design. 

Through the implementation of a Flight Mixer, it is possible to develop the GNC system 

independent of the changes flight configuration.  

 

 

FIGURE 2-2: HOPPER SIMULATOR FLIGHT CONFIGURATIONS 
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Using the coordinate frame illustrated on the bottom left corner of Figure 2-2, one can define 

the roll, pitch and yaw motion on the flying platforms. With the right hand rule denoting positive 

direction, the motion around the x axis is defined as roll. On the other hand, motion around the 

y axis is pitch and the motion around the z axis is yaw.  

The 2nd generation flying platform was an Y6 flight configuration. Even though the focus of the 

3rd generation simulators are Quad configurations, some work was done on the 2nd generation 

prototype simulator before the new flying platforms were designed and built.  

The Y6 flight configuration is consisted 3 sets of 2 counter rotating motors and props. From top 

view, the motors on top (M0, M2, M4) are rotating clockwise (CW) while the motors on the 

bottom (M1, M3, M5) are rotating counter-clockwise (CCW). Assuming that the motor blow into 

the page, it can be seen that M4 and M5 contribute to a positive roll motion while M2 and M3 

contribute to a negative roll motion. As for pitch, M2, M3, M4 and M5 all contribute to a 

positive pitch while only M0 and M1 contribute to a negative pitch. In general, CW motors 

contribute to a positive yaw motion while the CCW motors contribute to a negative yaw motion.  

The Quad+ is relatively simpler with only a pair of motors, M0 and M2, controlling roll. A 

separate pair, M1 and M3, are used to control pitch. Therefore, the roll and pitch motion are not 

coupled by the motors.  

The QuadX configuration is a bit more complicated since the roll and pitch motions are coupled 

like the Y6. Positive roll is achieved by increasing thrusts in M1 and M2 while decreasing thrust 

in M0 and M3. On the other hand, positive pitch is achieved by increasing thrusts in M0 and M1 

while decreasing thrust in M2 and M3. 
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In comparison, it is expected that the Y6 configuration will produce better dynamics response 

due to the additional thrusts and torque produce by the 2 extra actuators. However, the motor 

mount is more difficult to design due to the two counter-rotating motors at each arm. While the 

Quad configurations are less capable, they are simpler to design and manufacture. The Quad+ is 

probably the simplest flight configuration and easiest to control. However, QuadX is more 

suitable for situations like adding onboard photography. The front of the aircraft will have plenty 

of space to allow a wide view free of obstruction.   

 

FLIGHT DYNAMICS 

INERTIAL AND BODY FRAME 

The derivation of the equations of motion starts with the definition of coordinate frames. The 

inertial frame along with the resulting body frame after going through the yaw, pitch and roll 

rotation is illustrated in Figure 2-3. 

 

FIGURE 2-3: EULER YAW-PITCH-ROLL ROTATION 
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The inertial frame is a coordinate frame others referenced to. In an Earth-based aircraft, it most 

sense to fix the inertial frame relative to Earth's surface while aligning its unit vectors 

               toward North, East and the center of Earth respectively. The body frame is the 

coordinate frame that is fixed on the aircraft with               aligns with the aircraft's front, right 

and bottom.  

 In many cases, it is necessary to relate the body frame to the inertial frame. For example, 

calculating how gravity is acting on the aircraft. It is difficult to directly relate the body frame to 

the inertial frame in full 3D orientation. Fortunately, through the use of Euler's rotation 

theorem, the attitude can be broken down in 3 separate simple rotation matrices and later 

multiply together to obtain the full 3D rotation matrix.  

In aerospace, it is common practice to express attitude in order of yaw, pitch, then roll with 

respect to the inertial frame.  This is sometime referred to as the Euler ZYX or the Euler YPR 

rotation. The 3 simple rotations frame for Figure 2-3 are illustrated below along with rotation 

matrices. Note that since the rotation in Figure 2-3 are in the negative direction. Hence, the 

acute angle between the two frames is negative.  The angle used in the matrices should be the 

negative angle. The trigonometric identities,                 and                  , are 

used to simplify the matrices. 

Yaw Rotation Matrix ( )  

  

 

 

aCn             
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Pitch Rotation Matrix ( )  

  

 

 

 

Roll Rotation Matrix ( )  

  

 

 

 

 

Using the simple rotation matrices above the body frame   can be related to the inertial frame   

with the following equation to produce a 3D Euler rotation matrix: 

cCn = cCb * bCa * aCn 

After multiplying the simple matrices together the full 3D rotation matrix is obtained. Due to the 

number of terms involve in the matrix, the cos and sin operators are simplified to c and s. 

     

           
                          
                          

  

 

bCa             

                       

          

                    

 

cCb             
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The cCn rotation matrix can be used to transform a vector from inertia frame to the body frame.  

 

   
   
   

         

   

   

   

  

 

If it is desired to transform a vector from body frame to inertia frame, then the cCn matrix can be 

transposed obtain to the nCc matrix. 

        
 

 

   

   

   

       

   
   
   

    

 

FREE BODY DIAGRAM 

The free body diagram of the QuadX flying platform is illustrated in Figure 2-4. The primary 

forces exerted internally by the aircraft are the thrusts generated by the four motors. The 

differences in these thrust forces along with yaw axis torque generated by the propellers will 

eventually determine the 3 axis torques acting upon the aircraft's center of mass. Externally, 

gravitation force is acting on the aircraft. In order to simulate lunar environments, external 

forces such as atmospheric drag and wind are disregarded.  
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FIGURE 2-4: QUADX SPACE HOPPER SIMULATOR FREE BODY DIAGRAM 

EQUATIONS OF MOTION 

The translation and rotational dynamic equations of motion for the space hopper simulator is 

derived using the Newton-Euler method with respect to the body frame c. 

 
 
 
 
 
  

   
    

 
 
 
   

 
 
 
  

 
      

 
 
 

In the equation above, the force vector   is the net force acting on the flying platform, this is 

consisted of the thrust generated by the motors and the aircraft's weight. The torque vector   

are the roll, pitch and yaw torque resulted from the different thrust forces generated by each 

motor. The variable   is the aircraft's mass while the matrix   is an identity matrix. The inertia 

matrix     contain the 3 principal inertia with respect to the simulator's center of mass. The 

vector     contain the translation accelerations in the body frame while the vector   contain 

the rotational accelerations. Finally, the vector   is the rotation velocity of the aircraft. 
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ROTATIONAL DYNAMICS 

To simplify the derivation process, the Newton-Euler is divided into the translational and 

rotational portion. Translational Euler's equation is as follow: 

                  

With variables defined as: 

            
 

 

     

     
     

     

 

 

 

      
   

    
   

 
 

      
       

 
 
 

 
 

Rearranging the equation and substituting the variables into Euler's equation: 
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Solving the cross product: 

 

  
 

   
  

 

 

 

  

     
 

      

     
 

 

 

  

         

  
      

 

     
            

 

 

               
                 

   
                 

         

 

And finally plugging the cross product result back into the rearranged equation, the rotational 

dynamics equations are obtained in the body frame: 

 

  
    

   

   
 

       

   
  
   

  

     
   

   
 

       

   
  
   

   

  
   

   

   
 

       

   
  
   

  

 

The main drivers for the rotational acceleration in the equations above are torques in the roll, 

pitch and yaw direction. As discussed in earlier sections, different flight configurations will result 

in a different combination of motors and prop rotation scheme in order to achieve those torque. 

Since the focus of this thesis is the QuadX flight simulator, the torques for the QuadX flight 

configuration will be derived below. However, this portion can easily be modified, hence 

separating the development of GNC and the flight configuration.  



22 
 

Roll (+) Roll (-) 

                 
    

        
    

        
    

 

Pitch (+) Pitch (-) 

                 
    

        
    

        
    

 

Yaw (+) Yaw (-) 

        

    

        

    

        

    

        

    

 

TABLE 2-1: QUADX FLIGHT CONFIGURATION MOTOR FORCE AND TORQUE CONTRIBUTION TABLE  

 

Using the data in Table 2-1, the torque for the roll, pitch and yaw axis can be calculated. Let the 

variable    and    be the distance of the motors away from the center of mass in the     and     

direction respectively.  
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TRANSLATIONAL DYNAMICS  

Newton's equation for the translational dynamics is as follow: 

           

Let's take a look at the force acting on the quadcopter in the Free Body Diagram in Figure 2-4. 

The forces in the simplified model are the motor thrust in the      direction and the gravitation 

force in the     direction. Let    be the total thrust in the body frame: 

                   

    
 
 

   

 

 

  

 
 
  

 

 

 

Using the rotation matrix cCn , the total acting force in the body frame is: 

    
 
 

   

 

 

     

 
 
  

 

 

 

    
 
 

   

 

 

  

     

      

      
 

 

 

    

     
      

         

 

 

 

 

Let            be the displacements in the               direction respectively: 
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Then, solving the equation for the translational acceleration: 

         

          

          
  

 
 

CONVERT DYNAMICS EQUATIONS TO INERTIAL FRAME 

The equations of motion derived in the previous sections are all in the body frame. In order to 

for them to be useful, the equations must be expressed in the inertial frame. This can be 

achieved by multiplying the two vectors with the nCc rotation matrix. Since the inertia frame is 

aligned with the North, East and Down direction, the displacement in those directions are 

defined as       respectively. For the rotational dynamics, the flight angle should be expressed 

respective to the ground level, but roll don’t necessary have to be along the N axis and the pitch 

don’t necessary have to be along the E axis. Therefore, the yaw frame   should be used instead. 

 

  

  

  
 

 

      

  
 

   
  

 

 

 

 

 
  

  

  
 

 

      

   
   
   

 

 

 

Note that the angles inside the rotation matrix are in the inertia frame. To simplify 

implementation in simulation, the angles used in the rotation matrix can be replaced with the 

angle of that from the previous process loop.  
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Chapter 3: HARDWARE 

QUADX HOPPER SIMULATOR DESIGN OVERVIEW 

The QuadX flying platform was designed and built with spare time after work hours during the 

summer internship of 2014. With limited tools and resource as constraints, the QuadX frame 

design was consisted mostly of off-the-shelf injection molded joints, carbon fiber struts and two 

custom laser cut central hub plates.  The top plate of the hub was manufactured out of semi-

transparent acrylic so that the electronics in between the hub are visible. The bottom plate was 

manufactured out of plywood for strength. In the design, there was a hole that goes through the 

center of the aircraft. This would allow the QuadX be mounted on an indoor test rig. The overall 

dimension of the QuadX simulator was around 550 mm x 550 mm x 110 mm. A CAD model of 

the QuadX simulator was illustrated in Figure 3-1.  

 

FIGURE 3-1: QUADX HOPPER SPACECRAFT SIMULATOR CAD MODEL 
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The QuadX flying platform is designed with the cross flying configuration. Each motor contribute 

to the rolling, pitching and yawing movement of the quadcopter. To reduce complexity in GN&C 

design, the QuadX is designed to be symmetric along the     axis with sensors and power circuits 

mounted on the hub and the batteries mounted on the two side struts. The frame in the     axis, 

however, was not symmetric due to the lack of a mounting strut in the front. This was to allow 

the mounting of extra hardware such as a camera in later stages of project. Since the flight 

computer was mounted in the back strut, the overall center of mass is shifted back. To 

overcome this, the two batteries are shifted toward the front as oppose to the center line. 

The 100 mm landing struts were designed to be short to keep a low overall center of mass for 

the aircraft. They were mounted on a     joint with respect to each of the 4 arms and at a 

significant distance away from the center. This would allow the quadcopter to touch down on 

the correct orientation even if the landing attitude was not level. Dimensioned drawing of the 

quadcopter will be illustrated in Appendix A.     

 

TABLE 3-1: QUADX SIMULATOR BILL OF MATERIALS 
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The entire design for the QuadX was modular and consisted mostly of easily obtainable parts. 

Because of that, post-crash repairs were often fast and easy, swapping only the damaged 

components. With the exception of electronics and the propulsion system, the parts for the 

frame were relatively inexpensive. The QuadX's bill of materials is illustrated in Table 3-1.  

 

PROPULSION SYSTEMS 

The QuadX hardware was broken three primary subsystems: the frame, avionics, propulsion and 

power system. From Table 3-1, it could be seen that the actual structure of the aircraft is 

relatively light, weighing only 436.5 g. The avionics were the lightest, weighing only 85.9 g.  The 

propulsion and power system, however, was the heaviest, weighing 1117.2 g.  

LITHIUM POLYMER BATTERY 

Out of all the components in a multirotor aircraft, the battery is probably the heaviest 

component. The type of battery used in the modern aviation and space industry are lithium 

based. Whereas Lithium-Ion (Li-ion) batteries are commonly used in a professional settings, RC 

hobbies usually use Lithium Polymer (LiPo) batteries for the advantage of lighter weight and 

flexible dimension options for the same energy capacity. However a major disadvantage is that 

LiPo usually come in a soft pack and could be dangerous if mishandled. In any case, these 

batteries have higher energy density and discharge rate over aged technology such as Nickel-

Metal Hydride (NiHM). 

A LiPo battery is commonly consisted of multiple LiPo cells connected in series. A typical LiPo cell 

has a nominal voltage of 3.7V with full charge voltage at 4.2V and full discharge voltage of 3.0V. 

One must be careful with the cell voltage since a voltage higher or lower than those limits will 
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damage the battery, causing it to become unstable and could become a fire risk. A cell that 

drops below 3.0V will not be charged by ordinary LiPo charger and must be replaced or revived 

by brute force. 

Generally, LiPo batteries are rated by the cell count, capacity and discharge rate. Typically, low 

power devices like a cell phone use 1 cell battery while higher power devices like a quadcopter 

would take a 3 or 4 cell batteries. As mentioned earlier, the cells are wired in series. Hence, a 3-

cell LiPo would have a nominal voltage of 11.1V, since individual cells are 3.7V each. Consider 

that the battery is consisted of 3 cells wired in series, these batteries are often called 3S 

batteries. Similar, a 4S battery would have a nominal voltage of 14.8V. Wiring scheme for a 3S 

LiPo is illustrated in Figure 3-2. As seen in the wiring scheme, the left most plug is the main 

power line. This is to deliver power to the system. The plug in the middle is used for monitoring 

voltage in each individual cell. This plug would also go into a cell balancer during charging to 

ensure that all cells are charged evenly.  

 

FIGURE 3-2: WIRING SCHEME FOR A 3 CELL LITHIUM POLYMER BATTERY [1] 

The next property of a LiPo battery is the energy capacity. This is commonly expressed in 

milliamp-hours, mAh. In another word, a 2200 mAh battery could theoretically supply 2.2 A of 

current for an hour. This is also called discharging at a rate of 1C.  
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The discharge rate is another important property of LiPo battery. The variable C is related to the 

capacity of the battery. For example, a 2200 mAh battery would have a C = 2.20 A, while a 450 

mAh battery would have C = 0.45 A. A discharge rate of 1C as mentioned earlier would discharge 

the entire charge of the battery in an hour, for a 2200 mAh battery, that would be 2.20 A per 

hour. A discharge rate of 2C would allow the battery be discharged in 0.5 hour, at a current of 

4.40 A. Transmitter batteries are usually rated at a low discharge, such as 1.5C. On the other 

hand, the main battery for a quadcopter would commonly have a constant rating of around 25C 

and a burst of 35C to support a maximum constant current draw of 55A and a brief current draw 

of 77A.  

It is always better to use a battery with higher discharge rating, since discharging too fast in a 

lower quality battery could lead to the battery becoming unstable. At the same time, care 

should be taken in charging the battery. Commonly, it is recommended to charge the battery at 

the rate of 1C to ensure that each cell is charged evenly. However, as the technology mature, 

some batteries support higher charge rate with the use of a cell balancer.  

 

MOTOR AND PROPELLER 

The brushless DC motors are somewhat of a standard in the RC industry. These motors usually 

have several characteristics such as KV value, maximum rated current and power flow in 

additional to the normal dimensional factors. The KV is a motor’s rpm constant. It is defined as a 

motor’s rotational speed under no load condition per volt applied to it. For example, an 1100 KV 

motor operating at nominal voltage with a 3S LiPo will spin at a speed of       
   

 
       

         . In reality with the load of a propeller, depending on diameter and pitch, the motor 

will likely saturate before reaching that speed. The rated maximum current and power are easy 
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to understand. That the maximum amount of current or powers the motor can draw before 

damage occur. Holding the RPM constant, usually the larger the propeller diameter and pitch, 

the more trust will be produced. However, at the same time, more power is required to spin the 

propeller and hence higher current draw.  

 

FIGURE 3-3: NTM 28-36 750KV BRUSHLESS DC MOTOR 

In multirotor aircraft there are two main types of propellers, the standard tractor and pusher 

props. Essentially, they have the same flight characteristic except the fact that one spin 

clockwise to produce a downward force while the other spin counter-clockwise to produce a 

downward force. A set of counter-rotating propellers are illustrated in Figure 3-4. To make a 

brushless DC motor to spin the other direction, one can simply switch 2 of the 3 connections 

into the motor as shown in Figure 3-3. In general, an equal number of tractor and pusher props 

will be used in a multirotor. This configuration is beneficial since it will generally balance out the 

yawing torque created by the motion of the propellers.  

 

FIGURE 3-4: A SET OF COUNTER-ROTATING 12X4.5 APC PROPELLERS 
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Other than the direction, propellers are also defined by their diameter, pitch and material. The 

diameter of a propeller is the distance across a circle drawn by the propeller's tips. On the other 

hand, the pitch is the distance that the propeller would travel in 1 revolution if it was drive like a 

screw. In another word, this is how much the blades bend from the center. The material of the 

propeller defines certain properties, such as deflection and durability. Usually propellers made 

with soft material like thin plastic, they are usually more durable because of their ability to flex. 

However, this somewhat hurt the control performance of the aircraft, since more will be 

required to achieve a certain target thrust. On the other hand, a harder propeller like one made 

with carbon fiber are brittle, but very hard. This allows it to change thrust output much faster 

and improve the response time.  

There are multiple combinations for a motor and propeller to achieve a certain thrust. Assume 

that    is the propeller forward airspeed in m/s,   is the propeller diameter in inches,       is 

the propeller pitch in inches,     is the rotation speed in revolutions per minute and F is thrust 

in N. The equation to estimate thrust is as follow [2]: 

 
                  

    

      
                          

(3.1) 

Assuming that the motor is spinning at 6,500 rpm with a propeller diameter of 12 inch and a 

pitch of 6 inch, or 12x6 prop, the static thrust of the combination is 11.5 N or 1174 g. In vertical 

takeoff aircraft, it is often advantageous to express thrust in terms of mass so that it would be 

apparently how much mass the vehicle can lift. In order to achieve the same thrust with an 11x7 

and 10x7 prop, the rotational speed would have to be 7,277 rpm and 8,598 rpm respectively.  
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The power required to drive the motor and props with these parameters are described by the 

following equation using the experimental prop constant and power factor from Table 3-2 [3]: 

                                                   (3.2) 

 

Prop Size Prop Constant Power Factor 

10x7 0.223 3.20 

11x7 0.301 3.20 

12x6 0.322 3.20 

TABLE 3-2: APC ELECTRIC “E” SERIES PROPELLER CONSTANTS [4] 

Using the equation and constants from Table 3-2 for the APC Electric “E” Series propellers, the 

estimated power draw for the 12x6, 11x7, 10x7 propellers to produce 1174 g of thrust are 129 

W, 173 W and 218 W respectively. Hence, it is obvious that the power draw is inversely 

proportional to the propeller diameter.  

In summary, to produce the same amount of thrust, a larger diameter propeller requires lower 

RPM than a smaller propeller. At the same time, a larger propeller also requires less power. 

Typically, a lower KV motor is more efficient anyway. Therefore the most energy efficient 

combination should be a large propeller with a lower KV motor. However, a higher cell count 

LiPo is often required to drive a lower KV motor to a higher speed so that more thrust can be 

produced.    

There are cases when a small propeller high KV motor combination is desired. This is mostly for 

aerobatics maneuver. Smaller propellers can change thrust a lot quicker than larger propeller 

due to the momentum differences. Therefore for flights that require fast response time like 
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aerobatics, higher KV motor would be necessary. In addition, lower cell count battery could be 

used hence make the multirotor more maneuverable.  

 

ELECTRONIC SPEED CONTROLLER 

The electronic speed controller (ESC) is used to control the speed of a DC brushless motor. As 

shown in Figure 3-5, there are two power input lines that go into the ESC. The red is positive 

voltage and the black is the ground from the power source. It is important that the polarities are 

not switch, or else the ESC will be damaged. The other ends are three output power and signal 

lines that are connected to the three pins on the motor. The order of which these pin are 

connected is not important, for switching any two of them will simply result in the motor 

spinning the other direction. Some testing are required in order to get the tractor and pusher 

propeller to spin the correct direction with the motor.   

 

FIGURE 3-5: MULTISTAR 20 AMP 2-4S ESC 

 

The ESCs are rated by the type maximum amount of current and voltage input they can handle. 

Usually, this is the current in Amp and the LiPo cell count. The ESC in Figure 3-5 is a MultiStar 20 

Amp 2-4S ESC. This essentially say that the ESC can properly handle power input from a 2 to 4 
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cell LiPo battery at maximum current draw of 20 A. Usually when selecting ESC, a current rating 

higher than the motor current rating is desired. 

The ESC also includes a battery eliminator circuit (BEC) that is used to provide power to the 

flight computer and the RF receiver. The BEC output is usually around 5V and provides several 

amps of current depending on specific hardware specs. The BEC output is the red and brown 

line in the servo wire as shown in Figure 3-5. The yellow line is a signal line that takes pulse-

width modulation. In a later section, there will be discussion regarding the pulse-width 

modulation and how to control an ESC from a microcontroller perspective. Essentially, the ESC 

work by turning the electromagnet on and off depending on the location of the rotor. The pulse-

width modulation signal determines how long these electromagnet are on and hence increasing 

or decreasing the rotation speed.  

 

PROPULSION AND POWER HARDWARE SELECTION 

In selecting components for the propulsion system, the thrust to weight ratio must be 

considered. In order for a vertical takeoff vehicle to lift off from the ground, a thrust to weight 

ratio larger than 1 is required. However, extra thrust margin must be reserved so that the 

control system can balance the aircraft. Therefore, a ratio of around 1.50 is required at the 

minimum for controllable flight. For stable flight, then the ratio should be around 2 to 3. For 

aerobatic flight where the aircraft is required to make steep and fast maneuvers, than a ratio 

greater than 3 is required.  

The Space Hopper is a scientific research spacecraft, its primary purpose is to collect visual data. 

Therefore it is more important that the platform achieve stable flight rather than aerobatic 
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flight. Though consider that a hopping maneuver is required, the target thrust to weight ratio 

should be around 2.50.  

In the end, the propulsion hardware selected are four NTM 28-36 Prop Drive 28-36 750KV 265W 

motors matched with two pairs of 12x4.5 counter-rotating propellers. The motors are driven by 

four MultiStar 30A ESC along with two ZIPPY Compact 2200 mAh 4S 35C LiPo batteries. The two 

batteries are connected in parallel into a power distribution board that distributes the power 

into the four ESCs.   

 

FIGURE 3-6: NTM 28-36 750KV 265W MOTOR DYNAMOMETER TEST DATA [5] 

From the datasheet, the NTM 750KV motors are rated to draw up to 18A of current and has a 

maximum power of 265 W. Looking at the dynamometer test data provided by the 

manufacturer in Figure 3-6, the maximum output power with a 4S battery is around 165 W.   

Since not test data are available for the 12x4.5 propeller the values are interpolated from the 

APC sport series which yield prop constant of 0.545 and a power factor of 3.0. Plugging these 
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values into Equation 3.2 along with the maximum output power of 165W with a 4S power 

supply, the maximum rotational speed is calculated to be around 6,715 rpm. Using equation 3.1, 

the estimated thrust for each motor is around 1085 g, with a total thrust of 4340 g. This number 

is relatively close to the experimental result gathered during motor thrust system identification. 

When compare to the totally system’s mass of 1640 g, this set up would yield a thrust to weight 

ratio of 2.65.    

 

FIGURE 3-7: QUADX PROPULSION AND POWER PERFORMANCE CALCULATION RESULT 

The selected components were entered into the xcopterCalc, a multirotor propulsion calculator 

from eCalc as shown in Figure 3-7. The hovering throttle was estimated to be at 33%, hence 

yielding a thrust to weight ratio of 3. However, this is assumed that at maximum, the motor is 

drawing 261.8W of electrical power at 18.62A producing 197.2W of mechanical power, hence 

spinning the 12x4.5 prop at a speed of 8057 rpm. This in totally draw a maximum of 74.48A from 

the two batteries, hence divided into 37.24A for each battery. Since the capacity of each battery 

is 2200 mAh, a maximum of 16.93C is drawn from the battery. In reality, the motor output 

performance saturate before reaching 18A of current, therefore, it is not possible to produce 

197.2W of mechanical power as indicated. Hence, the thrust to weight ratio of 3 is not realistic. 

However, from the calculator, it was estimated that the aircraft have a flight time of 3.5 min and 
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a hovering time of 14.5 min. This brings the mixed flight time to 9.7 min. While not ideal, this is 

acceptable for GNC research and development.  

To ensure that avionics have enough power, a dedicated universal battery eliminator circuit 

(UBEC) is used to provide power to the flight computer. For that, a Turnigy 7.5A UBEC is used to 

output regulated 5V power. The flight computer's onboard voltage regulator in turn maintains 

power at 3.3V for all electronics including the RF receiver, XBee radio and various sensors.   
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Chapter 4: EMBEDDED SYSTEM OVERVIEW 

COMPUTER MATHEMATICS 

BINARY SYSTEM 

The binary system is the fundamental building block of digital electronics. The binary system is 

chosen because it is simple as each digit only has 2 states, "on" and "off". Computations can be 

done by manipulating the electronics "switches" in a circuit. In modern days, these switches are 

implemented as silicon transistors. As manufacturing technology advances, the size of 

transistors decrease and more transistors are able to be packed into a processor. This allows 

higher numbers of calculation to be done in a given amount of time. 

The binary system is also sometime refers to as the base 2 system. Each digit in a binary number 

is call a bit, and every 8 bits make up a byte. As mentioned earlier, each bit only have two states, 

"on" and "off", which represent "1" and "0".  

 

CONVERTING BINARY TO DECIMAL 

To further understand the binary system, let's consider a binary number with 4 bits. The right 

most bit of the number is the least significant bit (LSB) while the left most bit of the number is 

the most significant bit (MSB). From the LSB to MSB, the number is indexed as 0 to 3 

respectively. This index is important as it relate the numerical value of that bit back in decimal, 

or base 10, through the following equation:   
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Hence, the LSB represent a value of      in base 10. On the other hand, the 2nd bit represent 

a value of     . Therefore, the 4 bits in order from LSB to MSB represents a value of 1, 2, 4 

and 8 in base 10.  

 

FIGURE 4-1: 4-BIT BINARY NUMBER 

Let's assume that B0, B1, B2 and B3 represent the represent the state of each digital in the 

binary number from LSB to MSB as shown in Figure 4-1. The following equation is used to 

convert the 4-bit binary number to decimal:  

 

                                      

                     

 

A list example is provided in Table 4-1. As demonstrated, conversion from binary to decimal is 

not too difficult given that value for each bit is known. Essentially, add up all the bits that have a 

"1" in it. This method of conversion can also be extended to binary that's a byte or higher in 

length. To things into perspective, in an Arduino, the size of an integer value is 16 bits, or 2 

bytes. In an unsigned int, the memory allocated to the number can range from 0 to a maximum 

of            . In a signed int, the minimum is -32768 and the maximum is 32767. 

Methods to express negative number in binary will be discussed later.  
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Binary Decimal 

0011 0+0+2+1 = 3 

0101 0+4+0+1 = 5 

1010 8+0+2+0 = 10 

0101 0001 0+64+0+16+0+0+0+1 = 81 

1111 1111 128+64+32+16+8+4+2+1 = 255 

TABLE 4-1: EXAMPLES OF CONVERTING BINARY NUMBER TO DECIMAL FORM 

 

CONVERTING DECIMAL TO BINARY 

Converting a decimal number to its binary form is a bit more difficult. One can do the conversion 

by manually selecting bits as "1" or "0" to make up a decimal number. However, that is not very 

methodical and could be tedious for larger values. A better method is repeatedly a number and 

its Quotient by two and the remainders is the binary number. This is just illustrated with an 

example. Consider that it is desired to convert a number, "38", from decimal to binary.  

Division Quotient Remainder  

38/2 19 0 

19/2 9 1 

9/2 4 1 

4/2 2 0 

2/2 1 0 

1/2 0 1 

 

TABLE 4-2: DECIMAL TO BINARY CONVERSION USING DIVISION BY 2 METHOD 
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Procedures in converting "38" into binary form are provided in Table 4-2. As seen in the 

example, the original number is divided by two with its remainder written in a separate column. 

This process is repeated with the quotient until a quotient of 0 is reached. In the remainder 

column, the first remainder is the LSB while the last remainder is the MSB of the binary number. 

Hence, "38" in decimal is converted to "B100110" in binary. In order to allocate enough memory 

for this number, the integer must at least be 1 byte in size. Hence "38" in the computer will be 

"B 0010 0110". Note that when writing binary number a prefix of "B" is added to the number to 

denote that it is a binary number.  

 

BINARY ARITHMETIC 

Addition in binary is relatively similar to that of base 10 addition. Instead of carrying over to the 

next decimal place when a number is larger or equals to 10, in binary arithmetic, the carry over 

take place when a value larger than 1 is reached. For example, consider computing the sum of 9 

and 3: 

     1001 
+   0011  

------------------ 
      1100 

 

The result is "12", that's relatively easy. Now let's take a look at another example, calculating the 

sum of 9 and 9 and storing that into a 4-bit integer variable like before. 

        1001 
+      1001  

------------------ 
      10010 

------------------ 
         0010 
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And in the end, the result stored in the 4-bit int variable will be "2". Formally, the result is an 

overflow. Obviously 9 + 9 = 18 and not 2. However, since the memory allocated to a 4-bit int 

variable is only 4 bits, any bits exceed 4th bits will be rejected. Hence, the end result is "2". 

Overflow errors can be catastrophic if precautions were not taken.  On June 4, 1996, the Ariane 

5 rocket from the European Space Agency lifted off for its maiden flight from Kourou, French 

Guiana. The launch vehicle exploded 40 seconds into flight due to failures in the Guidance, 

Navigation and Control system. The root cause of the failure was a software integer overflow 

error in the Inertial Reference System. The overflow happened when the computer was trying to 

optimize memory allocation and assign the 64-bit floating point horizontal velocity value to a 16-

bit signed integer variable. This caused the system to shut down and switch to the backup 

system. Unfortunately, the identical redundant backup system also suffered from the same 

problem [6]. 

 

TWO'S COMPLEMENT: DECIMAL TO BINARY 

Most digital system uses two's complement to represent a signed integer in binary. In another 

word, this system is used to represent a negative number For example, let's consider expressing 

the number "-21" in 8-bit 2's complement. First, express "21" in binary: 

          

Then, all the digits are inverted, or toggle: 
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Finally, add one to the number and "-21" in binary is: 

          

Note that the MSB of the binary number designate whether a number is positive or negative. If 

it is "1" then it is negative, on the other hand, if it is "0", then it is positive.  

 

TWO'S COMPLEMENT: BINARY TO DECIMAL 

Let's take a look at another example to convert a binary number in 8-bit 2's complement back to 

decimal. Let's consider the binary number: 

          

The MSB is "1", therefore, this number is negative. First, toggle all number: 

          

Then add one to the number: 

          

Hence, converting this number back to decimal, the number is "-76". 

 

BINARY ARITHMETIC WITH SIGNED NUMBER 

Subtraction in binary is simplified to adding a number of the opposite sign. Using 2's 

complement, the difference of subtracting 21 from 10 is equivalent to the sum of -21 and 10: 

     0000 1010 
+   1110 1011  

------------------------ 
      1111 0101 
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     0000 1010 
+   0000 0001 

------------------------ 
(-)     0000 1011 

 

The result after the addition is "B1111 0101". Since the highest bit is a "1", then the number is 

negative. After going through the process of toggling all bits and adding a value of "1", the result 

is "-11" in decimal form.  

Overflow errors can happen in adding signed number too. The detection method is relatively 

easy. When the sum of two positive numbers is a negative number, then an overflow occurs. 

Similarly, when the sum of two negative numbers is a positive number, an overflow also occurs. 

When adding a positive and negative number, an overflow cannot occur.  Another way to look 

at this is that if the highest bits of two numbers are the same, then the sum of the two numbers 

must have the same value in the highest bit or else an overflow happened.   

 

BITWISE OPERATION 

Since binary number are consisted of 1s and 0s, logical operators call easily be applied and are 

useful at times. Some common bitwise operators are NOT, AND, OR and XOR.  

The bitwise NOT operator is also sometime also called the complement operator. It performs 

logical negation on each bit like the toggle action in 2's complement. The bitwise operator is 

usually represented by a "~" in programming languages like C++.  Note that this differ than the 

logical not "!" operator.  

NOT 1001 = 0110 
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The bitwise AND operator is represented by "&" and it perform a logical AND check among 2 

binary strings. The result of two bits is true if both bits are true. The AND operator is especially 

useful when trying to apply a bit mask to a binary string. For example, getting the lower 4 bits of 

a byte:  

            0000 1111     
AND    1001 0101  
------------------------ 
             0000 0101 

 

The bitwise OR operator is represented by "|" and it perform a logical OR check amount 2 binary 

strings. The result of two bits is true if one or both of them are true. For example: 

            0000 1111     
OR       1001 0101  

----------------------------- 
             1001 1111 

 

 

The bitwise XOR operator stand for logical exclusive OR and is represented by "^". The result of 

two bits is true if and only if one of them is true. For example: 

              1001 1111     
XOR       1001 0101  

------------------------------ 
              0000 1010 
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LOGICAL BIT SHIFT 

Recall that the maximum value for a byte of unsigned int is 255. Consider that in serial 

communication, which will be discussed in later section, data are communicated in form of 

encoded bytes. If it is desired to transfer a number greater than 255 from a device to another, 

than the only way to do this efficiently is to split the number into multiple bytes. For example, it 

is desired to transmit a 16-bit unsigned integer of value "18015": 

                    

The first step is to designate a high byte that is consisted of only the highest byte value of the 

integer. This can be accomplished by using the bit shift operator. By shifting the value 8 places 

to the right, value of the highest byte is now located in the lower byte with 0s replacing the high 

bytes. By assigning this number to an unsigned int, the high byte is calculated.  

                                                           

After calculating the high byte, it is time to calculate the low byte. This can easily be 

accomplished by applying a mask to keep only the lowest byte using the AND operator.  

                                                                         

The high and low bytes can then be transmitted through the serial link. Then, in order to 

calculate the value from the high and low bytes, the reverse process can be applied: 
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It is again important to remember to allocate enough memory after reassembling the value or 

else an overflow error could occur.  

HEXADECIMAL REPRESENTATION 

Since binary is often lengthy and cumbersome to refer to, it is common practice to refer to 

computer hardware or memory addresses with hexadecimal. A number in hex is denoted with 

the "0x" prefix. In hexadecimal, the number system is base 16. In another word, a single digital 

can have a value from 0 to F. In relation with decimal, A, B, C, D, E, F represent 10, 11, 12, 13, 14, 

15 respectively.   

Conversion from binary to hex is relatively easy. From decimal to hex is a bit more involve for it 

take the extra step of converting from decimal to binary. For example, convert number 45660 

from binary to hex. First, the number should be expressed in binary and separated in groups of 4 

bits.  

                    

                                               

The groups of 4-bits are then translate directly into hex or through a middle step of translating 

back to decimal then to hex if unfamiliar with binary math.  Either way, the end result is the 

same, 0xB25C. The process can be reversed to obtain the binary string or decimal value.               

OCTAL REPRESENTATION 

Another popular representation is octal, which is a base 8 numeric system. Octal is widely used 

in older computer system. In modern days, it is sometime used as shorthand in UNIX operating 

system representing file permission. Binary to octal conversion can be done by grouping bits in 
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groups of 3. Each digital has a range from 0 to 8. Since this is very similar to hexadecimal, 

relatively simple and less commonly used, an example will be omitted. 

 

ASCII TABLE 

The American Standard Code for Information Exchange (ASCII) is a widely used scheme to 

encode characters into binary integers. This allow text and symbols be represented in computer. 

The original ASCII standard take only 7 bits with 128 defined characters, 95 of which are 

printable and 33 are non-printable control characters. As technology progress, the 8th bit is 

used for the Extended ASCII Code for additional symbols. The original 7-bit table is illustrated in 

Figure 4-2.  

 

FIGURE 4-2: 7-BIT ASCII TABLE 

In serial communication, whenever something is sent from the terminal or user input console, it 

is important to remember that the inputs are characters instead of actual numerical value. For 

example, "123" is a char array string consisted of '1', '2' and '3'. To properly represent the value 
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123, the character '{' should be used as represented in Figure 4-2. If the extra conversion step is 

not taken, this can easily result in an accident. For example, a command of '0' is sent to level the 

quadcopter's roll and pitch. This will result in commanding the quadcopter to tilt to an angle of 

48 degrees, which is quite steep.   

This confusion is usually not a problem is the user is out of the communication loop and only 

simple data type like an 8-bit int is transferred. The programmer can easily cast the arriving char 

as an int to retrieve the numeric value. If the data is bigger than a byte, than bit shifting 

operating will need to be done in addition to type casting. For floating point value, the 

programmer can scale the value by a predefined constant.  

The easiest way to transmit data in a way readable to human, however, is also the most 

inefficient. The method is to convert everything to a string. And the device from the other end 

can run some process to convert the string back to a numeric value. For example, the value 123 

can be transmitted as "123". However, as opposed just transmitting a byte for an 8-bit value, 3 

bytes will needed to be transmitted for there are now 3 chars. Extra process will also needed to 

be run in order to retrieve the numerical value of each char and add them back to the correct 

decimal place. While this is very inefficient, it makes transmitting floating point data easier. Also, 

the stream is a lot easier to debug since it is readable and not in binary chars. 
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ELECTRONIC INTERFACES  

There are many input and output interfaces within electronic devices. The input and output 

ports are used for the transfer of signal and data between devices. In order to successfully 

design and implement a control system for the hopper spacecraft simulator, one must first learn 

about how various devices in a system talk to each other. Before beginning, it is important to 

remember that for devices to communicate with each other, they must establish a "common 

ground". In another word, the ground pin of each device must be connected.  

DIGITAL SIGNAL 

Modern computers operate on the binary system where 1 represents ON and 0 represents OFF. 

Similarly, digital signal also only have 2 states: HIGH and LOW. In a 5V logic level device like the 

Arduino UNO, a digital HIGH signal is 5V and a digital LOW signal is 0V. On the other hand, 3.3V 

logic devices such as the Arduino DUE and the BeagleBone Black, digital HIGH are defined as 

3.3V and a digital LOW is defined as 0V.  Connecting a 5V and 3.3V logic device together without 

using a logic shift can cause damage to the electronics. In either case, digital signal can be used 

in many applications. For example, a microcontroller can output a HIGH or LOW signal to turn an 

LED on and off. Similarly, a microcontroller can also read digital signal from sensors like a switch 

to detect whether a button is pushed or not.  
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FIGURE 4-3: HC-SR04 ULTRASONIC SENSOR INPUT / OUTPUT SIGNAL 

Figure 4-3 depicts a possible signal interchange between a 5V microcontroller and the HC-SR04 

ultrasonic range sensor. The microcontroller first send out a 10 microseconds signal pulse to the 

sensor. The sensor then sends out an ultrasound pulse to the environment. When the sensor 

senses the returning signal, it outputs a digital HIGH signal pulse back to the microcontroller. In 

this example, the time between the input and output signal pulse is roughly 60 microseconds. 

Take into consideration that the ultrasound wave travels out and back, the time taken for the 

ultrasound wave to reach the closest object is actually 30 microseconds. Multiplying the 

traveling time with the speed of sound yield a distance of roughly 1 cm. In reality, the sensor will 

most likely not function in such close distance. However, this example demonstrates how digital 

signal could be used to exchange information between devices.  
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ANALOG SIGNAL 

Naturally, the world is not so clear cut where something is either on or off, true or false. There 

are many possibilities. For example, a light bulb can have different lighting intensity and an 

electric motor can have various speeds. Analog devices such as a force gauge usually represent 

data in the form of continuous voltage signals. As oppose to digital signal where the voltage 

level can only be HIGH or LOW, analog voltage signal can have a range from 0V to as high as 

input power source voltage. Since most computers are digital devices, analog-to-digital 

converters (ADC) are often used to convert the analog into a form understandable by the 

computers. Some devices such as Arduino return a value from 0 to 1023 to represent the analog 

signal from 0V to the maximum voltage. Other devices return the numerical voltage level. 

Experimental calibration data for the Wind Tunnel Thrust Stand is depicted in Figure 4-4. The 

graph shows analog voltage signals returned by the load cell with respect to various loading 

weight.  

 

FIGURE 4-4: PIEZOELECTRIC LOAD CELL EXPERIMENTAL CALIBRATION DATA 
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PULSE-WIDTH MODULATION (PWM) 

As discussed in the previous section, analog signal best represent real world properties. 

However, without a digital-to-analog converter (DAC), true analog signal with varying voltage 

level cannot be generated by a microcontroller. Most hobby grade electronics such as the 

Arduino UNO and the BeagleBone Black lack such a device. An alternative method, pulse-width 

modulation (PWM), could be used to emulate analog data in a digital signal through repeating 

square waves. PWM is generally used to control power delivery in devices like light-emitting 

diodes (LED), relays, transistors and electric motors. However, since the output is not a real 

analog signal, it doesn't work well in applications like audio.  

 

FIGURE 4-5: PWM SIGNAL FOR VARIOUS DUTY CYCLE [7] 
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The amount of power deliver to various electronic devices is control by PWM signal through 

duty cycle. The duty cycle is defined as the percentage of a period that the signal is active. In 

another word, the amount that a digital signal is in the ON state in a set period. The duty cycle 

of a signal can be calculated using the equation: 

           
           

      
      

 

A plot of signal at various duty cycles is illustrated in Figure 4-5. The green vertical bar 

represents intervals in which the square wave repeats itself. When a duty cycle of 0% is 

generated, the signal remains at 0V during the entire period. Similar at 100% duty cycle, the 

signal remain at 5V the entire period. Overall, this is the same is an ordinary digital LOW and 

HIGH output. However, let's say that a signal of 25% duty is generated, the signal is active at 5V 

for 25% of the interval and then jump back to 0V for the remainder of the interval. It is 

important to point out that the active voltage of a PWM signal is determined by the logic 

voltage level of the device being used. 

For example, an Arduino UNO is used to control the brightness of an LED through its digital pin. 

While ideally, true analog signal should be used to control the amount of current flow through 

the LED, given the device's limitation, PWM will be used. When a 75% duty cycle PWM signal is 

sent, the LED is on for 75% of the time in a given interval. If the frequency of the interval is slow, 

then as expected, the LED will appear to be blink. However, if the frequency is set faster than 

the human eye's refresh rate, then the LED will appear to be at 75% brightness.   
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COMMUNICATION PROTOCOL: UART  

The Universal Asynchronous Receiver/Transmitter (UART) is one of the most popular electronic 

interfaces that are used in digital serial communication between more sophisticated devices. 

One of the benefits of serial communication interfaces like UART is that it allows the 

transmission of data in a simple and direct manner.  

For example, let's say that a Microcontroller A want to relay a value of "168” to Microcontroller 

B. Using methods discussed so far, Microcontroller A will have to convert that value into an 

analog or PWM signal, Microcontroller B will then read and interpret that signal. Through serial 

interface, Microcontroller A will send the value in its binary form, "B10101000", directly to 

Microcontroller B one byte at a time expressed in bits. This uses transistor-transistor level (TTL) 

logic, meaning that 0 is logic LOW and 1 is logic HIGH, as mentioned before in the digital signal 

section. When the UART hardware in Microcontroller B receives the data in bits, it will assemble 

them into bytes and are accessible to the software for processing.  

 

FIGURE 4-6: TTL SERIAL COMMUNICATION SIGNAL 

 

Depending on the specific serial interface properties being used, the transmission would be 

encoded in binary digital signal similar to one as shown in Figure 4-6. The vertical bars in the 

figure represent divisions of bits in the signal frame. In each transmission signal block, the first 

bit represents the start bit, a logic LOW. The following 8 bits contain data up to 1 byte in size. 

This could be an ASCII character or a numerical value as discussed earlier. The data bits are 

organized with the least significant bit (LSB) first and most significant bit (MSB) last. For the 
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value "168" or "B10101000" in binary, the LSB is the right most bit. This is because the right 

most bit represent a value of 2^0 or 1 if it is active. On the other hand, the left most bit, or MSB, 

represent a value of 2^7 or 128 if it is active. Again, this will be explained in depth in the binary 

mathematics section. Because the signal block is set up LSB first, the data bits will appear to be 

arranged in reverse like "00010101". After the data bits come the end bit, which is a logic HIGH. 

Note that when the signal is at idle, the logic level is set at HIGH.    

The UART interface defines a standard that allow compatible devices to connect and 

communication with each other. In the simplest set up, the UART interface requires the 

connection of the transmitter (TX) pin of one device to the receiver (RX) pin of another as shown 

in Figure 4-7.  This will allow data to be transmitted from the first device to the second. If the 

same is applied from the second device to the first, 2 way communication link is established. As 

with all previous interfaces, the devices must have a common ground (GND) connection in order 

for signal to transfer. And optionally, a final connect is made with the voltage pin to supply 

power from a master and slave device.  

 

 

FIGURE 4-7: UART INTERFACE 
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There are several properties that define a UART connection. In order for two devices to 

communicate, their properties must match. One of the most important factor is the speed, or 

baud rate, of the connection. Since UART serial ports are asynchronous protocol, timing of when 

data are transmitted and received are essential. In telecommunication, baud is a unit for 

symbols or pulses transmitted per second. A symbol can represent one or more bits of data. 

Common standard baud rates used in consumer grade electronics are 9600, 19200, 38400, 

57600, and 115200 bauds per second.  With a slower baud rate, less data can be transmitted in 

a given amount of time and might introduce unwanted delays in a control loop. On the other 

hand, devices communicate at a high baud rate might suffer from data corruption problems. 

Therefore, other quality assurance method, like checksum, must be used to ensure that data 

received are accurate.  

Some other properties of a UART connection are parity and stop bits. It is important to note that 

UART compatible devices can easily communication with a computer through an FTDI RS232 to 

Serial Port adapter. In this case, the connected device will show up on the computer as an 

opened Serial Port, allowing communication in a serial console like PuTTY.  

 

COMMUNICATION PROTOCOL: I2C 

While the UART is wide spread simple to implement to electronic systems, it is not ideal. Some 

of their disadvantages are slow data transfer rate, devices must agree on predefined properties 

and the inability to have a communication bus with multiple devices. One could argue that a 

work around could be implementing a multiplexer or using a microcontroller unit with multiple 

UART chips. However, there are more efficient communication protocols for this application. 

This section will introduce the Inter-Integrated Circuit (I2C) serial communication protocol.  
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The I2C serial communication protocol designed by Phillips in 1982. Unlike UART, I2C is a 

synchronous protocol where data are sent in sync with a clock signal. Without the overhead 

processing to keep track of timing, faster transfer rates are possible with less corrupted data. In 

addition, multiple devices can be attached to a communication bus. This feature reduces the 

number of hardware needed in a system and make wiring easier. While most modern 

controllers have dedicated hardware I2C support, the protocol can be implement in software 

through bit-banging in the digital signal pins.  

 

FIGURE 4-8: I2C COMMUNICATION BUS [8] 

There are two wire that connects I2C devices, the signal data line (SDA) and the signal clock line 

(SCL). In addition, a common ground. Since I2C utilize an open-drain design in the signal line to 

pull the signal to the logic LOW state when needed, a pull-up resistor is require on each signal 

line to maintain the line at a logic HIGH state at idle.   Figure 4-8 illustrated an I2C 

communication bus with a single master controller and several slave devices.  

In an I2C bus, a master device generates the clock signal and initiates communication with slave 

devices through the data line. A slave device's role is to respond to a master's command when 

spoken to. Each slave device has a 7-bit address. With this address, the slave can determine 

whether the master is communicating with it or another device. In theory, the 7-bit address can 

support 128 devices. However, in reality only 8 devices of the same type can be attached. This is 
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because most manufacture uses the first 4 MSB to characterize device type, leaving only the last 

3 LSB for custom addresses. For example, the LM75A digital temperature sensor has a 7-bit 

address formatted as "B1001XXX" in binary, where the last 3 bits are programmable by pull a 

respective 3 pins on the device to logic HIGH or logic LOW. Hence, there are 8 possible address 

ranging from "0x48" to "0x4F" in hexadecimal, or in binary, "B1001000" to "B1001111". To 

overcome this address limitation, an I2C multiplexer could be implemented. 

 

FIGURE 4-9: I2C COMMUNICATION MESSAGES [9] 

Figure 4-9 illustrates a standard 7-bit addressed I2C communication message. The message is 

consisted of a 7-bit address frame along with an 8-bit data frame. As mentioned earlier, the I2C 

signal lines idle at logic HIGH. In the start of a communication, the master will pull the SDA line 

to logic LOW to notify all device that a transmission is about to begin. The master then 

generates a clock signal on the SCL line while outputting the 7-bit address MSB first through TTL 

logic levels in alignment with the clock pulse. This way the slave device can observe the logic 

level on the SDA line whenever a HIGH is read on the SCL line. After the 7-bit address, a 

read/write bit is sent with logic HIGH as read from slave and logic LOW and writes to slave. 

Following the R/W bit, an ACK acknowledgment bit is sent by the receiving device by pulling the 

SDA signal to LOW on the 9th clock pulse. If SDA is not pulled LOW, then this indicate an error in 

either the address or the slave device.  
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The address frame is followed by the data frame. Depending on whether the slave device is 

writing to master or the master is writing to slave, the transmitting device will start the frame by 

pulling SDA low like before. Master will then generate a clock pulse and a one byte data packet 

will be sent by the transmitting device as 8 bits. And finally the data frame end with an ACK bit 

sent by the device receiving data. The data frame repeats until all data are sent. Then a stop 

condition is generated by the master by shifting the SDA line from LOW to HIGH in the middle of 

a clock pulse HIGH in the SCL line.  

Traditionally, the I2C protocol only support 7-bit addresses and low speed communication with 

peripherals in comparison to SPI.  However, recent revisions allow the device to support 10-bit 

addresses and increase clock frequency from 100 kHz to 5 MHz, this allows much faster data 

rate.  

 

COMMUNICATION INTERFACE: SPI 

The Serial Peripheral Interface (SPI) is another synchronous serial communication interface 

developed by Motorola in 1985. In comparison to I2C, SPI support faster data transfer rate, 

therefore, it is often implemented in systems with sensor and memory storage devices like the 

Secure Digital (SD) card.  
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FIGURE 4-10: SPI BUS WITH 1 MASTER AND 3 SLAVE DEVICES [10] 

SPI is a 4-wire serial bus in comparison to I2C and UART's 2-wire connection.  Figure 4-10 

illustrates a SPI bus that connects 1 Master and 3 slave devices. Like most synchronous 

communication protocol, a clock line (SCL) is required in SPI in order for the devices to be in sync 

while communicating. Unlike I2C where the SDA line is bidirectional between Master and Slave, 

SPI's data lines are unidirectional. The two data signal lines are Master Out Slave In (MOSI) and 

Master In Slave Out (MISO). The two lines are relatively self-explanatory. MOSI line is dedicated 

to data signal from Master to Slave. On the other hand, MISO is dedicated to data signal from 

Slave to Master. Finally, since SPI lack an addressing system like I2C, a Slave Select (SS) line is 

required so that the Slave device know that the Master device is talking to it. This could be seen 

as an advantage and disadvantage. The advantage is that SPI would not suffer the device 

number limitation from the 7-bit addresses that I2C have. However, for each slave device attach 

to the bus, the Master must provide a SS digital pin. Therefore, the device number is now 

limited by the number of pin the Master device have. In addition, wiring could get messy. This 
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problem could be overcome in some situations by connecting the device in a daisy chain 

configuration. However, this could make implementation more difficult. 

 

FIGURE 4-11: SPI COMMUNICATION MESSAGES [11] 

The TLL signal in an SPI communication message is illustrated in Figure 4-11. Like I2C, the signal 

lines idle at logic HIGH. To start the communication procedure, the Master first pull the SS line 

to LOW and then generate a clock pulse. At the same time, it transmits data to the Slave device 

through TTL signal in the MOSI line. In Figure 4-11, an ASCII 'S' is transmitted in LSB first. Note 

that an SPI protocol can be set to MSB first or LSB first. The properties must match on both 

Master and Slave in order for a valid message to be transmitted. After the Master finish 

transmitting various bytes of data, it stop generate the clock pulse. If the Slave device is 

supposed to transmit something back, the Master will then generate another clock pulse after 

the pause. The Slave device will then transmit data to Master through the MISO line. After 

completion of the entire communication, Master will set the SS line to HIGH again.  
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BASIC DIGITAL SIGNAL PROCESSING (DIGITAL FILTER)  

It is inevitable that the values provided by the sensors are inaccurate. The error in a reading is 

consisted of a systematic component and a random component. The systematic error is also 

known as the bias. This an error inherited in the system, an example of systematic error is the 

drift in a gyroscope. The random error is the random fluctuation in the readings. The errors are 

commonly referred to as noise.  

While systematic error can usually be reduced by properly calibrating the sensor, the random 

error is usually the problem. Traditionally, RC circuit filters are used to process analog signals. 

However, electronics nowadays are usually digital. Hence the digital filters are needed. This 

section will discuss the moving average filter and the Kalman filter that is commonly used in 

digital signal processing. 

MOVING AVERAGE FILTER 

The moving average filter is one of the simplest and most commonly used signal smoothing 

filters. The basic concept of the filter is to smooth senor readings by computing the average 

using several previous readings. The mathematical equation is as follow: 

          
                       

 
 

The variable   represents the number of terms being used in the filter while    denote the 

sensor reading at current time. Furthermore,      represent the previous reading and      

represent the reading before     .  Generally, the more terms used in a filter, the smoother the 

data become. However, that's a delay problem that will be discussed shortly. The best way to 

implement the moving average filter is by storing the sensor readings in an array. 
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At the beginning of each cycle, the array must be updated so that the new reading is placed at 

the top position while pushing all other elements down one memory slot. The last element of 

the array gets remove from the list.  

For example, a 3 terms moving average filter is implemented below: 

Update Phase 

           

        

                      

 

Calculation Phase 

          
            

 
 

The moving average filter use only past data points, as future data points are unknown. Hence, 

there will always be a delay of  
   

 
  samples.  So in the example, the signal is only 1 sample 

behind. If the sensor is taking data at 5 Hz, then the delay is 0.2 sec. However, let us assume that 

the signal is very noisy and that a filter of 10 terms is necessary. That's a delay of 4.5 samples, or 

0.9 sec.  

The delay caused by the averaging process can be manually adjusted by shifting the time scale. 

This is very useful when the filter is used in data post processing, such as interpreting signals 

from a noisy thrust stand. However, this is not an option for real time application like IMU 

filtering since time shifting is not possible.   
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KALMAN FILTER 

The Kalman filter is a powerful estimator that was first implemented to estimate spacecraft 

trajectory for the Apollo missions.  The Kalman filter compares model based prediction with 

measurements read by sensors overtime and provide a more accurate estimation. Since the 

Kalman filter is a model based estimator, it is able to estimate the state variables even when 

sensor measurements are missing. This was particularly useful during the Apollo age while the 

spacecraft is at the far side of the moon. There are many great literatures on the Internet 

regarding the theory of the Kalman Filter. Therefore, this subsection will only focus on basic 

implementation.  

State Space Model 

                

          

The Kalman filter predicts state variables using physics based state space model. For simple GPS 

location tracking, this could be basic kinematics equation. And for more advanced motion 

estimation, this would involve the equations of motion to fuse data gathered from multiple 

sensors. Since the Kalman filter use a state space physics model, the system must be linear.  

In the equations above,   represent the state vectors, containing variables such as acceleration, 

velocity and displacements. The subscript   denote the current state while     denote 

previous state. The variable    is the current system input, such as acceleration for motion 

tracking. The process noise is denoted by   . On the other hand,     is the current observation 

while    is the noise in measurement. The matrix   is called the state transition matrix, the 

current predicted state vector is resulted when it is multiple by the previous state vector. The 
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matrix   is the input matrix, it is used to map the input commands to the proper state variables. 

Finally, the matrix C is the observation matrix for selecting the state variables to be observed.  

Predict Phase 

               

         
     

In the prediction phase, the state transition matrix is used along with the input command to 

predict the current state. The noise of the system is predicted as well with      being the 

previous error covariance matrix and    being the current error covariance matrix. The matrix Q 

is the process noise covariance matrix that's estimating the processing noise   . Note that the 

state vector    is the estimated state.  

Update Phase 

                   

                    

             

In the update phase the Kalman gain,    is updated with the error covariance matrix, 

observation matrix and the measurement noise covariance matrix   that's estimating the 

measurement noise   . The sensor measurements are then compared with the predicted state 

variables. The differences are multiple by the Kalman gain and added to the predicted states to 

get an estimated state. Finally, error covariance matrix is updated. The estimated state combine 

information from motion the physics model and sensor measurements, therefore, it tends to be 

more accurate. Examples will be given in later section with application in IMU attitude 

estimation and GPS position tracking.  
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Chapter 5: AVIONICS 

FLIGHT SYSTEM ARCHITECTURE 

The overall space hopper simulator flight system is broken into 5 subsystems. They are the 

power, propulsion, wireless communication, data acquisition and flight logging systems. The 

flight operating system (FlightOS) is in charge of controlling all the subsystems in order for the 

aircraft to fly. The flight system architecture is illustrated in Figure 5-1, showing the components 

in each subsystem and their respective communication interfaces.    

 

 

FIGURE 5-1: QUADX FLIGHT SYSTEM ARCHITECTURE 
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FLIGHT COMPUTER 

The flight computer is the brain of the space hopper simulator. Its duty is to run the FlightOS and 

interact with all the subsystems. While traditional winged RC aircrafts are able to fly without a 

dedicated flight computer, it is almost impossible to manually control rotorcrafts due to that 

unstable nature. The flight computer is essential because the flight performance is depended on 

the speed of the system. The research went through three major hardware and software 

revisions in search for an ideal development and deployment platform.   

In the Fall of 2013, it was decided that the guidance and navigation system could take a lot of 

processing power to run path-finding and optimization algorithm. In order to speed up software 

development, the flight system would be developed in MATLAB while running Ubuntu Linux. 

Therefore, the Intel D33217GKE "Golden Lake" Ivy Bridge i3 NUC was chosen as the flight 

computer. At a retail price of around $550, the computer was powered by an Intel Core i3-

3217U central processing unit (CPU) that is clocked at 1.8 GHz.  The motherboard was fitted 

with a 64 GB solid state drive (SSD) and 4 GB of DDR3 random access memory (RAM) to optimize 

computation performance. An image of the computer is illustrated in Figure 5-2. 

 

FIGURE 5-2: INTEL D33217GKE "GOLDEN LAKE" NUC 
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Due to the limited electronic interfaces on the Intel NUC, all avionics were interfaced by 

universal serial bus (USB). Therefore the FTDI FT232RL USB to Serial breakout boards were 

required for all devices that utilize a UART connection, including the IMU and the wireless 

communication radio. In addition, the Pololu Micro Maestro 6-Channel USB Servo Controller 

was used to output PWM signals to control the motor. In order to interface with other 

electronics and detect LiPo voltage level, a real time flight data acquisition board was designed. 

The breadboard prototype is illustrated in Figure 5-3. 

 

FIGURE 5-3: ARDUDAQ REAL-TIME FLIGHT DATA ACQUISITION SYSTEM PROTOTYPE 

To extend the interface capability of the Intel NUC, an Arduino Micro was used to run the 

ArduDAQ, flight data acquisition system. An electronic schematic of the interface board can be 

found in Figure 5-4 and the printed circuit board (PCB) layout along with the actual printed 

board with electronics attached can be found in Figure 5-5.   
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FIGURE 5-4: ARDUDAQ SCHEMATIC 

 

  

FIGURE 5-5: ARDUDAQ PCB LAYOUT AND PRINTED BOARD WITH SENSORS 
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Much progress was made in developing the flight system in MATLAB. By the beginning of Spring 

2014, after replacing the avionic system of the 2nd generation prototype simulator, the team 

was able to conduct rig test on the hexacopter with the flight controlling the simulator but not 

physically mounted on it. Overall, satisfactory results were obtained using the PI-P controller 

while only connecting the IMU and the servo controller. However, problems arise when trying to 

prepare the platform for flight test along with other electronics. In summary, the overhead of 

running MATLAB along with the USB interface take a major toll on the software performance. 

Topics regarding software and hardware optimization will be discussed later. In addition 

software performance, there were several hardware reliability issues with the NUC that poses a 

risk of the machine failing during mid-flight. With the Intel NUC being such as expensive piece of 

hardware, the risk is unacceptable and decision was made to switch to a different development 

platform.  

In late Spring of 2014, the BeagleBone Black Rev B was chosen as the new flight computer for 

the 3rd generation hopper spacecraft simulators and software development restarted using 

Python as the programming platform. Python since it require less overhead when compared to 

MATLAB, therefore yield better performance. In addition, it is not as difficult as C++ and also 

many a wide range of open source libraries available similar to MATLAB's toolboxes, allowing 

rapid software development.   

The BeagleBone Black (BBB) is an open source single-board computer that features an AM335x 

ARM Cortex-A8 processor that's clocked at a speed of 1GHz. It is fitted with 4 GB of eMMC flash 

memory and 512 MB of DDR3 RAM. There are two 32-bit microcontrollers that partially allow 

direct interfacing with some external hardware through its general purpose output/input (GPIO) 
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pins that can be configure as both digital and analog. An image of the BBB was illustrated in 

Figure 5-6. 

 

FIGURE 5-6: BEAGLEBONE BLACK IN PROTECTION CASE 

The BBB's hardware specification was not as impressive as the Intel NUC. However, it performed 

remarkably well considering its $45 price tag, making it more suitable for flight testing without 

the fear for crashing. The BBB natively run on the Angstrom Linux distribution. This was later 

modified to Debian Linux for easier customization. In comparison, the data acquisition loop for 

retrieving radio PPM signal was benchmark at a frequency of 10 Hz in MATLAB with the Intel 

NUC, while using BBB and Python, the same loop achieve a speed of 70 Hz. On the other hand, 

the rig test control loop speed of around 115 Hz was achieved using the BBB as opposed to the 

NUC's speed of around 25 Hz. The speed up is mostly a result of software and hardware 

interface optimization.  

The BeagleBone Black performs considerably better than the Intel NUC, and that the rig test 

performance improved, however, the control loop speed is still not ideal. While the PID 

controller was able to control the quadcopter with reasonable performance, the Fuzzy Logic 

controller was more sensitive to the time delay. Since the BBB doesn't have enough PWM 
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output pins and that it cannot read the RC radio directly, the data acquisition board and the 

external servo controller is still required. They became the bottleneck of the system when 

combine with the rest of the control system. Initially, it was hoped that parallel processing 

would solve the problem. However, a major performance drop still occurred. This slowdown was 

to the point that even the PID controller produce unstable response.  

In December of 2014, optimization effort with the BeagleBone Black stopped and development 

of the FlightOS switched to the Arduino Due as the final flight computer and operating system 

revision. An image of the Arduino Due can be found in Figure 5-7. 

 

FIGURE 5-7: ARDUINO DUE 

The Arduino Due is another popular open source development platform that cost around $50. 

This microcontroller is different than the previous Arduino board in that it is powered by an 

Atmel SAM3X8E ARM Cortex-M3 32-bit CPU as opposed the traditional ATmega328 8-bit 

microcontroller. The new CPU run at 84 MHz a great improvement to the traditional Arduino 

operate at 16 MHz. The board has 96 KB of SRAM and 512 KB of flash memory. Like all previous 
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Arduino board, the Arduino Due is capable of analog, digital, PWM, UART, SPI and I2C interfaces. 

This eliminates the need of a strap-on data acquisition system, the major bottleneck in the 

previous flight computers. However, a downside of the Arduino Due is that it operate of 3.3V 

logic, hence, any voltage above such level will destroy the board.      

The hardware specification of the Arduino Due is not at all comparable to the Intel NUC and the 

BeagleBone Black. However, due to the lack of a fully featured Linux operating system that adds 

significant overhead, the raw processing power of the hardware can be harnessed fully. The 

microcontroller only runs the FlightOS as developed by the team and no other background 

processes. Hence, all instructions were run at real time and minimal time delay. As a result the 

control loop received a significant speed boost to around 210 Hz. However, because of the 

minimalistic nature of the platform, scripting languages that required an interpreter such as 

Python, Java and MATLAB cannot be used. Therefore the FlightOS was developed purely in C++ 

and compiled to machine code so that it could be executed in the microcontroller. This added a 

layer of difficulty to the system software development since C++ is not as forgiving. 

A new electronic interface PCB was designed for the Arduino Due since the data acquisition 

system was no longer needed. The PCB was designed to attach directly on top of the Arduino 

Due and reroute its pins so that the electronics can be attached easily. The schematic and PCB 

layout can be found in Figure 5-8 and Figure 5-9. 
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FIGURE 5-8: QUADX FLIGHTOS SHIELD SCHEMATIC 

 

FIGURE 5-9: QUADX FLIGHTOS SHIELD 
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INERTIAL MEASUREMENT UNIT (IMU) 

The inertial measurement unit or IMU is an array of sensors that is designed to estimation 

orientation. A typical 6 degree-of-freedom IMU is consisted of a 3-axis gyroscope and a 3-axis 

accelerometer. Though more advanced IMU often in addition include a 3-axis magnetometer for 

increased accuracy. In empty space, usually only the gyroscope is used due to the lack of a 

significant magnetic field and gravity field.  

The gyroscope is a sensor that is used to measure angular velocity. It can accurately give 

readings of roll rate, pitch rate and yaw rate when the sensor is rotated. Ideally, the reading 

from a gyroscope can be integrated to give angular data. Equation for pitching angle is as follow, 

but this equation works for all roll, pitch, and yaw.  

         

         
                   

 (5.1) 

However, the readings from a gyroscope usually have a bias, after integration, this cause the 

sensor calculated angle to drift away from the actual angle in the long run. Because of this, the 

angle calculated is usually more accurate in the short term, hence a high pass filter is necessary.  

The accelerometer is a sensor that is used to measure acceleration in the sensor's respective 

axes. In a stationary environment, the gravity vector can be calculated to determine orientation.  

Recall that a unit vector is equal to the vector divided by its magnitude. The gravity vector given 

by the accelerometer is in the body frame, and the unit vector is calculated as follow: 
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Recall the rotation matrix cCn derived in Chapter 2. This rotation matrix can be used to convert a 

gravity unit vector, [0 0 1]T, from inertial frame to body frame. Assuming that that sensor is 

oriented the same as the body frame is defined in Chapter 2, the relationship is as follow: 

         
 
 
 
 

 

 

 

    
     

     
 
  

   
 

   
 

   

 

 

  
     

         
         

 

 

 

 

Using the relationship above, solve for roll: 

         

         
 

   

   

 

     
   

   

 

 
           

   

   

  
(5.2) 

 

Then, the same relationship can be used to solve for pitch: 
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To find     , recall the trigonometric identity              , 

                                                  

    
        

     

 

 
 

    
     

     
 

 

  

Finally, plugging the above equation back into the original equation, 

      
   

   
        

    
  

   

    
     

 

 

 

          

 

  
   

    
     

 

 

  

(5.3) 

Equation 5.2 and 5.3 were derived with the assumption that the sensor was stationary and that 

the only force acting of it was the gravitational pull. While this assumption might be true in most 

cases, this is not true when an aircraft is doing a sudden maneuver. Hence, low past filter is 

required on this sensor [12].  

IMU COMPLEMENTARY FILTER 

To get the best out of the gyroscope and accelerometer, usually a sensor fusion algorithm is 

used to calculate the optimal angle output. A simple implementation is the complementary 

filter, as shown in Equation 5.4: 

                     (5.4) 

Again, even though this equation is written for pitch, this algorithm is applicable to both roll and 

pitch. Unfortunately, yaw angle cannot be calculated from the accelerometer, hence the angle 
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can only rely on the gyroscope. In more advanced sensor fusion implementation, the 

magnetometer can assist in calculating the yaw angle.  

The complementary filter takes a portion of the estimated angle from the gyroscope and a 

portion of that from the accelerometer and combines them together. The term   is used to 

control how much the filter relies on the gyroscope and how much it relay on the 

accelerometer. This value is also related to the filter’s time constant and determines how fast 

the filter responds to real life changes. Generally,   is chosen at around 0.02, where 98% of the 

gyro angle is used and only 2% of the acc angle is used. This combination applies a high pass 

action on the gyro angle and a low pass action on the acc angle. As always, the   should be 

tuned for optimal performance.  

IMU KALMAN FILTER 

A more advance method of data fusion is the Kalman filter. In the case for an IMU, the 

gyroscope data is often more reliable than the accelerometer since it is independent of external 

forces. Therefore the gyro angular velocity is used as the input. The accelerometer angle is used 

as the observed angle and the Kalman filter will calculate the differences between the two to 

output optimal angle estimation [13].   

The state space model for roll and pitch estimation is as follow: 

Prediction 
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The state vector of the system includes roll, pitch and the biases in the gyroscope's 

measurement. In the prediction phase, the future angle is predicted as the sum of previous 

angle, the angle calculated from the gyroscope data, and the process noise. In order to make the 

prediction more accurate, it is necessary to subtract the angle drifted from the gyro bias. The 

gyro biases are assumed to remain the same. Since the initial state is unknown, the state vector 

is initialized as a zero vector. 

           

    

 
 
 
 
 
     

      

     
        

 
 
 
 

   

The process noise is assumed distributed normally with zero mean with covariance   . To 

simplify, non-diagonal terms are assumed to be zero. The diagonal terms are tuned to achieve 

optimal performance. In general, the values represent the amount the state deviate from the 

model in reality. This includes noise in general as well as intentional input changes.  

 

Observation 

            

 
    

    
 
 

  
    
    

  

 

  

 
  

 

 

    

The two terms being observed are the roll and pitch angle calculated from accelerometer 

measurements.  
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The measurement noise   , again, is assumed to be distributed normally with a mean of zero 

with a covariance of   . Similarly, to simplify, the non-diagonal terms of the measurement 

covariance matrix are assumed to be zero. The diagonal terms, however, greatly affect the 

performance of the Kalman Filter. In general, the greater the value the more the filter favors the 

estimation predicted by the physics model. On the other, the lesser the value, the more the 

filter favor the measurements. In order to achieve optimal reading, the measurement 

covariance must be tuned carefully.  

 

Initialization 

    

    
    
    
    

  

    

  
  
  
  

  

Thus far, all variables of the Kalman filter are covered other than the error covariance matrix    

and the Kalman gain   . For the error covariance, again, to simplify, the non-diagonal terms are 

assumed to be zero. Since the Kalman filter will alter the error covariance over time, if the initial 

state is unknown, then the    matrix should just be initialized with large values to represent 

large errors in the estimated state. The Kalman gain will be calculate and replaced entirely 

during the update phase. Therefore, it can simplify be initialized as a zero matrix.   
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Implementation 

To implement the Kalman filter, the prediction and update process equation from Chapter 4 

should be used. A Simulink model was constructed to gauge the effectiveness of using a Kalman 

filter in an IMU and also to verify the equations derived earlier in this section. To begin, a 

Kalman angle for a single axis is modeled to study the effect of each parameter. 

 

FIGURE 5-10: ATTITUDE ESTIMATION WITH ACCELEROMETER, GYROSCOPE AND KALMAN FILTER (R=5000) 

 

  
 

FIGURE 5-11: KALMAN FILTER MEASUREMENT NOISE TUNING (R = 1 VS. R=1000000) 
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In the simulation, a step command of      is issued to a PID controller one second after the 

start of the simulation. To focus on sensor behavior, the only noises added are to the gyroscope 

and accelerometer. In addition, it is assumed that the signals going into the PID controller are 

not corrupted and are connected directly from the physics dynamics simulator.  

Comparison between the angles estimated from pure accelerometer, gyroscope and the Kalman 

filter are illustrated in Figure 5-11. As seen in the figure, the accelerometer suffers from high 

frequency vibration noise. The signal variance is around    . On the other hand, the drifting 

effect or the gyroscope is obvious due to the noise in the measured angular velocity. This cause 

the estimated angle to drift almost    at the end of the simulation. The Kalman filter estimated 

angle is much closer to the actual angle. It exhibit smooth behavior like the gyro angle, yet it 

overcome the drifting issue by referencing values measured by the accelerometer.  

The Kalman filter's behavior is greatly affected by the tuning of the measurement covariance. 

Figure 5-11 show estimated angle when the measurement covariance are tuned too low and too 

high. When the measurement covariance is tuned low, it is apparent that the filter favors the 

data from the measurement. Hence, the estimated angle is a lot more oscillatory. On the other 

hand, when the measurement covariance is tuned too high, the filter favors the gyro calculated 

value too much. Hence, it partly suffers from the drifting angle estimation. However, the filter 

eventually converges back to the actual angle before the end of the simulation.  

The Kalman filter is compared with the simpler complementary filter in Figure 5-12. As shown, 

both estimation are quite similar. One could argue that the Kalman filter is a bit better, but the 

differences are neglectable. Either way, the 2-axis Kalman filter was modeled with the roll step 

to     and pitch step to     , the result is shown in Figure 5-13.   
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FIGURE 5-12: COMPARISON OF KALMAN FILTER AND COMPLEMENTARY FILTER ESTIMATED ATTITUDE 

 

FIGURE 5-13: KALMAN FILTER ESTIMATED ROLL AND PITCH 
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FIGURE 5-14: CHROBOTICS UM7-LT ORIENTATION SENSOR [14] 

 

The IMU discussed thus far are 6 DOF IMU with only an accelerometer and a gyroscope. Since 

there is no way for the accelerometer to calculate the yaw angle, it is depended entirely on the 

gyroscope. This also indicates that the yaw reading will suffer from gyro drift. To overcome this, 

a 9 DOF IMU is necessary with the addition of a magnetometer.  

With the addition of the magnetometer, more advanced sensor fusion algorithm with the 

Kalman filter is required. Since the physics model for such integration is not linear, and the 

traditional Kalman filter only works on linear system, the extended Kalman filter (EKF) is 

required.  

Because of this, the UM7 orientation sensor from CHRobotics was chosen. The UM7 is a 9 DOF 

IMU that has a built-in processor to retrieve measurements from the individual sensors and 

process them in the EKF. The processor provides an advantage as it off load part of the work 

that the flight computer must process. The EKF estimation rate is 500 Hz with an accuracy of 

around      for roll and pitch while the yaw has an accuracy of around    .  The device is 

natively 3.3V and can communicate with the flight computer via 3.3V TTL UART and SPI.  
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BAROMETRIC ALTIMETER 

An atmospheric pressure gauge is usually used on aircraft to measure altitude. Similar, the 

QuadX multirotor is designed to use the BMP085 pressure sensor to determine its height.  The 

BMP085 can be interfaced via I2C, but since it lacks an onboard processor, the flight computer 

must retrieve the measurement and calculate the altitude.  

 

FIGURE 5-15: BAROMETRIC ALTIMETER 

 

To convert measured pressure to altitude, the follow equation can be used: 

                   
 

  
 

 
     

  

In the equation above,   is the measured pressure while    is the referenced sea level pressure. 

The average sea level pressure is 101325 Pa. However, to obtain a more accurate reading, the 

referenced sea level pressure should be calibrated before flight with information from a 

weather station. It is important to notice that the altitude is expressed as meters above sea level 

and therefore does not provide a distance measurement above ground. In addition, since the 

altimeter will be affected by the turbulence created by the QuadX's propellers, the altitude 

reading might not be very accurate. Hence, an ultrasonic range sensor is required to obtain 

better altitude estimation.  
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ULTRASONIC RANGE SENSOR 

 

FIGURE 5-16: MAXBOTIX MB1240 XL-MAXSONAR-EZ4 ULTRASONIC RANGEFINDER [15] 

As discussed in Chapter 4, ultrasonic range sensor function by sending emitting an ultrasound 

wave and use the timing in the echo to determine object range. The MB1240 work similarly. But 

instead of having the microcontroller does the timing, the sensor take care of that internally and 

encode the range as a form of analog signal. The MB1240 having the following range to analog 

conversion relation: 

        

  
 

In another word every centimeter is represented by the power source voltage,    , divided by 

1024. To put this is equation form, where         represent the voltage read from the analog 

pin from the microcontroller: 

      
    

   
         

Like most ultrasonic sensor, the MB1240 have a minimal distance of 20 cm where object range 

within 20 cm will be reported as 20 cm. To accommodate for high acoustic noise, the MB1240 

has low sensitive. It operates on a narrow beam pattern and is optimized for reporting large 

target with a max distance of 750 cm. Hence it is ideal for reporting distance above ground. 

When working together with the barometric altimeter, the ultrasonic sensor can cover more 

precise takeoff and landing maneuver while the former can be used to maintain flight altitude.   
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GLOBAL POSITION SYSTEM (GPS) RECEIVER 

The QuadX use a GPS receiver to determine it location. The GPS receiver use the signals received 

from the GPS satellite constellation to calculate to receiver's longitude, latitude and altitude. 3 

satellites are required to get a position fix. However, since the clock on the receivers is often not 

precise, a 4th satellite is usually required to get more accurate location estimation. For civilian 

application, the GPS signal has a worse case accuracy of 7.8 meters in space. Many high quality 

receivers are able to provide a horizontal accuracy better than 3.5 meters. However, this is only 

the signal in space, not taking into account of atmospheric effect, obstructions, signal bounce, 

etc. Often the altitude estimated by a GPS receiver is not accurate enough for aircraft altitude 

control. GPS can often combine with other systems such as the wide area augmentation system 

(WAAS) to provide better accuracy.   

 

FIGURE 5-17: ADAFRUIT ULTIMATE GPS BREAKOUT - 66 CHANNELS W/ 10 HZ UPDATE [16] 

The space hopper simulator uses an Adafruit Ultimate GPS receiver to estimate its location. The 

receiver is capable of searching for 66 satellites and tracking 22 at once. The position accuracy is 

less than 3 meters and has a velocity accuracy of around 0.1 meter/s in ideal situation. The 

interface is 3.3V TTL UART with a theoretical maximum update rate of 10 Hz. However, in reality 

for implementation, the maximum update rate is only 5 Hz. The receiver is set to output 

information in NMEA format, therefore a parser is required to extract the information.  
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RC TRANSMITTER AND RECEIVER 

The 3rd generation hopper simulator is designed with a redundant wireless communication 

system to maintain control of the aircraft even if one of them fails. The primary control for 

manual flight is a standard RC transmitter and receiver. Older transmitter and receiver are based 

on the crystal technology. As long as the crystal oscillation frequency match on both the 

transmitter and receiver, than signal can be linked. More recently, the transmitter and receiver 

operate on 2.4 GHz wireless band. The transmitter and receiver will need to go through a simple 

binding process to ensure the radios are linked.  

 

FIGURE 5-18: SPEKTRUM DX7 RC TRANSMITTER [17] 

There are many shared transmitter and receiver in the Lehigh Aerospace System Lab. Therefore, 

the aircraft is control with an available one like the crystal Futaba T6EXA or the Spektrum DX7 in 

Figure 5-18. The channels in a RC system refer to the number of controls the transmitter can 

have. The standard rolls, pitch, yaw and throttle stick control already take up 4 channels. There 

are additional toggle and rotary switches that can be used to program different flight modes.   
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FIGURE 5-19: SPEKTRUM RC RECEIVER [17] 

The signals output by a RC receiver take are digital PWM signals. In traditional RC airplane, this 

PWM signal would directly drive the ESC and servos to control the motor and control surfaces 

on the aircraft. In multiple, the signal is read by the flight computer to interpret as an input 

command for the flight controller. The flight computer than compute and generate the 

appropriate PWM signal to each of the motors to maintain balanced and controlled flight.  

Even though RC technology is relatively reliable, there are cases where duty to electronics 

failure the wireless link was disconnected. This happened during an outdoor flight test where 

the QuadX was executing a leveled slow ascending maneuver. The link between the controller 

and transmitter was disconnected and the aircraft maintain the previous command and kept 

ascending. Eventually the propeller struck a tree branch and the ESC shut off the motor as a 

safety protocol. This causes the QuadX to free fall onto a brick road around 3 stories high. The 

end results are broken propellers, bended motor shafts and several fractured carbon fiber 

struts.  

It was fortunate that no one was injured and that a tree caught the multirotor since it would 

have keep ascending until the battery run out of energy. To ensure that this would never 

happen again, an originally planned second communication link was soon implemented.  
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2.4 GHZ RADIO MODULES 

The XBee radio module, shown in Figure 5-20, act as a second communication link between the 

aircraft and a ground station laptop. Implementation of the radio was relatively simple, it 

interface with the flight computer via 3.3V TLL UART. The interface PCB has a slot to directly 

plug the XBee into place. On the ground station, a USB adapter was used to interface with the 

XBee radio module.  

 

FIGURE 5-20: XBEE PRO 60 MW 2.4 GHZ RADIO MODULES 

The XBee Pro is a 2.4 GHz radio that has an output power of 60 mW. Before deployment, the 

units are configured through serial commands with the personal area network (PAN) ID and the 

device ID so that the radios can achieve point to point or point to multipoint communication. 

The maximum data transfer rate is 250 kbps while a range of a mile. However, in reality, data 

would be corrupted at this transfer rate and range. Therefore a slower transfer rate is used for 

longer range. For the QuadX, a baud rate of 57600 is used to avoid data corruption. In addition, 

a number of checks are implemented to ensure data packet integrity.  

The XBee modules primarily serve as the telemetry system to downlink flight data to the ground 

station so that the operators can monitor the flight conditions. The uplink was designed to tune 

the various controller gains in real-time and to issue commands for autonomous flying when 
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guidance system is implemented. Due to the minor incident that occurred, an control override 

mode was add so that the ground station operator can override the RC operator control at any 

time should the communication link failed. In normal override mode, the operator has control 

over the aircraft's roll, pitch, yaw, throttle and height. The emergency mode automatically reset 

and command the aircraft for leveled descend.  The telemetry and command are implemented 

in the Ground Station GUI's Flight Command (FlightCOM) tab as shown in Figure 5-21. 

 

FIGURE 5-21: GROUND STATION FLIGHTCOM TAB 

In order to reduce the flight computer's work load, the originally planned onboard Flight Logger 

is implemented as part of the ground station telemetry system. As soon as telemetry data are 

received, all the flight variables are dumped into a flight log. This include a large range of 

parameters such as controller gains, input commands, output PWM signals in additional to the 
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traditional time, attitude and position. A portion of the flight data is displayed in Figure 5-22 as 

imported into excel. 

 

FIGURE 5-22: FLIGHT LOG IN EXCEL 

For flight data visualization, a separate application, the Flight Log Player, was developed in 

vPython. The player's primary interface is an interactive 3D window that allows the user to zoom 

and rotate the viewing angle. At the same time, the virtual aircraft translate and rotate 

referencing data recorded by the Flight Logger. The secondary interface is a 2D window that 

contains a dynamic graph that plots the aircraft's roll, pitch and yaw synchronously with the 

animation in the 3D window. A screenshot of the Flight Log Player can be found in Figure 5-23.  

 

FIGURE 5-23: FLIGHT LOG PLAYER 
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The Ground Station's secondary function is to support live PID tuning. There are 3 similar tuner 

tabs for the attitude rate, attitude and position control. Each tab has 3 set of tuners dedicated to 

the   ,    and    parameters of the roll, pitch and yaw axis. In terms of position, this would be 

longitude, latitude and altitude. The GUI has the ability to save and load previous configured 

parameter so that it can easily be brought up for the next tuning session.  

 

 

FIGURE 5-24: GROUND STATION PID TUNER TAB 
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Currently, a new ground station software is being developed by an undergraduate student on 

the team, as shown in Figure 5-25. As oppose to the previous ground station software which 

was aimed for aircraft development, the new software is aimed for deployment use. In addition 

to the basic tuners, the main display is consisted of various attitude indicators and also a map 

for to indicate aircraft position. The map can also be used to assign way points for the aircraft to 

travel to.  

 

FIGURE 5-25: AUTONOMOUS FLIGHT GROUND STATION SOFTWARE 

In complement with the new ground station software, an Android mobile controller is also being 

developed so that a phone can be used to control the aircraft. The app function by sensing the 

tilting motion of the phone, and from that commands are either being uplink directly to the 

aircraft via a Bluetooth radio or to the ground station, then relay to the aircraft via XBee. The 

software contains attitude indicator display to represent aircraft telemetry data. In addition, it 

also has a map for selecting way points similar to the ground station. A figure of the App can be 

found in Figure 5-26. 
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FIGURE 5-26: ANDROID MOBILE DEVICE CONTROLLER 
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Chapter 6: SOFTWARE  

FLIGHT SYSTEM MODULES 

The Space Hopper Simulator flight operating system is consisted of a number of software 

modules as shown in Figure 6-1. The modules contain the source code to interface with various 

avionics components as well as implementation of digital filters and GNC system.  To simplify 

software development, most modules are implemented as object classes and all have access to 

a global data object. The data object is updated by the data acquisition modules and is used by 

the GNC modules to compute the appropriate PWM output to achieve controlled flight.  

 

FIGURE 6-1: FLIGHT SOFTWARE MODULES 
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FLIGHT COMMUNICATION MODULES 

The flight communication system is made up of the FlightCOM and the RC Radio Command 

module. The two modules interface the XBee and the RC receiver respectively.  

The FlightCOM as previously discussed interface with the XBee through a serial UART 

connection. The primary functions of the FlightCOM are to respond to ground station uplink 

commands and downlink telemetry data. Essentially, when data packets are detected in the 

XBee serial buffer, the flight computer will read and store the data into a string variable. The 

string then get pass to a parser to decode whether the ground station try to request a telemetry 

downlink, tune flight controller parameters or update the target angle, height, position, etc. If 

the ground station request telemetry, the flight computer respond by downlink the flight data 

stored in the data object. On the other hand, if the ground station is trying to tune the flight 

controller or change the target, the respective value in the data object will be updated.  

The RC Radio Command module is design to measure the PWM signal output by the RC receiver. 

Typically, a specialized kind of PWM signal is used by RC electronics such as the receiver, ESC 

and servos. A sample of the RC PWM signal is illustrated in Figure 6-2.  

 

FIGURE 6-2: RC PULSE WIDTH MODULATION SIGNAL 
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RC PWM signal differ than regular PWM signal in that it don't use duty cycle exactly the way 

mentioned in Chapter 4. The minimum pulse generally is a signal that has a high pulse width of 1 

ms. On the other hand, the medium pulse width is 1.5 ms and the maximum pulse width is 2.0 

ms. In an RC servo, the pulse width would represent an angle of   ,     and     . In an ESC for 

a brushless motor, this would represent 0%, 50% and 100% throttle. The period of the signal is 

around 20 ms, though exact timing doesn't matter.   

In order to measure the pulse width of the PWM signal, each of the 6 channels from the receiver 

is connected to a digital pin. Arduino has a built-in function to measure the pulse width in which 

the PWM signal is high. This utilize a timer that begin timing when the signal goes from low to 

high and stop when the signal goes from high to low. This is however, highly inefficient, since 

the function block the rest of the flight system from running until the measurement is over. Each 

measurement takes roughly 10 ms and for all 6 channels, this causes a delay of 60 ms.  

It is unacceptable that the radio module run at 16.7 Hz and blocks the rest of the flight system 

from running. This will cause the rest of the system to run at an even lower frequency. To 

overcome this, the module is implemented using a series of hardware interrupts, which the 

Arduino DUE supports in all of its pins. Essentially, when an interrupt is triggered by having the 

signal changing state, the microcontroller pause its current process loop and jump directly to a 

section of codes define at startup. Once that code is ran, the microcontroller resume the normal 

process loop where it was pause. By using interrupt, a timer could be started when the signal 

goes  from low to high, then the microcontroller continue to run the flight loop. When the signal 

goes from high to low, the microcontroller stop the timer, save the pulse time and resume the 

flight loop. This implementation scheme allows the module to run much faster with virtually no 

delay added to the flight control loop.  
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DATA ACQUISITION MODULES 

The data acquisition modules include the GPS, Altitude Sensors and the IMU. The combination 

of the flight data acquired from the sensor along with various filters and sensor fusion 

algorithms make up the navigation system.  

The GPS interfaced with the flight computer through an UART serial connection and are 

encoded in the NEMA ASCII sentences. The position is reported as geo-coordinates in degrees 

and decimated minutes. To make this useful in terms of control, the geo-coordinates are 

localized by the module so that the positions are reported as meters away from a reference 

point. The GPS receiver has an update rate of around 5 Hz. In addition, the estimated position 

bounce quite a bit. Therefore a digital filter is implemented to get a better estimation.  

The Altitude Sensors module is made up of the MB1240 ultrasonic range finder and the BMP085 

barometric altimeter. The two interface with the Arduino via analog and I2C signal. Since the 

ultrasonic sensor is better at measuring precise distance at a low height while the altimeter is 

better estimating high altitude, a digital filter should be used to merge the two.  

The UM7 IMU from CHRobotic interface with the microcontroller via UART serial at a baud rate 

of 115200 to optimize data transfer speed. The communication data packet to and from the IMU 

are encoded in binary as specify in the data sheet. This involves assembling a binary string to 

request data. The binary string is consisted of 3 ASCII letter to indicate beginning of a 

transmission. It is than followed by a byte specifying packet type, a byte for register address, 

several bytes for data, and finally ended with 2 bytes for checksum to assure serial packet 

integrity. The data packets are encoded in binary 2's complement and then scaled by some 

constants. To retrieve actual attitude data, the decoding process must be applied.  
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GUIDANCE 

The Guidance module take the height and position data retrieved from the data acquisition 

modules to compute a target attitude and throttle for the flight controller. Essentially, this is a 

position and height control module. The input to the guidance system is either set by the ground 

station as way points or predefined as the parabolic hopping trajectory.  

 

FLIGHT CONTROLLER 

The Flight Controller module implements the control laws researched and simulated in the 

project. As shown in Figure 6-3, this module could easily be swapped between the PID Controller 

and the Fuzzy Logic Controller. This will allow the remainder of the flight operating system to 

remain relatively similar between the Quad+ and QuadX multirotor.  

 

FIGURE 6-3: FLIGHT CONTROLLER MODULE (PID AND FUZZY LOGIC CONTROLLER) 
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FLIGHT MIXER 

The Flight Mixer module takes the roll, pitch and yaw signal generated from the Flight Controller 

and calculate the PWM signal combination for the multirotor's motors to achieve the desired 

torque output. To accommodate for different flight configurations, the Flight Mixer predefined 3 

mixing set with the flight dynamics discussed in Chapter 2.  

  
 

FIGURE 6-4: MOMENT ARM FOR Y6, QUAD+ AND QUADX FLIGHT CONFIGURATION 

The Y6, Quad+ and QuadX flight configuration is drawn in a CAD software from a top down view. 

The moment arm of each flight configuration is measured to determine the motor's contribution 

to the rolling and pitching torque. In addition, the motor spinning direction is used to determine 

the yawing torque contribution. The resulting motor mixing table is illustrated in Figure 6-5. 

 

  

FIGURE 6-5: MOTOR MIXING TABLE FOR Y6, QUAD+ AND QUADX FLIGHT CONFIGURATION 
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With the motor mixing values in Figure 6-5 and the signal from the Flight Controller, the 

following equation is used to calculate output PWM signal pulse time for each of the motors. In 

the equation, the variable x, y and z represent the roll, pitch and yaw contribution for each 

motor respectively. The pulse time is usually expressed in    as opposed to ms so that there is 

enough resolution to generate small differences in thrusts.  

                                                    

 

MOTOR OUTPUT 

The Motor Output module simplify take the PWM pulse time calculated from the Flight Mixer 

and generate a PWM signal for the ESC to the motors. In addition, the Motor Output module is 

programmed to arm the ESCs in the beginning of flight. It is necessary to arm an ESC before it 

will spin a motor. This is a safety protocol implemented to prevent injuries. To arm a motor the 

ESC will first need to be driven with a PWM signal of         or less for several seconds. The 

ESC will then beep several times, indicating that it is armed and that the motor will respond to 

all future PWM signal commands.  
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FLIGHT OPERATING SYSTEM SOFTWARE ARCHITECTURE 

The flight operating system (FlightOS) is constructed with the software modules discussed in the 

previous section. Since each sub-system is verified to functioning properly in the module level, 

the development for the FlightOS simply involves linking the modules together. There are 

several implementation schemes for the FlightOS throughout the development of the Space 

Hopper Simulator. The first implementation scheme is that of a linear software architecture.  

 

FIGURE 6-6: FLIGHTOS LINEAR SOFTWARE ARCHITECTURE 
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The linear software architecture is modeled after the intuitive logic that make a system fly. The 

software first initializes all subsystem and wait for an arming signal from the ground station. 

When the FlightOS is armed, the system run in a control loop that only end when the FlightOS is 

disarmed. In the control loop, the flight computer request flight data and downlink that to the 

ground station. Using the flight data acquired from the sensors, the guidance module calculates 

the target attitude so that a desired trajectory can be achieved. To meet the target attitude, the 

attitude controllers compute the appropriate roll, pitch and yaw signal. The flight mixer than 

take the signal and distribute PWM commands to every actuator. After that is completed, the 

Flight Logger records the flight data for later analysis. The linear software system flowchart is 

illustrated in Figure 6-6.  

Generally, linear software system has the disadvantage that a function block must complete 

running before the next is executed. Through benchmark tests, the data acquisition modules 

appear to be the bottleneck of the system. This is most likely due to the extensive overhead 

processes that the processor must go through in order to retrieve data from external devices. 

The ArduDAQ in particular is problematic since to retrieve radio pulse time alone causes a delay 

of 0.163 sec.  This block the IMU and the attitude controller from running fast enough to 

establish stable flight. Rig testing has shown that a control loop frequency lower or equal to 10 

Hz will cause the multirotor to become extremely unstable and uncontrollable.  

In an attempt to overcome this process blocking problem, the multithreading software 

architecture is implemented in the BealgeBone Black.  The software flowchart is shown in Figure 

6-7. The idea behind the multithreading scheme is that several processes will run in parallel so 

that none of them will be blocked from each other. The three distinct loops are the guidance / 

navigation loop, the control loop and the wireless communication loop.  
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FIGURE 6-7: FLIGHTOS PARALLEL SOFTWARE ARCHITECTURE 

Ideally, the parallel processing scheme would greatly improve the speed of the FlightOS. While 

one loop is stuck waiting for incoming data, the others will keep running. However, this proves 

not to be the case as the BeagleBone Black only has a single-cored CPU. Therefore, the 

background Linux services divide processor so that it is shared by all 3 loops. Each loop are only 

given a portion of the processing time. In addition, the background Linux operating system is 

also sharing the CPU to run the necessary services to keep the computer running. Therefore, 

even though the FlightOS did run a bit faster, the performance is still not acceptable.  

It is apparent that it is not effective to construct an operating system on top of another 

operating system. Even though the Linux operating system provides lots of features and support 

many pre-written libraries that greatly reduce effort in software development, the performance 

is just not acceptable. Therefore, it was decided that the flight computer should focus on having 
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minimal overhead so that the processor's full processing capability can be focused on the 

FlightOS. The Arduino DUE became one of the best candidates.  

The Arduino DUE, unlike the previous flight computer, is a microcontroller. Therefore, it does 

not include a base operating system and must be programmed to perform a specific task, to run 

the FlightOS. The FlightOS must be developed from scratch in C++ and compile into machine 

code that the microcontroller can execute. With the lack of a base operating system and that 

the microcontroller only contains a single-cored CPU, it is impossible to use the parallel software 

architecture above. The software can only be executed linearly.  

Fortunately, as discussed earlier, the Arduino DUE support hardware interrupts in all of its pins. 

This allow the FlightOS be developed in such a way that parallel processing can be faked by 

controlling exactly when a function block get processed. The main processing loop can be found 

in Figure 6-8 while the interrupt function blocks can be found in Figure 6-9. 

 

FIGURE 6-8: ARDUINO FLIGHTOS LINEAR PROCESSING LOOP 
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FIGURE 6-9: ARDUINO FLIGHTOS INTERRUPT FUNCTION BLOCKS 

The logic of the Arduino based FlightOS is a bit confusing, but it would probably be easier to 

understand by looking first at the interrupt function blocks. Unlike the main process loop that 

run repeatedly after setup, the interrupt function blocks only get executed when a hardware 

interrupt is triggered. When it is triggered, the main process loop is pause until the interrupt 

function block complete executing. Note that when a second interrupt is triggered while the 

processor is running the codes for the first triggered interrupt, the codes for the second 

interrupt will only be run after the first is completed. 

The first interrupt function block is that of the XBee communication module.  When the flight 

computer detects activities in the XBee's serial port, the FlightCOM module is activated to 

retrieve data in the buffer and respond to the ground station appropriately.  

The GPS and the IMU interrupt function block are triggered similarly. Though the GPS is set to 

send serial data at a rate of 5 Hz while the IMU required a request command be sent in order for 

it to send the most updated data through serial. When the GPS interrupt is trigger, the 

localization process is ran before the position is updated. On the other hand, when the IMU 

interrupt is triggered, the attitude controller is also ran to update the proper attitude signal to 

the flight mixer. 
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The RC Receiver interrupt function block is triggered when the digital state of the pin is changed 

as discussed in the previous section. This allows the pulse time be calculated. All data retrieved 

by the interrupt function blocks are shared with the main process loop through the global data 

object.  

With the functionality of the interrupts in mind, the main process loop should be easier to 

understand. The FlightOS begin by running the set up functions to initialize all the modules and 

attach the interrupts to the hardware. Then the process loop is ran repeatedly.  

The process loop start by checking whether it is in ground station override mode. If not, then it 

take the RC receiver pulse time retrieved from the interrupt to calculate target commands and 

flight modes.  

To control the sample rate of specific subsystem, the Control and Guidance blocks are ran by 

their respective timers. Since the attitude controller is run when the IMU interrupt is triggered, 

the main process loop only has to send a data request command to the IMU. The aircraft 

trajectory is controlled by the combination of the altitude and position guidance modules. The 

altitude guidance module read data from the altitude sensors and determines the required 

throttle to achieve the desired trajectory. Similarly the position guidance module does the same 

for target attitude. However, since GPS data are often very noisy, the positions feeding into the 

guidance module must first run through the GPS Navigation position estimator module.  

The flight mixer is ran next to calculate the PWM signal output from the throttle and attitude 

signal from the various modules. Next, the FlightOS generate the PWM signal to the motor only 

if the operating system is armed. This is a safety protocol to make sure that the multirotor 

doesn't accidently take off.  
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The process loop then repeat indefinitely until power to the microcontroller is lost. Benchmark 

data show that this hardware and software combination perform the best thus far.   

SOFTWARE OPTIMIZATION 

Software optimization is a key aspect of the FlightOS development process. The optimization 

process involved benchmarking and improving performance by implementing more efficient 

coding logic and configuration avionics such as increasing serial baud rate. The most radical 

optimization includes changing flight computers and development platforms. Some of the 

benchmarking and optimization data are reproduced here. 

 MATLAB 
(String) 

Python 
(String) 

MATLAB 
(Binary) 

Python 
(Binary) 

Arduino 
(PulseIn) 

Arduino 
(Interrupt) 

Sample  
Time (s) 

0.163 0.090 0.095 0.062 0.060 ~0.002 

Sample 
Rate (Hz) 

6.1 11.1 10.5 16.1 16.7 500 

 

TABLE 6-1: RC RECEIVER DATA ACQUISITION BENCHMARK PERFORMANCE 

The RC Receiver is one of the main bottlenecks of the data acquisition system. For the Intel NUC 

and the BeagleBone Black, the ArduDAQ must be used to acquire signal and relay the data 

through serial UART at a max baud rate of 115200. The original system is set up capture the data 

repeatedly and when requested, the data is transferred to the flight computer via ASCII string. 

As seen in Table 6-1, this operation takes 0.163 sec in MATLAB and 0.090 in Python. To optimize, 

the system is modified to transfer data via binary. The sample time improved to 0.095 and 0.062 

for MATLAB and Python respectively. Recall that the Pulse In function in Arduino take 0.060 sec, 

that mean that the communication overhead time is 0.035 for MATLAB and 0.002 for Python. 

When the flight computer is finally switched to the Arduino DUE, the ArduDAQ is no longer 

necessary and eliminated the overhead delay. The last optimization effort is to implement 
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hardware interrupt for all RC receiver channels. Due to the nature of interrupts, there is no 

effective way to directly measure the sample time. However, using sample time of the analog 

read operation, the sample time to read all 6 channels is calculated to be 0.002 sec.  The 

implementation of hardware interrupt greatly improves performance for the Arduino DUE. 

However, the ArduDAQ is run by an Arduino Micro. That particular microcontroller only support 

3 hardware interrupts, and hence unable to apply the optimization.  

 Python 
(Desktop) 

Java 
(Desktop) 

C# 
(Desktop) 

Python 
(BBB) 

C++ 
(Arduino) 

Sample 
Time (s) 

0.0095 0.0053 0.0048 0.00625 0.0048 

Sample 
Rate (Hz) 

105 190 210 160 210 

 

TABLE 6-2: UM7 DATA TRANSFER BENCHMARK PERFORMANCE 

The IMU was probably the next bottleneck of the system. Since the IMU was already configured 

to transfer data in binary at the maximum baud rate, there's not much that can be done to 

improve the performance other than changing development platforms. Since MATLAB perform 

poorly in terms of data acquisition, it was eliminated entirely.  

In the benchmark, the UM7 was first tested with a desktop computer with various programming 

languages. The desktop computer has a hex cored AMD Phenom II x6 1090T processor 

overclocked to 3.40 GHz with 8 GB of DDR3 RAM and run 64-bit Windows 7 on a 120 GB SSD. 

The benchmark result can be found in Table 6-2. In general, Python perform the worse with a 

sample rate of 105 Hz and C# performs the best at 210 Hz. 

Surprisingly, even though the BeagleBone Black has much less respectable hardware specs when 

compared with the than the desktop, the same Python script used on the Windows achieve a 

sample rate of 160 Hz.    
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The Arduino DUE IMU module is developed in C++ and is able to achieve a sample rate of 210 

Hz. Given that the microcontroller has the lowest hardware specs, it is amazing that it achieved 

the same performance as the C# module in the significant more powerful desktop computer.  

 

FIGURE 6-10: BEAGLEBONE BLACK VS. ARDUINO DUE ESSENTIAL FLIGHT SYSTEMS PROCESS TIME 

The software modules essential for basic controlled flight are the radio receiver, IMU, flight 

controller, flight mixer and the PWM motor output. The process time of these modules should 

be minimized so that the flight control loop can run as fast as possible. The modules' 

benchmarked processing time for both the BeagleBone Black and the Arduino DUE is illustrated 

in Figure 6-10. Clearly, the Arduino DUE out perform the BeagleBone Black, especially in the 

radio receiver module.  
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However, the Arduino DUE is not without its downfall. The lack of an operating system means 

that useful features like onboard data logging cannot be done directly. The current flight logging 

system utilizes the telemetry system. When a downlink request is sent to the QuadX, the flight 

computer responds by transmitting the flight data via the XBee radio. The flight data is received 

by the ground station and recorded.  

Ideally, the baud rate should be set at 115200 and the process time for that is 0.012 sec. 

However, this causes the XBEE radio to lock up after several minutes. Therefore, to fix this, the 

baud rate is reduced to 57600 and the process time is nearly double to 0.023 sec. 

 

FIGURE 6-11: FLIGHT DATA LOGGING SYSTEMS COMPARISON 

A dedicate flight logger module was developed for the Arduino DUE using an external SD card, 

but this was never implemented into the FlightOS. The theory was that telemetry is already a 

part of the flight system. The exclusion of onboard data logging would reduce processing load. 

The benchmark processing time for the SD card flight logger is 0.008 sec, a great improvement 
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from the current telemetry system. However, keep in mind that the BeagleBone Black's on 

board data logging system is only 0.0002 sec, the SD logger is still significantly slower. 

Since telemetry is not an essential part of flight, a possible way to optimize this is to send a 

downlink request once every several seconds so that flight control in not impacted as much. 

However, this is not quite acceptable for analyzing flight performance since data collected at 

such slow rate might suffer aliasing issues. This can be improved by also using the SD logger. 

Though the SD logger only be ran once or twice a second to keep interference with flight control 

to a minimum. The balance between flight data sample rate and flight performance is a topic of 

trade study.  
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Chapter 7: CONTROL SYSTEMS 

SINGLE AXIS ATTITUDE PID CONTROLLER 

The proportional-integral-derivative (PID) controller is one of the most widely used controllers in 

engineering. It is powerful, easy to implement and relatively intuitive to understand. Therefore, 

it is used in many systems such as aircraft, spacecraft, robot and automotive. The tuning 

process, however, is a bit tricky to achieve optimal performance.  

 

FIGURE 7-1: SINGLE AXIS MOTOR BALANCER 

To start, let’s consider a single axis motors balancer as shown in Figure 7-1. This is essentially a 

quadcopter but restricted to a single degree of freedom, allowing the beam to only rotate in one 

axis. The balancer is consisted of 2 motor, producing thrust in each end of the beam. There’s an 

IMU to report the beam attitude with respective to ground level. The free body diagram for the 

single axis motor balancer is illustrated in Figure 7-2. The coordinate frame is set such that 

clockwise motion is positive.  
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FIGURE 7-2: SINGLE AXIS MOTOR BALANCER FREE BODY DIAGRAM 

Let’s say that the tilt angle of the beam is measured to be   and that the referenced input 

command, or target angle, is r. The error,  , is calculated by subtracting the processor variable 

 , or in this case, the measured angle  , from the target. 

      

This error is multiplied by a gain,   , to scale the signal proportionally. The result of this 

operation is the proportional control output signal,   . 

       

 This control algorithm by itself is called to proportional controller, or a P Controller. The output 

signal is feed into the flight mixer to calculate the PWM output signal for the motors. Since 

Motor 0 contribute torque in the negative direction, the control signal is multiplied by negative 

one. On the other hand, Motor 1 contribute torque in the positive direction, the control signal 

remain to be positive. Then the throttle PWM pulse time is added.  
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If      and      , then the error       . If    is tuned to be 1.0, then proportional 

output signal is -10. Assuming that the throttle pulse time is        , then the PWM signal to 

Motor 0 and Motor 1 has a pulse time of         and        . 

From the system identification test for the motors, the minimum PWM pulse time is 1150 and 

maximum pulse time is 1700. This correlate to a thrust of     and around      . Using linear 

interpolation, the thrust output by Motor 0 and Motor 1 is estimated to be       and      .   

Recall the dynamics equations derived in Chapter 2: 

                       

   
  

   
 

       

   
     

Assuming that the radius is 9 in or 0.23 m, and that the principal axis of inertia is           

  , the angular acceleration is calculated to be -             or          . This negative 

angular acceleration will bring the beam back toward the level position. As the beam is rotating 

closer to   , the magnitude of the error decreases, hence the magnitude of the control output 

signal decrease. This, in turn, renders a drop in the motor thrust output difference and causes a 

decrease in torque magnitude. When the measured angle is negative, however, the control 

signal and the torque output will be positive to push the beam back to level. A simulation of the 

P controller with a tuning of        and        are illustrated in Figure 7-3 and Figure 7-4. 

As seen in the simulations, the tuning of       , even though arrive to the target angle a lot 

faster, it causes the system to oscillate out of control. Even though the torque is neutral when 

the measured angle approaches 0, the momentum of the beam causes the system to overshoot. 
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And the tilt of the beam became too negative.  The controller over respond and create torque in 

the positive direction. This process repeat and the overshoot become worse and worse.  

A lower proportional gain yield a lower torque responds as shown in Figure 7-4. Hence, the 

system remains somewhat under control. However, it is obvious that the system still oscillate by 

a great amount, a dampening force is necessary to have the system converge to a certain angle.   

 

FIGURE 7-3: PROPORTION CONTROLLER (      ) 

 

 

FIGURE 7-4: PROPORTION CONTROLLER (      ) 
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The dampening effect is implemented by adding a derivative action along with the proportional 

controller. This combined controller is called the proportional-derivative controller, or PD 

controller. The derivative action is similar to that of the proportional control. Instead of scaling 

the error by a gain, the derivative action multiple the error rates by the derivative gain   .  

          

  

  
 

The derivative action has the characteristic that it will decrease the magnitude of the output 

signal if the error rate is high. In another word, if the balancer is approaching the target angle 

too fast, the derivative action will act to reduce the torque. 

Let's take the previous example and expand it to the derivative action. Let say that the second 

reading measured by the IMU is 9  and the measurement time is 0.2 seconds after the initial 

measurement of    . The error rate would be: 

  

  
 

         

  
 

        

   
      

Assume that in this case,        and       , then: 

          

  

  
                     

As seen in this example, the proportional action alone would produce a signal of -9. This would 

yield a rather large torque in the positive direction like before and cause the system to 

overshoot. The derivative action, however, see that the error rate is high, the system would 

soon approach the target and reduced the output signal to -4. This cut the signal and torque 

output by more than half. The derivative action will help dampen the system so that the beam 

doesn’t overshoot as much. 
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In practice, the measurement rate would be a lot faster than 0.2 sec. Therefore the previous 

calculations are only to demonstrate the concept. A more realistic simulation of the PD 

controller with        and        is shown in Figure 7-5. Note that in the following 

simulations,    was combined into   to simplify implementation. This will be discussed shortly.  

 

FIGURE 7-5: PD CONTROLLER (         ) 

It can be seen that the system perform a lot better than the P controller alone. Even though not 

ideal, the beam do settle to the referenced    after around 4.5 sec. The system is damped, but 

under-damped. Hence the first 4.5 sec of the maneuver is still oscillatory. To improve this, the 

derivative gain can be increased.  

 

FIGURE 7-6: PD CONTROLLER (          ) 
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Figure 7-6 shows the simulation result with        . It can be seen that the oscillation is 

completely eliminated. However, the system react a lot slower now. Whereas it only take the 

damped system around 0.2 sec to reach level, the over-damped system take around 1.3 seconds 

to converge to level. This is an indication that    is tuned too high. By decreasing    to around 

5.0, a critically damped performance can be achieved as shown in Figure 7-7. The system now 

only takes around 0.5 sec to converge to level.  

 

FIGURE 7-7: PD CONTROLLER (           ) 

 

FIGURE 7-8: PD CONTROLLER (            
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It should be noted that even though the derivative action provide damping effect to the control 

system, an overly high derivative gain will add oscillation to the system in additional to the 

significantly added lag in system response.  This effect is demonstrated in the simulation result 

shown in Figure 7-7. 

For most applications, a PD controller is competent for optimal performance. However, there 

are cases that the response signal will have a steady state error. For a quadcopter, this could be 

caused by a center of mass not located at the geometric center. In addition, since the hobbyist 

grade RC motors and props often have poor quality control, they will have different thrust 

output. Figure 7-9 show a simulation response with the controller tuned to        and    

    . Motor 1 is set to output       at maximum pulse width while Motor 0 remain at      . 

This causes a steady state error of around +1.5  since Motor 0 doesn’t have enough thrust to 

overcome the thrust bias. 

 

FIGURE 7-9: PD CONTROLLER REPONSES WITH MOTOR BIAS (          ) 
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The steady state error can be reduced and eliminated by applying an integral action to the PD 

controller. All of the components make up the PID controller.  

                
 

 

   

  

  
 

A block diagram of the PID controller is illustrated in Figure 7-10.  

 

FIGURE 7-10: PID CONTROLLER BLOCK DIAGRAM 

The integral action works by accelerating the error over time and then this term is scaled by the 

integral gain   . A simple Riemann sum can be used to implement the integral term digitally.  

                             

The motor biased simulation is run with the PID controller with the gains         

          . The result is shown in Figure 7-11. As seen in the simulation from time 0 to 1.5 

sec, the magnitude of the integral error term is getting larger in each iteration. Hence, it is 

contributing to a growing negative output signal as long the signal is off from the target. This 

larger negative signal help converge the signal back to the target.  

At time 1.5, it can be seen that the integral term now drive the signal past the target. Since the 

error signal is then positive, the integral error go from negative toward more positive. Eventually 

drive the signal back to the target at around 5.8 sec after the step command.  
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FIGURE 7-11: PID CONTROLLER RESPONSE WITH MOTOR BIAS (                    ) 

The settling time for the system not quite acceptable. To improve this, the integral gain can be 

increased. As seen in Figure 7-12, as the integral increases, the overshoot problem worsen. This 

is called the integral windup.  

The Integral windup is cause by an overly large integral term because the system takes too long 

to converge. Ideally, the integral term should only be large enough so that the bias in the motor 

could be overcome.  

 

FIGURE 7-12: PID CONTROLLER RESPONSE WITH MOTOR BIAS (                   ) 
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MODIFICATIONS TO THE TRADITIONAL PID CONTROLLER 

The PID controller, as shown in the previous section, suffers from the integral windup condition. 

In addition, the simulations are based on ideal situations where there are no process and 

measurement noise. When noises are added other problems arise. This section focuses on 

modifying the PID controller so that it is robust enough for flight control.  

The integral windup problem can be addressed by setting a limit on the integral term. By 

capping both ends of the integral term, the integral action of the controller can be set to just be 

large enough just to overcome the motor bias and center of mass problems. The accumulating 

of the error can be modified as follow: 

                                            

                           

Essentially, the error only accumulates if the absolute value of the operation is less than a 

certain limit. This will put a cap on the integral error term. The previous example is simulated 

with an integral limit of 30. The result is illustrated in Figure 7-13. 

 

FIGURE 7-13: PID CONTROLLER RESPONSE WITH MOTOR BIAS (                                    ) 
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It is apparent that with the addition of an integral limit, the overshoot problem is solved and 

that the system converge to the target in 0.5 second. This is significantly better than reducing 

the    since that add a delay in settling time.  

Next, the noise issues should be addressed. The derivative term of the PID controller is often 

problematic due to measurement noise. Recall that the derivative error is calculated by 

backward differences. With the addition of noise, the equation is as follow: 

  

  
 

                 

  
 

Assuming that the original measurement is     and that the next measurement is   . The 

sample time is 0.01 second. In this case, the error rate should be 200. However, let’s assume 

that there’s a measurement noise of      , which is rather common, then the derivative error 

will have an amplified noise of        . The noise is quite significant when compared to the 

original error rate. The noisy error rate could cause more harm than good in terms of 

dampening the system. This problem could be mitigated by smoothing the signal using a moving 

average filter as discussed in Chapter 4.  

           
                           

 
 

Figure 7-14 shown the simulation result for a well-tuned PID controller for continuous time like 

before, but now corrupted with       of noise in the measurement and now run at a sample 

rate of 70 Hz. As seen in the simulation, because of the time delay added by running the PID 

controller as a discrete controller like in real life, the dampening effect is not as good as before. 

In addition, it can be seen that the noise is amplified in the derivative calculation as shown in 

Figure 7-15. 
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FIGURE 7-14: PID CONTROLLER AT 70 HZ WITH NOISE 

 

 

FIGURE 7-15: ERROR DERIVATIVE AT 70 HZ WITH NOISE 
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Another simulation is run with the implement of a 5-term moving average filter. The results are 

shown in Figure 7-16 and Figure 7-17. In comparison with the simulation without the filter, it is 

clear that the high frequency oscillation is gone reduced. The error derivative signal is a lot less 

noisy and the spike seen in Figure 7-15 is reduced. However, the overall angle signal is still 

oscillatory at a lower frequency.  In addition the overshoot during the step change is increased.  

 

FIGURE 7-16: PID CONTROLLER AT 70 HZ WITH NOISE AND MOVING AVERAGE FILTER 

 

FIGURE 7-17: ERROR DERIVATIVE AT 70 HZ WITH NOISE AND MOVING AVERAGE FILTER 
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The moving average filter is more effective at higher sample rate. In the simulations shown in 

Figure 7-18 and 7-19, the controller sample rate has been increased to 200 Hz. In addition, a 

time delay has been added to the motor for more realistic simulation. As seen in the graphs, the 

error derivative increased significantly from Figure 7-15 due to the division of a small   . This 

makes rendered the PWM output have high oscillation amplitude. The attitude performance is 

also rather poor, with the angle oscillate most at    .  

The implementation of a moving average filter here significantly reduced the error derivative 

noise amplitude. This help keeping the PWM output under control. Hence, the attitude 

performance is better, oscillating at roughly      . 

 

FIGURE 7-18:  SIMULATION WITH NOISE AND MOTOR TIME DELAY 

 

 

FIGURE 7-19: SIMULATION WITH NOISE, MOTOR TIME DELAY AND MOVING AVERAGE FILTER 
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The sample time of the PID controller play a major role in determine system performance. The 

original PID controller is set up so that it is run whenever the process gets to it. Therefore, the 

time step is varying. This could cause inconsistent performance as shown in Figure 7-20 and 

make it hard to tune correctly. A way to solve this is to run the PID controller at a fixed time step 

using a timer. The controller is run only when the timer is triggered. Consider that now the time 

step is a constant, the PID control law can be simplified as follow: 

             

 

 

             

Essentially, the    is merged with the    and   , therefore allowing the integral to be calculated 

as the sum of all previous error and the error rate as the difference between the current and the 

last error. An advantage of this implementation is that the controller doesn’t need to calculate 

the time that had passed since the last iteration. In addition overflow problem for the derivative 

term can be avoided since the calculation no longer divide the error difference by a small 

number. Unless otherwise specified, this formula simulated continuously in all previous 

simulations in this section with the exception of the moving average filter demonstrations.  

 

FIGURE 7-20: PID CONTROLLER RESPONSE AT 200 HZ, 100 HZ AND 50 HZ 
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There were several other modifications that were experimented with but was never fully 

implemented in the final version of the Flight Controller due to time restriction. 

One of the modifications was to replace the derivative action with the derivative of the process 

variable. Consider a normal PID controller, when a step command is executed, the sudden 

increase in error will yield a large error rate. Hence, the result is a large output signal and often 

in the wrong direction as shown in Figure 7-21. This is call a derivative kick.  

 

FIGURE 7-21: PID CONTROLLER RESPONSE AND OUTPUT SIGNAL 

The derivative kick, although not shown in simulation, might have some undesirable effect on 

the performance since it will surely saturate the actuators. This condition can be improved by 

replacing the error derivative by the negative derivative of the process variable. Mathematically, 

they are equal assuming that the reference signal is constant.  

  

  
 

      

  
 

  

  
 

  

  
   

  

  
  

  

  
 

 

FIGURE 7-22: PID CONTROLLER RESPONSE AND OUTPUT SIGNAL WITH MITIGATED DERIVATIVE KICK 
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The other modification is also based on the derivative action of the PID controller. Instead of 

damping the system using the error derivative, this uses the derivative of the process variable 

like before. An advantage of this type of control scheme is that the error derivative calculation 

noise can be avoided. The control law is as follow: 

                
 

 

        
  

  
  

The error signal is scaled by an angular rate gain    to calculate the target angular rate. The 

target angular rate is then subtracted by the measured angular rate and result in the angular 

rate error. This is multiplied by the derivative gain and joins the other parts of the controller.  

 

FIGURE 7-23: MODIFIED PID CONTROLLER BLOCK DIAGRAM 

This modified controller was used in the early development stage of the control system and 

went through several rig tests on the prototype hexacopter and the QuadX. Flight data collected 

from the test were promising. However, the PI-PD cascade controller was eventually 

implemented in the FlightOS due to the superior damping behavior shown in the Single Axis 

Motor Balancer test rig.  
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CASCADE PID CONTROLLER 

One of the reasons that makes PID controller powerful is its ability to be cascaded onto each 

other. The idea of a cascade controller is simple, one controller is used to control the set point 

of another. For multirotor aircrafts, the primary controller will use the error in angle to calculate 

a target angular rate. The secondary controller will in turn use the error in angular rate to 

calculate an output signal for the flight mixer.  

 

FIGURE 7-24: CASCADE FLIGHT CONTROLLER 

The implementation of the cascade controllers starts with the secondary controller and then the 

primary controller. Since the integration of angular rate is the angle, a PD controller is usually 

sufficient for the attitude rate controller. The steady error will be handled by the attitude 

controller. At the same time, a PI controller will usually be sufficient for the attitude controller 

since the damping will be handled by the attitude rate controller. Together, this forms the PI-PD 

controller. The experimental results will be discussed in Chapter 10. 
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QUADX FLIGHT ATTITUDE CONTROLLER 

The QuadX flight attitude controller is a 3-axis control system. It is consisted of 2 cascade PID 

controllers for roll and pitch control. For the manual flight control setup, a PID controller is used 

for the yaw rate. This allows the user to turn the quadcopter using a RC transmitter or the 

ground station. Since the yaw angle is with respective to North, it will be inconvenient for the 

pilot to always have to keep track of the direction.  A block diagram of the QuadX flight control 

system in the manual control setup is illustrated in Figure 7-26. 

 

FIGURE 7-25: QUADX FLIGHT ATTITUDE CONTROLLER MANUAL CONTROL SETUP 

In autonomous flight, it is necessary for the quadcopter to have complete attitude control. 

Therefore, a cascade controller is also used for the yaw angle. The guidance module will provide 

the roll, pitch and yaw commands as oppose to manual inputs by the pilot. A block diagram of 

the controller in the autonomous flight setup is shown in Figure 7-26. 
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FIGURE 7-26: QUADX FLIGHT ATTITUDE CONTROLLER AUTONOMOUS FLIGHT SETUP 

The yaw angle provided by the IMU is commonly reported from       to     , where    is 

configured to point at the magnetic North. The normal PID controller error calculation algorithm 

is not the most efficient when the shortest distance between the target and actual angle crosses 

South. For example, assume that an aircraft is currently at       and the target yaw angle is 

     as shown in Figure 7-27.  

 

FIGURE 7-27: YAW ANGLE COMPASS 

The standard error calculation method will yield a result of       and signal the aircraft to turn 

clockwise until the target is reached.  However, it is obvious that the closet route to the target is 

counterclockwise with an error of     .  To mix this, the first step is to remap the angle to the 

format    to      where North is   . Then, the error signal is checked whether it is turning the 
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most efficient direction. In yaw, the largest magnitude error should only be     . If the error 

magnitude is larger than     , then it need to be recalculated by manually adjusting the target 

and measured yaw so that the calculated error will turn the quadcopter in the correct direction. 

Snippet of the yaw logic code written in Python is illustrated in Figure 7-28. 

 

FIGURE 7-28:  YAW ERROR CALCULATION LOGIC 

 

QUADX FLIGHT POSITION CONTROLLER 

The QuadX's ultimate goal is to achieve autonomous flight to follow a trajectory defined by the 

guidance system. This requires positional control for localized longitude, latitude and altitude. 

Recall the hopper simulator's dynamics equation in Chapter 2: 
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It is clear that all 3 components of the aircraft's position are coupled with the attitude and 

thrust. The dynamics is highly non-linearly, but an attempt was made to control the position 

using the linear PID controller. To do this, some assumptions must be made.  

Primarily, the position controllers will be controlling positions in the yaw frame    as defined in 

Chapter 2. This way, the yaw frame longitude along the     direction can be controlled by the 

aircraft's roll. At the same time, the yaw frame latitude along     can be controlled using pitch. 

As for altitude, due to the nature of the yaw rotation matrix, it is the same in body and inertial 

frame. The altitude is assumed to be controlled by the throttle. A flow chart displaying the 

control system is illustrated in Figure 7-29. 

 

FIGURE 7-29: QUADX FLIGHT POSITION CONTROLLER SETUP 

The reference signal provided by the guidance system will be in the inertial frame. In addition, 

the localized GPS location along with the height provided by the ultrasonic sensor will also be in 



138 
 

the inertial frame. Therefore, it is important transform the measurements and reference signal 

to the correct frame using the yaw angle and the aCn rotation matrix before calculating the error 

signal for the PID controllers. Since it is more useful to know the aircraft's height above ground 

for low altitude, the height in the guidance and control system is modified to      . This 

makes it easier to interpret plots and data later on. 

               

  

  

  

 

 

 

               

       

       

       

 

 

 

          

   

   

   

 

   

                     

The output of the yaw frame longitude and latitude controllers are the target angles and are 

directly fed into the attitude control system. The altitude controller signal output, however, 

must be combined with the hovering PWM pulse width before it can be used as the throttle 

pulse width. With this modification, the PID controller can increase or decrease the multirotor's 

altitude without much effort. The hovering pulse width for the QuadX with 1650 g of mass is 

around 1350. The simulation and experimental result of this value matches closely.  

 

FIGURE 7-30: ALTITUDE CONTROLLER TO THROTTLE 
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Chapter 8: NAVIGATION SYSTEMS 

The guidance and navigation system enable autonomous flight for the space hopper simulator. 

Though there was not enough time for full implementation into the FlightOS, the two were 

studied in computer simulations and partially experimented.   

 

GPS LOCALIZATION 

The navigational data received from the GPS are in geo-coordinate format. This is not 

particularly useful in positional control since it is not possible to directly compute the 

displacement error differences. To do that, the geo-coordinate should first be localized to a 

reference position. This reference position would most likely be the initial position of the aircraft 

when first power on. 

For example, geo-coordinates collected with the GPS in a test in front of Packard Lab in Lehigh 

University are plotted in Figure 8-1. 

 

FIGURE 8-1: RAW EXPERIMENTAL GPS POSITION DATA 
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To the human eye, the plot is very useful in determining the position of the sensor since we can 

relate the position with respect to the roads and buildings. However, to a machine, this means 

nothing since it doesn’t take into account of those parameters.  

 

GPS COORDINATE STRING TO RADIAN COORDINATE CONVERSION 

The geo-coordinate reported by the GPS is usually in a degree format that must be processed 

before localization. Consider the following coordinates from the Ultimate GPS: 

                      

The string must be first rearranged into degree and minute format.  

                            

Then, to obtain the decimal degree form, the minute term should be divided by 60. In addition, 

North and West should be translate to + and – with respective to the inertial frame.  

                

Finally, the coordinate should be converted into radian by multiplying by       . 

               

This string to decimal process should be automated and implemented in the flight navigation 

system. In addition, the significant digits should be retained along the calculation process for the 

most accurate position calculation. 

 

 



141 
 

FLAT EARTH APPROXIMATION 

To localize the geo-coordinates, displacements must be calculated for all points with respect to 

the initial coordinate. For small distances away from the poles, a simple flat Earth approximation 

could be used [18]. The displacement calculated are in the standard North, East, Down inertial 

frame. Note that in the following equations, the geo-coordinates are expressed in radian.  

               

                        

               

               

    is the meridional radius of curvature and    is the prime vertical radius of curvature. The 

radius can be calculated with the World Geodetic System (WGS) parameters equatorial radius 

               and flattening                  .  

 

   
       

                   
 

   
 

               
 

          

 

 

 



142 
 

The localized experimental data from Figure 8-1 is plotted in Figure 8-2. The processed data are 

expressed in meters displaced from the origin in the North and East direction. This is perfect for 

comparing with the trajectory generated by the guidance module and can be directly plugged in 

to position PID controller. 

 

FIGURE 8-2: LOCALIZED EXPERIMENTAL GPS POSITION DATA (M) 

 

GPS SENSOR NOISE 

One of the biggest problems with the GPS is that there seems to a lot of noise and delay in the 

data. The precision and accuracy of the reported position are determined by a number of 

external factors as the atmospheric condition and signal bounces that are sometime 

unavoidable. Even though the minimum number of satellite required for a GPS receiver to 

calculate the position is 3, in reality, the positions calculated are quite poor in quality.  
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FIGURE 8-3: LOCALIZED EXPERIMENTAL DATA COLLECTED AT LEHIGH UNIVERSITY ASA PACKER CAMPUS 

 

 

FIGURE 8-4: ACTUAL VS. MEASURED PATH TRAVELLED (GREEN = TRUE PATH / RED = GPS PATH) 
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Several GPS tests were conducted in the Asa Packer Campus at Lehigh University with the 

assistance of an undergraduate student. Figure 8-4 illustrated the differences between the 

actual and measured travel path. On the other hand, Figure 8-3 shows the order in which the 

data points are collected. As seen in the figure, there is a lot of noise in the measurements.  

The actual travel path started at the front of Packard lab and head North until intersecting with 

Packer Ave. Then, the test rig was brought along the side of STEP toward West Packer Ave and 

turn North into Vine Street. The group then turned into Asa Drive along the parking garage, 

going through the bridge at the Fairchild-Martindale Library and head south back to Packard 

Lab.  

By analyzing Figure 8-4 with Figure 8-3, it can be concluded that the beginning measurements 

were the noisiest. The data shown that after exiting Packard Lab, the position jumped East to 

Packard Memorial Church and Fritz Lab. Then, the signal jump South through Chandler-Ullmann, 

Linderman Library and rest at Coppee Hall. The position then jumps Northeast toward Wilbur 

Power House and stop at the Heating Refrigeration Building across from Rauch Business Center. 

The signal then shoots Northwest crossing Neville Hall, Sinclair Lab and end up at the bookstore. 

Then the sensor finally cut through STEPS and converges to the actual travel path and meets up 

at West Packer Ave.  

Looking at the density of the measurement point, it is clear that the earlier data points jump all 

around the campus. In the actual travel path, the group was walking under a path covered with 

tall trees overhead. Referencing the logged data from the GPS, the lock during that period 

consisted only of 3 satellites. The condition improve significantly after meeting with Packer Ave 

since that area is out of the main campus area and is more open. The satellite lock count 

increased to 6 and the position slowly converges closer to the actual travel path.  
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It is apparent that the raw data collected from the GPS is not always reliable and is directly 

related to the number of satellites the receiver can get a signal lock. In order to get a high 

number of locks, the receiver must be in an open area with minimal overhead blockage that will 

induce signal bounce. It is a big limitation that the guidance, navigation and position control 

system cannot be used in the Asa Packer Campus because of the trees. In this case, the optimal 

location to develop the navigation and positional control system is Goodman campus. However, 

it is located very far from the Aerospace Systems Lab thus hinder the development process.  

A possible solution to this problem is to add an optical flow sensor for sensor fusion with the 

GPS. The optical flow sensor is a common electronic used in laser mouse. Basically, it is a camera 

combined with an ultrasonic range finder that detects velocity by taking picture of the ground 

and comparing the shift in pixels. The data is similar to that of a gyroscope but instead of 

attitude rate, this report position rate in the yaw frame. The sensor data can be integrated to 

find position relative to the starting position, but care must be taken to convert the data back to 

inertial frame. 

 

FIGURE 8-5: 3D ROBOTICS PX4FLOW OPTICAL FLOW SENSOR [19] 
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GPS POSITION KALMAN FILTERING 

The data noise in Figure 8-4 is somewhat extreme, the measurements are unusable and most 

likely no simple filter will be able to help that. However, in normal operation with a more 

reasonable number of satellite locks, a moving average filter will help smooth out the noisy 

data. Though care should be taken to avoid adding too much delay into the system.  

A Kalman Filter could be used to combine the aircraft's dynamics, kinematics, and the noisy GPS 

measurements to obtain a more accurate position estimation. Consider the following kinematic 

equations: 

        
 

 
       

         

Applying the kinematic equations above for the inertial frame and treating the accelerations as 

input from the dynamics equations, the following state space model and process covariance 

matrix is obtained: 

PREDICTION 
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The inputs of the state space model are an acceleration vector in the North, East and Down 

direction. Using the roll, pitch and yaw angles obtained from the IMU, along with an estimated 

thrust from the PWM pulse width output, the accelerations can be calculated. The thrust is 

estimated through linear interpolation to relate PWM pulse width with thrust. For the Kalman 

filter simulation: 
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With the thrust data available, the dynamics equation from Chapter 2 can be used to calculate 

acceleration in the Body frame. Then, a nCa rotation matrix can be used to transform all the 

acceleration back to inertial frame. 

 
  
  
  
 

 

  

    
     

      
  

 

  

 
  

  

  
 

 

       
  
  
  
 

 

 

 

OBSERVATION 

            

 
 
 
 

 

 

  
      
      
      

 

 
 
 
 
 
 
 
  

 
  

 
   

 
 
 
 
 

 

    

 

           

   
    
    
    

  

The data observed by the GPS and the ultrasonic range finder are position in the North, East and 

Down. Since the measurements are noisy, the   values are usually tuned high to trust the 

dynamics prediction more than the noisy measurement data collected.   
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INITIALIZATION 

   

 
 
 
 
 
 
      
      
      
      
      
       

 
 
 
 
 

 

   

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 

For initialization, the error covariance and Kalman gain matrix should be initialized to a diagonal 

matrix with large elements and a zero 6 by 3 matrix respective. The initial states vector can be 

set to 0 and the Kalman filter will automatically adjust and converge to the actual value later in 

estimation.  

IMPLEMENTATION 

The Kalman filter was implemented in Simulink using the processes described in Chapter 4. 

Noise is added to the attitude and thrust estimation for the simulation to be more realistic. In 

addition, the GPS and ultrasonic sensor are set to have a Gaussian noise of 10 m and 0.3 m 

respectively. Initially, the Kalman filter was set to run at 5 Hz. However, it seems that this 

frequency is too slow for the filter's dynamics model predicts the position with enough accuracy. 

Therefore, the sample frequency was set to 70 Hz. With the measurement noise matrix  set 

to                               , the simulation filtering result is as follow. 
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FIGURE 8-6: KALMAN FILTERED LATITUDE DATA WITH              

As seen in Figure 8-6, the Kalman filter is able to effectively filter out the high frequency noise in 

the system. However, it is apparent that there's a drift issue with the noise and uncertainty in 

the state space inputs. This indicated that the filter is relying too much on the physics model and 

   should be lowered to rely more on the sensor data. 

 

FIGURE 8-7: KALMAN FILTERED LONGITUDE DATA WITH            
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Figure 8-7 illustrated the longitude filtered result. As seen in the figure, even though the signal is 

not as smooth as filtered signal from Figure 8-6, the drift problem is mostly solved. At the same 

time, Figure 8-8 shows a well-tuned signal that has no noticeable drift issues.  

 

FIGURE 8-8:  KALMAN FILTERED ALTITUDE DATA WITH            

 

The downfall of a 70 Hz Kalman filter is that the processing time is very long in Simulink due to 

the amount of linear algebra involved. Therefore, the sampling frequency is reduced to 20 Hz. In 

addition, the Gaussian noise generator is set to generate at 5 Hz to reflect the GPS sampling rate 

in real life. This, however, causes a drop in performance for the Kalman filter. The time step in 

the physics model is larger, hence, the prediction error is larger and the predicted signal tends 

to drift over time. Therefore, the   matrix must be tuned lower to rely more on the 

measurement data. That in turn causes more oscillation.  

The simulation result with the measurement noise matrix set as                      is 

illustrated in Figure 8-9.  
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FIGURE 8-9: KALMAN FILTER SIMULATION RESULT AT 20 HZ 

One of the advantages of the Kalman filter is its ability to use the dynamics model to predict 

aircraft position. The Kalman gain is computed by using the differences between the measured 

and predicted position. In spacecraft navigation, measurements between data points are often 

slow and might sometime not available due to communication blockage like during an Apollo 

mission at the far side of the moon. With the Kalman filter, it is possible to continuously 

estimating the spacecraft's position using the dynamics model. The simplest way to implement 

this is by disabling the Kalman gain state update phase when there is no measurement: 
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A simulation was conducted with measurement missing from 3 to 5.5 seconds and the results 

are illustrated in Figure 8-10. In comparison with Figure 8-9, the estimated signal drifted away 

from the actual signal, but converges back after measurement is available again. 

 

 

FIGURE 8-10: KALMAN FILTER SIMULATION RESULT AT 20 HZ WITH MISSING MEASUREMENT 
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Chapter 9: GUIDANCE SYSTEMS 

THE HOPPING MANEUVER  

The guidance system is in charge of generating a reference trajectory for an aircraft to follow. 

Traditionally, the trajectory would be a straight line connects two way points, since this is the 

shortest route in flight. For the hopper spacecraft, the robot would first be landed on the lunar 

surface. It would take a lot of propellant to take off, maintain a constant altitude, maneuver 

horizontally and land. The most optimal trajectory to travel large distance is through a hopping 

maneuver. The spacecraft would thrust at an angle to take off and provide a horizontal velocity. 

Near the end of the parabolic flight, the spacecraft would execute a reverse thrust to cancel out 

the horizontal velocity and slow down the descending rate.  

 

FIGURE 9-1: HOPPER SPACECRAFT HOPPING MANEUVER TRAJECTORY 

A major disadvantage of this trajectory is that during the landing burn, any overshoot in the 

altitude control system would likely damage or destroy the drone. To prevent this, the trajectory 

is modified so that the aircraft first take off and slowly hover to a pre-defined minimum safety 

altitude. The aircraft then execute a hop and end targeting the safety altitude. This way, if there 
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is any overshoot during the reverse thrust, there will be a buffer zone before the aircraft impact 

with the ground. Finally the aircraft will slowly descend to ground level for landing.   

 

FIGURE 9-2: MODIFIED HOPPING MANEUVER TRAJECTORY 

 

HOPPING TRAJECTORY GENERATOR  

The hopping trajectory is defined by several key parameters: the destination coordinate, max 

height, min safety height, hopping duration and the initial take off/landing duration. These 

parameters directly affect the characteristic of the flight path and should be adjusted to match 

mission specs to satisfy geographic restrictions such as the lunar terrain.  

The overall hopping maneuver trajectory is consisted of the longitudinal, latitudinal, and 

altitudinal component. These components are generated separately and feed directly into the 

flight position controller.  
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FIGURE 9-3: HOPPING TRAJECTORY GENERATOR 

 

LONGITUDE / LATITUDE TRAJECTORY GENERATOR 

The longitude and latitude trajectory are generated using the same method since they both 

control how the aircraft move horizontally. In the hopping maneuver, the horizontal position 

remains the constant as the aircraft slowly reaches the safety altitude. During the hopping 

phase, the aircraft translate at constant speed to its destination and stop when the target is 

reached. The aircraft then remain at the same horizontal position as it descends. Overall, the 

horizontal trajectory should look like a ramp command as shown in Figure 9-4. 

 

FIGURE 9-4: HORIZONTAL TRAJECTORY FOR LOCALIZED DESTINATION (35 N, 20 E) 
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As seen in Figure 9-4, the horizontal trajectory is broken into 3 parts. The initial position holds 

for takeoff, constant velocity cruising during hop and final position hold for landing. Let's 

assume that       represents the position holding duration and         represents the cruising 

duration defined by the operator. In addition, the variable   represent the time after a hop 

command is executed. For position,      and      represent the localized destination coordinate 

while      and      represent the coordinate of the origin. The longitudinal trajectory is 

generated as follow. Again, the latitudinal trajectory is generated using the same method. 

 

Take Off Phase          : 

       

 

Cruise Phase                                    

  
         

       
           

 

Landing Phase                       

       

 

ALTITUDE TRAJECTORY GENERATOR 

The altitude trajectory is also broken into the same 3 phases. However, the overall geometry is a 

bit more complicated. In the takeoff phase, the QuadX is command to slowly rise to the 

minimum safety height in      . This will be a ramp command. Then in the hopping maneuver, 

altitude is controlled by a sine wave to achieve a parabolic trajectory.  At the end of the hop, the 

aircraft enter landing phase and ramp down to the ground. An example vertical trajectory is 

shown in Figure 9-5. 
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FIGURE 9-5: VERTICAL TRAJECTORY (MAX ALTITUDE:  15M / MIN ALTITUDE: 2M) 

To calculate the trajectory, let's assume that           is that maximum height the trajectory 

will achieve while           is the minimum safety height that provide a buffer zone should the 

aircraft overshoot at the end of the hopping maneuver.  

Take Off Phase: 

  
         

     
   

 

Cruise Phase: 

                      

        
  

         
                      

 

Landing Phase: 
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TARGET YAW DETERMINATION  

3 METHODS OF TRANSLATION 

There are generally three ways an aircraft could translate to its destination. The first involve the 

yaw direction consistently being lock toward the waypoint. The aircraft would then pitch to 

accelerate toward the waypoint.  

The second method involves the yaw direction being lock to a certain direction, such as North. 

In that case, roll would be used to control the longitude and pitch would be used to control the 

latitude. If the defined direction is of some other angle, then a simple 1D yaw rotation matrix 

could be used to calculate the displacement components with respect to the aircraft. 

The final method involves the aircraft facing a certain target at all time. This would be useful if 

the mission is to photograph a certain point of interests during flight to a destination. However, 

this would require a time varying yaw and changing rotation matrix. In the beginning of the 

flight, the aircraft might be pitching forward, but near the end, it might be pitching backward. 

Because of this, stable flight control might be difficult to achieve. 

 

 

FIGURE 9-6: THREE METHODS OF MULTIROTOR TRANSLATION 
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BEARING CALCULATION 

Trigonometry can be used to compute the reference yaw signal to the attitude controller. Note 

that the arctangent function has the following format            and that     is the modulus 

function. The resulting bearing is the degree deviated from North. The following equations work 

in most cases. However, be must be taken to make sure that      and      is not overly small, 

or else there will be significant error in the bearing calculation. 

               

               

                                
   

 
 

WAYPOINT FACING METHOD 

With the waypoint facing method, the aircraft is always facing the target destination. This way, 

only pitch is necessary to complete the flight. Let's assume that     and     are the current 

aircraft position. For this method the differences in longitude and latitude are calculated with 

the following equations: 

              

              

 

DIRECTION FACING METHOD 

The direction facing method is the simplest. The target yaw is simply predefined by the operator 

and doesn't require any special calculations. As with all the methods described here, the 1D yaw 

rotation matrix in the position controller will help the QuadX to figure out the correct roll and 
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pitch combinations to achieve the translation to the destination while facing at direction 

specified. 

 

TARGET FACING METHOD 

For the target facing method, the differences in longitude and latitude is calculated as follow. 

Assume that      and      are the localized position of the facing target.  
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Chapter 10: SIMULATION MODELING AND RESULTS 

The QuadX flight system was simulated in Simulink before implementation. To construct the 

foundation of the simulation, a dynamics block was created using the equations derived in 

Chapter 2. In addition, The QuadX's GN&C system, flight mixer and motor thrust output were 

modeled. The simulation architecture can be found in Figure 10-1. 

 

 

FIGURE 10-1: SPACE HOPPER SIMULATOR SIMULINK SIMULATION ARCHITECTURE 
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MOTOR SYSTEM IDENTIFICATION 

A large portion of the simulation can be ported from codes already developed for the QuadX. 

This will verify that the software logic is functioning properly. The motor output and dynamics 

function block, however, required several physical parameters. The aircraft's mass and moment 

of inertia can be obtained from the 3D CAD model created in SolidWorks. However, the motor 

thrust and torque output must be modeled after experimental data. Hence, the NTM 28-36 750 

KV motor went through the system identification process using a thrust stand in the aerospace 

system laboratory. 

 

FIGURE 10-2: RC MOTOR THRUST STAND 

 

The thrust stand, as shown in Figure 10-2, is set up using the lever system. A motor is attached 

to the motor mount at the bottom of the lever. At the other end, a force gauge is connected to a 

National Instruments data acquisition system to measure the force being applied to it through 
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the lever. Since the motor and the force gauge's distance away from the pivot point are slightly 

different, a simple ratio factor is required to calculate the thrust outputted by the motor.  

 

THRUST STAND CALIBRATION 

The thrust stand is calibrated by removing the thrust gauge and hanging various calibration 

weights on it. The data are plotted and a linear equation was obtained to convert the analog 

signal into thrust measured in gram-force. Measurements in gram-force will allow easier 

calculation in determining the thrust to weight ratio.  

 

FIGURE 10-3: THRUST STAND CALIBRATION DATA 

 

RAW THRUST DATA 

Thrust testing was conducted for multiple motors the propellers combinations. The data for the 

NTM 28-36 750KV motor and a 12x4.5 propeller will be discussed here since that is the 

combination being used in the propulsion system.  
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The experiment was conducted in MATLAB in which the Pololu Micro Maestro 6 Ch USB 

Controller was used to generate PWM signal for the motor. On the other hand, the NI DAQ was 

used to collect analog signal generated from the force gauge with a sample time of 0.0006 sec.  

The testing sequence was predefined in a MATLAB script. The motor is to go through a ramp 

command from minimum to maximum PWM pulse width. Then, the motor is commanded to go 

through a series of random step commands and finally decrease back to minimum throttle 

through a decreasing ramp command. The raw thrust data is reproduced in Figure 10-4. 

 

FIGURE 10-4: NTM 28-36 750KV WITH 12X4.7 PROP AT 15.8V 

As seen in the chart above, there is a lot of noise in the measurement. This is most likely caused 

by vibrations from the loose parts in the set up. Several attempts were made to dampen the 

thrust stand, but it was no use. Therefore, digital filters were used to post process the data. 
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FILTERED THRUST DATA 

In an attempt to eliminate the high frequency noise in the measured data, the raw thrust data 

were processed through Fast Fourier Transform and plotted in Figure 10-5. It can be seen that 

most data are resided in the left end of the graph while the right end contain data for the high 

frequency noise.  

 

FIGURE 10-5: FAST FOURIER TRANSFORM OF RAW THRUST DATA 

 

To eliminate the unwanted noise, a portion of the data was extracted from the left end of the 

FFT data and inverse Fourier transformed back in to time domain. The result was plotted in 

Figure 10-6. It is obvious that the thrust data improved drastically when compared with the raw 

thrust data in Figure 10-4. However, the max thrust output is now around 800, whereas the raw 

data show a max thrust of around 1500, which is considerably higher. The reason for this drop in 

amplitude is because the low pass filter eliminated all the higher frequency signal, including the 

actual thrust data that make up the amplitude. 
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FIGURE 10-6: INVERSE FAST FOURIER TRANSFORM OF LOW FREQUENCY THRUST DATA 

 

After that, a moving average filter of 10, 100, 500, 1000, 5000 terms are used. As seen in Figure 

10-7, the higher the average terms, the smoother the signal. However, at the same time, this 

causes delay and too much smoothing blur the response differences between each PWM pulse 

commands. It is necessary to shift the data in order to have the timing line up correctly.  

 

FIGURE 10-7: COMPARISON OF FILTERED THRUST DATA 
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Eventually one of the filtered results was chosen and is illustrated in Figure 10-8. As seen in the 

data, the PWM pulse width range from around 1150 to 1700 and corresponding to a thrust of 0 

to 1050 g. This data is used to construct a simple PWM to thrust output for the simulation 

through linear interpolation.  

 

FIGURE 10-8: FILTERED THRUST DATA 

 

After modeling the motor's thrust output, the torque output data is required. The motor is then 

rotated to its side and remounted onto the test rig. Using the same process, the motor's torque 

was measured as force from the lever. This "torque force" is required to be scaled before using 

in the simulation. The result for the torque output is shown in Figure 10-9.  
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FIGURE 10-9: FILTERED TORQUE DATA MEASURED AS FORCE 

 

As seen in the chart, the torque output is not linear and is generally proportional. The min to 

max throttle yield a torque output from 0 to around 70 grams. To simplify the simulation, the 

torque data is treated as linear and the conversion from PWM pulse width to torque is once 

again based on linear interpolation. 

 

SYSTEM IDENTIFICATION TOOLBOX 

The linear interpolation method currently used in the simulation is simple and effective. 

However, it is not very accurate and does not take into account of physical behavior such as the 

motor and propeller's delay in thrust response. In an attempt to create a more accurate motor 

model, the MATLAB system identification toolbox was used to identify a transfer using one set 

experimental data and verify with another set of experimental data.  
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FIGURE 10-10: SYSTEM IDENTIFICATION TOOLBOX VERIFICATION 

 

Figure 10-10 shows a comparison of various models identified by MATLAB. It seems that a 3 

zeros 5 poles transfer function best fit the system with a 92.47% fit. Due to time constraint and 

that a high fidelity model is not absolutely necessary for logic testing, investigation for modeling 

the motor was halt.  

 

POWER CONSUMPTION ESTIMATION 

For effective guidance, the energy consumption of the hopping maneuver should be optimized 

in the future. The thrust and power equations (3.1 and 3.2) discussed in the propulsion section 

of Chapter 3 can be used to solve for energy with parameters gathered from the simulation. 
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The RPM of the motor is then solved by using the quadratic equation. With that RPM, the power 

consumption at that iteration can be solved using the propeller's prop constant and power 

factor as discussed previously.  

                     
   

    

            

 

To obtain energy over time, the power is integrated.  

                             

 

SIMULATION PARAMETERS 

The simulation is constructed such that the aircraft modules are simulated as discrete function 

block. On the other hand, the dynamics of the system is continuous. The sample frequency for 

each block can be found in Table 10-1. In addition, the gains used in the control system can be 

found in Table 10-2.  

 Guidance Navigation Position 
Control 

Attitude 
Control 

Dynamics 

X Axis 200 Hz Inherit 5 Hz 120 Hz Continuous 

Y Axis 200 Hz Inherit 5 Hz  120 Hz Continuous 

Z Axis 200 Hz Inherit 20 Hz 120 Hz Continuous 
TABLE 10-1: SIMULATION MODULES SAMPLE FREQUENCY 

 

 Position Control Attitude Control Attitude Rate Control 

X Axis 10/0.1/50/20 15/0.2/0/10 1/0/0.1/20 

Y Axis 10/0.1/50/20 15/0.2/0/10 1/0/0.1/20 

Z Axis 150/1/1500/10 5/0.3/0/50 7/0/2/20 

TABLE 10-2: SIMULATION PID CONTROLLER GAINS (                        ) 
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SIMULATION RESULT 

WAYPOINT FACING HOPPING MANEUVER 

This simulation was conducted using the waypoint facing translation method. The guidance 

trajectory generator parameters are shown in Table 10-3. The total duration of the simulation is 

30 seconds and the total distance traveled will be around 40.3 meters  

Target 
Latitude 

Target 
Longitude  

Max 
Height  

Min 
Height 

Hopping 
Duration 

Landing 
Duration 

Yaw 
Mode 

35m 20m 15m 2m 20s 5s Waypoint 

TABLE 10-3:  SIMULATION GUIDANCE TRAJECTORY PARAMETERS 

 

FIGURE 10-11: WAYPOINT FACING HOPPING MANEUVER TRAJECTORY (M) 

 

 

FIGURE 10-12: 3D COMPARISON OF TRAJECTORY AND SIMULATED FLIGHT PATH (M) 
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FIGURE 10-13: LATITUDE / LONGITUDE TRAJECTORY AND SIMULATED FLIGHT PATH (M) 

 

FIGURE 10-14: ALTITUDE TRAJECTORY AND SIMULATED FLIGHT PATH (M) 

From the figures above, it can be seen that the position and attitude controller work very well in 

achieving the target trajectory with about 0.5 m of overshoot in altitude during the end of the 

hopping maneuver. This is not a problem thanks to the buffer zone allocated by the guidance. 
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FIGURE 10-15: SIMULATED ATTITUDE (DEGREES) 

 

 

FIGURE 10-16: SIMULATED THRUST OUTPUT (N) 

 

Figure 10-15 and Figure 10-16 reflect the attitude and thrust required to achieve the hopping 

trajectory. Since the initial hop and landing phase take place at     and     , it can be seen 

that the attitude and the thrust has the most rapid changes there. The translation mode for this 

simulation is waypoint facing. Therefore, only the pitch is used to achieve a change in horizontal 

velocity, peaking at around     . On the other hand, the thrust is in charge of the altitude. To 
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initiate the parabolic hop and to cancel out the vertical and horizontal velocity at landing, the 

motors used about 27 N of thrust. That is 63% of the total available thrust. In order to maintain 

the parabolic flight path at a near hovering status, the motors remain generating 16 N of thrust 

throughout the flight.  

 

FIGURE 10-17: SIMULATED ENERGY CONSUMPTION (J) 

 

As seen in the energy consumption chart in Figure 10-17, the takeoff and landing phase take the 

least amount of energy. Then, the energy consumption rate increase as the aircraft enters the 

hopping maneuver.  The total energy consumption is around 6600 Joules. 

 

WAYPOINT FACING HOPPING MANEUVER (AGGRESSIVE TRAJECTORY) 

The entire flight duration for the previous simulation is 30 seconds. Lots energy is spent in 

maintaining the flight altitude. To reduce energy consumption, a more aggressive trajectory can 

be generated by reducing the hopping and landing duration by half. The new guidance 

parameters and results are shown below. 
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Target 
Latitude 

Target 
Longitude  

Max 
Height  

Min 
Height 

Hopping 
Duration 

Landing 
Duration 

Yaw 
Mode 

35m 20m 15m 2m 10s 2.5s Waypoint 

TABLE 10-4: AGGRESSIVE SIMULATION GUIDANCE TRAJECTORY PARAMETERS 

 

FIGURE 10-18: AGGRESSIVE LATITUDE / LONGITUDE TRAJECTORY AND SIMULATED FLIGHT PATH (M) 

 

FIGURE 10-19: AGGRESSIVE ALTITUDE TRAJECTORY AND SIMULATED FLIGHT PATH (M) 

 

With the new trajectory, a higher horizontal velocity is necessary. Therefore, as seen in Figure 

10-15 and Figure 10-16, a much higher pitching angle and thrust is required to keep up with 

trajectory. The peak angle is now at around      and the peak thrust output is     . That is 

around 86% of the total available thrust. It can be seen that because the aircraft dedicated more 

of the thrust to the horizontal velocity, there is now an overshoot of around 1.5 m into landing.  
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FIGURE 10-20: AGGRESSIVE SIMULATED ATTITUDE (DEGREES) 

 

FIGURE 10-21: AGGRESSIVE SIMULATED THRUST OUTPUT (N) 

 

FIGURE 10-22: AGGRESSIVE SIMULATED ENERGY CONSUMPTION (J) 
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Due to the reduced time in flight, less thrust is necessary to keep the aircraft in the air hovering, 

as the motion switch from ascending to ascending rather quickly. The thrust to maintain the 

aircraft in the air is now reduced to around 15N. When analyzing Figure 10-17, it is clear that the 

energy consumption rate is increased for       and       , but reduced overall everywhere 

else. The total energy consumption reduced from 6600 Joules to 5000 Joules. This is roughly a 

25% drop in energy consumption and it is possible to get to the destination in half the duration. 

The tradeoff is that the flight overall less stable and that the actuators are being stressed.  

TARGET FACING HOPPING MANEUVER 

The Google Lunar XPRIZE competition required that the spacecraft move a distance of over 500 

meters. Therefore, a hop was simulated from Packard Lab to Zoellner Arts Center while facing 

the Fairchild-Martindale Library.   

 

FIGURE 10-23: HOPPING ORIGIN, DESTINATION AND FACING TARGET 

Target 
Latitude 

Target 
Longitude  

Max 
Height  

Min 
Height 

Hopping 
Duration 

Landing 
Duration 

Yaw 
Mode 

75m 535m 30m 5m 100s 5s Target 
(75,154) 

TABLE 10-5: TARGET FACING HOP GUIDANCE TRAJECTORY PARAMETERS 
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FIGURE 10-24: TARGET FACING HOP FLIGHT PATH, ATTITUDE AND THRUST OUTPUT RESULT 
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As seen in the simulation results from Figure 10-24, completing this hopping maneuver of 

around 537 meters in 100 seconds is actually relatively aggressive compare to normal flight. On 

average, the QuadX have to travel around 5 meters per seconds, or 12 miles per hour. To 

achieve this, the motors are required to output a maximum of 33 N of thrust. 

Since the aircraft is set to target facing mode, the quadcopter is constantly facing the library. 

Hence, the yaw is constantly changing as shown in the attitude graph. The angle changes most 

rapidly when the aircraft crosses the target. Because of the changing yaw, the original maneuver 

to initiate the hop is consisted of a mixture of roll and pitch. During the landing phase, the 

maneuver is mostly pitch since the target is facing toward the west.  

In summary, the cascade PID control system is able to handle both large and short distance 

maneuver without  modifications to the gain as long as the differences is not too great and that 

the trajectory is not too aggressive. The flight performance is also very good and has some 

degrees of noise rejection.   

The gains used in this simulation are not applicable to real life implementation due to several 

assumptions to simplify the modeling process. For example, the model does not take into 

account of atmospheric drag. In addition, the derivative gain for altitude controller will most 

likely cause problems when tuned that high from noise.  However, the simulation serves the 

purpose of proving that the concept logic will work. In the future, for simulation in the lunar 

environment, the gravity in the dynamics block can be adjusted to           . The gain will 

need to be retuned, but the rest of the system should remain mostly the same. 
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Chapter 11: SINGLE AXIS MULTIROTOR BALANCER 

HARDWARE AND ELECTRONICS SETUP 

In order to choose the correct control law for the space hopper simulator, a single axis 

multirotor balancer was designed and constructed.  As shown in Figure 11-1, the balancer is 

consisted of an aluminum beam 18" in length. Two brushless motors are mounted at the ends of 

the beam and a connecting rod is mounted at the center of the beam to provide a pivot point. 

The connecting rod is connected to bearings inside a block that's mounted to a table in the lab. 

Collars are used to lock the rod in the axial direction while allowing rotation motion. It is 

calculated in SolidWorks that the principal inertia for the rotating portion of the balancer 

is             . 

 

FIGURE 11-1: SINGLE AXIS MULTIROTOR BALANCER 

The electronics for the test rig are harvested from an existing quadcopter. Therefore, the 

hardware is a bit different than that used in the hopper simulator. In the balancer, the LazerToyz 

Blue Wonder 1000 kV 24g brushless motors are used. Two Turnigy Multistar 15Amp ESC are 
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used to drive the motors. A MPU-6050 IMU is used to sense attitude data and an Arduino UNO 

is used to control the test rig. An adjustable DC power supply is used to power the entire 

system. 

Software development for the balancer is relatively easy thanks to the software modules that 

have already developed for the hopper. Most of the modules can be integrated with a few 

simple modifications. The only challenge is interfacing the InvenSense MPU-6050 IMU 

considered the IMU module is designed for the CH Robotics UM7.  

The MPU-6050 is a popular low cost IMU that's widely used. As opposed to the UM7's $130 

price point, the MPU-6050 only cost around $3. It interfaces with microcontroller via I2C 

interface and contain a Digital Motion Processor to calculate MotionFusion data. The hardware 

seems to be an excellent choice considers its price and hardware specification. However, 

community support in using the Digital Motion Processor is almost non-existence. Hence most 

non-professionals can only retrieve the raw gyro and accelerometer data. Sensor fusion 

algorithm will have to be processed in the microcontroller, which add significant processing 

load.  Luckily, the online open source community reverse engineered and released a 

comprehensive library to access the Digital Motion Processor.  

In order to optimize the performance of the Arduino UNO, Serial transmission is set at a speed 

of 115200 bauds per second. The data logging is set at a sample rate of 10 Hz to allocate the 

remainder processing bandwidth to the IMU, Controller, Flight Mixer and Motor modules. A 

heavily simplified version of the Communication module is implemented to compensate for the 

UNO's lower processing speed and available memory. Logging data at such a low rate might 

cause aliasing issues. However, high data logging rate affect system performance, hence, 
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recorded data will not be accurate. Therefore, a balance point must be established. Ultimately, 

this yield a control loop rate of 70 Hz.  

 

PID CONTROLLER TUNING 

To start off, a modified attitude PID controller as described in Chapter 7 was implemented at 70 

Hz with the integral limit capped at      . In addition, a moving average filter is implemented 

on the error derivative calculation to filter out amplification of noise.  

The PID controller is tuned by adjusting the    term until oscillation starts. Then, the    term is 

tuned to dampen the oscillation as much as possible. Then the    term is used to reduce steady 

state error.  

While tuning, various tests are conducted to gauge system performance. It seems that increase 

   is not very effective at reducing oscillation in comparison to reducing   . In fact, when    is 

increased past a certain point, the oscillation effect often worsen. However, it is observed that 

before the stability threshold, increasing    also increase the amount the motors "fight back" 

when the balancer is being hit by a rod. This allows the balancer to return to neutral position 

faster. When reducing   , the oscillation effect is reduced. However, rise time to step command 

suffers. Multiple set of gains were tuned before arriving at a set that optimize stability while 

taking into consideration of other parameters like overshoot, rise time, settling time and steady 

state error. The PID gains are as follow: 
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COMPARISON BETWEEN SIMULATION AND PRELIMINARY EXPERIMENTAL RESULTS 

In an attempt to simplify the tuning process, a Simulink model was designed. Using data 

acquired from the thrust stand, linearized equations of motion and mass properties calculated 

in SolidWorks. A step command test of     was conducted both computationally using Simulink 

and experimentally with the balancer. The gains in both sides were set to be the same with no 

derivative filter. Initially, the results were completely off. However, after adjust parameters such 

as initial conditions, sample time and time delay, the results became more similar as shown in 

Figure 11-2 and Figure 11-3.  

 

 

FIGURE 11-2: SIMULATED PID CONTROLLER STEP RESPONSE 
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FIGURE 11-3:  EXPERIMENTAL PID CONTROLLER STEP RESPONSE 

Figure 11-2 illustrates the step response calculated in simulation while Figure 11-3 illustrated 

data collected experimentally. As seen the both plots, the angle oscillate between    and     

after the step command to    . The rise time and oscillation frequency of both are similar, 

however, it that the simulation demonstrates faster performance.  The rise time in simulation is 

almost instantaneous while experimentally, it takes about 0.5 seconds. The oscillation period in 

simulation is around 2 seconds while experimentally, it is around 3 seconds.  

 

FIGURE 11-4: SIMULATION AND EXPERIMENTAL STEP RESPONSE WITH INCREASED K_D 
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To further verify that the simulation model is correct,    is doubled and step responses are once 

again collected. The results are illustrated in Figure 11-4. As seen in the plots, Simulink shows 

that the system should behave better with oscillation amplitude decreased. However, in reality, 

the derivate term actually introduce even more oscillation into the system. The system ended 

up becoming unstable and oscillates between       . 

This demonstration shows that all models are wrong to a certain degree. In order to have an 

accurate enough model for offline tuning, careful dynamics, geometric, electronic and system 

analysis must be conducted in order to take into account of the various observable and 

unobservable parameters. While offline tuning is almost a must for spacecraft, for a relatively 

simple and inexpensive small team project such as the hopper simulator, it is probably more 

feasible to use simulation as a tool for concept proofing while moving into the experimental 

stage as soon as possible to make real progress.  

PID CONTROLLER EXPERIMENTAL RESULTS 

After tuning the PID controller with a set of gains optimized for stability, the impulse, ramp and 

step response tests were conducted. In addition, several tests were conducted to compare the 

effectiveness of the moving average derivative filter with 2 and 3 terms against a controller with 

no derivative filter.  

During the impulse test, one end of the balancer was strike two times with a plastic rod to 

impulse the system. The first strike was a hard strike aim to bring the balancer to a peak angle of 

around 40 to 50 degrees. The second strike was a soft strike to bring the balancer at an angle 

less than the first impulse. Impulse response for the non-filtered controller is plotted below. 
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FIGURE 11-5: IMPULSE RESPONSE OF PID CONTROLLER WITH NO DERIVATIVE FILTER 

As shown in Figure 11-5, the PID controller was able to hold the balancer angle at around 0 

degree relatively stable. Throughout the experiment, the system is a bit oscillatory with an 

amplitude of less than 5 degrees and a period of around 0.7 second. It can be seen that after the 

balancer was impulse to an angle of 45 degrees, the controller drive the system back to the 

nominal position after around 1.5 seconds with an overshoot of -20 degrees. The overshoot in 

the second impulse response is a bit less at around -12 degrees, but again take roughly 1.5 

seconds to settle.  
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FIGURE 11-6: IMPULSE RESPONSE OF PID CONTROLLER WITH MOVING AVERAGE FILTER OF 2 AND 3 TERMS 

Impulse response of PID controller with moving average filter on the derivative action is plotted 

in Figure 11-6. In comparison with the control subject, the controller without the moving 

average filter, the amplitudes of oscillation seem to be slightly larger. After the impulse the 

control with a 2-term filter still settle in around 1.5 to 2 seconds. It just than when compared 

with the response with no filter, the amplitude is larger. However, the 3-term filter is noticeably 

different. In its impulse response, not only is the oscillation amplitude larger, the overshoot is 

also higher at -25 degrees after the first impulse and -20 degrees after the second impulse. The 

settling time also seem to be longer at around 3 seconds. The performance of the filtered 
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response is overall worse in an impulse response. However, the reaction time does not seem to 

be much different.  

The ramp tracking tests were then conducted after the impulse tests. The setup involve the 

balancer tracking an angle command sweeping from -30 to 30 degrees at a speed of       and 

      for the high speed and low speed test respectively.  

 

FIGURE 11-7: 30°/S TRACKING RESPONSE COMPARISON BETWEEN FILTERED AND NON-FILTERED CONTROLLER 

High speed tracking response for the 3-terms filtered and non-filtered controller is plotted in 

Figure 11-7. At first glance, it appears that both set of response are pretty similar. They both 

track the command signal relatively well with some oscillation and an overshoot of around 10 

degrees. With more careful analysis, one will notice that the non-filtered controller actually 
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have a larger phase delay than the filtered term. Considering that filter usually introduce delay 

in signal response, this is somewhat counterintuitive. However, recall that filtered controller 

have higher oscillation amplitude.  The oscillation pushed the balancer back and forth across the 

command angle.  Depending on application, this could be a good property. The same behavior is 

shown in the low speed tracking responses in Figure 11-8. In comparison, the low speed tracking 

performance is much better than that of high speed tracking.  

 

FIGURE 11-8: 10°/S TRACKING RESPONSE COMPARISON BETWEEN FILTERED AND NON-FILTERED CONTROLLER 

The final experiments for the PID controller were the step response tests drawn from a preset 

command array with 2 seconds interval. The logged data were plotted in Figure 11-9. Whereas 

the overall performance of the non-filtered controller was somewhat satisfactory, the step 
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response seems to have a lot of overshoot. In the lab balancer, overshoot does not matter 

much. However, that could pose a problem for the flying platform. It also appear the system 

don't settle in time before the next command is executed. As expected, the filtered controller 

had a response that is much worse. Aside from greater overshoot amplitude at times, the 

increased oscillation is also affecting stability.  

 

FIGURE 11-9: STEP SEQUENCE RESPONSE OF FILTERED AND NON-FILTERED PID CONTROLLER 

In summary, the moving average filter in this case does more harm than good to the system. 

This could probably be drawn from the fact that the sample time of the control loop is only 70 
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Hz to start with. While the moving average filter smooth out sensor noises using a simple 

algorithm, it also causes time delays. The additional time delay on the derivative action might 

have cancel out a portion of the damping effect. Therefore, the system will need to be retune in 

order to obtain satisfactory result. Several attempts were made to retune the balancer, 

however, the oscillation problem remains. Therefore, it is advice that the filter should only be 

used in a system with faster sample rate.  

CASCADE PID CONTROLLER TUNING 

The second control law investigated in the single axis multirotor balancer is the cascade PID 

controller as described in Chapter 7. As oppose to a PID controller where the error in attitude is 

used to directly compute a signal for the flight mixer, the cascade controller is consisted of 2 PID 

controller stack onto each other. The first PID controller uses the error in attitude to compute a 

desire attitude rate or angular rotation rate. The desired angular rate is then compared with 

sensor angular rate from the gyroscope. The error is then feed into a second PID controller. The 

output from the attitude rate controller is then sent to the flight mixer to compute PWM output 

for the motors.  

In comparison with ordinary PID controller, the cascade PID controller has twice as much 

parameter to be tuned. Fortunately, a PI-PD controller is usually sufficient instead of the full PID-

PID controller. A PI-PD controller is essentially two PID controller stack on each other with the 

derivative term removed in the primary attitude controller and the integral term removed in the 

secondary attitude rate controller. The tuning process for the cascade controller is similar to 

that of a PID controller with the secondary controller tuned first and the primary controller 

tuned last. The primary controller should be disconnected when tuning the secondary 

controller. 
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When tuning the secondary controller, it is important to remember that the process variable is 

angular rate as oppose to angular position. Therefore, the proportional gain       
 should be 

tuned for the balancer to oppose or foster motion. The derivative gain       
 should be tuned to 

remove oscillation.  In relation to the PID controller tuned in the previous section, the       
 is 

in charge of the "fight back" factor in an impulse scenario. While the proportional term opposes 

motion, it does not control angular position. Therefore, if the balancer turns due to a force 

stronger than that provided by the motor, at this point, the controller will not correct for that.  

After tuning the attitude rate controller, several impulses, step and ramp tests were conducted 

to ensure controllability for the primary attitude controller. The attitude controller was then 

tuned using the same method as an ordinary PID controller. The derivative term is no longer 

necessary since it's already covered by the secondary controller.  The tuning that yields the best 

stability performance are: 

      
                

     

          
                   

      

 

 CASCADE PID CONTROLLER EXPERIMENTAL RESULTS 

The same sets of tests were conducted for the cascade controller. Similar to the PID controller, 

the moving average derivative filter add oscillation and amplify overshoots in system responses. 

Since it's more useful to compare to contrast the difference between an ordinary and cascade 

PID controller, the experimental results for the filtered tests will be omitted. 
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FIGURE 11-10: CASCADE CONTROLLER STEP RESPONSE 

 

Recall the PID controller's step response in Figure 11-3, the cascade controller's step response is 

plotted in Figure 11-10. When comparing the two, it is apparent that converge better at the 

target angle of 10 degrees. The oscillation amplitude is only around      as oppose to the 

traditional PID controller’s     . The oscillation period is also larger at 5 seconds instead of 3 

seconds. The rise time is a bit slower, but the settling time is roughly the same.  

A Simulink model is also constructed for the cascade controller. Similar to the previous 

simulation model, the simulation result demonstrate behavior that's similar, but more optimal 

than real life in a way. Using the same gain parameters, the simulation demonstrated a response 

that's more damped with minimal oscillations. The rise time in the simulation is actually much 

worse than in the experiment. Consider that parameters like sensor noises, process noises and 

the sample rate of 70 Hz is included in the model, there must be other disturbances that were 

overlooked.  
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FIGURE 11-11: CASCADE CONTROLLER STEP SEQUENCE RESPONSE 

 

While analyzing step response of the cascade PID controller, data for the step sequence 

response is reproduced in Figure 11-11.  In comparison with the sequence response in Figure 11-

9, the cascade control exhibit much better performance. While the rise time suffers a little 

depending on step size due to the controller's damping behavior, the steps are actually 

recognizable with barely any overshoot and oscillations. The smooth transition from angle to 

angle is highly desirable as it will yield smoother flight response in the air. This will in turn make 

guidance and navigation perform better.  

The cascade controller's damping behavior greatly affects its tracking response as presented in 

Figure 11-12 and Figure 11-13 for high and low Speed tracking respectively. In comparison with 

the tracking response of the PID controller in Figure 11-7 and Figure 11-8, cascade controller 

yield smoother responses. However, the phase lag is also more apparent.  Whereas the PID 

controller goes back and forth on the tracking signal, the cascade controller is consistently lay 



196 
 

behind by almost 0.5 seconds. While this performance will not be acceptable for applications 

like radar target tracking, the smooth response is preferred in multirotor flight dynamics.    

 

FIGURE 11-12: 30°/S TRACKING RESPONSE FOR CASCADE CONTROLLER 

 

 

FIGURE 11-13: 10°/S TRACKING RESPONSE FOR CASCADE CONTROLLER 
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FIGURE 11-14: IMPULSE RESPONSE OF CASCADE CONTROLLER 

 

The cascade controller's forte is probably in its impulse response. As seen in Figure 12-14, the 

controller is able to maintain the balancer at a level position with neglectable oscillation. The 

balancer react immediately after an impulse, however, the response is damped so that the 

balancer slowly settle with minimal overshoot. Whereas the overshoot on the PID controller, as 

shown in Figure 11-5, is almost -20 degrees after the first impulse, the overshoot in the cascade 

controller is only around 3 degrees. Since the cascade controller reacts to the impulse more 

controllably, the system converges to back to acceptable level only after around 1 second 

depending on the impulse strength. 

In conclusion of this section, cascade controller is a better choice to control attitude. Even 

though it involves more work in tuning, the system response performs much better than that of 

an ordinary PID controller in terms of system damping. Not only is the controller able to react to 

commands at an acceptable pace, it is able to do so stably with very little oscillations. If same 

results can be achieved on the flying platform, then flight performance will be a lot smoother 

and easier to control.   
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Chapter 12: QUADX FLIGHT TEST  

The QuadX quadcopter was constructed and tuned in the Aerospace Systems Lab. Due to time 

constraints, the guidance and navigation system is not implemented in the FlightOS. In addition, 

longitude and latitude position control is also not implemented.  

The QuadX went through two phases of testing. The first are indoor rig tests to ensure that the 

controller is tuned properly and to prevent the quadcopter from losing control. The quadcopter 

undergo step, ramp and impulse tests to simulate outdoor environmental interference such as 

wind gusts. The second and final phase of the testing process is outdoor flight test.  During the 

outdoor flight test, the QuadX is primarily controlled by a RC transmitter. A laptop ground 

station is also nearby to collect telemetry data at 10 Hz and to provide an emergency override 

should the quadcopter loses control.  

FLIGHT TESTING VIDEOS 

Several videos were taken to document the QuadX's testing and development process. They can 

be found in a YouTube playlist at http://goo.gl/vEuD44. 

 

FIGURE 12-1: QUADX SPACE HOPPER SIMULATOR 

http://goo.gl/vEuD44


199 
 

RIG TEST RESULTS  

The QuadX was tuned and calibrated multiple times on the test rig. Obtaining a perfect set of 

gain seems to be impossible. In comparison with the single-axis balancer, the quadcopter is a lot 

hard to tune due to the coupling effect. In generally, the quadcopter exhibit oscillatory 

behaviors that can’t be dampen out. Eventually, a set of gains similar to that of the single axis 

balancer was chosen to procedure with the development.  

        
        

        
        

       
       

 

Roll 1.7 0.02 0  0.5 0 3.3 

Pitch 1.7 0.02 0  0.5 0.03 3.3 

Yaw N/A N/A N/A  1.5 0.5 0.3 

 

TABLE 12-1: QUADX CASCADE ATTITUDE CONTROL TUNING PARAMETERS 

 

The 1st and 2nd generation attitude test rig was modified for indoor flight test. A paracord is hung 

from the ceiling and attach to the test rig by going through a center hole and tying to one of its 

legs. Both 3rd generation hopper simulators have a center hole so that they can be attached to 

the test rig through the paracord. The paracord’s purpose is to limit the quadcopters’ position. 

That way, it has the freedom to ascend, descent, rotate and limited horizontal travel. This is to 

make sure that the quadcopters don’t crash into people and equipment around the aerospace 

system lab. The top of the test rig is a foam landing pad. This is to ensure that the QuadX don’t 

crash into the metal rig when landing. Early rig tests are conducted through an umbilical cable 

that provides power and data transmission.  
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FIGURE 12-2: TETHERED IMPULSE RIG TEST 

After the FlightOS became more mature, the rig tests are switched entirely to the internal 

battery power system and telemetry is handled through the onboard XBee radio. This is to 

prepare for outdoor flight tests and to remove the cable's damping behavior. In addition, the 

landing pad was replaced to a larger piece of foam board to test the altitude control system.  

 

FIGURE 12-3: QUADX RIG STEP COMMAND TEST RESULT 
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In Figure 12-3, the step command test results are graphed. From        to       , the 

pitch signal demonstrates the QuadX’s ability to maintain level pitch. As seen in the response, 

the pitch command remains at around    , but the pitch signal oscillates between    . In 

comparison, the single axis balancer oscillates at only    . Though not ideal, the multirotor’s 

ability to maintain level pitch is not terrible either. The oscillate might, however, cause drifting 

issues in the future.  

Other than the oscillation the system also have a slow rise time due to the damping behavior of 

the cascade controller. The graph shows that the system take around 1.5 seconds to converge to 

the steady state value. In addition, there seems to be a slight steady state error of around   . In 

theory, the integer term for the PI controller should be increased. However, it seems that doing 

add oscillation into the system.  

 

FIGURE 12-4: QUADX RIG IMPULSE TEST RESULT 

The QuadX’s roll impulse response is illustrated in Figure 12-4. For the impulse test, the 

multirotor is set to hover in the test rig and then impacted by a rod, similar to the image as 

shown in Figure 12-2. In the test, the QuadX was stroke by the rod two times. The first was a 



202 
 

soft hit that bring the quadcopter to a roll of around    . The second hit, however, is a strong 

hit that bring the quadcopter to a roll of around    . 

From the test, the cascade controller provided a quick and powerful response to resist the 

impulse. That’s why the QuadX only roll to a maximum of      Aside from that, the system also 

responded by driving the system back to the original level angle within 0.5 seconds.  

 

FIGURE 12-5: QUADX ALTITUDE CONTROL TEST RESULT (TAKE OFF AND LANDING) 

 

The position control system was not fully implemented due to the noise in the GPS data. It is 

necessary to first implement the navigation Kalman filter. The altitude control system only relies 

on the ultrasonic sensor at the moment. Therefore, a PID controller was implemented and 

tested with a gain of                  . 

The ultrasonic sensor has a minimum measurement distance of 20 cm. Therefore, the QuadX is 

actually on the landed pad when the plot reading is 20 cm. From the response in Figure 12-5, it 

can be seen that the controller does work. However, it's not optimal due to the large steady 

state error. In addition, the response seems to be slow in taking off from the landing pad, taking 
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several seconds. A possible cause is that the pulse width value added to the altitude controller 

output is not high enough to achieve hovering flight at neutral signal output.  

 

FIGURE 12-6: QUADX ALTITUDE CONTROL TEST RESULT (MID-FLIGHT STEP COMMANDS) 

 

In Figure 12-6, if can be seen that the QuadX response faster to commands while it is already 

hovering above the landing pad. There is still a steady state error of roughly 10 cm. From 

      to       , the command executes a step from around 45 cm to 60 cm. This causes 

the QuadX to oscillate out of control, hitting the height limiter at the paracord and the landing 

pad. When the altitude command is reduce down to 50 cm, the system became stable again.  

With the current tuning, the height control is not stable enough for use in outdoor flight due to 

the oscillations and steady state error. More time will need to be spent with calibrating the 

hovering PWM pulse width and also filtering out the noise so that the derivative gain can be 

increased. In alignment in the simulation, the altitude controller seems to be quite difficult to 

damp. When the QuadX is capable of stable height control, then the integral gain should be 

added to reduce the steady state error. Several attempts were made to add the integral gain to 

the controller. However, this simply added more oscillations to the system.  
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FLIGHT TEST RESULTS  

The first outdoor flight test took place on 1/30/2015 and went relatively well initially. However 

the RC transmitter link was lost several seconds into the flight. Hence the quadcopter kept 

executing the last command of level ascend. Eventually, the rotors impact with a tree branch 

and shut down. The QuadX ended up crashing into a brick road, destroying all the propellers and 

bent several motor shafts.  

The 3/19/2015 flight test was the second outdoor test and implemented several design changes. 

Primarily, a second radio link is set up for telemetry and control override. Along with the ground 

station, the flight data are logged and analyzed. A third outdoor flight test was conducted on 

3/24/2015 with a longer duration to collect more data to determine system response.  

The results for this section are generated with telemetry data collected on 3/19/2015 and 

3/24/2015. The corresponding can be found at http://goo.gl/2pT7L0  and http://goo.gl/j6KNmD. 

 

FIGURE 12-7: QUADX OUTDOOR FLIGHT TEST AT UNIVERSITY CENTER FRONT LAWN 

http://goo.gl/2pT7L0
http://goo.gl/j6KNmD
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FIGURE 12-8: ROLL, PITCH AND ALTITUDE RESPONSE FROM FLIGHT TEST (3/19) 
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During the 3/19 flight test, during takeoff, the QuadX is commanded to pitch forward to avoid 

collision with the concrete platform. It is then commanded to pitch back to reduce forward 

velocity. Finally, the QuadX is commanded to roll right and land to avoid the student walking by.  

As seen in Figure 12-8, the system clearly doesn't have enough time to converge to the target 

angle. In the rig test, the step commands are given for several seconds so that the system has 

enough time to converge. The slower rise time is acceptable in the controlled environment. 

However, in outdoor flight, quick response is required to avoid obstacles. Therefore, each 

command only lasted around 0.2 seconds  

To improve performance, the cascade attitude controller should be tuned more aggressively. 

However, a balanced gain set must be used so that the aircraft also behave well to wind and 

overall stability.  

The altitude data is also plotted in the graph located at the bottom of 12-8. The reported data 

are distance above the ground level and they mostly match the height shown in the video. 

However, it appears that there are several jumps at which the height is reported as 0. In coding 

the interface for the ultrasonic sensor, a limiter of 500 cm is programmed in to catch corrupted 

measurements. The value is then manually set to 0. Given that the minimum measurement 

distance is 20 cm, it is obvious that the measurements at those heights exceeded the limit. 

Consider that the trend of the flight around      to      is from 50 cm to 200 cm, those 

jumps are measurements corrupted either by the sensor or interference with the environment.  
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FIGURE 12-9: ROLL, PITCH AND ALTITUDE RESPONSE FROM FLIGHT TEST (3/24) 

 

The 3/24 flight test was conducted mainly to determine the position drifting issues that occurs 

during the 3/19 test. It appear that the multirotor have a tendency to drift down the hill from 

University Center front lawn while being command at level as seen in the videos.  

Telemetry data in Figure 12-9 show that the QuadX perform relatively well in terms of 

converging to level flight in both roll and pitch. Therefore, the drifting issue must be caused by 

external forces such as a wind gradient.  
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Chapter 13: FUTURE WORK 

At its current state, the QuadX Space Hopper Simulator is capable of flying with relatively decent 

performance. However, the cascade attitude controllers should be tuned to be more aggressive 

for faster response. In that case, a higher derivative gain will be required to damp the system. 

The derivative gain continuously to be the problem at gain tuning. The UM7 IMU currently used 

in the quadcopter might not be properly calibrated, especially the Extended Kalman Filter. This 

could introduce time delay if not properly set. Therefore, for the next step, it is recommended 

to develop an attitude estimator using the raw data collected from the IMU as outlined in 

Chapter 5. In addition, a different IMU could be used. This would ensure that the attitude sensor 

data are correct and not the source of the oscillation behavior.   

Before implementing the guidance, navigation and position control system using the methods 

simulated in Chapter 7, 8 and 9, the software system should be further optimized to allocate 

more resources for these additional systems. Currently, as shown in Chapter 6, the bottleneck of 

the FlightOS is the telemetry due to the slow serial baud rate in order to maintain data packet 

integrity. The telemetry downlink rate should be reduced from 10 Hz to around 1 Hz. In addition, 

the SPI microSD flight logger module should be added to FlightOS for high speed data logging.  

The guidance system should include the feature to automatically optimize the trajectory for 

minimal total energy consumption. This could be done by trying to model an equation to 

describe the relationship between the trajectory parameters and the energy consumption. 

Finally, adaptive control should be explored so that the aircraft could adjust its gain 

automatically to different flying conditions. The tuning process is one of the most time 

consuming aspects of the project. 
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APPENDIX A – DETAILED CAD DESIGN 
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APPENDIX B – SOFTWARE SOURCE CODE 

The source code for the FlightOS along with the support software modules are open sourced 

and available freely at GitHub under the MIT license: https://github.com/Billwaa/FlightOS.git 

 

Language Files Blank Comment Code 

C++ 7 196 34 673 

C/C++ Header 8 81 13 251 

Arduino Sketch 1 86 79 323 

XML 2 0 0 21 

TOTAL 18 363 126 1268 

 

Arduino FlightOS Stats 

 

 

Language Files Blank Comment Code 

C# 5 309 629 2605 

MSBuild script 1 0 0 70 

ASP.Net 1 0 0 6 

TOTAL 7 309 629 2681 

 

C# Ground Station Stats 

 

 

https://github.com/Billwaa/FlightOS.git
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