
Lehigh University
Lehigh Preserve

Theses and Dissertations

2013

Design, Fabrication, and Testing of a Hopper
Spacecraft Simulator
Evan Phillip Krell Mucasey
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Mucasey, Evan Phillip Krell, "Design, Fabrication, and Testing of a Hopper Spacecraft Simulator" (2013). Theses and Dissertations.
Paper 1566.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1566&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1566&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1566&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F1566&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1566?utm_source=preserve.lehigh.edu%2Fetd%2F1566&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Design, Fabrication, and Testing of a Hopper Spacecraft Simulator

by

Evan Phillip Krell Mucasey

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Mechanical Engineering

Lehigh University

May 2013

© 2013

Evan P. K. Mucasey

All Rights Reserved

ii

This thesis is accepted and approved in partial ful�llment of the requirements for the

Master of Science.

Date

Thesis Advisor

Chairperson of Department

iii

I would like to �rst thank Dr. Terry Hart, who originally gave me the opportunity and

inspiration to pursue this project for a Master's Thesis. His continual guidance helped me

clear the developmental obstacles that would have road-blocked along the way.

Next, I would like to thank Dr. Joachim Grenestedt, without whom I would never have

developed the level of engineering and '�rst-principle' though required to achieve the goals of

this project.

I would like to thank Anthony Dzaba and Andrew Abraham for help with the initial develop-

ment of the �rst generation vehicle. Also, thank you to Andrew Papazian and Nick Tashjian

for helping to develop the thrust test bench, and with whose help around the shop, with the

addition of Amos Ambler, allowed for the completion of fabrication of the second generation

vehicle in time for �ight testing. Thank you also to Melissa Dye who helped develop the

software associated with the real time data acquisition system and aided during �ight testing.

Lastly, I would like to thank my family for giving me the opportunity to pursue my passion

for an education and a career. Without their love and support, I would never have gotten the

necessary foundation that has allowed me to get to this point in my life.

iv

Contents

1 Background 2

1.1 Requirements De�nition . 3

2 Structure Design and Evolution 5

2.1 Quadrotor Operation . 5

2.2 First Generation . 6

2.2.1 Thrust to Weight Ratio . 7

2.2.2 Propulsion System . 8

2.2.3 Testing . 9

2.3 Transition to Next Generation . 9

2.3.1 Frame Design . 9

2.3.2 Propulsion Selection . 10

2.4 Proof of Concept Vehicle . 11

2.5 Second Generation Simulator . 13

2.6 Flight Testing and Test Stands . 18

3 Equations of Motion 22

4 Controller 27

4.1 Real World Considerations . 28

4.1.1 Time Delay . 28

4.1.2 Noise . 30

4.2 Open Loop Simulation . 30

4.3 Roll and Pitch Controller Design . 32

4.3.1 P-P Controller Simulation . 33

4.3.2 P-PD Controller Simulation . 36

4.4 Non-Linear Attitude Control Simulation . 38

4.5 Yaw Controller Design . 40

4.6 Digitization . 41

5 Sensor Filter 42

5.1 RC Filter . 42

v

5.2 Polynomial Kalman Filter . 43

6 Thrust Test Stand 47

6.1 Motivation . 47

6.1.1 Static Characterization . 47

6.1.2 Transient Response . 48

6.1.3 Comparison of Di�erent Actuators . 48

6.2 Test Stand Design . 49

6.2.1 Sensors . 49

6.2.2 Hardware and Construction . 49

6.3 Actuator Test Matrix . 51

6.4 Load Cell Calibration . 53

6.5 Test Data . 53

6.5.1 Static Thrust . 53

6.5.2 Transient Analysis . 55

6.5.3 Thrust vs. Power . 58

6.6 Actuator Selection . 58

6.6.1 Propellers . 58

6.6.2 Motors . 59

6.6.3 Combination Selection . 59

6.7 Contra-Rotating Actuator Characterization . 59

6.7.1 Static Characterization . 59

6.7.2 Transient Analysis . 60

7 Flight Electronics and Communication 61

7.1 On-Board Electronics . 61

7.1.1 Flight Computer . 61

7.1.2 Inertial Sensors . 62

7.1.3 Electronic Speed Controller . 63

7.1.4 Wireless Capability . 64

7.1.5 Flight Board . 65

7.2 Base Station . 65

vi

8 Flight Data 69

8.1 Data Comparison . 69

9 Future Work 72

9.1 Altitude Control . 72

9.2 Position Control . 73

9.3 Jet Turbine . 73

A Turbine Selection 76

B Rotation Matrices and Newton-Euler Equation 78

B.1 Rotation Matrix . 78

B.2 Newton-Euler Equations . 80

C Polynomial Kalman Filter Derivation 82

D Arduino Code 85

D.1 Flight Vehicle Code . 85

D.2 Base Station Code . 98

D.3 Data Acquisition Code . 106

E MATLAB Code 110

E.1 Flight Data Acquisition Code . 110

E.2 Data Smoothing and Time Constant Code . 113

vii

List of Tables

1 Master Equipment List . 13

2 11.1V Test Matrix . 52

3 14.8V Test Matrix . 52

4 18.5V Test Matrix . 52

5 22.2V Test Matrix . 52

viii

List of Figures

1 Mars Curiousity Rover . 2

2 Surveyor 6 . 3

3 Classical Quadrotor Design . 5

4 Quadrotor Attitude Control . 6

5 First Generation Hopper Spacecraft Simulator CAD Drawing 6

6 First Generation Hopper Spacecraft Simulator 7

7 JetCat P200 Jet Turbine Test Fixture . 11

8 Proof of Concept Frame Construction . 12

9 Carbon Sti�eners and Completed Frame . 12

10 Populated Proof of Concept Vehicle . 13

11 Second Generation Simulator CAD Drawing . 14

12 Vacuum Cure of Frame . 15

13 Frame Cut on Water-Jet . 15

14 Motor Tab Bonding . 16

15 Populated Frame . 16

16 Populated Frame Bottom . 17

17 Final V2 Hopper Spacecraft Simulator . 17

18 3-DOF Test Stand . 18

19 Universal Joint on Shaft . 19

20 Quadrotor Cage . 20

21 Proof of Concept Vehicle Pole Testing . 20

22 Planetary and Body Reference Frames . 22

23 Time Delay Sources . 29

24 Non-Linear Open Loop Simulation . 31

25 Non-Linear Open Loop Step Response . 31

26 Linear Open Loop Simulation . 31

27 Root Locus of Linear Open Loop System . 32

28 Linear P-P Controller Simulation . 34

29 Linear P-P Controller Slow Step Response . 34

30 Linear P-P Controller Fast Step Response . 35

ix

31 Root Locus of P-P Controller . 35

32 Linear P-PD Controller Simulation . 36

33 Linear P-PD Controller Step Response . 37

34 Root Locus of P-PD Controller . 37

35 Non-Linear Closed Loop Simulation . 38

36 Non-Linear Dynamics Subsystem . 39

37 P-PD Controller Subsystem . 39

38 Mixer Subsystem . 40

39 Non-Linear Closed Loop Step Response . 40

40 RC Circuit . 42

41 DFT of Sensor Noise . 43

42 Comparison of PKF vs. Un�ltered Angle Measurement 45

43 Comparison of PKF vs. Un�ltered Angle Rate Measurement 46

44 Thrust Test Stand Frame . 49

45 Load Cell Mount . 50

46 Power Sensors on Thrust Test Stand . 50

47 Final Assembly of Thrust Test Stand . 51

48 Thrust Test Stand Calibration . 53

49 11.1V Test Matrix Static Thrust . 54

50 14.8V Test Matrix Static Thrust . 54

51 18.5V Test Matrix Static Thrust . 55

52 22.2V Test Matrix Static Thrust . 55

53 Results of Smoothing Algorithm . 56

54 Transient Analysis . 57

55 Thrust vs. Power Comparison . 58

56 Static Characterization of Contra-Rotating Actuator Selection 60

57 Transient Analysis of Contra-Rotating Actuator Selection 60

58 Arduino Mega . 61

59 VN-100 AHRS . 62

60 Phoenix Ice 50 ESC . 63

61 Xbee Pro Module . 64

x

62 Flight Board Wire Diagram . 65

63 Flight Board . 65

64 Base Station Wire Diagram . 67

65 Base Station . 67

66 Spacecraft Simulator Communication Architecture 68

67 Pitch Step Response Flight Data . 70

68 Transient Thrust Analysis . 70

69 Actual vs. Simulated Pitch Step Response . 71

70 Actual vs. Simulated Pitch Step Response With Discretization 71

71 Turbine Thrust to Weight Comparison . 76

72 Turbine Maximum Thrust . 77

73 Yaw Rotation . 78

74 Pitch Rotation . 79

75 Roll Rotation . 79

xi

ABSTRACT

A robust test bed is needed to facilitate future development of guidance, navigation, and

control software for future vehicles capable of vertical takeo� and landings. Speci�cally, this

work aims to develop both a hardware and software simulator that can be used for future

�ight software development for extraplanetary vehicles. To achieve the program requirements

of a high thrust to weight ratio with large payload capability, the vehicle is designed to have

a novel combination of electric motors and a micro jet engine is used to act as the propulsion

elements.

The spacecraft simulator underwent several iterations of hardware development using di�erent

materials and fabrication methods. The �nal design used a combination of carbon �ber and

�berglass that was cured under vaccuum to serve as the frame of the vehicle which provided

a strong, lightweight platform for all �ight components and future payloads.

The vehicle also uses an open source software development platform, Arduino, to serve as

the initial �ight computer and has onboard accelerometers, gyroscopes, and magnetometers

to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman �lter

was designed and this fed the sensed angles and rates into a robust attitude controller which

autonomously control the vehicle' s yaw, pitch, and roll angles.

In addition to the hardware development of the vehicle itself, both a software simulation

and a real time data acquisition interface was written in MATLAB/SIMULINK so that real

�ight data could be taken and then correlated to the simulation to prove the accuracy of the

analytical model.

In result, the full scale vehicle was designed and �own outside of the lab environment and

data showed that the software model accurately predicted the �ight dynamics of the vehicle.

1

1 Background

Space exploration has been a possibility for the last �fty years. It has helped boost the state

of technology, expanded the understanding of science, and provided the framework for the

inspiration to pursue challenging goals. It still remains a relevent topic, as spacecraft are

travelling further from the earth in the hope of discovering new concepts.

Currently, the state of the art design of robotic planetary vehicles consists of a rover type of

vehicle that is constrained to travel on the ground.

Figure 1: Mars Curiousity Rover

This type of design necesitates travel on the ground which is inherently constraining. Mission

design consists of speci�c locations on the planet that allow the rover to traverse the ground,

free of obstructions such as boulders, mountains, or craters. The mission usually does not

leave a designated zone alocated to experiments.

The work contained within this thesis designs, fabricates, and tests a testbed for an innova-

tive design of a planetary lander. Instead of conventional rovers, this new type of 'hopper'

spacecraft will be able to re-ignite its engines once on the planet to then hop to di�erent

locations. If proven robust, this design would open up future mission architectures to explore

many di�erent locations on the planet, and can even be combined with conventional designs

to accomplish mission goals.

2

The idea for a spacecraft re-igniting its engines once landed on a planetary body is not a new

one. NASA designed a mission to study how to safely land on the moon prior to the Apollo

program's success. One of these missions, Surveyor 6 in 1967, performed the only 'hop' in

space history. The hop consisted of a 2.5 m movement from an original position.

Figure 2: Surveyor 6

As this type of design also opens up further risk in exploration, the design of a robust testbed

is necessary to learn the constraints involved in the guidance, navigation, and control of a

hopping spacecraft. This testbed could also be used to learn how to interface with other

�ight components including �ight computers and inertial navigation systems as well as how

to design the software associated with a particular mission, especially when combined with

an analytical model and software simulation.

The purpose of this thesis work is to provide the capability of testing these types of systems

at Lehigh University and produce an initial solution to the control problem so that �ight

hardware as well as guidance and navigation algorithms can be tested in the future.

1.1 Requirements De�nition

Lehigh University is currently working with Penn State towards developing a vehicle to com-

pete in the Google Lunar X-Prize. This is a competition that awards a prize to the �rst team

to launch a spacecraft to the moon, land, then travel 500 meters on the surface while trans-

mitting back data. To facilitate development, Lehigh's spacecraft simulator will be designed

3

with similar geometry to the Penn State Lunar Lion vehicle.

The requirements for the simulator are then:

1. Minimum thrust to weight ratio of 3:1

2. 5 kg payload capability while maintaining the minimum thrust to weight ratio

3. 3 actuator locations providing attitude and position control for the vehicle

4. Real time data acquisition capability for o� line data post-processing

5. Low cost components

There is no known low cost solution that satis�es each of these requirements, so custom

hardware and software will need to be developed to provide each of these capabilities into a

single, robust system.

4

2 Structure Design and Evolution

An important consideration for the design of the hopper spacecraft simulator was to maintain

the low-cost requirement. In addition, Lehigh University does not have the facilities to support

�ight propulsion options. These two facts led to the decision to design a vehicle that resembles

a quadrotor. Quadrotors are very common types of vertical take o� and landing vehicles that

are used in industries from law enforcement to aerial photography. The concept is scalable

such that there exist many variations in size as well as geometry.

2.1 Quadrotor Operation

The classical quadrotor uses di�erential thrust from four actuators to control its attitude and

position. The actuators are usually electric motors with a rigid propeller attached to each

shaft. The pitch of the propellers is �xed, so the angular velocity of the motors are modulated

to achieve di�erent thrust levels. The motors are usually arranged in a 'plus' con�guration.

Figure 3: Classical Quadrotor Design

A common way to describe the vehicle's attitude in space is to de�ne roll, pitch, and yaw

angles about the vehicle's axes. These angles are controlled by the di�erential thrust levels

of the motors, and consequently, the change in pitch and roll causes the vehicle to translate

in position.

5

Figure 4: Quadrotor Attitude Control

2.2 First Generation

Prior to this thesis work, an initial concept for the spacecraft hopper simulator had been

fabricated. As an investment had already been made into the design and construction of this

vehicle, initial testing and development of the �ight control software was performed on this

�rst generation.

While this design used the classic quadrotor geometry, it was novel in that each actuator could

tilt with respect to the vehicle body. This gave each actuator an extra degree of freedom and

allowed for the de-coupling of position and attitude. This means that the vehicle could control

its position simply by tilting the actuators and not the vehicle body itself.

Figure 5: First Generation Hopper Spacecraft Simulator CAD Drawing

6

Figure 6: First Generation Hopper Spacecraft Simulator

The vehicle uses four ducted fans that produce approximately 4.5 kg of thrust each. Associated

with each fan is a 37 volt lithium-polymer battery. These four batteries are wired in parallel

to give the vehicle more energy for longer �ight times. The chassis consists of two concentric

welded aluminum hexagons that housed all �ight components and landing gear by mounting

to its inner and outer walls.

2.2.1 Thrust to Weight Ratio

While the desired thrust to weight ratio of the spacecraft simulator is 3:1, the �rst generation

simulator was designed to achieve a ratio 1.25:1, as the vehicle investigated using thrust

vector control instead of attitude changes to translate. This produces a challange for the

control software, as saturation in the actuators becomes an issue. Saturation occurs when

the actuators are at the limit of its thrust capabilities, and if the vehicle needs almost all of

its thrust to counteract gravity, there is very little margin left for rejecting disturbances and

controlling the vehicle.

In order to meet the required thrust to weight ratio, the rest of the vehicle's mass would have

to be signi�cantly reduced. The mass of the propulsion system including motors, propellers,

and batteries is 8.44 kg with a total thrust capability of 19.5 kg. Based o� these values, it

can be seen that the ratio of 3:1 is impossible to achieve, as the total vehicle mass would have

to be only 6.5 kg. Further, the design of the aluminum frame is inadequate for meeting these

7

requirements. The load paths required high mass for adequate strength and sti�ness.

2.2.2 Propulsion System

The most signi�cant drawback of the �rst generation was the propulsion system. The ducted

fans and batteries had low reliability. Constant maintanence was required in order to keep

these fans in working order, and in addition, several improvements were also made including:

1. Adding an intake cowling

2. Re-design of the cowling mounting

3. Machine a groove in the motor shaft as a fail-safe for set screw friction failure

4. Added �llets to the carbon �ber mounts to lower stresses

5. Replacing all set screws that kept the propeller on the motor shaft

6. Moved the batteries to the center of the vehicle to reduce the total vehicle inertia

During operation the motor experiences very high-frequency, low-amplitude vibration. This

leads to several problems. First, the hardware the fan uses to stay together eventually loosens.

Repeated tightening of the set screws and DC motor mounting bolts is required. There are

very tight distance tolerances between the propeller and the fan body so this operation takes

a signi�cant amount of time to perform. This has also led to signi�cant damage to the inner

carbon �ber skin of the fan body and also damage to the propeller blade tips.

These powerful electric fans have a very large power requirement. At full thrust, the system is

capable of drawing 12.8kW of power. Due to the poor thrust to weight ratio, this power draw

occurs regularly. The large on-board lithium polymer batteries used to achieve the power

requirements have a mass of approximately 4.2 kg total and produce very high currents. On

one occasion, ohmic heating caused a solder joint to melt and all engines lost power in the

middle of a test. Also, if mishandled, the leads to the batteries are capable of providing a

strong enough arc current to weld aluminum and steel; the aluminum frame shows the result

of several accidental shorts.

8

2.2.3 Testing

Testing and implementation of a controller has also proven di�cult because of the propulsion

system. With the current laboratory setup, the system is limited to short duration tests

because of the battery life. Also, the very long battery charge time makes it impossible to

perform several tests in a single day. This makes tuning the controller very di�cult, and

progress during testing is consistently delayed due to the loss of battery power. To facilitate

our controller tuning, a system requires either a capability for long duration testing, or the

ability to quickly re-gain �ight capabilities. Our experience indicates that one of these two

options is absolutely critical.

In addition, the large vehicle geometry and mass necessitated a test stand to constrain the

position while the software for the attitude controller was tuned. Unfortunately, it was di�cult

to mount the vehicle at its center of mass so the test stand introduced unwanted dynamics

into the attitude controller. This made it di�cult to correlated balanced �ight on the test

stand to balanced free �ight.

The combination of the issues listed above prevented furthering development on the �rst

generation simulator. It was decided to use the lessons learned to start over for the next

generation of simulator.

2.3 Transition to Next Generation

To design the next generation vehicle, the requirements outlined in section 1 were re-visited

in order to ensure the system designed could satisfy each. Several high level changes could be

immediatly implemented for the future vehicle.

2.3.1 Frame Design

The chassis of the next generation would be fabricated from composite materials. This a good

option when considering strength and sti�ness to weight ratios. In addition, Lehigh University

has the infrastructure for and a background in working with these materials. Coupled with

better load path design, a much more e�cient frame could be designed and fabricated. Also,

9

these materials are very easy to repair so the time in between test �ights and free �ight crashes

of the vehicle would be drastically reduced.

2.3.2 Propulsion Selection

A better propulsion system could be chosen for the application. A trade study was conducted

in which several options were considered including; the current electric ducted fan technology,

lighter than air systems, solid fuels, hobby grade motors and propellers, and hobbyist micro

jet turbines. Due to the ine�ciencies of lighter than air systems and the dangerous handling

requirements of solid fuels, both were excluded from further analysis.

The detailed trade study for di�erent propulsion options can be found in section A. Based

on the requirements of a 3:1 thrust to weight ratio and a 4-5 kg payload capability, two

leading candidates for propulsion were found to be hobby grade motors and propellers and

the hobbyist micro jet turbines.

There is a very distinct tradeo� between these two options. The motors and propellers have

a very quick time response to inputs. This is an important consideration in a control system,

as time lag adversely a�ects the stability of the system. However, the total thrust from this

technology is much lower than that of the turbines. The �rst generation confronted the issues

with scaling this type of technology. Micro turbines have the opposite e�ects: high thrust

level but a slow time response.

The decision was made to use a combination of these two systems to achieve the above

requirements. The motors and propellers would provide the fast time response required for

the control system and a micro turbine would provide enough thrust to reach the desired

accelerations.

10

Figure 7: JetCat P200 Jet Turbine Test Fixture

2.4 Proof of Concept Vehicle

While many important considerations were found by working with the �rst generation simu-

lator, there were still many unknowns of how to design a VTOL vehicle from the ground up.

Many of these pertained to the �ight control software, as it was very di�cult to test di�erent

control algorithms and gains with the short �ight times and unknown test stand dynamics.

Before spending resources to build the full scale second generation vehicle, a proof of concept

vehicle was designed and built. The reason for this was that the proof of concept enabled

the ability to test all steps in the design process as would be accomplished on the full scale

version:

1. Structure design and construction techniques

2. Sensor selection

3. Actuator selection and characterization

4. Filtering techniques

5. Controller and electrical interfaces

6. Communication and data logging

11

7. Testing techniques

This proved to be invaluable in the success of the project.

A simple frame was constructed from �berglass, epoxy and foam for a core material. The

�berglass was brought to single skin so that the motors can be direclty bolted to the frame.

Carbon sti�eners were added to the single skin areas of the frame.

Figure 8: Proof of Concept Frame Construction

Figure 9: Carbon Sti�eners and Completed Frame

The vehicle was then populated with cheap components and out�tted so that development

could commence on the �ight control software.

12

Figure 10: Populated Proof of Concept Vehicle

2.5 Second Generation Simulator

While software development took place on the proof of concept vehicle, parallel design and

fabrication was accomplished on the second generation spacecraft simulator. To better keep

track of all system components and the mass of the vehicle, a master equipment list was

constructed. This allowed for fast high level iterations of components and allocations of mass

to ensure the mass budget was never exceeded.

Table 1: Master Equipment List

Three scenarios were considered to ensure the thrust-to-weight ratio satis�ed the requirements.

First in a nominal con�guration, with motors and propellers, the turbine are attached to the

vehicle, as well as 5 kg of payload, it can be seen that the thrust to weight ratio is 3.12:1.

Next, leaving out the turbine with associated components, and payload, the thrust to weight

13

ratio is 3.90:1. These two nominal con�gurations cover all regimes of �ight. If required, more

fuel can be addeded or larger batteries can be swapped to increase �ight time, but decrease

the thrust to weight ratio.

However, if the vehicle experiences a turbine failure with 5 kg of payload and full fuel, the

system was designed to enter into a fail-safe mode where the thrust to weight ratio is not

nominal, but is enough to safely land the vehicle without further damage. This thrust to

weight ratio is 1.24:1, similar to that of the �rst generation simulator.

The frame was designed so that all �ight components for stabilization and control could be

mounted on the underside of the vehicle. This reserves surface area on the top for future

payloads. In addition, the central circle has a circular pattern of six bolt holes to eventually

house the turbine at the geometric center of the vehicle. The highest mass components will

eventually be the payload, so the frame was designed to support the loading of the 5 kg

distributed about the top surface.

Figure 11: Second Generation Simulator CAD Drawing

Similar methods of fabrication as the proof of concept vehicle were used to construct the

frame. Initially, A large triangle was rough cut from a rigid PVC foam called Divinycell H80.

This core material was chosen for its excellent of shock and impact resistance as well as low

water absorption and high compressive and shear strength.

Next, unidirectinal carbon and �berglass tape was wet-layed with MGS epoxy while the same

14

epoxy was mixed with micro glass spheres and brushed onto the foam. This was to ensure

that surface pores were �lled so that the carbon would bond to the maximum surface area

possible. Finally, a vacuum was pulled over the entire part until fully cured to ensure any

extra epoxy was removed and the wet �bers stayed adhered to the core throughout the cure

process. The fully cured part was then cut on a waterjet to remove extra material.

Figure 12: Vacuum Cure of Frame

Figure 13: Frame Cut on Water-Jet

Aluminum tabs to house the motors were cut on the waterjet then bonded onto the frame.

These pairs of plates were then bolted together with aluminum stando�s.

15

Figure 14: Motor Tab Bonding

Finally, the top of the frame could be populated with �ight componenets and wires.

Figure 15: Populated Frame

16

Figure 16: Populated Frame Bottom

It can be seen that the mass at this point in the construction process is approximatly 2.5 kg.

According to the MEL in table 1, there is 3.102 kg alloted to this �ight con�guration. This

leaves an extra 0.6 kg for landing legs and extra electrical connectors. The mass of the vehicle

remained under-budget during construction.

Figure 17: Final V2 Hopper Spacecraft Simulator

17

2.6 Flight Testing and Test Stands

It was found that the design of the test stand is critical to ensuring the gains found through

testing also correlate to free �ight stability. Essentially, the purpose of the test stand was to

simulate free �ight as close as possible, and not introduce unwanted dynamics while testing

the controller.

Initially, a three DOF test stand was constructed to assist in the testing of the �rst generation

simulator. The mass of the �rst generation simulator, 18 kg, necessitated a strong, rigid

platform for constraining the position of the vehicle while the attitude was constrolled. The

3 DOF's were achived through the use of a universal joint mounted on top of a shaft that was

housed within two bearings. The structure itself was designed to be heavy enough that the

vehicle's accelerations would not be able to move the stand.

Figure 18: 3-DOF Test Stand

18

Figure 19: Universal Joint on Shaft

Also included in the design of the test stand was the ability to constrain any of the three of

the DOF's such that a single axis on the vehicle could be isolated.

As the mass of the universal joint became a signi�cant percentage of the proof of concept

vehicle as well as the second generation simulator, this test stand could not be used to test

the �ight control software. For the POC simulator, di�erent methods mounting the vehicle

to a test stand were attempted.

19

Figure 20: Quadrotor Cage

Ultimately, the best option was to drill a large hole in the geometric center of the vehicle and

slide this over a smaller diameter shaft. This allowed the vehicle to hover and even stabilize

in place, while constraining its position without the use of a joint.

Figure 21: Proof of Concept Vehicle Pole Testing

The second generation simulator used a similar, albeit crued, concept, but the test stand

served its purpose perfectly. The design of this test stand, coupled with the development of

the software simulations and proof of concept vehicle, allowed for the successful test �ight of

20

the second generation vehicle less than 24 hours after construction completed.

21

3 Equations of Motion

The �rst step to controlling a �ying system is understanding the dynamics. For this, we can

establish two coordinate frames. The �rst frame is an inertial frame of reference and will be

called the planetary frame. This remains �xed in space and provides the reference for vehicle

position information. The second frame is a non-inertial reference frame that is attached to

the vehicle as it translates and rotates within the inertial reference frame.

Figure 22: Planetary and Body Reference Frames

The sequence of rotations about di�erent axes are called euler angles. It is important to note

that these angles are not always about the planetary frame's axes. In fact, only the �rst

rotation is about the planetary frame's axis and then each subsequent rotation is about an

axis in a newly created coordinate frame. Hence, the sequence of rotation is unique in that a

di�erent sequence will produce a di�erent description of attitude. As can be seen from �gure

22 we have de�ned these rotation angles as:

φ , roll

θ , pitch

ψ , yaw

We will need to be speci�c throughout the derivation when we refer to the reference frame in

22

which the action is taking place. For our system, it will eventually be convenient to describe

the translations in the planetary frame, while we describe the rotations in the body frame.

While this may seem inconsistent, this is done because of how our sensors operate. Our

attitude control system has sensors that read body frame information, the euler angles, and

the controller describes desired body frame torques from this information. Meanwhile, our

position information will come from a GPS which is capable of giving planetary information.

This combination separates the attitude controller from the position dynamics, which eases

computation on board and is easier to visualize.

To derive the equations of motion for our system, we will use the well known Newton-Euler

equations as in [9, 3, 2]. These are used to describe the motion of a rigid body that is both

translating and rotating. We will begin by formulating the dynamics in the body frame.

 FB

TB

 =

 mI 0

0 Iv


 ζ̈B

η̈B

+

 η̇B ×mζ̇B

η̇B × Iv η̇
B

 (1)

The superscript B in (1) shows the representation in the body frame. For the derivation, we

will assume that the origin of the body frame resides at the center of mass of the vehicle, and

the body frame axes are aligned with the principle axes of inertia. Also, with:

ζB =

[
X Y Z

]T

ηB =

[
φ θ ψ

]T

m = vehicle mass

Iv =


Ixx 0 0

0 Iyy 0

0 0 Izz


23

FB = FBA −GB =

[
mgs (θ) −mgc (θ) s (φ) −mgc (θ) s (φ) + FZ

]T
(2)

TB =

[
Tφ Tθ Tψ

]T

Our actuators are �xed to the body, so they are only capable of providing a force, FBA , in

the Z body frame direction. In addition, the contribution of the gravitational vector in the

body frame is:

GB = R−1GP

Where R is the rotation matrix from the planetary frame to the body frame with c (ε) = cos (ε)

and s (ε) = sin (ε)

R =


c (θ) c (ψ) s (φ) s (θ) c (ψ)− c (φ) c (ψ) c (φ) s (θ) c (ψ) + s (φ) s (ψ)

c (θ) c (ψ) s (φ) s (θ) c (ψ) + c (φ) c (ψ) c (φ) s (θ) s (ψ)− s (φ) c (ψ)

−s (θ) s (φ) c (θ) c (φ) c (θ)


The addition of the cross products in the newton-euler formulation arise from the fact that

our body frame is accelerating with respect to the planetary frame, and contains the coriolis

and centripetal e�ects of the dynamics. See appendix B to see a detailed derivation of the

Newton-Euler equation as well as the rotation matrix.

η̇B ×mζ̇B = m


θ̇Ż − ψ̇Ẏ

ψ̇Ẋ − φ̇Ż

φ̇Ẏ − θ̇Ẋ

 (3)

η̇B × Iv η̇
B =


θ̇ψ̇ (IZZ − IY Y)

ψ̇φ̇ (IXX − IZZ)

φ̇θ̇ (IY Y − IXX)

 (4)

Hence when (3) and (4) are substituted into (1) with the previous know values, the following

system of equations for the body frame:

24

Ẍ =
(
ψ̇Ẏ − θ̇Ż

)
+ gs (θ)

Ÿ =
(
φ̇Ż − ψ̇Ẋ

)
− gc (θ) s (φ)

Z̈ =
(
θ̇Ẋ − φ̇Ẏ

)
− gc (θ) s (φ) + FZ

m

φ̈ = θ̇ψ̇(IY Y −IZZ)
IXX

+
Tφ
IXX

θ̈ = ψ̇φ̇(IZZ−IXX)
IY Y

+ Tθ
IY Y

ψ̈ = φ̇θ̇(IXX−IY Y)
IZZ

+
Tψ
IZZ

(5)

We can see that in (5), our angular accelerations are linearly related to Tφ, Tθ, and Tψ. These

are the torques that are de�ned by our attitude controller. This is the reason it is convenient

to de�ne the angular accelerations in the body frame, as we see the direct e�ect from our

control torques.

However, when looking at the body �xed translational accelerations in (5) , we see that our

control force, FZ is only apparent in Z̈. We do see the coupling e�ect due to Ż, φ̇, and θ̇ in Ẍ

and Ÿ . This shows that it is still possible to achieve accelerations in the X and Y directions,

but in an indirect fashion from FZ because of the de�nition of forces in (2). This gives rise to

the idea of formulating the position dynamics in such a way that our control force FZdirectly

a�ects each of the accelerations. This is accomplished if we resolve the body frame actuator

forces into the planetary frame by:

FP = RFBA −GP = R


0

0

Fz

−


0

0

mg

 =


(c (φ) s (θ) c (ψ) + s (φ) s (ψ))Fz

(c (φ) s (θ) s (ψ)− s (φ) c (ψ))Fz

(c (φ) c (θ))Fz −mg

 (6)

Then, since our planetary �xed frame is inertial, it does not experience any coriolis or centrip-

ital e�ects so the contribution from the cross product is 0. This then leads to the following

25

revised Newton-Euler equations of motion:

 FP

TB

 =

 mI 0

0 Iv


 ζ̈P

η̈B

+

 0

η̇B × Iv η̇
B

 (7)

Or written as a system of equations when (6) in combination with (4) is placed in (7),

N̈ = [c (φ) s (θ) c (ψ) + s (φ) s (ψ)] FZm

Ë = [c (φ) s (θ) s (ψ)− s (φ) c (ψ)] FZm

D̈ = −g + [c (φ) c (θ)] FZm

φ̈ = θ̇ψ̇(IY Y −IZZ)
IXX

+
Tφ
IXX

θ̈ = ψ̇φ̇(IZZ−IXX)
IY Y

+ Tθ
IY Y

ψ̈ = φ̇θ̇(IXX−IY Y)
IZZ

+
Tψ
IZZ

(8)

By deriving the equations of motion in this combined frame of reference, we have allowed

for the design and simulation of the attitude controller that is independent of the position

dynamics, and we also have provided a convenient way of showing the position dynamics in

the inertial frame with a direct e�ect from FBA and the coupling of the vehicle attitude.

26

4 Controller

Now that it is understood how the vehicle moves in its respective reference frames, we can

begin to design a controller that stabilizes the system in each frame. At �rst, open loop

simulations will show the double integrator plant is unstable in attitude and then a proposed

controller will be shown to stabilize the system in a closed loop. A position controller will

then be designed in simulation.

The �rst step in this system is to ensure that there is a robust attitude control system. Because

our system's attitude is coupled to position, as can be seen from the equations of motion,

we must roll, pitch, or yaw in order to get to a di�erent position. To do this, the position

controller will de�ne a speci�c attitude orientation to which the attitude control system must

quickly and precicely re-orient itself. Thus, the �rst step for control is ensuring a robust

attitude control system.

When designing a controller for this type of application, it is important to look at what sensors

are at the disposal of the system itself. Usually, the more sensors, the more controllable the

system, as the more layers of control can be applied. In our case, we will have the capability

of sensing angles and rates in all three axes. This means that we will have the ability to sense

φR, φ̇R, θR, θ̇R, ϕR, ϕ̇R. The subscript 'R' is used to denote that these are the raw values for

each angle and angle rate. We will later see that we can substantially reduce mechanical and

electrical noise by �ltering each of these states with a polynomial Kalman �lter.

There are many types of controllers that have been shown to work for double integrator

type plants. It was shown in [1] that a model independent PD controller is a suitale, robust

replacement for more complicated non-linear controllers. Hence, the controller that will be

used on board the vehicle will be a variation of a PD controller. In [5], a PD controller was

developed for attitude control that showed good stability characteristics for quadrotors, but

the simulations did not include time delays in the analytical model. A step further can be

seen in [4] where a cascaded control law is used.

A cascaded control law consists of two control loops, both containing a speci�c setpoint. The

27

outer, master loop, creates the set point for the inner, slave loop. In the case of the spacecraft

simulator, the master loop stabilizes around an angle, while the slave loop stabilizes around

an angular rate. This type of controller is faciliated by the fact that the chosen sensors

onboard are capable of providing measurments for each loop, the current angle and angular

rate. As stated and shown in [6], cascade control has been shown to improve performance

by suppressing the e�ect of disturbances on the master loop objective as well as reducing the

sensitivity of the master loop to large gain variations in the slave loop. This allows larger

gains to be used in the slave loop, and when the system has large time delays, allows for

quicker response times over single loop control systems.

For this application, a P-PD cascaded controller has been chosen. Coupled with open loop

system identi�cations of the actuators, it will be shown to provide a very robust and simple

method for controlling the vehicle.

4.1 Real World Considerations

When designing a controller that is to be applied in the real world, it is important to include

two important factors in the dynamic simulations. These are time delays and noise. Without

these in simulation, the operational system may not exhibit the same stability as the system

simulation shows. Worse, these could cause the operational system to be inherently unstable.

4.1.1 Time Delay

Time delay is a term that covers a broad range of issues in controlling unstable systems.

Speci�cally for our system, time delay occurs at each step in the control loop as can be seen

in �gure 23.

28

Figure 23: Time Delay Sources

Beginning with sensors, raw sensor data itself does not experience signi�cant delay, but the

issue arises as �lters are placed in the control path. It can be di�cult to apply a controller

with the noise from low cost sensors so �lters are almost always a necessary burden. If

designed correctly, the delay associated with this �lter can be orders of magnitude less than

the dominating inertial delays of the system.

Next, and possibly the least signi�cant, is the processing delay in the �ight computer. Issues

may arise when using many electrical interfaces and long programs or �oating point numbers,

but usually sourcing the right components can overcome these delays.

Finally, and the most signi�cant, is the delay associated with the actuators. Up until this

point in the loop, most of the processes have been dominated by electrical phenomenon, but

now inertial e�ects enter into the equation. For our system the process is:

1. The �ight computer gives the electronic speed controller (ESC) an input signal associ-

ated with a desired force

2. The ESC then interprets this signal and enables output on a di�erent circuit to the

motor

3. The motor spins the propeller to achieve the desired change in force

In fact, these e�ects are so important that a thrust test stand was developed to test for a

combination of motor, propeller, and voltage that has the smallest time delay and still enables

29

the system to satisfy the high thrust to weight ratio. This will be explained in detail in section

6.

While some of these delay sources may be insigni�cant compared to others, it is useful to note

all sources for delay, as this aids in debugging the physical system.

4.1.2 Noise

The second real world consideration is noise. This can either be mechanial or electrical, but

both directly a�ect the sensed measurements. Several possibilities exist to reduce noise. The

�rst is a software or hardware �lter in line with the sensor itself. For this system, a polynomial

Kalman �lter was used and will be demonstrated later in section 5.

Mechanical noise in our system can be reduced by mounting components on vibration iso-

laters, as well as ensuring that all propellers are mass balanced around the axis of rotation.

Mechanical noise is inevitable but usually not detrimental to the system.

4.2 Open Loop Simulation

Before we apply our controller, we want to check the open loop dynamics to con�rm that the

simulink model and equations of motion provide the correct, unstable baseline response. The

input we will be using to judge system response is the step change. This simulates a desired

change in attitude.

This speci�c system deals with a double integrator model. This means that the dynamics are

such that our desired state is related to an input via two time derivatives, as can be seen from

the dynamic equations in the previous section.

Using the dynamic equations, a full non-linear attitude simulation was designed in SIMULINK.

30

Figure 24: Non-Linear Open Loop Simulation

The open loop step response of θand φ are shown below:

Figure 25: Non-Linear Open Loop Step Response

We can begin to analyze the stability of the system if we simplify our system, for test purposes

and clarity, to one axis and linearize about the horizontal level mark. Doing this allows us to

use the root locus design technique.

Figure 26: Linear Open Loop Simulation

The transfer function in the frequency domain for the system shown, including a pole for the

time delay transfer function can be shown to be:

31

L (s) =
1

s2 (τs+ 1)
(9)

Where τ is the measured time constant of the system.

The corresponding root locus plot then is shown to be:

Figure 27: Root Locus of Linear Open Loop System

We see that the poles, designated with an x in �gure 27, occur at the time constant of the

motor and twice at the origin of the complex plane, as these are where (9) tend to in�nity.

The motor time constant was arbitrariliy chosen to be 0.2 for this simulation, but the slower

poles are the integrators and these tend to dominate the system. We can also see from the

branches of the root locus in �gure 27 that no possible gain will give this system stability, as

there is no part that reaches back into the negative side of the real axis.

4.3 Roll and Pitch Controller Design

Our sensors enable us to feed back all of the angles and rates involved in our attitude controller,

these being φR, φ̇R, θR, θ̇R, ϕR, ϕ̇R. We can then use this information to stabilize our system

by controlling around the error between a desired state and the actual state. A common form

of a control law that will be used in our application is the Proportional and Derivative control.

A desired acceleration or torque can be de�ned to be a function of emperically found, math-

32

ematical weights to the error in angle and error in angle rate and a function of the errors

themselves. Hence for example, φ gives

Tφ = f
(
kφe , kφ̇e , φe, φ̇e

)
(10)

Where:

φe = φD − φ (11)

φ̇e = φ̇D − φ̇ (12)

The 'D' subscript denotes the desired state. For φD this is trivially the desired roll angle

prescribed by either the pilot or a position controller. For φ̇D however, it is possible to go a

step further and consider our desired rate to be:

φ̇D = f (kφe , φe) = kφe (φD − φ) (13)

Such that when (10) is written out to include (11), (12), and (13):

Tφ = kφ̇e

(
kφe (φD − φ)− φ̇

)
(14)

The same controller can be extended to θ such that:

Tθ = kθ̇e

(
kθe (θD − θ)− θ̇

)
(15)

(14) and (15) provide the essence of the cascaded state controller. The error of one state

de�nes the error of the next state which is a derivative of the �rst.

4.3.1 P-P Controller Simulation

While we have mathematical gains on both the angle and angle rate, this is not however yet

considered a P-D controller. Since we have a sensor for both φ and φ̇ we are not physically

taking the derivative of any of the signals. This is instead a P-P controller.

33

Figure 28: Linear P-P Controller Simulation

A typical trade-o� in the step response of the system is between speed and oscillatory behavior;

the faster the system, the more oscillatory. We can see both phenomena in the following

responses in �gures 29 and 30:

Figure 29: Linear P-P Controller Slow Step Response

Or if a faster response is required:

34

Figure 30: Linear P-P Controller Fast Step Response

To understand this stability, we can again look at the root locus of this system of which the

transfer function can be found to be:

L (s) =
kφekφ̇e

τs3 + s2 + kφ̇es+ kφekφ̇e
(16)

Figure 31: Root Locus of P-P Controller

It can be seen that the addition of feedback has brought the branches in �gure 31 into the

negative side of the real axis, but they are still very close to the complex axis. This indicates

that stability is possible, but explains the oscillatory behavior observed in the simulations.

Again, the poles seen on the locus are from the system time delay transfer function as well as

35

the change from the double pole at the origin to the complex pair.

4.3.2 P-PD Controller Simulation

After running the P-P controller simulations, it was clear that a derivative term needed to be

added to achieve a faster response. This was added to the inner loop such that the new input

is now a result of a P-PD controller. There is a proportional gain on the angle and both a

proportional and derivative gain on the angle rate:

Tφ = kφ̇e

(
kφe (φD − φ)− φ̇

)
+ k dφ̇e

dt

dφ̇e
dt

(
kφe (φD − φ)− φ̇

)
(17)

And for θ:

Tθ = kθ̇e

(
kθe (θD − θ)− θ̇

)
+ k dθ̇e

dt

dθ̇e
dt

(
kθe (θD − θ)− θ̇

)
(18)

Figure 32: Linear P-PD Controller Simulation

We can see in �gure 33 that the P-PD controller achieves a much faster and much less

oscillatory response than the P-P:

36

Figure 33: Linear P-PD Controller Step Response

And when looking at the root locus of the transfer function:

L (s) =
kφek dθ̇e

dt

s+ kφekφ̇e

τs3 +
(
k dθ̇e
dt

+ 1
)
s2 +

(
kφek dθ̇e

dt

+ kφ̇e

)
s+ kφekφ̇e

(19)

Figure 34: Root Locus of P-PD Controller

From �gure 34, it is seen that the addition of the zero has drastically improved our step

response. Speci�cally, it has dragged the branches of the root locus far into the negative real

side, thus ensuring stability over a wide range of gain values. It is important to note that

these simulations are with arbitrary values for the time constant as well as gains. The actual

�ight data will be compared to simulation later in section 8.

37

When a step function is applied to this system, the derivative term in the inner control loop

causes the input to spike towards in�nity. Limits will be applied to the controller so that the

actuators will saturate, but this does not cause any instability, as the control loop runs at

180Hz and can quickly overcome the saturation. In essence, the saturated signal gets taken

out quickly.

4.4 Non-Linear Attitude Control Simulation

Now that a controller has been designed with the root locus and linear techniques, we can

apply it to a non-linear, full three-axis attitude simulation to get a better understanding of

response in the body �xed frame.

Figure 35: Non-Linear Closed Loop Simulation

This non-linear simulation in �gure 35 also includes all real world e�ects, including time delay,

noise, and also applies saturation limits on the amount of force the actuators can produce.

The values eventually used in simulation are taken from actual measured values from �ight

hardware.

The last block in the simulation includes all the dynamic equations that were derived in

the previous section. Each of the MATLAB function blocks contains a separate equation of

motion for roll, pitch, and yaw.

38

Figure 36: Non-Linear Dynamics Subsystem

This subsystem solves for all the angles and rates, then feeds these back to the controller

subsystem. During the feedback path, realistic values of noise are added to each of the

signals.

Figure 37: P-PD Controller Subsystem

Here, is all of the control laws that were derived for the P-PD controller. The simulation also

has the capability of changing each of the gains to tune the controller. The output of this

subsystem are the desired torques for each axis. These are the torques that were de�ned in

(17) and (18).

The next two blocks take the desired torques and, based on the geometry of the vehicle, de�ne

forces for each actuator set. This is also where the system time delays are included.

39

Figure 38: Mixer Subsystem

These forces de�ned by the controller are then sent to a graph so that the actuator e�ort

can be monitored in simulation. They are also sent to the torque input converter block to be

converted back to a useful torque for the non-linear dynamics block. This is essentially the

inverse of the mixer subsystem.

Finally, in �gure 39 we see the step response in our non-linear dynamics simulation is as

expected:

Figure 39: Non-Linear Closed Loop Step Response

4.5 Yaw Controller Design

The yaw controller on the vehicle can be less robust than that of the pitch and roll controllers.

This is because the vehicle will be able to pitch and roll to reach its �nal destination, leaving

the yaw controller to stabilize the vehicle around a constant, zero rate reference. To accomplish

this, a P-D controller using rate feedback was de�ned and implemented as:

40

Tψ = kψ̇ψ̇e + k dψ̇e
dt

dψ̇e
dt

(20)

The vehicle controls yaw position and rate by applying a di�erential thrust to the top and

bottom rotors. Since they are spinning in opposite directions, the torque about the z axis

generated from the top rotors will be di�erent than that from the bottom, which will cause the

vehicle to yaw. The gains for this controller were tuned to output a decimal that represented

a percentage of force that will be distributed to the top and bottom rotors, so that the total

force perscribed by the pitch and roll controllers will always be attained by the group, but

the distribution between the top and bottom rotors will be used to control yaw.

4.6 Digitization

All of the control laws discussed above are designed for an analog system. Our �ight computer

runs o� a certain clock cycle so it is inherently digital. However, it will be assumed that since

the sample rate of the �ight computer is much faster than the natural frequency of the system,

the control laws written can be in the analog form, and di�erence equations are not necessary

for implementation. This assumption is proven in section 8. The digital system can be seen

graphed with the analog system and there is no delay associated with the fast sample rate.

41

5 Sensor Filter

As stated in section 4, measurements coming from the sensors are subjected to two forms of

noise, mechanical and electrical. Without the use of a �lter, the noise could cause the system

to be unstable. It is essential that the angles and rates fed into the control system are clean

signals so that the �ight control software can de�ne the proper forces to the motors. At �rst,

a simple resistive-capacitive (RC) hardware �lter was tested in series with each of the signals,

but as this was found to be ine�ective for the system, a polynomial Kalman �lter (PKF) was

implemented.

5.1 RC Filter

RC �lters provide a simple method for allowing only low frequency signals pass through a

circuit while blocking higher frequency signals.

Figure 40: RC Circuit

Summing the currents, the governing equation for this circuit in the time domain can be

found to be:

C
dV

dt
+
V

R
= 0 (21)

V (t) = V0e
− t
RC (22)

Or, converting to the laplace domain, the transfer function is:

H (s) =
1

1 +RCs
(23)

Which contains a single pole at s = − 1
RC . The value of RC can be tuned to have a di�erent

response and cuto� frequency depending on the amount of noise from the �lter. The tradeo�

then becomes the amount of �ltering, cuto� frequency, versus time lag for the �ltered value

to reach the actual value.

To better understand what the cutto� frequency should be for our application, data can be

taken from the sensors then a discrete fourier transform (DST) can be performed to isolate the

42

frequencies of noise. Data was taken at 180 hertz (Hz) and the following plots were created

with the motors running on the simulator.

Figure 41: DFT of Sensor Noise

From this plot in �gure 41, we see that the noise has frequency components in both the high

and low frequency range, so it can be concluded that a simple low pass �lter would have

to have a very low cuto� frequency. This resulted in large amounts of time lag which is

unacceptable for this type of control system.

5.2 Polynomial Kalman Filter

After testing the simple RC �lter, a more robust approach was taken and a PKF was designed

and implemented as in [8]. This is a recursive �lter that estimates the actual states of a system

from noisy measurements. Recursive means that the �lter only needs distinct data points and

not necessarily a history of the data. This is convenient for applied system, as it does not

have large memory requirements.

The PKF takes information from the sensors and integrates this with a model of the system

itself as well as knowledge of the noise experienced to produce an estimate of the system. Refer

to appendix C for the derivation of the �lter and recursive equations. For simpli�cation, this

section will show the derivation of the �lter for only one axis, i.e. pitch and pitch rate. The

same derivation can also apply to roll and roll rate. The equation for the PKF is:

43

X̂k = ϕkX̂k−1 +Gkuk−1 +Kk

(
Zk −H

(
ϕkX̂k−1 −Gkuk−1

))
(24)

Where,

� X̂k is the estimated states at the current time step,

� X̂k−1 is the estimated states at the previous time step,

� ϕk is the discrete state transition matrix,

� Gk is the control matrix,

� uk−1 is the input matrix,

� Kk is the Kalman gain matrix,

� Zk is the measurement matrix, and

� H is the observation matrix

In our system, Gk = 0 because the states Xk are not directly controlled by the inputs, and

the �lter only involves measurments and models of the system. This leaves:

X̂k = ϕkX̂k−1 +Kk

(
Zk −HϕkX̂k−1

)
(25)

With the Riccati equations:

Mk = ϕkPk−1ϕ
T
k +Qk (26)

Kk =MkH
T
(
HMkH

T +Rk
)−1

(27)

Pk = (I −KkH)Mk (28)

Where,

� Mk is the covariance representing errors in the state estimates before the update,

� Pk is the covariance representing errors in the state estimates after the update,

44

� Qk is the matrix of scalars representing process noise, and

� Rk is the matrix of scalars representing the measurement noise

Speci�cally, our state transition matrix in (25) shows that one signal is the derivative of the

next, or:

ϕk =

 1 Ts

0 1

 (29)

And our process noise matrix is:

Qk =

∫ Ts

0

ϕk (τ)Qϕ
T
k (τ) dτ =

 Ts(Ts2+3)c
3

Ts2c
2

Ts2c
2 Tsc

 (30)

Where Ts is the sampling time and Q is a diagonal matrix of scalars c. Also, our measurment

noise matrix Rkis a diagonal matrix of scalars m. Both c and m are tunable scalar constants

that represent the process and measurement noise respectively.

Similar trado�s between �ltering and time delay exist with the PKF so the values of c and

m that matched well with the system through emperical testing were found to be .25 and 1

respectively. The raw signals are compared to the �ltered signals in the plots below. The

code associated with the PKF is shown in appendix D.

Figure 42: Comparison of PKF vs. Un�ltered Angle Measurement

45

Figure 43: Comparison of PKF vs. Un�ltered Angle Rate Measurement

From these plots, it can be seen that the designed and tuned PKF does not greatly a�ect

the internal �lter of the VN-100 for the angular measurement, but provides a quick, smooth

response to the noisy data of the angular rate measurement.

46

6 Thrust Test Stand

6.1 Motivation

A very distinct di�erence between simulation and an applied system deals with the observation

of how our actuators respond to inputs. Introductory simulations assume that for a given

input, the actuator produces a perfect response. This means that there is no time delay

from input to output and that the forces prescribed by the controller is precisely achieved

by the actuators. In reality, this is impossible because of real world processing e�ects in the

software and inertial e�ects in the hardware. To diminish this e�ect, a thrust test stand was

designed such that both of these metrics could be identi�ed and measured. In essence, this

test stand allows for the open loop system identi�cation of the actuators. This accomplishes

the following goals:

1. Static characterization of thrust vs. input

2. Transient response to an input

3. Comparison of di�erent actuators based upon the previous metrics and a unique thrust

vs. power consumption curve

6.1.1 Static Characterization

It is important to note the speci�cs of our real world input. While the controller is designed to

prescribe a force required from our actuators, our real world input is much farther upstream

from this force. In fact, we are actually providing a PWM signal to an electronic speed

controller, which then has software that further interprets this as a point in a range from zero

to full throttle. Only then is current applied to the brushless motor. Models of these systems

have been created and simulated, but a more emperical approach was chosen. The static

characterization will provide the conversion from a desired force to a desired PWM signal.

A second order emperical model of this relationship will be found from the test data of our

actuators. This relationship is speci�c to the �ight computer, electronic speed controllers,

motors, propellers, and voltages that are selected.

It would, in fact, be possible to design a multi-rotor platform and controller without giving

47

the system any knowledge of the actuator set. This is because the gains we choose in our

controller could be capable of stabilizing the system for a speci�c thrust level. If the thrust

deviates form this nominal level, the second order relationship of the input to output prevents

the same stability characteristics from these distinct thrust levels. In other words, since the

actuators are non-linear, the tuned accelerations for a speci�c thrust level will not provide

the same response at a di�erent level. We counteract this by providing the controller with the

knowledge of the static characterization found on our thrust test bench, so that the amount

of force output is always known. Thus, our accelerations can be predictable and precisely

achieved across the entire range of throttle levels.

6.1.2 Transient Response

The transient response of our actuators can be described in terms of the idea of a time

constant. When provided with a step input, the time constant is the physical time it takes

the system to reach approximatly 63% of its �nal value. This is derived from the exponential

decay of the error in our step response. While the controller is not told anything of the speci�c

time constant that is found, the value is used in simulation to design a more robust controller.

In general, systems with smaller time constants are easier to control, and in fact the best time

constant possible is zero. The higher the time constant, the more time lag in our system and

our step response gets slower with the designed controllers.

6.1.3 Comparison of Di�erent Actuators

The knowledge of these two previous phenomena as well as the desire for the most power

e�cient actuator set as possible allows us to develop a testing strategy that leads to the

choice of a speci�c motor and propeller combination. Since there are many variables involved

along the actuator chain, testing was done with �xed speed controllers and �ight computer

while the motors, propellers, and voltages were variable. For each actuator set, a curve of

thrust vs. power consumption was created so that each combination could be compared.

48

6.2 Test Stand Design

6.2.1 Sensors

In order to ful�ll the goals for actuator testing, the test stand needed to be out�tted with

a load cell as well as voltage and current sensors. These in conjunction with MATLAB's

data acquisition toolbox will give the data necessary to make a proper choice for actuators,

based on the 3 metrics above. The s-beam load cell was selected and wired to interface with

a National Instruments 9237 data acquisition signal conditioning module.

The power sensors were found from Eagle Tree Systems and selected for their standard elec-

trical interfaces as well as software package that allows for easy data logging and real time

visualization.

6.2.2 Hardware and Construction

The structure of the test bench needed to be designed in order to facilitate the accuracy and

repeatability of the measurements. This requires minimal de�ections and slop throughout

the entire frame and mounting interfaces such that all de�ections are small with respect to

those occuring within the load cell. An indirect mounting approach was chosen in order to

minimize the mechanically induced noise going into the load cell.

Figure 44: Thrust Test Stand Frame

The load cell was mounted with rod ends on both sides to ensure that only the axial direction

is constrained. This minimizes e�ects due to o� axis loading when stressing the load cell.

49

Figure 45: Load Cell Mount

Finally, the power sensors were mounted on the side along with all other necessary hardware

components. This allows for quick changing of wiring and debugging.

Figure 46: Power Sensors on Thrust Test Stand

50

Figure 47: Final Assembly of Thrust Test Stand

6.3 Actuator Test Matrix

The following depicts the testing program on the thrust test stand. Four standard voltages

were tested with di�erent motor and propeller combinations. The combinations tested were

chosen based upon the speci�c motor capabilities that were found on the manufacturer's

website.

At �rst, only one motor and propeller were tested at a time. This avoids the contra-rotating

setup and was done to prevent high initial cost in purchasing more equipment, as well as to

maintain a reasonably sized test matrix. While the results of the testing cannot be linearly

scaled to two motors, it does give an adequate idea of e�ciencies and performance so that a

combination can be chosen.

51

Motor Propellers

Orbit 15-20 APC 13x8
APC 14x8.5
APC 15x4

BP 2826 APC 13x8
APC 14x4.7

AXI 2826 APC 14x4.7
APC 15x4
APC 16x8

Table 2: 11.1V Test Matrix

Motor Propellers

Orbit 15-20 APC 13x8
APC 14x8.5
APC 15x4
APC 16x8

BP 2826 APC 13x8
APC 14x4.7

AXI 2826 APC 14x4.7
APC 15x4
APC 16x8

Table 3: 14.8V Test Matrix

Motor Propellers

Orbit 15-20 APC 13x8
APC 14x8.5
APC 15x4
APC 16x8

AXI 2826 APC 14x4.7
APC 15x4
APC 15x10
APC 16x8

AXI 4120 APC 14x8.5
APC 15x4
APC 16x8
XOAR 16x8

Table 4: 18.5V Test Matrix

Motor Propellers

AXI 4120 APC 14x8.5
APC 15x4
APC 16x8
XOAR 16x8

Table 5: 22.2V Test Matrix

52

6.4 Load Cell Calibration

The stand was turned on its side and loaded with known masses to produce the following

calibration plot:

Figure 48: Thrust Test Stand Calibration

From these results, the slope was found in �gure 48 to be:

3, 311.121
g

mv

6.5 Test Data

6.5.1 Static Thrust

The �rst test conducted from the test matrix was for static thrust. This data was then used

to �lter out some combinations that failed to satisfy the requirement for high static thrust

with respect to other combinations.

53

Figure 49: 11.1V Test Matrix Static Thrust

Figure 50: 14.8V Test Matrix Static Thrust

54

Figure 51: 18.5V Test Matrix Static Thrust

Figure 52: 22.2V Test Matrix Static Thrust

6.5.2 Transient Analysis

The transient analysis was conducted such that a step change was applied to the system,

and the time response was recorded with MATLAB. The value of the step change was held

constant throughout the test so that each combination could be compared against a baseline.

A MATLAB program was written to apply a �nite impulse response smoothing algorithm

to the raw data. This is essentially a moving average and the matlab code can be seen in

appendix E.

55

Figure 53: Results of Smoothing Algorithm

After applying the smoothing algorithm, the derivative of the signal was checked for a certain

value of step change. This marked the beginning of the step response and its time was

recorded. The initial and �nal value of the data was then marked so that a value of the time

constant could be predicted. The entire data array was then searched for this value and its

time was recorded. The di�erence in the two times is the time constant on the system. This

process was repeated for each motor and propeller combination.

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Orbit 13x8 14.8

Orbit 13x8 14.8

Axi 2826 14x4.7 14.8

Axi 2826 14x4.7 18.5

orbit 14x8.5 14.8

orbit 14x8.5 18.5

Axi4120 14x8.5 18.5

Axi 2826 15x4 14.8

orbit 15x4 14.8

Axi 2826 15x4 18.5

Axi4120 15x4 18.5

orbit 15x4 18.5

Axi4120 15x4 22.2

Axi 2826 15x10 18.5

Axi 2826 16x8 14.8

orbit 16x8 14.8

Axi4120 16x8w 18.5

Axi4120 16x8a 18.5

Axi 2826 16x8 18.5

orbit 16x8 18.5

Axi4120 16x8w 22.2

Axi4120 16x8a 22.2

orbit 16x8 22.2

time constant (s)

Time Constants

Figure 54: Transient Analysis

The transient data analysis shown in �gure 54 did not show a trend or correlation between

voltage, motor, and propeller. However, many of the values were similar in magnitude.

Several conclusions can be drawn from this data. First, the testing method and apparatus

was not suited well for this type of data extraction. There could have been both static and

kinetic friction within the apparatus that prevented the load cell from reading small changes

in thrust. However, this method led to the conclusion that many of the combinations have

about the same value in the time constant.

57

6.5.3 Thrust vs. Power

The third and �nal relationship for testing was thrust vs. power. The test matrix was further

�ltered to expedite the post-processing.

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700

th
ru

st
 (

kg
)

power (W)

Thrust vs. Power

AXI2826 13x8

AXI2826 14x8.5

AXI2826 15x4

AXI2826 15x10

AXI2826 16x8

AXI4120 14x8.5

AXI4120 15x4

AXI4120 16x8APC

AXI4120 16x8XOAR

Figure 55: Thrust vs. Power Comparison

6.6 Actuator Selection

In conjunction with practical limitations, we can use this data to aid in the selection of an

actuator set.

6.6.1 Propellers

First, two di�erent sources for propellers were tested. The �rst, APC, is a well known RC

propeller manufacture and its products are widlely available in the diameters and pitches

required. The second, XOAR, manufactures a very high quality beechwood propeller with a

smooth surface �nish. If these propellers were selected, the reverse pitch would have necessi-

tated a custom fabricated propeller which increases cost.

The data for the 16x8 propellers showed a slight advantage to the XOAR propeller, but this

was not considered signi�cant enough to take precedent over the sourcing issues.

58

6.6.2 Motors

Similar sourcing issues occured with the motors. While AXI motors are widely available,

Orbits are much harder to �nd. Again the data did not show signi�cant advantages of one

over the other so the choice for motor was narrowed to either the AXI 2826 or the AXI 4120.

As can be seen from the data above, the BP 2826 did not have the same performance as the

AXI's.

6.6.3 Combination Selection

Finally, the selection of the AXI 2826 with a 15x10 propeller running at 18.5V was selected.

This took into account its fast time constant, high static thrust, and sourcability. Another

selection could have been the same motor and voltage but with the 16x8 propeller. This

outperformed the 15x10 in the thrust vs. power relationship, but was had a slower time

constant.

6.7 Contra-Rotating Actuator Characterization

Now that the actuator set has been chosen, it was possible to use the same test stand to

statically and dynamically characterize the contra-rotating pair.

6.7.1 Static Characterization

The static thrust characterization of the contra-rotating pair of actuators shows that you can

not assume a linear combination e�ect of both motors and propellers. This is the relationship

that will be used in the controller to convert from a desired force, to a desired PWM signal.

59

Figure 56: Static Characterization of Contra-Rotating Actuator Selection

6.7.2 Transient Analysis

We can see that the transient data for the contra-rotating pair is consistent with the single

motor and propeller. The time constant for this test was .188 seconds.

Figure 57: Transient Analysis of Contra-Rotating Actuator Selection

60

7 Flight Electronics and Communication

7.1 On-Board Electronics

7.1.1 Flight Computer

In order for the simulator to serve as an autonomous �ight system, a �ight computer needs to

be present on board to serve as the central processing location for all information in the �ight

control software. There exists many options of computers on the market. In keeping with the

low cost requirement, a very popular computer are the Arduino microcontroller boards.

Figure 58: Arduino Mega

Arduino is a user programmable, open-source hardware and software platform. There are

several reasons which make the Arduino a suitable choice for this application. Speci�cally,

the Arduino Mega board was chosen as it is designed around an ATmega2560 microcontroller.

The programming language is a derivative of C and the programming environment is very

user friendly. There is also a large online community that can be used for reference when

coding.

Despite being a powerful processor, the chip also has the ability to interface with other 4

other devices with its universal asynchronous receiver/transmitters (UART).This allows for

further development of onboard autonomy and communication. In addition, there are also

internal PWM outputs that can be accessed directly through the use of the Arduino integrated

development environment. The combination of these features makes the Arduino Mega a great

choice for initial development of the simulator.

61

7.1.2 Inertial Sensors

The inertial sensors are the components that provide the �ight computer with the vehicle's ori-

entation in real time. Low cost, lightweight sensors usually consist of micro-electromechanical

systems (MEMS) technology. Speci�cally, the attitude and heading reference system (AHRS)

will use a combination of MEMS accelerometers, gyroscopes, and magnetometers. While the

data from these types of sensors are more susceptible to noise than high cost, commercial sys-

tems, MEMS sensors in conjunction with a PKF provide an excellent estimate of orientation.

After trying several options of low cost analog sensors, the VN-100 AHRS was purchased

because of the integrated onboard processor and 9 DOF sensing capability. The VN-100 also

has a very small footprint and a mass of only 13 g. Also included is generic �lter software to

help reduce the inherent noise in MEMS sensors.

Figure 59: VN-100 AHRS

The sensor is able to communicate one of the Arduino Mega's 4 UART lines, but a software

library was developed in order for the Arduino to understand the string of characters sent

from the VN-100. The library code can be seen in appendix ??.

Inside the casing of the VN-100 are 3-axis accelerometers, 3-axis gyroscopes, and 3-axis mag-

netometers. From the datasheet, these are capable of measuring ±8 g, ±500 deg/s, and 2.5

gauss respectively. Combined with a �lter these values are adequate for providing an estimate

for the simulators orientation.

62

7.1.3 Electronic Speed Controller

The motors on spacecraft simulator rotate at a certain angular rate based on the voltage

applied to the terminals. If the motors were connected directly to the battery, this would

cause a constate angular rotation rate. Since the simulator requires constant modulation of

rotation rate to change the thrust of the motor and propeller group, this type of connection is

unnacceptable for the application. Instead, an ESC is connected in series between the battery

and the motor to allow the motor to rotate at desired speeds.

Figure 60: Phoenix Ice 50 ESC

The Arduino interfaces with the ESC by sending a pulse width modulation (PWM) signal.

PWM is a method for getting analog results using digital signals. At a �xed frequency of 50

Hz, the Arduino sends a digital square wave to the ESC. In this �xed period of 20 milliseconds,

the ratio of time that the signal is at a high voltage compared with the time it is at low voltage

is called the duty cycle and is what is used to tell the ESC to rotate the motor at di�erent

angular rates.

In the ESC, this PWM signal is then used generate timing analog signals to send to power

metal-oxide �eld e�ect transistors (MOSFETS) which serve as switches for the high current

going to the motor. When the MOSFETS receive a voltage at its gate pin, it opens a circuit

to allow current to �ow threw two other isolated power pins which connect the battery to the

motor. This still is an on and o� signal, so to vary the speed of the motor, the ESC takes the

on and o� signal and applies it to the MOSFETS at a very fast rate. Since the motor is not

capable of starting and stopping at these fast rates because of inertial e�ects, By doing so,

63

the motor receives more or less power which in turn causes it to continuously rotate at slower

and faster speeds because inertial e�ects prevent starting and stopping at these high rates.

In addition, software within the ESC can cause very di�erent responses to PWM input

changes. There is internal �ltering and timing signal generation that can be changed to

allow for faster implementation of signals being sent to the MOSFETS. The above Castle

Phoenix Ice 50 ESC was chosen because of the di�erent �rmware options available. The soft-

ware could be tuned to produce faster resonse signals which is important for quick throttle

modulation and control.

7.1.4 Wireless Capability

During development, the pilot will be sending �ight commands to control the vehicle in real

time. These include desired throttle levels and attitude angles to control position. The vehicle

must also send back important �ight data for o�ine analysis, so a robust wireless method of

communicating with the spacecraft simulator during �ight is necessary. Compatible with the

Arduino serial library is the Xbee module.

Figure 61: Xbee Pro Module

These low cost, lightweight modules communicate over radio frequency and can interface

directly with the Arduino Mega through UART. Unfortunately, these modules are limited to

half-duplex operations so they are not able to send and receive at the same time. Since the

vehicle is both receiving �ight instructions and sending �ight telemetry, two modules will be

used to avoid overloading the serial lines of either. One module will be dedicated to receiving

64

information on a UART and the other will be dedicated to sending data on a di�erent UART.

7.1.5 Flight Board

A after prototyping with solderless breadboards, a printed circuit board (PCB) was designed

so that the electrical connections between all �ight components could be contained on a

single board without the concern for the loosing of wires due to �ight vibration or other

environmental issues.

Figure 62: Flight Board Wire Diagram

Figure 63: Flight Board

7.2 Base Station

As stated above, the spacecraft simulator is both receiving and sending signals for control

and data acquisition. A base station was designed to serve as the interface at the other end

of the communication line. There are several design requirements for the base station:

65

1. Interface with the RC receiver signals and send �ight commands to the vehicle with

minimal delay and precision loss

2. Provide the ability for real time controller tuning

3. Interface with data acquisition software for real time �ight visualization and data record-

ing

The base station is designed with similar hardware to that of the vehicle so that interfaces

can be simpli�ed. Hence, the base station uses an additional Arduino Mega for processing

and two additional Xbee modules for sending and receiving information. The code for the

base station can be found in appendix D.

The �rst requirement is satis�ed by connecting the RC receiver to the interrupt pins on the

Arduino Mega. Code interrupts provide a convenient way of monitoring certain tasks in the

background of a main loop while not slowing down the loop frequency. In this application,

the main base station code runs and will be interrupted when important informaiton from

the RC receiver is sent to the Arduino. The RC receiver sends the Arduino PWM signals

representing variation in the �ight control commands so the high signal triggers an interrupt

that contains an internal timer used to keep track of time between the high interrupt and

when the code is interrupted again when the state of the pin changes to low. The result of

the twice interrupted code is the duty cycle of the PWM signal sent from the RC receiver.

There are four PWM signals sent which include, throttle level, as well as the three desired

attitude angles for the vehicle.

Interrupts do not allow for a constant loop frequency, as they can occur at any point within

the main loop of code. Since it is convenient for the �ight control software to maintain a

constant frequency, the RC receiver and interrupt code was placed on the base station which

isolates the vehicle from this phenomenon.

Second, real time controller parameter tuning is accomplished through the use of nine slider

potentiometers. These are capable of producing a variable resistance which produce a variable

voltage drop. The Arduino has the capability of reading analog signals and converting them

66

to digital values. The nine potentiometers can be used to adjust the gains of the current

controller design, but also can be used for any future expansion and development on the

vehicle.

Figure 64: Base Station Wire Diagram

Figure 65: Base Station

The four �ight commands and nine potentiometer signals are then combined into a represen-

tative string of 13 bytes that are sent over Xbee to the vehicle where the bytes are parsed

and mapped to real useful values.

Finally, the third requirement is satis�ed with the use of MATLAB/SIMULINK. The com-

munication is again accomplished through the Arduino UART and a custom parse function

within simulink. Only bytes can be sent over serial, so the decimal points representing the

�ight telemetry must �rst be converted to a combination of whole numbers within a range

of 0-255 and then re-assembled within simulink to be displayed as the original decimal point

values. To do so, each digit was separated and sent as an individual byte with a number range

67

of 0-9 with the sign of the number represented as either 15 or 16 for positive and negative.

The precision of each number sent over serial was kept to four decimal places. This operation

and communication protocol as well as the full base station code can be seen in appendix D.

The resulting serial communication architecture between the base station, vehicle, and data

acquisition software is shown below:

Figure 66: Spacecraft Simulator Communication Architecture

68

8 Flight Data

The real time data acquisition was designed such that attitude information from the vehicle

can be sent to MATLAB wirelessly during �ight. As the Xbee modules are not full-duplex

capable, a separate Xbee module was placed on the vehicle to prevent serial bu�er overload

issues on the serial line already receiving gains and desired attitude values from the base

station. This second Xbee on the vehicle communicates with a separate Arduino attached to

the computer running MATLAB. It can be seen that if no data acquisition is required, it is

easy to remove the extra hardware and software from the system.

To facilitate post-processing, the data acquisition system does not continuously take data

from the vehicle, but is triggered to begin upon user request. Further, the system will only

take data while the motors are running on the vehicle. The result is a compact bundle of

information that the user can plot on the computer directly without having to sift through a

large amount of data. The code for the data acquistion system can be found integrated into

the �ight code in appendices D and E.

The tests conducted outside the lab environment consisted of responses to the step change in

the desired pitch and roll angles. This data was then compared to simulations to prove the

analytical model derived in section 4 as well as the actuator parameters found in section 6

using the thrust test bench.

8.1 Data Comparison

Figure 67shows actual �ight data taken during a desired pitch step response.

69

Figure 67: Pitch Step Response Flight Data

Next, to have an accurate analytical model, the time constant found from the transient

analysis of mounting two motors and propellers on the thrust test bench was placed into the

model. Figure 68depicts the transient plot from the thrust test:

Figure 68: Transient Thrust Analysis

The time constant found from this test was approximately 0.1892 seconds. This was then

placed in the root locus simulation and �nally, using the actual values of gains on the �ight

vehicle, �gure 69 was produced that depicts the simulated pitch step response:And when

plotted on the same graph as the actual �ight data. It can be seen that the analytical model

closely resembles the response of the actual vehicle:

70

Figure 69: Actual vs. Simulated Pitch Step Response

It is also important to note than when discretized, the system still exhibits the same sta-

bility because of the very fast sample time. The control loops on board the vehicle run at

approximately 180 Hz while the INS updates at 50Hz.

Figure 70: Actual vs. Simulated Pitch Step Response With Discretization

The greater divisions in the �ight data seen in �gure 70 are due to the fact that the vehicle

only sends data to MATLAB every third loop. This is again to prevent overloading the serial

bu�er on the Xbee modules and the Arduinos.

It can be seen that the analytical model generally predicts �ight performance well in terms

of overshoot, rise time, as well as �nal settling value. The discrepency between the analytical

model and the actual �ight data could be due to several factors. First, the data was taken when

71

outside conditions were such that wind gusts and velocities greatly a�ected �ight performance,

and the analytical model does not take wind into account. Second, the time constant as well

as inertia values of the vehicle itself might not be precise, thereby a�ecting the transient

response. And �nally, the system identi�cation performed on the actuators was accomplished

using a constant voltage of 18.5V. The charge on the batteries can reach 21V and drop to

approximately 17V. If a model for the battery is introduced, then the predicted thrust would

more closely match the actual.

The transfer function for the roll axis is the same as the pitch axis, hence, the analytical

model for the other axis of the vehicle has also been proven.

Because the model has been proven with empirical data, guidance and navigation algorithms

can �rst be tested in software with great con�dence using the attitude control transfer func-

tions in section 4.

9 Future Work

9.1 Altitude Control

Now that the attitude control system has been shown to be e�ective and robust, the next

step is to implement a closed loop altitude control system. As the vehicle changes attitude

during �ight, the thrust vector changes such that the vertical force in the z direction is

changed. Without altitude control, a change in attitude will result in a drop in altitude. To

compensate, the pilot must increase the overall thrust on the vehicle.

There are several options for sensing altitude outside of the lab environment. A reliable

method of sensing is a barometric altimeter. The limiting factor for this type of sensor is the

resolution in height. Ultimately however, the pressure sensor can be fused with accelerometer

or gps data to provide a more precise measurement of altitude.

In order to select a speci�c pressure sensor, a relationship between pressure and temperature

was found to be:

72

Ph = P0e
−gh
RT

Where Phis the pressure at height h, P0is the pressure at the zero level, R is the gas constant,

g is the gravitational constant, and T is the temperature. If used in conjunction with a

temperature sensor, the pressure sensor will be able to obtain a temperature compensated

pressure reading and using this analytical relationship, the height h can be found. Also,

if given the resolution of the sensor, the resolution in height can be found. Currently, the

MS5611 barometric pressure sensor was found to have the best resolution for the price and

was purchased. It also has the ability to interface with the Arduino via an I2C line.

9.2 Position Control

Further, in order to implement guidance and navigation algorithms outside of the lab environ-

ment, it is necessary to sense X and Y position. While it is trivial to use a GPS module and

project the latitude and longitude onto a local N-E-D frame, the resolution is usually poor.

The GPS readings can also be fused with accelerometer data to provide a better estimate of

the vehicle's position. Currently, an Arduino program has been written that takes raw GPS

data and does the vector projection to get changes in North and East position. The next step

is to fuse this information with a Kalman �lter.

Once the position is reliably estimated outside of the lab environment using GPS and inertial

data, then both the attitude and position of the vehicle will be sensed and guidance and

navigation algorithms can �nally be implemented and tested.

9.3 Jet Turbine

At this point, the jet turbine has been assembled on a test �xture and tested outside. Once

the closed loop altitude control has been tested and �nalized, the jet can be assembled and

mounted on the vehicle. Future work will have to be accomplished to mix the thrust of the

jet with the thrust from the attitude control electric motors to ensure that altitude control

is realized. Since the time constant of the turbine is much higher than that of the electric

73

motors, the jet turbine will only be modulated when a change in attitude is requested. All

vehicle accelerations will be accomplished using the electric motors, as the sole function of

the turbine is to counter-act a selected amount of the vehicle's mass.

Further, a test stand has been designed and a load cell purchased, to perform a system

identi�cation on the jet turbine, similar to the electric motors. This emperical relationship

will be useful for ensuring the amount of thrust out of the turbine accurately represents the

requested amount from the �ight control software.

74

References

[1] Stephen McGilvray Abdelhamid Tayebi. Attitude stabilization of a vtol quadrotor aircraft.

IEEE Transactions on Control, 14:562�571, 2006.

[2] S. Bouabdallah. Design and control of an indoor micro quadrotor. In IEEE International

Conference on Robotics and Automation, Proceedings, 2004.

[3] Tommaso Bresciani. Modelling, identi�cation and control of a quadrotor helicopter. Mas-

ter's thesis, Lund University, 2008.

[4] R. Czyba G. Szafranski. Di�erent approaches of pid control uav type quadrotor. Proceed-

ings of the International Micro Air Vehicles, pages 70�75, 2011.

[5] Hakan Temeltas I. Can Dikmen, Aydemir Arisoy. Attitude control of a quadrotor. IEEE,

pages 722�729, 2009.

[6] Evanghelos Za�riou Manfred Morari. Robust Process Control. Prentice Hall, 1989.

[7] P. Garcia R. Lozano P. Castillo, P. Albertos. Simple real-time attitude stabilization of

a quad-rotor aircraft with bounded signals. IEEE Conference on Decision and Control,

2006.

[8] Howard Muso� Paul Zarchan. Fundamentals of Kalman Filtering: A Practical Approach.

American Institute of Aeronautics and Astronautics, 2005.

[9] Eric Stoneking. Newton-euler dynamic equations of motion for a multi-body spacecraft.

In AIAA Guidance, Navigation, and Control Conference and Exhibit, 2007.

75

A Turbine Selection

Several di�erent options of turbines were compared against electric ducted fans. Eventually,

the ducted fans were taken out of the trade study because of the poorer thrust to weight

ratio, as well as the tendancy to cause a static torque on the vehicle due to drag and inertial

e�ects. A 7th rotor mounted in the geometric middle of the vehicle would unbalance the

yaw characteristics and would necessitate a static torque from the 3 of the other propellers

in the oppoosite direction. Turbines do not su�er from this problem, as the �ow out of the

compressor is axial in nature.

Each of the turbines in the trade study use kerosene for fuel and consist of a single stage,

meaning they each have a single row of stationary vanes and a single row of rotating vanes in

the compressor. Below is a graph of the thrust to weight ratio for the turbine and associated

componenets.

Figure 71: Turbine Thrust to Weight Comparison

Both the cheetah and the P200 stand out as candidates in the thrust to weight ratio, but the

maximum thrust of the P200 far exceeds that of the cheeta.

76

Figure 72: Turbine Maximum Thrust

This information coupled with the fact that the manufacturer of the P200 holds the largest

market share in the hobbyist domain for turbines, allowed the decision to be made to select

the JetCat P200 turbine for this application.

77

B Rotation Matrices and Newton-Euler Equation

A derivation of the rotation matrix and Newton-Euler equations used in section 3 is provided

here.

B.1 Rotation Matrix

As stated in section 3, the euler angles are a sequence of three rotations about axes. Each

rotation produces a new coordinate frame, which causes the rotations to be unique in sequence.

The �rst is a rotation about the D axis and call this yaw, ψ.

Figure 73: Yaw Rotation

R (ψ) =


c (ψ) −s (ψ) 0

s (ψ) c (ψ) 0

0 0 1

 (31)

Next, a rotation about the E axis is called pitch, θ.

78

Figure 74: Pitch Rotation

R (θ) =


c (θ) 0 s (θ)

0 1 0

−s (θ) 0 c (θ)

 (32)

Finally, the third rotation about the N axis is called roll, φ.

Figure 75: Roll Rotation

R (φ) =


1 0 0

0 c (φ) −s (φ)

0 s (φ) c (φ)

 (33)

When (31), (32), and (33) are multiplied together in this sequence, we get the 3D rotation

matrix used in SECTION 349852:

79

R = R (ψ)R (θ)R (φ)

R =


c (θ) c (ψ) s (φ) s (θ) c (ψ)− c (φ) c (ψ) c (φ) s (θ) c (ψ) + s (φ) s (ψ)

c (θ) c (ψ) s (φ) s (θ) c (ψ) + c (φ) c (ψ) c (φ) s (θ) s (ψ)− s (φ) c (ψ)

−s (θ) s (φ) c (θ) c (φ) c (θ)


B.2 Newton-Euler Equations

We can use the knowledge of the rotation matrix and newton's second law of motion to describe

the dynamics of a rigid body. The �rst part of the matrix equation is the translational portion.

FP = mζ̈P (34)

Because Euler's �rst law states that force can be expressed in terms of the time rate of change

of momentum, we can show (34) to be:

RFB = m
˙̂

Rζ̇B (35)

Then using the chain rule:

RFB = m
(
Rζ̈B + Ṙζ̇B

)

RFB = mR
(
ζ̈B + η̇B × ζ̇B

)
(36)

We can then write the �nal form of (34) to be:

FB = m
(
ζ̈B + η̇B × ζ̇B

)
(37)

Simillarly for rotation, we can show:

TP = Iv η̈
P (38)

80

Leads to:

TB = IV η̈
B + η̇B × IV η̇

B (39)

81

C Polynomial Kalman Filter Derivation

Starting with the system in section 5 but renumbered for convenience:

X̂k = ϕkX̂k−1 +Kk

(
Zk −HϕkX̂k−1

)
(40)

Where,

� X̂k is the estimated states at the current time step,

� X̂k−1 is the estimated states at the previous time step,

� ϕk is the discrete state transition matrix,

� Kk is the Kalman gain matrix,

� Zk is the measurement matrix, and

� H is the observation matrix

The measurement equation can be used to substitute for Zk:

Zk = HXk + Vk (41)

Then de�ne the error in the estimate as:

X̃k = Xk − X̂k = Xk − ϕkX̂k−1 +Kk

(
HXk + Vk −HϕkX̂k−1

)
(42)

The current state of the system can be de�ned as:

Xk = ϕkXk−1 +Wk (43)

Then, when (41), (42), and (43) are placed in (40):

X̃k = ϕkXk−1 +Wk − ϕkX̂k−1 +Kk

(
HϕkXk−1 +HWk + Vk −HϕkX̂k−1

)
(44)

Then reducing (44) and de�ning the previous estimate error as:

X̃k−1 = Xk−1 − X̂k−1 (45)

82

Gives:

X̃k = (1−KkH) X̃k−1ϕk + (1−KkH)Wk −KkVk (46)

If the following are de�ned and we square both sides of (46):

Pk = E
(
X̃kX̃

T
k

)

Qk = E
(
WkW

T
k

)

Rk = E
(
VkV

T
k

)

Pk = (1−KkH)
(
ϕkPk−1ϕ

T
k +Qk

)
(1−KkH)

T
+KkRkK

T
k (47)

Then de�ning:

Mk = ϕkPk−1ϕ
T
k +Qk (48)

and substituting (48) into (47) gives:

Pk = (1−KkH)Mk (1−KkH)
T
+KkRkK

T
k (49)

To �nd the Kalman gain Kk that minimizes the variance of the error in the estimate, take

the partial derivative of (49) and equate to 0:

∂Pk
∂Kk

= 0 = −2 (1−KkH)MkH + 2KkRk (50)

Then, rearranging (50), the optimal gain is given by:

Kk =MkH
(
HMkH

T +Rk
)−1

(51)

83

If (51) is then substituted into (49):

Pk =
RkKk

H
(52)

And then inverting (51) and substituting into (52) gives:

KkRk =MkH −HMkH
TKk (53)

Pk = (1−KkH)Mk (54)

84

D Arduino Code

D.1 Flight Vehicle Code

1 // HexaHopper CODE

2 // Author: Evan Mucasey

3 #include <Servo.h>

4 #include <VN100.h>

5 /////////////********************///////////////

6 ///////////// VARIABLE DEFINITIONS ///////////////

7 /////////////********************///////////////

8 //Pins #define pinAccX 0

9 #define pinAccY 1

10 #define pinGyroX 2

11 #define pinGyroY 3

12 #define pinVRef1 4

13 #define ledPin 13

14 // Actuator Instances

15 Servo motor1; //top

16 Servo motor2; //top

17 Servo motor3; //top

18 Servo motor4; // bottom

19 Servo motor5; // bottom

20 Servo motor6; // bottom

21

22 //Loop Timing Variables

23 unsigned long startLoop;

24 unsigned long lastLoop;

25 unsigned long dtLoop;

26 unsigned long stdLoop =5500;

27 // Kalman Filter , Sensor , and State Variables

28 float accX;

29 float accY;

30 float gyroX;

31 float gyroY;

32 float vRef1;

33 float thetaRaw;

34 float thetaDotRaw;

35 float thetaKalman;

85

36 float thetaDotKalman;

37 float thetaDotD;

38 float thetaDoubleDot;

39 float phiRaw;

40 float phiDotRaw;

41 float phiKalman;

42 float phiDotKalman;

43 float phiDotD;

44 float phiDoubleDot;

45 float psiRaw;

46 float psiDotRaw;

47 float ST [2][2];

48 float STTrans [2][2];

49 float PT [2][2];

50 float PP [2][2];

51 float MkT [2][2];

52 float MkP [2][2];

53 float KkT [2][2];

54 float KkP [2][2];

55 float Qk [2][2];

56 float Rk [2][2];

57 float KgCT;

58 float KgCP;

59 float p=.2; // coefficient for process noise

60 float m=1.0; // coefficient for measurment noise

61 float Ts=stdLoop /1000000.0; // sampling time

62

63 // Controller Variables

64 float thetaDotError;

65 float thetaDotErrorDot;

66 float thetaDotErrorOld;

67 float thetaErrorTotal =0;

68 float phiDotError;

69 float phiDotErrorDot;

70 float phiDotErrorOld;

71 float phiErrorTotal =0;

72 float psiDotError;

73 float psiDotErrorDot;

74 float psiDotErrorOld;

86

75 float psiCoeff;

76

77 //Xbee Communication and RC Transmitter Variables

78 int readdata;

79 boolean started=false;

80 boolean ended=false;

81 int packet [13];

82 float Fz;

83 float thetaD;

84 float phiD;

85 float psiDotD;

86 byte throttleRx;

87 byte phiRx;

88 byte thetaRx;

89 byte psiRx;

90 byte kThetaRx;

91 byte kThetaDotRx;

92 byte thetaTrimRx;

93 byte kPhiRx;

94 byte kPhiDotRx;

95 byte phiTrimRx;

96 byte kPsiRx;

97 byte kPsiDotRx;

98 byte psiTrimRx;

99

100 //Gains

101 float kTheta;

102 float kThetaDot;

103 float kThetaDotErrorDot =.5;

104 float thetaTrim;

105 float kThetaI =0.00;

106 float kPhi;

107 float kPhiDot;

108 float kPhiDotErrorDot =.45;

109 float phiTrim;

110 float kPhiI =0.00;

111 float kPsi;

112 float kPsiDot;

113 float kPsiDotErrorDot =0;

87

114 float psiTrim;

115

116 // Analytical Moment Inputs

117 float tauPsi = 0;

118 float tauTheta = 0;

119 float tauPhi = 0;

120 float totErrorPsi =0;

121

122 // Governer Variables

123 long gov =100; // maximum throttle allowed (percent)

124 long idle =1000;

125 //idle command to motors in microseconds

126 long redline =1650; // maximum thrust command to motors in microseconds

127 long ceiling; // maximum throttle to be mapped from idle and redline using gov

variable

128

129 //Force Arrays

130 float f[3] = {0, 0, 0}; //motor thrust calculated using mixer

131 int pwm[6] = {0, 0, 0, 0, 0, 0}; //pwm signal sent to motors using labview

and excel data

132

133 float L=0.5; // distance from center of motors to center of HexaHopper

134 float Ixx =0.241296166;

135 float Iyy =0.243896259;

136 float Izz =0.456738918;

137 int i=0;

138 boolean PauseProgram=true;

139

140 //Data Acquisition Variables

141 byte startSend =55;

142 byte endSend =77;

143 byte sign;

144 byte count =0;

145 byte digits [4];

146

147 /////////////********************///////////////

148 /////////////******** SETUP *******///////////////

149 /////////////********************///////////////

150 void setup(){

88

151 Serial.begin (57600);

152 Serial.flush();

153 Serial1.begin (57600);

154 Serial1.flush();

155 Serial3.begin (57600);

156 Serial3.flush();

157

158 motor1.attach (7);

159 motor2.attach (12);

160 motor3.attach (11);

161 motor4.attach (10);

162 motor5.attach (9);

163 motor6.attach (8);

164

165 // Initialize VN_100 Rugged

166 IMU.Init();

167 Serial2.flush();

168

169 // Define maximum pwm signal that can be sent to motor

170 ceiling = map(gov , 0, 100, idle , redline);

171 // primer ();

172

173 //State Transition Matrix

174 ST [0][0]=1;

175 ST [0][1]= Ts;

176 ST [1][0]=0;

177 ST [1][1]=1;

178

179 // Transpose of State Transition Matrix

180 STTrans [0][0]=1;

181 STTrans [0][1]=0;

182 STTrans [1][0]= Ts;

183 STTrans [1][1]=1;

184

185 // Initial Covariance Matrix for Theta

186 PT [0][0]=1;

187 PT [0][1]=0;

188 PT [1][0]=0;

189 PT [1][1]=1;

89

190

191 // Initial Covariance Matrix for Theta

192 PP [0][0]=1;

193 PP [0][1]=0;

194 PP [1][0]=0;

195 PP [1][1]=1;

196

197 //Qk Matrix solved from integral equation (constant)

198 Qk [0][0]=p*(Ts*Ts*Ts + 3)/3;

199 Qk [0][1]=p*Ts*Ts/2;

200 Qk [1][0]=p*Ts*Ts/2;

201 Qk [1][1]=p*Ts;

202

203 //Rk Matrix (constant)

204 Rk [0][0]=m;

205 Rk [0][1]=0;

206 Rk [1][0]=0;

207 Rk [1][1]=m;

208 }

209

210 /////////////********************///////////////

211 /////////////******** LOOP ********///////////////

212 /////////////********************///////////////

213 void loop(){

214 getDesired ();

215 primer ();

216 kalmanAttitudeEstimates ();

217

218 //P_PD Controllers

219 // Desired Rates from Cascade definition

220 thetaDotD = kTheta *(thetaD - thetaKalman - thetaTrim);

221 phiDotD = kPhi*(phiD - phiKalman - phiTrim);

222

223 // Integrated Errors

224 thetaErrorTotal = thetaErrorTotal + (thetaD - thetaKalman)*(lastLoop *.000001)

;

225 phiErrorTotal = phiErrorTotal + (phiD - phiKalman)*(lastLoop *.000001);

226

227 // Create Errors in Rates

90

228 thetaDotError = thetaDotD - thetaDotKalman;

229 phiDotError = phiDotD - phiDotKalman;

230 psiDotError = psiDotD - psiDotRaw;

231

232 // Derivative of Rate Errors

233 thetaDotErrorDot = (thetaDotError - thetaDotErrorOld)/(lastLoop *.000001);

234 phiDotErrorDot = (phiDotError - phiDotErrorOld)/(lastLoop *.000001);

235 psiDotErrorDot = (psiDotError - psiDotErrorOld)/(lastLoop *.000001);

236

237 // Cascade Control Law

238 tauTheta = (kThetaDot*thetaDotError + kThetaDotErrorDot*thetaDotErrorDot +

thetaErrorTotal*kThetaI)*Iyy;

239 tauPhi = (kPhiDot*phiDotError + kPhiDotErrorDot*phiDotErrorDot +

phiErrorTotal*kPhiI)*Ixx;

240 psiCoeff = (kPsiDot*psiDotError + kPsiDotErrorDot*psiDotErrorDot);//)*Izz;

241

242 // Define Old Errors for Derivative

243 thetaDotErrorOld = thetaDotError;

244 phiDotErrorOld = phiDotError;

245 psiDotErrorOld = psiDotError;

246

247 mixer(Fz, tauTheta , tauPhi); // calculate motor thrust from analytical moment

matrix inversion

248 converter ();

249 governer (); // limit throttle % on each motor to value given by variable 'gov

'

250 actuator (); // set motor speeds

251

252 //Send Data to Arduino Data AQ then to MATLAB

253 if(count ==4){

254 Serial3.write(startSend);

255 sendDigits(thetaKalman);

256 sendDigits(thetaD);

257 sendDigits(phiKalman);

258 sendDigits(phiD);

259 Serial3.write(endSend);

260 count =0;

261 }

262 count ++;

91

263

264 //Loop Timing Control

265 dtLoop=micros ()-startLoop;

266 if (dtLoop <stdLoop){delayMicroseconds(stdLoop -dtLoop);}

267 lastLoop=micros ()-startLoop;

268 startLoop=micros ();

269 }

270

271 /////////////********************///////////////

272 /////////////***** FUNCTIONS ******///////////////

273 /////////////********************///////////////

274 void getDesired (){

275 while (Serial1.available () >5){

276 readdata=Serial1.read();

277 if (readdata ==254){

278 started=true;

279 ended=false;

280 }

281 else if (readdata ==255){

282 ended=true;

283 break;

284 }

285 else{

286 packet[i]= readdata;

287 i++;

288 }

289 }

290

291 if(started &&ended){

292 throttleRx=packet [0];

293 psiRx=packet [1];

294 thetaRx=packet [2];

295 phiRx=packet [3];

296 kThetaRx=packet [4];

297 kThetaDotRx=packet [5];

298 thetaTrimRx=packet [6];

299 kPhiRx=packet [7];

300 kPhiDotRx=packet [8];

301 phiTrimRx=packet [9];

92

302 kPsiRx=packet [10];

303 kPsiDotRx=packet [11];

304 psiTrimRx=packet [12];

305

306 Fz=floatMap(float(throttleRx) ,0.0 ,250.0 ,0.0 ,90.0);

307 thetaD=floatMap(float(thetaRx) ,0 ,250,-0.25,0.25);

308 phiD=floatMap(float(phiRx) ,0,250, -0.25,0.25);

309 psiDotD=floatMap(float(psiRx) ,0,250,-.5,.5);

310 kTheta=floatMap(float(kThetaRx) ,0,250,0,10);

311 kThetaDot=floatMap(float(kThetaDotRx) ,0,250,0,15);

312 thetaTrim=floatMap(float(thetaTrimRx) ,0 ,250 ,-0.75,0.75);

313 kPhi=floatMap(float(kPhiRx) ,0,250,0,10);

314 kPhiDot=floatMap(float(kPhiDotRx) ,0,250,0,15);

315 phiTrim=floatMap(float(phiTrimRx) ,0,250,-0.5,0.5);

316 kPsi=floatMap(float(kPsiRx) ,0,250,0,10);

317 kPsiDot=floatMap(float(kPsiDotRx) ,0.0 ,250.0 ,0.0 ,.3);

318 psiTrim=floatMap(float(psiTrimRx) ,0.0 ,250.0,-.5,.5);

319 psiCoeff=psiTrim+psiControl;

320

321 //When appropriate gains are found through tuning put them here:

322 kTheta =7.0;

323 kThetaDot =2.5;

324 thetaTrim =-.11;

325

326 kPhi =7.0;

327 kPhiDot =2.5;

328 phiTrim =0;

329

330 kPsiDot =.3;

331 psiTrim =-.5;

332 started=false;

333 ended=false;

334 i=0;

335 }

336 }

337

338 void primer (){

339 if (Fz <=7){

340 PauseProgram=true;

93

341 Serial1.flush();

342 }

343 while (PauseProgram ==true){

344 motor1.writeMicroseconds (1000);

345 motor2.writeMicroseconds (1000);

346 motor3.writeMicroseconds (1000);

347 motor4.writeMicroseconds (1000);

348 motor5.writeMicroseconds (1000);

349 motor6.writeMicroseconds (1000);

350 thetaErrorTotal = 0;

351 phiErrorTotal = 0;

352 Serial.println (" Program Paused ");

353 getDesired ();

354 if (Fz >7){

355 PauseProgram=false;

356 Serial1.flush();

357 break;

358 }

359 }

360 }

361

362 void kalmanAttitudeEstimates (){

363 // Ricatti Equations

364 MkT [0][0]= PT [0][0] + Ts*PT [1][0] + Ts*PT [1][0] + Ts*Ts*PT [1][1] + Qk [0][0];

365 MkT [0][1]= PT [0][1] + Ts*PT [1][1] + Qk [0][1];

366 MkT [1][0]= PT [1][0] + Ts*PT [1][1] + Qk [1][0];

367 MkT [1][1]= PT [1][1] + Qk [1][1];

368

369 MkP [0][0]= PP [0][0] + Ts*PP [1][0] + Ts*PP [1][0] + Ts*Ts*PP [1][1] + Qk [0][0];

370 MkP [0][1]= PP [0][1] + Ts*PP [1][1] + Qk [0][1];

371 MkP [1][0]= PP [1][0] + Ts*PP [1][1] + Qk [1][0];

372 MkP [1][1]= PP [1][1] + Qk [1][1];

373

374 // Kalman Gain Inverse Constant Denominator

375 KgCT=MkT [0][0]* MkT [1][1] - MkT [0][1]* MkT [1][0] + MkT [0][0]*m + MkT [1][1]*m +

m*m;

376 KgCP=MkP [0][0]* MkP [1][1] - MkP [0][1]* MkP [1][0] + MkP [0][0]*m + MkP [1][1]*m +

m*m;

377

94

378 // Kalman Gain Matrix

379 KkT [0][0]=(MkT [0][0]*(MkT [1][1] + m) - MkT [0][1]* MkT [1][0])/KgCT;

380 KkT [0][1]=(MkT [0][1]*(MkT [0][0] + m) - MkT [0][0]* MkT [0][1])/KgCT;

381 KkT [1][0]=(MkT [1][0]*(MkT [1][1] + m) - MkT [1][0]* MkT [1][1])/KgCT;

382 KkT [1][1]=(MkT [1][1]*(MkT [0][0] + m) - MkT [0][1]* MkT [1][0])/KgCT;

383

384 KkP [0][0]=(MkP [0][0]*(MkP [1][1] + m) - MkP [0][1]* MkP [1][0])/KgCP;

385 KkP [0][1]=(MkP [0][1]*(MkP [0][0] + m) - MkP [0][0]* MkP [0][1])/KgCP;

386 KkP [1][0]=(MkP [1][0]*(MkP [1][1] + m) - MkP [1][0]* MkP [1][1])/KgCP;

387 KkP [1][1]=(MkP [1][1]*(MkP [0][0] + m) - MkP [0][1]* MkP [1][0])/KgCP;

388

389 // Covariance Matrices

390 PT [0][0]= -MkT [1][0]* KkT [0][1] - MkT [0][0]*(KkT [0][0] - 1);

391 PT [0][1]= -MkT [1][1]* KkT [0][1] - MkT [0][1]*(KkT [0][0] - 1);

392 PT [1][0]= -MkT [0][0]* KkT [1][0] - MkT [1][0]*(KkT [1][1] - 1);

393 PT [0][0]= -MkT [0][1]* KkT [1][0] - MkT [1][1]*(KkT [1][1] - 1);

394

395 PP [0][0]= -MkP [1][0]* KkP [0][1] - MkP [0][0]*(KkP [0][0] - 1);

396 PP [0][1]= -MkP [1][1]* KkP [0][1] - MkP [0][1]*(KkP [0][0] - 1);

397 PP [1][0]= -MkP [0][0]* KkP [1][0] - MkP [1][0]*(KkP [1][1] - 1);

398 PP [0][0]= -MkP [0][1]* KkP [1][0] - MkP [1][1]*(KkP [1][1] - 1);

399 getSensorData ();

400

401 // Calculate State Estimates

402 thetaKalman=ST [0][0]* thetaKalman + ST [0][1]* thetaDotKalman - KkT [0][0]*(ST

[0][0]* thetaKalman + ST [0][1]* thetaDotKalman - thetaRaw) - KkT [0][1]*(ST

[1][0]* thetaKalman + ST [1][1]* thetaDotKalman - thetaDotRaw);

403 thetaDotKalman=ST [1][0]* thetaKalman + ST [1][1]* thetaDotKalman - KkT [1][0]*(ST

[0][0]* thetaKalman + ST [0][1]* thetaDotKalman - thetaRaw) - KkT [1][1]*(ST

[1][0]* thetaKalman + ST [1][1]* thetaDotKalman - thetaDotRaw); phiKalman=

ST [0][0]* phiKalman + ST [0][1]* phiDotKalman - KkP [0][0]*(ST [0][0]* phiKalman

+ ST [0][1]* phiDotKalman - phiRaw) - KkP [0][1]*(ST [1][0]* phiKalman + ST

[1][1]* phiDotKalman - phiDotRaw); phiDotKalman=ST [1][0]* phiKalman + ST

[1][1]* phiDotKalman - KkP [1][0]*(ST [0][0]* phiKalman + ST [0][1]* phiDotKalman

- phiRaw) - KkP [1][1]*(ST [1][0]* phiKalman + ST [1][1]* phiDotKalman -

phiDotRaw); }

404

405 void getSensorData (){

406 IMU.Read();

95

407 if (IMU.NewData){ //If there is new data on the serial line

408 thetaRaw = IMU.pitch * 0.0174532925;

409 phiRaw = (IMU.roll * 0.0174532925) *-1;

410 psiRaw = (IMU.yaw - 12) * 0.0174532925;

411 if (psiRaw <0){psiRaw = psiRaw + 6.28318531;} // 0->6.238 radians for 0-360

degrees

412

413 thetaDotRaw=IMU.Angular1;

414 phiDotRaw=IMU.Angular0 *-1;

415 psiDotRaw=IMU.Angular2;

416 IMU.NewData = 0; // We have read the data

417 }

418 }

419

420 void mixer(float fz, float tTheta , float tPhi){

421 f[0] = fz/3 + (tTheta)/(L); //F14

422 f[1] = fz/3 - tTheta /(2*L) - 1.73205* tPhi /(3*L); //F25

423 f[2] = fz/3 - tTheta /(2*L) + 1.73205* tPhi /(3*L); //F36

424 long j;

425 for(j = 0; j < 3; j++){if(f[j]<0) f[j]=0;}

426 }

427

428 void converter (){

429 pwm [0] = -0.198*f[0]*(.5 + psiCoeff)*f[0]*(.5 + psiCoeff) + 25.46*f[0]*(.5 +

psiCoeff) + 1191.0; //15 x10 quadratic fit

430 pwm [1] = -0.198*f[1]*(.5 + psiCoeff)*f[1]*(.5 + psiCoeff) + 25.46*f[1]*(.5 +

psiCoeff) + 1191.0;

431 pwm [2] = -0.198*f[2]*(.5 + psiCoeff)*f[2]*(.5 + psiCoeff) + 25.46*f[2]*(.5 +

psiCoeff) + 1191.0;

432 pwm [3] = -0.198*f[0]*(.5 - psiCoeff)*f[0]*(.5 - psiCoeff) + 25.46*f[0]*(.5 -

psiCoeff) + 1191.0;

433 pwm [4] = -0.198*f[1]*(.5 - psiCoeff)*f[1]*(.5 - psiCoeff) + 25.46*f[1]*(.5 -

psiCoeff) + 1191.0;

434 pwm [5] = -0.198*f[2]*(.5 - psiCoeff)*f[2]*(.5 - psiCoeff) + 25.46*f[2]*(.5 -

psiCoeff) + 1191.0;

435 }

436

437 void governer (){

438 long i;

96

439 for (i = 0; i < 6; i++){ // Saturation Alert

440 if (pwm[i] > (ceiling - 10))

441 digitalWrite(ledPin , HIGH);

442 else

443 digitalWrite(ledPin , LOW);

444 pwm[i] = constrain(pwm[i],idle ,ceiling);

445 }

446 }

447 void actuator (){

448 motor1.writeMicroseconds(pwm [0]);

449 motor2.writeMicroseconds(pwm [1]);

450 motor3.writeMicroseconds(pwm [2]);

451 motor4.writeMicroseconds(pwm [3]);

452 motor5.writeMicroseconds(pwm [4]);

453 motor6.writeMicroseconds(pwm [5]);

454 }

455

456 void sendDigits(float number){

457 if (number <0){sign =15;}

458 else {sign =16;}

459 int numberInt=abs(number *10000.0);

460 for (int i=0;i<4;i++){

461 digits[i]= numberInt % 10;

462 numberInt /=10;

463 }

464 Serial3.write(sign);

465 Serial3.write(digits [3]);

466 Serial3.write(digits [2]);

467 Serial3.write(digits [1]);

468 Serial3.write(digits [0]);

469 }

470

471 float floatMap(float x, float inMin , float inMax , float outMin , float outMax)

{

472 return (x-inMin)*(outMax -outMin)/(inMax -inMin)+outMin;

473 }

97

D.2 Base Station Code

1 //Code for HexaHopper Base Station (accept and send reference commands)

2 //RC transmitter talks to TX arduino/xbee and sends over wireless to //RX

arduino/Xbee on HexaHopper

3 //Uses interrupts for reading PWM from RC transmitter

4 //Evan Mucasey

5 //7/19/12

6

7 #define pinKThetaA 0

8 #define pinKThetaDotA 1

9 #define pinThetaTrim 2

10 #define pinKPhiA 3

11 #define pinKPhiDotA 4

12 #define pinPhiTrim 5

13 #define pinKPsiA 6

14 #define pinKPsiDotA 8

15 #define pinPsiTrimA 7

16 int psiOffset =0;

17

18 //read PWM signals from an RC reciever and convert

19 byte throttleRxPin = 2; // interrupt 0 pin

20 byte psiRxPin = 3; // interrupt 1 pin

21 byte thetaRxPin = 20; // interrupt 3 pin

22 byte phiRxPin = 21; // interrupt 2 pin

23

24 volatile int throttlePwmRx; // store RC signal pulse length

25 byte throttlePwm; // mapped value to be between 1000 -1600

26 volatile int psiPwmRx;

27 byte psiPwm;

28 volatile int thetaPwmRx;

29 byte thetaPwm;

30 volatile int phiPwmRx;

31 byte phiPwm;

32 volatile int throttleStart;

33 int throttleReady;

34 volatile int psiStart;

35 int psiReady;

36 volatile int thetaStart;

98

37 int thetaReady;

38 volatile int phiStart;

39 int phiReady;

40

41 int kThetaA;

42 int kThetaDotA;

43 int thetaTrimA;

44 int kPhiA;

45 int kPhiDotA;

46 int phiTrimA;

47 int kPsiA;

48 int kPsiDotA;

49 int psiTrimA;

50

51 byte kTheta;

52 byte kThetaDot;

53 byte thetaTrim;

54 byte kPhi;

55 byte kPhiDot;

56 byte phiTrim;

57 byte kPsi;

58 byte kPsiDot;

59 byte psiTrim;

60

61 float startSend =555;

62 float thetaKalman;

63 float phiKalman;

64 float psiDotRaw;

65 float thetaD;

66 float phiD;

67 float psiDotD;

68 float assembledNumber;

69 byte *arrayOfBytes;

70 float packet [3];

71 byte readData [4];

72 boolean started=false;

73 boolean started2=false;

74 boolean ended=false;

75 boolean ended2=false;

99

76 int i=0;

77 int k=0;

78

79 byte sign;

80 byte digits [4];

81 float thetaSign;

82 float phiSign;

83 float psiDotSign;

84 byte inByte;

85

86 void setup() {

87 Serial.begin (57600);

88 Serial1.begin (57600);

89 Serial2.begin (19200);

90 Serial.flush();

91 Serial1.flush();

92 Serial2.flush();

93

94 //PWM inputs from RC receiver

95 pinMode(throttleRxPin , INPUT);

96 pinMode(psiRxPin , INPUT);

97 pinMode(thetaRxPin , INPUT);

98 pinMode(phiRxPin , INPUT);

99

100 attachInterrupt (0, getThrottlePwmRx , CHANGE);

101 attachInterrupt (1, getpsiPwmRx , CHANGE);

102 attachInterrupt (3, getthetaPwmRx , CHANGE);

103 attachInterrupt (2, getphiPwmRx , CHANGE);

104 }

105

106 void getThrottlePwmRx () {

107 // did the pin change to high or low?

108 if (digitalRead(throttleRxPin) == HIGH) {

109 // store the current micros () value

110 throttleStart = micros ();

111 }

112 else{

113 // Pin transitioned low , calculate the duration of the pulse

100

114 throttlePwmRx = micros () - throttleStart; // may glitch during timer wrap -

around

115 // Set flag for main loop to process the pulse

116 throttleReady = true;

117 }

118 }

119

120 void getpsiPwmRx () {

121 if (digitalRead(psiRxPin) == HIGH) {

122 psiStart = micros ();

123 }

124 else {

125 psiPwmRx = micros () - psiStart;

126 psiReady = true;

127 }

128 }

129

130 void getthetaPwmRx () {

131 if (digitalRead(thetaRxPin) == HIGH) {

132 thetaStart = micros ();

133 }

134 else{

135 thetaPwmRx = micros () - thetaStart;

136 thetaReady = true;

137 }

138 }

139

140 void getphiPwmRx () {

141 if (digitalRead(phiRxPin) == HIGH) {

142 phiStart = micros ();

143 }

144 else{

145 phiPwmRx = micros () - phiStart;

146 phiReady = true;

147 }

148 }

149

150 void loop() {

151 if (throttleReady) {

101

152 throttleReady = false;

153 if (throttlePwmRx <1000) throttlePwmRx =1000;

154 else if (throttlePwmRx >2000) throttlePwmRx =2000;

155 throttlePwm = map(throttlePwmRx , 1000, 2000, 0, 250);

156 }

157

158 if (psiReady) {

159 psiReady = false;

160 if (psiPwmRx <1000) psiPwmRx =1000;

161 else if (psiPwmRx >2000) psiPwmRx =2000;

162 psiPwm = map(psiPwmRx , 1000, 2000, 0, 250);

163 if (psiPwm >=115 && psiPwm <=135) psiPwm =125;

164 }

165

166 if (thetaReady) {

167 thetaReady = false;

168 if (thetaPwmRx <1000) thetaPwmRx =1000;

169 else if (thetaPwmRx >2000) thetaPwmRx =2000;

170 thetaPwm = map(thetaPwmRx , 1000, 2000, 0, 250);

171 if (thetaPwm >=115 && thetaPwm <=135) thetaPwm =125;

172 }

173

174 if (phiReady) {

175 phiReady = false;

176 if (phiPwmRx <1000) phiPwmRx =1000;

177 else if (phiPwmRx >2000) phiPwmRx =2000;

178 phiPwm = map(phiPwmRx , 1000, 2000, 0, 250);

179 if (phiPwm >=120 && phiPwm <=130) phiPwm =125;

180 }

181

182 thetaD=floatMap(float(thetaPwm) ,0,250,-0.25,0.25);

183 phiD=floatMap(float(phiPwm) ,0,250, -0.25 ,0.25);

184 psiDotD=floatMap(float(psiPwm) ,0,250,-.5,.5);

185

186 //Map to real world values:

187 Fz=floatMap(throttlePwm ,1000 ,1650 ,0 ,27);

188 phi=floatMap(phiPwm ,0,250,-1*phiMax ,phiMax);

189 theta=floatMap(thetaPwm ,0,250,-1* thetaMax ,thetaMax);

190

102

191 kThetaA=analogRead(pinKThetaA);

192 kThetaDotA=analogRead(pinKThetaDotA);

193 thetaTrimA=analogRead(pinThetaTrim);

194 kPhiA=analogRead(pinKPhiA);

195 kPhiDotA=analogRead(pinKPhiDotA);

196 phiTrimA=analogRead(pinPhiTrim);

197 kPsiA=analogRead(pinKPsiA);

198 kPsiDotA=analogRead(pinKPsiDotA);

199 psiTrimA=analogRead(pinPsiTrimA);

200 kTheta=map(kThetaA ,0 ,1023 ,0 ,250);

201 kThetaDot=map(kThetaDotA ,0 ,1023 ,0 ,250);

202 thetaTrim=map(thetaTrimA ,0 ,1023 ,0 ,250);

203 kPhi=map(kPhiA ,0 ,1023 ,0 ,250);

204 kPhiDot=map(kPhiDotA ,0 ,1023 ,0 ,250);

205 phiTrim=map(phiTrimA ,0 ,1023 ,0 ,250);

206 kPsi=map(kPsiA ,0 ,1023 ,0 ,250);

207 kPsiDot=map(kPsiDotA ,0 ,1023 ,0 ,250);

208 psiTrim=map(psiTrimA ,0 ,1023 ,0 ,250);

209

210 Serial1.write (254);

211 Serial1.write(throttlePwm);

212 Serial1.write(psiPwm);

213 Serial1.write(thetaPwm);

214 Serial1.write(phiPwm);

215 Serial1.write(kTheta);

216 Serial1.write(kThetaDot);

217 Serial1.write(thetaTrim);

218 Serial1.write(kPhi);

219 Serial1.write(kPhiDot);

220 Serial1.write(phiTrim);

221 Serial1.write(kPsi);

222 Serial1.write(kPsiDot);

223 Serial1.write(psiTrim);

224 Serial1.write (255);

225 delay (10);

226

227 getAttitudeData ();

228 }

229 void getAttitudeData (){

103

230 while(Serial2.available () >15){

231 inByte=Serial2.read();

232 if (inByte ==55){

233 started=true;

234 ended=false;

235 }

236 else if (inByte ==77){

237 ended=true;

238 if(started &&ended){

239 thetaKalman=thetaSign *(float(packet [0]/10.0) + float(packet [1]/100.0) +

float(packet [2]/1000.0) + float(packet [3]/10000.0));

240 phiKalman=phiSign *(float(packet [4]/10.0) + float(packet [5]/100.0) +

float(packet [6]/1000.0) + float(packet [7]/10000.0));

241 psiDotRaw=psiDotSign *(float(packet [8]/10.0) + float(packet [9]/100.0) +

float(packet [10]/1000.0) + float(packet [11]/10000.0));

242 started=false;

243 ended=false;

244 i=0;

245 k=0;

246 Serial2.flush();

247 break;

248 }

249 }

250 else if (started &&ended==false){

251 if(i==0){

252 if(inByte ==16){thetaSign =1; i++;}

253 else if (inByte ==15) {thetaSign =-1; i++;}

254 }

255 else if (i==5){

256 if(inByte ==16){phiSign =1; i++;}

257 else if (inByte ==15) {phiSign =-1; i++;}

258 }

259 else if (i==10){

260 if(inByte ==16){psiDotSign =1; i++;}

261 else if (inByte ==15) {psiDotSign =-1; i++;}

262 }

263 else{packet[k]= inByte;k++;i++;}

264 }

265 }

104

266 }

267

268 void FloatSend(float FloatVar){

269 arrayOfBytes = (byte*)&FloatVar;

270 Serial.write(arrayOfBytes [0]);

271 Serial.write(arrayOfBytes [1]);

272 Serial.write(arrayOfBytes [2]);

273 Serial.write(arrayOfBytes [3]);

274 }

275

276 float floatMap(float x, float inMin , float inMax , float outMin , float outMax)

{

277 return (x-inMin)*(outMax -outMin)/(inMax -inMin)+outMin;

278 }

105

D.3 Data Acquisition Code

1 //Data Acquisition Arduino Code

2 //Evan Mucasey

3 //4/1/2013

4

5 byte *arrayOfBytes;

6 float startSend =555;

7 float thetaKalman;

8 float thetaD;

9 float phiKalman;

10 float phiD;

11 float psiDotRaw;

12 float psiDotD;

13 float assembledNumber;

14

15 byte readData [4];

16 float packet [16];

17 boolean started=false;

18 boolean started2=false;

19 boolean ended=false;

20 boolean ended2=false;

21

22 int i=0;

23 int k=0;

24

25 float Fz;

26 byte testArray [4];

27 int n=0;

28 byte inByte;

29 int j=0;

30 float inFloat;

31 byte sign;

32 byte digits [4];

33

34 float thetaSign;

35 float thetaDSign;

36 float phiSign;

37 float phiDSign;

106

38

39 unsigned long startLoop;

40 unsigned long lastLoop;

41 unsigned long dtLoop;

42 unsigned long stdLoop =6666;

43

44 byte zero = 0;

45

46 void setup() {

47 Serial.begin (57600);

48 Serial1.begin (57600);

49 Serial.flush();

50 Serial1.flush();

51 }

52

53 void loop() {

54 getAttitudeData ();

55

56 dtLoop=micros ()-startLoop; if (dtLoop <stdLoop){delayMicroseconds(stdLoop -

dtLoop);}

57 lastLoop=micros ()-startLoop;

58 startLoop=micros ();

59 }

60

61 void getAttitudeData (){

62 while(Serial1.available () >15){

63 inByte=Serial1.read();

64 if (inByte ==55){

65 started=true;

66 ended=false;

67 }

68 else if (inByte ==77){

69 ended=true;

70 if(started &&ended){

71 thetaKalman=thetaSign *(float(packet [0]/10.0) + float(packet [1]/100.0) +

float(packet [2]/1000.0) + float(packet [3]/10000.0));

72 thetaD=thetaDSign *(float(packet [4]/10.0) + float(packet [5]/100.0) +

float(packet [6]/1000.0) + float(packet [7]/10000.0));

107

73 phiKalman=phiSign *(float(packet [8]/10.0) + float(packet [9]/100.0) +

float(packet [10]/1000.0) + float(packet [11]/10000.0));

74 phiD=phiDSign *(float(packet [12]/10.0) + float(packet [13]/100.0) + float

(packet [14]/1000.0) + float(packet [15]/10000.0));

75 FloatSend(startSend);

76 FloatSend(thetaKalman);

77 FloatSend(thetaD);

78 FloatSend(phiKalman);

79 FloatSend(phiD);

80 started=false;

81 ended=false;

82 i=0;

83 k=0;

84 break;

85 }

86 }

87 else if (started &&ended==false){

88 if(i==0){

89 if(inByte ==16){thetaSign =1; i++;}

90 else if (inByte ==15) {thetaSign =-1; i++;}

91 }

92 else if (i==5){

93 if(inByte ==16){thetaDSign =1; i++;}

94 else if (inByte ==15) {thetaDSign =-1; i++;}

95 }

96 else if (i==10){

97 if(inByte ==16){phiSign =1; i++;}

98 else if (inByte ==15) {phiSign =-1; i++;}

99 }

100 else if (i==15){

101 if(inByte ==16){phiDSign =1; i++;}

102 else if (inByte ==15) {phiDSign =-1; i++;}

103 }

104 else{packet[k]= inByte;k++;i++;}

105 }

106 }

107 }

108 void FloatSend(float FloatVar){

109 arrayOfBytes = (byte*)&FloatVar;

108

110 for (int j=0;j++;j<4){

111 if(arrayOfBytes[j]==0){arrayOfBytes[j]=zero;}

112 }

113 Serial.write(arrayOfBytes [0]);

114 Serial.write(arrayOfBytes [1]);

115 Serial.write(arrayOfBytes [2]);

116 Serial.write(arrayOfBytes [3]);

117 }

109

E MATLAB Code

E.1 Flight Data Acquisition Code

1 %Matlab File to Take Data from HexaHopper in Real Time

2 %Evan Mucasey

3 %Melissa Dye

4

5 %% Clear Data Space and Assign Variables

6 clear all

7 clc

8 freq =.0055;

9 numSamples =1000;

10 pitchCount =1;

11 rollCount =1;

12 time =[1* freq :1* freq:numSamples*freq];

13

14 %% Establish Serial Object

15 s = serial('COM5');

16 set(s,'BaudRate ' ,57600);

17 fopen(s);

18 flushinput(s);

19 flushoutput(s);

20

21 %% Take Data Pitch

22 flushinput(s);

23 for i=1: numSamples

24 u=fread(s,1,'single ')

25 [thetaKalman(i), thetaD(i), phiKalman(i), phiD(i)]=parse(u);

26 end

27

28 pThetaKalman(pitchCount ,:)=thetaKalman (:);

29 pThetaD(pitchCount ,:)=thetaD (:);

30 pPhiKalman(pitchCount ,:)=phiKalman (:);

31 pPhiD(pitchCount ,:)=phiD (:);

32

33 save('pThetaKalmanData ','pThetaKalman ')

34 save('pThetaDData ','pThetaD ')

35 save('pPhiKalmanData ','pPhiKalman ')

110

36 save('pPhiDData ','pPhiD')

37

38 figure (1) plot(time ,thetaKalman(count ,:),'b-',time ,thetaD(count ,:),'r-')

39 title('Test Flight Pitch Test Theta Response ');

40 xlabel('Time (s)')

41 ylabel('Theta (rad)')

42 legend('thetaKalman ','thetaD ')

43

44 figure (2)

45 plot(time , phiKalman(count ,:),'b-',time ,phiD(count ,:),'r-')

46 title(' Test Flight Pitch Test Phi Response ');

47 xlabel('Time (s)')

48 ylabel('Phi (rad)')

49 legend('phiKalman ','phiD')

50

51 pitchCount=pitchCount +1;

52

53 %% Clear Port

54 fclose(s)

55 delete(s)

56 clear s

57

58 %% Take Data Roll

59 flushinput(s)

60 for i=1: numSamples

61 u=fread(s,1,'single ')

62 [thetaKalman(i), thetaD(i), phiKalman(i), phiD(i)]=parse(u);

63 end

64

65 rThetaKalman(rollCount ,:)=thetaKalman (:);

66 rThetaD(rollCount ,:)=thetaD (:);

67 rPhiKalman(rollCount ,:)=phiKalman (:);

68 rPhiD(rollCount ,:)=phiD (:);

69

70 save('rThetaKalmanData ','rThetaKalman ')

71 save('rThetaDData ','rThetaD ')

72 save('rPhiKalmanData ','rPhiKalman ')

73 save('rPhiDData ','rPhiD')

74

111

75 figure (3)

76 plot(time ,thetaKalman(count ,:),'b-',time ,thetaD(count ,:),'r-')

77 title('Test Flight Roll Test Theta Response ');

78 xlabel('Time (s)')

79 ylabel('Theta (rad)')

80 legend('thetaKalman ','thetaD ')

81

82 figure (4)

83 plot(time , phiKalman(count ,:),'b-',time ,phiD(count ,:),'r-')

84 title(' Test Flight Roll Test Phi Response ');

85 xlabel('Time (s)')

86 ylabel('Phi (rad)')

87 legend('phiKalman ','phiD')

88

89 rollCount=rollCount +1;

112

E.2 Data Smoothing and Time Constant Code

1 %Script for data analysis and for finding the time constant of the transient

data

2 %Evan Mucasey

3 %6/20/12

4

5 clear

6 clc

7 s=input('data:')

8 t=input('time:')

9 voltage=s.data;

10 time=t.time;

11

12 span =1000;

13 window=ones(span ,1)/span;

14 smoothedVoltage=convn(voltage ,window ,'same');

15 spanA =500;

16 windowA=ones(spanA ,1)/spanA;

17 smoothedVoltageA=convn(smoothedVoltage ,windowA ,'same');

18 force=smoothedVoltageA *33672*0.453592;

19

20 %% Find Initial and Final Values and the time constant value

21 for i=1:25000

22 initialValueArray(i)=force(i+499);

23 end initialValue=mean(initialValueArray);

24 for j=1:15000

25 finalValueArray(j)=force(j+69999);

26 end

27 finalValue=mean(finalValueArray);

28 stepChange=finalValue -initialValue;

29 tauValue =.632* stepChange+initialValue;

30

31 %% Take derivative of signal where the step can be changed below

32 derivative=gradient(force ,.0001);

33

34 %% find the time when the derivative is greater than a certain value ignoring

first erroneous values

35 for l=5000:35000

113

36 derivativeInitial(l)=derivative(l);

37 end

38 maxDerivativeInitial=max(derivativeInitial)+.1; %with buffer ...

39 for m=5000:80000

40 derivativeCheck=derivative(m);

41 if derivativeCheck >maxDerivativeInitial

42 timeStart=m;

43 break

44 end

45 end

46 %% Use the derivative time value found above to start the count to find where

the force is at tauValue

47 for n=timeStart :1:80000

48 forceCheck=force(n);

49 if forceCheck >= tauValue

50 timeStop=n;

51 break

52 end

53 end

54 tau=(timeStop -timeStart)/10000

55

56 figure (1)

57 plot(time ,voltage ,'y:',time ,smoothedVoltageA ,'r-')

58 xlabel('time (s)')

59 ylabel('voltage (v)')

60 title('Smoothing Raw Load Cell Data')

61 legend('Raw Data','Smoothed Data','location ','NorthWest ')

62 h=gtext('Time Constant = 0.1892 s');

114

Evan Mucasey has worked on several aerospace related projects throughout his undergraduate

and graduate career at Lehigh University. His long term undergraduate project consisted of

designing and fabricating an innovative craft to break the land speed record for a wind powered

vehicle. Along with working towards the completion of this Master's Thesis, Mucasey has

interned for Excalibur Almaz and SpaceX and plans to pursue a career in the aerospace

industry.

Mucasey also received his private pilot license in 2009 and has been greatly enjoying �ying

over Texas and Pennsylvania, giving aerial tours to friends and family. Some other hobbies

include studying guitar music and training in mixed martial arts.

115

