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Abstract

Internal friction plays an important role in protein dynamics by modulating the protein’s fold-

ing/unfolding process and other conformational changes. However, how to quantify internal

friction and its contribution to protein folding/unfolding dynamics remains challenging. Single-

molecule force spectroscopy has developed as a powerful tool to probe protein structure and

dynamics. In this thesis, with the technique of atomic force microscopy (AFM), we measured

the single-molecule force spectroscopy of the GB1 protein’s unfolding process. By changing the

solvent viscosity and the concentrations of denaturant GdmCl, we were able to extract the key

mechanical properties, such as the spontaneous unfolding rate k0, the intrinsic lifetime τ0, the

location of the activation state ∆x‡, and the height of activation energy ∆G, according to both

Bell-Evans model and Dudko’s model. Moreover, we developed an extended Ansari-expression

to describe the relation between the overall friction and internal friction. By fitting the extracted

mechanical properties to the expression, we successfully quantified the internal friction, which

decreases from ∼ 2.1 mPa s without any denaturant to ∼ 1.0 mPa s with 2M denaturant GdmCl.

The single-molecule procedure provided a unique way to quantify internal friction in protein’s

folding/unfolding process.
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Chapter 1

Introduction

In biology one hot topic that has a strong connection with human’s life, is protein folding and

conformational change. The conformational change is said to be driven by thermal fluctuations

(Kramers in 1940 [1]). The theory considers the protein process as a diffusive process, with a

classical particle of mass M moves in a one-dimensional asymmetric double-well potential U(x)

(Figure 2.1). In this simplified two-state model, all the reacting and solvent molecules constitute

a heat bath at temperature T . Kramers deduced the celebrated relation between the rate of escape

(i.e., unfolding/unfolding rates) between the environment parameters, including the friction, the

free activation energy, and the system absolute temperature, at both large solvent viscosity limit

and small viscosity limit. Though the theory was successfully built, it was not until about thirty

years later that the theory was applied to analyze the experimental results due to the unavailability

of experimental techniques.

Based on the widely accepted Kramers theory at large solvent viscosity limit, two models

were built to further extract the mechanical properties of single molecules; the Bell-Evans model

and Dudko’s model.

The Bell-Evans model was first proposed by Bell to describe the rate of bond dissociation

under external force load phenomenologically [2], and later refined by Evans by deriving the

dependence of strength of adhesion (the most probably rupture force) on the force loading rate
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[3]. This powerful model is used to extract the reaction kinetics in liquids to bond dissociation

under an external force, with a given distribution of rupture forces and the corresponding force

loading rate. The extracted mechanical properties include the intrinsic rate coefficient/lifetime

(k0/τ0), as well as the distance between the low-energy native state and the high-energy transition

state along the reaction coordinate ∆x‡. It predicts that a linear relationship between the most

probable unfolding/rupture forces F ∗ and the corresponding force loading rate Ḟ (Eq. (2.14)).

However, the model fails to directly give the height of free activation energy for either the folding

process (∆Gf ) or unfolding process (∆Gu) of protein. Meanwhile, the model still can tell the free

energy difference between the native state and the unfolded state, namely, ∆∆G = ∆Gf −∆Gu.

The other model for extracting kinetic information from single-molecule pulling experiments

is proposed by Dudko et al. in 2006 [4]. By introducing a new free-energy surface factor ν,

the model is able to include Bell’s formula as a special case (with ν = 1). Different from the

Bell-Evans model, the unified Dudko’s model provides estimates of the free energy of activation

∆G, as well as another two important mechanical parameters given in Bell-Evans model, i.e.,

the intrinsic rate coefficient/lifetime (k0/τ0) and the location of the transition state ∆x‡. This

model uses an analytical expression (Eq. (2.24)) to describe the relationship between the force-

dependent rate of escape k and the applied force F , intrinsic rate coefficient k0, location of the

barrier ∆x‡, and height of the barrier ∆G, with a free-energy surface factor ν, and predicts

that the mean rupture force 〈F 〉 ∼ ln(v), where v is the pulling speed. To get enough data of

the force-dependent rate of escape (k(F )), we can either get the experiments done at different

pulling speeds, or at a constant ramp-force. For the first one, the technique used is to transform

rupture- or unfolding-force histograms into the force-dependent lifetimes (Eq. (2.32)), which can

be directly obtained in the second one.

All these theories have been validated with the tool of single-molecule force spectroscopy.

The most common force-spectroscopy techniques are atomic force microscopy (AFM), optical

tweezers and magnetic tweezers. These advanced techniques make it possible for people to in-

vestigate the mechanical properties of an individual biological molecule, without the interference

3



from other molecules. The atomic force microscopy (AFM) is the simplest in concept, and most

widely used among the three force-spectroscopy techniques. The AFM was the device chosen

for our experiments. AFM has a large force range (∼ 10 pN − 104 pN), high force sensitivity

(∼ 10 pN/nm), as well as good spatial and temporal resolution (0.5 nm and 10−3 s).[5]

It is found that protecting osmolytes, such as glycerol and sarcosine, slow down the intrinsic

unfolding rate of a globular protein while accelerate its folding rate concurrently, independent

of the applied force and without any complexion at the transition state.[6] These results simply

agree with the Kramers theory at a strong viscosity limit, due to the rate of escape (k) is posi-

tively correlated with the reciprocal of solvent viscosity (1/η), if we simply equal the friction γ

in Kramers theory (Eq. (2.2)) to η. However, as more single-molecule experiments were car-

ried out, deviations of rate coefficient (k) from simply 1/η were observed [7][8]. This caused

us to revaluate our use of Kramers theory. The reason is that Kramers derived the expression by

simplifying the reaction process to a simple one-dimensional diffusion process, while the rate of

escape k deduced actually represents the overall rate, with an "effective" friction coefficient γ

accounting for all the mechanisms that the energy can dissipate out during the reaction process.

The friction coefficient γ, at least, includes the effects of both solvent dynamic friction η and the

solvent-independent internal friction σ. Previous experiments has shown that the internal fric-

tion might play an important role in protein folding dynamics [9], and its contribution to protein

unfolding dynamics has been quantified by determining the reconfiguration times of unfolded

proteins through single-molecule spectroscopy recently [10]. Despite their great efforts, to di-

rectly quantify the internal friction and understand its contribution to protein folding/unfolding

dynamics, much of the mechanisms behind it still remains unclear.

In this experiment, we used the atomic force microscopy (AFM) technique, combined with

protein engineering, to investigate the mechanical stability of protein folding/unfolding. The

protein we used is an artificial polyprotein (GB1)8, a tandem repeat of eight identical units of

elastomeric protein GB1. This project consists of two goals. The first goal of our study is to

investigate the mechanical stability and energy landscape of GB1 protein, and identify the contri-
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bution of solvent viscosity and denaturant. To realize this goal, we pulled the polyprotein (GB1)8

at varied concentrations of glycerol and denaturant GdmCl, and setting different constant pulling

speeds. Then we extracted the key mechanical properties according to both Bell-Evans model

and Dudko’s model, and compared their differences. Indeed, the mechanical and biophysical

properties of the monomer GB1 were first reported in Chao Yi and Dr. Hongbin Li’s seminal

work.[11][12] Our second goal is to quantify the internal friction directly from the extracted

kinetic parameters according to both models. To accomplish this, we developed an extended

Ansari-expression to describe the relation between the overall friction and internal friction. By

fitting the extracted mechanical properties to the expression, we successfully quantified the inter-

nal friction.

For the following chapters, Chapter 2 will introduce the theoretical basis for this project,

including the Kramers theory, Bell-Evans model, Dudko’s model, and worm-like chain model.

Chapter 2 will also explain the experimental methodology including protein engineering, single

molecule experiments etc.. In Chapter 3, we will show how to extract the mechanical properties

of the unfolding process of GB1 protein, using both the Bell-Evans and Dudko’s model, as well as

how we figured out the unfolding energy landscape, and gave the contribution of solvent viscosity

and denaturant. In Chapter 4, we will use the extended Ansari-expression developed to quantify

the internal friction of GB1 unfolding dynamics. We will conclude the dissertation in Chapter 5

with our findings from the experiments.
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Chapter 2

Theory and Experimental Methodology

2.1 Single-molecule kinetic mechanisms and models

Single-molecule pulling experiments are used to reveal the following kinetic properties: (1) the

spontaneous dissociation rate or the intrinsic rate coefficient k0; (2) the distance between the

native state and the transition state along the reaction coordinate, namely the location of the

transition state ∆x‡; (3) the unfolding barrier or the free energy of activation ∆G.

2.1.1 Kramers theory

In Kramers theory [1][13], chemical reactions are treated as diffusion problems. Based on a

derivation of the Fokker-Plank diffusion equation [14] for the Brownian motion in phase space,

in the presence of a nonlinear potential field, Kramers predicted the probability of escape (usually

called "rate of escape" now) k depending on the temperature T and the friction γ. In the model

of chemical reactions, a classical particle of mass M moves in a one-dimensional asymmetric

double-well potential U(x) (shown in Figure 2.1). Along the reaction coordinate x, the particle

has minima of potential at xa and xc, denoting the reactant and product states, respectively. The

local maximum point at xb separating these states corresponds to the transition state (or activated

complex). In this simplified model, all the reacting and solvent molecules constitute a heat bath
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at temperature T . The effect of temperature on the particle is described by a fluctuating force ξ(t)

and by a linear damping force−Mγẋ, where γ is a constant damping rate from friction. Kramers

distinguished two limiting regimes, one with strong friction (spatial-diffusion regime), and the

other with a low damping rate (energy-diffusion regime).

Figure 2.1: Asymmetric potential field U(x) with two metastable states (this schematic diagram
was adopted from [13]). There are two metastable wells at xa and xc, as well as a transition state
at xb along the reaction coordinate x. Escape occurs via the forward rate k+, and the backward
rate k−, respectively. E±b correspond to the activation energies. ωa, ωb, ωc denote the angular
frequency at each point, with parameter ω0 = ωa.

For solvent with strong friction γ (large viscosity), Kramers derives the celebrated result of

the escape rate from A to C, kA→C

kA→C ≡ k+ =
(γ2/4 + ω2

b )
1/2 − γ/2

ωb
· ω0

2π
exp(−βEb) (2.1)

where ω0 = ωa, with ωa and ωb denote the angular frequency at xa and xb, respectively, Eb =

U(xb)− U(xa) is the activation energy, and thermal factor β = (kBT )−1.

In the limit of very large damping (the Smoluchowski limit), i.e., for γ/2� ωb, using Taylor

expansion for (γ2/4 + ω2
b )

1/2 − γ/2 leads to [1]

kA→C ≡ k+ =
ω0ωb
2πγ

exp(−βEb) (2.2)

7



which shows that the rate of escape k decreases inversely proportional to the friction γ.

For very weak friction γ (small viscosity), it gives

kA→C ≡ k+ = γβEb exp(−βEb) (2.3)

all the parameters are same as these in Eq. (2.1).

2.1.2 Bell-Evans model

In Chapter 2.1.1, Kramers has derived the analytical formula for the rate of escape, but it was not

used until about thirty years later due to the unavailability of experimental techniques. Kramers

presented the reaction kinetics in liquids.[1] By extending the kinetic theory of the strength of

solids [15] and the transition state theory for reactions in gases introduced by Eyring and others

[13], Bell first proposed the phenomenological model to describe the rate of bond dissociation

under external force load in 1978 [2], while later Evans refined the theory by deriving the depen-

dence of strength of adhesion (the most probably rupture force) on the loading rate [3].

The earliest theory concerning the reaction rate was developed by Arrhenius [16], given by

the Van’t Hoff-Arrhenius law: rate of dissociation k = ν exp(− E0

kBT
), where v is the natural

frequency of molecular collisions in the collision theory in vacuum, E0 is the free entropy term

in the transition state theory, kB is Boltzmann constant, and T is the absolute temperature.

The universal rate relation between lifetime τ , stress F , and the absolute temperature T in

solid mechanics was derived by Zhurkov [15], which was introduced to analyze the lifetime of

molecular bonds by Bell [2]

τ = τ0 exp(
E0 − γF
kBT

) (2.4)

where kB is Boltzman constant, τ0 is the reciprocal of natural frequency of oscillation of atoms

in solids, E0 is the bond energy, and γ is a parameter determined empirically. As applied to

receptor-ligand bonds, the formula predicts that the bonds’ lifetime is calculated at F = 0. These

8



results can also been derived directly from Kramers theory in the strong friction case with Eq.

(2.1).

Assuming that the applied external force F acts directly along the reaction coordinate, i.e.,

the height of the transition-state energy barrier depends linearly on the applied force F and a

constant distance ∆x‡ between the native equilibrium state and the transition state, Evans et al.

got the force-dependent dissociation rate [3]:

k(F ) =
ωminωmax

2πγ
exp(−E0 − F∆x‡

kBT
) = k0 · exp(

F∆x‡

kBT
) = k0 · exp(βF∆x‡) (2.5)

where ωmin represents the angular frequency of the metastable state, ωmax is the positive valued

angular frequency of the transition state at the barrier, γ is the damping relaxation rate, k0 is

the zero-force natural off rate, kB is Boltzmann constant, T is the absolute temperature, and

β = (kBT )−1.

The force-dependent lifetime τ(F ) is the reciprocal of the force-dependent dissociation rate

k(F ), i.e.,

τ(F ) = τ0 exp(−βF∆x‡) (2.6)

Here τ0 = k−1
0 is the intrinsic lifetime, the lifetime under no applied force.

The rate of dissociation k can be used to describe the change of existing bonds NB with time

t,
dNB(t)

dt
= −k ·NB(t) (2.7)

The number of intact bonds NB(t) is given be integrating Eq. (2.7)

NB(t) = exp

(
−
∫ t

0

k(t′)dt′
)

(2.8)

Assuming that the force F is a reversible continuous function of time t, t can be replaced by F ,

9



which results in the following expression:

NB(t) = exp

(
−
∫ F

0

k(f) · 1

ḟ
df

)
(2.9)

Then the number of dissociated bonds ND at time t is given by

ND(t) = 1−NB(t) = 1− exp

(
−
∫ F

0

k(f) · 1

ḟ
df

)
(2.10)

The probability p(F ) that the bond breaks under external stress F is given by dND

dF
:

p(F ) =
dND

dF
(F ) =

k(F )

Ḟ (F )
· exp(−

∫ F

0

k(f)

Ḟ (f)
df) (2.11)

where Ḟ (F ) = dF/dt is the force loading rate [2]. It can be demonstrated that
∫∞

0
p(F )dF = 1.

For Bell-Evans model, using Eq. (2.5) leads to

p(F )B−E−k−f =
k0

Ḟ
exp(βF∆x‡) · exp(−k0

∫ F

0

1

Ḟ
exp(βF∆x‡)) (2.12)

Thus, the most probable rupture force F ∗ can be found by derivation:

dp(F )

dF

∣∣∣∣
F=F ∗

= 0 (2.13)

Assuming that the loading rate Ḟ is independent of the applied force F , like these in constant

speed experiments, we can get a linear dependence of F ∗ on the logarithm of the loading rate Ḟ :

F ∗(Ḟ ) =
1

β∆x‡
ln(

β∆x‡

k0

Ḟ ) =
1

β∆x‡
ln(Ḟ ) +

1

β∆x‡
ln(

β∆x‡

k0

) (2.14)

According to Eq. (2.14), we can extract the single molecule kinetic information, i.e., the natural

dissociation rate k0 and the location of the transition state ∆x‡, given the distribution of the

10



rupture forces and the corresponding loading rates. That is

∆x‡ =
kBT

m

k0 =
1

m
exp(− b

m
)

(2.15)

where m and b signify the slope and the y-intercept of the best fit straight line (x-axis: ln Ḟ ,

y-axis: F ∗).

If flexible linkers are used in the pulling experiments, the force loading rate under investiga-

tion is changing continuously when stretching the molecule. In this case, the assumption that Ḟ

is independent of F is not fulfilled, and Eq. (2.14) is only an approximate description.

It is also reported that the mean force F and median force Fm of the distribution can be used

to extracted the kinetic parameters ∆x‡ and k0 [17][18], with

F =

∫ ∞
0

Fp(F ) dF

S(F )|F=Fm =
1

2

(2.16)

2.1.3 Dudko model

Based on the Kramers theory and certain scaling laws obtained by Garg [19] for high forces,

Dudko et al. [4] built a unified framework for extracting mechanical properties from single-

molecule pulling experiments.

Exerted an external pulling force F , the molecule moves on a combined free-energy surface,

with potential

U(x) = U0(x)− Fx (2.17)

where x is the position change along the pulling direction, and U0(x) is the free energy in the

absence of external force. In single-well model, U0(x) has a lowest single well at x = 0, and a

barrier at x = ∆x‡ of height ∆G. Under an external force F , the barrier height ∆U(F ) decreases,

shown in Figure 2.2.
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Figure 2.2: Force effect on a single-well free-energy surface (this schematic diagram was adopted
from [4]). (a) Intrinsic free-energy surface U0(x) with barrier width ∆x‡ between the native state
and the transition state along the reaction coordinate, activation free energy ∆G, and inflection
point x∗; (b) decrease of the activation energy ∆U(F ) of the combined free-energy surface,
U(x) = U0(x)− Fx, due to the presence of an external force F , and the reaction rate k(F ) also
increases (larger than spontaneous reaction rate k0).

For single-molecule experiments at constant force or constant pulling speed, the unfolding

process is stochastic. Under an adiabatic approximation, the survival probability S(t) that the sys-

tem keeps intact at time t satisfies the first-order rate equation Ṡ(t) ≡ dS/dt = −S(t)/τ(F (t)),

ignoring fluctuations in the time-dependent external force F (t) [20]. Also, −Ḟ (t)dt = p(F )dF ,

then the rupture forces have a probability density distribution [19][21] (same as Eq. (2.11)):

p(F ) = −dS(F )

dF
=
k(F )

Ḟ (F )
· exp(−

∫ F

0

k(f)

Ḟ (f)
df)

Here, S(F ) is the bond survival probability that the molecular system keeps intact at time t,

Ḟ (F ) = dF/dt is the force loading rate at force F , and k(F ) = τ(F )−1 is the force-dependent

dissociation rate, where τ(F ) is the lifetime.[2] It can be demonstrated that
∫∞

0
p(F )dF = 1.

The mean rupture force and its variance then can be represented by

〈F 〉 =

∫ ∞
0

F · p(F )dF σ2
F = 〈F 2〉 − 〈F 〉2 (2.18)
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The dissociation rate k(F )

The dissociation rate in Dudko’s model is specifically calculated from Kramers theory describing

the escape over a one-dimensional, single-well potential field.[1] For a sufficiently high potential

barrier, the force-dependent rate of escape is predicted as:

k/k0 = [

∫
well

e−U(x)dx

∫
barrier

eU(x)dx]−1 · [
∫
well

e−U0(x)dx

∫
barrier

eU0(x)dx] (2.19)

For constant pulling speed, the external pulling force is F (t) = K · vt, where K is the spring

constant for the stiff molecular system; the combined free-energy surface is given by U(x) =

U0(x) + K(x − vt)2/2. For a soft effective spring, K � 2∆G/∆x‡
2, using first-order Taylor

series expansion, it implies

U(x) ≈ U0(x)−Kvtx = U0(x)− Fx (2.20)

Substitution Eq. (2.20) back to Eq. (2.19), get

k/k0 = [

∫
well

e−U0(x)+Fxdx

∫
barrier

eU0(x)−Fxdx]−1 · [
∫
well

e−U0(x)dx

∫
barrier

eU0(x)dx] (2.21)

To get an analytical formulation for k, two kinds of sing-well model with free-energy surfaces

U0(x) for external forces, which grow linearly with time, are considered:

The cusp surface [20]:

U0(x) = ∆G(x/∆x‡)2 for x < ∆x‡, and −∞ for x ≥ ∆x‡ (2.22)

The linear-cubic surface:

U0(x) =
3

2
∆G(x/∆x‡)− 2∆G(x/∆x‡)3 (2.23)
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The force-dependent dissociation rate k(F ) can be derived in a unified form [4]:

k(F ) = k0(1− νF∆x‡

∆G
)1/ν−1 · exp{β∆G[1− (1− νF∆x‡

∆G
)1/ν ]} (2.24)

In this expression, k0, ∆x‡, and ∆G are the three most important kinetic parameters, the intrinsic

dissociation rate, the distance between the native state and the transition state along the reaction

coordinate, and the apparent free energy of activation in the absence of an external force. ν is

a scaling factor, which specifies different kinds of free-energy surface profile. For ν = 1/2,

formula (2.24) corresponds to the cusp surface described by Eq. (2.22), either a harmonic well

or barrier; for ν = 2/3, formula (2.24) corresponds to the linear-cubic surface described by Eq.

(2.23); for ν = 1, formula (2.24) recovers to the Bell-Evans’ formula, exactly same as Eq. (2.5),

which means that the Bell-Evans model is a special case of Dudko model.

The lifetime τ(F ) = k(F )−1, substituting to Eq. (2.24) leads to

τ(F ) = τ0(1− νF∆x‡

∆G
)1−1/ν · exp{−β∆G[1− (1− νF∆x‡

∆G
)1/ν ]} (2.25)

If ∆G is calculated in unit of kBT , expression (2.25) changes to

τ(F ) = τ0(1− νβF∆x‡

∆G
)1−1/ν · exp{−∆G[1− (1− νβF∆x‡

∆G
)1/ν ]} (2.26)

The loading rate Ḟ

If the link effect is neglected, the loading rate Ḟ = dF/dt = Kv, which is independent of F .

But for experimental setup with intervening flexible linkers, like DNA handles, the loading rate

is a function of applied force, i.e., Ḟ = Ḟ (F ). Considering the pulling process as a simple

force-balance process, the force-dependent loading rate Ḟ (F ) is given by [22]

1

Ḟ (F )
=

1

vK
+

1

v

dl(F )

dF
(2.27)
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where v is the pulling velocity, K is the spring constant of cantilever in AFM experiments, l(F )

is the force-dependent extension of the linker.

For the worm-like chain (WLC) model, the extension l(F ) of the flexible linker is approxi-

mately the solution of Eq. (2.28) (discussed in Chapter 2.1.4)

F · Lp
kBT

=
1

4

(
1− l(F )

Lc

)−2

− 1

4
+
l(F )

Lc
(2.28)

where F is the applied force, Lc is the contour length, Lp is the persistence length of the WLC

linker, kB is Boltzmann constant, and T is the absolute temperature. By taking into account the

first two terms in the low-force expansion of dl/dF with the limit F → ∞, an approximate

analytical Padé-like expression for the force-dependent loading rate Ḟ is given by [23]

Ḟ (F ) = v

[
1

K
+

2βLcLp(1 + βFLp)

3 + 5βFLp + 8(βFLp)5/2

]−1

(2.29)

We can see that the second factor in the right hand side accounts for the link effect. If we ignore

this part, the expression turns to the simple one Ḟ = Kv. It is said that this expression is accurate

to within ∼ 3.5% [23].

For the analogous expression for a freely jointed chain (FJC), the force-dependent loading

rate Ḟ is given by Ray et al. [22]

Ḟ (F ) = Kv

{
1 +

KLc
FK

[
(
FK
F

)2 − csch2(
F

FK
)

]}−1

(2.30)

where Lc is the contour length of the linker, K is the cantilever spring constant in AFM experi-

ments, and the parameter FK = kBT/a where a is the Kuhn length of the linker. It is also true

that the loading rate approaches Kv under conditions of high force F , short linker Lc, or small

spring constant K.
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Data analysis

For constant pulling speed and constant force experiments, in Eq. (2.24), (2.25) and (2.26), k0

(or τ0), ∆x‡, and ∆G are unknown parameters, which need to be fitted from the experimental

data; k(F ) (or τ(F )) and F are extracted directly from the experimental results; β and the scaling

factor ν are known constant.

Based on Eq. (2.1.3), under the quasi-adiabatic approximation, the transformation from con-

stant speed experiments to constant force experiments is given by [4][23][24]

τ(F ) =

∫∞
F
p(f |v)df

Ḟ (F |v) · p(F |v)
(2.31)

In this expression, p(F |v) is the rupture-force probability density distribution measured at con-

stant pulling speed v, τ(F ) is the lifetime at constant force F , and Ḟ (F |v) is the loading rate

at speed v. This transformation is applicable to all kinds of underlying free-energy surface. For

each pulling speed v (or loading rate Ḟ (F )), a set of (F, τ(F )) pairs are obtained according to

Eq. (2.31), and it is predicted that different sets of (F, τ(F )), from different v, should collapse

onto one single master curve over a wide range of rupture forces.

Consider an experimental rupture-force histogram obtained at constant speed v, the histogram

has N bins of width ∆F = (Fmax − Fmin)/N . Let the number of counts in the ith bin be ci,

1 ≤ i ≤ N , then the total counts is C =
∑N

i=1 ci, resulting in the probability P (Fi) = ci/C, and

the density p(Fi) = ci/(C ·∆F ). Thus, substituting to Eq. (2.31)

τ(Fi) =

(
p(Fi)/2 +

∑N
k=i+1 p(Fi)

)
·∆F

Ḟ (Fi) · p(Fi)
(2.32)

where Fi = Fmin + (i− 1/2)∆F , for 1 ≤ i ≤ N − 1; τ(FN) = p(FN )/2·∆F
Ḟ (FN )·p(FN )

= ∆F
2Ḟ (FN )

, for i = N .

A quite general approximation of the relationship between the lifetime at the mean rupture
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force and the variance of the rupture-force distribution is given by [23]

τ(〈F 〉) ≈
[π

2
(〈F 2〉 − 〈F 〉2)

]1/2

/Ḟ (〈F 〉) (2.33)

This expression is derived from Eq. (2.31) by approximating the rupture-force distribution p(F )

to be a normalized Gaussian distribution, and setting the rupture force F = 〈F 〉. Actually, the real

rupture-force distribution is not well described by the Gaussian distribution over the entire range

of rupture forces, but the approximation of the lifetime at the mean force turns to be quite good.

It is said that τ(F ) from this relation can be derived from the highly non-Gaussian rupture-force

distribution, with a numerical coefficient differing by <10% [4][23].

Another preferred simple approach for data set with substantial outliers is given by [23]

τ(〈F 〉) ≈ 3

4
δF/Ḟ (〈F 〉) (2.34)

where 〈F 〉 is the mean force, and δF = F3−F1 is the interquartile range, i.e., 25% of the rupture

forces are higher than F3 and 25% are lower than F1.

The disadvantage of using these two approximations is that experiments on different pulling

speeds are necessary to get a good fit between rupture forces and lifetimes, since only one pair of

(〈F 〉, τ(〈F 〉)) can be extracted from one constant-speed experiment.

After getting data set (F, τ(F )), use least-squares fitting logarithm of τ(F ) in Eq. (2.25) with

several values of ν to estimate τ0, ∆x‡, and ∆G:

ln(τ) = ln(τ0) + (1− 1/ν)(1− νF∆x‡

∆G
)− β∆G[1− (1− νF∆x‡

∆G
)1/ν ] (2.35)

We can see that this equation is valid only when the rupture force F is below a critical force

Fc = ∆G/(ν∆x‡), where the barrier vanishes, or Eq. (2.35) would involve complex values due

to logarithm function. If the fitting values of the tree parameters are insensitive to ν over a ν

range which still lead to good fits, they are considered to be meaningful due to the independence
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of the exact profile of the free-energy surface.

To validate the fitting results, we can compare the predicted force distribution according to Eq.

(2.1.3) with the experimental rupture force distribution. For constant pulling speed experiments,

Eq. (2.1.3) can be converted to

p(F |v) =
1

Ḟ (F )τ(F )

exp
[
β(Ḟ (F )τ0∆x‡)−1

]
exp

[
β(Ḟ (F )τ(F )∆x‡)−1(1− νF∆x‡

∆G
)1−1/ν

] (2.36)

For small loading rate Ḟ , the mean rupture force 〈F 〉 and the variance σ2
F are given asymptotically

by [19][4]

〈F 〉 ∼=
∆G

ν∆x‡

[
1−

(
1

∆G
ln

exp(∆G+ γ)

Ḟ τ0∆x‡

)ν]
(2.37)

σ2
F
∼=

π2

6∆x‡2

(
1

∆G
ln

exp(∆G+ γ̃)

Ḟ τ0∆x‡

)2ν−2

(2.38)

where γ = 0.5772... is the Euler-Mascheroni constant, ψ′′(1) = −2.404... is a particular value of

the tetragamma function, and γ̃ = γ2 − 3/π2ψ′′(1) ≈ 1.064.[4][25] For ν = 1, the phenomeno-

logical theory, the variance σ2
F is independent of pulling speed v. Therefore, the phenomenolog-

ical approach is invalid if the experimental variance changes for different pulling speeds v.

2.1.4 Worm-like chain (WLC) model

The worm-like chain model (Kratky-Porod model) is used to describe very stiff polymers. It

assumes polymers to be idealized, macroscopic, circularly-symmetric beam element with a flex-

ural rigidity. With successive monomers constrained to point in nearly the same direction, the

isotropic polymer chain is continuously flexible, different from the freely-jointed chain model,

which assumes it to be flexible only between discrete segments.[26][27] The WLC model has

been widely used in analyzing biological polymers, like DNA, RNA and proteins, and has some

variations.[28][29][30] The basic inextensible WLC model describing the relation between the

polymer’s extension and the pulling force is summarized by the following interpolation formula
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(Eq. (2.28)) [31]
F (x) · Lp
kBT

=
1

4

(
1− x

Lc

)−2

− 1

4
+

x

Lc

where F (x) is the applied force on the polymer, x is the end-to-end distance, Lc is the contour

length, Lp is the persistence length of the polymer, kB is Boltzmann constant, and T is the

absolute temperature. In this formula, the polymer is treated as inextensible and persistence

length Lp defines the rigidity of the chain, while the twisting effect is ignored.

While for most polymers, the elastic response cannot be neglected under stretching, two ex-

tensible worm-like chain (eWLC) models were derived based on the external force. For low

forces (F <∼ 10 pN, but has limitations near F ≈ 0.1 pN), the following interpolations formula

[32]
F · Lp
kBT

=
1

4

(
1− x

Lc
+
F

S

)−2

− 1

4
+

x

Lc
− F

S
(2.39)

where parameters F, x, Lc, Lp, kB and T are same as these in Eq. (2.28), while the new

parameter S, namely the elastic stretch modulus, accounts for the enthalpic term. For high forces,

use the approximation [28]

x = Lc

[
1− 1

2

(
kBT

FLp

)1/2

+
F

S

]
(2.40)

where all the parameters are same as these in Eq. (2.39).

To take into account sequence composition and a force-dependent twist-stretch coupling, a

new twistable worm-like chain (tWLC) model was built by expanding eWLC model [30]

x = Lc

[
1− 1

2

(
kBT

FLp

)1/2

+
C

−g(F )2 + SC
· F

]
(2.41)

where F, x, Lc, Lp, kB, T and S are same as these in Eq. (2.39), C represents the twist rigidity,

and g(F ) is the twist-stretch coupling [33][34][35].
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2.2 Experimental materials and methods

2.2.1 Protein engineering and expression

The plasmid containing the gene encoding 8 repeats of GB1 protein with two Cysteine residues

at the C-terminus (named (GB1)8) was generously provided by Dr. Hongbin Li. The (GB1)8

polyprotein was overexpressed in E. Coli (DH5α), and purified by Ni2+-affinity chromatography

(see Figure 2.3). The (GB1)8 used for folding-unfolding experiments had a concentration of ∼

170 µg/ml, and was kept at 4 ◦C in PBS buffer.

Figure 2.3: Purification of polyprotein (GB1)8. SDS-PAGE gel with the molecular marker (lad-
der) in the left lane, as well as Dual Color Standards (from BIO-RAD) shown left. Different
lanes correspond to different eluted times of supernatant with Laemmli sample buffer. GB1 has a
molecular weight of ∼ 8 kDa, so (GB1)8’s molecular weight is ∼ 64 kDa. The purified (GB1)8,
eluted twice, three and four times, appears as a predominant band on SDS-PAGE gel with an
apparent molecular weight between 50 kDa and 75 kDa, in agreement with the theoretical value
of ∼ 64 kDa.
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2.2.2 Single-molecule atomic force microscopy (AFM)

The single-molecule force measurements were performed on a home-built atomic force mi-

croscopy (AFM) (see Figure 2.4) at a room temperature ∼ 23 ◦C. The AFM system uses the

common beam deflection method. A beam of laser is reflected by the backside of the sensitive

cantilever and detected by a position sensitive detector (PSD) with two closely spaced photodi-

odes. A deformation of the cantilever happens when it presses on a hard surface of the substrate.

The signal’s difference measured by the photodiodes is said to be proportional to the angular dis-

placement of the cantilever. For the AFM experiments, we use a fast-speed camera (The Imaging

Source DMK 21AF04.AS) to help to find the cantilever and align the laser.

Figure 2.4: Schematic of atomic force microscopy (AFM). A beam of laser is reflected by the
backside of the cantilever, and detected by a position sensitive detector (PSD) with two closely
spaced photodiodes. The output signal, which is proportional the angular displacement of the
cantilever, is processed in a computer.

To avoid the shifting of the gold-coated coverslip/the glass dish, some vacuum grease is placed

on its bottom. The holder where the cantilever is fixed is controlled by the piezoelectric actuator.

The piezoelectric actuator brings the holder down to approach and press the coverslip’s surface.

By setting a trigger signal, the piezo state will stop to avoid damaging the cantilever. At this time,
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we can set a contact time, also called dwell time, to get a higher probability for the cantilever tip

to bind to the sample (usually 1s to 5s). Which part of the polyprotein is picked up by the tip

is random. The setting of dwell time depends on each experiment, and too long of a dwell time

will cost much more time to finish it, especially when the pulling speed is very low (∼ 0.1 µm/s).

Then the cantilever moves upward to retract within a distance of Z range. If the non-specific

binding force between the tip and the protein is greater than the unfolding force of some domains

along the protein chain, the domain(s) will be stretched and unfold, showing a force peak when

unfolding.

To measure a reliable force-extension curve of protein, we need to correct both the force

exerted on the protein and the extension of it. The extension we get actually is the position of

the piezo stage, so it is necessary to subtract the deformation of the cantilever when force is

applied. The linear relation between the force F and the extension ∆x is given by Hooke’s Law:

F = −K ·∆x indicates that the force will also be corrected with the extension, where K is the

spring constant of cantilever.

Besides, since all the AFM experiments are carried in a liquid environment, we need to con-

sider the hydrodynamic effects, especially when the solvent viscosity is strong and the pulling

speed is high. To quantify the hydrodynamic effects, we measure the force extension curve inside

the solution, but without touching the substrate’s surface.

2.2.3 Single molecule experiments

For our experiments, all the force-extension measurements were done in liquid solution at room

temperature. The basic solution is filtered phosphate-buffered saline (PBS) (1X, pH 7.4). In

order to investigate the effects of denaturation and the solvent viscosity on the protein unfolding

mechanisms, we did the single-molecule experiments using a home-built AFM at six different

pulling speeds for each concentration (0M, 1M, and 2M) of denaturation guanidinium chloride

(GdmCl), as well as various concentrations (0%, 10%, 20%, and 30%) of glycerol to change the

solvent viscosity.
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In a typical experiment, ∼ 10 µL of (GB1)8 protein solution was deposited onto a clean gold-

coated coverslip covered by ∼ 150 µL specified solution mentioned above. To make sure that

(GB1)8 is well bound to the gold-coated surface, we usually waited for ∼ 15 minutes before

pulling experiments proceeded, and also the solution would be more stabilized.

Since we don’t want to calibrate the cantilever when it is contaminated after experiments, we

measure the thermal oscillation with the cantilever suspended in PBS solution, and the relation

between the angular displacement (piezo’s extension) with the detected output signal on a hard

glass dish before pulling the polyprotein (GB1)8. The cantilever we usually used is the largest

Silicon Nitride cantilever ("C" cantilever) of Bruker AFM Probes (model: MLCT), with a normal

spring constant of 0.01 N/m (varying from 0.005 N/m to 0.02 N/m). The spring constant is usually

calculated by using thermal vibrations [36]

1

2
K〈x2〉 =

1

2
kBT (2.42)

where K and 〈x2〉 denote the spring constant and the time-average square of the thermal fluc-

tuation of the cantilever, respectively; kB is Boltzmann constant, and T is absolute temperature

of the cantilever. The time-average "thermal energy" (1
2
K〈x2〉) is calculated in the frequency

domain according to Parseval’s theorem

∫
|x(t)|2dt =

∫
|x(ω)|2dω (2.43)

Through this thermal fluctuation method, the error of the spring constant calibrated varies be-

tween 10% - 20%.

2.3 Internal friction

The effects of solvent viscosity on protein folding/unfolding dynamics have been studied through

both experimental methods and simulation.[37][9][6] It is shown that protecting osmolytes, such
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as glycerol and sarcosine, can slow down the intrinsic unfolding rate of a globular protein while

accelerate its folding rate concurrently, independent of the applied force and without any com-

plexion at the transition state. The result agrees with Kramers theory [1] of Eq. (2.2) at a strong

viscosity limit, due to the friction factor γ in the expression. However, since Kramers derived the

expression by simplifying the reaction process to a simple one-dimensional diffusion process, the

rate of escape k deduced actually represents the overall rate, with an "effective" friction coeffi-

cient γ accounting for all the mechanisms that the energy can dissipate out during the reaction

process. The friction coefficient γ, at least, includes the effects of both solvent dynamic friction

η and the internal friction σ. In 2012, Andrea Sorannoa et al. [10] quantified the contribution

of solvent-independent internal friction in unfolded and intrinsically disordered proteins with

single-molecule spectroscopy, by a variation of solvent viscosity η and extrapolation to η = 0

[38].

Ansari et al. [8] found that the rate k of conformational relaxation in myoglobin can be

described by

k =
C

σ + η
exp(−E0/kBT ) (2.44)

where C, σ, E0 are constant, and σ has units of viscosity and can be regarded as internal friction.

And earlier Beece et al. [7] reported a power-law behavior in the viscosity-dependence of ligand

binding in myoglobin. Based on these results, we develop a new expression to firstly quantify the

external friction on GB1 unfolding experiments, i.e.,

τ0 = k−1
0 = C(σ + η)d (2.45)

where τ0 and k0 denote the intrinsic lifetime and the spontaneous unfolding rate, respectively; C

and d are the adjustable parameters; σ and η represent the solvent friction and internal friction,

respectively.

For our experiments, after extracting the kinetic parameters of k0 or τ0 in different solvent

viscosities, we can fit the solvent-viscosity-depend spontaneous unfolding rate to Eq. (2.45),
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which leads to a quantified internal friction during the protein unfolding/folding process.
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Chapter 3

Experimental Results

3.1 Structure of the artificial elastomeric polyprotein (GB1)8

GB1 protein is a classical paradigm for studying the protein folding/unfolding process in single

molecular experiments. It is a small, very regular α/β structure composed of 56 animo acids

(approximately 8kDa molecular weight). The fold consists of a four-stranded β-sheet and a long

α-helix tightly packed against the sheet (Figure 3.1).[39][40] The β-sheet has two symmetrically

spaced hairpins: one is formed by N-terminal strands and the first β turn (β1-turn1-β2), and the

other formed by C-terminal strands and the second β turn (β3-turn2-β4). The mechanical fold-

ing/unfolding dynamics of the monomer protein GB1 has already been well studied through both

thermal and chemical denaturation approaches.[41][42][43][44][45] The first goal of our study

is to investigate the mechanical stability and energy landscape of GB1 protein, and identify the

contribution of solvent viscosity and denaturant. To realize this goal, we constructed a polypro-

tein of (GB1)8 which is a tandem repeat of eight identical units of GB1 (Figure 3.1), and pulled

the polyprotein at different concentrations of glycerol, and different concentrations of denaturant

GdmCl. Experiments were conducted at different constant pulling speeds.

When stretching the polyprotein (GB1)8 with AFM, the eight domains unfold one by one

under external force, but unnecessarily from the first one at one end to the last at the other end.
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As a consequence, it gives a characteristic saw-tooth pattern of the force-extension curves shown

in Figure 3.1 from our experimental results. The characteristic saw-tooth pattern has several

equally spaced force peaks, depending on how many folded GB1 domains are stretched during

the single approach and retract process. If all the eight GB1 domains of polyprotein (GB1)8 are

pulled and unfolded, there are usually up to ten force peaks, eight of which are the unfolding

force peaks. The first peak (at the left beginning, shown in Figure 3.1) of the curve corresponds

to the non-specific adhesion between the protein and the gold-coated surface, while the last peak

corresponds to the detachment of the protein from the AFM tip or substrate, and usually it should

be from the AFM tip since the GB1 protein is covalently bound to gold-coated surface through

thiols (-SH).

For our experiments, we did the single-molecule experiments using a home-built AFM at six

different pulling speeds for each concentration (0M, 1M, and 2M) of denaturation guanidinium

chloride (GdmCl), as well as various concentrations (0%, 10%, 20%, and 30%) of glycerol to

change the solvent viscosity. Figure 3.1 shows a typical force-extension curve obtained from our

(GB1)8 pulling experiments. The dark lines were plotted with the experimental data collected,

showing a characteristic saw-tooth pattern. The colored lines were plotted by least squares fit to

worm-like chain (WLC) model.

The relation between the proteins’ extension and the pulling force can be characterized by the

inextensible WLC model with Eq. (2.28)

F · Lp
kBT

=
1

4

(
1− x

Lc

)−2

− 1

4
+

x

Lc

where F is the applied force on the protein, x is the end-to-end distance, Lc is the contour length,

Lp is the persistence length, kB is Boltzmann constant, and T is the absolute temperature. By

fitting consecutive force peaks, we calculated the contour length increment ∆Lc, namely the

elongation of GB1 monomer during mechanical unfolding process. Meanwhile, we also acquired

some information about the elasticity of the polyprotein (GB1)8 from the fitted parameter Lp.
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3.1.1 Results

The contour length increment ∆Lc of GB1

Applying WLC model to fit each unfolding force peak of good force-extension curves, we found

that the pulling speeds, varying from 0.1 µm/s to 5 µm/s, had little effect on the contour length

Figure 3.1: Typical force-extension curve of polyprotein (GB1)8. The force-extension curve
was obtained for PBS buffer at 1M GdmCl, 20% (v/v) Glycerol. The stretching force-extension
curve (black line) shows a characteristic saw-tooth pattern, with equally spaced force peaks, due
to the consecutively mechanical unfolding of each GB1 domain in the polymer chain. The be-
ginning part of the curve corresponds to the non-specific adhesion between the protein and the
gold-coated surface, while the last peak to the the detachment of the protein from the AFM tip
or substrate. Seven individual unfolding force peaks can be definitely classified from the force-
extension curve, and it can have up to eight unfolding force peaks. ∆Lc is the increment of
contour length for consecutive unfolding force peaks fitted by WLC model (colored lines), corre-
sponding to the length difference between the unfolded state and folded state of GB1 monomer.
As shown, we use formula Ḟ = ∆F/∆x to calculate the force loading rate, where ∆F and ∆x
denote the unfolding force and the extension of an individual GB1 domain, respectively. A car-
toon drawing of GB1’s three-dimensional structure (PDB code 1pgb) is on the top left corner and
a cartoon schematic diagram of (GB1)8 was adopted from [11]. GB1 is an α/β-protein with the
two terminal β-strands (strands 1 and 4) arranged in parallel; they are bonded by a series of back-
bone hydrogen bonds (indicated by dashed purple lines), which can form mechanical resistance
to unfolding when stretched. For the construction of (GB1)8, eight identical GB1 monomers are
combined in tandem by connecting the N- and C-terminal.
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increment ∆Lc and the persistence length Lp, since that the conformation of polyprotein (GB1)8

was not easily changed by pulling speeds. Therefore, we ignored the difference of pulling speeds,

and turned to analyze the contribution of different concentrations of GdmCl and glycerol to ∆Lc

and Lp.

Figure 3.2: Contour length increment between consecutive force peaks. The contour length in-
crement ∆Lc of GB1 is plotted versus the glycerol concentration. The filled symbols represent
the most probable contour length increment for different pulling speeds in each particular solu-
tion, by fitting to WLC model with Eq. (2.28). The presence of denaturant GdmCl and glycerol
has little effect on ∆Lc. The fitted ∆Lc is ∼ 18 nm, in good agreement with previous results
[11].

Figure 3.2 shows the fitted results of contour length increment ∆Lc for different concentra-

tions of GdmCl and glycerol. Each contour length increment ∆Lc shown here is the most prob-

able contour length increment for different pulling speeds in each particular solution. For pure

PBS (0M GdmCl, 0% glycerol), the contour length increment ∆Lc = 18.1±0.9 nm (n = 57); for

PBS (2M GdmCl, 0% glycerol), the contour length increment ∆Lc = 17.4 ± 0.9 nm (n = 61).
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It indicated that the GB1 domain elongated by roughly ∼ 18 nm on its mechanical unfolding.

Similar results were obtained for different concentrations of glycerol. A regular GB1 domain has

56 animo acids, thus is ∼ 20.2 nm (56 aa × 0.36 nm/aa) long when it is fully stretched. Since

the length of the folded GB1 domain (the distance between its N- and C- termini) is 2.6 nm [39],

the mechanical unfolding of a GB1 domain makes it to extend by 17.6 nm. Our fitted contour

length increment between consecutive peaks according to WLC model agrees with this value

quite well. Moreover, within allowable error, the contour length increment ∆Lc is not affected

by the chemical denaturant and solvent viscosity.

The persistence length Lp of GB1

The persistence length is used to quantify the stiffness of a polymer, and has been widely used in

single molecular experiments. By fitting to WLC model with Eq. (2.28), we found out how the

denaturant and glycerol influenced the stiffness of the GB1 protein.

Figure 3.3 shows the fitted persistence length of GB1 versus the glycerol concentration in

different concentrations of GdmCl (0M, 1M, and 2M). For PBS (0M GdmCl, 0% glycerol), the

persistence length Lp = 0.55± 0.34 nm (n = 70); for PBS (0M GdmCl, 30% glycerol), the per-

sistence length Lp = 0.47± 0.21 nm (n = 72). For all the conditions, the minimum value of the

persistence length is roughly∼ 0.22 nm, while the maximum value of that is roughly∼ 0.57 nm.

All the values of Lp are approximately 1 nm, so we concluded that the GB1 domain keeps the

same stiffness and elasticity with the presence of denaturant GdmCl and different concentrations

of glycerol.
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Figure 3.3: Persistence length of GB1 protein. The persistence length of GB1 is plotted versus the
glycerol concentration. The filled symbols represent the average persistence length for different
pulling speeds in each particular solution, by fitting to WLC model with Eq. (2.28). The presence
of denaturant GdmCl and different solvent viscosities have little effect on Lp, since the values of
Lp are approximately 1 nm.
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3.2 Bell-Evans model

In Chapter 3.1, we have already known the effects of chemical denaturant GdmCl and the solvent

viscosity on the structure and elasticity of protein GB1 quantitatively. In this section and next

section, we used two most popular models to extract the kinetic properties of protein GB1, and

studied how the chemical denaturant GdmCl and solvent viscosity change the protein’s stability

and energy landscape.

According to Bell-Evans model (Chapter 2.1.2), with the unfolding force histograms at dif-

ferent pulling speeds, we were able to extract the spontaneous unfolding rate k0 and the location

of the transition state ∆x‡ by fitting the relation between the most probable force F ∗ and the

force loading rate Ḟ to Eq. (2.14):

F ∗(Ḟ ) =
1

β∆x‡
ln(

β∆x‡

k0

Ḟ ) =
1

β∆x‡
ln(Ḟ ) +

1

β∆x‡
ln(

β∆x‡

k0

)

where β = (kBT )−1 is the thermal factor. Note that Evans et al. [3] used a force scale, fβ , to

represent β ·∆x‡ in their papers.

The unfolding force distributions of GB1 protein at different solvent conditions are shown in

Figure 3.7, with a constant pulling speed v = 0.52 µm/s. We set the bin width ∆F = 25 pN.

For our experiments, we pulled the polyprotein (GB1)8 at three concentrations of GdmCl (0M,

1M, and 2M) and four different glycerol concentrations (0%, 10%, 20%, and 30%), with six dif-

ferent pulling speeds v (∼0.1µm/s, ∼0.2µm/s, ∼0.5µm/s, ∼1µm/s, ∼2µm/s, ∼5µm/s). The most

probable unfolding force for each condition was calculated by fitting the histogram to a Gaus-

sian distribution (not shown), while the loading rate was calculated with the simple expression

Ḟ = Kv (shown in Figure 3.1), where K is the cantilever’s spring constant, and v is the pulling

speed. Before fitting the datasets of (F ∗, Ḟ ) pairs, we took a look at the force histograms. It has

been demonstrated that the analysis of force distribution provides information about the under-

lying free-energy landscape [46][47][48], and the width of the force histogram is directly related

to the distance ∆x‡ between the folded state and the transition state along the mechanical un-
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folding reaction coordinate [3]. As shown in Figure 3.7, the width of unfolding force histograms

at different conditions remained nearly unchanged (comparable with previous results ∼ 55 pN

[12]), indicating that the distance between the folded state and the transition state was unaltered

by chemical denaturants. To further verify this conclusion, we turned to analyze the relation

between the most probable force and the loading rate.

Figure 3.4: The most probable unfolding force as a function of loading rate for various glycerol
concentrations and different GdmCl concentrations: (A) 0M GdmCl, (B) 1M GdmCl, and (C)
2M GdmCl. The most probable force F ∗ is plotted versus the force loading rate Ḟ . The filled
symbols represent the data of most probable force calculated by Gaussian fit to the unfolding
force histograms, and the loading rate calculated by Ḟ = K · v, where K is the spring constant
of cantilever, and v is the pulling speed. Colored solid lines represent linear least squares fits to
Bell-Evans model.[2][3][49] The fitting parameters are shown in Table 3.1.

3.2.1 Results

According to the fitting results, for pure PBS solution (0M GdmCl, 0% glycerol), the spontaneous

unfolding rate constant of GB1 domain is k0 = 0.213± 0.020 s−1, corresponding to an intrinsic

lifetime of τ0 = k−1
0 ≈ 4.69 s, and the distance between the unfolded state and the transition state

∆x‡ = 1.62± 0.15 Å.
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η

(mPa s)

0M GdmCl 1M GdmCl 2M GdmCl

k0 (s−1) ∆x‡ (Å) k0 (s−1) ∆x‡ (Å) k0 (s−1) ∆x‡ (Å)

0.86 0.213± 0.020 1.62± 0.15 0.486± 0.025 1.59± 0.11 1.609± 0.110 1.64± 0.10

1.20 0.114± 0.011 1.68± 0.20 0.228± 0.015 1.61± 0.21 0.538± 0.021 1.65± 0.13

1.70 0.036± 0.002 1.65± 0.20 0.051± 0.003 1.63± 0.12 0.092± 0.003 1.73± 0.22

2.57 0.018± 0.002 1.70± 0.16 0.022± 0.001 1.68± 0.12 0.032± 0.002 1.69± 0.21

Table 3.1: Extracted mechanical properties for unfolding of protein GB1 obtained by least
squares fit to Bell-Evans model with Eq. (2.14). The datasets used to fit include the most proba-
ble force calculated by Gaussian fit to the unfolding force distribution at different concentrations
of denaturant GdmCl (0M, 1M, and 2M) and various concentrations of glycerol (0%, 10%, 20%,
and 30%), and the corresponding force loading rate Ḟ , calculated simply by Ḟ = Kv, where K
is the spring constant of cantilever, and v is the constant pulling speed.

Chemical denaturants speed up the mechanical unfolding process

As shown before, the mechanical unfolding pathway is not changed by the chemical denaturant

due to the little change of the contour length increment ∆Lc. By comparing the spontaneous

unfolding rate in the presence of chemical denaturation and glycerol, we can quantitatively tell

their effects according to Table 3.1.

Figure 3.5 shows the plot of spontaneous unfolding rate versus the solvent viscosity at differ-

ent concentrations of GdmCl. As the concentration of chemical denaturant increased, the sponta-

neous unfolding rate k0 increased from 0.213 s−1 to 1.609 s−1 for solution without any glycerol;

k0 increased from 0.114 s−1 to 0.538 s−1 for solution with 10% glycerol; k0 increased from

0.036 s−1 to 0.092 s−1 for solution with 20% glycerol; k0 increased from 0.018 s−1 to 0.032 s−1

for solution with 30% glycerol. Therefore, the chemical denaturants speed up the spontaneous

unfolding rate of protein GB1 by 2 ∼ 7 times, and the mechanical stability of protein GB1 is

decreased.
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Figure 3.5: Spontaneous unfolding rate as a function of solvent viscosity at different denaturant
concentrations. The spontaneous unfolding rate k0 of GB1 is plotted versus the solvent viscosity
η. The filled symbols represent the data from Table 3.1. The spontaneous unfolding rate of GB1
increased with the increase of GdmCl concentration, from ∼ 0.213 s−1 in PBS (0M GdmCl, 0%
glycerol) to ∼ 1.609 s−1 in PBS (2M GdmCl, 0% glycerol), while decreased to ∼ 0.018 s−1 as
the glycerol concentration increases to 30%, without GdmCl.

Glycerol slows down the mechanical unfolding process

The experimental results also provided enough information about the function of glycerol or

solvent viscosity in the mechanical unfolding process of GB1. According to Table 3.1 (shown

in Figure 3.5), as the solvent viscosity increased from 0.86 mPa s to 2.57 mPa s (corresponding

to 0% glycerol→30% glycerol), the spontaneous unfolding rate k0 decreased from 0.213 s−1 to

0.018 s−1 for solution without any chemical denaturant; k0 decreased from 0.486 s−1 to 0.022 s−1

for solution at 1M GdmCl; k0 decreased from 1.609 s−1 to 0.032 s−1 for solution at 2M GdmCl.

It is evident that the increase of solvent viscosity greatly slows down the mechanical unfold-

ing process, while no active complexation of the glycerol molecules involves into the unfolding
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transition state.

The mechanical unfolding distance is unaltered by denaturant

From the fitted parameter ∆x‡, the activation location, we can tell how the shape of the energy

landscape of GB1 unfolding process changes.

Figure 3.6: The distance between the folded state and the transition state. The unfolding distance
∆x‡ of GB1 is plotted versus the solvent viscosity η. The filled symbols represent the data from
Table 3.1. The value of ∆x‡ is ∼ 1.7 Å with a small fluctuation for different concentrations (0M,
1M, and 2M) of denaturant GdmCl in various viscosities of solution (0% glycerol, 10% glycerol,
20% glycerol, and 30% glycerol).

Figure 3.6 shows the plot of the fitted distance ∆x‡ between the native folded state and the

transition state for different concentrations of GdmCl, according to Table 3.1. We can see that

the value of ∆x‡ is ∼ 0.17 Å. In the absence of chemical denaturant GdmCl, we obtained

1.62±0.15 Å ≤ ∆x‡ ≤ 1.70±0.16 Å for various solvent viscosities ranging from∼ 0.86 mPa s to

∼ 2.57 mPa s; for solution with 1M GdmCl, we obtained 1.59± 0.11 Å ≤ ∆x‡ ≤ 1.68± 0.12 Å;
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and for solution with 2M GdmCl, we obtained 1.64 ± 0.10 Å ≤ ∆x‡ ≤ 1.73 ± 0.22 Å. It is

reported that ∆x‡ is ∼ 1.7 Å to ∼ 2.0 Å [12][50], matching with our results well. Our data

suggested that the mechanical unfolding distance ∆x‡ was unaltered by the denaturant.

Although the height of the activation energy was not directly given by the model, the fact

that the chemical denaturant increased the spontaneous unfolding rate constant predicted that the

height of barrier was reduced by the denaturant, and the increase of solvent viscosity decreased

the spontaneous unfolding rate indicated that the energy needed to activate GB1 was increased

by the glycerol.
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3.3 Dudko model

Dudko’s model was utilized to extract kinetic information from single molecule experiments,

basically by transforming the unfolding force histograms obtained at different loading rates into

the force-dependent lifetimes which are measurable in constant-force experiments. The kinetic

information includes (1) the intrinsic lifetime τ0; (2) the location of the transition state ∆x‡; (3)

the apparent free energy of activation ∆G.

For each constant-velocity pulling experiments, we first constructed smooth unfolding force

histograms. Then we got the (force, lifetime) pairs by transforming the histograms according to

Eq. (2.32)

τ(Fi) =

(
p(Fi)/2 +

∑N
k=i+1 p(Fi)

)
·∆F

Ḟ (Fi) · p(Fi)

where Fi = Fmin + (i− 1/2)∆F , for 1 ≤ i ≤ N − 1; τ(FN) = p(FN )/2·∆F
Ḟ (FN )·p(FN )

= ∆F
2Ḟ (FN )

, for i = N .

It has been predicted that all the (force, lifetime) pairs should collapse onto one single master

curve, in spite of the different pulling speeds.

For data analysis, we set ∆F = 25 pN. There were 6 groups of (force, lifetime) pairs

due to the 6 different loading rates Ḟ or pulling speeds v (∼0.1µm/s, ∼0.2µm/s, ∼0.5µm/s,

∼1µm/s, ∼2µm/s, ∼5µm/s). Since we didn’t add any linkers to the polyprotein (GB1)8 through

the experiments, there was no need to apply the linker-effect correction described in Eq. (2.29).

The unfolding-force histograms are shown in Figure 3.7 and Figure 3.8 is the transformation for

pulling polyprotein (GB1)8 in PBS buffer + 0M GdmCl + 30% Glycerol, according to Eq. (2.32).

The prediction that all the (force, unfolding time) pairs for different pulling speeds collapse onto

a single master curve was validated here. It is noticed that the logarithm of the extracted lifetime

depended nonlinearly on the unfolding force, so it cannot be well described by the Bell-Evans

model (Eq. (2.6)). We used least squares to fit the data in Figure 3.8 according to Dudko’s model,

with Eq. (2.25) (or Eq. (2.26))

τ(F ) = τ0(1− νF∆x‡

∆G
)1−1/ν · exp{−β∆G[1− (1− νF∆x‡

∆G
)1/ν ]}
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For Figure 3.8, we obtained that τ0 = 157.0 ± 8.0 s, ∆x‡ = 1.88 ± 0.24 Å, and ∆G = 30.9 ±

4.0 kBT for ν = 1/2, whereas τ0 = 121.6±8.0 s, ∆x‡ = 1.75±0.15 Å, and ∆G = 26.8±3.0 kBT

for ν = 2/3. The fitted curve with ν = 1/2 is shown in Figure 3.8 by the solid line, while the fit

with ν = 2/3 is not shown (comparable). Using the same procedure, we extracted the key me-

chanical landscape parameters (τ0, ∆x‡, and ∆G) for pulling polyprotein (GB1)8 in PBS buffer

with different concentrations of denaturant GdmCl and various glycerol concentrations, and sum-

marized them in Table 3.2. Before deducing any reliable conclusions from Table 3.2, we need to

firstly make sure that the key landscape parameters fitted to Dudko’s model are reasonable. To

validate the fitting parameters, we turned to Eq. (2.1.3) and the more explicit equation for our

constant-speed experiments, Eq. (2.36)

p(F |v) =
1

Ḟ (F )τ(F )

exp
[
β(Ḟ (F )τ0∆x‡)−1

]
exp

[
β(Ḟ (F )τ(F )∆x‡)−1(1− νF∆x‡

∆G
)1−1/ν

]
where p(F |v) is the predicted probability density for unfolding force F at constant pulling speed

v; Ḟ (F ) is the force loading rate at force F , for our constant-peed experiments, Ḟ (F ) = Kv,

whereK is the spring constant for the the stiff molecular system; τ(F ) is the lifetime under exter-

nal force F which can be calculated with Eq. (2.25); β = (kBT )−1 is a known constant thermal

factor; τ0, ∆x‡, and ∆G are the three key mechanical parameters, which were obtained by least

squares fitting to Eq. (2.25), see Table 3.2; and ν is the scaling factor, corresponding to different

kinds of free-energy surface profile. After calculating the force probability distribution function

p(F |v), we multiplied p(F |v) with ∆F (= 25 pN) and compared the probability p(F |v)∆F with

the experimental unfolding force histograms. Figure 3.7 shows both the experimental unfolding

force histograms and the predicted unfolding force histograms. All the experimental unfolding-

force histograms shown were obtained at a constant pulling speed v = 0.52 µm/s. The solid lines

are the predicted unfolding force probabilities for different concentrations (0M, 1M, and 2M) of

GdmCl and various concentrations (0%, 10%, 20%, and 30%) of glycerol under constant loading

rates Ḟ (F ) (or pulling speeds v), obtained by plotting the unfolding-force distributions with the
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Figure 3.7: Unfolding force histograms for pulling polyprotein (GB1)8 with a home-built AFM,
at a constant pulling speed v = 0.52 µm/s. Colored histograms are obtained from experimental
data for various glycerol concentrations (0%, 10%, 20%, and 30%) at different GdmCl concen-
trations (A. 0M, B. 1M, and C. 2M), setting ∆F = 25 pN. Black solid lines are the predicted
unfolding force distributions with the parameters (shown in Table 3.2) extracted from the least-
squares fit of Eq. (2.25) (or Eq. (2.35)) to the collapsed data from Eq. (2.32), with scaling factor
ν = 2/3.
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parameters extracted from the least-squares fit, with scaling factor ν = 2/3, of Eq. (2.25) (or

Eq. (2.35)) to the collapsed data from Eq. (2.32). It is clear that all the predicted unfolding-force

distributions agreed with the experimental results quite well, meaning that the fitted parameters

shown in Table 3.2 are reliable. Actually, the extracted parameters were relatively insensitive to

ν and thus similar results were observed. Moreover, we realized that the real unfolding-force

distributions were very close to Gaussian distribution, but not over the entire force range, ba-

sically from 0 pN to 400 pN, since the distributions were not bilateral symmetry. Indeed, in

Chapter 2.1.3, it tells that τ(F ), approximated by using Gaussian distribution, can be derived

from the highly non-Gaussian rupture-force distribution, with a numerical coefficient differing

by <10% [4][23].

Figure 3.8: Lifetime τ(F ) as a function of the applied force F , obtained by transforming the
unfolding force histograms in Figure 3.7 according to Eq. (2.32) (filled colored symbols). The
data are only for pulling polyprotein (GB1)8 in PBS buffer with 0M GdmCl and 30% Glycerol.
Different colored symbols correspond to different constant pulling speeds v. The black line is
obtained by least squares fit to the colored symbols with Eq. (2.25), setting the scaling factor
ν = 2/3 (linear-cubic surface).
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Figure 3.9 shows more detailed fitting results of the (lifetime, force) pairs by transforming the

unfolding force histograms in Figure 3.7 according to Eq. (2.32), as well as applying Eq. (2.33)

to get the relationship between the lifetime at the mean unfolding force and the variance of the

unfolding-force distribution. Eq. (2.33):

τ(〈F 〉) ≈
[π

2
(〈F 2〉 − 〈F 〉2)

]1/2

/Ḟ (〈F 〉)

For the later approach, only one pair of (〈F 〉, τ(〈F 〉)) can be extracted from one constant-speed

experiment thereby rendering more pulling speeds are required for fitting to Eq. (2.25). From

Figure 3.9, we can see that, for each buffer solution, both (lifetime, force) pairs still collapse

onto one single master curve, indicating that both the two approaches are available to use. The

black solid lines are obtained by plotting least squares fit to the data points to Eq. (2.25), with

scaling factor ν = 2/3, corresponding to a linear-cubic energy landscape profile. To understand

the fitting results better, we also tried fitting the data points with the scaling factor ν = 1 and

Figure 3.9: Lifetime τ(F ) as a function of the applied force F for different concentrations of
GdmCl and various concentrations of glycerol. All open symbols are obtained by transforming
the unfolding force histograms in Figure 3.7 according to Eq. (2.32), while all filled symbols
show the results from the mean and variance of the unfolding force distributions according to Eq.
(2.33). The black lines are obtained by least squares fit to the symbols with Eq. (2.25), setting
the scaling factor ν = 2/3 (linear-cubic surface). Meanwhile, we also fit the data with ν = 1 and
1/2 (the cusp surface), shown in Table 3.2.
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ν = 1/2 (corresponding to the cusp surface introduced in Chapter 2.1.3). All the fitting results

are shown in Table 3.2, and will be discussed afterwards.

3.3.1 Results

According to Table 3.2, we got several major conclusions of the mechanical properties of polypro-

tein (GB1)8 by pulling it with AFM. As described in Chapter 2.2 about the experimental methods,

we carried out the unfolding experiments of GB1 at different concentrations of GdmCl and var-

ious concentrations of Glycerol, to quantify the changes of mechanical stability and unfolding

energy landscape resulting from the chemical denaturation and solvent viscosity.

The mechanical unfolding distance is unaltered by denaturant

The mechanical folding/unfolding process of proteins is determined by the energy landscape.

The shape of the mechanical unfolding energy landscape is characterized by two important pa-

rameters, namely the barrier width ∆x‡ and the barrier height ∆G. By adding the chemical

denaturants, we were able to quantify the contribution of chemical denaturants.

Figure 3.10 shows the plot of the fitted distance ∆x‡ between the native folded state and the

transition state with free-energy surface factor ν = 2/3 (similar results for ν = 1/2 and 1) for

different concentrations of GdmCl. Comparing the three curves, we saw that the value of ∆x‡

is ∼ 0.18 Å, with a small fluctuation around it. In the absence of chemical denaturant GdmCl,

we obtained 1.75± 0.15 Å ≤ ∆x‡ ≤ 1.86± 0.22 Å for various solvent viscosities ranging from

∼ 0.86 mPa s to ∼ 2.57 mPa s; for solution with 1M GdmCl, we obtained 1.84 ± 0.23 Å ≤

∆x‡ ≤ 1.85 ± 0.20 Å; and for solution with 2M GdmCl, we obtained 1.78 ± 0.15 Å ≤ ∆x‡ ≤

1.85 ± 0.20 Å. Actually, all the values of ∆x‡ are within 1.8 ± 0.25 Å. Taking a look at the

fitted values of ∆x‡ in Table 3.2, we also found that, for each solvent condition of experiment,

the barrier width ∆x‡ usually decreased a little as the scaling factor ν increased from 1/2 to

1. However, the minimum value of ∆x‡ in Table 3.2 is 1.58 ± 0.10 Å, while the maximum is

2.00 ± 0.35 Å, so it is still rather insensitive to the fitting scaling factor ν, which corresponds
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to a specific free-energy surface. Actually, our results agree with these obtained by other groups

before, which reported that ∆x‡ is ∼ 1.7 Å to ∼ 2.0 Å [12][50]. Therefore, we concluded that,

the denaturant GdmCl has minimal influence on the mechanical unfolding distance.

Figure 3.10: The distance between the folded state and the transition state. The unfolding distance
∆x‡ of GB1 is plotted versus the solvent viscosity η. The filled symbols represent the data from
Table 3.2 by least squares fit to Dudko’s model with Eq. (2.25), with the surface factor ν = 2/3
(similar results for ν = 1 and 1/2). The value of ∆x‡ is ∼ 1.8 Å with a small fluctuation for
different concentrations (0M, 1M, and 2M) of denaturant GdmCl in various viscosities of solution
(0% glycerol, 10% glycerol, 20% glycerol, and 30% glycerol).

Meanwhile, it is also demonstrated that changing the viscosity of the experimental solution

by adding different concentrations of glycerol didn’t alter the distance between the native folded

state and the transition state. The change of solvent viscosity allowed us to quantify the internal

friction in single molecular experiments.
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Chemical denaturants decrease the free-energy barrier height

In the previous section, we concluded that the presence of chemical denaturation (GdmCl) has

minimal influence on the location of the transition state along the reaction coordinate, which is

one of the two parameters related to the shape of the unfolding energy landscape. According

to Dudko’s model, we extracted the other parameter, the free-energy barrier height ∆G by least

squares fit of Eq. (2.25) to the collapsed (unfolding time, force) pairs as shown in Figure 3.8.

Figure 3.11: The free-energy barrier height for mechanical unfolding of GB1. The unfolding
barrier height ∆G of GB1 is plotted versus the solvent viscosity η. The filled symbols represent
the data from Table 3.2 by least squares fit to Dudko’s model with Eq. (2.25), with the scaling
factor ν = 2/3. In the presence of denaturant GdmCl, the activation energy required for the
polyprotein to unfold decreased (from red curve to blue curve). For pure PBS (0% glycerol),
∆G = 16.7± 2.0 kBT; for PBS at 2M GdmCl (0% glycerol), ∆G = 8.2± 1.0 kBT.

The plot of extracted energy barrier height for different concentrations of denaturant GdmCl

is shown in Figure 3.11. We realized that, for PBS solution without any denaturant GdmCl,

the free energy barrier height ∆G is the highest; as the concentration of GdmCl increased from

0M to 2M, the height of the barrier decreased from 16.7 ± 2.0 kBT to 8.2 ± 1.0 kBT for pure
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PBS solution, assuming a linear-cubic energy surface profile (ν = 2/3). For ν = 1 and 1/2,

similar phenomenon was observed. Therefore, based on the fitting results of Dudko’s model,

we concluded that the denaturation GdmCl can decrease the barrier height, and make it easier to

activate the polyprotein (GB1)8 to unfold.

Note that in the presence of glycerol, the height of the barrier increased as the solvent viscosity

increased.

Chemical denaturants speed up the mechanical unfolding process

The previous two sections show how the mechanical unfolding energy landscape was influenced

by the chemical denaturant GdmCl and glycerol. The fact that the location of the transition state

at different GdmCl concentrations remains unchanged suggests that the denaturation GdmCl does

not alter the mechanical unfolding pathway for GB1. However, the height of the barrier decreases

in the presence of GdmCl, compared with that in pure PBS. Therefore, it predicts a higher in-

trinsic unfolding rate for the protein in a solution with GdmCl. To confirm this prediction, we

extracted the intrinsic unfolding rate/lifetime with Dudko’s model.

Figure 3.12 shows the plot of intrinsic lifetime versus the solvent viscosity at different con-

centrations of GdmCl, fit to Dudko’s model with Eq. (2.25), with the scaling factor ν = 2/3. It is

evident that the intrinsic lifetimes of GB1 decreased with the increase of GdmCl concentration.

For pure PBS (0M GdmCl, 0% glycerol), the intrinsic lifetime τ0 ∼ 6.8 s, while for PBS at 2M

GdmCl (0% glycerol), τ0 ∼ 0.58 s. The spontaneous unfolding rate increased from ∼ 0.15 s−1

in pure PBS to ∼ 1.71 s−1 in 2M GdmCl (0% glycerol). These results were also true for scaling

factor ν = 1 and 1/2.

Glycerol slows down the mechanical unfolding process

We have talked about the denaturant GdmCl’s effects on the unfolding process of GB1, and

concluded that the distance between the native folded state and the transition state along the

reaction coordinate is not affected by the solvent viscosity. However, considering the trend of the
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Figure 3.12: Intrinsic lifetime as a function of solvent viscosity at different denaturant concen-
trations. The intrinsic lifetime τ0 of GB1 is plotted versus the solvent viscosity η. The filled
symbols represent the data from Table 3.2 by least squares fit to Dudko’s model with Eq. (2.25),
with the scaling factor ν = 2/3. The intrinsic lifetime of GB1 decreases with the increase of
GdmCl concentration, from∼ 6.8 s in in PBS (0M GdmCl, 0% glycerol) to∼ 0.58 s in PBS (2M
GdmCl, 0% glycerol). These results are also true for scaling factor ν = 1 and 1/2. The unfolding
rate constant k0 = τ−1

0 of GB1 increases with the increase of GdmCl concentration.

barrier height curves for each concentration of GdmCl in Figure 3.11, we found that the barrier

height at the transition state is positively correlated with the solvent viscosity. As a consequence,

it is predicted that the spontaneous unfolding rate constant should decrease with the increase of

solvent viscosity. To confirm this prediction, we turned to Figure 3.12. The data is from Table

3.2 by least squares fit to Dudko’s model with Eq. (2.25), with the scaling factor ν = 2/3. The

intrinsic lifetime τ0 of GB1 did increase with the increase of solvent viscosity, from 6.8 ± 0.3 s

in pure PBS (0% glycerol, 0M GdmCl) to 121.7 ± 8.0 s in PBS (30% glycerol, 0M GdmCl).

These results were also true for other concentrations of GdmCl (1M and 2M) and for different

scaling factors (ν = 1 and 1/2). The spontaneous unfolding rate constant k0(= τ−1
0 ) decreased as

the solvent viscosity increased, indicating that a higher solvent viscosity causes the mechanical
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unfolding process to slow down. Note that the intrinsic lifetime increased nonlinearly with the

increase of the solvent viscosity, which is related to the next chapter about the internal friction.
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Chapter 4

Internal friction

According to Kramers two-state theory at strong friction limit, the escape rate is derived as

k =
ω0ωb
2πγ

exp(−βEb)

where ω0 and ωb denote the angular frequencies, Eb is the barrier height, γ is the overall friction,

and β = (kBT )−1 is the thermal factor. As described in Chapter 2.3, the overall friction accounts

for all the mechanisms that the energy can dissipate out during the reaction process. The second

goal of our study is to quantify the internal friction directly from the extracted kinetic parame-

ters according to Bell-Evans model or Dudko’s model. To realize this, we develop an extended

Ansari-expression, Eq. (2.45)

τ0 = k−1
0 = C(σ + η)d

where τ0 and k0 denote the intrinsic lifetime and the spontaneous unfolding rate, respectively;

C and d are the adjustable parameters; η and σ represent the solvent friction (i.e., viscosity) and

internal friction, respectively.

We have already extracted the spontaneous unfolding rate k0 at different solvent viscosities η

for different denaturant concentrations (0M, 1M, and 2M) by both Bell-Evans model and Dudko’s

model in Chapter 3, then we performed least squares fit to Eq. (2.45).
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Figure 4.1: Spontaneous unfolding rate k0 as a function of solvent viscosity η. The spontaneous
unfolding rate k0 of GB1 in different concentrations of denaturant GdmCl (0M, 1M, and 2M)
is plotted versus the solvent viscosity η. The filled symbols represent the unfolding rate k0 ex-
tracted according to Bell-Evans model (Chapter 3.2). Colored solid lines represent the best fits of
spontaneous unfolding rate to the extended Ansari-expression (Eq. (2.45)), developed by us. For
0M GdmCl, it leads to σ = 2.22 ± 0.21 mPa s, C = 250 ± 48 mPa, and d = 6.3 ± 0.2; for 2M
GdmCl, it leads to σ = 0.85 ± 0.13 mPa s, C = 98 ± 15 mPa, and d = 6.0 ± 0.4. More fitting
results are shown in Table 4.1.

Figure 4.1 shows the best fit of the spontaneous unfolding rate k0 of GB1 unfolding process,

which was extracted according to Bell-Evans model (Chapter 3.2). For 0M GdmCl, it leads to

σ = 2.22 ± 0.21 mPa s, C = 250 ± 48 mPa, and d = 6.3 ± 0.2; for 2M GdmCl, it leads to

σ = 0.85± 0.13 mPa s, C = 98± 15 mPa, and d = 6.0± 0.4. Table 4.1 gives the detailed fitting

results of the internal friction σ, the coefficient C, and the power index d, which were fitted to

the extended Ansari-expression (Eq. (2.45)). The spontaneous unfolding rate k0 was obtained in

Chapter 3, according to both Bell-Evans model and Dudko’s model (free-energy surface factor ν

= 1/2, 2/3, and 1).
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Comparing the fitting results with spontaneous unfolding rate extracted from both Dudko’s

model and Bell-Evans model, we realized that the values of internal friction σ, for each con-

centration of GdmCl, agree with each other quite well, while some deviation for the value of

coefficient C. One important finding is that, the internal friction is reduced by the denaturant

GdmCl, from ∼ 2.1 mPa s without any denaturant to ∼ 1.0 mPa s with 2M denaturant GdmCl.

The decrease of internal friction probably plays an important role in accelerating GB1 unfolding

process, due to the presence of denaturant GdmCl. The other important finding is that, the power

index d remains nearly unchanged/insensitive (d ∼ 6.5) even with the presence of denaturation.

This result suggests that the power index d might be a characteristic constant in GB1 and other

proteins’s folding/unfolding dynamics. To further validate this prediction, more experimental and

theoretic work is needed.

0M GdmCl 1M GdmCl 2M GdmCl

Dudko’s
σ

(mPa s)

C

(mPa)
d

σ

(mPa s)

C

(mPa)
d

σ

(mPa s)

C

(mPa)
d

ν = 1/2 2.07± 0.30 160.4± 32 6.4± 0.5 1.40± 0.25 123.5± 20 6.6± 0.8 0.86± 0.15 105.8± 15 6.4± 0.7

ν = 2/3 2.09± 0.20 203.7± 38 6.6± 0.6 1.73± 0.22 190.7± 30 6.5± 0.6 1.12± 0.11 120.7± 19 6.7± 0.6

ν = 1 2.17± 0.12 239.0± 45 6.5± 0.4 1.85± 0.21 220.0± 38 6.5± 0.2 0.96± 0.30 209± 28 6.3± 0.2

Bell-Evans 2.22± 0.21 250± 48 6.3± 0.2 1.55± 0.18 185± 24 6.2± 0.3 0.85± 0.13 98± 15 6.0± 0.4

Table 4.1: Internal friction at different concentrations of denaturation GdmCl. The parameters,
i.e., internal friction σ, the coefficient C, and the power index d, were fitted to the extended
Ansari-expression (Eq. (2.45)). The spontaneous unfolding rate k0 was obtained in Chapter 3,
according to both Bell-Evans model and Dudko’s model (with free-energy surface factor ν = 1/2,
2/3, and 1). The internal friction is reduced by the denaturant GdmCl, from ∼ 2.1 mPa s without
any denaturant to ∼ 1.0 mPa s with 2M denaturant GdmCl, which probably plays an important
role in GB1 unfolding process.
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Chapter 5

Conclusion

Single-molecule atomic force microscopy (AFM) experiments have been carried out with a home-

built AFM. Combining the AFM experiments and the models derived from Kramers theory (Bell-

Evans model and Dudko’s model), we have obtained protein mechanical stabilities at a single

molecule level.

By changing the solvent viscosity and the concentrations of denaturant GdmCl, we validated

that the chemical denaturant speeds up the mechanical unfolding process of the protein GB1.

Denaturant decreases the height of free-energy barrier at the transition state, but has minimal

influence on the distance between the native unfolded state and the transition state.

We successfully quantified the internal friction in the unfolding of GB1 protein by using

an extended form of Ansari-expression. By fitting the extracted mechanical properties to the

expression, we found that the internal friction decreases from∼ 2.1 mPa s without any denaturant

to ∼ 1.0 mPa s with 2M denaturant GdmCl. The decrease of internal friction probably plays an

important role in accelerating GB1 unfolding process. This procedure provides new insights

into how internal friction affects protein folding/unfolding, with potential implication in protein

folding diseases such as Alzheimer’s, Parkinson’s and Huntington’s diseases.
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