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ABSTRACT 
 
To further facilitate the development of the guidance, navigation, and control systems of the 

future extra-planetary vehicles, there is a need for a simplified, easy-to-repair test bed that is 

dynamically similar to the full scale spacecraft.  To achieve such a platform, a 3:1 thrust-to-

weight ratio modular simulator was designed.  The simulator is constructed from high strength-

low density composite materials coupled with hobby grade electronic motors and a custom 

flexible landing gear system to increase stability and reduce capsizing while landing. 

For attitude control, a nonlinear Fuzzy Logic style control system was developed and analyzed 

against more traditional PID style control schemes used in the past generations.  This new style 

of controller offers increased performance in attitude control.  After a comprehensive and 

complete simulation analysis, the fuzzy logic controller was implemented using the open source 

computer BeagleBone Black.  Feedback was deliver by the use of an inertial measurement unit   

In addition to the development of a fuzzy logic attitude control system, work began on the 

development of a full guidance, navigation, and control (GNC) system.  The GNC system that was 

developed was a trajectory controller in the form of a fuzzy logic cascade control law.  The 

simplified control law was developed to mimic the control systems used in commercial aircraft 

autopilots, in which the trajectory is assumed to be 2D, where the spacecraft simulator remains 

pointing in the direction of its destination point.  The controller was developed to accept 

different styles of trajectory and the entire system is modular in nature. 

From the simulation analysis of the closed-loop system, system level design specification were 

determined for the flight hardware.  Ultimately, after programming the controller and 

integrating the electronics, it was determined the total time-delay of the system exceeded the 

design specification.  Because of the hardware limitations, the attitude controller was, at best, n 

neutrally stable.  Future work is proposed to integrate a real time microcontroller to account for 

the limitations of the BeagleBone and the programming language chosen. 
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Chapter 1: Introduction 

Mankind has always been a very curious species.  Throughout history, this curiosity, driven by an 

inherent competitive nature, has driven humanity to adventure into the unknown.  Space 

exploration is the best example of this.  During the 20th century two Cold War rivals, the United 

States and the Soviet Union, competed against one other to be the world leader in space 

exploration.  This struggle ultimately led to the moon race and the first man on the moon.  The 

space exploration struggle that began during the Cold War has helped push humanity to develop 

advanced technologies for robotic systems capable of navigating the hazardous environments of 

space.  To do so, advances in control systems were required that surpassed basic tele-operated 

control.  Unmanned planetary exploration robots that have been developed out of the space 

race era include landers and rovers.  Rover-style vehicles offer a range of advantages over their 

stationary counter-parts.  The major advantages of rovers are the ability to explore larger areas 

of territory.  Though the ability to traverse a planetary body increases the rover’s exploration 

area, these areas are not limitless; traversing by ground is inheritably restrictive.  To overcome 

this restriction, new exploration vehicles must be developed that offer more efficient ways of 

traveling. 

The work encompassed by this thesis is devoted to the future of planetary exploration vehicles.  

A hopper-style planetary robotic exploration system is proposed to overcome the restrictive 

nature of the current Rovers.  If successful, the hopper-style spacecraft will allow future 

exploration missions to have many new possible exploration locations on planetary surfaces. 

This type of system introduces new risks in both development and production stages, especially 

at the University level.  The need for a simple and safe test bed, where control systems can be 

tested and optimized, is essential.  The purpose of this work is to further develop an easy to use 

test bed and GNC control system that can be used for testing applications at Lehigh University.   
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1.1 Project Description 

In September of 2007 the Google Lunar XPRIZE was announced.  The prize offers a total of thirty 

million dollars to the first privately funded team who can land a spacecraft on the moon and 

travel more than 500 meters while transmitting high definition images and videos.  Since the 

announcement of the competition, Lehigh University has been developing hopper spacecraft 

simulators for control system testing as part of a partnership with Penn State University, who 

has been developing a hopper spacecraft with which they are planning to compete.  To facilitate 

development, Lehigh’s hopper spacecraft simulators are designed to be dynamically similar to 

the Penn State Lunar Lion’s vehicle.   

Chapter 2: Previous Work 

The following chapter is devoted to summarize the work that was previously done at Lehigh 

University regarding the hopper spacecraft simulator design and the control systems that were 

developed.  This work was essential in moving forward with the space hopper project and, 

ultimately, was the frame work for the development that was continued in this thesis.  The 

complete overview of the work previously done please see [5]. 

2.1: Simulator Evolution 

During the initial development, phase 2 full-scale space hopper spacecraft simulator was 

developed.  The first generation and second generation designs will be discussed in detail, along 

with respective knowledge learned.  Ultimately, the two previous designs led the way to the 

design that was developed by this work and the designs of the future. 
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2.1.1: First Generation 

During Lehigh’s initial efforts with Penn State’s Lunar Lion team, the following design constraints 

were the best to-date design constraints of the actual vehicle.  Thus, as a point-of-reference, 

these design constraints where adopted by the original Lehigh University design team as a basis 

for the first generation space hopper spacecraft testing platform.   

Initial Design Constraints: 

1. Minimum thrust to weight ratio of 3:1 
2. 5 kg.  payload capability 
3. Four Thruster propulsion system 
4. Thrust vector control 
5. Real time data acquisition 
6. 15 min.  flight time 
7. Low cost components 

 

The first generation spacecraft simulator was designed to feature four ducted fans which were 

mounted on a single-axis capable of rotating approximating twenty degrees in either direction.  

This allowed the vehicle to stay approximately level while controlling its position.  The vehicle’s 

frame was constructed from aluminum plates that were machined to minimize weight.  The 

entire vehicle, including the power supply, had an approximate mass of 22.5 kg.   

 
Figure 2-1: First Generation Hopper Spacecraft Simulator 

 



5 
 

The results of the first few flight tests quickly reveled major design flaws, the most significant 

was the propulsion system.  Due to the total weight of the system, the maximum thrust to 

weight ratio was only 1.25:1.  This caused the controller to constantly saturate the propulsion 

system while stabilizing, ultimately effecting flight stability.  In addition, the propulsion system 

introduced high frequency, low-amplitude vibration, which led to several problems.  Most 

significantly, the propulsion system would literally vibrate itself apart during flight.  This was not 

only time-consuming to fix but also a safety hazard.  Besides the excessive vibration problem, 

there were overall power requirements.  Due to the power requirement of the system, the 

overall flight time was very limited.  Several design modifications were attempted, but 

ultimately it was decided to scrape the prototype and go back to redesign. 

2.1.2: Second Generation 

Before design began on the second generation prototype, the initial design constraints were 

revised and modified, partly due to the Lunar Lion team, and also from the knowledge taken 

from the previous design. 

Version 2 Design Constraints: 

1. Composite Construction 
2. Minimum thrust to weight ratio of 3:1 
3. 5 kg.  payload capability 
4. Tri-rotor geometry 
5. Real time data acquisition 
6. 15 min.  flight time 
7. Low cost components 

 

The second generation hopper spacecraft simulator was designed to be stiffer and lighter than 

its predecessor and thus a custom composite material was chosen for the frame design.  To 

ensure control saturation and vibration did not occur, a comprehensive trade study was 

preformed to ensure a minimum thrust to weight ratio of 3:1 was obtained, while utilizing 
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hobby-grade DC motors for thrust generation.  To reduce system complexity, the propulsion 

system was transitioned from a thrust vector control to attitude control.  The second generation 

geometry was also changed to mirror the research being conducted at Penn State.   

 
Figure 2-2: Second Generation Hopper Spacecraft Simulator 

 

Testing revealed that the major design flaws of the first generation vehicle were corrected, but 

new design problems were discovered.  The second generation hopper spacecraft simulator had 

a much higher center of mass and a nonflexible landing gear system which increased the risk of 

capsizing during landing.  This was particularly the case when the vehicle was translating at a 

small velocity while trying to land.  Capsizing caused propellers to break often and increased the 

risk of structural damage.  Since the system was constructed from a single piece of custom 

composite, if any of the three arms broke, the entire structure would have to be reconstructed.  

Ultimately, this effected the development pace for the GNC system, and more precautions were 

taken during testing to ensure structural damage would not occur.   
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2.2: Control System Development 

The original work done at Lehigh University regarding control system development was focused 

on attitude control using linear control systems.  To do so, flight electronics and control laws 

where developed an implement. 

2.2.1: Control System Hardware 

The control system hardware that was integrated into the first generation and second 

generation hopper spacecraft simulators consisted of a flight computer, inertial measurement 

unit, brushless motor controller, and a wireless communication module. 

For the attitude stabilizing flight computer, an Arduino Mega was used.  This computer was 

chosen due to its low cost, and large open source community.  The Arduino series of 

microcontrollers are very powerful but had a limited memory, making them not suitable for 

more comprehensive and complex control systems. 

 
Figure 2-3: Arduino Mega Microcontroller 

 

The inertial measurement unit (IMU) was used to communicate the vehicles angular position to 

the flight computer.  The IMU that was chosen previously was the VN-100 AHRS.  This IMU was 

chosen due to its nine degrees of freedom capabilities and its small footprint and mass.  
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Unfortunately, it was found that this specific IMU was difficult to use and also extremely 

expensive. 

 
Figure 2-4: VN-100 IMU 

 
 

To control the speed of the DC brushless motors, an electronic speed controller (ESC) is need.  

The ESC is sent a PWM signal from the flight computer, and then it supplies the correlating 

voltage to each motor.  Speed controllers are relatively universal but can vary significantly in 

respect to PWM response across various products, the particular ESC chosen was the Phoenix 

Ice 50.  The Phoenix Ice 50 has internal filtering and timing software which made it an attractive 

model over others.  The filtering and timing software that is built-in allows the user to adjust the 

signal timing and response time, which ultimately makes it more versatile.   
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Figure 2-5: Phoenix Ice 50 ESC 

 
 

Lastly, to control the spacecraft simulator remotely, a wireless module was used.  The wireless 

module that was chosen was the Xbee Pro.  The Xbee Pro was chosen because of its ability to 

integrate into the Arduino flight computer flawlessly.  Also the Xbee Pro is a very cost effective 

solution for wireless communication within a moderate range. 

 
Figure 2-6: Xbee Pro Wireless Module 
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2.2.2: Roll & Pitch Control 

For roll and pitch control a P-P controller and P-PD controller were designed and implemented.  

For the P-P controller, stabilization was achieved, but the system required increased damping to 

overcome excessive oscillations.  To reduce the oscillatory nature of the system, a derivative 

term was added.  The P-PD controller was simulated, and the results showed decreased 

overshoot, decreased steady state time, and decreased the overall oscillation of the system.  

The flight test results showed the system was able to perform close to the simulated benchmark 

analysis.   

 
Figure 2-7: Real World Control System Test 

 

2.2.3: Yaw Control 

The yaw controller that was implemented was similar to that of the roll and pitch controller, 

but, instead of a P-PD control scheme, a P-D controller was used.  Due to the highly non-linear 

torque outputted by each actuator, the yaw control was non-robust and not easily stabilized.  

For the purpose of attitude stabilization, the yaw control was deemed the least important 

factor.  Even though the controller was not robust, the controller was deemed well enough for 

the purposes of this project. 
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2.3: Conclusion 

By analyzing the previous work on hopper spacecraft simulator design and control system, 

several key areas of concern where recognized.  For starters, the 2nd generation hopper 

spacecraft simulator was a very large improvement from its previous generation, but there are 

still two areas that needed to be revisited.  The 3rd generation spacecraft simulator must have 

improved landing stability to reduce the chances of flipping over and causing damage to flight 

electronics or the propulsion system.  Similarly, the next generation simulator must be designed 

to be easily repaired.  Our efforts at Lehigh University is primarily related to GNC development 

and thus, during early stages of testing, crashes are frequent.  Having a system that is easily 

repairable is necessary to ensure more time is spend on GNC development and not simulator 

maintenance.   

The second area of concern is related to the low level attitude control system.  High level GNC 

systems will only be successful with a robust and fast responding attitude controller.  The 

previous P-PD roll/pitch controller response time it capped between 3-5 seconds.  This may be 

problematic when development GNC systems.  Also a major problem was shown in the yaw axis.  

To have a successful GNC system the yaw axis must be well behaved and easily controllable.  

Actual flight tests showed that yaw stability was not well accomplished using a P-D control 

scheme.   
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Chapter 3: Background Information  

The sections contained in this chapter was written as an introduction to both classical set 

theory, fuzzy set theory, and fuzzy logic control.  More complete discourse on these subjects can 

be found in [2], [3], and [4]. 

3.1: Classical Set Theory Overview 

In real-world engineering processes, engineering elements, stress, strain, energy, etc., may be 

described by a physical set of non-negative integers.  Even though engineering theory often 

allows for scenarios to exist of non-bounded elements, in most cases there are physical 

limitations that do not allow such elements to actually occur.  To better understand this, let’s 

consider engineering stress.  It is theoretically possible to allow the stress of a cylinder, which is 

loaded axially, to become unbounded if you allow the cross sectional area of the cylinder to 

decrease until singular.  In actuality the real-world phenomenon of failure would occur, thus 

limiting the maximum stress to the ultimate stress of the material.  Therefore, for each material, 

there is some finite stress universe that can be described from [0, 𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒], where  𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 is 

the ultimate strength of a given material. 

 
Figure 3-1: Axial Loaded Cylinder 
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It is often convenient to represent engineering elements belonging to some finite universe 

mathematically for analytical purpose.  Relating elements to sets mathematically can be simply 

accomplished through the use of element relation operators as: 

𝑥 ∈ 𝑋 Element x belongs to the X universe 
𝑥 ∉ 𝑌 Element x does not belongs to the X universe 

Table 3-1:  Elemental Membership Operators 
 

Note that elements can either belong to or not belong to a set.  This is obvious when thinking 

about stress in terms of the chair leg again.  As we discussed previously, each material would 

undoubtedly have its own unique universe of stress, which intuitively would be bounded 

between zero and some ultimate stress depended upon material.  Similarly, for some set A, 

which contains the universe of stress elements of a weak material, and set B which contains the 

universe of stress elements for a stronger material, then it could be said that set A is contained 

in set B. 

It is easy to see how engineering elements may be grouped into sets, and engineering sets may 

belong to other sets.  This may seem obvious, but is a rather powerful realization, specifically 

when applied to control problems.  Mathematically, sets can be defined through relational 

operators similar to the way in which elements are in Table 3-1.  For set relationships the well-

known subset and superset relation operators can be used as follows: 

𝐴 ⊂ 𝐵 A is contained in B (if 𝑥 ∈ 𝐴, then 𝑥 ∈ 𝐵,   ) 
𝐴 ⊆ 𝐵 A is contained in or is equivalent to B 

(𝐴 ⟷ 𝐵) 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 (A is equivalent to B) 

Table 3-2: Set Relationship Operators 
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3.1.1: Classical Set Operators 

From the foundation of classical elements and sets, more comprehensive set operators can be 

developed.  To start, consider a generalized two-dimensional universal set, X, that contains 

elements 𝑥, and elements 𝑦.  Like discussed previously, for most engineering applications, it is 

convenient to group elements together to form sets that correlate to some physical situation.  

Thus in terms of our universal elements 𝑥 and 𝑦, two generalized subsets A and B can be 

constructed, see Figure 3-2. 

 
Figure 3-2: Sets, A, B and X 

 

From both an anylitical and practical perspective, it is often convienient to construct new sets 

from pre-existing sets.  To do so, set operators can be used.  The most widely used set operators 

include, union, intersection, complement, and difference.   

 The union operator is used to define elements that are contained in two or more sets.  For 

example, if we consider a new set C, which is defined through the union of sets A and B 
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described above, the elements contained in C would be defined by the elements that are 

contained in set A or set B or in both set A and B; see Figure 3-3a.   

Similarly, the intersection operator is used to create new sets from elements shared across 

multiple sets.  In terms of our example, the set C, that is defined by the intersection of sets A 

and B, is the collection of elements contained in the overlap region, see Figure 3-3b. 

The complement operator is different than the pervious two operators discussed because the 

complement operator is exclusively used to compare a universal set and some subset contained 

in the universal set.  Specifically, the complement, set A, is the elements contiained in the 

universal set X, exluding the elements contained in A, see Figure 3-3c. 

Similar to the complement operator, the difference operator, or relative complement operator, 

which creates a new set by removing elements that are shared between two sets.  In respect to 

our example, the realtive complement of A in B results in the set of elements that are contained 

exclusively in A; see Figure 3-3d.   

Union  𝐴⋃𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐴 } 
Intersection  𝐴⋂𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵 } 
Complement �̅� = {𝑥|𝑥 ∉ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝑋} 
Difference 𝐴|𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵} 

Table 3-3: Set Operators & Mathematical Notation 
 

 
Figure 3-3: Set Operation Results 



16 
 

3.1.2: Properties of Classical Sets  

To further mathematically analyze sets, set properties must be define as they pertain to the 

operators defined in the previous section.  This allows for a framework on how classical sets can 

be mathematically manipulated.  Without going into details on each, the following properties 

are defined in respect to a given set operator: 

Commutative: 𝐴⋃𝐵 = 𝐵⋃𝐴 

 𝐴⋂𝐵 = 𝐵⋂𝐴 

Associative: 𝐴⋃(𝐵⋃𝐶) = (𝐴⋃𝐵)⋃𝐶 

 𝐴⋂(𝐵⋂𝐶) = (𝐴⋂𝐵)⋂𝐶 

Distributive: 𝐴⋃(𝐵⋃𝐶) = (𝐴⋃𝐵)⋃(𝐴⋃𝐶) 

 𝐴⋂(𝐵⋂𝐶) = (𝐴⋂𝐵)⋂(𝐴⋂𝐶) 

Idempotency: 𝐴⋃𝐴 = 𝐴 

 𝐴⋂𝐴 = 𝐴 

Identity: 𝐴⋃ϕ = A 

 𝐴⋂𝜙 = 𝜙 

 𝐴⋂𝑋 = 𝐴 

 𝐴⋃𝑋 = 𝑋 

Transitivity: 𝑖𝑓 𝐴 ⊆ 𝐵 𝑎𝑛𝑑 𝐵 ⊆ 𝐶, 𝑡ℎ𝑒𝑛 𝐴 ⊆ 𝐶 

Involution: �̿� = 𝐴 
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3.1.3: Set Mapping  

In general, mapping is done to relate two or more sets.  The most classic form of mapping is 

through functional relationships.  Where some function is used to map some input space to 

some output space.  For example, consider the most basic function, 𝑓(𝑥) = 𝑚𝑥 + 𝑏, where the 

input space 𝑋 is mapped to the output space 𝑌 through the function 𝑓(𝑥), which in general is 

denoted as: 

𝑓: 𝑋 → 𝑌 

The algebraic expression used to map elements of one set, to elements of another is often 

referred to as a mapping function.  It is import to note that mapping functions are not the only 

mechanism for mapping sets to one another.  Alternative to mapping functions, rule base 

mapping can be used.  Rule based mapping can take many forms, but one form of particular 

usefulness is IF – THEN style mapping, which will be discussed in detail in Section 3.2. 

3.1.4: Indicator Functions 

An indicator function, sometimes referenced to as a characteristic function, is a function that 

maps elements of a given universe to a containing subset.  To understand this, let us consider a 

general one dimensional set 𝐴, where 𝐴 ⊂ 𝑋.   

As we have discussed previously, in respect to classical logic, some general element 𝑥𝑖, 

where 𝑥𝑖 ∈ 𝑋, may either belong or not belong to set 𝐴.  The indicator function is the tool used 

to indicate the membership of elements of a subset.  This is done through mapping membership 

in terms of the binary set {0,1}, where the zero element represents non-membership and the 

one element represents full membership.  Therefore the indicator function for a general set 𝐴 is: 

𝑥𝐴(𝑥) = { 
1,
0,

   
𝑥 ∈ 𝐴
𝑥 ∉ 𝐴
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Figure 3-4: Graphical Representation of the Indicator Function of Set A 

 

Earlier, it was shown how sets could be created from two or more sets through the use of set 

operators, specifically the set operators of union, intersection, and complement.  When sets are 

created from said operators, the correlating indicator function can be determined by analyzing 

the original indicator functions.  If we consider two general sets 𝐴 and 𝐵, which both are subsets 

of the universal set 𝑋, where: 

𝑥𝐴(𝑥) = { 
1,
0,

   
𝑥 ∈ 𝐴
𝑥 ∉ 𝐴

 

𝑥𝐵(𝑥) = { 
1,
0,

   
𝑥 ∈ 𝐵
𝑥 ∉ 𝐵

 

Then the indicator function for the new set created through union, intersection or complement 

can be easily obtained via: 

Union (OR operator): 𝐴⋃𝐵 ⟶ 𝑥𝐴⋃𝐵(𝑥) = 𝑥𝐴 ∨ 𝑥𝐵 = max (𝑥𝐴(𝑥), 𝑥𝐵(𝑥)) 

Intersection (AND operator): 𝐴⋂𝐵 ⟶ 𝑥𝐴⋂𝐵(𝑥) = 𝑥𝐴 ∧ 𝑥𝐵 = min (𝑥𝐴(𝑥), 𝑥𝐵(𝑥)) 

Complement:  �̅� ⟶ 𝑥�̅�(𝑥) = 1 − 𝑥𝐴(𝑥) 
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3.2: Fuzzy Set Theory Overview 

In classical set theory, as was just discussed, elements either belong to or they do not belong to 

a given universe, this is not the case with fuzzy sets.  In fuzzy set theory, elements may belong to 

a fuzzy set with various degrees of membership.  Thus there is no longer a well-defined 

boundary at the end of any universe; instead, the well-defined boundary is replaced with a 

boundary that allows ambiguity and vagueness.  This at first seems not practical, but is actually 

quite intuitive and human.  Unlike classical theory which tries to quantify the world through a 

binary filter, fuzzy logic tries to break down any predefined boundaries and re-quantifies the 

world as areas of grey.   

Therefore fuzzy sets are sets that contain elements of varying degree of membership.  These 

elements are then mapped to a universe of membership values between the interval of [0,1].  

Since we noted before that, for any engineering application, sets are finite in practice, we will 

only discuss finite fuzzy sets.  Thus for a given fuzzy set, the set is defined by its element and its 

degree of membership or fuzziness.  If we consider the fuzzy set 𝐴, where the elements of 𝐴 

belong to 𝑋 and the element’s fuzziness is defined by the membership function 𝜇𝐴 

(where 𝜇𝐴(𝑥𝑖) ∈ [0,1]).  From this the fuzzy set A can be expressed as: 

𝐴 = {
𝜇𝐴(𝑥1)

𝑥1
+

𝜇𝐴(𝑥2)

𝑥2
+ ⋯+

𝜇𝐴(𝑛)

𝑥𝑛
} = ∑{

𝜇𝐴(𝑥𝑖)

𝑥𝑖
}

𝑖=1

𝑛

 

It is important to note in the expression above that the horizontal bar is not signifying division, 

but rather a way to group individual elements with their corresponding fuzziness.  There are 

classical shapes used to group elements into fuzzy sets; these shapes include triangular, 

trapezoidal, Gaussian, and generalized bell shapes, to name a few.  In most control problems, 

triangular and trapezoidal are used explicitly.  The “indicator functions” for fuzzy sets are 
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referred to as membership functions.  Examples of fuzzy membership functions for the two 

most widely used sets have been provided for reference: 

𝜇𝑇𝑟𝑖(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐

0, 𝑐 ≤ 𝑥

 

𝜇𝑇𝑟𝑎𝑝(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

          1, 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
, 𝑐 ≤ 𝑥 ≤ 𝑑

0, 𝑑 ≤ 𝑥

 

Where a, b, c and d are: 

 
Figure 3-5: Fuzzy Membership Functions 
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3.2.1: Fuzzy Set Operations   

First, three generalized fuzzy sets A, B, and C must be defined.  For the purpose of this 

discussion, assume that fuzzy sets A and B both belong to the universe X, and that they are 

created via triangular membership functions.  From this we can discuss the three set-theoretic 

operators union, intersection and complement.  As discussed earlier, these operators are the 

same as the operators from classical set theory, but the crisp (non-fuzzy) characteristic indicator 

will be replaced with a fuzzy membership function.   

Union: 𝜇𝐴⋃𝐵(𝑥) = 𝜇𝐴 ∨ 𝜇𝐵 

Intersection: 𝜇𝐴⋂𝐵(𝑥) = 𝜇𝐴 ∧ 𝜇𝐵 

Complement: 𝜇�̅�(𝑥) = 1 − 𝜇𝐴(𝑥) 

 

This can be seen easily via the Venn diagram method, seen below: 

 
Figure 3-6: Fuzzy Set Operators 
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3.2.2: Properties of Fuzzy Sets 

Fuzzy sets rely on the same properties that crisp sets use, which is intuitive recalling that crisp 

sets are a special case of fuzzy set.  Thus the properties that are defined in section 3.1.2 are 

exactly the same for fuzzy sets.   

3.3: Fuzzy Control 

 
Figure 3-7: Mamdani-type FLC 

 

A fuzzy logic controller (FLC) is a type of controller that is governed by a knowledge base, vague 

predicators, and an inference mechanism.  In general, a FLC can be generalized in the form of a 

more traditional control law: 

𝑢(𝑡) = 𝐹(𝑒(𝑡), 𝑒(𝑡 − 1),… 𝑒(𝑡 − 𝑣), 𝑢(𝑡 − 1),… , 𝑢(𝑡 − 𝑣)) 

Where 𝐹 is a complex fuzzy mapping function which maps a finite set of controller inputs to a 

finite set of controller outputs.  Since it is not reasonable to map all past value of 𝑒(. ) and 𝑢(. ) 

through 𝐹, more traditional control laws are often structured in the more classical form: 

𝑢(𝑡) = 𝐹(𝑒(𝑡), Δ𝑒(𝑡)) 
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Where, 𝑒(. ) is the current system error and Δ𝑒(. ) is the change in error.  In this form, 𝐹 is only 

mapping the current state of the system to control output set.  This form of control reduces the 

necessity of storing all past states of the system, which is otherwise inefficient and unnecessary. 

Fuzzy Logic Control, in this form, was first proposed in 1975 by Mamdani and thus has been 

named the Mamdani-type Fuzzy Logic Controller (FLC).  Mamdani-type FLC’s are governed by 

three distinct mechanisms: Fuzzification, Inference Engine, and Defuzzification.  The fuzzification 

mechanism maps crisp inputs into fuzzy inputs.  Then through fuzzy reasoning, those fuzzy 

inputs are mapped to a fuzzy output space.  Through defuzzification, the fuzzy outputs are 

translated into crisp outputs used to control a plant.   

3.3.1: Fuzzification  

The fuzzification mechanism is constructed by discretizing each variable universe into sub-

universes constructed from fuzzy membership functions named by linguistic variables.  Thus, for 

a generalized input variable x, it is shown in Figure 3-8, how the universe of x can be divided into 

fuzzy sets.  A variable universe may be broken in numerous fuzzy sets, ranging in type, size, and 

overlap.  The combinations are endless and plant specific.  It is important to note here that 

minimizing the number of fuzzy sets used to define a variable is important when computational 

efficiency is necessary.  Once a variable is passed through a fuzzification mechanism the result is 

a fuzzy variable that is defined by a series of linguistic variables and the associated degree of 

membership.   
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Figure 3-8: Fuzzification Membership Functions 

 

This is often better described through example.  Consider the variable, x defined above; if we 

assume a crisp input of 0, the mapping to an associated fuzzy input produces: 

 𝑥 = 0 ⟶ {
𝜇𝐴(0)

0
,
𝜇𝐵(0)

0
,
𝜇𝐶(0)

0
} = {

0

0
,
1

0
,
0

0
} 

 Similarly if we assume a crisp input of 0.2, we can map that input to: 

𝑥 = .2 ⟶ {
𝜇𝐴(0.2)

0.2
,
𝜇𝐵(0.2)

0.2
,
𝜇𝐶(0.2)

0.2
} = {

. 4

0.2
,
. 4

0.2
,

0

0.2
} 

From this example it is easily seen how a crisp value has two components, an element and a 

degree of membership.  It is also critical to understand that an element on a given universe may 

belong to more than one fuzzy set.   

3.3.2: Inference Engine  

As discussed earlier, FLC is a complex system for mapping relevant input variables to relevant 

output variables.  The mapping between fuzzy input sets to fuzzy output sets is constructed 

from conditional rules, which collectively will be referred to as the rule base.  The rule base 

maps input linguistic variables to their associated linguistic output counterpart, while 

determining the maximum degree of membership for each output membership function.  The 
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output shape and maximum degree of membership are combined through the union operator 

to construct a new fuzzy output set defined by a fuzzy indication function.  To further detail the 

fuzzy reasoning process, consider another example.  First assume we have some simplified 

generalized rule base consisting of two input variables, {𝑥1, 𝑦1}, one output variable, {𝑢},  and 

two rules in the form of IF – AND – THEN .  Also, let’s assume that the input – output universes 

are defined by triangular fuzzy sets in the form: 

 
Figure 3-9: Input-Output Fuzzy Sets 

 
 

Where the rule base is: 

IF 𝑥1 ∈ 𝐴1 AND 𝑦1 ∈ 𝐵1 THEN 𝑢 ∈ 𝐷1 

IF 𝑥1 ∈ 𝐴2 AND 𝑦1 ∈ 𝐵1 THEN 𝑢 ∈ 𝐷2 

And for a given input pair, {𝑥1, 𝑦1}, where: 

𝑥1𝜖𝐴1, 𝐴2 ⟶ {
𝜇𝐴1

(𝑥1)

𝑥1
,
𝜇𝐴2

(𝑥1)

𝑥1
} 

𝑦1𝜖𝐵1 ⟶ {
𝜇𝐵1

(𝑦1)

𝑦1
} 

By plotting 𝑥1 and 𝑦1 on their respective variable universes, their corresponding fuzziness can 

easily be seen: 
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Figure 3-10: Input Fuzzification 

 

From the rule base reasoning mechanism, the output variable must belong to fuzzy sets 𝐷1 and 

𝐷2, or similary: 

𝑢 ∈ 𝐷1, 𝐷2 

The AND operator (minimum operator) in the rule base, dictates that the fuzzy sets must be 

“clipped” according to: 

𝜇𝐷1

𝑚𝑎𝑥 = min(𝜇𝐴1
(𝑥1), 𝜇𝐵1

(𝑦1)) = 𝜇𝐵1
(𝑦1) 

𝜇𝐷2

𝑚𝑎𝑥 = min(𝜇𝐴2
(𝑥1), 𝜇𝐵1

(𝑦1)) = 𝜇𝐴2
 

 

Figure 3-11: Membership Function Clipping 
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Combining the resultant output membership functions through the union operator and clipping 

the memberships functions at their maximum degree of membership, yields a piecewise fuzzy 

membership function in the shape of: 

 

Figure 3-12: Fuzzy Inference Mechanism Result 

 

3.3.3: Defuzzification  

 Defuzzification is the method used to produce a crisp (non-fuzzy) quantifiable control signal 

from the fuzzy membership function created through the inference mechanism.  The way in 

which this control signal is computed varies depending on which defuzzification method is used.  

The five most widely used methods are centroid, bisector, middle, smallest and largest.  As it will 

be shown, depending on which defuzzification method is used, the overall crisp output will vary.  

For this reason the choice of a defuzzification method will ultimately effect the performance of 

the fuzzy controller.  For the purpose of this analysis let us consider the following output 

membership function resulting from some generalized inference engine: 
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Figure 3-13: Defuzzification Function 

 

Defuzzification Method #1: Centroid Method 

The centroid method is arguably the most widely used method for control applications.  With 

that being said, the centroid method is also is the most computationally intensive method.  

Often this method can be slow, adding an inherent time delay into the system, which can be 

problematic.  The centroid method computes the center of area of the resulting output function 

via: 

𝑢 =
∫𝑢𝐴𝑑𝐴

∫𝐴𝑑𝐴
 

Since for most cases the output function from fuzzy reasoning is piecewise, this computation 

must be done numerically in the form: 

𝑢 =
∑ 𝑢𝑖𝐴𝑖

𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

 

Thus for the provided example function, the centroid method produces the following crisp 

output: 
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Figure 3-14: Centroid Method Result 

 

Defuzzification Method #2: Bisector Method 

The bisector method is very similar to the centroid method in the sense that it determines the 

crisp output by utilizing the area under the curve.  In the bisector method, the crisp output is 

found in by diving the area under the curve in exactly half.  This processes is computed mostly 

iteratively for complex output functions and again can be relatively slow.  In some special simple 

cases, the bisector defuzzification method will produce the same value as the centroid method.  

For more complex output functions, the bisector method with produce slightly different results 

than that of the centroid method.  This can be shown through the example provided: 

 
Figure 3-15: Bisector Method Result 
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Defuzzification Method #3, #4 and #5: Largest, Smallest and Middle of Maximum Methods 

Because of their similarity, the remaining three methods will be grouped together.  The largest, 

smallest, and middle of maximum defuzzification methods are the fastest methods and work 

great for systems with very few output membership functions.  Specifically these methods do 

not require the analysis of the entire output, but rather, only requires the analyses of the region 

of maximum degree of membership.  The largest of maximum method, uses the largest output 

value associated with the maximum degree of membership.  Likewise the small and middle 

methods use the smallest and middle output value associated with the maximum degree of 

membership, respectively.  This can be shown through the graphic provided: 

 
Figure 3-16: LOM, MOM, SOM Results 

 

As stated prior, it is easy seen how the controller output is highly effected by the defuzzification 

method, a controller’s output can vary significantly.  For plants that are relatively simple to 

control, a simple defuzzification method like the largest, middle, smallest method may be 

sufficient, but these simple defuzzification mechanisms are often not robust in controlling more 

complex nonlinear systems.  In most cases, the latter of the defuzzification methods are 

completely ignored and better-rounded defuzzification methods like the centroid method are 

used.  To help decrease the time delay associated with the centroid method, much work has 

been done on centroid estimation algorithms that produces faster results with very little error. 
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Chapter 4: Third Generation Half-Scale Design  

4.1: Frame Design 

4.1.1: Material Selection 

For the 3rd generation space hopper simulator, a modular frame design was decided.  This was 

done to ensure simple and efficient repairs of structural damage accrued with testing the 

control systems.  To begin the frame design, a material analysis was conducted.  It was decided 

that the ideal material would have a high strength, high stiffness, and a low density.  To 

determine the ideal material that meet these specification, Ashby plots where used.  From the 

Ashby analysis, it was determined that the ideal type of material for this project would be a 

composite.  In general composite materials have a relatively high strength and high stiffness 

with the added benefit of being extremely light compared to materials with similar values of 

strength and stiffness.   

 
Figure 4-1: Ashby Density Verse Strength [5] 
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Figure 4-2: Ashby Density Verse Stiffness [5] 
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4.1.2: Design 

The need for a module design became clear through the last two iterations of the hopper 

spacecraft simulator.  Keeping this design constraint in mind, a simple and module frame design 

was developed. 

 
Figure 4-3: Frame Design 
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4.2: Propulsion System 

For the propulsion system, it was decided to use brushless hobby grade DC motors as in the 2nd 

generation simulator.  This decision was primarily driven by the mass availability of these 

actuators and their ease of use.   

During the initial design phase, a comprehensive analysis was done on readily available 

brushless motors.  Many motors were compared against one another, the major design 

concerns where efficiency, torque, and power consumption.  Ultimately, it was decided to use 

the Antigravity MT2814 motor by T-Motor. 

 
Figure 4-4: Propulsion System Actuator 
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Figure 4-5: Propulsion Actuator Specifications [6] 

 

Once the actuators were available, preliminary tests were conducted to determine the max 

thrust generated by the propulsion actuators based on propeller size and power consumption.  

During this initial testing phase three propeller sizes where considered 11x3.7, 12x 4, and 

13x4.4.   

Utilizing the thrust data collect, it was decided to use a 12 x 4 propeller size.  This decision was 

driven by the estimated weight of the simulator and the desire to be able to achieve a max 

thrust to weight ratio of 3:1. 
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Figure 4-6: Amperage Verse Thrust 

 
Figure 4-7: Brushless Motor Thrust/Torque Test Stand [1] 
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4.3: Power System  

The power system design was driven by the actuator power requirements and the desired flight 

time.  Like in the previous simulators, lithium-ion polymer (LIPO) batteries were chosen as the 

power source due to their high power density and discharge rates 

 
Figure 4-8: Power Density Chart [7] 

For LIPO batteries, battery life can be calculated via: 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒 =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑚𝐴h]

𝐿𝑜𝑎𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 [𝑚𝐴h]
 (4.1) 

 

If it were assumed that the propulsion system will operate at a nominal load current of 

6000mAh and 10 minute flight time was required, then the battery capacity can be found as: 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 4000 [𝑚𝐴h] 
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To help distribute the weight of the battery more evenly it was decide to use two batteries, from 

this design choice, the required battery specifications were calculated as: 

Max Discharge [mA] Battery Life [Min] Battery Capacity [mAh] Supply Voltage [V] 

16000 10 2000 14.8 

Table 4-1: LIPO Battery Specifications for a 2 Battery Power System 

 From the design specifications shown in Table 4-1 and through a detailed analysis of the best 

LIPO batteries on the market, it was decided to choose the ThunderPower 2100mAh 4-Cell G8 

Pro Lite LIPO batteries for the simulators power system. 

 
Figure 4-9: LIPO Battery Specifications 
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4.4: Landing Gear 

From the knowledge learned from previous generations of the hopper spacecraft simulator, it 

was important to consider a landing gear system that is both low and flexible.  This is to reduce 

any chances of capsizing during landing.  To have a truly flexible landing gear system, it was 

decided to design a set of custom leaf springs and feet to be used as a landing gear systems.   

 
Figure 4-10: Leaf Spring Design 

 

From an introduction course of Machine Design, the stress in a leaf spring can be found by: 

𝜎 =
6 ∙ 𝐹 ∙ 𝐿

𝑛 ∙ 𝑏 ∙ 𝑡
 (4.2) 

 

And the spring deflection can be found by: 

𝑠 = (
3

2 +
𝑛′ + 1

𝑛

) ∙ (
4 ∙ 𝐹 ∙ 𝐿

𝐸 ∙ 𝑛 ∙ 𝑏 ∙ 𝑡3
) (4.3) 

 

Where n is the total number of springs, n’ is the number of extra full length springs, F is force 

applied to the spring, E is the module of elasticity.   

From Equations 4.2 and 4.3, a parameter study was conducted.  Given a material, a number of 

springs, a desired deflection, and a assumed load, the landing gear thickness t and width b were 
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varied to find sets of parameter’s that match the assumed conditions without failure; see Figure 

4-11. 

 
Figure 4-11: Example Parametric Study 

 
From the parametric studies that where conducted the following design parameters where 

chosen as an initial design starting point: 

Material: Spring Steel (1095) 

Parameter Value 

𝑛 3 

𝑛′ 0 

𝐿 12 cm 

𝑡 .12 cm 

𝑏 2 cm 

𝐸 200 Gpa 

Table 4-2: Leaf Spring Design Parameters 
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Through the use of CAD software, the design was refined and finite element analysis was 

conducted to ensure design validated.  The finalized landing gear design can be seen in the 

figure below. 

 
Figure 4-12: Landing Gear Design 
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4.5: Control System electronics 

Below is a tabulated list of the flight electronic used for control system implementation? 

Electronics Overview 

Flight Computer: Beaglebone Black 
IMU “Orientation Sensor”: UM6 
Electronic Speed Controller: QBrain 
Wireless Module: Xbee 

Table 4-3: Flight Electronics 
 

4.6: 3rd Generation Half-Scale Final Design 

See Appendix A and Appendix B for detailed BOM and manufacturing drawings. 

 
Figure 4-13: Finalized CAD Model 

 



43 
 

 
Figure 4-14: 3rd Generation Simulator 
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Chapter 5: Kinetics and Dynamics 

5.1: Equations of Motion Derivation 

Before work can begin developing control systems, the dynamics of the system must be 

understood.  To ensure continuity of the equations of motion, it is convenient to set up frames 

of reference.  This is particularly important when dealing with systems that will be utilizing all 

special dimensions.  To simplify things, only two frames of reference will be used.  Specifically, 

we will be utilizing the planetary, inertial fixed frame, and the vehicle fixed frame as seen below: 

 

 
Figure 5-1: Frames of Reference 

 

 

 



45 
 

The Euler angles which will describe the vehicles rotation in the earth fixed frame where the 

pitch axis is 𝑣1, the roll axis is, 𝑣2 and the yaw axis is 𝑣3.  The Euler angles will be referred to as 

follows: 

𝑟𝑜𝑙𝑙 ≡ 𝜙 

𝑝𝑖𝑡𝑐ℎ ≡ 𝜃 

𝑦𝑎𝑤 ≡ 𝜓 

Based on the design of our system, the following FBD was determined: 

 
Figure 5-2: Free Body Diagram 

 

By evaluating the provided FBD using the well-known Newton-Euler formulation, the correlating 

system of dynamic equations can be found.  The Newton-Euler formalization will allow us the 

ability to describe both the translation and rotational dynamics of the systems in terms of the 

vehicle frame.  We will begin the derivation from: 

[
𝑭
𝝉
]
𝑣

= [
𝑚𝟏 0
0 𝑰𝒄𝒎

] [
�̈�𝒄𝒎

�̈�
]
𝑣

+ [
𝟎

�̇� x 𝐈𝐜𝐦�̇�
]
𝑣

 (5.1) 

Where, 𝑭 is the total force acting on the system, 𝝉 is the total torque acting on the system, and  

𝑚 is the total mass of the system.  Also: 
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𝟏 = [
1 0 0
0 1 0
0 0 1

] (5.2) 

𝟎 = [0 0 0]𝑇 (5.3) 

𝑰𝒄𝒎 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (5.4) 

𝜻 = [𝑣1 𝑣2 𝑣3] (5.5) 

𝜼 = [𝜙 𝜃 𝜓] (5.6) 

The forces acting on the simulator can be simply obtained by: 

𝑭 = [𝑭]𝒗 + [𝑮]𝑣 

Where [𝑭]𝒗 and [𝑮]𝒗 are the net actuator forces and net gravitation forces acting on the system 

in respect to the vehicle frame.  The net gravitational force in respect to the vehicle frame, [𝑮]𝒗, 

can be obtained by applying a rotation matrix to the net gravitation force in respect to the 

inertial frame, thus:  

[𝑮]𝑣 = 𝑅−1[𝑮]𝑖 

And 𝑅 is the rotation matrix from the inertial frame to the vehicle frame, note that 𝑐𝛽 and 𝑠𝛽 is 

short hand for cos(𝛽) and sin (𝛽) respectively: 

𝑅 = [

𝑐𝜃𝑐𝜓 𝑐𝜓𝑠𝜃𝑠𝜙 − 𝑐𝜙𝑠𝜓 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑐𝜙𝑠𝜃
𝑐𝜃𝑠𝜓 𝑐𝜓𝑐𝜙 + 𝑠𝜓𝑠𝜃𝑠𝜙 𝑐𝜙𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑠𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

] 

The gravitational force acting on the spacecraft simulator in respect to the inertial frame is 

simply: 

[𝑮]𝒊 = [0 0 𝑚𝑔]𝑇 

Since the actuators are fixed to the vehicle frame, the total actuator force [𝑭]𝒗 is defined as: 
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[𝑭]𝒗 = [0 0 −𝑇]𝑇 

Therefore 𝑭 can be easily computed as, 

𝑭 = [−𝑚𝑔𝑠𝜃 𝑚𝑔𝑐𝜃𝑠𝜙 𝑚𝑔𝑐𝜃𝑐𝜙 − 𝑇]𝑇 (5.8) 

Similarly the total toque acting on the system is found as: 

𝝉 = [𝜏𝜙 𝜏𝜃 𝜏𝜓]𝑇 (5.8) 

Where  𝜏𝜓 is the total actuator toque, and 𝜏𝜃 and 𝜏𝜙 are the total pitching and rolling torque 

respectively.  Therefore 𝜏𝜓, 𝜏𝜃, 𝜏𝜙 can be determined from: 

𝜏𝜓 = 𝜏𝑓 + 𝜏𝑏 + 𝜏𝑙 + 𝜏𝑟 (5.9) 

𝜏𝜃 = 𝑙(𝑇𝑓 − 𝑇𝑏) (5.10) 

𝜏𝜙 = 𝑙(𝑇𝑙 − 𝑇𝑟) (5.11) 

Substituting equations 5.1-5.8 into equation 5.1 and simplifying yields the following set of 

attitude dynamics: 

      [

�̈�

�̈�
�̈�

]

𝑣

=

[
 
 
 
 
 
 
𝜏𝜓

𝐼𝑧𝑧
−

(𝐼𝑥𝑥 − 𝐼𝑦𝑦)

𝐼𝑧𝑧
�̇��̇�

𝜏𝜃

𝐼𝑦𝑦
−

(𝐼𝑧𝑧 − 𝐼𝑥𝑥)

𝐼𝑦𝑦
�̇��̇�

𝜏𝜙

𝐼𝑥𝑥
−

(𝐼𝑦𝑦 − 𝐼𝑧𝑧)

𝐼𝑥𝑥
�̇��̇�

]
 
 
 
 
 
 

𝑣

       (5.12) 

While the translational dynamics where found to be, 

[

𝑣1̈

𝑣2̈

𝑣3̈

]

𝑣

= [

−𝑔𝑠𝑖𝑛(𝜃)
𝑔𝑐𝑜𝑠(𝜃)sin (𝜙)

𝑔𝑐𝑜𝑠(𝜃)cos(𝜙) − 𝑇/𝑚
]

𝑣

 

By utilizing the rotation matrix 𝑅, the translation dynamics can be expressed in respect to the 

more useful inertial frame of reference through: 
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   [
�̈�
�̈�

−�̈�

] = 𝑅 [

𝑣1̈

𝑣2̈

−𝑣3̈
]

𝑣

    (5.13) 

From equations 5.12 and 5.13, a Simulink mode can be constructed to simulate the vehicles 

nonlinear dynamics.  This model will be of importance for preliminary proof of concept testing 

the guidance, navigation and control systems that will be discussed in the following section.  

 
Figure 5-3: Simulink Nonlinear Dynamic Model 

 

5.2: Motor Dynamics (System Identification) 

To ensure the virtual model of the system is complete, the motor dynamics were experimentally 

modeled.  To do so, a system identification approach was done.  System identification is a 

general method which uses statistics to match input-output data to a mathematical model.  This 

is convenient when trying to determine the dynamics of real world systems.  To collect input-

output sets, the thrust/torque test stand shown in Figure 4-7 was used.  Each motor-propeller 

combination was tested and data was collected.  Using the System Identification Tool Box built 

into MATLAB, the data was fitted to several different models.  In general, it was found that a 

linear transfer function offered a good fit for the thrust dynamics, and a look up table worked 

the best for the torque dynamics.   
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Figure 5-4: PWM Verse Thrust Data 

 

 
Figure 5-5: PWM Verse Torque Data 
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Chapter 6: GNC Controller Design 

6.1: Numerical Attitude Benchmark Analysis  

Before developing a nonlinear attitude Mamdani-type Fuzzy Control for the hopper spacecraft, a 

simple linear PID attitude stabilization controller was designed and implemented for 

comparison.  A PID control scheme was chosen due to its ease of implementation and successful 

track record for systems of this type [10].  The general structure of a PID controller can be seen 

in Figure 6-1. 

 
Figure 6-1: Single Input – Single Output PID Block Diagram 

 
 

For the hopper spacecraft simulator, three independent PID controllers are needed for attitude 

stabilization, one for each attitude axis.  Thus the associated system of control laws take the 

form:  

𝑢1(𝑡) = 𝐾𝑝�̃�(𝑡) + 𝐾𝑖 ∫�̃�(𝑡)𝑑𝑡 + 𝐾𝑑 (
𝑑

𝑑𝑡
�̃�(𝑡)) (6.1) 

𝑢2(𝑡) = 𝐾𝑝�̃�(𝑡) + 𝐾𝑖 ∫�̃�(𝑡)𝑑𝑡 + 𝐾𝑑 (
𝑑

𝑑𝑡
�̃�(𝑡)) (6.2) 

𝑢3(𝑡) = 𝐾𝑝�̃�(𝑡) + 𝐾𝑖 ∫�̃�(𝑡)𝑑𝑡 + 𝐾𝑑 (
𝑑

𝑑𝑡
�̃�(𝑡)) (6.3) 
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Where: 

�̃�(𝑡) = 𝜃𝑟(𝑡) − 𝜃(𝑡) (6.4) 

�̃�(𝑡) = 𝜑𝑟(𝑡) − 𝜑(𝑡) (6.5) 

�̃�(𝑡) = 𝜓𝑟(𝑡) − 𝜓(𝑡) (6.6) 

 

The controller’s outputs are then “mixed” with the vehicles throttle signal to compute the PWM 

signal that is sent to each actuator.  The mixing process was developed from the vehicle 

dynamics described in Chapter 5.  The following control mixing algorithm was developed: 

 

𝑃𝑊𝑀𝑀𝑓
= 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒(𝑡) + 𝑢1(𝑡) + 𝑢3(𝑡) (6.7) 

𝑃𝑊𝑀𝑀𝑏
= 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 𝑢1(𝑡) + 𝑢3(𝑡) (6.8) 

𝑃𝑊𝑀𝑀𝑙
= 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 + 𝑢2(𝑡) − 𝑢3(𝑡) (6.9) 

𝑃𝑊𝑀𝑀𝑟
= 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 𝑢2(𝑡) − 𝑢3(𝑡) (6.10) 

 

Where the subscript 𝑀𝑓, 𝑀𝑏, 𝑀𝑙, and  𝑀𝑟 are reference to the front, back, left, and right 

actuators respectively.  The correlating signal mixing diagram is then: 

 
Figure 6-2: PWM Signal Mixing 
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By applying the control laws described in equations 6.1 – 6.6, the following feedback controller 

can be developed: 

 
Figure 6-3: PID Attitude Controller 

 

To simulate the controller’s performance on the attitude dynamics described in Chapter 5, a 

Simulink model was constructed.  By utilizing Simulink’s PID toolbox, with respect to the desired 

controller performance, a set of PID gains were found.  The desired performance of the close-

loop system is as follows: 

1. Settling Time < 4 Seconds 

2. Rise Time < 1 Second 

3. % Overshoot < 50 

The PID gains that successfully minimized the three design criteria list above was found to be: 

 Roll,  𝜽 Pitch, 𝚽 Yaw, 𝝍 

𝑲𝑷 70.78 70.78 7456.70 
𝑲𝑰 16.07 16.07 634.89 
𝑲𝑫 62.24 62.24 2276.86 
N 7.24 7.24 10 

Table 6-1: Optimized PID Gains 
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Assuming an arbitrary reference angle of 0.1 radians, the following dynamic step performance 

was determined. 

 
Figure 6-4: PID Simulink Model 

 
 
 

 
Figure 6-5: PID Roll Response 
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Figure 6-6: PID Pitch Response 

 
 
 

 
Figure 6-7: PID Yaw Response 
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From the simulation results, the following benchmarking data was tabulated: 

 Roll,  𝜽 Pitch, 𝚽 Yaw, 𝝍 

Step Angle (Rad) 0.1 0.1 0.1 
Rise Time (sec) .25 .25 1 

Settling Time (sec) 2 2 20 
% Over Shoot 46 46 1 

Table 6-2: Attitude Benchmark Analysis 

 

6.2:  Nonlinear Fuzzy Attitude Controller Design and Analysis 

Now that benchmarking data has been established, a more sophisticated nonlinear Mamdani-

Type FLC was applied to the hopper spacecraft to increase performance.  Similar to the design of 

the linear PID controller in section 6.1, three independent Mamdani-type FLCs are used to 

stabilize the hopper spacecraft’s attitude.  To reduce complexity, only two inputs will be used, 

position error and position error rate.  From this the general control law can be constructed in 

the form: 

𝑢1(𝑡) = 𝐹𝐿𝐶𝜃 (�̃�(𝑡),
𝑑�̃�(𝑡)

𝑑𝑡
) (6.11) 

𝑢2(𝑡) =  𝐹𝐿𝐶𝜑 (�̃�(𝑡),
𝑑�̃�(𝑡)

𝑑𝑡
) (6.12) 

𝑢3(𝑡) =  𝐹𝐿𝐶𝜓 (�̃�(𝑡),
𝑑�̃�(𝑡)

𝑑𝑡
) (6.13) 

 

Where, �̃�(𝑡), �̃�(𝑡) and �̃�(𝑡) are defined as in Equation 6.4 – 6.6.  As discussed in Chapter 3, the 

Mamdani-type FLC has three internal mechanisms that make up the control law, the three 

mechanisms are fuzzification, inference engine, and defuzzification.  The interaction between 

these mechanisms can be seen in Figure 3.8.  Thus, replacing the PID controllers in Figure 6-3 

yields our new attitude controller in the form: 
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Figure 6-8: Fuzzy Attitude Controller 

 

For the design of the fuzzification mechanism, a few initial assumptions were made to simplify 

the tuning process and to reduce computational complexity.  These design assumptions are: 

1. Restrict the input variables to a normalized input universe of [-1, +1]. 

2. Use only 3 fuzzy sub universes (Negative, Zero, Positive) per input variable. 

3. Use only simple and symmetric membership functions. 

To be consistent, the defuzzification mechanism was created based on the same initial design 

assumptions for the establishment of the fuzzy sub universes of the output space.  It was 

decided that the defuzzification mechanism would use the centroid defuzzification method for 

computing the crisp output.  This method was chosen over the others because of reasons 

discussed in section 3.3.4.   

Based on the controller requirements described above it was intuitive to choose triangular and 

trapezoidal membership functions to describe the input-output space.  These membership 

functions are the simplest to analyze and often are very successful when applied to nonlinear 

systems.  From these design assumptions an initial fuzzy variable space was constructed: 



57 
 

 
Figure 6-9: Initial Attitude FLC Membership Functions 

 

The associated rule base that was developed for this system is comprised of 9 rules constructed 

in the form of IF-AND-THEN described in section 3.3.3.  In this form, each pair of inputs is 

uniquely pared with an output state.  The rules were constructed based human experience and 

intuition on the dynamics of this system.   

 
Table 6-3: Attitude FLC Rule Base 

 

Because the input and output variable spaces were restricted to a normalized universe of [1,+1], 

an additional pre-processing and post-processing component had to be added to the 

generalized FLC control law.  The pre-processing and post-processing components are simply 

normalizing gains that map the input variables to the normalized input space and map the 

output variables to the output control single space.  These gains are beneficial in the sense they 

reduce some of complexity of tuning the controller.  These tuning gains are hidden from the 

view by Figure 3-7, but they can be seen in Figure 6-10 below. 
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Figure 6-10: FLC with Pre & Post Processing Components 

 
 

Tuning membership functions for optimized performance can be challenging.  Many smart 

tuning process like the ones in [11], [12], [13] have been developed to efficiently tune FLC’s.  

Because the membership structure of this controller was left minimal, such complex tuning 

methods are not needed.  Instead, for tuning, it was assumed that the membership functions 

would be left symmetric and the negative and positive membership functions would be left as 

mirrored images of each other.  This simplifies the tuning process and thus only requires the 

shapes to be “stretched” or “compressed”.  Thus, after applying this tuning method to the input 

output membership functions, the following tuned membership functions where found: 

 
Figure 6-11: Tuned Attitude FLC Membership Functions 
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Also a stochastic tuning process was done to tune both the pre-processing and post-processing 

normalization gains.  The choice of gains are tabulated below: 

 Roll Pitch Yaw 

𝒈𝒆 2.5 2.5 2 
𝒈�̇� 3.33 3.33 10 
𝒈𝒖 80 80 300 

Table 6-4: Fuzzy Normalizing Gains 
 

The tuned FLC was then tested on the simulated hopper spacecraft’s dynamics, the results are 

shown in Figure 6-12 – 6-14. 

 
Figure 6-12: Fuzzy Roll Response 
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Figure 6-13: Fuzzy Pitch Response 

 

 
Figure 6-14: Fuzzy Yaw Response 
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From the fuzzy step response simulation data, fuzzy benchmark data was collected and 

tabulated. 

 Roll,  𝜽 Pitch, 𝚽 Yaw, 𝝍 

Reference Angle (Rad) 0.1 0.1 0.1 
Rise Time (sec) .20 .20 1.1 

Settling Time (sec) 1.2 1.2 4 
% Over Shoot 2 2 2 

Table 6-5: Fuzzy Benchmark Analysis 
 

Compared to the PID attitude controller, the fuzzy attitude controller offers significant 

performance improvements in all three of the controller design requirements.  In terms of roll 

and pitch, the fuzzy controller decreased the rise time by 105%, decreased the settling time by 

66% and reduced the % over shoot by 210%.  In terms of yaw, the fuzzy controller had a slight 

increase in rise time and % overshoot of about 10%, but offered significant improvements 

decreasing the settling time by over 400%.  From the simulation results, it is clear that properly 

implementing a fuzzy logic attitude controller will offer significant improvements over the 

classical PID style controller that was implemented previously.  These results have found 

consistent with the work that has been done in respect to fuzzy controllers applied to similar 

plants [14], [15]. 
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6.4:  Fuzzy Attitude Implementation Analysis and Results 

The simulation benchmark analysis has proven the Mamdani-type FLC is theoretically very 

effective in the control of the spacecraft simulators dynamics as defined in Chapter 5.  To 

further analysis the robustness of the controller that was developed, two real world design 

issues, sensor noise and time delay, must be taken into consideration.   

Sensor noise, is always a fundamental concern with any control system.  An abundance of 

sensor noise can lead to major design issue, including increased rise time, increased settling 

time, and ultimately can drive the system unstable.  Even though sensor noise is problematic, 

there are ways to work around sensor noise, these methods include state estimation and 

filtering. 

Adding time-delay to a system, is often the easiest way to drive a system unstable.  From the 

introduction discourse of linear control system, it is well known that time-delay impacts stability 

by increasing phase delay, and excessive phase delay leads to instability.  For the purposes of 

implementation, the system has several sources of time-delay.  The major areas of concern is 

senor sampling lag, computational lag, and actuator signal lag.  If the total time-delay is too 

large, the system will become unstable. 

Ultimately, the amount of time-delay and sensor noise that is acceptable is dependent upon the 

system.  Simulation analysis will be conducted to determine design requirements for the flight 

electronics to ensure the attitude controller remains robust.   
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6.4.1: Time Delay Analysis   

As a rule of thumb, the amount of time-delay that is acceptable to a system is often 

approximated for first iterations as: 

𝑇𝑑 =
1

20 ∗ 𝜔𝑛
 (6.14) 

Where 𝜔𝑛 is the fastest natural frequency of the closed-loop system.   

Since FLC controllers are a nonlinear mapping between sets with no analytical form, determining 

the natural frequency of the closed loop system directly is impossible.  To overcome this issue, 

system identification can be done to approximate the close-loop transfer function from the 

systems step response.   

For the closed-loop transfer function approximation, the system was assumed to be linear, and 

thus the yaw and roll axis were assumed to be stable, thus: 

�̈� = �̇� = 𝜙 = 0 

�̈� = �̇� = 𝜓 = 0 

From these linearization assumptions the simplified angular dynamics become: 

�̈�(𝑡) =
𝜏𝜃(𝑡)

𝐼𝑦𝑦
 

Applying the FLC attitude controller designed in Chapter 6.1, with a reference angle of 0.3 

radians the following step response was simulated: 
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Figure 6-15: System Identification Reference Performance 

 
 

By analyzing the input reference angle with respect to the systems angular position, the 

following approximated linear transfer function was determined for the closed loop response: 

Θ(𝑠)

Θ𝑟(𝑠)
=

504.8𝑠3 + 3387𝑠2 + 7.843𝐸4𝑠 + 6.362𝐸5

𝑠6 + 12.94𝑠5 + 369.2𝑠4 + 3046𝑠3 + 3.432𝐸4𝑠2 + 1.399𝐸5𝑠 + 6.372𝐸5
 

Where: 

𝐸𝑛 = 10𝑛 
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Figure 6-16: System Identification Fit Results 

 
 

From the transfer function, the range of natural frequencies were determined as: 

max (𝜔𝑛) = 13.59 

min (𝜔𝑛) = 6.0921 

From equation 6-14, the corresponding range of acceptable time delay is thus: 

max (𝑇𝑑) = 0.008 = 125 𝐻𝑧 

min (𝜔𝑑) = 0.004 = 250 𝐻𝑧 

To prove the range of time delays are acceptable, simulations where conducted in which a unit 

delay was added to the system to simulate the effects of IMU sampling rate lag.  From the 

results in Figure 6-17 and Figure 6-18, it is clear that the first round iterations of acceptable time 

delay yields results approximately equivalent results to the bench mark analysis shown in 

Figures 6-15. 
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Figure 6-17: Close-Loop Response with Td=0.004 

 

 
Figure 6-18: Close-Loop Response with Td=.008 
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6.4.2: Sensor Noise Analysis & Time-Delay 

Sensor noise is not as analytically easy to analyze as time delay; therefore, the analysis must be 

done through simulation to determine requirements to ensure stability.  As a starting point, 

almost all natural sensor noise is Gaussian and thus will be assumed as so in simulation.  To 

assess the effects of sensor noise on the closed-loop system, a randomized Gaussian distributed 

noise was added to the angular position “measurement”.  The amplitude of the high frequency 

noise was increased until instability was reached.  From simulation the acceptable range of high 

frequency sensor noise is below ±0.5 without suffering significant performance degradation.  

For the simulation experiments, it was assumed that the system time delay and sampling rate 

was 0.004. 

 
Figure 6-19: Sensor Noise Simulation (Max Noise ±0.01 𝑑𝑒𝑔) 
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Figure 6-20: Sensor Noise Simulation (Max Noise ±0.5 𝑑𝑒𝑔) 

 

 
Figure 6-21: Gaussian Sensor Noise (Max Noise ±0.5 𝑑𝑒𝑔) 
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6.4.3: Fuzzy Attitude Stabilization Implementation Results 

From the results of Chapter 6.4.1 and Chapter 6.4.2, critical design specs were determined to 

ensure controller robustness.  These design specifications ultimately will determine if the 

chosen flight hardware will be effective in controlling the system.  The hardware design 

specifications are tabulated below: 

Parameter Max Spec. 

Total Time Delay (sec) 0.008 
IMU Noise (Deg) ±0.5 

Table 6-6: Flight Hardware Design Specifications 
 

The programming language chosen for the flight controller was Python.  In Appendix C, the 

python code can be seen for the Mamdani-type FLC controller developed in Chapter 6.1.  

Careful analysis of the flight hardware and software revealed that the total time delay of the 

system was significantly over the design specifications shown in Table 6-6.  The total observed 

time delay of the flight electronics was 0.02.  With this amount of time delay in the system, the 

simulation predicts the closed-loop system will be unsuccessful at converging to some desired 

reference angle.  To prove that simulations accuracy, the real closed-loop system was tested and 

compared to the simulation. 

Due to safety concerns of an unstable flying system, it was decided to constrain the 6 DOF 

hopper spacecraft simulator system and test only a single axis. The simple test rig can be seen in 

Figure 6-22.   
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Figure 6-22: Single Axis Test Stand 

 

By comparing the actual hopper simulator to the simulation with 0.02 second time delay, the 

simulation results were determined accurate.  The results of the experiment can be seen in 

Figure 6-23.  In the figure provided, the green data is for the simulation results, and the blue 

data set is for the actual simulator, the dotted line is the desired reference angle. 
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Figure 6-23: Simulation & Actual System Response 
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Chapter 7: Future Work  

7.1: Trajectory Control   

Due to the effectiveness of the fuzzy attitude controller, work began in developing a high level 

guidance and navigation system capable of moving the hopper spacecraft simulator between 

two points A and B, given some predefined trajectory; see Figure 7-1.   

 
Figure 7-1: 2-D Hop Trajectory Example   

 
 

To begin the developing of a trajectory controller, a “cascade” Mamdani-type FLC is proposed.  

A cascade control law is used to send a reference angle command to the attitude controller 

developed previously while controlling the vehicles altitude through throttle control. 

 
Figure 7-2: Cascade Fuzzy Trajectory Controller 
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Like the attitude controller, the cascade trajectory controller requires a single controller per 

translational coordinate (X,Y,Z).  For the purpose of developing a simplified control law for 

testing, a 2-D trajectory controller was developed.  The 2-D trajectory controller assumes that 

the hopper spacecraft will first rotate to a reference yaw angle, thus the vehicle is always in the 

direction of the desired new location.  This style of controller is similar to the controllers used by 

aircrafts, where the vehicle’s heading is kept pointing to the direction of its desired location.  

The signals shown in Figure 7-2 are defined as, 

Where: 

𝑟𝑇⃑⃑  ⃑(𝑡) = [𝑟𝑥(𝑡)   𝑟𝑦(𝑡)   𝑟𝑧(𝑡)]
𝑇

 

𝑝𝑇⃑⃑ ⃑⃑ (𝑡) = [𝑥(𝑡)   𝑦(𝑡)   𝑧(𝑡)]𝑇 

𝑒𝑇⃑⃑⃑⃑ (𝑡) = [𝑟𝑥(𝑡) − 𝑥(𝑡) 𝑟𝑦(𝑡) − 𝑦(𝑡) 𝑟𝑧(𝑡) − 𝑧(𝑡)]𝑇 

𝑢𝑇⃑⃑ ⃑⃑  (𝑡) = [𝑟𝜙(𝑡)   𝑟𝜃(𝑡)   𝑟𝜃(𝑡) ]
𝑇

 

𝛼 (𝑡) = [𝜙(𝑡) 𝜃(𝑡) 𝜓(𝑡)]𝑇 

𝑒𝛼⃑⃑⃑⃑ (𝑡) = [𝑟𝜙(𝑡) − 𝜙(𝑡) 𝑟𝜃(𝑡) − 𝜃(𝑡) 𝑟𝜓(𝑡) − 𝜓(𝑡)]𝑇 

𝑢𝛼⃑⃑ ⃑⃑  (𝑡) = [𝑢𝜙(𝑡) 𝑢𝜃(𝑡) 𝑢𝜓]𝑇 

Where the simple fuzzy trajectory controller is in the form: 

𝑟𝜃(𝑡) = 𝐹𝐿𝐶𝑋 (�̃�(𝑡) ∗ 𝑔𝑦,
𝑑�̃�(𝑡)

𝑑𝑡
∗ 𝑔�̇�) ∗ 𝑔𝑟𝜃

 

𝑟𝜓(𝑡) = sin−1 (
𝐵𝑦 − 𝐴𝑦

𝐵𝑥 − 𝐴𝑥
) 

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒(𝑡) = 𝐹𝐿𝐶𝑍 (�̃�(𝑡) ∗ 𝑔𝑍,
𝑑�̃�(𝑡)

𝑑𝑡
∗ 𝑔�̇�) ∗ 𝑔𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 
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And the pre-processing and post-processing gains were chosen as: 

 X Y Z 

𝒈𝒆 3 3 3 
𝒈�̇� 8 8 8 
𝒈𝒖 -0.1 -0.1 500 

 

From the cascade controller the following simulation results were obtained: 

 
Figure 7-3: Trajectory Control Simulation, Time Verse X 
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Figure 7-4: Trajectory Control Simulation, Time Verse –Z 

 

 
Figure 7-5: Trajectory Controller Stimulation, X Verse -Z 
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To similarly test the trajectory controller’s robustness, other trajectories were simulated.  For a 

purely parabolic trajectory, the following simulation results were obtained: 

 
Figure 7-6: Parabolic Trajectory Time Verse –Z 

 
 

 
Figure 7-7: Parabolic Trajectory X verse -Z 



77 
 

7.2: Trajectory Control Implementation 

To be able to successful implement the cascade trajectory controller described in the previous 

section, the flight electronics must be revisited.  As seen in Chapter 6, the design specifications 

required to ensure attitude stability were not met by the initial selection of flight electronics.  

Ultimately, without flight electronics capable of robustly controlling the vehicles attitude, a full 

GNC system will not be possible.  To ensure the required design specs are met, the flight control 

board should be replaced with a real-time control board.  One such board which seems ideal for 

this application is the C2000 real-time control device by Texas Instruments.  The C2000 is a 32-

bit microcontroller based on industry leading C28x CPU.  Not only is the C2000 control board 

designed for real time computing, it also can be programmed via Simulink directly.  Thus all the 

initial design work that was done could be directly imported and used as the control software.  

The C2000 will ultimately be able to effectively control the vehicles attitude by reducing the 

time delay, and through the use of Simulink, the amount of time required for control software 

development will also be decreased. 

 
Figure 7-8: C2000 LaunchPad 
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Appendix A: Bill of Materials  

Comprehensive Bill of Material & Mass Estimate 

Description Vendor QTY Cost/Unit 
Mass 

(g) 

Frame* See Frame BOM 1 $151.17 300 

MT2814 T-Motor 4 $65.90 120 

IMU Pololu 1 $130.00 6 

Qbrain HobbyKing 1 $29.92 112 

Pololu Board Pololu 1 $6.00 5 

Beaglebone Black Sparkfun 1 $45.00 80 

4s 25C Lipo ThunderPower 2 $62.99  197 

Total Cost $751.67 

Total Mass (g) 1377 

*From Solidworks 

 

Frame Bill of Material 

Description Vendor QTY Cost/Unit 
Mass 

(g) 

CF Square Tubing (750x6mm) HobbyKing 4 3.12 48 

Machined CF Plate Mcmaster 2 57.37 80 

M3 x 22 Cap Screw Mcmaster 1 6.59 - 

M3 Nut Mcmaster 1 13.98 - 

M3 Washer Mcmaster 1 1.76 - 

M3 Lock Washer Mcmaster 1 1.62 - 

Total 151.17 
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Appendix B: Manufacturing Drawings  
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Appendix C: Python Code 

C.1: Fuzzification Module 

1. # Brian Wisniewski   
2. # 5/14/2014   
3. # Fuzzification Module V-2   
4. class Fuzzify:   
5.     def __init__(self):   
6.         pass   
7.     def Fuzzy(self,e,ed,end_e,end_ed):   
8.         def eTrapN(self,x):   
9.             if x <= -.15:   
10.                 return 1   
11.             elif x > -.15 and x < 0:   
12.                 return x/float(-.15)   
13.             else:    
14.                 return 0   
15.    
16.         def eTrapP(self,x):   
17.             if x >= .15:   
18.                 return 1   
19.             elif x > 0 and x < .15:   
20.                 return x/float(.15)   
21.             else:   
22.                 return 0   
23.    
24.         def eTri(self,x,end_e):   
25.             #Assumes a symetric Trianguler memebership function   
26.             end_e=.15/1   
27.             if x >= -end_e and x < 0:   
28.                 return 1+x/float(end_e)   
29.             elif x >= 0 and x <= end_e:   
30.                 return 1-x/float(end_e)   
31.             else:   
32.                 return 0   
33.         eFuzzy=[eTrapN(self,e),eTri(self,e,end_e),eTrapP(self,e)]   
34.            
35.    
36.         def edTrapN(self,x):   
37.             if x <= -1.5:   
38.                 return 1   
39.             elif x > -1.5 and x < 0:   
40.                 return x/float(-1.5)   
41.             else:    
42.                 return 0   
43.    
44.         def edTrapP(self,x):   
45.             if x >= 1.5:   
46.                 return 1   
47.             elif x > 0 and x < 1.5:   
48.                 return x/float(1.5)   
49.             else:   
50.                 return 0   
51.    
52.         def edTri(self,x,end_ed):   
53.             #Assumes a symetric Trianguler memebership function   
54.             end_ed=1.5/1   
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55.             if x >= -end_ed and x < 0:   
56.                 return 1+x/float(end_ed)   
57.             elif x >= 0 and x <= end_ed:   
58.                 return 1-x/float(end_ed)   
59.             else:   
60.                 return 0   
61.         edFuzzy=[edTrapN(self,ed),edTri(self,ed,end_ed),edTrapP(self,ed)]   
62.    
63.         return eFuzzy, edFuzzy   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

C.2: Inference Module 

1. # Brian Wisniewski   
2. # 5/16/2014   
3. # Inference Engine Module V-1   
4. from numpy import zeros as ze   
5. from math import ceil   
6. class Inference:   
7.     def __init__(self):   
8.         pass   
9.        
10.     def Mnd(self,error,error_d): #Manmadi Inference engine   
11.         RULES = [[0,0,1],[0,1,2],[1,2,2]]   
12.         out=ze((4,2))   
13.         ind=0   
14.         Zer=[0]*4   
15.         Pos=[0]*4   
16.         Neg=[0]*4   
17.    
18.    
19.         for ii in range(0,len(error_d)):   
20.             if error_d[ii] > 0:   
21.                 for jj in range(0,len(error)):   
22.                     if error[jj] > 0:   
23.                         out[ind,0] = min(error_d[ii],error[jj])   
24.                         out[ind,1] = RULES[ii][jj]   
25.                         ind=ind+1   
26.                        
27.            
28.    
29.         for ii in range(0,4):   
30.             if out[ii,1]==0:   
31.                 Neg[ii]=out[ii,0]   
32.             if out[ii,1]==1:   
33.                 Zer[ii]=out[ii,0]   
34.             if out[ii,1]==2:   
35.                 Pos[ii]=out[ii,0]   
36.         OUT=[ceil(max(Neg)*10000)/10000,ceil(max(Zer)*10000)/10000,ceil(max(Pos)

*10000)/10000]   
37.         return OUT   
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C.3: Defuzzification Module 

1. # Brian Wisniewski   
2.    
3. # Defuzzification Module V-1   
4. class Defuzzify:   
5.     def __init__(self):   
6.         pass   
7.    
8.     def Defuzz(self,out):   
9.         N=out[0]   
10.         Z=out[1]   
11.         P=out[2]   
12.         if N>0:   
13.             a=-(-1-N*(-.85))   
14.             b=1   
15.             An=.5*N*(a+b)   
16.             xn=-1+(a**2+b**2+a*b)/(3*(a+b))   
17.         else:   
18.             An=xn=0   
19.         if Z>0:   
20.             a=2*((Z-1)*-.1)   
21.             b=.2   
22.             Az=.5*Z*(a+b)   
23.             xz=0   
24.         else:   
25.             xz=Az=0   
26.         if P>0:   
27.             a=(1-P*(.85))   
28.             b=1   
29.             Ap=.5*P*(a+b)   
30.             xp=1-(a**2+b**2+a*b)/(3*(a+b))   
31.         else:   
32.             xp=Ap=0   
33.    
34.            
35.         X=(xn*An+xp*Ap)/(An+Az+Ap)   
36.            
37.         return X   
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C.3: Fuzzy Control Processing Module 

1. from FUZZIFY_V2 import Fuzzify   
2. from INFERENCE import Inference as inf   
3. from DEFUZZIFY import Defuzzify   
4. from math import exp   
5.    
6. class Fuzzycontroller():   
7.     def __init__(self,desired):   
8.         #Normalize Desired Angle   
9.         self.desiredRoll   = .016*desired[0][0]   
10.         self.desiredPitch  = .016*desired[0][1]   
11.         self.desiredYaw    = .00555*desired[0][2]   
12.         self.desiredRolld  = .005*desired[1][0]   
13.         self.desiredPitchd = .005*desired[1][1]   
14.         self.desiredYawd   = .005*desired[1][2]   
15.         self.defuzz=Defuzzify()   
16.         self.fuzzy=Fuzzify()   
17.         self.inf=inf()   
18.    
19.    
20.    
21.     def control(self,data,throttle):       
22.         per_control_pitch=.01   
23.         per_control_roll=.01   
24.         per_control_yaw=0   
25.         offback=8   
26.         offleft=8   
27.         Blimit=1100   
28.    
29.    
30.         #Normalize IMU Data Angle   
31.         roll  =.016*data.roll   
32.         pitch =.016*data.pitch   
33.         yaw   =.0055555556*data.yaw   
34.    
35.         rolld  =.005*data.roll_d   
36.         pitchd =.005*data.pitch_d   
37.         yawd   =.005*data.yaw_d   
38.         if data.roll_d > 600 or data.roll_d < -600:   
39.             if data.roll_d > 600:   
40.                 rolld=3   
41.             else:   
42.                 rolld=-3   
43.         if data.pitch_d > 600 or data.pitch_d < -600:   
44.             if data.pitch_d > 600:   
45.                 pitchd=3   
46.             else:   
47.                 pitchd=-3   
48.         if data.yaw_d > 600 or data.yaw_d < -600:   
49.             if data.yaw_d > 600:   
50.                 yawd=3   
51.             else:   
52.                 yawd=-3   
53.    
54.    
55.    
56.         roll_e  = self.desiredRoll-roll   
57.         pitch_e = self.desiredPitch-pitch   
58.         yaw_e   = self.desiredYaw-yaw   



89 
 

59.    
60.         roll_ed  = self.desiredRolld-rolld   
61.         pitch_ed = self.desiredPitchd-pitchd   
62.         yaw_ed   = self.desiredYawd-yawd   
63.    
64.    
65.         eFuzzyRoll ,edFuzzyRoll  =self.fuzzy.Fuzzy(roll_e,roll_ed,.15,1.5)   
66.         eFuzzyPitch,edFuzzyPitch =self.fuzzy.Fuzzy(pitch_e,pitch_ed,.15,1.5)   
67.         eFuzzyYaw  ,edFuzzyYaw   =self.fuzzy.Fuzzy(yaw_e,yaw_ed,.15,1.5)   
68.         OUT=[0]*3   
69.         OUT[0]=self.defuzz.Defuzz(self.inf.Mnd(eFuzzyRoll,edFuzzyRoll))   
70.         OUT[1]=self.defuzz.Defuzz(self.inf.Mnd(eFuzzyPitch,edFuzzyPitch))   
71.         OUT[2]=self.defuzz.Defuzz(self.inf.Mnd(eFuzzyYaw,edFuzzyYaw))   
72.        
73.         error=[roll_e,pitch_e,yaw_e]   
74.         errorRate=[roll_ed,pitch_ed,yaw_ed]   
75.         # This Defines the PWM OUTPUT that will be sent to the motors   
76.         yaw=int(round(600*OUT[2]*per_control_yaw))   
77.    
78.         #Associated PWM Signal Sent to Motors   
79.         front=+int(amp*(round(per_control_pitch*600*OUT[1])))+yaw+throttle+Blimi

t-offback   
80.         back=-int(amp*(round(per_control_pitch*600*OUT[1])))-

yaw+throttle+Blimit+offback   
81.         left=+int(amp*(round(per_control_roll*600*OUT[0])))-

yaw+throttle+Blimit+offleft   
82.         right=-

int(amp*(round(per_control_roll*600*OUT[0])))+yaw+throttle+Blimit-offleft   
83.    
84.         PWMmot=[left,right,front,back]   
85.    
86.         return error, errorRate, OUT,PWMmot  
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C.4: Main Loop 

1. from fuzzyCONTROLLER import Fuzzycontroller    
2. from DATA import Data   
3. import time   
4. from UM6 import Imu   
5. from MOTOR import Motor   
6. import Adafruit_BBIO.UART as UART   
7. from DATA import Data   
8. from BLACK_BOX import Black_Box   
9. # Initialize Black Box   
10. bb = Black_Box()   
11. data = Data()   
12. bb.resetTime()   
13.    
14. desired=[[0,-.3,0],[0,0,0]]   
15. throttlemin=1000 #MAX throttle PWM signal 420   
16. throttlemax=1300   
17. data=Data()   
18. controller=Fuzzycontroller(desired)   
19.    
20. UART.setup("UART1")   
21. print 'A'   
22. imu=Imu('/dev/ttyO1')   
23. print 'B'   
24. imu.calibrate()    
25. UART.setup("UART2")   
26. motor = Motor('/dev/ttyO2')   
27. motor.arm()   
28. TEND=25   
29. start=time.time()   
30. flight=1   
31. mode='B'   
32. throttle=throttlemax   
33. start=time.time()   
34. Left  =1   
35. Right =5   
36. Front =3   
37. Back =2   
38. dtold=0   
39. e2=0;   
40. t2=0   
41. while flight ==1:   
42.     t1=t2   
43.     e1=e2   
44.     imu.stateUpdate(data)   
45.     t2=time.time()   
46.     bb.logData(data)   
47.     dt=t2-t1   
48.     error,errorRate,OUT,PWMmot=controller.control(data,throttle,e1,dt)   
49.     e2=error[1]   
50.    
51.     print error[1], errorRate[1]   
52.     #print data.pitch_d   
53.     #dtav=(dt+dtold)/2   
54.     #dtold=dtav   
55.     # Write PWM signal to proper channel   
56.     # motor.writeChannel(Left, PWMmot[0])   
57.     # motor.writeChannel(Right,PWMmot[1])   
58.     motor.writeChannel(Front,PWMmot[2])   
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59.     motor.writeChannel(Back, PWMmot[3])   
60.    
61.    
62.    
63.     if time.time()-start>TEND:   
64.         flight=0   
65.        
66. #print dtav        
67. motor.disarm()   
68.    
69. # Close Device   
70. motor.close()   
71.    
72. # Close Black Box   
73. bb.close()   
74.    
75. # Plot Graph   
76. #bb.plotGraph()   
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