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ABSTRACT 

 Graphing calculators made their first appearance in classroom settings in the early 

1980’s and have grown to have a valuable place in the instruction of mathematics.  The 

technology has advanced to a point where the calculators are more similar to software 

programs that have been available on the computer, but are far less expensive compared to 

the price of a computer and the accompanying software.  Many experts in the field of 

mathematics education advocate the use of graphing calculators.  In fact, the National 

Council of Teachers of Mathematics (NCTM) advocates the integration of graphing 

calculators into the classroom beginning at the elementary school level. 

 One of the areas of concern with the implementation of lessons in the classroom 

using graphing calculators is that not all instructors share the same pedagogical view on 

how the graphing calculators should be used and, therefore, do not use the graphing 

calculators in the same manner.  Since there are no standards for implementation, graphing 

calculator usage is varied from classroom to classroom.  It has been shown in studies 

discussed in this document that student performance in mathematics is linked to student 

ability to model mathematical situations graphically, numerically, and algebraically.  With 

this in mind, the graphing calculator activities Exploring the Relationship Between Average 

and Instantaneous Rates of Change with the TI-nspire CX Handheld and Exploring the 

Relationship Between Derivatives and Integrals with the TI-nspire CX Handheld were 

created to help students discover two major concepts in Calculus, the derivative and the 

integral. 

 The results presented in this document represent a small sample of students taking 

an introductory college- level Calculus course.  Although results appear to indicate that 
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student competency in graphical, numerical, and algebraic modeling, as well as 

technological competency, may be linked to student success in the graphing calculator lab 

activities, more research on a larger sample group of students will need to be completed to 

substantiate the results.  In informal discussions with students while they were completing 

the lab activities, many of the lower-performing students attributed their inability to 

complete the labs without assistance based on the fact that they were initially unable to link 

the graphical, numerical, and algebraic representation together to draw the correct 

conclusions.  When students had completed the labs and results were discussed as a group, 

this lower-performing group was able to see the connections between the different 

representations and was able to understand the concepts that were being explored.   

 Without the use of a graphing calculator, explorations like those presented in this 

document would be very difficult to implement.  The graphing calculator allows students 

to perform computations that would require a great deal of time and would detract from 

the overall purpose of the labs.  In addition, the data collection features on the graphing 

calculators allow students to explore data in the world around them, allowing them to make 

mathematical connections by focusing on topics that are important and meaningful to 

them.  The graphing calculators not only carry out mathematically difficult computations, 

which are often time-consuming, they also allow students to easily represent data 

graphically, numerically, and algebraically.  As the graphing calculator continues to make its 

way into the mathematics classroom and students are able to explore mathematical models 

in multiple representations, researchers are optimistic that student performance in 

mathematics will continue to improve. 
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THE ROLE OF THE GRAPHING CALCULATOR IN EDUCATION 

As a student of calculus in the late 1980’s and early 1990’s, my learning experience 

was one that seemed to mirror what is thought of as the “traditional approach” to learning 

calculus.  Success was determined, primarily, by the ability to perform symbolic 

manipulation to achieve the correct result.  Assignments consisted mainly of numerous 

problems designed to provide reinforcement of the given topic.  The ability to be 

successful at these tasks, and to receive high marks, did not necessarily require an in-depth 

understanding of the concepts being covered, but rather the procedures required to obtain 

the correct solution.  Samuels (2011, p.10) notes that although many students are able to 

maintain high marks employing this tactic, the conceptual understanding is lacking, which 

can cause additional difficulties in the continuing study of calculus.   

 With the onset of rapid changes in technology in the late 1980’s and early 1990’s, 

came changes in the way that calculus was being presented in the classroom.  The graphing 

calculator was first introduced in 1985 and has since become commonplace in the calculus 

classroom. As the graphing calculator made its way into the calculus curriculum, there were 

several factors that were of concern when considering the manner in which the device 

would be integrated into the traditional curriculum.  The three main concerns were 

accessibility to the graphing calculator, the manner in which the instructor integrated the 

graphing calculator into the curriculum, and the pedagogical concerns over the manner in 

which it had been observed that students tended to model the instructor’s method of 

solution, rather than seeking alternate methods of solution and approaches to problem 

solving on their own (Kastberg, 2005). 



4 
 

 As far as accessibility is concerned, graphing calculators are readily available in large 

chain stores and via the internet.  Texas Instruments and Casio are currently the largest 

competitors in the graphing calculator market.  The TI 84 graphing calculator model is 

widely available to students and is relatively affordable.  The calculator can be purchased 

new, with accompanying software in PC and Mac formats, for approximately $100.  In 

addition, free operating system updates are available for download via the internet.  As 

mentioned, several of the graphing calculator models can be purchased with accompanying 

software.  The software allows the user to represent the mathematical model under 

consideration graphically, numerically, and algebraically on the same screen.  This allows 

the user flexibility in problem solving.  It has also been shown that being well-versed in 

solving problems using various representations of a mathematical model is indicative of 

better performance in mathematics (Samuels, 2011. p.4). 

 The manner in which the graphing calculator is implemented into the calculus 

curriculum plays a significant role in the students’ ability to use the device effectively.  

Usage in calculus instruction ranges from the graphing calculators being used as a scientific 

calculator with a larger screen, to a highly-portable and affordable hand-held computer 

with mathematical programs built in.  Other than the NCTM standards, there are no other 

widely-accepted rules or recommended methods of integrating the technology, which could 

possibly account for this disparity.  Although the graphing calculator has been in existence 

for over twenty five years, there is no collection of standardized texts that have shown 

successful implementation over a long period of time. 
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 The graphing calculator is also integrated into calculus instruction in many different 

ways as well.  The manner in which the graphing calculator has been integrated into 

calculus instruction also manifests itself as a result of the instructor’s pedagogical approach 

to teaching calculus.   Its use varies from being a tool used to simplify numeric 

computations to a tool that is used to present the model under consideration using 

different representations.  Successful use of the graphing calculator in calculus instruction 

has seen it being used allow students to discover important concepts in calculus that 

originally had been too tedious to perform, and also to provide both graphical and 

symbolic representations of the model under consideration.  Trends in one representation 

of the model are able to be used to highlight trends in the other representations of the 

model.  This allows the connections between the different representations of the model to 

be used to enhance the student’s conceptual knowledge of the topic being discussed.  

Calculus instruction today generally includes students being given graphing calculator lab 

activities that encourage students to discover concepts using graphical, numerical, and 

algebraic representations of a mathematical model (Santos-Trigo & Reyes Rodríguez, 

2011). 

 Despite concerns about the place of the graphing calculator in calculus instruction, 

graphing calculators continue to make their presence known in mathematics instruction.  

Many new calculus texts have integrated graphical, numerical, and algebraic approaches to 

problem solving and have placed a greater emphasis on conceptual understanding as 

opposed to the rigors of symbolic manipulation (Waits & Demana, 1998).  In addition, 

students learning calculus in a setting that includes the integration of the graphing 
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calculators and technology have been found to possess more positive attitudes about 

learning calculus than students learning calculus in a setting that does not include the 

integration of technology into instruction (Samuels, 2011, p.4). 

 While it appears that the use of the graphing calculators in calculus instruction has 

continued to receive increasingly wide-spread support and acceptance, the manner in which 

the integration of the technology is implemented varies widely.  With graphing calculators 

being able to perform the majority of numeric computations, more time has been available 

to focus on conceptual development through exploration and discovery (Kissane, 1995).  

By focusing on problem solving techniques through multiple representations of 

mathematical models, students are able to develop more of a conceptual understanding of 

the model, than merely a procedural understanding.  This type of problem solving is more 

representative of the type of work that is done by mathematicians in the field (Samuels, 

2011, p.3).  The use of problem solving in calculus instruction also allows the student to 

see the usefulness of the skill being taught at the time that it is being presented, rather than 

as a skill-building exercise that will be used for future problem solving (Pomerantz & 

Waits, 1997).  The use of graphing calculators allows students to be a part of interactive 

learning.  Rather than sitting in a traditional lecture-style classroom, students are able to be 

actively involved in their own learning in a cooperative learning environment.  This setting 

allows students the opportunity to engage in discussion of problem solving strategies and 

encourages the exchange of ideas in a more relaxed setting (Wolfram).  Additionally, the 

instructor’s willingness to incorporate technology into the curriculum with a positive 

attitude has been shown to have a direct, positive correlation with a student’s success in 
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calculus (Samuels, 2011, pp.31-32).  The use of the graphing calculator in calculus 

instruction gives the student more responsibility in their own learning process.  Instead of 

receiving instruction in the classroom and processing the information on their own time, 

students are now subject to demonstrating proficiency during instructional time in the 

classroom (Samuels, 2011, p.35). 

 Perhaps the greatest advantage of the use of the graphing calculator in calculus 

instruction is the graphing calculator’s ability to represent data graphically, numerically, and 

algebraically.  Students that are able to link these representations of mathematical models 

using technology have also formed strong links between the representations in their minds 

(Samuels, 2011, p.35).  It has also been shown that the links between the different 

representations are made even stronger through applications to real-world situations.  With 

this in mind, two graphing calculator lab activities have been developed with the purpose 

of forming a strong conceptual knowledge of the topic being covered.  Each of the labs is 

focused on exploratory learning using graphical, numerical, and algebraic techniques of 

problem solving for each of the mathematical models being considered. 
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STUDENT ASSESSMENT IN CALCULUS USING EXPLORATORY GRAPHING 
CALCULATOR LAB ACTIVITIES 

 
 The remainder of this document will focus on these exploratory graphing calculator 

lab activities that have been designed to highlight the major concepts covered in an 

introductory college-level Calculus course.  The activities will involve graphical, numerical, 

and algebraic representations of mathematical models.  In addition, open-ended questions 

have been included as part of the activities to encourage students to summarize the results 

of the activities and to promote discussion and the exchange of ideas.  These reflective 

components of the activities will allow students the opportunity to review their method of 

solution, stream-line the process where possible, and learn to justify solutions both 

coherently and concisely. 

 The graphing calculator lab activities presented in this document are designed for 

use with the TI-nspire CX handheld.  This calculator is the latest graphing calculator 

released by Texas Instruments, and has been available for purchase by the public since late 

May of 2011.  The calculator is an updated version of the TI-nspire handheld.  Although 

the upgraded operating system is available for free download via the internet, the new TI-

nspire has a thinner design, as well as a color view screen with touchpad capabilities.  

Perhaps the most exciting feature of the new TI-nspire  CX handheld is its ability to import 

full color images to be analyzed.  The ease in which the images can be imported into the 

operating system allows for flexible analysis of real-world situations. The current average 

retail value of the TI-nspire CX handheld is $159.00 and includes the accompanying 

student software for PC or Mac platforms.  The price is comparable to popular cell phone 
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models, making it affordable to the general population.  In addition to being available in 

large retail stores, this model is also available for purchase via the internet.   

 Prior to beginning the graphing calculator lab activities, instructions need to be 

given on the usage of the graphing calculator and the basic features of the calculator that 

will be used during the lab activities.  The graphing calculator is intended to enhance 

learning, not to become the focus of the activities.  If students are not familiar with the 

basic functions of the calculator, the process of operating the graphing calculator can 

overshadow the concepts being explored.  Although integration of technology is 

recommended throughout mathematics instruction, many students are not fluent in the 

basic mechanics of the technology.  Prior to beginning the graphing calculator lab activities, 

students are to complete additional activities that review the technical aspects of the labs.  

The following section contains “Tech Sheets” which have been designed to demonstrate 

each of the calculator processes that will be used in the graphing calculator lab activities.  

In practice, students are to complete the corresponding Tech Sheets required for each of 

the graphing calculator lab activities prior to completing the activities themselves.  The 

Tech Sheets include instruction on how to graph functions, import images, create lists of 

data and spreadsheets with the data capture feature available on the graphing calculator, 

perform regression analysis, refine regression analysis with the quick regression feature, and 

collect data using the Vernier EasyTemp temperature probe. 

 Each of the subsequent graphing calculator lab activities has been presented in a 

calculus class on multiple occasions.  The lab activities that are being presented have been 

refined over a several year period of time based on analysis of student performance, 
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analysis to determine that the target concept was effectively understood, as well as 

consideration of student and teacher reflective components, to ensure that the desired 

outcome has been achieved.  Each of the lab activities has been designed with the goal of 

presenting each of the concepts graphically, numerically, and algebraically, in an effort to 

form cohesive bonds between the representations.  It has been the goal of the lab activities 

to foster these links between the representations in an effort to provide a stronger 

conceptual knowledge base for the topics being addressed. 

 In addition to the tech sheets and the graphing calculator lab activities, a 

comprehensive unit overview is provided as a resource for instruction located in Table 1.  

Within the Unit Lesson Plan the instructor is provided with a Unit Overview, Essential 

Questions and Enduring Understandings, Evidence of Learning, and a Lesson Plan outline. 
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Table 1 
Introduction to Calculus 

Exploring Relationships to Develop Critical Concepts 

 

 

 

 

Unit Overview  

Content Area: Calculus 

Unit Title: Introduction to Calculus: Exploring Relationships to Develop Critical 

Concepts 

Target Course: Calculus I 

Unit Summary: The students will be able to reason mathematically using algebraic, 

numeric, and graphical representations to discover major concepts in calculus.  These 

topics include the relationship between average and instantaneous rates of change (the 

derivative) and The Fundamental Theorem of Calculus (the integral). 

21st Century Themes:  

Critical Thinking and Problem Solving 

Creativity and Innovation 

Communication and Media Fluency 

Collaboration, Teamwork and Leadership 

Accountability, Productivity and Ethic 
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Unit Essential Questions 

 
Unit Enduring Understandings 

 How do we analyze and 
understand the relationships 
between graphical, numerical, 
and algebraic representations of 
mathematical models? 

 Modeling involves analyzing real-world 
situations, representing those situations 
graphically, numerically, and 
algebraically, analyzing and testing the 
mathematical model for reasonableness. 

 How can data analysis tools be 
utilized most effectively and 
efficiently? 

 Use of calculator and computer 
technologies for analyzing data 
graphically, numerically, and 
algebraically requires critical thinking to 
determine which tool will provide the 
most appropriate results in the most 
efficient manner. 

 How do begin to solve a 
problem using mathematical 
models? 

 How do you identify 
appropriate problem solving 
strategies for the given 
situation? 

 How do you assess that you 
have accurately solved the 
problem in question? 

 Problem solving skills require: 
o Knowledge of problem solving 

strategies 
o Mathematical content 

knowledge appropriate to the 
given topic 

o Appropriate self-assessment to 
determine that the most 
effective solution has been 
identified 

Unit Learning Targets 
 

 Focus on appropriate use of technology to solve problems. 

 Understand patterns, relations and functions. 

 Using generalized patterns, create explicitly defined models, including appropriate 
notation. 

 Construct suitable mathematical models to represent a situation focusing on data. 

 Draw conclusions about a situation using a mathematical model. 

 Use appropriate units and scales when graphing on the Cartesian plane. 

 Understand that there are multiple ways to solve a problem and apply those 
methods to real-world situations. 

 Monitor problems solving, assess achievement of goals, and alter strategies, where 
necessary. 

 Formulate extensions to a problem or model a new situation to predict an 
outcome. 

 
 
 
 



13 
 

Evidence of Learning  

Summative Assessment: 
Students will complete two graphing calculator lab activities with accompanying Tech 
Sheets to discover two major concepts in calculus: the relationship between average and 
instantaneous rates of change (the derivative) and The Fundamental Theorem of Calculus 
(the integral).  Students will model data and look for patterns amongst the results.  They 
will formulate hypotheses to describe the patterns they have discovered (see scoring 
rubrics). 
 
Equipment needed: 
Students will need access to a TI-nspire CX Handheld graphing calculator or 
corresponding software,Vernier EasyTemp temperature probe, a computer, and Microsoft 
Office. 
 
Instructor Resources: Same as student 
 
Internet: Websites containing free downloadable trail software, if necessary 
 
Books: Mathematical texts as resources found at the local library and research centers 
 
Formative Assessments: 
 

 Graph equations using the TI-nspire graphing calculator or the accompanying 
software. 

 Specify the appropriate domain and range for equations being graphed. 

 Import images using the TI-nspire. 

 Capture data from imported images using the TI-nspire. 

 Perform various types of regression analysis on sample data collected using the TI-
nspire. 

 Collect data using the Vernier Easy-Temp temperature probe and the TI-nspire. 

 Calculate the average rate of change between sets of points. 

 Estimate the instantaneous rate of change between sets of points. 

 Calculate the area of known geometric figures. 

 Estimate area under a curve. 
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Lesson Plans 

Lesson Timeframe 

Lesson 1: Exploring the Relationship 
Between Average and Instantaneous 

Rates of Change with the TI-nspire CX 
Handheld 

Tech Sheet: “Data Collection Using the 
Vernier EasyTemp Temperature Probe” 

 

35 minutes 

Lesson 2: Exploring the Relationship 
Between Average and Instantaneous 

Rates of Change with the TI-nspire CX 
Handheld 

Tech Sheet: “Regression Analysis with 
the TI-nspire CX Handheld” 

 

45 minutes 

Lesson 3: Exploring the Relationship 
Between Average and Instantaneous 

Rates of Change with the TI-nspire CX 
Handheld 

Complete Part I of Graphing Calculator 
Lab Activity 

 

45 minutes 

Lesson 4: Exploring the Relationship 
Between Average and Instantaneous 

Rates of Change with the TI-nspire CX 
Handheld 

Complete Part II of Graphing 
Calculator Lab Activity 

 

45 minutes 

Lesson 5: Exploring the Relationship 
Between Derivatives and Integrals 
Using the TI-nspire CX Handheld 

Tech Sheet: “Graphing Functions with 
the TI-nspire CX Handheld” 

 

30 minutes 

Lesson 6: Exploring the Relationship 
Between Derivatives and Integrals 
Using the TI-nspire CX Handheld 

Tech Sheet: “Importing Images with the 
TI-nspire CX Handheld” 

 
 

35 minutes 
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Lesson 7: Exploring the Relationship 
Between Derivatives and Integrals 
Using the TI-nspire CX Handheld 

 Tech Sheet: “Creating Lists Using Data 
Capture on an Image with the TI-nspire 

CX Handheld” 
 

45 minutes 

Lesson 8: Exploring the Relationship 
Between Derivatives and Integrals 
Using the TI-nspire CX Handheld 

Complete Part I of Graphing Calculator 
Lab Activity 

 

45 minutes 

Lesson 9: Exploring the Relationship 
Between Derivatives and Integrals 
Using the TI-nspire CX Handheld 

Complete Part II of Graphing 
Calculator Lab Activity 

 

45 minutes 

Lesson 10: Student Reflective 
Component 

Complete Student Reflective 
Component for Graphing Calculator 

Lab Activities 
 

45 minutes 
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TECH SHEET – GRAPHING FUNCTIONS 
WITH THE TI-nspire CX HANDHELD 

 
 This tech sheet is designed to provide the user with instruction on how to graph 

functions using the TI-nspire CX handheld graphing calculator.  Work through the tutorial 

and complete the graphing exercises, noting any additional information on this sheet that 

you found helpful.  This sheet should be completed prior to beginning the accompanying 

graphing calculator lab activity. 

 To begin, turn the calculator on and the home screen will appear. Using the 

arrow keys or the touchpad, scroll down to highlight the graphing icon as 

indicated below in Figure 1. 

 

Figure 1.  Screen shot of home screen from TI-nspire CX Handheld. 

 Once the graphing icon has been selected, press the “enter” key and the main 

graphing screen will appear.  Using the keypad, enter a function for “f1(x)=” 

and then press the “enter” key.  The function will appear on the screen as 

shown in the diagram below.  For this example, use f1(x)=x2.  The screen image 

appears in Figure 2. 
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Figure 2.  Screen shot of graph of f1(x) from TI-nspire CX Handheld. 

 In many mathematical models, more than one function needs to be viewed on 

the same set of axes.  In this case, the user may enter multiple equations by 

selecting the arrows on the bottom left-hand side of the screen and then 

selecting the “enter” key.  Once this has been completed, a blank entry line will 

appear for the next function number that can be entered.  The user must input 

the function using the keypad.  The variables “x”, “y”, and “z” may be selected 

directly from the keypad also.  To view all of the functions that appear on the 

screen, the user should highlight the arrows that appear on the bottom right-

hand side of the screen and then press the “enter” key.  Figure 3 shows the 

functions f1(x) = x2 and f2(x) = x2-2. 



18 
 

 

Figure 3.  Screen shot of f1(x) and f2(x) from TI-nspire CX Handheld. 

 In addition to entering functions on the graphing screen, the axes will need to 

be adjusted based on the functions that are being analyzed.  To adjust the axes, 

select the “menu” key, followed by selecting “4: Window/Zoom” and followed 

by “1: Window Settings”.  Enter the desired domain and range, and select 

“OK” to return to the graphing window with the adjusted axes.  The screen 

shot in Figure 4 shows the key sequence for adjusting the axes. 

 

Figure 4.  Screen shot of Window/Zoom menu from TI-nspire CX Handheld. 
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 The final graph of f1(x) = x2 and f2(x) = x2-2 with a domain of [-10,10] and a 

range of [-10,10] appears in Figure 5 below. 

 

Figure 5.  Screen shot of f1(x) and f2(x) with adjusted window from TI-nspire CX 
Handheld. 

 Within the “4: Window/Zoom” menu are other options for setting the domain 

and range including, but not limited to, trigonometric, parametric, and polar 

graphing options. 

EXERCISES 

 As a check, graph the following functions with the given domain and range.  The 

final results are shown below the exercises.  If you experience any difficulty producing the 

graphs, be sure to ask for assistance prior to beginning the accompanying graphing 

calculator lab activity. 

1. Graph f1(x) =   ,  f2(x)=    , and f3(x)=      in a standard viewing window. 

2. Graph f1(x) = sin(x),  f2(x)=sin(2x), and f3(x)=sin(.5x) in a trigonometric viewing 

window. 
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SOLUTIONS 
TECH SHEET – GRAPHING FUNCTIONS 

WITH THE TI-nspire CX HANDHELD 
 

Exercise #1 

 

Figure 6.  Screen shot of f1(x), f2(x), and f3(x) from Exercise 1. 

Exercise #2 

 

Figure 7.  Screen shot of f1(x), f2(x), and f3(x) from Exercise 2. 
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TECH SHEET – IMPORTING IMAGES  
WITH THE TI-nspire CX HANDHELD 

 
This tech sheet is designed to provide the user with instruction on how to import 

images using the TI-nspire CX handheld graphing calculator.  Work through the tutorial 

and complete the accompanying exercises on importing images, noting any additional 

information on this sheet that you found helpful.  This sheet should be completed prior to 

beginning the accompanying graphing calculator lab activity. 

Images may be imported into the TI-nspire CX handheld graphing calculator, but 

several steps must be taken in order to complete the process.  To begin, the image that is 

to be downloaded onto the handheld must be copied onto the computer that contains the 

accompanying TI-nspire CX software.  Images must be converted to the file format that is 

compatible with the handheld (*.tns).  Images are unable to be imported to the handheld 

without completing the conversion process. 

 To import an image onto the TI-nspire CX handheld, the file must be in one of 

the following formats: “*.jpg”, “*.jpeg”, “*.bmp”, or “*.png”. 

 From the main screen of the accompanying software, choose the graphing icon.  

The graphing window must be open to import an image to be analyzed. 

 To select an image from the computer, select “Insert” from the main tool bar, 

select “Image”, and then locate the file to be imported.  Once the file has been 

selected, choose “File” from the main tool bar, and then “Save as”.  The 

document will be saved in the correct file format (*.tns) as the default file 

format.   
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 In order for the file to be shared with other CX handhelds, connect the 

handheld with the associated USB cable to the computer that is being used with 

the accompanying TI-nspire CX software. 

 Choose the “Documents” option under the main tool bar and select the 

“Handheld + SideScreen” viewing option.  Open the content explorer, which is 

the icon with the file folder and magnifying glass.  The image below in Figure 8 

shows the Content Explorer open, the image file in “*.tns” form, and an 

attached CX handheld. 

 

Figure 8.  Screen shot of the Sydney Harbour Bridge in the TI-nspire CX software. 

To transfer the image file to the CX handheld, simply drag and drop the selected file to the 

handheld directory and the image will be transferred. 
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EXERCISE 

 As an exercise, locate an image to be imported onto the TI-nspire CX handheld 

using the procedure described above.  Your performance on this task will be assessed by 

means of an opening activity one day prior to beginning the accompanying graphing 

calculator lab activity. You will receive an e-mail at the beginning of class that will contain 

the file to be imported onto your CX handheld.  Without using this tech sheet for 

reference, you will have to download the file to your computer, open and save the file 

correctly in the TI-nspire CX software, and present the file on the handheld before the 

allotted time has expired.  If you experience any difficulty importing images, be sure to ask 

for assistance prior to the designated assessment. 
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TECH SHEET – CREATING LISTS USING DATA CAPTURE ON AN IMAGE 
WITH THE TI-nspire CX HANDHELD 

 
 This tech sheet is designed to provide the user with instruction on how to create 

lists of data using the data capture feature with the TI-nspire CX handheld graphing 

calculator.  Work through the tutorial and complete the associated exercises, noting any 

additional information on this sheet that you found helpful.  This sheet should be 

completed prior to beginning the accompanying graphing calculator lab activity. 

In many mathematical models, the use of real-world data has been restricted due to 

the fact that the data has been very difficult to obtain.  The CX handheld has a feature that 

will allow data to be collected from the image that is being considered.  To obtain accurate 

information, however, the user should be sure to include the correct scale prior to 

collecting data from the image.  This can be done by adjusting the axes and the scale of the 

image.  Due to a drag and drop feature, the axes can be moved, and rescaled, to a 

convenient location prior to beginning the data capture.  This will allow the user to easily 

specify known measurements to produce data that accurately describes the model.  For 

example, the user may wish to use the x-axis as ground level or have the y-axis bisect the 

object or image being analyzed.  It is worth being noted that although mathematical models 

can be analyzed in many ways, the user’s prior knowledge of mathematics can often 

produce models that are less complicated to analyze after making adjustments than those 

that are analyzed without adjustments being made.  

 To begin, turn the calculator on and the home screen will appear. Using the 

down arrow or the touchpad, scroll to highlight the graphing icon. 
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 Once the graphing icon has been selected, press the “enter” key and the main 

graphing screen will appear.  Select “My Documents” on the main screen and 

then select the image file to be opened.  The image that will be used in this 

example is the image of a bridge.   At this point the selected image will appear 

on the screen of the CX handheld as shown in Figure 9. 

 

Figure 9.  Screen shot of Sydney Harbour Bridge from TI-nspire CX Handheld. 

 Once the selected image appears on the screen of the CX handheld, select the 

“menu” key, followed by “7: Points & Lines”, and then “1: Point”.  The 

following screen image, shown in Figure 10, should appear prior to selecting 

the “1: Point” option. 
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Figure 10.  Screen shot of Points & Line Menu from TI-nspire CX Handheld. 

 Once the option has been selected, an icon will be attached to the cursor.  To 

attach the point on the image, place the point in the desired location and click 

to fix the location.  Of note is that the point that is being selected for the initial 

point of the data capture may not be located initially on either the horizontal or 

vertical axes.  The point may be moved after fixing it in the desired location but 

before variable names are assigned.  Once the initial point has been selected, 

the point must be labeled. 

 To label the point with its coordinates, select “menu”, “1: Actions”, and “7: 

Coordinates and Equations” as shown on the screen below in Figure 11. 
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Figure 11.  Screen shot of Actions Menu from TI-nspire CX Handheld. 

 After selecting this option, coordinates will be associated with the point.  For 

this example, select a point on the outline of the image that is slightly above the 

negative x-axis.  Once the coordinates have been assigned, variable names must 

be created for the ordered pair so that values generated during data capture can 

be properly stored.  To assign variable names to the ordered pair, use the touch 

pad in the center of the CX handheld to highlight the ordered pair.  Select the 

“var” key, then “1: Store Var”, and type in the variable name.  Repeat the 

process to assign a variable to the second coordinate.  Figure 12 shows the 

screen image that appears when the variable names are being assigned.  Once 

both of the variable names have been assigned, the data capture of the points 

can begin.  The data for this exercise will be obtained without applying any 

adjustment or scaling of the axes. 
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Figure 12.  Screen shot of Sydney Harbour Bridge with coordinates from TI-nspire CX 
Handheld. 

 Select the home key on the key pad to return to the main menu screen.  Select 

the “Lists and Spreadsheets” icon by highlighting the icon and pressing the 

“enter” key.  Using the touch pad, highlight a formula cell, which is any cell that 

is highlighted gray in the row above row 1.  The formula cell row is the row 

that is marked with a diamond as the row number.  

 The next step in the process will involve assigning the variable names of the 

data that will be captured to the columns.  The data capture feature will take 

data in the form of ordered pairs from the image and directly place it in the 

columns assigned to each of the variables.  For each variable that is selected, a 

new column must be designated to receive the data.  To assign the data from 

the first coordinate to column 1, perform the following key strokes while the 

appropriate formula cell is highlighted.  Select the “menu” key, then “3: Data”, 

“2: Data Capture”, and finally “1: Automatic”.  This sequence requires that a 

variable name is assigned to the column.  The variable names assigned to the 

ordered pair in this example are “xcoord” and “ycoord”.   This process must be 
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repeated for the second coordinate.  The sequence of options for data capture 

that will bring up the screen that requires the variable name entry is seen in 

Figure 13. 

 

Figure 13.  Screen shot of Automatic Data Capture Menu from TI-nspire CX Handheld. 

 Using the touchpad, return to the document page that contains the image from 

which the data is to be captured.  Highlight the point that was marked earlier 

that is to be used as the starting point of the data capture procedure.  To 

highlight the initial point, use the touch pad to arrow over to it and then press 

the center of the touchpad to select it.  At this point the hand icon will change 

to a small set of axes.  Using the “ctrl” key simultaneously with the center of 

the touch pad, the axes icon should change to a closed hand.  At this point, use 

the closed hand icon to trace over the part of the image that will be used in the 

mathematical model being studied.  In this case, trace over the outline of the 

bridge.  As the closed hand icon is moved from one side of the screen to the 

other, you will see the values of the ordered pair changing on the screen as the 

movement is occurring.  This is an indication that the data capture procedure is 
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working correctly.  The screen capture created during the data capture 

procedure and the list of data that was generated during the data capture 

procedure can be seen in Figure 14 and Figure 15, respectively.  It is important 

to note that the data capture feature is a type of free-hand data collection and 

requires that the part of the image that is being modeled be traced with as 

much accuracy as possible.  It is imperative that great care be taken when 

tracing the image to provide the most accurate data possible.  The data from 

the data capture procedure is now in list form in the document that contains 

the image.   

  

Figure 14.  Screen shot of Sydney Harbour Bridge during Data Capture from TI-nspire CX 
Handheld. 
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Figure 15.  Screen shot of Data Capture lists from TI-nspire CX Handheld. 

EXERCISE 

As a check, import the image of the sunset sent to you via e-mail onto your CX 

handheld and complete the process above by placing the origin in the center of the sunset 

and capturing all data points that are located above the x-axis.  While no two sets of data 

points from the data capture procedure will be the same, check your results with the 

solution below to verify that you have accurately completed the process.  If you experience 

any difficulty producing the lists, be sure to ask for assistance prior to beginning the 

accompanying graphing calculator lab activity. 
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SOLUTION 
TECH SHEET – CREATING LISTS USING DATA CAPTURE ON AN IMAGE 

WITH THE TI-nspire CX HANDHELD 

 The figure below shows the image of the sunset with the axes moved to the 

approximate center of the setting sun.  To move the axes, click a spot on the 

image, select the “ctrl” key and then click once on the center of the touch pad.  

At this point there will be a closed hand located on the screen.  By moving the 

icon on the image, the location of the axes may be readjusted as seen in Figure 

16 below. 

 

Figure 16.  Screen shot of Sunset with initial point labeled for Data Capture from TI-nspire 
CX Handheld. 

 Once the axes have be adjusted, place a point on the outline of the sun and 

collect the required data using the automatic data capture feature in the 

spreadsheet application.  The figure below contains the data generated from the 

automatic data capture.  Since the process may vary slightly due to the nature of 

the data capture technique, the lists may show slight differences in value.  Be 

sure that the data that was obtained is reasonably similar to the data in Figure 

17 below. 
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Figure 17.  Screen shot of Data Capture lists for Exercise from TI-nspire CX Handheld. 
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TECH SHEET – REGRESSION ANALYSIS 
WITH THE TI-nspire CX HANDHELD 

 
 This tech sheet is designed to provide the user with instruction on how to perform 

regression analysis with the TI-nspire CX handheld graphing calculator.  Work through the 

tutorial and complete the associated exercises, noting any additional information on this 

sheet that you found helpful.  This sheet should be completed prior to beginning the 

accompanying graphing calculator lab activity. 

Analyzing real-world data requires data collection and analysis.  To find trends in 

the data to describe the model under consideration, regression analysis is used.  By 

examining raw data, regression analysis is a useful tool to find an equation to model what is 

occurring.  By finding an appropriate equation to model the data, predictions can be made 

about future outcomes.   An accurate model can provide the user with valuable 

information about the scenario being analyzed.  Once the data can be described by a 

function, analyses can be performed to determine critical information about the model that 

describes how the real-world scenario is performing. 

 In order to perform regression analysis using the CX handheld, the data being 

analyzed must appear in a “Lists & Spreadsheets” document.  The user may 

generate data using the data capture feature or import data from a computer.  

To open an existing file on the CX handheld, highlight “My Documents”, use 

the touchpad to highlight the file, and then use the “enter” key to select the file.   

Using the touch pad, select the sheet of the document that contains the list 
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data.  For this example, the data obtained in the tech sheet on automatic data 

capture will be used.  A screen shot of the data is given in Figure 18 below. 

 

Figure 18.  Screen shot of Data Capture lists for Regression Tech Sheets from TI-nspire CX 
Handheld. 

 Now that the “Lists & Spreadsheets” window has been opened, highlight the 

formula cell in column A, select the “menu” key, “4: Statistics”, and “1: Stat 

Calculations”.  The resultant screen image appears in Figure 19 below. 

 

Figure 19.  Screen shot of Statistics Menu from TI-nspire CX Handheld. 

Next, select the type of regression analysis.  For this example, the part of the image 

that the data capture was used on resembles a quadratic function.  Therefore, select 
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option “6: Quadratic Regression”.  In order to determine the accuracy of the 

regression analysis, the correlation coefficient or the coefficient of determination 

should be reviewed.  Once the regression type has been selected, the corresponding 

regression window will open.  In the case of the quadratic regression, fill in the 

appropriate columns from the lists on which the regression analysis is to be 

performed.  The regression data in the example appears in columns A and B in the 

list and the regression equation will be saved to f1(x) on the graphing screen of the 

document.  Saving the regression equation directly to the graphing screen 

containing the image being analyzed allows for the equation to be graphed in an 

overlay fashion directly on the image.  This allows for a visual check of the 

regression equation as a model of the data as well as allowing the CX handheld 

feature of a “quick regression” to be used.  This feature will be detailed later in the 

tech sheet.   The resultant screen image for having selected Quadratic Regression 

and contains the information necessary to perform the regression analysis on the 

data from the sunset automatic data capture is seen in Figure 20.   

 

Figure 20.  Screen shot of Quadratic Regression Menu from TI-nspire CX Handheld. 
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 With the regression analysis being completed, the regression equation will 

appear on the graphing screen in f1(x), as was coded on the Quadratic 

Regression window.  At the top of the document, select the sheet containing 

the graphing screen and highlight f1(x), being sure to highlight the entire 

equation and select the “enter” key.  The screen image containing the graph of 

the regression equation and the original image is shown in Figure 21 below. 

 

Figure 21.  Screen shot of Sunset with Regression Equation Overlay from TI-nspire CX 
Handheld. 

 The original task was to find an equation that modeled the portion of the 

sunset that is above the x-axis after the axes had been adjusted by placing the 

origin at the approximate center of the setting sun.  As can be seen from the 

quadratic regression in the screen image above, the equation seems to model 

the image well only on part of the graph.  The quadratic equation produced 

through the regression analysis appears to need a horizontal shift as well as a 

horizontal stretch to model the data more accurately.  The TI-nspire CX has a 

feature that performs a type of quick regression by allowing the user to grab the 

graph of the regression equation and move it to create a better fit to the model.   
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 To use the quick regression, simply select the “ctrl” key followed by touching 

the center of the touchpad.  This will produce the closed-hand icon which 

allows the graph of the function to be moved to allow for a better fit of the 

regression equation to the data obtained using the data capture feature.  Figure 

22 shows the original image with an overlay of the graph of the updated 

regression equation, which is now available for use in any further analysis of the 

model. 

 

Figure 22.  Screen shot of Sunset with Quick Regression Equation Overlay from TI-nspire 
CX Handheld. 
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EXERCISE 

As a check, import the file sent to you via e-mail containing the image of a flower 

and the associated data that was obtained by performing an automatic data capture.  Using 

the list data perform an appropriate regression analysis on the portion of the flower that is 

above the x-axis, write the regression equation to f1(x), overlay the regression equation 

onto the image, and perform a quick regression to fine-tune the originally calculated 

regression equation. If you experience any difficulty producing the appropriate regression 

equation, be sure to ask for assistance prior to beginning the accompanying graphing 

calculator lab activity. 
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SOLUTION 
TECH SHEET – REGRESSION ANALYSIS 

WITH THE TI-nspire CX HANDHELD 

 The image of the flower that you received with a set of axes superimposed on 

the image can be seen in Figure 23.   The portion of the outline of the tulip that 

will be analyzed is on the interval [-1.89, 1.01]. 

  
 

Figure 23.  Screen shot of Tulips from TI-nspire CX Handheld. 

 The file also contains another sheet containing the lists that were generated 

using the automatic data capture procedure to collect data on the outline of the 

flower that is on the designated interval.  Sinusoidal Regression was chosen to 

model the data for this solution.  The figure below is the final result of 

performing a sinusoidal regression on the captured data on the given interval.  

The regression equation below in Figure 24 is the result of a quick regression, 

or transformation, of the original regression equation.   
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Figure 24.  Screen shot of Tulips with Regression Equation Overlay from TI-nspire CX 
Handheld. 

 There are two notes to be made in regards to performing regression analysis 

using the CX handheld.  The first note is in regards to the quick regression 

feature.  This feature on the CX handheld is very useful, although it is only 

available with the following regression analyses: linear, quadratic, exponential, 

logarithmic, sinusoidal, and cosinusoidal functions.  The second note pertains 

specifically to sinusoidal and cosinusoidal regression.  When performing these 

types of regression analysis it is important to note that the approximate period 

should be entered in the “Sinusoidal Regression” dialog box in the “Period” 

field even though the required field is optional.  If the period is not entered, 

there is a possibility that a “Singular Matrix Error” message will appear. 
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TECH SHEET – DATA COLLECTION USING THE VERNIER EASYTEMP 
TEMPERATURE PROBE WITH THE TI-nspire CX HANDHELD 

 
This tech sheet is designed to provide the user with instruction on how to collect 

and analyze data using the Vernier EasyTemp temperature probe with the TI-nspire CX 

handheld graphing calculator.  Work through the tutorial and complete the associated 

exercises, noting any additional information on this sheet that you found helpful.  This 

sheet should be completed prior to beginning the accompanying graphing calculator lab 

activity. 

In many mathematical models, the use of real-world data has been restricted due to 

the fact that the data has been very difficult to obtain.  For this experiment, the 

temperature of a liquid will be collect, recorded, and analyzed using a temperature probe 

that attaches directly to the CX handheld.  The CX handheld has built-in software that is 

compatible with the temperature probe.  This Tech Sheet will familiarize the user with the 

features of the data collection software as it relates to the temperature probe. 

 To begin, turn the calculator on and the home screen will appear. Using the 

down arrow or the touchpad, scroll down to highlight the “Add Vernier 

DataQuest” icon. 

 Select the “enter” key and a document will open in the DataQuest application 

format as shown in the following screen image in Figure 25. 
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Figure 25.  Screen shot of DataQuest home screen from TI-nspire CX Handheld. 

 Once the screen above appears, attach the temperature probe to the CX 

handheld and wait for the current temperature to appear.  Once the 

temperature appears, the probe is ready to begin the data collection process. 

 For this experiment data will be collected by taking a glass of water at room 

temperature, filling it with ice, and collecting temperature data as the water 

cools.  The probe is to be placed initially into the cup without ice.  Once the 

probe has been inserted, add ice and being collecting data.   

 To prepare for the data collection select the “menu” key, followed by “1: 

Experiment”, and “8: Collection Setup”.  This series of keystrokes is shown in 

the screen image below in Figure 26. 
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Figure 26.  Screen shot of Experiment Menu from TI-nspire CX Handheld. 

 After the series of keystrokes above has been completed, select the “enter” key 

to enter parameters for the collection setup.  For this example, data collection 

should be coded to take place every second for 300 seconds. 

 Once the glass of water and ice have been set up, insert the probe into the 

water, add ice, and select the “menu” key, “1: Experiment”, and “2: Start 

Collection”.  Since the data collection was coded to run for 300 seconds, the 

process will stop on its own.  If, however, the experiment needs to be stopped 

for any reason, select the “menu” key, “1: Experiment”, and “2: Stop 

Collection”.   

 When the experimental data collection with the temperature probe is complete, 

the CX handheld screen should contain a plot of the raw data that was 

collected.  In addition, by selecting the “Table View” icon, the data from the 

collection will be presented in list form. 

 The figure below contains the data generated from the temperature probe’s 

automatic data capture feature in “Graph View”.  Since the process may vary 
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slightly due to the nature of the amount of water, initial water temperature, and 

amount of ice added, the graphs may show slight differences in value.  Be sure 

that the data that was obtained is reasonably similar to the data in the graph 

below in Figure 27. 

 

Figure 27.  Screen shot of Ice Water Data Collection plot from TI-nspire CX Handheld. 

 If you experience any difficulty performing the data collection procedure with 

the temperature probe, be sure to ask for assistance prior to beginning the 

accompanying graphing calculator lab activity. 
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EXPLORING THE RELATIONSHIP BETWEEN 
AVERAGE AND INSTANTANEOUS RATES OF CHANGE 

WITH THE TI-nspire CX HANDHELD 
 

 In this activity, the concepts of average and instantaneous rates of change will be 

analyzed in an effort to show the connection between the two rates.  The concepts will be 

explored with graphical, numerical, and algebraic techniques in an effort to develop a way 

of calculating an instantaneous rate of change exactly, as opposed to calculating it through 

estimation techniques.   

 The relationship between average and instantaneous rate of change will be analyzed 

using data collected with the TI-nspire CX handheld.  The data will result from placing a 

temperature probe in boiling water, until the temperature stabilizes, and data capture will 

begin when the temperature probe is removed and placed directly into a cup of ice water.  

The data will be captured using a temperature probe attachment to the CX handheld that 

collects the data and places it in a “Lists and Spreadsheets” document.  Follow the 

procedures below carefully, completing the required tasks and preparing any tables and 

plots that are required.  Once the activity has been completed, be sure to download all 

requested lists and graphs into the copy of this document that was sent to you via e-mail.  

The algebraic computations must be entered directly into the document as well using some 

type of equation editor. 

 The lab activity is divided into two separate parts.  Part I is a graphical and 

numerical exploration and must be submitted prior to receiving directions for Part II.  Part 

II is an algebraic analysis of the concepts that were discovered through the graphical and 

numerical exploration that was conducted in Part I. 
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PART I 

 To begin the activity, heat the water until it boils.  At that point, place the 

temperature probe directly into the water until the temperature stabilizes.  At 

the point that the temperature has stabilized, carefully remove the probe and 

place it directly into the cup of ice water.  Data collection should begin at the 

instant that the probe is removed from the boiling water.   Once activated, the 

temperature probe will automatically begin to collect the data and place it in a 

“Table View” format in a document on the CX handheld.  Once the data has 

been collected, insert the list of temperature vs. time in a table below. 

 In addition, a plot of temperature vs. time is created.  Insert the plot of 

temperature vs. time below.   

 Now that the data has been collected and plotted, it will be analyzed using the 

CX handheld.  Using the raw data, calculate the average rate of change between 

0 and 20 seconds, 5 and 20 seconds, 10 and 20 seconds, 15 and 20 seconds, and 

19 and 20 seconds and record your results in a table below.  Once the average 

rate of change computations have been completed, find the equations of each 

of the five lines containing the sets of points described above.  Overlay the five 

lines on the plot with the experimental data and insert the plot below. 

 Describe the relationship between the lines as each time period being 

considered gets closer to the 20 second mark.  From a geometric stand point, 

what type of lines do most, or all, of these lines appear to be in relation to the 

data at the 20 second mark?  As the time intervals become smaller and smaller, 
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the appearance of the lines changes.  Describe this graphical change and make a 

prediction about what type of line would exist at the 20 second mark if the 

exact value of the instantaneous rate of change could be calculated using this 

method. 

 Perform an exponential regression on the data.  Using this equation, examine 

the values for the average rate of change between 19.1 and 20 seconds, 19.01 

and 20 seconds, 19.001 and 20 seconds, 19.0001 and 20 seconds, and 19.00001 

and 20 seconds.  Place these results in a chart below.  What do you notice 

about these values as the interval between the two times becomes smaller and 

smaller?  Do the values approach a particular value?  If so, what value is it and 

what is it an estimate of?   

 Is it possible to calculate this value exactly using the formula for average rate of 

change?  Describe the process that would be used and note any difficulties that 

may arise. 
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PART II 

Part I of this activity was a graphical and numerical exploration of the relationship 

between average and instantaneous rates of change.  Through the exploratory data analysis, 

it was shown that the instantaneous rate of change at a point can be approximated using 

the formula for average rate of change on increasingly smaller intervals containing the 

point in question.  Although a very accurate approximation of instantaneous rate of change 

can be found using numerical methods, it is important to derive a technique that produces 

an exact value, which is the purpose of this part of the activity. 

 Using your knowledge of average and instantaneous rates of change describe 

the iterative process that can be used to more accurate predict the 

instantaneous rate of change at a point.  Specifically, describe what is being 

changed in the process and the manner in which it is being changed. 

 Based on the response above, create a concise and accurate verbal model to 

describe how to calculate the instantaneous rate of change of a function, f(x), 

on the interval [x, x+h], where “x” is a fixed point.  This verbal model will be 

used to develop a formula for instantaneous rate of change. 

 Translate the verbal model used above into mathematical symbols, being sure 

to use the concept of average rate of change on the interval [x, x+h] as well as 

the notion of a limit when creating the formula. 

 This formula is the formula for the derivative of the function f(x) at the point 

“x”.  To verify the accuracy of the formula above, use the notion of the 

derivative to evaluate the instantaneous rate of change of the model in Part I at 
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20 seconds.  Use the regression equation found in Part I of this activity when 

calculating the instantaneous rate of change of the temperature 20 seconds.  

Use the CX handheld to compute the derivative.   Does your model appear to 

accurately calculate the instantaneous rate of change at 20 seconds?  If not, 

where do you think that the formula is flawed?  Place the results of your 

computations below, followed by the analysis of your formula’s accuracy. 
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SOLUTIONS 
EXPLORING THE RELATIONSHIP BETWEEN 

AVERAGE AND INSTANTANEOUS RATES OF CHANGE 
WITH THE TI-nspire CX HANDHELD 

 
 In this activity, the concepts of average and instantaneous rates of change will be 

analyzed in an effort to show the connection between the two rates.  The concepts will be 

explored with graphical, numerical, and algebraic techniques in an effort to develop a way 

of calculating an instantaneous rate of change exactly, as opposed to calculating it through 

estimation techniques.   

 The relationship between average and instantaneous rate of change will be analyzed 

using data collected with the TI-nspire CX handheld.  The data will result from placing a 

temperature probe in boiling water, until the temperature stabilizes, and data capture will 

begin when the temperature probe is removed and placed directly into a cup of ice water.  

The data will be captured using a temperature probe attachment to the handheld that 

collects the data and places it in a “Lists and Spreadsheets” document.  Follow the 

procedures below carefully, completing the required tasks and preparing any tables and 

plots that are required.  Once the activity has been completed, be sure to download all 

requested lists and graphs into the copy of this document that was sent to you via e-mail.  

The algebraic computations must be entered directly into the document as well using some 

type of equation editor. 

 The lab activity is divided into two separate parts.  Part I is a graphical and 

numerical exploration and must be submitted prior to receiving directions for Part II.  Part 
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II is an algebraic analysis of the concepts that were discovered through the graphical and 

numerical exploration that was conducted in Part I. 

PART I 

 To begin the activity, heat the water until it boils.  At that point, place the 

temperature probe directly into the water until the temperature stabilizes.  At 

the point that the temperature has stabilized, carefully remove the probe and 

place it directly into the cup of ice water.  Data collection should begin at the 

instant that the probe is removed from the boiling water.   Once activated, the 

temperature probe will automatically begin to collect the data and place it in a 

“Table View” format in a document on the CX handheld.  Once the data has 

been collected, insert the list of temperature vs. time in Figure 28 below. 

 

Figure 28.  Screen shot of Data Collection from  Exploring the Relationship Between 
Avearage and Instantaneous Rates of Change from TI-nspire CX Handheld. 
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 In addition, a plot of temperature vs. time is created.  Insert the plot of 

temperature vs. time below (Figure 29).   

 

Figure 29.  Screen shot of Plot of Temperature vs. Time from  Exploring the Relationship 
Between Avearage and Instantaneous Rates of Change from TI-nspire CX Handheld. 

 Now that the data has been collected and plotted, it will be analyzed using the 

CX handheld.  Using the raw data, calculate the average rate of change between 

0 and 20 seconds, 5 and 20 seconds, 10 and 20 seconds, 15 and 20 seconds, and 

19 and 20 seconds and record your results in a table below.  Once the average 

rate of change computations have been completed, find the equations of each 

of the five lines containing the sets of points described above and place the 

results in Table 2.  Overlay the five lines on the plot with the experimental data 

and insert the plot below (Figure 30). 
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Table 2 
Equations of Lines Through Experimental Data Points 

 
 

Interval 

 

Average Rate of Change 

on Interval 

Equation of line passing 

through endpoints of the 

interval 

(0, 89.9) and (20, 7.1) -4.135 y = -4.135x + 89.0 

(5, 29.5) and (20, 7.1) -1.490 y = -1.490x + 36.9 

(10, 13.3) and (20, 7.1) -0.620 y = -0.620x + 19.5 

(15, 8.8) and (20, 7.1) -0.340 y = -0.340x + 13.9 

(19, 7.4) and (20, 7.1) -0.300 y = -0.300x + 13.1 

 

 

Figure 30.  Screen shot of Data Collection from  Exploring the Relationship Between 
Avearage and Instantaneous Rates of Change with equations of lines through experimental 

data points from TI-nspire CX Handheld. 

 Describe the relationship between the lines as each time period being 

considered gets closer to the 20 second mark.    From a geometric stand point, 

what type of lines do most, or all, of these lines appear to be in relation to the 

data at the 20 second mark?  As the time intervals become smaller and smaller, 

the appearance of the lines changes.  Describe this graphical change and make a 

prediction about what type of line would exist at the 20 second mark if the 
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exact value of the instantaneous rate of change could be calculated using this 

method. 

From a geometric standpoint, the lines that appear are secant lines to the curve 

that would be formed by the data.  As the distance between the chosen time 

and the 20 second mark gets smaller and smaller, the lines may appear to be 

tangent to the 20 second mark.  Ultimately, the line representing the 

instantaneous rate of change at 20 seconds will be a tangent line to that point. 

 Perform an exponential regression on the data.  Using this equation, examine 

the values for the average rate of change between 19.1 and 20 seconds, 19.01 

and 20 seconds, 19.001 and 20 seconds, 19.0001 and 20 seconds, and 19.00001 

and 20 seconds.  Place these results in a chart below.  What do you notice 

about these values as the interval between the two times becomes smaller and 

smaller?  Do the values approach a particular value?  If so, what value is it and 

what is it an estimate of? 

As the interval between the two times becomes smaller and smaller, the average 

rates of change approaches a particular value, -.7328.  This value is an estimate 

of the instantaneous rate of change at the 20 second mark using the exponential 

regression equation. 
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Table 3 
Average Rate of Change on Interval Using Exponential Regression Equation 

 
 

Interval 
Average Rate of Change on Interval 

Using Exponential Regression Equation 

                    

(19.1, 8.7497) and (20, 8.093) -.7297 

(19.01, 8.8182) and (20, 8.093) -.7325 

(19.001, 8.8251) and (20, 8.093) -.7328 

(19.0001, 8.8258) and (20, 8.093) -.7329 

(19.00001, 8.8258) and (20, 8.093) -.7328 

 

 Is it possible to calculate this value exactly using the formula for average rate of 

change?  Describe the process that would be used and note any difficulties that 

may arise. 

It is not possible to calculate the instantaneous rate of change for any point 

using only the formula for average rate of change.  The computations break 

down due to the fact that two distinct points are needed to calculate the average 

rate of change, however only one point is available when considering the 

instantaneous rate of change. 
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PART II 

Part I of this activity was a graphical and numerical exploration of the relationship 

between average and instantaneous rates of change.  Through the exploratory data analysis, 

it was shown that the instantaneous rate of change at a point can be approximated using 

the formula for average rate of change on increasingly smaller intervals containing the 

point in question.  Although a very accurate approximation of instantaneous rate of change 

can be found using numerical methods, it is important to derive a technique that produces 

an exact value, which is the purpose of this part of the activity. 

 Using your knowledge of average and instantaneous rates of change describe 

the iterative process that can be used to more accurate predict the 

instantaneous rate of change at a point.  Specifically, describe what is being 

changed in the process and the manner in which it is being changed. 

In order to more accurately estimate the instantaneous rate of change at a 

point, the average rate of change must be calculated as the interval between the 

two points becomes smaller and smaller.  In other words, to estimate the 

instantaneous rate of change using the average rate of change, the average rate 

of change is to be examined as the length of the interval between the two 

points approaches zero. 

 Based on the response above, create a concise and accurate verbal model to 

describe how to calculate the instantaneous rate of change of a function, f(x), 
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on the interval [x, x+h], where “x” is a fixed point.  This verbal model will be 

used to develop a formula for instantaneous rate of change. 

The instantaneous rate of change of f(x) at the point x is equal to the limit of 

the average rate of change on the interval [x, x+h] as h approaches zero.  

 Translate the verbal model used above into mathematical symbols, being sure 

to use the concept of average rate of change on the interval [x, x+h] as well as 

the notion of a limit when creating the formula. 

   
   

           

 
 

 This formula is the formula for the derivative of the function f(x) at the point 

“x”.  To verify the accuracy of the formula above, use the notion of the 

derivative to evaluate the instantaneous rate of change of the model in Part I at 

20 seconds.  Use the regression equation found in Part I of this activity when 

calculating the instantaneous rate of change of the temperature 20 seconds. Use 

the CX handheld to compute the derivative.   Does your model appear to 

accurately calculate the instantaneous rate of change at 20 seconds?  If not, 

where do you think that the formula is flawed?  Place the results of your 

computations  in Figure 31, followed by the analysis of your formula’s accuracy. 
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Figure 31.  Screen shot of calculation of the derivative of the regression equation for 
comparison to the average rates of change from  Exploring the Relationship Between 

Avearage and Instantaneous Rates of Change from TI-nspire CX Handheld. 
 

The computation of the derivative using the CX handheld provides the most 

accurate calculation of the instantaneous rate of change of temperature at the 

20 second mark based on the given regression equation.  The values that appear 

in the chart above are only used to estimate the instantaneous rate of change by 

examining the average rates of change over increasingly smaller time intervals.  
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EXPLORING THE RELATIONSHIP BETWEEN 
DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX HANDHELD 

 
 In this activity, the derivative and the integral will be explored in an effort to show 

the connection between the two concepts.  The concepts will be explored with graphical, 

numerical, and algebraic techniques in an effort to develop the powerful relationship 

between them and illustrate the foundation of their relationship with one another.    

 The relationship between the derivative and the integral will be explored in two 

distinct parts.  Part I of the activity will consist of graphical, numerical, and algebraic 

exploration to highlight the relationship between the derivative and the integral, while Part 

II of the activity will focus on applications of the results found in Part I of the activity.  

Part II will involve using real-world data that will be collected and analyzed with the TI-

nspire CX handheld.  Part II will require calculation of the area of a setting sun in an 

imported image file.  The data will be captured using the CX handheld feature that collects 

the data and places it in a “Lists and Spreadsheets” document.  Follow the procedures 

below carefully, completing the required tasks and preparing any tables and plots that are 

required.  Once the activity has been completed, be sure to download all requested lists and 

plots into the copy of this document that was sent to you via e-mail.  The algebraic 

computations must be entered directly into the document as well using an equation editor. 
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PART I 

 In order to explore the relationship between the derivative and the integral, an 

analysis of area under a curve will be done.  For each of the functions listed 

below, calculate the area, using known geometric formulas, on the interval [0, x] 

and note the results in the chart below.   Computations to derive the area 

formulas on [0, x] should be placed below Table 4 and be labeled clearly. 

Table 4 
Template for Area on [0,X] 

 
 

FUNCTION 
 

AREA ON [0, X] 

f(x) = 5   

g(x) = 3x  

h(x) = 5x + 2  

 

 Examine the results of the area computations on the interval [0, x] for each of 

the functions in the chart above.  Note the relationship between the area of the 

function on [0, x] and the original function itself.  Create a verbal model to 

describe this relationship. 

 Given that ∫       
 

 
 is the area under f(x) on the interval [0, x], use the verbal 

model above to develop a formula expressing the relationship between f(x) and 

∫       
 

 
 and the remainder of the functions being considered.  This 

relationship is one of the most powerful relationships in the study of calculus. 

 To expand on this discovery, use the functions listed in the chart above and 

compute the area for each, using known geometric formulas, on the interval 
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[  ,   ] and note the results in the chart below.   Computations to derive the 

area formulas on [  ,   ]  should be placed below Table 5 and be labeled 

clearly. 

Table 5 

Template for Area on [  ,   ] 

 
 

FUNCTION 
 

AREA ON [  ,   ] 

f(x) = 5   

g(x) = 3x  

h(x) = 5x + 2  

 

 In an effort to present the results on the interval [  ,   ] more clearly, let the 

area formulas for each of the functions under consideration be represented by 

F(x), G(x), and H(x), respectively.  With this in mind, express each of the area 

calculations on [  ,   ] located in the chart above, in terms of F(  ),  F(  ), 

G(  ),  G(  ), H(  ),  and H(  ) and note the results in Table 6. 

Table 6 

Template for Area on [  ,   ] in terms of F(  ),  F(  ), G(  ),  G(  ), H(  ),  and H(  ) 

 
 

FUNCTION 
AREA ON [  ,   ] in terms of F(  ),  F(  ), 

G(  ),  G(  ), H(  ),  and H(  )  

f(x) = 5   

g(x) = 3x  

h(x) = 5x + 2  

 

 Using the notation of calculus, remember that the area under f(x) on the 

interval [  ,   ] is given by ∫       
  

  
.  Using this representation of the area 
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on [  ,   ], and the results of the revised area calculations in the chart above,  

give a description of the relationship that has been discovered. 

 In conclusion, the two relationships that have been discovered in this activity 

are the basis of one of the most powerful theorems in mathematics.  While this 

activity has been designed to highlight the relationships, it is by no means 

intended to be a formal proof of the theorem.  Rather, it was created to allow 

self-discovery of the concept through exploration. 
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PART II 

 Part I of this activity was intended to develop, through exploration, the concepts 

described by the Fundamental Theorem of Calculus, Parts I and II.  The Fundamental 

Theorem of Calculus, Part I states that: 

If f is continuous on [a, b], then the function F(x) = ∫       
 

 
 has a 

derivative at every point x in [a, b], and  
  

  
 

 

  
∫       

 

 
 = f(x). 

The exploration in Part I of the activity that focused on calculating area on the interval [0, 

x] highlighted the fact that integration and differentiation are inverse processes of each 

other.  The additional computations done in Part I of the activity that focused on 

calculating area on the interval [  ,   ] highlighted the results of the Fundamental 

Theorem of Calculus, Part II that states: 

If f is continuous on [a, b], and if F is any anti-derivative of f on [a, b], then  

∫       
 

 
 = F(b) – F(a). 

 The implications of the Fundamental Theorem of Calculus, Part I and Part II allow area 

computations to be done without requiring that areas be represented by known geometric 

shapes or be computed by approximation techniques such the Rectangular Approximation 

Method (RAM), the Trapezoidal Rule, Simpson’s Rule, or any other approximation 

method.  Using the results of this theorem, areas are able to be calculated exactly, given the 

function that models the data in question. 
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 To explore the powerful results of the Fundamental Theorem of Calculus, consider 

the task of calculating the surface area of a sunset.  In this activity an image of a sunset will 

be modeled to calculate the area of the sunset as it appears in the image. 

 To begin, download the image provided onto the CX handheld as described in 

the accompanying Tech Sheet.  Position the image on the set of axes and find a 

function to model the data.  (Hint:  In order to calculate the area of the sunset, 

find the area of the portion above the x-axis, find the area of the portion below 

the x-axis, and then add the two areas together to estimate the total area.)  

Insert the image of the sunset, with axes included, in the space below.  Include 

the regression equation information on the screen image as well. 

 Once the outline of the sunset has been modeled using regression analysis, use 

the Fundamental Theorem of Calculus to develop an expression that could be 

used to calculate the surface area of the sunset and include the results below. 

 While the definite integral is able to be calculated by hand very easily for many 

functions, there are also many situations where the integral must be calculated 

using technology.  To compute an area using the definite integral evaluation 

feature on the CX handheld complete the following series of key strokes: 

 Turn on the TI-nspire CX handheld, select “A: Calculate” from 

the home screen under “Scratchpad”.  Once this option has been 

selected, select the “catalog” key, which is represented with an 

icon of an open book.  Once this key has been selected, highlight 

“2”, select “Calculus” and then “Numerical Integral” followed by 
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the “enter” key.  The screen image of this process is located in 

Figure 32 below. 

 

Figure 32. Screen shot of Numerical Integration screen from the TI-nspire CX Handheld. 

 Once the “enter” key has been selected, a screen will appear with a template for 

the set-up of a definite integral calculation.  Enter the information for the 

desired calculations and compute the definite integral that describes the area of 

the image of the sunset.  Include a screen capture of any computations done on 

the CX handheld in the space below.   

 While the activity in Part II does not require that particularly complicated tasks 

be done to complete the analysis, it serves as a basic model for how to analyze 

real world data.  As a closing activity, provide a summary of the process that 

was used to analyze the image of the sunset to find its area. 
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SOLUTION 
EXPLORING THE RELATIONSHIP BETWEEN  

DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX HANDHELD 
 

 In this activity, the derivative and the integral will be explored in an effort to show 

the connection between the two concepts.  The concepts will be explored with graphical, 

numerical, and algebraic techniques in an effort to develop the powerful relationship 

between them and illustrate the foundation of their relationship with one another.    

 The relationship between the derivative and the integral will be explored in two 

distinct parts.  Part I of the activity will consist of graphical, numerical, and algebraic 

exploration to highlight the relationship between the derivative and the integral, while Part 

II of the activity will focus on applications of the results found in Part I of the activity.  

Part II will involve using real-world data that will be collected and analyzed with the TI-

nspire CX handheld.  Part II will require calculation of the area of a setting sun in an 

imported image file.  The data will be captured using the CX handheld feature that collects 

the data and places it in a “Lists and Spreadsheets” document.  Follow the procedures 

below carefully, completing the required tasks and preparing any tables and plots that are 

required.  Once the activity has been completed, be sure to download all requested lists and 

plots into the copy of this document that was sent to you via e-mail.  The algebraic 

computations must be entered directly into the document as well using an equation editor. 
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PART I 

 In order to explore the relationship between the derivative and the integral, an 

analysis of area under a curve will be done.  For each of the functions listed 

below, calculate the area, using known geometric formulas, on the interval [0, x] 

and note the results in the chart below.   Computations to derive the area 

formulas on [0, x] should be placed below Table 7 and labeled clearly. 

Table 7 
Area on [0,X] 

 
 

FUNCTION 
 

AREA ON [0, X] 

f(x) = 5  5x 

g(x) = 3x (3/2)x2 

h(x) = 5x + 2 (5/2) x2 + 2x 

 

 Examine the results of the area computations on the interval [0, x] for each of 

the functions in the chart above.  Note the relationship between the area of the 

function on [0, x] and the original function itself.  Create a verbal model to 

describe this relationship. 

The original function is the derivative of the area function. 

 Given that ∫       
 

 
 is the area under f(x) on the interval [0, x], use the verbal 

model above to develop a formula expressing the relationship between f(x) and 

∫       
 

 
 and the remainder of the functions being considered.  This 

relationship is one of the most powerful relationships in the study of calculus. 
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∫       

 

 

 

 To expand on this discovery, use the functions listed in the chart above and 

compute the area for each, using known geometric formulas, on the interval 

[  ,   ] and note the results in the chart below.   Computations to derive the 

area formulas on [  ,   ]  should be placed below Table 8 and be labeled 

clearly. 

Table 8 

Area on [  ,   ] 

 
 

FUNCTION 
 

AREA ON [  ,   ] 

f(x) = 5  5x2 - 5 x1 

g(x) = 3x (3/2) x2
2 – (3/2) x1

2 

h(x) = 5x + 2 (5/2) x2
2 + 2x2 – (5/2) x1

2 - 2x1 

 

 In an effort to present the results on the interval [  ,   ] more clearly, let the 

area formulas for each of the functions under consideration be represented by 

F(x), G(x), and H(x), respectively.  With this in mind, express each of the area 

calculations on [  ,   ], located in the chart above, in terms of F(  ),  F(  ), 

G(  ),  G(  ), H(  ),  and H(  ) and note the results in Table 9. 
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Table 9 

Area on [  ,   ] in terms of F(  ),  F(  ), G(  ),  G(  ), H(  ),  and H(  ) 

 
 

FUNCTION 
AREA ON [  ,   ] in terms of F(  ),  F(  ), 

G(  ),  G(  ), H(  ),  and H(  )  

f(x) = 5  F(  ) - F(  ) 

g(x) = 3x G(  ) - G(  ) 

h(x) = 5x + 2 H(  ) - H(  ) 

 

 Using the notation of calculus, remember that the area under f(x) on the 

interval [  ,   ] is given by ∫       
  

  
.  Using this representation of the area 

on [  ,   ], and the results of the revised area calculations in the chart above,  

give a description of the relationship that has been discovered. 

∫                   
  

  

 

 In conclusion, the two relationships that have been discovered in this activity 

are the basis of one of the most powerful theorems in mathematics.  While this 

activity has been designed to highlight the relationships, it is by no means 

intended to be a formal proof of the theorem.  Rather, it was created to allow 

self-discovery of the concept through exploration. 
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PART II 

 Part I of this activity was intended to develop, through exploration, the concepts 

described by the Fundamental Theorem of Calculus, Parts I and II.  The Fundamental 

Theorem of Calculus, Part I states that: 

If f is continuous on [a, b], then the function F(x) = ∫       
 

 
 has a 

derivative at every point x in [a, b], and  
  

  
 

 

  
∫       

 

 
 = f(x). 

The exploration in Part I of the activity that focused on calculating area on the interval [0, 

x] highlighted the fact that integration and differentiation are inverse processes of each 

other.  The additional computations done in Part I of the activity that focused on 

calculating area on the interval [  ,   ] highlighted the results of the Fundamental 

Theorem of Calculus, Part II that states: 

If f is continuous on [a, b], and if F is any anti-derivative of f on [a, b], then  

∫       
 

 
 = F(b) – F(a). 

 The implications of the Fundamental Theorem of Calculus, Part I and Part II allow area 

computations to be done without requiring that areas be represented by known geometric 

shapes or be computed by approximation techniques such the Rectangular Approximation 

Method (RAM), the Trapezoidal Rule, Simpson’s Rule, or any other approximation 

method.  Using the results of this theorem, areas are able to be calculated exactly, given the 

function that models the data in question. 
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 To explore the powerful results of the Fundamental Theorem of Calculus, consider 

the task of calculating the surface area of a sunset.  In this activity an image of a sunset will 

be modeled to calculate the area of the sunset. 

 To begin, download the image provided onto the CX handheld as described in the 

accompanying Tech Sheet.  Position the image on the set of axes and find a 

function to model the data.  (Hint:  In order to calculate the area of the sunset, find 

the area of the portion above the x-axis, find the area of the portion below the x-

axis, and then add the two areas together to estimate the total area.)  Insert the 

image of the sunset, with axes included, in the space below.  Include the regression 

equation information on the screen image as well. 

 

Figure 33. Image of Sunset with Regression Equation from Exploring the Relationship 
Between  Derivatives and Integrals from TI-nspire CX Handheld. 

 

 Once the outline of the sunset has been modeled using regression analysis, use 

the Fundamental Theorem of Calculus to develop an expression that could be 

used to calculate the surface area of the sunset and include the results below. 
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The original function describing the outline of the upper portion of the sunset is 

given by: 

                         . 

The area function that will be used to find the area of the image of the sunset 

above the x-axis is given by: 

      
      

 
 

       

 
         

The original function describing the outline of the lower portion of the sunset is 

given by: 

                                   

The area function that will be used to find the area of the image of the sunset 

below the x-axis is given by: 

     
       

 
 

       

 
 

       

 
          

Therefore, the area of the entire sunset, as it appears in the image, is given by the 

following equation: 

Area Of Sunset Image = 

 ∫                         ∫                                 
    

     

    

     
  

Area of Sunset Image = (F(2.46)-F(-2.62))+(G(2.48)-G(-2.62)) 
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 While the definite integral is able to be calculated by hand very easily for many 

functions, there are also many situations where the integral must be calculated 

using technology.  To compute an area using the definite integral evaluation 

feature on the CX handheld complete the following series of key strokes: 

 Turn on the TI-nspire CX handheld, select “A: Calculate” from 

the home screen under “Scratchpad”.  Once this option has been 

selected, select the “catalog” key, which is represented with an 

icon of an open book.  Once this key has been selected, highlight 

“2”, select “Calculus” and then “Numerical Integral” followed by 

the “enter” key.  The screen image of this process is located in 

Figure 34. 

 

Figure 34. Screen shot of Numerical Integration Menu from Exploring the Relationship 
Between  Derivatives and Integrals from TI-nspire CX Handheld. 

 Once the “enter” key has been selected, a screen will appear with a template for 

the set-up of a definite integral calculation.  Enter the information for the 

desired calculations and compute the definite integral that describes the area of 
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the image of the sunset.  Include a screen capture of any computations done on 

the CX handheld in the space below (Figure 35). 

 

Figure 35. Numerical Integration of Regression Equations from Exploring the Relationship 
Between  Derivatives and Integrals from the TI-nspire CX Handheld. 

 

The final area of the image of the sunset is 13.0287 units squared. 

 While the activity in Part II does not require that particularly complicated tasks 

be done to complete the analysis, it serves as a basic model for how to analyze 

real world data.  As a closing activity, provide a summary of the process that 

was used to analyze the image of the sunset to find its area as it appeared in the 

image. 
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STUDENT RESULTS COMPONENT 
EXPLORING THE RELATIONSHIP BETWEEN  

AVERAGE AND INSTANTANEOUS RATES OF CHANGE  
WITH THE TI-nspire CX HANDHELD 

 
 The graphing calculator lab Exploring the Relationship Between Average and 

Instantaneous Rates of Change has been administered annually over a several year period 

of time.  During those years, student performance was assessed to verify that the target 

concepts were being acquired.  This graphing calculator lab activity was administered to 31 

students just beginning the study of Calculus during the late Spring of 2012.  Each of the 

students received Part I of the graphing calculator lab activity and corresponding Tech 

Sheets and was instructed to read through the instructions and complete a preliminary 

attempt at the activity independently.  The objective of this activity was for students to 

discover the relationship between average and instantaneous rate of change.  More 

specifically, students were to discover the formula for the derivative using graphical, 

numerical, and algebraic methods of analysis and to reinforce the concepts through the use 

of multiple representations of the data in consideration.  As students were working through 

the activity, they were encouraged to create a list of the topics that they had difficulty with 

and to score themselves in each of the competency areas.  In general, the students appear 

to have scored themselves higher than the instructor, but there was no pattern that 

emerged in the data.  While the student scoring seemed inconsistent in comparison to the 

instructor’s scoring, the students provided adequate written assessments of what they did 

and did not know how to do without assistance.  They also had realistic views on how their 

past experiences in mathematics and associated technology impacted their ability to 

complete the activity successfully.  Students received an overall grade on the activity as well 
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as subscores in the following areas: competency in graphical analysis, numerical analysis, 

and algebraic analysis as well as competency in graphing calculator technology, and 

conceptual understanding of the relationship between average and instantaneous rate of 

change (the derivative).   The accompanying rubric in Table 10 was used to assess student 

performance both by the instructor and the students as outlined in the Unit Lesson Plan 

presented earlier.   

The data represented in the figures (Figures 36-45) below indicates that as a 

student’s graphical competency increases, so does their overall performance on the 

graphing calculator lab activity.  Likewise, there appear to be similar trends  in the areas of 

numerical, algebraic, and technological competency as well as overall conceptual 

understanding.  When the instructor raw score is compared to student GPA and final 

unweighted student averages in Geometry, Algebra II, and Pre Calculus, there appear to be 

no trends in the data indicating a relationship between any of the categories and the 

instructor raw score. 
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Table 10 
EXPLORING THE RELATIONSHIP BETWEEN  

AVERAGE AND INSTANTANEOUS RATES OF CHANGE 
WITH THE TI-nspire CX HANDHELD 

 

Scoring Rubric 

 0 1 2 3 

 
 
 
 
 
Graphical 
Competency  

Student is 
unable to begin 
to describe the 
transformation 
of the secant 
lines on the 
interval [x, x+h] 
as h approaches 
zero without 
assistance.   

Student is able 
to successfully 
describe the 
transformation 
of the secant 
lines on the 
interval [x, x+h] 
as h approaches 
zero with major 
assistance.   

Student is able 
to successfully 
describe the 
transformation 
of the secant 
lines on the 
interval [x, x+h] 
as h approaches 
zero with minor 
assistance.   

Student is able 
to successfully 
describe the 
transformation 
of the secant 
lines on the 
interval [x, x+h] 
as h approaches 
zero without 
assistance.   

 
 
 
 
 
 
 
 
 
 
Numerical 
Competency 

Student is 
unable to begin 
to successfully 
calculate the 
equations of the 
secant lines 
without 
assistance. 
 
Student is 
unable to begin 
to successfully 
use iterative 
methods to 
estimate the 
instantaneous 
rate of change 
at the target 
value without 
assistance. 

Student is able 
to successfully 
calculate the 
equations of the 
secant lines 
with major 
assistance. 
 
 
Student is able 
to successfully 
use iterative 
methods to 
estimate the 
instantaneous 
rate of change 
at the target 
value with 
major 
assistance. 

Student is able 
to successfully 
calculate the 
equations of the 
secant lines 
with minor 
assistance. 
 
 
Student is able 
to successfully 
use iterative 
methods to 
estimate the 
instantaneous 
rate of change 
at the target 
value with 
minor 
assistance. 

Student is able 
to successfully 
calculate the 
equations of the 
secant lines 
without 
assistance. 
 
 
Student is able 
to successfully 
use iterative 
methods to 
estimate the 
instantaneous 
rate of change 
at the target 
value without 
assistance. 
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Algebraic 
Competency 

Student is 
unable to begin 
to successfully 
create verbal 
and symbolic 
models to 
describe the 
process of 
calculating 
instantaneous 
rate of change 
at a target value 
without 
assistance. 

Student is able 
to successfully 
create verbal 
and symbolic 
models to 
describe the 
process of 
calculating 
instantaneous 
rate of change 
at a target value 
with major 
assistance. 

Student is able 
to successfully 
create verbal 
and symbolic 
models to 
describe the 
process of 
calculating 
instantaneous 
rate of change 
at a target value 
with minor 
assistance. 

Student is able 
to successfully 
create verbal 
and symbolic 
models to 
describe the 
process of 
calculating 
instantaneous 
rate of change 
at a target value 
without 
assistance. 

 
 
 
 
 
 
Technological 
Competency 

Student is 
unable to begin 
to complete 
Tech Sheets on 
Graphing 
Functions, Data 
Collection 
using the 
Temperature 
Probe, and 
Regression 
Analysis 
without 
assistance. 
 
Student is 
unable to begin 
to successfully 
complete 
computations 
on the graphing 
calculator 
without 
assistance. 
 
 
 
 
 
 
 

Student is able 
to successfully 
complete Tech 
Sheets on 
Graphing 
Functions, Data 
Collection 
using the 
Temperature 
Probe, and 
Regression 
Analysis with 
major 
assistance. 
 
Student is able 
to successfully 
complete 
computations 
on the graphing 
calculator with 
major 
assistance. 

Student is able 
to successfully 
complete Tech 
Sheets on 
Graphing 
Functions, Data 
Collection 
using the 
Temperature 
Probe, and 
Regression 
Analysis with 
minor 
assistance. 
 
Student is able 
to successfully 
complete 
computations 
on the graphing 
calculator with 
minor 
assistance. 

Student is able 
to successfully 
complete Tech 
Sheets on 
Graphing 
Functions, Data 
Collection 
using the 
Temperature 
Probe, and 
Regression 
Analysis 
without 
assistance. 
 
Student is able 
to successfully 
complete 
computations 
on the graphing 
calculator 
without 
assistance. 
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Conceptual 
Understanding 

Student is 
unable to begin 
to successfully 
express the 
relationship 
between 
average and 
instantaneous 
rates of change 
by developing 
the formula for 
the derivative 
without 
assistance. 

Student is able 
to successfully 
express the 
relationship 
between 
average and 
instantaneous 
rates of change 
by developing 
the formula for 
the derivative 
with major 
assistance. 

Student is able 
to successfully 
express the 
relationship 
between 
average and 
instantaneous 
rates of change 
by developing 
the formula for 
the derivative 
with minor 
assistance. 

Student is able 
to successfully 
express the 
relationship 
between 
average and 
instantaneous 
rates of change 
by developing 
the formula for 
the derivative 
without 
assistance. 

Graphical Competency   

Numerical Competency  

Algebraic Competency  

Technological Competency  

Conceptual Understanding  

TOTAL (out of 15 points)  
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 As discussed earlier, the following figures (Figures 36-45) represent data obtained 

in the Spring 2012 administration of the Average vs. Instantaneous Rate of Change 

graphing calculator lab activity.  The first set of figures shows comparisons between the 

overall instructor score on the lab activity versus overall student score, each of the category 

subscores, GPA, and final averages in Geometry, Algebra II and Pre Calculus. 

 

 

 

 Figure 36. Instructor vs. Student Raw Score from EXPLORING THE RELATIONSHIP 

BETWEEN AVERAGE AND INSTANTANEOUS RATES OF CHANGE. 
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Figure 37. Instructor Raw Score vs. Graphical Competency Subscore from EXPLORING 

THE RELATIONSHIP BETWEEN AVERAGE AND INSTANTANEOUS RATES OF CHANGE. 

 

 

Figure 38. Instructor Raw Score vs. Numerical Competency Subscore from EXPLORING 

THE RELATIONSHIP BETWEEN AVERAGE AND INSTANTANEOUS RATES OF CHANGE. 
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Figure 39. Instructor Raw Score vs. Algebraic Competency Subscore from EXPLORING THE 

RELATIONSHIP BETWEEN AVERAGE AND INSTANTANEOUS RATES OF CHANGE. 

 

 

Figure 40. Instructor Raw Score vs. Technological Competency Subscore from EXPLORING 

THE RELATIONSHIP BETWEEN AVERAGE AND INSTANTANEOUS RATES OF CHANGE. 
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Figure 41. Instructor Raw Score vs. Conceptual Understanding Subscore from EXPLORING 

THE RELATIONSHIP BETWEEN AVERAGE AND INSTANTANEOUS RATES OF CHANGE. 

 

 

Figure 42. Instructor Raw Score vs. Weighted Student GPA from EXPLORING THE 

RELATIONSHIP BETWEEN AVERAGE AND INSTANTANEOUS RATES OF CHANGE. 
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Figure 43. Instructor Raw Score vs. Final Student Unweighted Average in Geometry from 
EXPLORING THE RELATIONSHIP BETWEEN AVERAGE AND INSTANTANEOUS RATES OF 

CHANGE. 

 

Figure 44. Instructor Raw Score vs. Final Unweighted Average in Algebra II from 
EXPLORING THE RELATIONSHIP BETWEEN AVERAGE AND INSTANTANEOUS RATES OF 

CHANGE. 
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Figure 45. Instructor Raw Score vs. Final Unweighted Average in Pre Calculus from 
EXPLORING THE RELATIONSHIP BETWEEN AVERAGE AND INSTANTANEOUS RATES OF 

CHANGE. 
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STUDENT RESULTS COMPONENT 
EXPLORING THE RELATIONSHIP BETWEEN  

DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX HANDHELD 
 
 

  The graphing calculator lab Exploring the Relationship Between Derivatives and 

Integrals has been administered annually over a several year period of time.  During those 

years, student performance was assessed to verify that the target concepts were being 

acquired.  This graphing calculator lab activity was administered to 22 students studying 

Calculus during the late Spring of 2012.  In addition, this graphing calculator lab activity 

was administered to two different levels of Calculus classes.  One of the classes is an 

accelerated Calculus class with 7 students and the other is a Calculus class with 15 students.  

Each of the classes received the graphing calculator lab activity and corresponding Tech 

Sheets and was instructed to read through the instructions and complete a preliminary 

attempt at the activity independently.  The objective of this activity was for students to 

discover the relationship between the derivative and the integral.  More specifically, 

students were to discover the Fundamental Theorem of Calculus, Parts I and II, and use 

the Theorem to solve an applied problem with the use of technology.  The activity uses 

graphical, numerical, and algebraic activities to aid in the discovery process, and to 

reinforce the concepts through the use of multiple representations of the data in 

consideration.  Students received an overall grade on the activity as well as subscores in the 

following areas: competency in graphical analysis, numerical analysis, and algebraic analysis 

as well as competency in graphing calculator technology, and conceptual understanding of 

the Fundamental Theorem of Calculus.  As students were working through the activity, 

they were encouraged to create a list of the topics that they had difficulty with and to score 
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themselves in each of the competency areas.  In general, the students appear to have scored 

themselves higher than the instructor, but there was no pattern that emerged in the data.  

While the student scoring seemed inconsistent in comparison to the instructor’s scoring, 

the students provided adequate written assessments of what they did and did not know 

how to do without assistance.  They also had realistic views on how their past experiences 

in mathematics and associated technology impacted their ability to complete the activity 

successfully.  Students received an overall grade on the activity as well as subscores in the 

following areas: competency in graphical analysis, numerical analysis, and algebraic analysis 

as well as competency in graphing calculator technology, and conceptual understanding of 

the relationship between average and instantaneous rate of change (the derivative).   The 

accompanying rubric (Table 11) was used to assess student performance both by the 

instructor and the students as outlined in the Unit Lesson Plan presented earlier.   

The data represented in the figures (Figures 46-56) below indicates that as a 

student’s graphical competency increases, so does their overall performance on the 

graphing calculator lab activity.  Likewise, there appear to be similar trends  in the areas of 

numerical, algebraic, and technological competency as well as overall conceptual 

understanding.  When the instructor raw score is compared to student GPA and final 

unweighted student averages in Geometry, Algebra II, Pre Calculus, and Calculus there 

appear to be no trends in the data indicating a relationship between any of the categories 

and the instructor raw score. 
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Table 11 
EXPLORING THE RELATIONSHIP BETWEEN  

DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX HANDHELD 
 

Scoring Rubric 
 

 0 1 2 3 

 
 
 
 
Graphical 
Competency  

 
Student is 
unable to 
begin 
calculation of 
the area of 
known 
geometric 
figures on the 
intervals [0,x] 

and [  ,   ] 
without 
assistance.   
 

 
Student is able 
to successfully 
calculate the 
area of known 
geometric 
figures on the 
intervals [0,x] 

and [  ,   ] 
with  major 
assistance.   

 
Student is able 
to successfully 
calculate the 
area of known 
geometric 
figures on the 
intervals [0,x] 

and [  ,   ] 
with minor 
assistance.   

 
Student is able 
to successfully 
calculate the 
area of known 
geometric 
figures on the 
intervals [0,x] 

and [  ,   ] 
without 
assistance.   

 
 
 
 
 
Numerical 
Competency 

 
Student is 
unable to 
successfully 
calculate the 
area of the 
setting sun 
using the 
Fundamental 
Theorem of 
Calculus, Part 
II without 
assistance. 
 

 
Student is able 
to successfully 
calculate the 
area of the 
setting sun 
using the 
Fundamental 
Theorem of 
Calculus, Part 
II with major 
assistance. 

 
Student is able 
to successfully 
calculate the 
area of the 
setting sun 
using the 
Fundamental 
Theorem of 
Calculus, Part 
II with minor 
assistance. 

 
Student is able 
to successfully 
calculate the 
area of the 
setting sun 
using the 
Fundamental 
Theorem of 
Calculus, Part 
II without 
assistance. 
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Algebraic 
Competency 

Student is 
unable to 
begin to 
successfully 
express area 
formulas  on 
the interval 

[  ,   ] in 
terms of 

F(  ),  F(  ), 

G(  ),  G(  ), 

H(  ),  and 

H(  ) without 
assistance. 

Student is able 
to successfully 
express area 
formulas  on 
the interval 

[  ,   ] in 
terms of 

F(  ),  F(  ), 

G(  ),  G(  ), 

H(  ),  and 

H(  ) with 
major 
assistance. 

Student is able 
to successfully 
express area 
formulas  on 
the interval 

[  ,   ] in 
terms of 

F(  ),  F(  ), 

G(  ),  G(  ), 

H(  ),  and 

H(  ) with 
minor 
assistance. 

Student is able 
to successfully 
express area 
formulas  on 
the interval 

[  ,   ] in 
terms of 

F(  ),  F(  ), 

G(  ),  G(  ), 

H(  ),  and 

H(  ) without 
assistance. 

 
 
 
 
 
 
Technological 
Competency 

Student is 
unable to 
begin to 
complete Tech 
Sheets on 
Importing 
Images, 
Creating Lists 
using the Data 
Capture 
feature, and 
Regression 
Analysis 
without 
assistance. 
 
Student is 
unable to 
begin to 
successfully 
complete 
computations 
on the 
graphing 
calculator 
without 
assistance. 
 
 
 

Student is able 
to successfully 
complete Tech 
Sheets on 
Importing 
Images, 
Creating Lists 
using the Data 
Capture 
feature, and 
Regression 
Analysis with 
major 
assistance. 
 
 
Student is able 
to successfully 
complete 
computations 
on the 
graphing 
calculator with 
major 
assistance. 

Student is able 
to successfully 
complete Tech 
Sheets on 
Importing 
Images, 
Creating Lists 
using the Data 
Capture 
feature, and 
Regression 
Analysis with 
minor 
assistance. 
 
 
Student is able 
to successfully 
complete 
computations 
on the 
graphing 
calculator with 
minor 
assistance. 

Student is able 
to successfully 
complete Tech 
Sheets on 
Importing 
Images, 
Creating Lists 
using the Data 
Capture 
feature, and 
Regression 
Analysis 
without 
assistance. 
 
 
Student is able 
to successfully 
complete 
computations 
on the 
graphing 
calculator 
without 
assistance. 
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Conceptual 
Understanding 

 
Student is 
unable to 
begin to 
successfully 
express the 
relationship 
between the 
derivative and 
the integral, in 
particular, 
discover the 
Fundamental 
Theorem of 
Calculus, Parts 
I and II, 
without 
assistance. 

 
Student is able 
to successfully 
express the 
relationship 
between the 
derivative and 
the integral, in 
particular, 
discover the 
Fundamental 
Theorem of 
Calculus, Parts 
I and II, with 
major 
assistance. 

 
Student is able 
to successfully 
express the 
relationship 
between the 
derivative and 
the integral, in 
particular, 
discover the 
Fundamental 
Theorem of 
Calculus, Parts 
I and II, with 
minor 
assistance. 

 
Student is able 
to successfully 
express the 
relationship 
between the 
derivative and 
the integral, in 
particular, 
discover the 
Fundamental 
Theorem of 
Calculus, Parts 
I and II, 
without 
assistance. 

Graphical Competency   

Numerical Competency  

Algebraic Competency  

Technological Competency  

Conceptual Understanding  

TOTAL (out of 15 points)  
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The following figures (Figures 46-56) represent data obtained in the Spring 2012 

administration of the Exploring the Relationship Between Derivatives and Integrals 

graphing calculator lab activity.  The first set of figures shows comparisons between the 

overall instructor score on the lab activity versus overall student score, each of the category 

subscores, GPA, and final averages in Geometry, Algebra II, Pre Calculus, and Calculus. 

 

 

 

Figure 46. Instructor vs. Student Raw Score from EXPLORING THE RELATIONSHIP 

BETWEEN DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX HANDHELD. 
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Figure 47. Instructor Raw Score vs. Graphical Competency Subscore from EXPLORING 

THE RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX 
HANDHELD. 

 

Figure 48. Instructor Raw Score vs. Numerical Competency Subscore from EXPLORING 

THE RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX 
HANDHELD. 
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Figure 49. Instructor Raw Score vs. Algebraic Competency Subscore from EXPLORING THE 

RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX 
HANDHELD. 

 

Figure 50. Instructor Raw Score vs. Technological Competency Subscore from EXPLORING 

THE RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX 
HANDHELD. 
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Figure 51. Instructor Raw Score vs. Conceptual Understanding Subscore from EXPLORING 

THE RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX 
HANDHELD. 

 

Figure 52. Instructor Raw Score vs. Weighted Student GPA from EXPLORING THE 

RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE TI-nspire CX 
HANDHELD. 
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Figure 53. Instructor Raw Score vs. Final Unweighted Student Average in Geometry from 
EXPLORING THE RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE  

TI-nspire CX HANDHELD. 

 

Figure 54. Instructor Raw Score vs. Final Unweighted Student Average in Algebra II from 
EXPLORING THE RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE  

TI-nspire CX HANDHELD. 
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Figure 55. Instructor Raw Score vs. Final Unweighted Average in Pre Calculus from 
EXPLORING THE RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE  

TI-nspire CX HANDHELD. 

 

Figure 56. Instructor Raw Score vs. Final Unweighted Average in Calculus from 
EXPLORING THE RELATIONSHIP BETWEEN DERIVATIVES AND INTEGRALS WITH THE  

TI-nspire CX HANDHELD. 
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STUDENT RESULTS COMPONENT 
DISCUSSION OF OVERALL RESULTS 

 
The data presented in Figures 36 through 56 has provided evidence for continued 

research in the area of teaching Calculus using multiple representations of mathematical 

models.  In an effort to diversify the sample, the activities will be presented to various 

levels of students taking introductory-level Calculus courses during the 2012-2013 school 

year. 

 Perhaps the most significant outcome from the graphing calculator lab activities 

was the student and teacher informal discussion sessions that occurred during the learning 

process.  Students were able to provide clear and accurate descriptions of what they knew 

and did not know.  While many students felt the activities were challenging, they also 

shared that they felt a true sense of accomplishment when they had completed the 

activities.  They were proud of the effort that they put forth and felt that they truly 

understood the target concepts.  Students also commented that the exploratory activities 

presented them with multiple representations of mathematical models, which they found to 

be helpful in making connections to discover the target concepts. 

 Presenting mathematical concepts using exploratory activities that incorporate 

multiple representations of data for mathematical models with the TI-nspire CX Handheld 

as a computational tool has provided the students sampled with a strong conceptual 

understanding of the derivative and its relationship to the integral.  After completing the 

activities, students were able to effectively communicate both orally and in writing about 

the derivative and the integral. 
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 Due to the success of the exploratory graphing calculator lab activities in regards to 

student understanding of target concepts, similar activities are currently in the design stages 

for other major concepts in Calculus.  Through the use of graphical, numerical, and 

algebraic representations of mathematical models, it is the hope that student understanding 

of mathematics will continue to improve.  
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ADDITIONAL QUARTERLY ASSESSMENTS 
 

In addition to the exploratory graphing calculator lab activities presented thus far, 

students in each of the classes, Calculus and Advanced Calculus, were also administered 

quarterly assessments in order to determine if the use of the graphing calculator increased 

performance in mathematics.  Each of the classes was given two open-ended questions to 

complete on a quarterly basis.  The questions covered the same concept, but one question 

was to be done without the use of a graphing calculator, and the second question allowed 

the use of a graphing calculator.  The assessments are provided on the following pages. 

Following the presentation of the quarterly assessment open-ended questions are 

tables containing the results of the open-ended questions (Tables 12-15).  The tables 

present student performance on each of the quarterly assessments, both with and without 

the use of a graphing calculator.  In addition, plots were created to highlight trends in 

student performance.  The plots are contained in Figures 57-64.  Upon examination of the 

data from the quarterly assessments two major trends appear: First and foremost, students, 

in general, received higher scores on questions involving the use of the graphing calculator 

than on similar questions not allowing the use of a graphing calculator.  In addition, 

students’ performance on the tasks, both with and without the use of a graphing calculator, 

increased as the year went on. 

Based on the evidence presented herein, the data appear to suggest that increased 

student performance in mathematics may be correlated to the use of a graphing calculator 

in mathematics instruction.  Due to the trends that were observed, continued assessments 

are planned for the upcoming semester to gather more data to support the hypothesis.  It is 
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encouraging to see not only an increase in student performance in mathematics, but also an 

increased amount of enthusiasm from the students as they feel more confident in their 

abilities to problem-solve in mathematics.  It is the intention that continued research will 

lead to the exact cause of the increase improvement in performance in mathematics seen in 

the data that is presented. 
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Table 12 
CALCULUS 2012 

OPEN-ENDED QUESTIONS – NO CALCULATOR 

   

Student ID Student # Question 1 Question 2 Question 3 Question 4 

132801 1 1 1 2 3 

121036 2 2 2 3 4 

132326 3 1 2 2 3 

121107 4 1 2 3 3 

132215 5 1 2 4 4 

994503 6 0 1 2 3 

132150 7 1 3 3 4 

132173 8 2 2 3 3 

994451 9 1 2 2 3 

121251 10 1 2 3 3 

994175 11 1 1 2 4 

132271 12 1 2 2 3 

994910 13 0 2 4 4 

121019 14 2 2 3 4 

132034 15 2 4 3 3 

132183 16 1 2 2 3 

121076 17 3 3 4 3 

132171 18 2 3 3 4 

994408 19 2 2 3 3 

132126 20 1 2 2 4 

132091 21 2 2 2 3 

994121 22 1 2 3 3 

132122 23 1 2 3 4 

121180 24 2 4 3 3 

994429 25 0 2 3 3 

121345 26 1 2 4 4 

121199 27 2 2 3 4 

132104 28 2 3 3 3 

121219 29 1 2 2 3 

132286 30 2 1 3 3 

132113 31 3 3 2 3 
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Table 13 
CALCULUS 2012 

OPEN-ENDED QUESTIONS – CALCULATOR USE PERMITTED 

  

Student ID Student # Question 1 Question 2 Question 3 Question 4 

132801 1 0 1 3 3 

121036 2 0 2 4 4 

132326 3 1 3 3 4 

121107 4 1 2 3 3 

132215 5 1 3 4 4 

994503 6 0 3 3 3 

132150 7 1 3 4 4 

132173 8 2 3 4 3 

994451 9 2 3 3 4 

121251 10 1 2 2 4 

994175 11 2 1 3 4 

132271 12 2 3 2 4 

994910 13 1 2 4 4 

121019 14 3 3 3 4 

132034 15 2 4 3 4 

132183 16 2 3 3 3 

121076 17 3 3 4 4 

132171 18 3 3 3 4 

994408 19 2 3 4 4 

132126 20 2 2 4 4 

132091 21 2 3 3 4 

994121 22 2 1 3 3 

132122 23 2 2 3 4 

121180 24 3 4 4 4 

994429 25 2 3 3 4 

121345 26 2 3 4 4 

121199 27 3 2 3 4 

132104 28 3 3 4 3 

121219 29 2 2 3 3 

132286 30 2 1 3 4 

132113 31 3 3 4 4 
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Table 14 
ADVANCED CALCULUS 2012 

OPEN-ENDED QUESTIONS – NO CALCULATOR 

  

Student ID Student # Question 1 Question 2 Question 3 Question 4 

121290 1 0 1 3 3 

121055 2 2 2 3 3 

121152 3 1 2 3 4 

121159 4 1 2 3 4 

121273 5 0 1 3 3 

994437 6 2 2 3 4 

121206 7 2 3 3 4 

121013 8 1 2 3 4 

121023 9 4 4 4 4 

121033 10 2 3 4 4 

121040 11 1 3 3 4 

121265 12 1 2 3 4 

121059 13 2 2 2 3 

121065 14 1 1 2 3 

123004 15 0 1 2 3 

123005 16 1 2 2 2 

121077 17 2 3 3 3 

121087 18 2 2 2 3 

121095 19 2 2 3 4 

121099 20 2 3 3 3 

121118 21 1 2 2 3 

121254 22 1 3 4 3 
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Table 15 
ADVANCED CALCULUS 2012 

OPEN-ENDED QUESTIONS – CALCULATOR USE PERMITTED 

   

Student ID Student # Question 1 Question 2 Question 3 Question 4 

121290 1 1 3 4 4 

121055 2 2 2 3 3 

121152 3 1 2 4 4 

121159 4 2 2 4 4 

121273 5 1 2 3 4 

994437 6 2 3 4 4 

121206 7 2 3 4 4 

121013 8 2 3 3 4 

121023 9 4 4 4 4 

121033 10 3 3 4 4 

121040 11 2 3 3 4 

121265 12 1 3 4 4 

121059 13 2 3 3 3 

121065 14 2 2 3 4 

123004 15 0 1 3 3 

123005 16 1 3 2 3 

121077 17 3 4 4 4 

121087 18 2 3 2 3 

121095 19 3 3 4 4 

121099 20 2 3 3 3 

121118 21 2 4 4 4 

121254 22 1 3 4 4 
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Figure 57. Calculus 2012 Student Scores on Open-Ended Question 1 With and With Out 
Calculator Usage. 

 

 

Figure 58. Calculus 2012 Student Scores on Open-Ended Question 2 With and With Out 
Calculator Usage. 
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Figure 59. Calculus 2012 Student Scores on Open-Ended Question 3 With and With Out 
Calculator Usage. 

 

 

Figure 60. Calculus 2012 Student Scores on Open-Ended Question 4 With and With Out 
Calculator Usage. 
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Figure 61. Advanced Calculus 2012 Student Scores on Open-Ended Question 1 With and 
With Out Calculator Usage. 

 

 

Figure 62. Advanced Calculus 2012 Student Scores on Open-Ended Question 2 With and 
With Out Calculator Usage. 
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Figure 63. Advanced Calculus 2012 Student Scores on Open-Ended Question 3 With and 
With Out Calculator Usage. 

 

 

Figure 64. Advanced Calculus 2012 Student Scores on Open-Ended Question 4 With and 
With Out Calculator Usage. 
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APPENDIX A 
Results for 

EXPLORING THE RELATIONSHIP BETWEEN AVERAGE AND 
INSTANTANEOUS RATES OF CHANGE WITH THE TI-nspire CX 

HANDHELD 
  

Course/Lab Student ID GPA Algebra 1 Algebra 2 Geometry Pre Calc 

1 132081 91.81 
 

74 89 62 

1 121036 93.57 100 86 90 77 

1 132326 99.80 
 

93 92 84 

1 121107 92.46 96 90 98 80 

1 132215 99.08 
 

89 94 90 

1 994503 101.73 
 

95 94 91 

1 132150 102.97 
 

99 97 95 

1 132173 95.05 
 

81 88 76 

1 994451 89.66 85 89 90 80 

1 121251 92.61 95 93 96 71 

1 994175 90.50 83 78 87 72 

1 132271 100.56 95 94 91 83 

1 994910 101.38 
 

96 95 74 

1 121019 96.66 92 92 87 67 

1 132034 100.12 
 

96 93 86 

1 132183 99.89 
 

88 94 82 

1 121076 94.70 90 93 94 78 

1 132171 97.00 
 

86 88 73 

1 994408 95.73 
 

98 96 83 

1 132126 101.74 
 

96 96 88 

1 132091 95.86 
 

83 92 75 

1 994121 107.66 
 

99 100 99 

1 132122 96.55 
 

83 91 76 

1 121180 99.61 98 95 95 87 

1 994429 100.17 
 

97 98 87 

1 121345 100.46 94 89 93 80 

1 121199 100.12 96 90 94 80 

1 132104 98.52 
 

87 91 82 

1 121219 96.87 83 92 94 86 

1 132286 103.50 
 

99 98 94 

1 132113 98.81 
 

88 92 82 
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APPENDIX A 
Results for 

EXPLORING THE RELATIONSHIP BETWEEN AVERAGE AND 
INSTANTANEOUS RATES OF CHANGE WITH THE TI-nspire CX 

HANDHELD 
 

Student 
ID 

Graphical 
Competency 

(S) 

Numerical 
Competency 

(S) 

Algebraic 
Competency 

(S) 

Technological 
Competency 

(S) 

Conceptual 
Understanding 

(S) 

132081 2 1 2 2 1 

121036 1 2 1 1 1 

132326 0 0 0 1 0 

121107 0 3 0 1 0 

132215 3 3 2 3 2 

994503 1 1 2 2 2 

132150 3 3 3 2 2 

132173 1 1 1 1 0 

994451 1 1 2 1 1 

121251 1 1 2 2 1 

994175 1 1 1 2 1 

132271 0 1 2 2 2 

994910 2 2 2 1 2 

121019 0 1.5 1 2 1 

132034 1 1 1 2 1 

132183 1 1.5 1 2 1 

121076 2 2.5 2 1.5 2 

132171 0 0 0 0 0 

994408 2 2.5 2 2.5 2 

132126 2 1.5 2 2.5 2 

132091 2 1 2 2 1 

994121 3 3 3 3 2 

132122 3 2.5 2 2 1 

121180 2 3 2 3 3 

994429 2 2 2 2.5 2 

121345 1 0 1 2 1 

121199 0 1.5 2 2.5 1 

132104 1 1 2 1 1 

121219 1 3 1 3 3 

132286 2 2 2 2.5 2 

132113 2 1.5 2 1 1 



117 
 

APPENDIX A 
Results for 

EXPLORING THE RELATIONSHIP BETWEEN AVERAGE AND 
INSTANTANEOUS RATES OF CHANGE WITH THE TI-nspire CX 

HANDHELD 
 

Student 
ID 

Graphical 
Competency 

(I) 

Numerical 
Competency 

(I) 

Algebraic 
Competency 

(I) 

Technological 
Competency 

(I) 

Conceptual 
Understanding 

(I) 

132081 0 0 0 1 0 

121036 0 2 0 1.5 0 

132326 0 2 0 1 0 

121107 0 1 0 1 0 

132215 0 1 0 1 1 

994503 1 2 1 1 2 

132150 1 3 1 2 1 

132173 0 2 0 1 0 

994451 1 2 1 1 2 

121251 1 2 1 1 2 

994175 0 2 0 1 0 

132271 0 1 1 1 2 

994910 0 2 1 3 1 

121019 0 0 0 1 0 

132034 0 0 0 3 0 

132183 0 0 0 3 0 

121076 0 0 0 3 0 

132171 0 0 0 3 0 

994408 0 0 0 3 2 

132126 0 0 1 2 1 

132091 0 0 0 1 0 

994121 3 3 3 3 3 

132122 3 3 3 2 2 

121180 0 0 0 0 2 

994429 0 0 0 2 1 

121345 1 0 1 3 1 

121199 0 0 0 1 0 

132104 0 0 2 2 2 

121219 3 2 3 3 3 

132286 0 0 0 2 0 

132113 0 1 0 3 0 
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APPENDIX A 
Results for 

EXPLORING THE RELATIONSHIP BETWEEN AVERAGE AND 
INSTANTANEOUS RATES OF CHANGE WITH THE TI-nspire CX 

HANDHELD 
 

Student 
ID 

Instructor 
Raw Score 

Student Raw 
Score 

Instructor Percent 
Correct 

Student Percent 
Correct 

132081 1 8 6.67 53.33 

121036 3.5 6 23.33 40.00 

132326 3 1 20.00 6.67 

121107 2 4 13.33 26.67 

132215 3 13 20.00 86.67 

994503 7 8 46.67 53.33 

132150 8 13 53.33 86.67 

132173 3 4 20.00 26.67 

994451 7 6 46.67 40.00 

121251 7 7 46.67 46.67 

994175 3 6 20.00 40.00 

132271 5 7 33.33 46.67 

994910 7 9 46.67 60.00 

121019 1 5.5 6.67 36.67 

132034 3 6 20.00 40.00 

132183 3 6.5 20.00 43.33 

121076 3 10 20.00 66.67 

132171 3 0 20.00 0.00 

994408 5 11 33.33 73.33 

132126 4 10 26.67 66.67 

132091 1 8 6.67 53.33 

994121 15 14 100.00 93.33 

132122 13 10.5 86.67 70.00 

121180 2 13 13.33 86.67 

994429 3 10.5 20.00 70.00 

121345 6 5 40.00 33.33 

121199 1 7 6.67 46.67 

132104 6 6 40.00 40.00 

121219 14 11 93.33 73.33 

132286 2 10.5 13.33 70.00 

132113 4 7.5 26.67 50.00 
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APPENDIX B 
Results for 

EXPLORING THE RELATIONSHIP BETWEEN DERIVATIVES AND 
INTEGRALS WITH THE TI-nspire CX HANDHELD 

 

Course/Lab 
Student 

ID GPA Algebra 1 Algebra 2 Geometry Pre Calc Calculus 

2 121290 93.99 95 87 93 90 83 

2 121055 99.26 
 

95 94 96 92 

2 121152 103.55 
 

97 100 95 90 

2 121159 97.65 95 93 94 94 92 

2 121273 97.90 
 

76 93 87 78 

2 994437 99.56 
 

89 88 93 88 

2 121206 100.02 98 94 93 94 92 

2 121013 102.34 
 

97 97 94 85 

2 121023 97.07 
 

94 96 78 76 

2 121033 100.91 
 

91 96 87 83 

2 121040 101.73 
 

99 98 95 89 

2 121265 97.51 
 

92 94 83 75 

2 121059 95.19 
 

78 84 80 68 

2 121065 103.92 
 

96 97 97 94 

2 123004 98.91 
 

93 86 84 81 

2 123005 96.23 94 86 88 80 76 

2 121077 100.86 
 

91 94 88 80 

2 121087 100.36 
 

92 99 88 75 

2 121095 100.32 
 

95 98 93 88 

2 121099 98.77 
 

89 94 88 83 

2 121118 99.82 
 

95 96 92 83 

2 121254 89.60 
 

79 87 79 80 
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APPENDIX B 
Results for 

EXPLORING THE RELATIONSHIP BETWEEN DERIVATIVES AND 
INTEGRALS WITH THE TI-nspire CX HANDHELD 

 

Student 
ID 

Graphical 
Competency 

(S) 

Numerical 
Competency 

(S) 

Algebraic 
Competency 

(S) 

Technological 
Competency 

(S) 

Conceptual 
Understanding 

(S) 

121290 3 3 2 3 2 

121055 3 3 2 3 3 

121152 2 3 2 1 1 

121159 2 3 2 3 2 

121273 2 3 2 3 2 

994437 2 3 2 2.5 2 

121206 2 3 1 2.5 2 

121013 1 1 1 2 1 

121023 2 2 1 1.5 1 

121033 1 1 1 2 2 

121040 2 1 1 2 2 

121265 2 1 1 2 1 

121059 2 2 2 2 2 

121065 2 2 1 1.5 2 

123004 2 1 1 2 1 

123005 2 2 1 1.5 1 

121077 2 2 2 2.5 2 

121087 2 1 1 1 2 

121095 2 1 2 2 2 

121099 2 2 1 2 3 

121118 2 3 2 3 3 

121254 2 1 2 0.5 1 
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APPENDIX B 
Results for 

EXPLORING THE RELATIONSHIP BETWEEN DERIVATIVES AND 
INTEGRALS WITH THE TI-nspire CX HANDHELD 

 

Student 
ID 

Graphical 
Competency 

(I) 

Numerical 
Competency 

(I) 

Algebraic 
Competency 

(I) 

Technological 
Competency 

(I) 

Conceptual 
Understanding 

(I) 

121290 2 3 2 3 3 

121055 3 3 2 3 3 

121152 2 1 2 3 2 

121159 3 3 3 2 3 

121273 3 2 2 3 2 

994437 1 2 2 2 2 

121206 2 2 1 1 2 

121013 2 2 1 2 1 

121023 2 0 2 0.5 1 

121033 1 2 2 3 2 

121040 1 2 3 3 3 

121265 0 0 0 1 0 

121059 0 0 0 0.5 0 

121065 2 2 3 3 2 

123004 2 2 2 2 0 

123005 1 0 2 2 0 

121077 2 0 2 1 0 

121087 1 2 2 2 2 

121095 2 3 2 2 2 

121099 1 1 2 1 0 

121118 2 3 3 3 3 

121254 1 0 1 0 0 
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APPENDIX B 
Results for 

EXPLORING THE RELATIONSHIP BETWEEN DERIVATIVES AND 
INTEGRALS WITH THE TI-nspire CX HANDHELD 

 

Student 
ID 

Instructor Raw 
Score 

Student Raw 
Score 

Instructor Percent 
Correct 

Student Percent 
Correct 

121290 13 13 86.67 86.67 

121055 14 14 93.33 93.33 

121152 10 9 66.67 60.00 

121159 14 12 93.33 80.00 

121273 12 12 80.00 80.00 

994437 9 11.5 60.00 76.67 

121206 8 10.5 53.33 70.00 

121013 8 6 53.33 40.00 

121023 5.5 7.5 36.67 50.00 

121033 10 7 66.67 46.67 

121040 12 8 80.00 53.33 

121265 1 7 6.67 46.67 

121059 0.5 10 3.33 66.67 

121065 12 8.5 80.00 56.67 

123004 8 7 53.33 46.67 

123005 5 7.5 33.33 50.00 

121077 5 10.5 33.33 70.00 

121087 9 7 60.00 46.67 

121095 11 9 73.33 60.00 

121099 5 10 33.33 66.67 

121118 14 13 93.33 86.67 

121254 2 6.5 13.33 43.33 
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