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ABSTRACT	   	  

 

The interactions between a single polymer chain and a solid wall are 

studied in the presence of the specific shear flow field. Coarse-grained Brownian 

molecular dynamic simulations have been carried out to study the effects of wall 

on the conformational changes of a single polymer chains under various shear 

flow conditions. The Polymer chain is modeled by a sequence of 20 beads 

connected by finitely extensible non-linear elastic springs. The results show that 

the strongly attractive solid wall will pull the polymer chain towards it, compared 

with the weakly attractive solid wall that pushes the polymer chain away. When 

the polymer chain sticks to the wall and flow field is strong enough, it unfolds 

significantly. It is also shown that the initial distance between the wall and the 

polymer chain has little influences on the configuration of the polymer chain near 

weakly attractive walls. On the other hand, the initial distance has strong 

influences on the dynamics of polymer chain near strongly attractive walls. Our 

prediction indicates that there is a critical value of shear rate for a polymer chain 

near strongly attractive walls. For the value of shear rate above the critical value, 

the polymer chain unfolds significantly. 
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Chapter	  1.	  Introduction	  

 

The interaction between polymer chains and solid walls has attracted great 

attentions recently. The dynamic behavior of the polymer chains near surfaces can 

be important in several technological applications such as microelectronics, 

colloidal stability, surface nanopatterning, adhesion, and friction modification.1 

The present work uses Brownian Dynamic simulations to examine the 

configuration of simple polymer chains under the influence of solid walls. 

Brownian Dynamic simulation is a well-accepted tool to be used study 

polymer and molecular systems. Brownian Dynamics is a limiting case of 

Langevin dynamics and it can be used for systems in which inertial effects are 

negligible. Starkweather et al. (1998) studied single-chain entanglements in dilute 

solution capillary electrophoresis. The Monte Carlo simulation procedure used by 

these investigators employs a pearl necklace representation of the polymer chain, 

and each bead in the chain is given a hard sphere potential and radius large 

enough to prevent crossings. Saville and Sevick (1999) study a field-driven 

polymer chain colliding with a finite-sized obstacle. They discuss the 

“unhooking” and “rolling off” mechanisms for chain release. Nixon and Slater 

(1994) use bead-rod Brownian dynamics to simulate two-dimensional DNA 

electrophoretic collisions with a single non-moving obstacle.2 

However, due to computational limitations, these simulation methods can 

only be used to simulate either shorter chains (a hundred monomers) or longer 
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chains for a shorter time scale (at most microseconds).3 In order to simulate 

practical situations where long polymers and span time scales of the order of 

seconds, BD simulation of bead-spring chains has been utilized. In the model, the 

polymer chain is represented by a sequence of beads connected by flexible springs 

where the beads act as drag centers and they interact with each other via various 

forces that will be mentioned next chapter. Specifically, the model that is 

proposed by Kumar and Larson is used in the present work. The model will be 

presented in detail in Chapter 3. 

The main objective of the thesis is to examine the effect of the wall on the 

conformational changes of a polymer chain. The wall is modeled as an infinite 

impenetrable solid boundary, which determines the molecules are unable to travel 

through it. The parameter εwall  that determines the attractive capability of the wall 

can be properly chosen to study both strongly attractive and weakly attractive 

walls. Conformational changes of the polymer chain is characterized by two 

parameters Rg  and Rz  determined by the simulation. Rg  is the radius-of-

gyration of the polymer chain and Rz  is the average distance between the centers 

of the each bead to the wall. 

The flow induced conformational changes of a polymer chain near a wall is 

investigated. Only simple shear flow is considered in the present work. Using 

different energy parameters of bead-wall interactions and the static and dynamic 

properties of a polymer chain are investigated for various shear flow conditions. 

The thesis is outlined as follows. Chapter Two describes Bead-Spring 

model; Brownian Dynamics; Wall effect and briefly reviews the past studies. 
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Chapter Three describes the mathematical model; Chapter Four describes the 

numerical method. In Chapter Five, the results are presented and discussed. The 

conclusion is presented in Chapters Six. 
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Chapter	  2.	  Literature	  Review	  

 

2.1	   Bead-‐Spring	  Model	  

The bead-spring model is a model simulating the hydrodynamic properties 

of a chain macromolecule consisting of a sequence of beads, each of which offers 

hydrodynamic resistance to the flow of the surrounding medium and is connected 

to the next bead by a spring which does not contribute to the frictional interaction. 

The spring is responsible for the elastic and deformational properties of the chain. 

And mutual orientation of the springs is random.4 

The idea of bead-spring model can trace back to more than 60 years ago 

and consists of many submodels. The Rouse model was proposed by Prince E. 

Rouse in 1953. The Rouse describes the conformational dynamics of an ideal 

chain. In this model, the single chain diffusion is represented by Brownian motion 

of beads connected by harmonic springs (Hookean). There are no excluded 

volume interactions between the beads and each bead is subjected to a random 

thermal force and a drag force as in Langevin dynamics.5 The linear force law 

used in the Rouse model has the advantage that it greatly simplifies the 

mathematics and allows a number of equilibrium and nonequilibrium properties. 

The Rouse model is expressed by an explicit constitutive equation. However the 

linear force law leads to unrealistic results when the chain is subjected to large 

deformations, presumably because the chain can be extended infinitely.6 one 

important extension to the model is the hydrodynamic interactions mediated by 
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the solvent between different parts of the chain introduced out by Bruno Zimm.7 

Whilst the Rouse model overestimates the decrease of the diffusion coefficient D  

with the number of beads N  as1/ N , the Zimm model predicts  D 1/ Nv  which 

is consistent with the experimental data for dilute polymer solutions. But the 

Zimm model has the similar issue as the Rouse model that is only realistic for 

small deformations from equilibrium and put no limit to the extent to which the 

spring can be stretched. Thus the deficiencies of models with Hookean springs 

have led investigators to shift their attention to models based on a bead-spring 

chain with finitely extensible nonlinear elastic (FENE) spring.6 

The bead-spring model with FENE spring has been widely researched and 

used after its first debut. Warner8 computed perturbation solutions and numerical 

solutions for steady shear flow. Armstrong9 obtained perturbation solutions for an 

arbitrary non-linear elastic spring force in steady homogeneous flow and in the 

linear viscoelastic limit. Christiansen and Bird10 extrapolated a perturbation 

solution also for high amplitude oscillatory shear flow. More recently, Fan11 

improved Warner’s numerical method. 

In the present work, the bead-spring model where N  beads connected to 

the neighboring beads by FENE springs will be used. The finitely extensible 

nonlinear elastic spring law12 is employed 

 

 21 /spring b
=

−
QF
Q

  (1) 
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The detailed description of the spring law is given in Chapter 3. 

 

2.2	   Brownian	  Dynamics	  (BD)	  Simulation	  

The Brownian Dynamics is a simplified version of Langevin dynamics, in 

which the average acceleration can be neglected. So BD is also named non-

inertial dynamics. Briefly, Langevin dynamics uses a stochastic differential 

equation in which two force terms have been added to Newton’s second law. 

Since a molecule in the real world is not present in a vacuum and solvent 

molecules causes friction and collisions to perturb the system. For a system of N  

particles with masses M , with coordinates X = X(t)  that constitute a time-

dependent random variable, the resulting Langevin equation is given in the form: 

  

 ( ) ( ) ( ) 2 ( )BMX t U X MX t k TMR tγ γ= −∇ − +&& &   (2) 

 

Since Brownian dynamics is inertial dynamic. The  MX(t)  term is neglected. The 

equation governing the Brownian dynamic is: 

 

 0 ( ) ( ) 2 ( )BU X MX t k TMR tγ γ= −∇ − +&   (3) 

 

In equation (3), U(X)  is the particle interaction potential; kB  is the Boltzmann’s 

constant; R(t)  is a delta-correlated Gaussian process with zero-mean and γ  
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represent the collision frequency that controls the magnitude of the frictional 

force and the variance of the random forces. 

The BD simulation, an extremely efficient method for treating molecular, 

is proposed as early as 1978 by D.L. Ermak and J.A. McCammon.13 They present 

BD simulations of short chains with hydrodynamic interaction (HI) at 

equilibrium. Almost at the same time, Fixman14 developed and applied the 

mathematical background for performing BD simulations of polymer chains in 

flow. BD simulations of FENE dumbbell models with HI and excluded volume 

(EV) effects were simulated by Rudisill and Cummings.15 The rheological 

properties of FENE chains, in comparison with various approximations, have 

been investigated via BD simulation by van den Brule.16 More recently, J.S. Hur 

and R.G. Larson simulated single DNA molecules in shear flow using BD 

simulations and the simulation results, especially in light of the excellent 

agreement with experiment, demonstrated the basic physical elements necessary 

for any rheological model to capture the dynamics of single polymer chains in 

flow.17 Later M. Chopra and R.G. Larson extended the BD simulations into 

isolated polymer molecules in shear flow near adsorbing and nonadsorbing 

surfaces.18 

The molecular dynamic simulation is the method used by the present 

work. Specific of the method are described in Chapter 3. 
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2.3	   The	  Wall	  Effect	  

The wall effect towards the behavior of polymer solutions has received a 

great deal of attention in the past three decades, not only because of its intrinsic 

scientific interest but also because of its technological importance.19 In the 

existing studies of the wall effect, De Gennes20,21, J.M.H.M. Scheutjens22 and H.J. 

Ploehn23 have focused on the equilibrium (static) problem while J.H. Aubert24 and 

P.O. Brunn25 have undertaken the same problem under flow conditions on the 

contrary. During that period, a fairly good understanding has been developed. 

More recently, Duering and Rabin26 and de Pablo et al27 have applied two-

dimensional Monte Carlo and other stochastic methods in computer simulations 

of rigid dumbbells and multi-bead-rod models with impacts of the wall effect. 

Mavrantzas and Beris28 have developed the Hamiltonian formalism for flowing 

polymers near surfaces. 

Remarkably, S.W. Sides and G.S. Grest have conducted large-scale 

simulations of adhesion dynamics for end-grafted polymer.29 Later they have 

simulated the effect of end-tethered polymers on surface adhesion of glassy 

polymers.30 They utilized an effective 9-3 Lennard-Jones potential that is an 

integrated form of standard LJ potential, which describes impacts of infinitely flat 

wall towards polymer chains. 

 

 10 44 [9( ) 3 ( ) ]
ev ev

BW
i wallev

i i

d d
d z z

ε= −F z   (4) 
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where z  is the unit vector in the z direction and zi  is the distance between the 

center-of-mass of the bead and the wall. And εwall  and dev  are energy and length 

parameters of bead-wall, respectively. The detailed description of this method is 

given in Chapter 3. 
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Chapter	  3.	  Model	  Descriptions	  

 

3.1	   Physical	  forces	  

For the Bead-Spring Model, the following physical forces are of the real 

importance. 

3.1.1	   Brownian	  force	  

When a polymer chain is suspended in a fluid, each bead subjected to the 

impact of liquid molecules. For ultra-fine beads, the instantaneous momentum 

imparted to beads varies random that causes beads to move on an erotic path now 

known as Brownian motion. The Brownian force is given by: 

 

 1/26( )B
Brownian

k T
t
ζ=

Δ
F   (5) 

 

where kB  is the Boltzmann’s constant, T  is the absolute temperature, ζ  is the 

drag coefficient for a bead, and Δt  is the time-step used in the simulation. 
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3.1.2	   Spring	  force	  

The spring forces are caused by flexible springs used to connect beads in a 

polymer chain sequentially. And the dimensionless spring forces Fspring  are able to 

calculate by a finitely extensible nonlinear elastic law (Bird et al. 1987): 

 

 21 /spring b
=

−
QF
Q

  (6) 

 

where Q = ri+1 − ri . The flexibility of a spring is measured by the dimensionless 

extensibility parameter b and is defined as: 

 

 2
0 ,/ 3B K sb HQ k T N= =   (7) 

 

where 
  
N K ,s  is the number of Kuhn steps in a spring and Q0  is the length of a fully 

extended spring. 

 

3.1.3	   Viscous	  drag	  force	  

The viscous drag is the frictional force that the flowing solvent exerts on 

polymer chains that how an important influence on the configurations of polymer 

chains. The viscous drag force is given by: 

 

 ( )HI
i i iζ= −F V r&   (8) 
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where ζ  is the drag coefficient too, V  is the bulk velocity of the solvent at the 

bead location, and  r  is the velocity of the bead  r = dr / dt . 

 

3.1.4	   Bead-‐bead	  Lennard-‐Jones	  potential	  

The Lennard-Jones potential is a special case of Mie potential. It consists 

of two parts: a steep repulsive term and a smoother attractive term. It is worth 

mentioning that the 12-6 Lennard-Jones potential model is not the best 

representation of the potential energy surface, but rather its use is widespread due 

to its computational expediency. A truncated Lennard-Jones potential is used here 

to model bead-bead interactions: 

 13
,

4 [12( ) 6 ( )7]
ev ev

BB
i j ijev

ij ij

d dF r
d r r

ε= −  for 0.675ijr ≥   (9) 

 

 13
,

4 [12( ) 6 ( )7]
ev ev

BB
i j ijev

ij ij

d dF r
d r r

ε= −  for 0.675ijr ≤  (10) 

 
where rij is the unit vector along rij , and ε  and dε

ev  are the energy and length 

parameters of bead-bead interactions, respectively.  

The Lennard-Jones potential acting on a bead due to bead-bead 

interactions thus can be written in the form: 
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 ,
BB BB
i i j

j i≠
=∑F F   (11) 

 

3.1.5	   Bead-‐wall	  Lennard-‐Jones	  potential	  

The interactions between an infinite flat wall and the polymer beads are 

modeled by an integrated 9-3 lennard Jones potential. The 9-3 Lennard-Jones 

potential is commonly used to model the interaction between the molecules of a 

fluid with a structureless solid wall. The potential force is expressed as: 

  

 10 44 [9( ) 3 ( ) ]
ev ev

BW
i wallev

i i

d d
d z z

ε= −F z   (12) 

 
where z  is the unit vector in the direction normal to the wall, zi  is the distance 

between the center-of-mass of the bead and the wall, and εwall  and dev  are energy 

and length parameters of bead-wall, respectively. 

The effects of the weakly attractive wall and strongly attractive wall can 

be examined by choosing εwall  properly. εwall  <<0.1 to simulate weakly attractive 

walls while εwall  >> 1 to simulate the strongly attractive wall. And we get the 

graphs about the bead-wall LJ potential force versus zi  as below. 
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Figure 1 (a) the bead-wall LJ potential forces as a function of the distance between the 
center of mass of the beads and the wall for εwall  = 0.1 and 10. 

 

Figure 1 (b) the bead-wall LJ potential forces as a function of the distance between the 

center of mass of the beads and the wall for when εwall  = 0.1 and 10 for 0.65<z<1.05. 
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3.2	   Governing	  equations	  

The BD methods take advantage of the fact that inertial forces on the 

polymers are small, and therefore, the sum of the above forces can be set to zero: 

 

 0HI S BB BW B
i i i i iF F F F F+ + + + =  for 1,2,......,i N=   (13) 

 

Substituting equations (5) ~ (12) into the force balance equation yields: 

 

 1
6( ) 0

old
T BB BWi i b

i i i i
S S
i i

k T
t t

F F F Fζ
ζ−

⎡ ⎤−− − ∇ ⋅ + − + + =⎢ ⎥Δ ⋅Δ⎣ ⎦
+r r u r n   (14) 

 

Measuring length in units of   kBT / H , force in units of   HkBT  and time in 

units of   ζ / H , the dimensionless equation governing the conformational changes 

of polymer can be written in the form (Bird er al. 1987): 

 

 1( ) 2old T S S BB BW
i i i i i i i it t−⎡ ⎤= + ∇ ⋅ + − + + Δ + Δ⎣ ⎦r r u r F F F F n   (15) 

 

where ri  and ri
old  are the position vectors of bead i  at the new and old times, 

respectively, ∇  is the gradient operator, u  is the unperturbed solvent velocity and 

ni  is the random vector whose components are uniformly distributed in [−1,1] , 

and Δt  is the time-step used in the simulation. 
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3.3	   Calculated	  Parameters	  

The results of the simulations are presented using two parameters. 

3.3.1	  The	  radius	  of	  gyrationRg 	  

The radius-of-gyration (Rg ) is used to characterize the conformation of a 

polymer chain and is defined by: 

 

 

2
. .1

N
c miiRg N

−∑
==
r r

  (16) 

 

where ri = (xi , yi , zi )  is the position of the ith  bead, and rc.m. = (xc.m., yc.m., zc.m. )  is 

the center of mass of the chain. 

 

3.3.2	  The	  distance	  between	  the	  polymer	  chain	  and	  the	  wall	   ZR 	  

The ZR  is used to characterize the relative position between the polymer 

chain and the wall. And it’s written in the form: 

 

 1

N

i w
i

Z

z z
R

N
=

−
=
∑

  (17) 
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where zi  is the shortest distance between the bead, and zw  is the position of the 

wall. 
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Chapter	  4.	  Numerical	  Method	  

 

In this chapter, the numerical method using Brownian dynamics will be 

explained. The simulations were run on several Packer Lab 201 room’s 

computers, with 16.0 gigabytes of memory, and 6 dual core i7 main processors 

and floating-point coprocessor running at 3.20 GHz. Each simulation took about 6 

hours computational time. Numerical procedure is divided into two stages: 

initialization and the main simulation. 

 

4.1	   Initialization	  

Initialization is always the first part of the numerical procedure, and 25 

random conformations of polymer chains and the walls are initialized at first and 

the properties of the polymer chain are estimated by averaging over these 25 

random trajectories in order to reduce the unnecessary errors. The polymer chain 

has to stay on one side of the impenetrable wall. If the conformations don’t satisfy 

above criteria, the initialization has to be done again until it meets the condition. 

Specifically, the initial chain conformations are generated by placing the first 

bead at the origin and the wall at a constant distance from it. Subsequent beads, 

i = 2,3,......,N , are generated at random locations 3  (in dimensionless unites) 

away from the beads that precede them, see Fig. 2 (a) and Fig. 2(b). And 

importantly, four output files are created for each run in order to initial conditions 
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and calculated parameters. ‘initial.dat’ and ‘data.dat’ are used to record the initial 

positions and final positions of each bead while ‘Rg.dat’ and ‘Zg.dat’ are used to 

record the value of ZR and ZR of each time-step. 

 

 

Figure 2 (a) Schematic representation of a single polymer chain confined by a solid wall 
(infinite) in initial position. 
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Figure 2 (b) Schematic representation of a single polymer chain confined by a solid wall 

(infinite) in initial position. 

 

4.2	   The	  main	  loop	  

The main loop of the program begins with calculation of forces 

influencing the movement of each bead. Specifically, the ‘FENE.f90’ subroutine 

is called to calculate spring forces; the ‘Lennard_Jones.f90’ subroutine is used to 

calculate the potential force between two different beads and the ‘wallforce.f90’ 

subroutine is called to calculate the wall-bead interactions. At first, the data of 

initial positions of beads are transferred from the initialization program to the 

subroutines. Then the specific forces are calculated and transferred back to the 

main program.  
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Next step is to calculate the conformational changes of polymer at various 

runs. The equations are solved using an explicit time-stepping algorithm. It is 

essentially marching in time; the position of each bead is determined using the 

position at past state. The radius of gyration ( Rg ) and the shortest distances of 

each bead from the wall ( ZR ) are recorded at each time steps. 

 

4.3	   Parameters	  used	  in	  the	  numerical	  simulations	  

4.3.1	   Time	  step	  

Because the low order of accuracy of the Brownian force term in the 

equation of motion of individual beads, small time steps must be used, even when 

the velocity gradient in the gap is small. For the majority of our simulations when 

there is no shear flow, the time-step Δt  is set to be 1×10−4 . When the polymer 

chain in high shear flow, the time step size is  Δt 1×10−5 . It should be noticed 

that there is a trade-off between accuracy and the total length of the simulation 

time. 

 

4.3.2	   Relaxation	  time	  and	  shear	  rate	  

The magnitude of shear flow is quantified by the Weissenberg number, 

which is defined as  Wi = τ1,R γ  where τ1,R  is the longest Rouse relaxation time of 
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polymer chain and  γ  is the rate of simple shear flow near the wall. The relaxation 

time of a chain connected by Hookean springs is given by13 : 
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where bK  is the Kuhn step length, and the expression on the far left is obtained by 

using the relation, H = 3kBT / (NK ,sbK
2 ) . Notably, the presence of intramolecular 

interactions only slightly affects the relaxation dynamics. (Nazish Hoda, R.G. 

Larson, 2010) Using the method described above, here the relaxation time of a 

20-bead chain (in units of ζ /H ) for the model used here is 15. 

 

4.3.3	   Choice	  of	  length	  parameter	  and	  energy	  parameter	  

The energy parameter ε  is the measure of how strongly the two beads 

attracted each other. For bead-bead interactions, the energy parameter εbead  is 

fixed at 1. However the energy parameter of wall-bead interactions εwall  is 

changing from 0.1 to 10 gradually in order to simulate a weakly attractive wall 

and a strongly attractive wall. 

The length parameter dev  gives a measurement of how close two 

nonbonding beads can get and is thus referred to as the van der Waals radius. It is 

equal to one-half of internuclear distance between nonbonding particles. Thus the 
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length parameter of bead-bead interactions and wall-bead interactions dev  is all 

fixed at 0.8 according to the requirements of the simulation.32 
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Chapter	  5.	  Results	  and	  Discussions	  

 

First, a simple test problem is considered, a single polymer chain in a 

quiescent solution confined by an impenetrable wall. In the absence of flow, the 

only external forces the molecule experiences are the Brownian kicks provided by 

the surrounding liquid, the viscous drag that resists the resulting movement of the 

molecule, the potential forces between the wall and the molecule. The 

conformational changes the molecule undergoes in the process are resisted by its 

entropic spring forces that are limited by its finite extensibility and Lennard-Jones 

potential forces that can be repulsive and attractive depending on distances 

between each molecule. 

In the second set of more interesting problems, the conformational 

changes of a polymer chain near wall are studied under the influence of a simple 

shear flow. In addition to the random Brownian motion, the potential forces 

between different molecules and between the wall and each molecule, the spring 

forces, and the viscous drag, the polymer chain experiences the interactive force 

with the flow. 

 

5.1	   Quiescent	  solution	  

For the case of a quiescent liquid, one of the significant parameter in the 

simulation is the initial distance between the polymer chain and the wall. It is 
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characterized by zini  as described above. The question is that to what extent, zini  

influences the configuration of the polymer chain. Simulations are conducted for 

various values of zini  from 3 to 20. 

The radius of gyration ( Rg ) for zini =10 and εwall =0.5 in the quiescent state 

of solvent as a function of time is plotted in Figure 3(a) and 3(b). For one of the 

25 random set of initial beads configurations, the polymer chain reaches quasi-

steady state quickly for any initial configuration set; namely Rg  fluctuates around 

the mean value, as shown in Figures 3(a) and 3(b). For a given set of parameters 

and for the random initial configuration, the mean value of Rg  is calculated. The 

radius of gyration ( Rg ) determined from each random initial configuration is then 

averaged ever as random initial configuration used for each run. The averaged 

value of Rg  is then plotted against the wall energy parameter for various values of 

zini . 
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Figure 3 (a) the radius-of-gyration Rg versus time-steps in the case that zini =10 and εwall =0.5 
in the quiescent state. 

 

 

Figure 3 (b) the radius-of-gyration Rg versus time-steps in the case that zini =10 and εwall =5 in 

the quiescent state. 
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Figure 4 (a) Dependence of radius-of-gyration Rg on energy parameter of bead-wall 

interactions εwall  in case when zini =20; zini =10; zini =5 and zini =3. 
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Figure 4 (b) Dependence of radius-of-gyration Rg on energy parameter of bead-wall 

interactions εwall  in case when zini =20; zini =10;	   zini =5 and zini =3 and the value of εwall  is 

using log scale. 

 

 

It is noted that Figures. 4 (a) and (b) depict that the dependence of average 

value of radius-of-gyration Rg  on the energy parameter εwall  for the four cases 

when zini =20; zini =10; zini =5 and zini = 3. zini  has profound effects on the 

configuration of the polymer chain. When 0 < εwall <1 , the influence of zini  on the 

dynamics of the polymer chain is not significant, as shown in Figures 4(a) and 

4(b). This is due to the fact that for 0 < εwall <1 , the attractive force is 

comparatively small. (See Figure 1(a) and (b)) And the polymer chain drifts away 

from the wall as shown in Figure 5(a). However for 1< εwall < 4 , there is a clear 

transition, namely Rg  increases rapidly as εwall  increases. The polymer chain 

approaches to the wall as it unfolds, as shown in Figure 5(b). For εwall > 4 , the 

effect of wall on the conformation of a polymer chain becomes noticeably 

obvious. 
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Figure 5 (a) the distance between the center of the polymer chain and the wall Rz versus 
time-steps in the case that zini =10 and εwall =0.4 in the quiescent state. 

 

 

Figure 5 (b) the distance between the center of the polymer chain and the wall Rz versus 

time-steps in the case that zini =10 and εwall =3 in the quiescent state. 

 

It should also be noted that the initial distance between the polymer chain 

and the wall zini  has a dramatic effect on the Rg . When εwall >1 , as shown in Figure 
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4(a) and 4(b), the larger zini  is, the smaller Rg  becomes. As expected the wall has 

a stronger impact on the stretch of the polymer chain after first phase, considering 

when the polymer chain is closer to the wall. 

For the case of a quiescent Solvent, the wall energy parameter εwall  is 

varied from 0.1 to 10 gradually in order to simulate the weakly attractive and the 

strongly attractive walls. In Figures 4(a) and (b), for the weakly attractive wall 

( εwall  is smaller than 1), Rg  is comparatively small and nearly constant at 1.755. 

For the values of εwall  near unity, Rg  decreases slightly from 1.755 to about 1.7. 

For strongly attractive wall (εwall  is greater than 1), Rg increases rapidly. The 

transition occurs since the forces that the Lennard-Jones wall exerts on polymer 

beads change from repulsive to attractive and the polymer chain sticks to the wall 

rather than it is pushed away. When this happens, the chain unfolds as displayed 

on Figures 6(a) and (b). After the transition section, the Rg  is nearly stable if 

neglecting little fluctuation. 
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Figure 6 (a) Schematic representation of a single polymer chain confined by a solid wall 
(infinite) after enough time-steps that the single polymer chain sticks to the wall. 

 

 

Figure 6 (b) Schematic representation of a single polymer chain confined by a solid wall 

(infinite) after enough time-steps that the single polymer chain sticks to the wall. 
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5.2	   The	  polymer	  chain	  in	  flow	  

Next, the dynamics of a polymer chain in flow is probed. The polymer 

chain is subjected to a simple shear flow. The intensity of the simple shear flow is 

characterized by the gradient of the velocity 
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Where  γ  is the shear-rate, namely 
 
γ = ∂u

∂z
. And the flow in the simulations is in 

the x-direction (direction parallel to the wall). The shearing is in z-direction 

(direction normal to the wall). The intensity of the shear flow is characterized in 

terms of Weissenberg number,  Wi = τ γ , where τ  is the longest relaxation time of 

a polymer chain that we have discussed in the Chapter 4. 

 Figure 7(a) and (b) display the radius of gyration ( Rg ) of the 20 bead 

polymer chain as a function of the wall energy parameter under various values of 

Weissenberg (Wi ) Number as zini  is fixed at 20. For all cases, as the intensity of 

shearing increases the polymer unfolds more for any type of walls (weakly 

attractive or strongly attractive walls). It should be noted that the conformation 

changes of polymer in shear flow is very different compared to that of the 

polymer chain in quiescent solvent. For weakly attractive wall (εwall  is smaller 

than 1), Rg  changes rapidly as εwall  approaches to unity. Rg  assumes a minimum 
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value at εwall = 1  and it increases as εwall  increases from unity as depicted in 

Figure 7(a) and 7(b). 

 Unlike for the no flow case, the polymer chain experience a transition 

when εwall  approaches to unity from the weakly attractive wall. During such 

transition the polymer folds rapidly. At the other side of unity of εwall , the 

unfolding transition is weaker compared to the one for folding transition. For both 

in flow and in quiescent cases, the polymer chain interacts with the wall stronger 

when εwall  is near unity. 

 

	  

Figure 7 (a) Dependence of the radius-of-gyration Rg for a 20-bead chain on energy 
parameter of bead-wall interactions  εwall  in cases when Wi  equals 0, 0.1, 0.3, 0.5 and 1. 
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Figure 7 (b) Dependence of the radius-of-gyration Rg for a 20-bead chain on energy 

parameter of bead-wall interactions  εwall  in cases when Wi  equals 0, 0.1, 0.3, 0.5 and 1. And 

the value of εwall  is using log scale. 

 

It is obvious from Figure 7(a) and (b) that there is a critical value of Wi , 

below which the polymer chain near a strongly attractive wall ( εwall  is greater 

than 1) unfolds very slightly compared to that of the polymer chain in quiescent 

solvent. For the shearing above the critical value of the Wi  is predicted to be 0.4, 

as seen in Figure 7(a) and (b). This critical phenomenon is not obvious when the 

wall is weakly attractive. The polymer chain near the weakly attractive wall 

experiences the unfolding even under weak shear flow conditions. 
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The transition in the conformational changes of the polymer chain in shear 

flow conditions and the effects of weakly and strongly attractive walls are clearly 

seen in Figure 8(a) ~ 8(l).  

The value of the radius of gyration ( Rg ) as a function of time is plotted in 

Figure 8(a) ~ 8(l) for various flow conditions and various types of walls. 

 

 

Figure 8 (a) The radius of gyration Rg  versus time-steps when Wi  equals 1 and εwall  equals 5. 
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Figure 8 (b) The radius of gyration Rg  versus time-steps when Wi  equals 1 and εwall  equals 

9. 

 

 

 

Figure 8 (c) The radius of gyration Rg  versus time-steps when Wi  equals 0.5 and εwall  equals 

5. 
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Figure 8 (d) The radius of gyration Rg  versus time-steps when Wi  equals 0.5 and εwall  

equals 9. 

 

 

 

 

Figure 8 (e) The radius of gyration Rg  versus time-steps when Wi  equals 0.4 and εwall  equals 

5. 
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Figure 8 (f) The radius of gyration Rg  versus time-steps when Wi  equals 0.4 and εwall  equals 

9. 

 

 

 

 

Figure 8 (g) The radius of gyration Rg  versus time-steps when Wi  equals 0.3 and εwall  equals 

5. 
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Figure 8 (h) The radius of gyration Rg  versus time-steps when Wi  equals 0.3 and εwall  

equals 9. 

 

 

 

 

Figure 8 (i) The radius of gyration Rg  versus time-steps when Wi  equals 0.1 and εwall  equals 

5. 
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Figure 8 (j) The radius of gyration Rg  versus time-steps when Wi  equals 0.1 and εwall  equals 

9. 

 

 

 

 

Figure 8 (k) The radius of gyration Rg  versus time-steps when Wi  equals 0 and εwall  equals 

5. 
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Figure 8 (l) The radius of gyration Rg  versus time-steps when Wi  equals 0 and εwall  equals 9. 
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Chapter	  6.	  Conclusion	  

 

 Coarse-grained molecular dynamics simulations are conducted to 

investigate the effect of wall on the conformational changes of a single polymer 

chain near wall. The polymer chain is subject to shear flow. Both transient and 

long-time dynamics of the polymer are studied. Both weakly and strongly 

attractive walls are considered in the present work. 

 For a polymer chain in quiescent solvent, the effect of the wall on the 

dynamics of the polymer is minimal. The polymer drifts away from the wall and 

the wall-bead LB potential forces becomes too small to influence the 

conformation of the chain. As the wall becomes more attractive, the polymer 

chain sticks to the wall and unfolds rapidly. 

 The polymer chain near the wall under shear flows unfolds for any type of 

walls: weakly or strongly attractive ones. The effect of the wall under flow is very 

different compared to that in quiescent solvent. The polymer chain near weakly 

attractive wall unfolds. The extent of unfolding is greatly reduced as εwall  tends to 

unity. The wall with energy coefficient εwall = 1  causes least degree of unfolding 

of the chain under flow or no flow conditions. 

 There is a critical value of shear rate, above which the polymer chain starts 

unfolding when the wall is strongly attractive. Such transitional behavior is weak 

or not present for the polymer chain near weakly attractive wall. 
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