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ABSTRACT 

The human mind is very imprecise and uncertain most of the time.  We are allowed 

to think as we wish, as things really are.  This, however, is not how computers are designed 

to allow us to solve realistic problems.  Now the question arises: how do we represent 

uncertainty and impreciseness using very accurate devices?  In order to add flexibility into 

mechanical design, fuzzy logic can be used to represent the imprecise data, such as how 

humans think.  Fuzzy logic allows the use of representing more than one value for a specific 

variable; it also allows the user to specify the shape the data takes (the membership 

function) which could be a function of the problem at hand.    While incorporating fuzzy 

logic into design, the design becomes more imprecise in the sense that its variables 

represent more than one value, yet the design becomes more accurate when considering 

how the human brain interprets these variables. 
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Chapter 1: Introduction 

Within the field of kinematics and dynamics, mechanism synthesis is used to 

determine the motion of a linkage system to aid in machine design.  Machine design 

consists of mechanism synthesis, which is the process of defining specific values of lengths 

and angles of a four-bar linkage, in this case.  Sometimes, the values of the used lengths 

are either imprecise or assumed, which must be represented within the problem analysis.  

Antonsson and Otto stated in their published ASME article that these types of uncertainties 

or impreciseness must be represented throughout the problem in order to replicate real 

world engineering.  They also suggest the use of several methods which accommodate 

these uncertainties, such as the utility theory, fuzzy sets, optimization, matrix methods, 

probability methods, necessity methods, and fuzzy design methods.  The desired method 

taken in this specific approach is the use of fuzzy logic in conjunction with standard 

mechanism design. 

The use of fuzzy logic mimics the human mind in the sense that it can process data 

that is not precise and then make sense of that data.  Incorporating fuzzy logic into an 

algebraic procedure and evaluate areas instead of points, which is the goal of this project 

entailed below.  Integrating fuzzy logic into four-bar linkage synthesis will allow the 

definition of an area, rather than a fixed point.  Instead of allowing a point of interest to be 

fixed at one specific location, the point will now be able to be defined as an area, which 

more adequately represents the possible region in which the point may be located. 
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1.1 Description of Project  

Three-position four-bar linkage synthesis has conventionally been thought of as a 

method to design a mechanism with specific locations for the mechanism to pass through.  

If the mechanism is to pass through a specific region, as to not interfere with obstructions, 

this region would conventionally be represented as a specific point within the region; 

however, representing a region as a specific point limits the number of possible solutions, 

potentially depriving the user of the optimal configuration of their mechanism.  This project 

is meant to address this situation. 

 

Figure 1-1.  Mechanism Synthesis 

To represent the area the mechanism must pass through as a region instead of a 

specific point, the principles of fuzzy logic must be employed to determine the appropriate 

position locations.  In Figure 1.1, shown above, the above scenario is depicted. It is 

important to note that in Figure 1.1 and Figure 1.2, discussed later, only part of the four-

bar linkage is shown for simplicity.  In Figure 1.1, there is an obstacle inhibiting some 

movements of the mechanism from Point 1 to Point 3.  Before now, there would be another 

point, Point 2, located within the optimal region of movement, outlined by the red curves, 
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to ensure the movement of the mechanism would not interact with the obstacle.  Figure 1.2 

displays the same scenario, but the second position is now depicted as a trapezoidal area 

within the optimal region of movement. 

 

Figure 1-2.  Fuzzy Position specified in purple. 

 

The process of representing the second position as an area creates more possibilities 

for the end result of the mechanism synthesis, fulfilling the user’s needs. 
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Chapter 2: Relative Background Information 

2.1 Mathematical Logic 

Logic is known as the study of reasoning.  There are two main types of reasoning: 

classical logic and multi-valued logic.  Classical logic deals with certainty, while multi-

valued logic, namely fuzzy logic, deals with certainty versus uncertainty.   

2.1.1 Classical Logic 

Classical logic refers to a type of logic that consists of concrete facts that are either 

true or false.  Elements in the universe of consideration are considered to be distinct, 

discrete, and countable.  An element of consideration either is or is-not within the universe 

of consideration.  This type of logic provides no room for uncertainty, ultimately reducing 

accuracy (Ross 26).   

2.1.2 Fuzzy Logic 

Unlike classical logic, fuzzy logic allows uncertainty and inexactness.  Mostly, this 

uncertainty may arise from the complexity of a particular system or device.  Zadeh first 

introduced fuzzy logic in 1973 to express vagueness throughout the world (“Multi-Valued 

Logic”).  Fuzzy logic occurs in daily life, when speaking to others and within most 

applications, where there is not a true or false response (Ross, 2010, p. 13).  “Our 

understanding of most physical processes is largely based on imprecise human reasoning” 

(Ross, 2010, pg. 2).  The ability to process this imprecise reasoning is known as fuzzy 

logic. 

 An example of a situation that utilizes fuzzy logic is as follows: A doctor asks how 

much an ailment hurts.  The patient responds with, ‘a lot’.  The term ‘a lot’ here is 
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deterministic of the patient, and it is relative to pain they have experienced previously.  The 

question by the doctor here allowed for the patient to answer the question in a “fuzzy” way.  

If the doctor had asked, “are you in pain?”, the patient could have responded with, ‘yes’.  

This here would be the crisp answer to the same question, where ‘yes’ is a definite answer. 

Fuzzy logic is a type of multi-valued logic, which indicates that there are more than 

two “truth” values (“Multi-Valued Logic”).  Fuzzy logic is a theory that is related to the 

idea that sets of data do not have sharp boundaries, rather they are determined by a 

membership value within the set (Mathworks, 2014, pp. 1-3).  Fuzzy logic is used for this 

application because of the ability it has to allow for imprecision. 

2.2 Fuzzification and Defuzzification of Fuzzy Logic 

 When using fuzzy logic, it is imperative to properly fuzzify and defuzzify the data 

in question in order to achieve accurate results.  To fuzzify a crisp number to transform it 

into a fuzzy number, the uncertainty of a variable must be known.  Once this is known, the 

membership function can be used to represent the variable(s) (Ross, 2010, p. 115).  

Defuzzification can be thought of as reversing fuzzification; it is the process of 

approximating one value to represent an entire fuzzy set.  Both fuzzification and 

defuzzification are unique properties of fuzzy sets that can greater approximate and 

understand uncertainty. 

2.2.1 Fuzzification 

 There are six methods of assigning a membership function to a set of variables: 

intuition, inference, rank ordering, neural networks, genetic algorithms, and inductive 

reasoning.  Intuition requires the observer/user to assign membership values to the 
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variables in the function based on the context of the problem along with the amount of 

uncertainty in the values belonging to the membership function (Ross, 2010, p. 175).  The 

interference method to fuzzify variables is based on deductive reasoning, where the user 

predicts the outcome based on facts and previous knowledge (p. 176).  Rank ordering is 

the process of comparing each variable in the set to each other and assigning membership 

values to each based on that of the other variables (p. 178).  The most common method to 

fuzzify a variable that has been presented in literature, which utilizes the basic principles 

of fuzzy logic, is the neural networks.  Neural networks are considered an intelligent 

system, where the program learns the behavior of the model, simulating the functionality 

of the human brain (pg. 179).   Like neural networks, genetic algorithms are programs that 

utilize the information from the system to create the best model.  To fuzzify a system using 

genetic algorithms, the algorithm will process through a vast amount of potential solutions, 

comparing each solution to the next to find the best answer, mimicking evolution (pg. 189).  

Each fuzzification method has specific benefits; however, these benefits may not prove 

useful for every system. 

The type of fuzzification used within the scope of this project is intuition.  Here 

within, the user must define the membership function based on the specifics of each 

presented problem in order to obtain the best solution for the intended purposes.  This 

system, although it may seem lacking some of the features of other fuzzification methods, 

is problem specific and user specific; therefore, it will be the best method because of the 

flexibility.   
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2.2.2 Defuzzification 

Like the fuzzification process, there are many different methods that may be used 

in order to obtain a crisp answer from a fuzzy result.  The method chosen to defuzzify a 

fuzzy variable is situation-based, in which the user has a preference as to which method to 

use.  There are four main methods that are used to defuzzify a variable: max-membership 

principle, centroid method, weighted average method, and mean-max membership method.  

Each of these four methods have their advantages and disadvantages. 

The max-membership method is a simple method that takes the peak of the 

membership function, the number in the fuzzy set that has the highest associated grade. 

The formula used to represent this is the following: 

𝜇�̃�(𝑧
∗) ≥ 𝜇�̃�(𝑧), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝑍, 

where z* is the defuzzified value, and z is every value in the fuzzy set, �̃�, in the universe of 

Z (Ross, 2010, pg. 99).  From this expression, it is clear that the grade value, μ, of the 

defuzzified value is the greatest of the entire fuzzy set.  The max-membership function can 

be seen in Figure 2-1 below.  

The centroid method, which may also be referred to as the center of area method or 

the center of gravity method, defines the defuzzified value of a fuzzy set as: 

Figure 2-1.  Max-Membership Method 
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𝑧∗ =
∫𝜇�̃�(𝑧) ∙ 𝑧 𝑑𝑧

∫ 𝜇�̃�(𝑧) 𝑑𝑧
 

where, again, z* is the crisp value from the defuzzified fuzzy set, �̃�, where 𝑧 ∈ 𝑍.  The 

centroid method can be seen in Figure 2-2 below. 

 

Weighted average method is the third type of defuzzification method that is most 

often used when dealing with fuzzy applications because of its efficiency; however this 

Figure 2-2.  Centroid Method Defuzzification 
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method is extremely limited by the shape of the functions (Ross, 2010, pg. 99).  To 

calculate the defuzzified value of the fuzzy set using this method: 

𝑧∗ =
∑𝜇�̃�(𝑧̅) ∙ 𝑧̅

∑ 𝜇�̃�(𝑧̅)
 

The figure below, Figure 2-3, displays this method. 

 

As seen by the image, this method is useful when there are two distinct membership 

functions within the fuzzy set.  The maximum of each subsection of this membership 

function will be weighted according to its respective grade in order to find the defuzzified 

value of the set (pg. 100). 

The final method that will be discussed here is the mean max membership method, 

which may also be referred to as the middle-of-maxima method.  This method is best used, 

when the maximum grade is associated with more than one value within the fuzzy set and 

Figure 2-3.  Weighted Average Method 
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the maxima is in the form of a plateau rather than a point.  This defuzzification can be 

calculated by simply calculating the average of the plateau: 

𝑧∗ =
𝑎 + 𝑏

2
 

where a and be are the values represented by Figure 2-4 below. 

 

 

 

The method of defuzzification that is chosen is primary based on the shape of the 

fuzzy membership function as well as the usage of the fuzzy set.  

2.3 Mechanism Synthesis 

In his text, Norton expresses machine design as the following: “QUALITATIVE 

SYNTHESIS means the creation of potential solutions in the absence of a well-defined 

algorithm which configures or predicts the solution” (Norton, 1999, p. 76).  There are 

several types of mechanism synthesis, such as analytical linkage synthesis, graphical 

linkage synthesis, and position analysis. 

Figure 2-4.  Mean Max-Membership 



12 

 

2.3.1 Analytical Linkage Synthesis 

 Analytical synthesis is an algebraic method, making it the simplest method to use 

with the aid of technology.  This method of mechanism synthesis originated with Sandor, 

and has continued to be perfected throughout the years by a few of his students (Norton, 

1999, p. 188). 

 Within analytical linkage synthesis, there are three different types of synthesis, 

namely, function, path, and motion generations.  These various types of synthesis produce 

results that are differentiated by the initial request of the user.  Function generation creates 

an output motion for a given input motion, such as a crank-rocker, where there is a rotation 

input that produces a rotation output.  The second type of synthesis, path generation, allows 

for a specific point of the mechanism to move along a desired path.  Path generation is 

usually used with a four-bar crank-rocker (Norton, 1999, p. 188).  The final type of 

analytical synthesis, motion generation, assumes a set of positions for a given curve inside 

of a plane. 

 Here within, motion generation analytical synthesis will be used to determine the 

needed values of the problem from the given or assumed values of the problem.  This type 

of synthesis allows for the four-bar linkage to move in a way such that a desired point will 

pass through two or three precise positions.  This type of synthesis is the best way to 

approximate the given positions of a specific point of a four-bar linkage. 

2.3.2 Position Analysis 

 The goal of position analysis is to determine the forces that the four-bar linkage can 

withstand to ensure the mechanism will not fail.  This is done by using position analysis to 

calculate the acceleration of the four-bar linkage as it is moving from one position to the 
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next under the given lengths and angles.  The acceleration comes from the twice-

differentiated position equations.  Because this method does not determine the lengths and 

angles within the four-bar linkage that will result in the linkage moving from one desired 

point to the next, this is not the optimal analysis type that will be used.  Function, path, and 

motion generations are used to complete a given task.   

2.3.3 Graphical Linkage Synthesis 

 Like analytical synthesis, there are three basic types of synthesis, which accomplish 

different goals set forth by the problem requirements.  The main difference between 

graphical synthesis and analytical synthesis is that graphical synthesis uses non-algebraic 

techniques to solve for a solution (Norton, 1999, pg. 78).  The main type of graphical 

synthesis is dimensional synthesis. 

 Dimensional synthesis is “the determination of the proportions (lengths) of the links 

necessary to accomplish the desired motions” (Norton, 1999, pg. 78).  The assumption 

made with dimensional analysis is that the determination between cam and linkage for the 

problem is set.  Dimensional analysis can be either quantitative or qualitative, where 

quantitative analysis is mostly used for cams, while qualitative analysis is used for linkages 

(p. 78).  Graphical analysis is much less complicated than analytical analysis; however, it 

can produce inaccurate results.  

2.4 Importance of Mechanism Synthesis using the Principles of Fuzzy Logic 

Mechanism synthesis, such as analytical synthesis of a four-bar three-position 

linkage, is not guaranteed to work for a specific set of given and known values of each 

variable.  With this in mind, it is noticeable that a range of values around a specific number 
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for a given variable, may suit our purposes more accurately.  Representing a variable by a 

set of numbers, rather than a specific number, increases the chances of the synthesis 

producing desired results.  One of the best ways to represent a set of numbers around a 

specific location is to use fuzzy logic mathematics.  With fuzzy logic, specific variables, 

such as those that are assumed or non-exact, can be represented as a fuzzy variable, 

meaning a variable that represents a universe of discourse.  This idea would allow the user 

to be provided with a variety of results along with corresponding grades; therefore, the user 

would be able to choose the result which works best for their purpose. 
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Chapter 3: Prior Works 

 Fuzzy logic is a relatively new area of study, only being introduced in the 1960s.  

There is, however, many different fields of study in which fuzzy logic has been used.  Two 

of the main uses of fuzzy logic have been in terms of mathematics and control theory.  The 

following sections outline previous research that has been conducted which are similar to, 

yet not the same as, the procedures outlined here within this report. 

3.1 Kumar and Schuhmacher, 2005 

Vikas Kumar and Marta Schuhmacher discuss the use of fuzzy logic in system 

modeling in their article, “Fuzzy uncertainty analysis in system modelling”, written in 

2005.  This article focuses on the fuzzy analysis of ground water pollutant transport.  

Clearly, this is not similar to the situation this paper has addressed.  This article does, 

however, address uncertainty and within mechanical design, which is the basis of most uses 

of fuzzy logic, as it is within this project.  

3.2 Dhingra and Rao, 1991 

Dhingra and Rao have also conducted work that is similar to that mentioned above.  

The premise of this work was to optimize high speed mechanisms whose parameters are 

for a planar four bar linkage.  This work is similar to but not the same as the work presented 

here.  The authors, Dhingra and Rao, have brought up significant ideas that can be 

considered for future progress of this project, such as  

(a) multiple objectives in the nonlinear programming formulation, (b) ensuring that 

the resulting mechanism is free of branch, order, and Grashof defects, (c) addition 

of counterweights to moving links to improve dynamics performance measures of 
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the resulting mechanism, and (d) incorporating techniques to model vague and 

imprecise statements in mechanism design problems (Dhingra and Rao, 1991). 

The last suggestions, (d), can be taken into consideration for this project, since the use of 

fuzzy logic is considered a technique that models impreciseness. However, Dhingra and 

Rao’s general ideas do not correlate completely with the topic of this project. 

3.3 Laribi, Mlika, Romdhane, and Zeghloul, 2004 

 Another similar process that uses algorithms in combination with mechanism 

synthesis is that which is introduced by Laribi, Mlika, Romdhane, and Zeghloul in their 

journal article, “A combined genetic algorithm – fuzzy logic method (GA-FL) in 

mechanisms synthesis”, 2004.  This process uses fuzzy logic in conjunction with 

mechanism synthesis, similar to the project mentioned here within, but fuzzy logic is not 

solely used; genetic algorithms are also used to accomplish the optimized mechanism 

synthesis. 

3.4 Chen, Tzeng, Hsu, and Chen, 2010 

Chen, Tzeng, Hsu, and Chen have also done work using both fuzzy logic and 

linkage synthesis simultaneously; however, their work also incorporated the theories of the 

Taguchi Method and Principle Component Analysis.  Their work also differs from the work 

stated here due to the fact that they used a six-bar linkage, whereas a four-bar linkage was 

used here. 
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3.5 Previous Works Conclusion 

There have been many reports of researchers combining the principles of fuzzy logic with 

engineering design; however, there are significant differences with the research they 

conducted and the work specified in this project. 
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Chapter 4: Application   

The goal of this project was to complete a mechanism synthesis, where uncertainty 

in some of the input values may be present.  In this particular case, the uncertainty is placed 

in the location of the second position as well as the pivot location.   To accomplish this 

task, the use of fuzzy logic was utilized throughout the mechanism synthesis to represent 

the uncertainty in the necessary variables.  To simplify the amount of work, only the left 

hand side of the linkage was computed, dyad WZ, for most of the examples; however, the 

same process would be repeated for dyad US to complete the full synthesis. 

4.1 Fuzzification Process 

The equation used to fuzzify values is:  

𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{
 
 

 
 
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

1,                𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
,      𝑐 ≤ 𝑥 ≤ 𝑑

 

and all other values within the universe of discourse are zero.  

To fuzzify these variables, a built-in MATLAB function, trapmf([a b c d]), was 

used to create a trapezoidal membership function.  The values of a, b, c, and d can be found 

in Figure 4-1, and the user specifies the desired values, where the mid-way between b and 

c would be the specific point location of P21, if P21 were specified as a point. 
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Figure 4-1.  Trapezoidal Membership Function 

 

This fuzzification method is used for all of the fuzzifications in this work, 

regardless of the desired variable or result.  If the input fuzzy number were to be fuzzified 

as a triangular membership function, the values of b and c would be equal. 

4.2 Defuzzification Process 

 Of the defuzzification processes that were detailed in Section 2.2.2, the method of 

fuzzification used to defuzzify this work was the centroid method.  This method was chosen 

because it represents the mean of all the numbers within the fuzzy result.  Another method 

that could have been chosen to defuzzify these values could have been the mean-maxima 

method, where the middle of the plateau of the fuzzy result would have been the crisp, 

defuzzified value of the answer.  The defuzzified values are shown in the results tables of 
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each fuzzy synthesis as “actual answer” and the value that this defuzzified answer is being 

compared to is the result of the crisp synthesis.  

4.3 Mechanism Synthesis with a fuzzy P2 

 

Figure 4-2.  Fuzzification of P21 

 

Figure 4-3.  Fuzzification of δ2 
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The fuzzification of the second position, P2, consists of fuzzifying the length of P21 and δ2.  

The fuzzified values of P21 and δ2 can be found in Figures 4-2 and 4-3, respectively. 

The shaded region in the figure below, Figure 4-4, displays the area in which the 

length of P21 can expand.  This area was found using the fuzziness of the length of P21 and 

the fuzziness of δ2.  The area represented is shaded such that, the darker the color, the closer 

the fuzziness of P21 and δ2 are to 1.  From this figure, it is easily seen that there are many 

combination of lengths and angles that form the location of P2. 

 

Figure 4-4.  Locations of fuzzy P2 
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4.3.1 Two-position synthesis, fuzzification of P2 

The first mechanism synthesis that was conducted incorporating the use of fuzzy 

logic was a two-position four-bar linkage motion generation linkage synthesis.  Two 

position synthesis was completed to confirm the feasibility of allowing the use of fuzzy 

logic simultaneously with linkage synthesis.  Figure 4-5 displays a two-position four-bar 

linkage, where P1 denotes the first position of the specified point, δ2 denotes the angle the 

point moves from the horizontal to arrive at the second position, P2.  The second position 

of the entire linkage is shown in the figure with a subscript 2.   

 

Figure 4-5.  Two-position Four-bar Linkage (Norton, Fig 2-1) 
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Figure 4-6, below, shows the two-position, four-bar linkage from Figure 4-5, except 

that P2 is denoted with a red trapezoid.  The red outlined trapezoid represents the potential 

locations of P2.  Fuzzy logic was used to represent the potential positions of P2 

mathematically.   

 

Figure 4-6.  Two-position Four-bar Linkage, Modified (Norton, Fig 5-1, modified) 
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 The vector loop equation for the two-position four-bar linkage synthesis is (Norton, 

1999, p. 191): 

𝑊2 + 𝑍2 − 𝑃21 −𝑊1 −𝑊2 = 0 

Which can be manipulated to produce the resulting equations (p. 193): 

𝐴 = cos(𝛽2) − 1;        𝐵 = sin(𝛽2) ;       𝐶 = cos(𝛼2) − 1;      

𝐷 = sin(𝛼2) ;         𝐸 = 𝑝21 cos(𝛿2) ;         𝐹 = 𝑝21sin (𝛿2) 

Substituting, 

𝐴𝑊𝑥 − 𝐵𝑊𝑦 + 𝐶𝑍𝑥 − 𝐷𝑍𝑦 = 𝐸 

𝐴𝑊𝑦 + 𝐵𝑊𝑥 + 𝐶𝑍𝑦 + 𝐷𝑍𝑥 = 𝐹 

 

It can be seen from these equations that only E and F are considered to be fuzzy 

variables (recall only P21 and δ2 are fuzzy).  These above two equations were solved using 

matrix multiplication using custom MATLAB functions, shown in the appendix.  The 

matrix multiplication was done explicitly, so the 

fuzzy arithmetic could be manipulated properly.  

The following figures are the results of the fuzzy 

mathematics and the solution to the two-position four-

bar linkage synthesis with a fuzzy P21 position, using 

values found in Norton’s textbook.  These values, 

extracted from Example 5-1 in Norton’s text can be 

found in the Table 4-1. 

Variable Magnitude of Value 

P21 2.416 

δ2 165.2 

α2 43.3 

β2 38.4 

φ 26.4 

θ 71.6 

Table 4-1.  Values extracted from Norton Ex. 5-1 
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Figure 4-7.  Fuzzy Length of Linkage W 

 

 

Figure 4-8.  Fuzzy Length of Linkage Z 
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It can be seen from Figure 4-7 and 4-8 that the solutions to the linkage synthesis 

have a general trapezoidal fuzzy shape, but there are a few areas that are not perfectly 

straight.  This is due to the manipulation of the data throughout the fuzzy arithmetic.  Also, 

the data was manipulated using the vertex method, with the goal of streamlining the results. 

 To calculate the optimum value of the lengths of W and Z, the data was defuzzified, 

using the centroid “defuzz” command in MATLAB.  These defuzzified values were 

calculated to be 2.4612 and 1.3056 units for W and Z, respectively.  The error percentages 

from the exact values listed in Norton’s text are 1.871% and 0.586%, respectively, which 

can be attributed to fuzzifying the values of P21 and δ2. 

 The uniqueness of the presented results is that the lengths of W and Z can be a 

multitude of values that will create the desired linkage at the desired locations.  The result 

isn’t limiting, like it would be if the location of P21 was a specific point.   
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4.3.2 Three-position fuzzification of P2 

 

Figure 4-9.  Three-position Four-bar Linkage (Norton, Fig. 5-4) 

 

As seen above in Figure 4-9, three-position four-bar linkage synthesis follows the 

same process as the two-position four-bar linkage synthesis, except the mathematical 

equations are different.  The vector loop equation will incorporate the addition of P31, 

which is the distance from P1 to P3, as seen in Figure 4-9.  The vector loop equations now 

becomes, 

 

 

𝑊2 + 𝑍2 − 𝑃21 −𝑊1 − 𝑍1 = 0 
 

𝑊3 + 𝑍3 − 𝑃31 −𝑊1 − 𝑍1 = 0 
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Using, again, the values in Norton’s textbook, seen below, to solve for a specific 

linkage, the following graphs were produced to show the fuzzification of the P21 and δ2. 

Table 4-2.  Values extracted from Norton Example 5-2 

Variables Magnitude of Value 

P21 2.798 

δ2 -31.19 

P31 3.919 

δ3 -16.34 

α2 -45.0 

α3 9.3 

β2 342.3 

β3 324.8 

 

 

Again, P21 and δ2 are fuzzy variables, and the “fuzzyfun” custom function fuzzifies 

these variables.  Figures 4-10 and 4-11 show the fuzzification graphs of P21 and δ2.  
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Figure 4-10.  Fuzzification of P21 

 

Figure 4-11.  Fuzzification of δ2 
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The following is the equation and matrix forms of the simplified vector loop 

equation for the three-position four-bar linkage synthesis. Using the information in the 

equations below, it can be seen that, again, only E and M are fuzzy; therefore, the solution 

of this matrix multiplication was done by hand to account for the fuzzy variables.  Using 

numbers provided in Norton’s textbook (see above) alongside the custom MATLAB codes 

(provided in the appendix), the following output graphs were computed. 

𝐴 = cos(𝛽2) − 1;           𝐵 = sin(𝛽2) ;           𝐶 = cos(𝛼2) − 1; 

𝐷 = sin(𝛼2) ;           𝐸 = 𝑝21 cos(𝛿2) ;           𝐹 = cos(𝛽3) − 1; 

𝐺 = sin(𝛽3) ;           𝐻 = cos(𝛼3) − 1;           𝐾 = sin(𝛼3) ; 

𝐿 = 𝑝31 cos(𝛿3) ;           𝑀 = 𝑝21 sin(𝛿2) ;           𝑁 = 𝑝31 sin(𝛿3) 

 The system can then be put into the simplified system of equations as: 

𝐴𝑊𝑥 − 𝐵𝑊𝑦 + 𝐶𝑍𝑥 − 𝐷𝑍𝑦 = 𝐸 

𝐹𝑊𝑥 − 𝐺𝑊𝑦 + 𝐻𝑍𝑥 − 𝐾𝑍𝑦 = 𝐿 

𝐵𝑊𝑥 + 𝐴𝑊𝑦 + 𝐷𝑍𝑥 + 𝐶𝑍𝑦 = 𝑀 

𝐺𝑊𝑥 + 𝐹𝑊𝑦 + 𝐾𝑍𝑥 + 𝐻𝑍𝑦 = 𝑁 

Putting this system into matrix form:  

[

𝐴
𝐹

−𝐵
−𝐺

𝐶
𝐻

−𝐷
−𝐾

𝐵  
𝐺  

𝐴
𝐹

𝐷
𝐾

    𝐶
    𝐻

]  ∙  

[
 
 
 
𝑊𝑥
𝑊𝑦
𝑍𝑥
𝑍𝑦 ]
 
 
 
 =  [

𝐸
𝐿
𝑀
𝑁

] 
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Figures 4-12 and 4-13 shows the fuzzy lengths of W and Z using the vertex method 

to allow for ease of use of the graphs.  To achieve the optimal length of W and Z, the data 

for W and Z was defuzzified using MATLAB’s centroid defuzz function.  To compare the 

results with the text’s results, the values that were defuzzified were the x and y components 

of both W and Z, noted as Wx, Wy, Zx, and Zy, respectively. 

 

Figure 4-12.  Fuzzy Synthesis Solution of Length W 
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Figure 4-13.  Fuzzy Synthesis Solution of Length Z 

 

Variables Desired Results Actual results Percent Error 

Wx 0.055 0.0558 1.45% 

Wy 6.832 6.8329 0.013% 

Zx 1.179 1.1847 0.483% 

Zy 0.940 0.9420 0.213% 

Table 4-3.  Results of Three-Position Four-bar Linkage Synthesis. 

 

Again, this error is attributed to rounding error throughout the mathematical 

processes, as well as how the fuzziness of P21 and δ2 are defined. 
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 Three-position fuzzy synthesis is useful if there is a mechanism that must pass 

through a specific region going from point one to point three because it will interfere with 

an obstacle if it is allowed to go move without restriction. 

5.4 Mechanism Synthesis with Fuzzy Fixed Pivot Points 

 Instead of fuzzifying one of the positions of the four-bar linkage, this section will 

detail the fuzzification of the fixed pivot.  This method is done much differently than the 

fuzzification of any of the positions of the linkage.  The analytical method to synthesize a 

mechanism which has a fixed pivot is the following: 

Vector loop equations for all three positions of the mechanism: 

𝑤𝑒𝑗𝜃 + 𝑧𝑒𝑗∅ = 𝑹1 

𝑤𝑒𝑗(𝜃+𝛽2) + 𝑧𝑒𝑗(∅+𝛼2) = 𝑹𝟐 

𝑤𝑒𝑗(𝜃+𝛽3) + 𝑧𝑒𝑗(∅+𝛼3) = 𝑹𝟑 

If  𝑾 = 𝑤𝑒𝑗𝜃 and  𝒁 = 𝑧𝑒𝑗∅  then the above equations can be simplified to: 

𝑾+𝒁 = 𝑹𝟏 

𝑾𝑒𝑗𝛽2 + 𝒁𝑒𝑗𝛼2 = 𝑹𝟐 

𝑾𝑒𝑗𝛽3 + 𝒁𝑒𝑗𝛼3 = 𝑹𝟑 

There is only a solution to the above system of equations if the determinant is equal to zero, 

so this provides an equation to solve for the values of β2 and β3.  

(𝑹3𝑒
𝑗𝛼2 − 𝑹2𝑒

𝑗𝛼3) + 𝑒𝑗𝛽2(𝑹1𝑒
𝑗𝛼3 − 𝑹3) + 𝑒

𝑗𝛽3(𝑹2 − 𝑹1𝑒
𝑗𝛼2) = 0 

And this can be further simplified by stating: 

𝐴 = 𝑹3𝑒
𝑗𝛼2 − 𝑹2𝑒

𝑗𝛼3  

𝐵 = 𝑹1𝑒
𝑗𝛼3 − 𝑹3 

𝐶 = 𝑹2 − 𝑹1𝑒
𝑗𝛼2 
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So, 

𝐴 + 𝐵𝑒𝑗𝛽2 + 𝐶𝑒𝑗𝛽3 = 0 

After accounting for the real and imaginary components of the above equation, the solution 

becomes: 

𝛽3 = 2 tan−1(
𝐾2±√𝐾1

2+𝐾2
2−𝐾3

2

𝐾1+𝐾3
);   𝛽2 = cos−1 (

𝐴5 sin𝛽3+𝐴3 cos𝛽3+𝐴6

𝐴1
) 

 

 

Where,  

𝐾1 = 𝐴2𝐴4 + 𝐴3𝐴6 

𝐾2 = 𝐴3𝐴4 + 𝐴5𝐴6 

𝐾3 =
𝐴1

2 − 𝐴2
2 − 𝐴3

2 − 𝐴4
2 − 𝐴6

2

2
 

 

 

And, 

𝐴1 = −𝐶3
2 − 𝐶4

2
 

𝐴2 = 𝐶3𝐶6 − 𝐶4𝐶5 

𝐴3 = −𝐶4𝐶6 − 𝐶3𝐶5 

𝐴4 = 𝐶2𝐶3 + 𝐶1𝐶4 

𝐴5 = 𝐶4𝐶5 − 𝐶3𝐶6 

𝐴6 = 𝐶1𝐶3 − 𝐶2𝐶4 

 

 

 

And, 

𝐶1 = 𝑅3 cos(𝛼2 + 𝜁3) − 𝑅2 cos(𝛼3 + 𝜁2) 

𝐶2 = 𝑅3 sin(𝛼2 + 𝜁3) − 𝑅2 sin(𝛼3 + 𝜁2) 
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𝐶3 = 𝑅1 cos(𝛼3 + 𝜁1) − 𝑅3 cos 𝜁3 

 

 

𝐶4 = −𝑅1 sin(𝛼3 + 𝜁1) + 𝑅3 sin 𝜁3 

𝐶5 = 𝑅1 cos(𝛼2 + 𝜁1) − 𝑅2 sin 𝜁2 

𝐶6 = −𝑅1 sin(𝛼2 + 𝜁1) + 𝑅2 sin 𝜁2 

 As it can be seen, this procedure is cumbersome, and there is much room for error.  

The first time this method was used to calculate the betas for the fuzzy fixed pivot 

mechanism synthesis, the solution was never able to reach a stable answer.  Because of 

this, a new method was chosen to compute the betas for the fuzzy fixed pivot mechanism 

synthesis. 

 The alternative method chosen to achieve the fuzzy betas was an iterative method.  

The Newton-Raphson method in conjunction with the vertex method was used to formulate 

the results of the synthesis.  The Newton-Raphson method was used to find the best value 

of beta based on the proper parts of the equations.   

4.4.1 The Use of the Newton-Raphson Method for Mechanism Synthesis with 

a Fuzzy Fixed Pivot 

The Newton Raphson Method is used to obtain the solution to a single non-linear 

equation as well as a system of equations using iterative schemes.  The Newton-Raphson 

method is derived from the Taylor-series expansion, and the resulting equation becomes: 

𝑥𝑖+1 = 𝑥𝑖 − 𝑓(𝑥0)/𝑓′(𝑥0) 

The modified version of this equation, which is utilized for a system of non-linear equations 

is  

𝒙𝑖+1 = 𝒙𝑖 − 𝑱
−1 ∙ 𝒇(𝒙𝑖) 

Where here  
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(𝑹3𝑒
𝑗𝛼2 − 𝑹2𝑒

𝑗𝛼3) + 𝑒𝑗𝛽2(𝑹1𝑒
𝑗𝛼3 − 𝑹3) + 𝑒

𝑗𝛽3(𝑹2 − 𝑹1𝑒
𝑗𝛼2) = 0 

is written in terms of its real and imaginary components to compose 𝒇(𝑥𝑖) = 0. 

 

Therefore,  

Real: 𝑓1 = 𝐷1𝑥 + [𝐷2𝑥 cos 𝛽2 − 𝐷2𝑦 sin 𝛽2] + [𝐷3𝑥 cos 𝛽3 − 𝐷3𝑦 sin 𝛽3] = 0 

Imaginary: 𝑓2 = 𝐷1𝑦 + [𝐷2𝑦 cos 𝛽2 + 𝐷2𝑥 sin 𝛽2] + [𝐷3𝑦 cos 𝛽3 − 𝐷3𝑥 sin 𝛽3] = 0 

 

And   𝐷1 = 𝑅3𝑒
𝑗𝛼2 − 𝑅2𝑒

𝑗𝛼3;  𝐷2 = 𝑅1𝑒
𝑗𝛼3 − 𝑅3;  𝐷3 = 𝑅2 − 𝑅1𝑒

𝑗𝛼2. 

 

Now, the Jacobian must also be calculated and used to use the Newtown-Raphson method, 

and the Jacobian is: 

𝑱 =
𝜕𝒇

𝜕𝒙
=

[
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2]

 
 
 

=

[
 
 
 
 
𝜕𝑓1
𝜕𝛽2

𝜕𝑓1
𝜕𝛽3

𝜕𝑓2
𝜕𝛽2

𝜕𝑓2
𝜕𝛽3]

 
 
 
 

 

And, 

𝜕𝑓1
𝜕𝛽2

= −𝐷2𝑥 sin 𝛽2 − 𝐷2𝑦 cos 𝛽2 

𝜕𝑓1
𝜕𝛽3

= −𝐷3𝑥 sin 𝛽3 − 𝐷3𝑦 cos 𝛽3 

𝜕𝑓2
𝜕𝛽2

= 𝐷2𝑥 cos 𝛽2 − 𝐷2𝑦 sin 𝛽2 

𝜕𝑓2
𝜕𝛽3

= 𝐷3𝑥 cos 𝛽3 − 𝐷3𝑦 sin 𝛽3 
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Now, [J] and [f ] can be used in the Newtown-Raphson equation to solve for the optimal 

value of β2 and β3.  In order to account for the different alpha-cuts of the input, each of the 

betas is calculated based on its grade.  Once the betas are determined for each of the two 

R’s in each alpha-cut, the maximum and minimum betas are determined for the 

corresponding grade.  This method is used for each alpha-cut from 0.0 to 1.0.   

 Once the betas are calculated, the lengths of the linkages, W and Z, are calculated 

using the following system of equations: 

𝑾𝑒𝑗𝛽2 + 𝒁𝑒𝑗𝛼2 = 𝑹2 

𝑾𝑒𝑗𝛽3 + 𝒁𝑒𝑗𝛼3 = 𝑹3 

 This method can be repeated to calculate the lengths of the other dyad of the four-

bar linkage, US. 

4.4.2  Fuzzy Mechanism Synthesis for Fuzzy Fixed Pivot 

The previous section outlined the procedure for how to complete a mechanism 

synthesis for a fuzzy fixed pivot.  Chapter 5 contains the tape unit example which displays 

this method.  It is important to note, however, that the input, and therefore the output, of 

the fuzzy synthesis using the fuzzy fixed pivot is a triangular membership function.  

Chapter 8 uses the Newton-Raphson scheme to achieve the results of the lengths of W and 

Z will again be used to complete an analysis using a trapezoidal membership function. 
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Chapter 5: Tape Unit Example of Using Fuzzy Logic 

Mathematics throughout Mechanism Synthesis 

 To illustrate the significance of the use of fuzzy logic within mechanism synthesis, 

the following example will demonstrate how these two subjects work, 

 simultaneously.  This example, extracted from Erdman and Sandor’s text, involves a tape 

unit, which rotates into the dashboard, out of the line of visibility, to deter thieves from 

breaking into a car to steal the tape unit. 

 

Figure 5-1 displays the tape unit in three different positions, designated by the 

vector Ri, where i=1, 2, 3.  With this example, the tape unit must be located at the precise 

location for the starting position, P1, as well as in the final position, P3; however, the tape 

Figure 5-1.  Tape Unit Mechanism Synthesis Example.  

(Erdman, A. G.; Sandor, G. N. Advanced Mechanism Design: Analysis and Synthesis, Vol. II. “Figure 

2.76: Four-bar motion-generation synthesis with prescribed ground pivots”.  1984. Prentice Hall, Upper 

Saddle River, New Jersey.)   
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unit does not need to be located at exactly P2, as long as the tape unit does not conflict with 

the heater duct.  P2 can now be represented as a fuzzy variable. 

Table 5-1.  Variables of Crisp Tape Unit Example 

Variables Magnitude of Value 

P21 3.8321 

δ2 52.7414 

P31 7.1730 

δ3 74.1424 

α2 50.7 

α3 91.9 

β2 58.09 

β3 122.70 

 

5.1 Fuzzification of P2 of Tape Unit 

 To fuzzify the location of P2, both P21 and δ2 must become fuzzy variables.  In order 

to do this, P21 was specified as [3.0, 3.5, 4.1642, 4.66] a length between 3.0 units and 4.66 

units, where the interval of 3.5 units to 4.1642 units were set with a grade of 1.   δ2 was 

specified as an angle between 45 and 60.5 degrees, with the interval of 50 to 55.4828 

degrees having a grade of 1. From these intervals, a custom-made function, “fuzzyfun”, 

which utilized MATLAB’s “trapmf” function to create a trapezoidal membership function, 

was created to fuzzify these variables.  Fuzzified P21 and δ2 represent the area in which the 

second position of the tape unit could be located.  The following graph displays the results 

of this fuzzification: 
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Figure 5-2.  Results for Wy from fuzzy synthesis of tape unit 

 

Figure 5-3.  Results for Wx from fuzzy synthesis of tape unit 
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Figure 5-4.  Results for Zy from fuzzy synthesis of tape unit 

 

Figure 5-5.  Results for Zx from fuzzy synthesis of tape unit 

Table 5-2 compares the results of the crisp synthesis to the fuzzy synthesis.  The 

results of the fuzzy synthesis are the defuzzified answers. 
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Table 5-2.  Comparison of Results for Fuzzy P2 Tape Unit 

Variables Desired Results Actual results Percent Error 

Wx -1.42 -1.3026 8.267% 

Wy -1.45 -1.4126 2.579% 

Zx 3.56 3.4328 3.573% 

Zy -2.23 -2.3128 3.713% 

 

The discrepancies in the results in Table 5-2 are due to the way the fuzziness of P21 

and δ2 were defined. 

To complete the right hand side of the dyad, linkages U and S, the synthesis process 

explained above must be used to solve for the lengths of U and S.  To do this, it can be 

assumed that γ2=30.9 and γ3=80.6.  This produces the following lengths of S and U as those 

defined below in Figures 5.6 and 5.7. 

 

Figure 5-6.  Fuzzy Result of Length U. 
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Figure 5-7.  Fuzzy Result of Length S. 

The defuzzified values are shown in the table below. 

Table 5-3. Results of RHS dyad fuzzy synthesis 

Variable Defuzzified Result [units] 

Ux -1.9647 

Uy -1.9749 

Sx -5.1044 

Sy -0.6274 

 

The results shown in Table 5-3, in conjunction with the results from Table 5-2 can 

be used to design the four-bar, three-position linkage desired. 
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5.2 Fuzzification of the Fixed Pivots 

 In the previous example, the position of P2 was fuzzified and the mechanism 

synthesis was conducted using fuzzy logic mathematics.  This next example, again using 

the tape unit scenario, will focus on the scenario as if the location of the fixed pivots was 

imprecise.  This scenario is relatable because it describes a bolt or screw that may be placed 

a bit off from its exact specified location, which is likely to occur if the product is not 

manufactured by a machine, which has impeccable preciseness.   

 Fuzzifying both the x-location and the y-location of the fixed pivot with a triangular 

membership function will create a range of locations 

surrounding the specified exact location.  Figure 5-8 displays 

this concept, where the ring around the colored pivot location 

are also possible locations of the pivot locations. 

 

The following figures, Figure 5-9 and Figure 5-10, display the resulting 

fuzzification of the x and y lengths of the vector R1.  This fuzzification is the result of the 

fuzzy fixed pivot. 

Figure 5-8.  Fuzzy Pivot Schematic 
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Figure 5-9.  Fuzzification of Pivot's x-location.   

 

 
Figure 5-10.  Fuzzification of pivot's y-location 
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Figure 5-11.  Fuzzification of R1y. 

 

 

Figure 5-12.  Fuzzification of R1x. 
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Figure 5-13.  Fuzzification of R2x 

 

 

Figure 5-14.  Fuzzification of R2y 
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Figure 5-15.  Fuzzification of R3x 

 

 

Figure 5-16.  Fuzzification of R3y 
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The following four figures are the results of the mechanism synthesis with a fuzzy fixed 

pivot.  

 

 

 

Figure 5-17.  Results of fuzzy fixed pivot synthesis: Wx 
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Figure 5-18.  Results of fuzzy fixed pivot synthesis: Wy 

 

 

 
Figure 5-19  Results of fuzzy fixed pivot synthesis: Zy. 



51 

 

 
Figure 5-20.  Results of fuzzy fixed pivot synthesis: Zy 

 

Table 5-4.  Results of fuzzy fixed pivot synthesis 

Variables Desired Results Actual results Percent Error 

Wx -0.5467 -0.5454 0.2377% 

Wy -4.4443 -4.4468 0.0562% 

Zx 2.6889 2.6892 0.0112% 

Zy -0.2525 -0.2523 0.0792% 

  

Comparing the results of the crisp synthesis (desired results) to the actual results, 

the defuzzified results acquired from the synthesis using fuzzy logic mathematics, it can 

be seen that there is little error in performing fuzzy synthesis, yet it accounts for uncertainty 

and impreciseness in the input values.   
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If it is assumed that the tape unit is 2 units high in its initial position.  The same 

procedure can be used to find the right-hand dyad linkage lengths.  Since the specific values 

for R’s are not given, we can assume realistic values in order to complete the mechanism 

synthesis. 

𝑅1𝑥 = 2.50       𝑅1𝑦 = −3.75 

𝑅2𝑥 = 4.5       𝑅2𝑦 = −0.5 

𝑅3𝑥 = 4.12       𝑅3𝑦 = 3.25 

𝛼2 = 50.7       𝛼3 = 91.9 

With these new values for the lengths of the vector from the new pivot, specified 

as B0, to the bottom point on the tape unit, the following figure are the new fuzzy R vectors. 

 

Figure 5-21.  Fuzzification of length R1'x. 
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Figure 5-22.  Fuzzification of R1'y. 

 

 

Figure 5-23.  Fuzzification of R2'x. 
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Figure 5-24.  Fuzzification of R2'y. 
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Figure 5-25.  Fuzzification of R3'x. 

 

Figure 5-26.  Fuzzification of R3'y. 
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The following table displays the results of the fuzzy fixed pivot mechanism 

synthesis for the right-hand dyad, US, of the four-bar linkage. 

Table 5-5.  Results for RHS dyad of Fuzzy Fixed Pivot Synthesis 

Variable Results of Fuzzy Mechanism Synthesis 

Ux -0.5385 

Uy -4.3951 

Sx 3.0431 

Sy -0.1142 

 

Because there is no results of this synthesis in the text, from which this example 

was extracted, there are no values that we can compare the results to.  It can be assumed, 

however, that these results exhibit little error based on the results concluded from the WZ 

dyad, discussed above.  These results can be seen in the following four figures of the fuzzy 

outputs of the synthesis. 
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Figure 5-27.  Results for Fuzzy Ux 

 

 

Figure 5-28.  Results for Fuzzy Uy. 
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Figure 5-29.  Results for Fuzzy Sx. 

 

 

Figure 5-30.  Results for Fuzzy Sy. 
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 It can be seen, like the syntheses before, that the results of the fuzzy synthesis take 

on the basic shape of the membership function as that of the fuzzy inputs into the synthesis. 

Now that there are results for both dyads of the mechanism, the WZ dyad and the 

US dyad, the entire mechanism has been designed to accommodate the three positions 

specified, Point 1, Area 2, and Point 3. 

5.3 Example Conclusion 

Fuzzifying variables of the mechanism synthesis, or any other aspect of mechanical 

design, will result in the fuzzification of other variables within the situation.  The results 

of the synthesis or design will also be fuzzy, so there will be multiple answers the user can 

choose from, based on their needs and conditions. 
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Chapter 6: Comparing Fuzzy Spans 

Increasing or decreasing the range of fuzziness of a number can affect the final 

results of the mechanism synthesis.  The following analysis displays the results of 

increasing fuzziness, where the fuzziness of P21 and δ2 increase or decrease by the specified 

percentage between the crisp number and the points c and b, respectively, according to 

Figure 4-1.  The values of a and d, according to Figure 4-1, are calculated by respectively 

decreasing or increasing the variable by twice the specified percentage.   With this 

alteration, each crisp number is fuzzified according to the value of the specific variable.  

This can be shown in Figure 6-1. 

 

Figure 6-1.  Definition of spans 

 

The following results are computed from the example in Section 5.2.2, where only 

the location of P2 is considered fuzzy. 
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6.1 Fuzzy Variables Span 5% 

Figures 6-2 and 6-3 display the fuzzification of P21 and δ2, which are the variables that 

must be fuzzified in order to represent the location of P2 as an area.  The fuzzy lengths are 

represented with a 5% span about the crisp value of P21 and δ2, respectively.  

 

Figure 6-2.  Fuzzy length of P21 with 5% span 
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Figure 6-3.  Fuzzy length of δ2 with 5% span. 

 

Figure 6-4.  Fuzzy locations of P2 
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Figure 6-3 displays the possible locations of P2, when the lengths of P21 and δ2 are 

fuzzified as seen above.  The following table is the result of the mechanism synthesis with 

the above fuzzifications.  It can be seen that the results from the synthesis produce very 

little error. 

 

 

 

 

Table 6-1.  Results from 5% span. 

 

  

Variables Desired Results Actual results Percent Error 

Wx 0.055 0.0555 0.909% 

Wy 6.832 6.8333 0.019% 

Zx 1.179 1.1840 0.424% 

Zy 0.940 0.9439 0.415% 
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The following figures, Figures 6-5 and 6-6 display the results from above, the graphs of 

the fuzzy length of W and the fuzzy length of Z, respectively.  

 

Figure 6-5.  Fuzzy Length of W (5% span). 

 
Figure 6-6.  Fuzzy Length of Z (5% span). 
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6.2 Fuzzy variables span 10% 

Figures 6-7 and 6-8 display the fuzzification of P21 and δ2, which are the variables 

that must be fuzzified in order to represent the location of P2 as an area.  The fuzzy 

lengths are represented with a 10% span about the crisp value of P21 and δ2, respectively.  

 

 

Figure 6-7.  Fuzzy length of δ2 with 10% span. 
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Figure 6-8.  Fuzzy Length of P21 with 10% span. 

 

 
Figure 6-9.  Fuzzy locations of P2. 
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Figure 6-9 displays the possible locations of P2, when the lengths of P21 and δ2 are 

fuzzified as seen above.  The following table is the result of the mechanism synthesis with 

the above fuzzifications.  It can be seen that the results from the synthesis produce more 

error compared to the 5% span. 

 

Table 6-2.  Results from 10% span fuzzy synthesis 

 

 The following figures, Figures 6-10 and 6-11 display the results from above, the 

graphs of the fuzzy length of W and the fuzzy length of Z, respectively.  

Variables Desired Results Actual results Percent Error 

Wx 0.055 0.0578 5.091% 

Wy 6.832 6.8379 0.0864% 

Zx 1.179 1.1986 1.662% 

Zy 0.940 0.9565 1.755% 
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Figure 6-10.   Fuzzy length of W (10% span). 

 

Figure 6-11.  Fuzzy length of Z (10% span). 
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6.3 Fuzzy Variables span 20% 

Figures 6-12 and 6-13 display the fuzzification of P21 and δ2, which are the 

variables that must be fuzzified in order to represent the location of P2 as an area.  The 

fuzzy lengths are represented with a 20% span about the crisp value of P21 and δ2, 

respectively.  

 

Figure 6-12.  Fuzzy length of P21 with 20% span. 
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Figure 6-13.  Fuzzy length of δ2 with 20% span. 

 

 

Figure 6-14.  Possible locations of P2. 
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Figure 6-14 displays the possible locations of P2, when the lengths of P21 and δ2 are 

fuzzified as seen above.  The following table is the result of the mechanism synthesis with 

the above fuzzifications.  It can be seen that the results from the synthesis produce the most 

error of the three cases shown, 5%, 10%, and 20%. 

 

Table 6-3.  Results from 20% span fuzzy synthesis 

Variables Desired Results Actual results Percent Error 

Wx 0.055 0.0671 22.0% 

Wy 6.832 6.8563 0.356% 

Zx 1.179 1.2566 6.582% 

Zy 0.940 1.0067 7.096% 
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The following figures, Figures 6-15 and 6-16 display the results from above, the 

graphs of the fuzzy length of W and the fuzzy length of Z, respectively.  

 

Figure 6-15.  Fuzzy length of W (20% span). 

 

Figure 6-16.  Fuzzy length of Z (20% span). 
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6.4 Analysis of Variance 

 It can be seen from the three different analyses above, the larger the span of 

fuzziness about the crisp value of P21 and δ2, the larger the error in the results become.  This 

can be assumed for all types of fuzzy four-bar linkage syntheses.  In the case presented 

above, a 10% span is reasonable, meaning that any fuzziness that spans within 10% of the 

crisp value of P21 and δ2 is acceptable to use within a fuzzy synthesis.  It is true, however, 

that the smaller the span, the more accurate the results of the fuzzy synthesis will be.  

Intuitively, this makes sense because, the smaller the span, the closer the fuzzy numbers 

are to the actual values of P21 and δ2, creating more accurate results. 

 The defuzzification method used throughout the entirety of this analysis is the 

centroid method, also known as the center of gravity method, which is the most common 

method used to defuzzify a fuzzy set into a scalar (Ross, 2010, 99).  Other defuzzification 

methods may produce different error percentages, which will be discussed below. 
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Chapter 7: Difference in Defuzzification Methods 

As expected, the different methods of defuzzification produce different defuzzified 

results.  This chapter will demonstrate this theory by comparing the results of the 10% span 

from above using the centroid method, bisector method, middle of maximum (MOM), 

smallest of maximum (SOM), and largest of maximum (LOM).  These are the methods 

chosen to compare because they are all easily represented in MATLAB. 

7.1 Comparison of Defuzzification Methods 

 The following tables show the results of fuzzy synthesis using the 10% span from 

above.  The results are found using different defuzzification methods, and the error 

percentage is calculated to allow for a comparison. 

 

 

  

Table 7-1.  Results of 10% span using Centroid Method 

Variables Desired Results Actual results Percent Error 

Wx 0.055 0.0578 5.091% 

Wy 6.832 6.8379 0.0864% 

Zx 1.179 1.1986 1.662% 

Zy 0.940 0.9565 1.755% 
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Table 7-2.  Results of 10% span using Bisector Method 

 

Table 7-3.  Results of 10% span using MOM. 

 

Table 7-4.  Results of 10% span using SOM. 

  

Variables Desired Results Actual results Percent Error 

Wx 0.055 0.0586 6.545% 

Wy 6.832 6.9678 1.988% 

Zx 1.179 1.5952 35.301% 

Zy 0.940 1.4103 50.032% 

Variables Desired Results Actual results Percent Error 

Wx 0.055 0.0553 0.545% 

Wy 6.832 6.8354 0.050% 

Zx 1.179 1.1863 0.619% 

Zy 0.940 0.9512 1.191% 

Variables Desired Results Actual results Percent Error 

Wx 0.055 -0.0759 238% 

Wy 6.832 6.7029 1.890% 

Zx 1.179 0.7584 35.674% 

Zy 0.940 0.4920 47.660% 
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Table 7-5.  Results of 10% span using LOM. 

 

7.1.1 Defuzzification Method Comparison Analysis 

 The two defuzzification methods used above that display the least error between 

the desired results (results from the crisp synthesis) and the actual results (defuzzified 

results of the fuzzy synthesis) are the centroid method and the middle of maximum (MOM) 

method.  MOM method is most likely the best method to use for this purpose because most 

of the final results resemble perfect trapezoidal membership functions and the middle of 

the maximum for these results is the middle all the results which had a grade of 1.  The 

MOM method overall produces the least percentage error for the case of fuzzy mechanism 

synthesis using a trapezoidal membership, while the centroid method is the most commonly 

used method. 

 It is important to note that the centroid method was the method used to defuzzify 

the fuzzy synthesis results throughout this study. 

  

Variables Desired Results Actual results Percent Error 

Wx 0.055 0.1866 239.273% 

Wy 6.832 6.9678 1.988% 

Zx 1.179 1.6142 36.913% 

Zy 0.940 1.4103 50.032% 
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Chapter 8: Difference in Fuzzification Methods 

As discussed earlier, there are a few different types of membership functions that 

can be chosen to fuzzify a set of data.  The main membership functions that are commonly 

used are piece-wise linear functions, Gaussian distribution functions, sigmoid curves, and 

quadratic and cubic polynomial curves.  Within this project, piece-wise linear functions are 

primarily used; such membership functions are triangular and trapezoidal.  The main 

difference between triangular and trapezoidal membership functions is the amount of 

variables that are completely within the set, meaning their respective grade is one.  With a 

triangular membership function, there is only one value that has a grade of one.  The 

following analysis will display the difference between the results of a fuzzy mechanism 

synthesis done with trapezoidal membership function inputs and triangular membership 

function inputs.   

To begin this analysis, it will be best to use the tape unit example from chapter 4 in 

order to allow the reader to more fully understand the importance of this analysis.  As was 

seen previously, there were two different analyses done using the tape unit example, one 

being for a fuzzy P2, and the other being a fuzzy fixed pivot.  The fuzzy P2 analysis was 

done using a trapezoidal membership function for its input, while the fuzzy fixed pivot 

input was triangular in nature.  Here, the a trapezoidal membership function will be used 

for the fuzzy fixed pivot example in order to compare the two types of membership 

functions and how this affect the output. 

8.1 Fuzzy Fixed Pivot of tape unit 

Again, since the synthesis completed in Chapter 5 was using triangular inputs, this section 

will highlight the synthesis using a trapezoidal membership function to represent the inputs.  
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The following figures will display the trapezoidal inputs for the fuzzy fixed pivot 

mechanism synthesis. 

 

Figure 8-1.  Trapezoidal MF for R1x. 
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Figure 8-2.  Trapezoidal MF for R1y. 

 

 

Figure 8-3.  Trapezoidal MF for R2x. 
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Figure 8-4.  Trapezoidal MF for R2y. 

 

 

 

Figure 8-5.  Trapezoidal MF for R3x. 
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Figure 8-6.  Trapezoidal MF for R3y. 

The following four figures, Figures 8-7 to 8-10, display the results of the trapezoidal 

fuzzy fixed pivot mechanism synthesis, the fuzzy lengths of linkages W and Z. 

 

Figure 8-7.  Results for trapezoidal fuzzy Wx. 



82 

 

 

Figure 8-8. Results for trapezoidal fuzzy Wy. 

 

 

Figure 8-9.  Results for trapezoidal fuzzy Zx. 
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Figure 8-10.  Results for trapezoidal fuzzy Zy. 

 

Based on the previously specified inputs, the outputs of the trapezoidal fuzzy fixed 

pivot synthesis are shown below in Table 8-1 alongside the results from the triangular fuzzy 

fixed pivot synthesis. 

 

Table 8-1.  Results Comparison for Fuzzy Fixed Pivot Synthesis 

Variable Trapezoidal MF Triangular MF % Difference 

Wx -0.5324 -0.5467 2.616% 

Wy -4.4774 -4.4443 0.745% 

Zx 2.6911 2.6889 0.082% 

Zy -0.2502 -0.2525 0.911% 

 

8.2 Differences in Membership Functions Conclusion 

It can be seen from Table 8-2 that there is some difference between the defuzzified 

results of the synthesis using the trapezoidal results and the triangular results.  This 

difference could be the result of the larger range of more possible results with the 
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trapezoidal results.  Since the difference between the actual crisp results and the defuzzified 

triangular results is extremely small, it can be assumed that the difference between the 

actual crisp answer and the trapezoidal answer is greater than that of the difference between 

the actual crisp answer and the triangular results. This analysis shows that inputs with 

triangular membership functions produce more accurate results when compared to the 

results using trapezoidal membership functions. 
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Chapter 9:  Conclusion and Potential Future Work 

9.1 Conclusion 

 As previously mentioned, using fuzzy logic in mechanical design and synthesis 

allows the user to incorporate the impreciseness within their inputs into the respective 

procedures.  This concept will increase necessary flexibility in mechanical design, 

specifically mechanism synthesis.  There are many different types of membership functions 

that can represent many types of data sets, or the user can make their own membership 

function to map their data to a specific value.  Inserting human reasoning into design is 

important, especially if the user wishes for the output to reflect this type of reasoning. 

 The different types of fuzzification and defuzzification of a data set does have an 

effect on the outcome of the synthesis; however, it is up to the user to determine which 

method for both the fuzzification and defuzzification will best suit the specific needs.  In 

this case, the best type of fuzzification, which is shown within, is the use of the trapezoidal 

membership function.  The trapezoidal membership function assigns more than one value 

fully to the data set.  In this case, it is important to distinguish the entire area in which the 

second position of the mechanism is represented or the area representing the location of 

the fixed pivot.  The fuzzification of the data is an important process which begins to 

represent the uncertainty in the set. 

 After the process of fuzzification occurs and the data is mathematically 

manipulated, the data can be defuzzified in order to determine the best number in the set.  

Like the fuzzification methods, it is best to choose a defuzzification method that is best for 

the given scenario.  Here within, the method of defuzzification used was the centroid 

method.  This is because the centroid method accounts for the distortion of the results due 
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to the fuzzy arithmetic the data must undergo.  Another appropriate defuzzification method 

for this project would be the middle of maxima method; however, this method does not 

account for the distortion the entire data set undergoes, making this not the best method to 

use for this project.  The choice of defuzzification method is dependent upon the user’s 

needs, and it is just as important as the fuzzification methods. 

 Throughout the scope of this project, the main objective was to represent 

uncertainty within mechanism synthesis, specifically three-position four-bar mechanism 

synthesis, by representing the uncertain or imprecise variables as fuzzy sets, then 

conducting the mathematical procedures necessary.  After the result is obtain, which should 

be fuzzy sets, the results can be defuzzified to obtain the optimal value within the fuzzy 

sets.  This process can guarantee that all possibilities are considered, while only requiring 

one fuzzy synthesis. 

9.2 Future Work 

This research was conducted using a four-bar linkage; therefore, there is room and 

need to complete mechanism synthesis using fuzzy variables for other linkages with a 

different amount of links.  Research could be altered to accommodate trusts, five-bar 

linkages, etc.  The basic idea of the procedure conducted here within would remain the 

same; however, the vector loop equation would differ, changing the entire process. 

 Another area of study for further analysis would be to increase the amount of 

positions the linkage moves through, such as a four-position or five-position analysis.  With 

the increase in the amount of positions, the complexity of the problem increases, but the 

general idea of how to go about solving the problem would be the same.  To increase the 

amount of positions would allow for a more real world analysis of a mechanism design.   
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 Also in terms of mechanism design, fuzzy logic can introduce uncertainty and 

impreciseness into function generation and path generation synthesis.  The type of 

synthesis conducted here within was motion generation mechanism synthesis, and there 

are many different types of mechanism synthesis that can be implemented alongside fuzzy 

logic. 
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Chapter 11: Appendices 

The following sections outline the basic knowledge of mechanism synthesis. 

Appendix A: Example of Crisp Three-Position Mechanism Synthesis 

As noted before: 

𝐴 = cos(𝛽2) − 1;           𝐵 = sin(𝛽2) ;           𝐶 = cos(𝛼2) − 1; 

𝐷 = sin(𝛼2) ;           𝐸 = 𝑝21 cos(𝛿2) ;           𝐹 = cos(𝛽3) − 1; 

𝐺 = sin(𝛽3) ;           𝐻 = cos(𝛼3) − 1;           𝐾 = sin(𝛼3) ; 

𝐿 = 𝑝31 cos(𝛿3) ;           𝑀 = 𝑝21 sin(𝛿2) ;           𝑁 = 𝑝31 sin(𝛿3) 

The system can then be put into the simplified system of equations as: 

𝐴𝑊𝑥 − 𝐵𝑊𝑦 + 𝐶𝑍𝑥 − 𝐷𝑍𝑦 = 𝐸 

𝐹𝑊𝑥 − 𝐺𝑊𝑦 + 𝐻𝑍𝑥 − 𝐾𝑍𝑦 = 𝐿 

𝐵𝑊𝑥 + 𝐴𝑊𝑦 + 𝐷𝑍𝑥 + 𝐶𝑍𝑦 = 𝑀 

𝐺𝑊𝑥 + 𝐹𝑊𝑦 + 𝐾𝑍𝑥 + 𝐻𝑍𝑦 = 𝑁 

Putting this system into matrix form:  

[

𝐴
𝐹

−𝐵
−𝐺

𝐶
𝐻

−𝐷
−𝐾

𝐵  
𝐺  

𝐴
𝐹

𝐷
𝐾

    𝐶
    𝐻

]  ∙  

[
 
 
 
𝑊𝑥
𝑊𝑦
𝑍𝑥
𝑍𝑦 ]
 
 
 
 =  [

𝐸
𝐿
𝑀
𝑁

] 
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Using the following values: 

Variables Magnitude of Value 

P21 2.798 

δ2 -31.19 

P31 3.919 

δ3 -16.34 

α2 -45.0 

α3 9.3 

β2 342.3 

β3 324.8 

 

These values can now be substituted into the above matrix in order to solve for the values 

of W and Z. 

𝐴 = −0.0473;        𝐵 = −0.3040;        𝐶 = −0.2929;        𝐷 = −0.7071; 

𝐸 = 2.3936;        𝐹 = −0.1829;        𝐺 = −0.5764;        𝐻 = −0.0131; 

𝐾 = 0.1616;        𝐿 = 3.7607;        𝑀 = −1.4490;        𝑁 = −1.1026 

In matrix form, 

[

−0.0473

−0.1829

0.3040

0.5764

−0.2929

−0.0131

0.7071

−0.1616
−0.3040  
−0.5764  

−0.0473

−0.1829

−0.7071

0.1616

−0.2929

−0.0131

]  ∙  

[
 
 
 
𝑊𝑥
𝑊𝑦
𝑍𝑥
𝑍𝑦 ]
 
 
 
 =  [

2.3936

3.7607
−1.4490

−1.1026

] 

 

[
 
 
 
𝑊𝑥
𝑊𝑦
𝑍𝑥
𝑍𝑦 ]
 
 
 
= [

0.055
6.832
1.179
0.940

] 
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Appendix B: Two-Position Fuzzy Mechanism Synthesis MATLAB Code 

function [] = TwoDimFuzzySyn_v9(theta, phi, beta2,alpha2, 

p21, delta2) 

% -----  THIS CODE ASSUMES THE USER IS SOLVING FOR VALUES 

W AND Z (THE 

% -----  LENGTHS OF THE ROTATING LINKAGES)AS OPPOSED TO 

THE LENGTH AND ANGLE OF 

% -----  ONE OF THE ROTATING LINKAGES--- 

  

 

% Assigning values to variables (Norton page 192) 

% These variables are directly from Norton's book.  They 

significantly 

% simplify the calculations of w and z. 

A=cosd(theta)*(cosd(beta2)-1)-sind(theta)*sind(beta2); 

B=cosd(phi)*(cosd(alpha2)-1)-sind(phi)*sind(alpha2); 

C=sind(theta)*(cosd(beta2)-1)+cosd(theta)*sind(beta2); 

D=sind(phi)*(cosd(alpha2)-1)+cosd(phi)*sind(alpha2); 

  

 

% Defining the trap. fuzzy membership function 

% Sent to fuzzyfun function to have the trapezoidal 

membership function 

% calculated for the 4 number vectors specified above. 

[p21new, delta2new]=fuzzyfun(p21,delta2); 

  

  

% calculating the sine and cosine of the angle delta2 

% The membership function will remain the same (second 

column) because of 

% the extention principle 

delta2cos=[cosd(delta2new(1,:)); delta2new(2,:)]; 

delta2sin=[sind(delta2new(1,:)); delta2new(2,:)]; 

  

 

% multiplication of two numbers, both of which have an 

assigned fuzzy 

% membership function, sent to fuzzy mult function, 

variables defined by 

% Norton 

E=(fuzzymultvertex(p21new, delta2cos)); 

F=(fuzzymultvertex(p21new, delta2sin)); 
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% Matrix multiplication and re-assigning fuzzy membership 

% In order to simplify the calculation of the membership 

function, the 

% matrix multiplication was done "by hand" 

det=A*D-B*C; 

W1=[D*E(:,1),E(:,2)]; 

W2=[-B*F(:,1),F(:,2)];%separation of variables with fuzzy 

numbers 

Z1=[A*F(:,1),F(:,2)]; 

Z2=[-C*E(:,1),E(:,2)]; 

W=sortrows(fuzzyaddvertex(W1',W2'));  % adding the two 

numbers with attached membership functions in fuzzy add 

function 

 

W=[W(:,1)/det,W(:,2)];  % dividing by the determinate 

left over from the inverse of W 

 

Z=sortrows(fuzzyaddvertex(Z1', Z2')); 

Z=[Z(:,1)/det, Z(:,2)]; 

  

%Defuzzifying using built in Matlab function defuzz 

defuzzW=defuzz(W(:,1),W(:,2),'centroid') 

defuzzZ=defuzz(Z(:,1),Z(:,2),'centroid') 

  

 

 

%plotting the possible lengths and angles of p21 and 

delta 2 

for ii=1:length(p21new) %for loops that iterate through 

combinations of p21 and delta2 

    for jj=1:length(delta2new) 

  

        X(jj,ii)=p21new(1,ii)*cosd(delta2new(1,jj));    

%sets X and Y as polar coordinates 

        Y(jj,ii)=p21new(1,ii)*sind(delta2new(1,jj)); 

        C(jj,ii)=1-minfun;  %ensures darker to lighter 

color when membership function goes from 1 to 0 

    end 

end 
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 The MATLAB code shown above will complete a mechanism synthesis for two-

positions.  The inputs for this function are the variables for the synthesis, (theta, phi, 

beta2, alpha2, p21, delta2).  Here, since this program was designed for a fuzzy P2, p21 

and delta2 must be represented as fuzzy numbers, as described within the content of this 

thesis.  The results will be fuzzy because the inputs are fuzzy. 

  

figure(1); pcolor(X,Y,C)    %pseudocolor (contour) plot -

- the darker the color, the greater the grade 

shading interp; colormap(gray); %removes gridlines and 

uses grayscale colors 

title('All possible lengths of P21 and angles \delta 2 

(Polar Coordinates)'); 

xlabel('Length of P21 (a negative value signifies an 

angle in 2nd or 3rd quad.) '); 

ylabel('Angle of \delta 2 in radians') 

  

% Displaying the length of linkages W and Z against their 

fuzziness 

figure(2);  

plot(W(:,1),W(:,2)); title('Length W'); 

xlabel('W [units length]'); ylabel('grade'); 

figure(3);  

plot(Z(:,1),Z(:,2)); title('Length Z'); 

xlabel('Z [units length]'); ylabel('grade'); 

  

end 
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Appendix C: Three-Position Fuzzy Mechanism Synthesis with a Fuzzy P2 

 

function [] = ThreeDimFuzzySyn_v1(beta2, beta3, alpha2, 

alpha3, p31, delta3, p21, delta2) 

% THREE POSITION, FUZZY P2 

% -----  THIS CODE ASSUMES THE USER IS SOLVING FOR VALUES 

W AND Z (THE 

% -----  LENGTHS OF THE ROTATING LINKAGES)AS OPPOSED TO 

THE LENGTH AND ANGLE OF 

% -----  ONE OF THE ROTATING LINKAGES--- 

  

% Assigning values to variables (Norton page 204) 

% These variables are directly from Norton's book.  They 

significantly 

% simplify the calculations of w and z. 

A=cosd(beta2)-1;        G=sind(beta3); 

B=sind(beta2);          H=cosd(alpha3)-1; 

C=cosd(alpha2)-1;       K=sind(alpha3); 

D=sind(alpha2);         L=p31*cosd(delta3); 

F=cosd(beta3)-1;        N=p31*sind(delta3); 

  

% Defining the trap. fuzzy membership function 

% Sent to fuzzyfun function to have the trapezoidal 

membership function 

% calculated for the 4 number vectors specified above. 

[p21new, delta2new]=fuzzyfun(p21,delta2); 

  

  

% calculating the sine and cosine of the angle delta2 

% The membership function will remain the same (second 

column) because of 

% the extention principle 

delta2cos=[cosd(delta2new(1,:)); delta2new(2,:)]; 

delta2sin=[sind(delta2new(1,:)); delta2new(2,:)]; 

  

% multiplication of two numbers, both of which have an 

assigned fuzzy 

% membership function, sent to fuzzy mult function, 

variables defined by 

% Norton 

E=(fuzzymultvertex(p21new, delta2cos)); 

M=(fuzzymultvertex(p21new, delta2sin)); 
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% Matrix multiplication and re-assigning fuzzy membership 

% In order to simplify the calculation of the membership 

function, the 

% matrix multiplication was done "by hand" 

P=[A -B C -D; F -G H -K; B A D C; G F K H]; 

Y=inv(P); 

  

Y1=[Y(1,1).*E(:,1),E(:,2)];   Y2=[Y(1,3).*M(:,1),M(:,2)]; 

Ywx=(fuzzyaddvertex(Y1',Y2')); 

Wx=[Ywx(:,1)+Y(1,2)*L+Y(1,4)*N, Ywx(:,2)]; 

Wxdefuzz=defuzz(Wx(:,1), Wx(:,2),'centroid') 

  

 

Y3=[Y(2,1)*E(:,1),E(:,2)];   Y4=([Y(2,3)*M(:,1),M(:,2)]); 

Ywy=sortrows(fuzzyaddvertex(Y3',Y4')); 

Wy=([Ywy(:,1)+Y(2,2)*L+Y(2,4)*N, Ywy(:,2)]); 

Wydefuzz=defuzz(Wy(:,1), Wy(:,2), 'centroid') 

  

 

Y5=[Y(3,1)*E(:,1),E(:,2)];   Y6=[Y(3,3)*M(:,1),M(:,2)]; 

Yzx=(fuzzyaddvertex(Y5',Y6')); 

Zx=[Yzx(:,1)+Y(3,2)*L+Y(3,4)*N, Yzx(:,2)]; 

Zxdefuzz=defuzz(Zx(:,1), Zx(:,2), 'centroid') 

 

Y7=[Y(4,1)*E(:,1),E(:,2)];   Y8=[Y(4,3)*M(:,1),M(:,2)]; 

Yzy=(fuzzyaddvertex(Y7',Y8')); 

Zy=[Yzy(:,1)+Y(4,2)*L+Y(4,4)*N, Yzy(:,2)]; 

Zydefuzz=defuzz(Zy(:,1), Zy(:,2), 'centroid') 

 

%Find full lengths of W and Z linkages 

Wy2=[Wy(:,1).^2, Wy(:,2)]; 

Wx2=[Wx(:,1).^2, Wx(:,2)]; 

Wfuzz1=sortrows(fuzzyaddvertex(Wy2', Wx2')); 

Wfuzz=sortrows([(Wfuzz1(:,1)).^(1/2), Wfuzz1(:,2)]); 

Zy2=[Zy(:,1).^2, Zy(:,2)]; 

Zx2=[Zx(:,1).^2, Zx(:,2)]; 

Zfuzz1=(fuzzyaddvertex(Zy2', Zx2')); 

Zfuzz=sortrows([(Zfuzz1(:,1)).^(1/2), Zfuzz1(:,2)]); 
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%plotting the possible lengths and angles of p21 and 

delta 2 

for ii=1:length(p21new) %for loops that iterate through 

combinations of p21 and delta2 

    for jj=1:length(delta2new) 

        minfun=min(p21new(2,ii),delta2new(2,jj));   

%defines the minimum of the two fuzzinesses as the 

respective fuzziness of the point in question 

        X(jj,ii)=p21new(1,ii)*cosd(delta2new(1,jj));    

%sets X and Y as polar coordinates 

        Y(jj,ii)=p21new(1,ii)*sind(delta2new(1,jj)); 

        C(jj,ii)=1-minfun;  %ensures darker to lighter 

color when membership function goes from 1 to 0 

    end 

end 

  

figure(3); pcolor(X,Y,C)    %pseudocolor (contour) plot -

- the darker the color, the greater the grade 

shading interp; colormap(gray); %removes gridlines and 

uses grayscale colors 

hold on; figure (3); scatter(0,0, 'filled', 'b') 

scatter(p31*cosd(delta3), p31*sind(delta3), 'filled') 

axis([0 5 0 10]); 

title('Three-Position Fuzzy Synthesis'); 

xlabel('X-length'); 

ylabel('Y-length') 

%gtext('Position 1'); gtext('Position 2'); 

gtext('Position 3'); 

hold off; 

  

% Displaying the length of linkages W and Z against their 

fuzziness 

figure(4);  

plot(Wfuzz(:,1),Wfuzz(:,2)); title('Length U'); 

xlabel('U [units length]'); ylabel('grade'); 

 

figure(5);  

plot(Zfuzz(:,1),Zfuzz(:,2)); title('Length S'); 

xlabel('S [units length]'); ylabel('grade'); 

  

end 
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Like the MATLAB code for the two-position synthesis, this code will require the 

inputs of p21 and delta2 to be fuzzy inputs.  Because of this, the results will be fuzzy 

outputs.  The other inputs for this function are not to be fuzzy numbers, but they are 

required to complete the synthesis.  
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Appendix D: Three-position Fuzzy Synthesis for Fuzzy Fixed Pivot MATLAB 

Code  

 Unlike the previous two MATLAB codes, seen in Appendices B and C, this code 

completes a fuzzy mechanism synthesis for a fuzzy fixed pivot.  This code is written as a 

script, so there are no inputs necessary; however, to utilize this code, the user will have to 

be sure the variables specified in the code itself as correct for their intended problem. 

% fuzzify pivot point - O2x and O2y 

% assume pivot point is origin (0,0) 

% Tape Unit Ex - crisp: beta2= -48.2609 and beta3= -89.7104 

clear all; close all; clc; 

format compact; 

digits(3) 

  

delx = 0.2;  dely = 0.2;    %wideness of fixed pivot 

R1x=2.14;   R1y=-3.68; 

R2x=4.46;   R2y=-0.63; 

R3x=4.10;   R3y=3.22; 

a2=50.7;    a3=91.9;    %alphas 

  

%fuzzifying the length of the vector from the pivot point 

to the positions 

[R1x, R1y]=fuzzyfun([R1x-delx R1x R1x R1x+delx], [R1y-dely 

R1y R1y R1y+dely]); 

R1x=round(R1x'*1000)/1000;    R1y=round(R1y'*1000)/1000; 

%this a makes sure there is no floating numbers. 

 

[R2x, R2y]=fuzzyfun([R2x-delx R2x R2x R2x+delx], [R2y-dely 

R2y R2y R2y+dely]); 

R2x=round(R2x'*1000)/1000;    R2y=round(R2y'*1000)/1000; 

[R3x, R3y]=fuzzyfun([R3x-delx R3x R3x R3x+delx], [R3y-dely 

R3y R3y R3y+dely]); 

R3x=round(R3x'*1000)/1000;  R3y=round(R3y'*1000)/1000; 

  

M=1; %Matrix of beta2 and beta3 index 

XX=[0, 0.05:0.1:0.95, 1.0]; %range of fuzziness 

for pp=1:length (XX); 

    XXX=round(XX(pp)*1000)/1000; 
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     %finds the location within the fuzzy vector of the 
specified fuzziness 

    [r1,c1]=find(R1x(:,2)==XXX); 

    [r2,c2]=find(R1y(:,2)==XXX); 

    [r3,c3]=find(R2x(:,2)==XXX); 

    [r4,c4]=find(R2y(:,2)==XXX); 

    [r5,c5]=find(R3x(:,2)==XXX); 

    [r6,c6]=find(R3y(:,2)==XXX); 

     

     

    for ii=1:2 

        for jj=1:2 

            for kk=1:2 

                  %account for the single value of grade 1 

                if XXX==1 && ii==2 

break; %doesn't allow search for second 

value 

                end 

                if XXX==1 && jj==2 

  break; %doesn't allow search for second 

value 

                end 

                if XXX==1 && kk==2 

break; %doesn't allow search for second 

value 

                end 

                 

%finds crisp R values of specified fuzziness 

                R1xnew=R1x(r1(ii)); R1ynew=R1y(r2(ii)); 

                R2xnew=R2x(r3(jj)); R2ynew=R2y(r4(jj)); 

                R3xnew=R3x(r5(kk)); R3ynew=R3y(r6(kk)); 

                 

  

                 

%account for the multiple zeros in fuzzy 

vectors (must 

%check that there are two zeros at each end 

of vector.) 

                if XXX==0 && ii==2  

                    R1xnew=R1x(r1(3)); R1ynew=R1y(r2(3)); 

                end 
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                   if XXX==0 && jj==2 

                    R2xnew=R2x(r3(3)); R2ynew=R2y(r4(3)); 

                end 

                if XXX==0 && kk==2 

                    R3xnew=R3x(r5(3)); R3ynew=R3y(r6(3)); 

                end 

                               

             

 %calculates the D values from Erdmand and 

Sandor page 123 

D1x=R3xnew*cosd(a2)+R3ynew*sind(a2)-

R2xnew*cosd(a3)-R2ynew*sind(a3); 

D1y=R3ynew*cosd(a2)+R3xnew*sind(a2)-

R2ynew*cosd(a3)-R2xnew*sind(a3); 

                D2x=R1xnew*cosd(a3)+R1ynew*sind(a3)-R3xnew; 

                D2y=R1ynew*cosd(a3)+R1xnew*sind(a3)-R3ynew; 

                D3x=R2xnew-R1xnew*cosd(a2)-R1ynew*sind(a2); 

                D3y=R2ynew-R1ynew*cosd(a2)-R1xnew*sind(a2); 

                 

               

                %Jacobian 

                J11=@(x) -D2x*sind(x)-D2y*cosd(x); 

                J12=@(x) -D3x*sind(x)-D3y*cosd(x); 

                J21=@(x) D2x*cosd(x)-D2y*sind(x); 

                J22=@(x) D3x*cosd(x)-D3y*sind(x); 

                 

                 

%calculate f1 and f2 (real and imaginary 

functions of 

                %vector loop analysis) 

      f1=@(x1,x2) D1x+D2x*cosd(x1)-

D2y*sind(x1)+D3x*cosd(x2)-D3y*sind(x2); 

f2=@(x1,x2) 

D1y+D2x*sind(x1)+D2y*cosd(x1)+D3x*sind(x2)+D3y*co

sd(x2); 

                func=@(x1,x2) [f1;f2]; %func. concatination 
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          %-- Newton Raphson Method--% 

 % NR method is used to calculate each beta and then length 

                % of W and Z for the  

                 

         x0=[-45;-85];    %initial guess of beta2 and beta3 

         N = 1000; % define max. number of iterations 

         epsilon = 1e-5; % define tolerance 

         maxval = 10000.0; % define value for divergence 

                xx = x0; % load initial guess 

                 

                while N>0 

                    %evaluate Jacobian 

                    J1= J11(xx(1)); 

                    J2= J12(xx(2)); 

                    J3= J21(xx(1)); 

                    J4= J22(xx(2)); 

                    JJ=[J1 J2; J3 J4]; 

                     

                    if abs(det(JJ))<epsilon     %singular?                        

error('newtonm - Jacobian is singular - try new x0'); 

                        N=0; %ends function 

                    end; 

 

                    %evaluates function 

func=[f1(xx(1), xx(2)); 

f2(xx(1),xx(2))]; 

                    xn = xx - inv(JJ)*func;  %NR method to 

find the best value of beta 2 and 3 

                    if abs(func)<epsilon 

                        x=xn;            

                        iter = 1000-N;  %number of iter  

                        N=0;            %ends function 

                    end; 

 

     if abs(func)>maxval     %stops if too 

many iterations have passed 

                        iter = 1000-N;  %number of iter   

   disp(['iterations = 

',num2str(iter)]); 

                        error('Solution diverges'); 

                        N=0;        %ends function 

                    end; 

 

                    N = N - 1;      %iterations counter 

                    xx = xn;        %sets next guess value 

                end; %while loop 
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  %calculate beta2 and beta3 and assigns them to new matrix 

                %with corresponding grade 

                allbeta2(M,2)=xn(1); 

                allbeta2(M,1)=XXX; 

                allbeta3(M,2)=xn(2); 

                allbeta3(M,1)=XXX; 

                %find the lengths and W and Z for the value 

of beta 

                B=[cosd(xn(1)), sind(xn(1)), cosd(a2), 

sind(a2);... 

                    sind(xn(1)), cosd(xn(1)), sind(a2), 

cosd(a2);... 

                    cosd(xn(2)), sind(xn(2)), cosd(a3), 

sind(a3);... 

                    sind(xn(2)), cosd(xn(2)), sind(a3), 

cosd(a3)]; 

                 

                WandZ(:,M)=inv(B)*[R2xnew; R2ynew; R3xnew; 

R3ynew]; 

                %assign values of W and Z to matrix with 

corresponding 

                %grade 

                Wx(M,2)=WandZ(1,M)';  Wx(M,1)=XXX; 

                Wy(M,2)=WandZ(2,M)';  Wy(M,1)=XXX; 

                Zx(M,2)=WandZ(3,M)';  Zx(M,1)=XXX; 

                Zy(M,2)=WandZ(4,M)';  Zy(M,1)=XXX; 

                M=M+1; 

            end 

             

        end 

    end 

end 

 

%Stripped down version of Vertex Method 

%finding min and max of Wx 

Wxsort=sortrows(Wx); 

kk=1; 

for ii=2:length(Wxsort) 

    if  Wxsort(ii,1)>Wxsort(ii-1,1) 

        Wxnew(kk,:)=Wxsort(ii-1,:); 

        kk=kk+1; 

        Wxnew(kk,:)=Wxsort(ii,:); 

        kk=kk+1; 

    end 

     

end 
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%plotting Wx 

Wxnew(kk,:)=Wxsort(end,:); 

Wxnew(kk+1,:)=Wxsort(1, :); 

Wx=sortrows([Wxnew(:,2),Wxnew(:,1)]); 

figure(1); plot(Wx(:,1), Wx(:,2)); 

title('All possible values of Ux'); 

xlabel('Ux'); ylabel('grade') 

  

%finding min and max of Wy 

Wysort=sortrows(Wy); 

kk=1; 

for ii=2:length(Wysort) 

    if  Wysort(ii,1)>Wysort(ii-1,1) 

        Wynew(kk,:)=Wysort(ii-1,:); 

        kk=kk+1; 

        Wynew(kk,:)=Wysort(ii,:); 

        kk=kk+1; 

    end 

     

end 

 

%plotting Wy 

Wynew(kk,:)=Wysort(end,:); 

Wynew(kk+1,:)=Wysort(1, :); 

Wy=sortrows([Wynew(:,2),Wynew(:,1)]); 

figure(2); plot(Wy(:,1), Wy(:,2)); 

title('All possible values of Uy'); 

xlabel('Uy'); ylabel('grade') 

  

  

%finding min and max of Zx 

Zxsort=sortrows(Zx); 

kk=1; 

for ii=2:length(Zxsort) 

    if  Zxsort(ii,1)>Zxsort(ii-1,1) 

        Zxnew(kk,:)=Zxsort(ii-1,:); 

        kk=kk+1; 

        Zxnew(kk,:)=Zxsort(ii,:); 

        kk=kk+1; 

    end 

     

end 
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 I would like to credit By Gilberto E. Urroz for the basic structure of the Newton 

Raphson Method for this code.  This portion of the code was extracted from his lecture 

notes, “Solution of Non-Linear Equations”, September 2004.  

 

%plotting Zx 

Zxnew(kk,:)=Zxsort(end,:); 

Zxnew(kk+1,:)=Zxsort(1, :); 

Zx=sortrows([Zxnew(:,2),Zxnew(:,1)]); 

figure(3); plot(Zx(:,1), Zx(:,2)); 

title('All possible values of Sx'); 

xlabel('Sx'); ylabel('grade') 

  

%finding min and max of Zy 

Zysort=sortrows(Zy); 

kk=1; 

for ii=2:length(Zysort) 

    if  Zysort(ii,1)>Zysort(ii-1,1) 

        Zynew(kk,:)=Zysort(ii-1,:); 

        kk=kk+1; 

        Zynew(kk,:)=Zysort(ii,:); 

        kk=kk+1; 

    end 

     

end 

 

%plotting Zy 

Zynew(kk,:)=Zysort(end,:); 

Zynew(kk+1,:)=Zysort(1, :); 

Zy=sortrows([Zynew(:,2),Zynew(:,1)]); 

figure(4); plot(Zy(:,1), Zy(:,2)); 

title('All possible values of Sy'); 

xlabel('Sy'); ylabel('grade') 

  

 

%defuzzified answers using centroid method and built-in 

matlab function 

%"defuzz" 

defuzzWx=defuzz(Wx(:,1), Wx(:,2), 'centroid') 

defuzzWy=defuzz(Wy(:,1), Wy(:,2), 'centroid') 

defuzzZx=defuzz(Zx(:,1), Zx(:,2), 'centroid') 

defuzzZy=defuzz(Zy(:,1), Zy(:,2), 'centroid') 
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Appendix E: Additional Custom MATLAB Codes 

The following MATLAB code was written to transform a set of numbers to a 

membership function, more specifically a trapezoidal membership function.  The input of 

this function is a vector of four numbers, [a b c d], where a and d are the outer limits, and 

b and c are the inner limits, where the grade is 1.0 between b and c. 

 

function [p21new, delta2new]= fuzzyfun(p21,delta2) 

%THIS FUNCTION CREATES THE TRAPEZOIDAL MEMBERSHIP      

FUNCTION FROM THE GIVEN 

%VECTOR SPECIFIED FOR P21 AND DELTA2 

  

        n=400; 

  

        p21step=(p21(4)-p21(1))/n; %divides the length of 

the vector into n divisions 

        x1=p21(1)-0.01:p21step:p21(4)+0.01;   %creates a 

vector to span the entire length of specified p21 

        p21mf=trapmf(x1, p21);      %uses built-in matlab 

function to the membership function for p21 (fuzziness of 

p21) 

         

        %Repeat of p21 steps but for delta 2 

        delstep=(delta2(4)-delta2(1))/n; 

        x2=delta2(1)-0.01:delstep:delta2(4)+0.01; 

        delta2mf=trapmf(x2,delta2); 

         

        figure(1); plot(x1, p21mf);  

        title('Fuzzification of O2x'); 

        xlabel('O2x location'); ylabel('grade'); 

        figure(2); plot(x2, delta2mf); 

        title('Fuzzification of O2y'); 

        xlabel('O2y location'); ylabel('grade');   

 

     

        p21new=[x1; p21mf];    delta2new=[x2; delta2mf];    

%creates new matrices that attaches the variables and 

their fuzziness 

    

 end 
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 The next MATLAB code that is displayed is the function that computes the addition 

of two fuzzy sets.  It is important to note that addition between fuzzy sets in similar to but 

not the same as crisp addition.  To add fuzzy sets, the vertex method was used. 

function [P]=fuzzyaddvertex(A,B) 

% -- This function multiplies the two fuzzy numbers using 

the vertex 

% method in combination with interpolation to ensure both 

functions being 

% multipled have the same membership functions 

  

  

%===============INTERPOLATION=========================== 

Anew=zeros(1,2); 

k=0; 

X=0:0.001:1; 

for jj=1:length(X) 

    for ii=2:length(A) 

         

if (A(2,ii)>X(jj) && A(2,ii-1)<X(jj)) || 

(A(2,ii)<X(jj) && A(2,ii-1)>X(jj)) 

            k=k+1; 

            Anew(1)=(((X(jj)-A(2,ii-1))*(A(1,ii)-A(1,ii-

1)))/(A(2,ii)-A(2,ii-1)))+A(1,ii-1);   %interpolates to 

find the value related to mu=[X] 

 

            Anew(2)=X(jj); %relates the fuzziness with 

the previous step 

 

            M(k,:)=Anew; %sends to a new matrix outside 

of for loop to ease calculation of vertex function 

         

elseif A(2,ii)==X(jj) 

            k=k+1; 

            Anew=[A(1,ii),A(2,ii)]; 

            M(k,:)=Anew; 

        end 

    end 

   

end 
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k=0; 

for jj=1:length(X) 

    for ii=2:length(B) 

        if (B(2,ii)>X(jj) && B(2,ii-1)<X(jj)) || 

(B(2,ii)<X(jj) && B(2,ii-1)>X(jj)) 

            k=k+1; 

            Bnew(1)=(((X(jj)-B(2,ii-1))*(B(1,ii)-B(1,ii-

1)))/(B(2,ii)-B(2,ii-1)))+B(1,ii-1);   %interpolates to 

find the value related to mu=[X] 

            Bnew(2)=X(jj); %relates the fuzziness with 

the previous step 

            N(k,:)=Bnew; %sends to a new matrix outside 

of for loop to ease calculation of vertex function 

        elseif B(2,ii)==X(jj) 

            k=k+1; 

            Bnew=[B(1,ii),B(2,ii)]; 

            N(k,:)=Bnew; 

        end 

    end 

end 

  

kk=0; 

for ii=1:length(N) 

    for jj=1:length(M) 

        if M(jj,2)==N(ii,2) 

            kk=kk+1; 

            Z(kk,2)=M(jj,1)+N(ii,1); 

            Z(kk,1)=M(jj,2); 

        end 

    end 

end 

 

Z=sortrows(Z); 

kk=1; 

for ii=2:length(Z) 

   if  Z(ii,1)>Z(ii-1,1) 

       W(kk,:)=Z(ii-1,:); 

       kk=kk+1; 

       W(kk,:)=Z(ii,:); 

       kk=kk+1; 

   end 

end 

   W(kk,:)=Z(end,:); 

   P=[W(:,2),W(:,1)]; 

end 
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The MATLAB code for the subtraction of fuzzy sets, except where 

Z(kk,2)=M(jj,1)+N(ii,1);  would now become Z(kk,2)=M(jj,1)-N(ii,1);  To save room, 

this code is not displayed.  This rule also applies for the multiplication of fuzzy sets, 

where Z(kk,2)=M(jj,1)+N(ii,1);  now becomes Z(kk,2)=M(jj,1)*N(ii,1). 

As previously mentioned, all the fuzzy arithmetic MATLAB codes utilize the 

vertex method to compute the addition, subtraction, or multiplication.  
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