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1. Abstract 

A performance analysis of several vision-based robot localization systems is 

presented   for real-time Micro Aerial Vehicle (MAV) navigation tasks in touch-free, 

GPS denied, and high-accuracy environments. The systems were designed and utilized 

during our quadrotor visual control research, consisting of a local positioning system 

(LPS), a simplified monocular visual odometry (VO), and a stereo visual odometry 

ranging system. Measurement performance is evaluated through experiments performed 

using a membrane potentiometer sensor as reference. Feature-based image processing 

algorithms and motion detection methods are implemented to generate 3D position 

information from 2D image data. Performance analysis gave verified data for the 

applications of those systems. Final measurement resolution of 1mm was obtained for the 

LPS, and a high positioning accuracy was demonstrated for the VO systems. 
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1. Introduction 

Robot localization and tracking is one of the most considerable competences required 

for robot navigation. Vision-based positioning, as an efficient way for robot localization, 

is to generate the target position information or solve 6 DoF problems for a robot, by 

performing an incremental analysis with only the input of a single or multiple cameras. 

The overall goal of this research is to give an analysis of several proposed vision-based 

localization system, with the comments about their advantages and limitations. The result 

of this research gives the comments of real world applications for these proposed systems, 

based on the analysis of their measurement performance. 

Depends on the type of task, the vision-based localization system can be divided into 

Local Positioning System (LPS) and the Visual Odometry (VO) system. The LPS is a 

camera system, containing two local-fixed cameras observing a marked target. The 

position and altitude of the target is estimated by triangulating the markers (usually LED 

markers) through their detected projections in the image frames. The VO is the process 

estimating the camera’s motion using the consecutive frames captured with a sufficient 

scene overlap. Depending on the cameras that been used, the VO can be further divided 

into Monocular VO and Stereo VO. As measuring systems, all these vision-based 

systems can be utilized for the tasks that require low-cost, touch-free measurement 

techniques, especially in robotics areas. The optimal application of each proposed system 

is determined by the concentrations of these vision-based localization systems, which is 

discussed in this research.  
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1.1.  Background 

Prior research has demonstrated various applications of vision-based positioning 

techniques [1]-[10], including obstacle avoidance [1]-[2], and mobile robot navigation 

[3]-[5], aerial and underwater vehicle visual control [6]-[10]. In each of these approaches, 

vision-based positioning techniques are utilized for either tracking or detecting objects, or 

localizing the position or pose of an agent (e.g. vehicle, aircraft, or robot). Depending on 

the task, the visual system can be of stereo cameras [4], [7], single camera [1], [6], or a 

combination of camera with other sensors [2], [9], [7] (i.e. IMU, laser sensors, and 

ultrasonic sensors).  

In general, the goal of a visual positioning system is to produce continuous, accurate 

and repeatable real-world position information about a target under surveillance, or a 

moving agent with camera attached, while minimizing the cost, computation and 

complexity, under desired environment. The visual positioning system is well studied 

over past several years. Yet with the improvement in camera and sensor techniques, and 

image processing methods, new approaches that employed visual positioning were 

developed continuously, representing high performance in real-time tasks [6]-[8].  

In this work, the introduction and analysis of several visual positioning systems 

developed by our lab over the past two years is presented. The primary contribution for 

this work is to give the measurement performance of the proposed visual positioning 

systems, and test the real-time VO implements which were developed for quadrotor tasks. 

The experiments were done with a test bench, providing reliable true values for the 

results, by simulating the vehicle movement.  
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1.2. Literature Review 

The computer vision techniques have been employed into robot localization and 

navigation since the early 1980s. Additionally, the image processing and motion 

estimation techniques were developed for more accurate and stable real-time applications. 

In this section, an overview of prior research is drawn. The literature review is divided in 

three areas: The vision-based robot navigation, the image processing techniques, and the 

motion estimation with visual inputs. 

1.2.1. Vision-Based Robot Navigation 

In robot navigation, the process of determining the position and orientation of an 

agent by analyzing the input of the camera system attached to it is called Visual odometry 

(VO) [11]. It focuses on estimating the 3D camera displacement and poses changing over 

the last several frames and generating the motion of the camera. It has wide applications 

in target tracking and localization. VO is not interested in global consistency of the path. 

Instead, it concentrates on the analysis of the last several frames, without keeping track of 

all the pervious history. As an early VO application, Moravec’s cart [1] introduced a 

sliced-stereo technique as a navigation method estimating mobile robots’ egomotion 

based on visual input. Limited by technology of the day, the robot moved in a stop-and-

go fashion, digitizing and analyzing images at each stop. As a consequence of thirty years’ 

research in sensors and algorithms, the increased positioning accuracy, speed operation, 

and functional flexibility in computer vision techniques, we are now capable of 

implementing an efficient system that provides good results with high accuracy, 

reliability and real-time performance, while minimizing cost, complexity and 
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computation. As two independent lines of VO research, the monocular camera system 

and the stereo camera system are discussed in the remainder of this section. 

The monocular VO is to estimate the position with only one camera, providing 

bearing information. Since the magnitude of the direction vector is unknown, the motion 

is usually resolved to a relative scale by setting the movement of the first two images to 

one. To settle this problem and determine the absolute scale, the monocular camera can 

be combined with other sensors to produce distance measurements.  

In comparison with monocular VO, stereo VO computes the relative motion by using 

the 3D point generated through triangulating the stereo pairs. The image features in two 

image sets are detected or tracked with image feature detection and matching theories. By 

triangulating the corresponding features in a stereo pair, the 3D correspondences are 

established. With the detected 3D points, the relative motion is computed with 3D-to-3D 

or 3D-to-2D motion estimation methods, and refined by an outlier rejection scheme.  

 Nister et al. [5] have presented a system that can operate in real-time and estimate the 

motion for robot navigation. They involved the feature based image processing, and 

estimated the relative pose using 5-point algorithm [12] based on the tracked features 

over several frame, and utilized RANSAC [13] to eliminate the outliers. 

JPL has presented several stereo-vision-based terrain mapping studies and the 

capacity of stereo techniques to perform UGV navigation in [4]. Various stereo 

techniques such as multi-resolution, thermal infrared cameras, and multi-baseline stereo 

camera were included for off-road approaches.  

An overview of the VO system is given in [11]. The general procedure of a VO 

system is demonstrated in the following block diagram. 
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Image Sequence

Feature Detection

Feature Matching

Motion Estimation
 

Figure 1: Block diagram showing main components of VO system 

 

1.2.2. Image Processing Theory 

The VO system performance is highly related to the image processing procedure. 

This stage most heavily influences the execution speed and real-time performance. As 

illustrated in figure 1, the first three steps, called the image correspondences problem, 

which detects and marches (or tracks) the 2D feature of the same 3D feature cross 

consecutive images.  

The motion estimation is established upon good correspondences detection over 

consecutive images. The procedure of establishing correspondence can be divided into 

two main categories, representing two main classes of algorithms.  

 Appearance-based methods: Based on correlating pixel intensities of the 

images or their sub-regions. For instance, Digital image correlation. 

 Feature-based methods: Based on salient and repeatable features that are 

tracked over several frames. For instance, SIFT and SURF algorithms. 
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The early researches concentrated on the former approach for small-scale 

environment or small viewpoints changing. The later works focused on the large-scale 

environment with images taken as far apart as possible from each other. In feature-based 

methods, features are specified to be the image structures or patterns that can be easily 

identified and repeatable across a set of images. The ideal feature should have following 

the properties: accuracy, repeatability, efficiency, robustness, distinctiveness, and 

invariance [14].  

The prior works gave various approaches in feature detector and descriptor.  For early 

researches, the intersections of edges (known as corner points) were interested. Harris 

corner detector [15] gave a fast way to detect and track distinctive corner points through 

images with various applications. Concentrating on the invariance after large viewpoint 

and scale changes, blob detector gave a better result than the corner detector. SIFT [17] is 

an algorithm developed by Lowe, which extracts distinctive invariant features from 

images to perform reliable matching between consecutive images. In terms of real-time 

performance, Herbert et al. [20] had built a Speed-Up Robust Features (SURF) method to 

present a high-speed approach in feature detection and description. The review and 

comparison of the existing algorithms can be found in [14]. 

1.2.3. Motion Estimation 

After detecting and matching the correspondences, the next stage in a VO system is 

motion estimation. In this step, the purpose is to get the transformation    between the 

current image    and the previous image      through analysis two sets of 

correspondence         . And then the trajectory of the camera or the agent to which it is 

rigidly mounted can be further determined by concatenation of all these movements. This 
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stage can be divided into three different methods based on the dimension in which the 

corresponding features are specialized [11]. 

 2D-to-2D:         are specified in 2D image frame. 

 3D-to-3D: Both features points are triangulated into 3D coordinates at each 

iteration. 

 3D-to-2D: Feature set      are triangulated into 3D coordinates and then 

matched with it 2D corresponding feature    .  

The geometric relations between two image frames of a camera are described by the 

essential matrix (with intrinsic and extrinsic parameter) or fundamental matrix (with 

extrinsic parameter only). With 2D feature correspondences, the essential matrix can be 

computed by using the epipolar constraint. It involves a minimal five-point solution [5]. 

With eight or more non-collinear points, the eight-point algorithm [30] gives a solution 

for both calibrated and uncalibrated cameras. For an over-determined system, which 

having more than eight points, the singular value decomposition is used to estimate the 

result. 

In the stereo vision case, the camera motion is computed by determining the 

transformation of two 3D corresponding feature sets. The evaluation of motion estimation 

method for stereo VO can be found in [31].  
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2. Background Theory 

In the visual localization task, images acquired with cameras are analyzed; the 

correspondences are detected and matched over a continuous frame stream. The image 

features are defined as distinctive patterns that have high repeatability over different 

scenes. The efficiency and effectiveness of the correspondences recognition stage 

influence the overall execution speed and accuracy of a localization system. For the LPS, 

the image features are easily identified as bright LED markers under low illumination. 

The noise and interference from other objects in the field of view are eliminated or 

minimized with low exposure condition. In the way, the marker can be tracked over a 

frame stream without complex feature detection and object identification. During the 

design of a VO applied for positioning and path tracking, the complex background 

features were involved as land beacons to produce abundant location information.  

This section gives the theories that involved in this research, and is organized as 

follow. For the accuracy of LPS altitude measuring, the cylinder markers were involved 

and identified with the Hough line detector introduced in section 2.1.  The standard image 

processing algorithms were involved in the VO design, which are introduced in section 

2.2. Section 2.3 introduces the digital image correlation theory. 

2.1. The Hough Transform 

The Hough edge detector was employed to extract the straight lines in binary images. 

The principle of this technique is to group the noisy extracted edge features into object 

candidates by a voting procedure in a parameter space. Each edge pixel       
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corresponds to a family of straight lines                  in 2D image frame 

parameterized by two variables, 

                                                                                                                          (2-1)                  

Considering             (e.g. vertical line), it is better to use polar coordinate form 

for line representation, as shown in figure 2, 

                                                                                                                 (2-2)                   

Here,    corresponds to the normal distance to the line and    corresponds to the polar 

angle, with a range of        √   
     

            . Here,     and      are the 

vertical and horizontal dimensions of image.  

θ

r

O

y

x
 

Figure 2: Polar coordinates form for line representation 

 

Theoretically, each pixel       votes for the parameters         of each line    

      , and straight lines have more edge pixels on it will receive more votes than the 

ones that are forming a line in the image. And then, the line feature detection problem is 

transformed into a peak detection algorithm finding the most voted lines, corresponding 

to the greatest intensity in the image frame. Since the parameters         are bounded, it is 

easy to define a resolution    and    for an angular scan. The angular interval    
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       is dispersed by    into         discrete points, and for each of them the 

related radial distance    is calculated through equation (2-2) and rounded to the nearest 

   value. Furthermore, the corresponding element in a so-called accumulator array 

       will be accumulated once. Therefore, an accumulator space denoted by a     

matrix   is constructed respectively by accumulating the votes to obtain local maxima. 

Here   √   
     

     and         correspond the discrete radial and angular 

interval. As illustrated in figure 3, each edge pixel       corresponds to a family of 

straight lines                 . Edge pixels that form a line will each place one vote 

for the same        . Lines have more edge pixels on it will receive more votes than ones 

that are forming a line in the image. 

                              
(1)                                                                                    (2) 

 
(3) 

Figure 3: The Hough Transform 
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2.2. Digital Image Correlation 

DIC was developed in the recent 30 years and is now capable for real time task with a 

satisfied execution speed. As a touch free technique with high accuracy, this technique is 

widely used in mechanical testing, machining, and recently nano-scale chemical surface 

restructuring. DIC is also utilized for motion measuring; one common application is 

optical mouse. Inspired by this, the visual odometry system is developed based on the 

concept of DIC, intent to represent an alternative solution for robot positioning. 

The first approach for the visual odometry system imaging processing procedure is 

Digital Image Correlation (DIC). This technique is an optical method predicated on the 

maximization of a correlation coefficient that generated by comparing sub-pixel intensity 

or gray scale on two or more corresponding images. Let        represent the pixel 

intensity at point     in the original image, and    ̃    is the pixel intensity at point  ̃   in a 

displaced image. The correlation coefficient     is determine by normalized cross-

correlation given by, 

    
∑          ̅      ̃     ̅       

√∑          ̅   ∑     ̃     ̅             

                                                                           (2-3) 

With   is a subset of pixels around a point of interest and  ̅ ,  ̅  are the mean values of 

 and   in the area of  . The mapping from the corresponding image to the original image 

is defined by, 

                                                                                                                        (2-4) 

By assuming that the camera only has parallel motions and always perpendicular to 

the optical axis of the camera, or in other word, only translations are expected and no 

rotations exist, the relation between    and   
  is reduced to a 2D affine transformation, 
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                                                                                                                        (2-5) 

                                                                                                                        (2-6) 

Or take the first Taylor series expansion, 

              
  

  
   

  

  
                                                                                (2-7) 

              
  

  
   

  

  
                                                                                (2-8) 

Here   and   are respectively the   and   direction in-plane displacements between 

two images, specifically, let            represents the point of interest and   
   is the 

corresponding point in the deformed image, are the translation of the point of interest (or 

center of the sub-image).                     denotes the distance between   

and   . Under the assumption of parallel movements of camera, tiny surface distortion 

between    and      will be ignored. That means the sub-images are considered as rigid, 

or  
   

   
  . Equation (2-7) and (2-8) can be rewritten as, 

                                                                                                                       (2-9) 

                                                                                                                     (2-10) 
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2.3. Feature-Based Correspondences Detection 

Feature-based methods are based on salient and repeatable features that are tracked 

over several frames. The following of this section introduces two blob feature detection 

algorithms. 

Developed by Lowe [3], SIFT detects local features in a scale space generated by 

Gaussian filter. Images are smoothed and masked by convolved with the Gaussian kernel 

incrementally in a down- sampling way to produce a set of the scale space images and 

establish a scale space. Point with the difference of Gaussian (DoG) larger than its 

neighborhoods in the scale space is believed to be a local extreme. For stability and 

repeatability, the key points are selected as local extreme by eliminating points with low 

contrast and close or lying on to edges. After key points are localized, histograms of 

gradient direction are created, within a region around each key point. A 128D SIFT 

descriptor is assigned for a key point, containing its 8 dimensional orientation vector. By 

searching for features in other images, a 128D descriptor will find a best match and 

considered as correspondence. 

SURF [20] algorithm is a blob feature detection technique, concentrating on the find 

image pattern that distinctive from it neighborhood and match them over images.  It 

builds up on SIFT, but comes out with box filters to approximate the Gaussian, and 

detects interest features with high repeatability under different viewing conditions by up-

scaling filter in a scale space. The advantage of box filters is to separate calculation time 

from filter size. It can directly apply up-scaling filter on the original without iteratively 

down-sampling the image to reach the upper level of scale space octaves, which 

improved the computational efficiency. And then by calculating Haar wavelet responses 
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at a neighborhood of the detected point and summing up the responses in x and y 

direction, SURF creates a 64D descriptor utilizing integral images for each key point. In 

trade off some robustness to illumination and viewpoint changes, it achieves a faster 

speed than SIFT.  

These algorithms have good scale- and rotational- invariance and stability to small 

view point changes. By working with local feature, the feature-based algorithms can 

extract feature vectors independent from scale, rotation and illumination from several 

images. In this research, these algorithms were utilized for image corresponding feature 

recognition. The VO tests were implemented in real time by applying SURF. 
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3. Materials and Apparatus 

This approach was to design a visual inputs based camera motion estimation system 

for robot localization. The system contained several sensors, and each of them can work 

separately to provide continuous position information inputs. The purpose of each system 

or sensor is discussed in the following section. The combinations of the different data 

inputs were performed as independent systems to provide required information for 

camera positioning. Developing solutions for robot localization were carried out by 

utilizing low-cost, lab-ready materials, and this section are introduced the materials that 

was used in this research.  

3.1. Vision-Based Local Positioning System (LPS) 

The vision-based local positioning system [37] was developed to provide low-cost, 

scalable and real-time assistance for laboratory robotics research. It produced the real-

time positioning information of a marked robot estimated through two calibrated local-

fixed cameras. It was constructed using two digital cameras, white LEDs, and a computer 

workstation. A set of four LED markers were placed on a quadrotor and monitored by 

two strategically placed digital cameras. By using 3D computer vision techniques, the 

pose of the miniature aerial vehicle can be estimated by tracking the LED markers in 

image frame.  
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3.2. Camera 

The camera system utilized in this study involves a USB 

CMOS Monochrome Board Camera from The Imaging Source 

(DMM 72BUC02-ML). With the tiny size (         ) and low 

payload (7g), this camera is capable for on-board task of various 

vehicles, including the quadrotor. In demonstration, it was 

attached to a test bench and provided with linear motions to 

evaluate the real-time performance of the algorithm. The picture resolution was set to a 

minimum         with grayscale image style to achieve an optimal operational 

frequency (30~50 Hz). Also, decreasing the image size can efficiently improve the 

algorithm execution speed because when the pixels are reduced, the image processing 

speed is increased. The 12 mm focal length limits the field of view to a very narrow area 

representing a zoomed-in image. The reason for such a long focal length is that the 

system acquires the displacement information through correlating a set of input image. 

The image correlation procedure is intended to get a so-called sub-image movement (will 

be discussed in Monocular VO section) by continuously comparing an input image and 

the previous images. That requires a fixed narrow field of view to speed up the execution 

with less input information and reduce the noise from complicated background 

environment and various objects. A zoomed-in view of the reference system allows for 

more details to distinguish sub-images.  

  

Figure 4: The USB 

CMOS Monochrome 

Board Camera [33] 
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3.3. Microsoft Kinect 

The Microsoft Kinect motion sensing input 

device is a human pose recognition system 

developed on top of a 3D scanner called “light 

coding”. This technique involves only normal 

CMOS camera for 3D measurement, thus drastically reducing the cost and making the 

Kinect one of the primary positioning devices in robotics. The algorithm behind Kinect 

was published in [28]. The applications and researches involving Kinect for robot 

navigation and object recognition can be found in [8], [23], [24]. Studies and analysis 

about Kinect imaging, calibration and measuring can be found in [25], [26]. 

The Microsoft Kinect is a 

powerful 3D measurement system, 

yet the technologies and algorithms 

were not discussed in this paper, 

instead focused on the applications 

of Kinect as visual odometry. As 

illustrated in figure 6, posted by 

PrimeSense, the Kinect sensor contains a CMOS color camera and a depth camera 

formed by an IR projector and an IR CMOS camera. The IR projector sent out a fixed 

pattern generated from a set of diffraction gratings (see figure 7). By triangulation and 

correlation against those patterns, the depth at each pixel was generated. This procedure 

is adopted from the Open NI (open Natural Interaction) interface published by 

PrimeSense for natural interaction devices. The primary algorithm used to generate the 

Figure 5: Microsoft Kinect [34] 

Figure 6: Microsoft Kinect structure [35] 
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depth map for each pixel in the field of view is wrapped by Hideki Shirai [27]. The depth 

information for each pixel in the field of view was converted from depth map into camera 

fixed coordinates. Kinect provides a set of range information for each pixel inside the 

field of view instead of an average distance approximation by using a sonar sensor. For 

that reason, Kinect sensor is demonstrated to be an alternative solution of VO with the 

depth sensor generating range data for the whole field and RGB camera running the 

correlation procedure. 

 

Figure 7: IR image and depth image acquired by Microsoft Kinect 
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3.4. The Test Bench and Membrane Potentiometer Positioning Sensor 

The test bench was built for the purpose of 

estimating the visual odometry system measurement 

performance in real time. Theoretically, the sensors 

will be assembled onto the test bench and operate 

simultaneously. The data gathered through the visual 

odometry systems transported to a desk computer, and the computer operated an imaging 

analyzing procedure, which is the core component of the VO system and determines its 

performance. The test bench also contains a SoftPot membrane potentiometer sensor 

from SpectraSymbol as a reference linear positioning sensor. As a resistive element, it 

contains a conductive resistor and a sealed encasement. It is functionalized by adding a 

pressure to the encasement to form a current loop at the specific position, as illustrated in 

figure 9. Pin 2 is the collector outputs analog voltage data representing the position of 

pressure. Voltage outputs can be read and converted into position information in real time 

by a microcontroller like Adriano. The reason to use 

this sensor as a reference measurement was that the 

experiments required a side positioning system that 

returns position data in real time, as a true value to 

estimate the VO system performance. This reference 

positioning system required a minimal resolution of 1 

mm with at least 1 m range. As the specifications claim, SoftPot has a theoretically 

infinite analog output affected by variation of contact pressure area. To confirm the 

reliability of this reference system and determine the transformation between analog 

Figure 9: SoftPot membrane 

potentiometer sensor [36] 

Figure 8: SoftPot structure and 

functionalize demonstration [36] 
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outputs and positions, a short test was conducted to calibrate the membrane potentiometer 

sensor.  

 The VO system was attached onto the test 

bench with an aluminum bar. As illustrated in 

figure 10, a wiper was taped into the aluminum 

to apply a point pressure. The movement of the 

aluminum camera can be measured with the 

membrane potentiometer sensor and regarded as 

the reference position information for the VO 

system. To calibrate it, points distributed every 1 

cm were marked and assigned as measurements within the sensor maximum range. For 

each point, an offline sensor data reading procedure was repeated 1000 times to get the 

most reliable measurement and a curve representing the relation between sensor analog 

outputs and positions, as shown in figure 11. An approximately linear relation can be 

observed and the plot of the curve can be utilized for membrane potentiometer sensor 

data converting. This curve is the calibration curve to convert analog to position. 

 

Figure 11: SoftPot calibration curve 
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4. Evaluation of LPS Attitude Estimation with Cylinder Marker 

In the above sections, demonstrations have been made for how the Local Positioning 

System (LPS) functions by tracking spherical markers, and analyzed its performance as a 

measuring method, including its accuracy, precision, and measurement resolution in pose 

estimation. However, a 1~2 degree error in MAV’s orientation has been observed with 

sphere markers, which were due to an intersection error in the triangulation phase. 

Considering this error in orientation would lead to even larger linear error in positioning, 

a new cylinder marker was introduced in pursing higher angular accuracy. This was 

derived from the fact that out as considering the orientation of the vehicle was divided 

into the 3D vector coordinates of its  -axis and  -axis ( -axis is represented as the cross 

product of x and y vectors), and a cylinder LED marker was regarded as continuously 

distributed sphere markers in one axis, which essentially averaged and canceled out 

orientation error. 

However, as the centroid locating and triangulation method were applied, an even 

larger error occurred. The reason was suggested that, unlike the isotropic sphere marker, 

the cylinder marker was distorted by off-center observation angles, which actually 

exaggerated the mismatching of centroids. Thus, a shape-based detection system was 

created to avoid this kind of centroid matching error, and take advantage of cylinder 

markers in orientation estimation. This method was based on line extraction for   and   

axes in image frame, and their intersection was converted into 3D points as the detected 

origin of the vehicle-fixed coordinates. The 2D to 3D transformation was the same as the 

one mentioned before. The difference lied in line extraction, which determined the 

overall performance and accuracy of the experiments. Mathematically, any 3D vector in 
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the earth-fixed frame could be resolved in the camera-fixed frame, and converted through 

the matrix transformation into its 2D projection onto the camera’s lens plane. Thus, the 

accuracy and precision of 2D projection image extraction directly determines the 

performance of the measuring system. Measures were taken to solve the problem of how 

to direct a feature extraction algorithm to find the axis in the image frame. Unlike the 

isotropic sphere marker, the cylinder marker was distorted by off-center observation 

angles and actually exaggerates the mismatching of centroids. Rays from camera I and II 

might not necessary look at the same centroid of the structure. 

Ray from Camera I

Ray from Camera II

 

Figure 12: Cylinder marker ray intersection 

 

As illustrated in figure 12, unlike circular cross-section projections of sphere, the 

marker’s geometric center was no longer precisely represented by the centroid of the 

marker’s projection image, and the perspective distortion would cause unpredictable error 

for any point-feature-finding methods. To account for this distortion, a shape based 

feature extraction method was employed in settling this problem. 

4.1. Cylindrical LED Marker 

The cylinder marker vision system was also designed to measure the six degree-of-

freedom pose of the MAV, and attempted to achieve higher accuracy in altitude 
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estimation. The position of the vehicle was given by the origin of the inertial and vehicle-

fixed axes in the earth-fixed frame. The altitude, different from the sphere marker, was no 

longer determined by the origin and its permutation in vector space. Instead, the 

orientation of the vehicle-fixed axes    and    in the Earth-fixed frame were determined 

by the projection of    and    in the image frame, and the origin was regarded as the 

cross point of    and   . The projection of    and   , denoted by    and   , are 2D axes 

that were marked by the cylinder LED lights. The projection model was similar to the one 

introduced section 3-1, and illuminated cylinders were designed to project images to 

identify the axes in the image frame. 

The markers were assembled as demonstrated in figure 13. Two pairs of cylinder 

LED light were placed vertically on the MAV, denoting   and   axes of the vehicle fixed 

frame. With the markers functioning, the LED lights should be bright enough to be 

identified itself in the dark background, and the vector coordinates were extracted after 

the procedures of imaging processing. Yet, as all kinds of noise such as light reflection 

can be observed, the measurement was noisy. Reflection and light generation from 

sources other than the LED markers are the most critical noises for the system and could 

result in the completely failure of target tracking, especially in online, continuous 

tracking procedures. One shortcut to address this problem in most indoor scenarios was to 

use low exposition grayscale images. In image processing, marker pixels were identified 

by setting the threshold   for pixel values (      in that example), and a binary image 

was returned for edge extraction.  



25 

 

   

 (1)                                                                      (2) 

Figure 13: The marker placement geometry model 

 

4.2. The Hough Line Detector for Cylinder Marker 

Hough transform is highly dependent on the quality of image: the imperfection errors 

in edge detection are usually the error in the accumulator space and a denoising stage was 

required. In most indoor scenario, high-powered LEDs are considered the primary light 

generator that can provid enough irradiation to excite the pixels of the imaging sensor 

with minimal exposure time. In image processing, marker pixels were identified by 

setting threshold   for pixel values (      in that example), and a binary image was 

returned for edge extraction.  

  
 (1)                                     (2)                                       (3) 

Figure 14: The marker detection 
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To eliminate noise, a binary image was applied by setting threshold      . Edge 

pixel extracted from the binary image, as illustrated in figure 14. With the edge pixel 

extracted, a Hough transform voting process was directed to establish the accumulator 

space denoted by matrix   , which was constructed respectively by accumulating the 

votes to obtain local maxima. More delicate angular resolution presents a higher accuracy, 

but at the cost to slow down the execution speed respectively. As in this case, an    

     angular resolution was employed to guarantee a minimal      execution speed. 

Based on the parameters         obtained from accumulator space  , two line function 

was extracted to constructed the   and   axis in image frame, as the red line represented 

in figure 15. The origin of vehicle fixed coordinates in image frame were determined by 

the cross point of the extracted axes. The 2D image processing extracted the    axes and 

the origin in both cameras. The triangulation procedure was applied to transform 2D 

vectors and points into 3D coordinates.  

      

(1)                                                          (2) 

Figure 15: The line extraction for cylinder markers 

 

An accumulator space denoted by matrix   was constructed respectively by 

accumulating the votes to obtain local maxima. Based on the parameters         obtained 
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from accumulator space  , two line function were extracted to construct the   and   axis 

in image frame, as the red line represented. 

One limitation of Hough Transform was that it was only efficient for high number 

voting, that means small bins could not be extracted and the votes would fall in the 

neighboring bins. Moreover, the accumulator space organized by discrete angular and 

radial interval, dispersed by angular resolution    and radial resolution   . Setting 

resolutions is a very delicate matter. Although it appears to be that, for better measuring, 

the resolution should be as small as possible under certain hardware conditions. 

Generally, the resolution cannot be too delicate, not only for execution speed reasons, but 

also for threshold detection. That is especially critical for small bins. 

 

 

Figure 16: Hough Line Detector 

 



28 

 

As illustrated in figure 16, from top to bottom, setting radial resolution as a constant 1 

pixel, and angular resolution             . As the angular resolution got more delicate, 

the peak region of the short bin in the accumulator space became smooth, that led to the 

peak value standing for the short bin to be ignored by the same peak detection algorithm. 

This kind of failure could vary with different input images. 

The vehicle was expected to appear in any pose, random distance to cameras, various 

altitudes and orientations, and even the bins would be overlapped. To address this 

problem, at the offline calibration stage, the connected region was first to be identified. 

As illustrated in figure 17, each marker was bounded by a window representing its region 

and number. A similar line detector was directed with each window. The image 

corresponding   and   axes (blue lines) was given by averaging their related parallel red 

lines. The cross section of blue lines was the most reliable image reference representing 

vehicle origin. 

The vehicle motion was estimated by the pose information gathered over time step 

        , and the pose in      is predictable. The prediction model was a 3D-to-2D 

procedure (mapping 3D feature to its 2D projection onto the camera’s image plane), and 

returned the predicted window. This is also a solution to the mismatch problem 

mentioned before. The execution speed is very critical in that case. For our system, the 

execution speed was 2~4 Hz, with radial resolution            and angular resolution 

       . However, the fast dynamic of the vehicle would be expected, thus high 

frequency computation and superior processor is desired for real-time task. The markers 

were bounded and labeled in figure 17. The tracking procedures were operated within 

each sub image. The extracted lines were denoted by red. Blue lines represented   and   
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axes image references, given by average their related parallel red lines. The accumulator 

space of each marker was given in figure 17-2. The peaks were easy identified with each 

window.  

 

(1) 

 

 

 (2) 

Figure 17: The line sharp tracking model 
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4.3. The Cylinder Marker Projection Model 

The illuminated projections of the cylinder LEDs were identified by the line extractor. 

Considering foreshortening effect, a line-to-line projection model was involved instead of 

the point-to-point projection model, which would introduce error in that case. For each 

camera, consider the plane in earth-fixed frame formed by any extracted line of the 

project image and the camera focal points. The respective cylinder marker was obviously 

contained in that plane, which could be further determined by its cross section with the 

correspondent plane extended from another camera.  

The object’s projection onto the camera image plane formed a related feature 

representing the projector in the 2D image called correspondence. With two or more 

cameras, the correspondence features are distinct via different view angles. Detecting 

them and matching the set of correspondences related to the same object was the basis of 

the stereo system. With the information gathered from different cameras, the object can 

be triangulated and located. Our system was much simpler, only two features needed to 

be detected and matched. They were easily identified through the prediction model, 

which were discussed later. Now, assuming we have separated the    related plane from 

the    related plane, the detected vehicle axes,    and   , were defined by the cross 

section of each pair. Note that the normal vectors were resolved in the separated camera 

frames, in which they were measured. We first transformed them into the earth-fixed 

frame. 
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Figure 18: The cylinder projection model 

 

As illustrated in figure 18, rays of light traveled from the LED markers through the 

focus of the camera at point  . The vehicle axes    and   , together with   defined two 

planes. For each plane, its cross section with the image plane (the object’s image 

projection) was extracted through feature detection techniques and used to relocate the 

target plane.       and       were the random points extracted from the line equations, 

and it was not necessary to locate the end points in that practice. 
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5. LPS Position Estimation Performance Analysis 

The following experiments were aimed to present a holistic analysis of this 

measurement, including accuracy, precision, and to give the measurement resolution. In 

static states, we located the vehicle at several fixed positions. For each fixed position, we 

took measurement for 1000 times for each position and recorded the measured marker 

centroids in image frame and vehicle positions in earth-fixed frame. These measured 

vehicle positions are illustrated in figure 19, in comparison with the actual position of 

vehicle at this fixed point. The x, y, and z coordinate of the recorded positions were 

demonstrated. From the recorded data, accuracy and precision of these measurements 

were evaluated. 

5.1. Accuracy and Precision 

Quantitative measures of accuracy: 
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Quantitative measures of precision: 
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As consequence, results were listed in table 1. From table 1 and figure 19, we can see 

this measuring system has a good accuracy and a very high precision. For all 1000 times 

of measurement, the system has less than 1 mm standard deviation (          as RSD) 

and less than         absolute error (      as RE) in measuring target with largest 

dimension of one meter.  
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Figure 19: The demonstration sample of a point measured 

Node Position(cm) x E(cm) RE(%) SD(cm) RSD(ppt) 

1 (-30.48,30.48,0) -31.475 0.99496 -3.26431 0.019421 -0.63719 

2 (0,-30.48,0) -0.29586 0.295864 - 0.014847 - 

3 (30.48,-30.48,0) 29.61005 0.869951 2.854169 0.021657 0.710527 

4 (-30.48,0,0) -31.232 0.75205 -2.46735 0.014566 -0.47789 

5 (0,0,0) 0.013005 -0.013 - 0.015019 - 

6 (30.48,0,0) 29.67141 0.808586 2.652842 0.021248 0.697114 

7 (-30.48,-30.48,0) -30.6082 0.128229 -0.4207 0.026534 -0.87055 

8 (0,-30.48,0) -0.40153 0.401529 - 0.020782 - 

9 (30.48,-30.48,0) 29.78432 0.695681 2.282417 0.027817 0.912641 

1h (-30.48,30.48,13.81) -31.1727 0.692686 -2.27259 0.017459 -0.5728 

2h (0,-30.48,13.81) -0.42676 0.426762 - 0.013246 - 

3h (30.48,-30.48,13.81) 29.14828 1.331719 4.369158 0.026435 0.867286 

4h (-30.48,0,13.81) -31.5306 1.050562 -3.44673 0.015229 -0.49963 

5h (0,0,13.81) -0.04199 0.04199 - 0.016146 - 

6h (30.48,0,13.81) 29.59713 0.882867 2.896545 0.016822 0.551906 
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Figure 5c: measuring z position vs. actual z positionin pose 5
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7h (-30.48,-30.48,13.81) -31.8028 1.322798 -4.33989 0.021972 -0.72086 

8h (0,-30.48,13.81) -0.58009 0.580087 - 0.01952 - 

9h (30.48,-30.48,13.81) 29.66912 0.810882 2.660373 0.021533 0.706458 

 

Table 1: LPS X measurement 

 

 

Node Position(cm) x E(cm) RE(%) SD(cm) RSD(ppt) 

1 (-30.48,30.48,0) 31.03961 -0.55961 -1.83598 0.083579 2.742098 

2 (0,-30.48,0) 30.83063 -0.35063 -1.15035 0.081127 2.66166 

3 (30.48,-30.48,0) 31.19738 -0.71738 -2.35361 0.086528 2.838829 

4 (-30.48,0,0) 0.101259 -0.10126 - 0.089429 - 

5 (0,0,0) -0.01565 0.015655 - 0.097412 - 

6 (30.48,0,0) -0.08044 0.080439 - 0.117014 - 

7 (-30.48,-30.48,0) -30.6673 0.187345 -0.61465 0.132685 -4.3532 

8 (0,-30.48,0) -30.5881 0.108085 -0.35461 0.127369 -4.17878 

9 (30.48,-30.48,0) -30.6399 0.159891 -0.52458 0.133414 -4.3771 

1h (-30.48,30.48,13.81) 31.08473 -0.60473 -1.98402 0.062416 2.047761 

2h (0,-30.48,13.81) 30.94134 -0.46134 -1.51358 0.069803 2.290125 

3h (30.48,-30.48,13.81) 31.89073 -1.41073 -4.62838 0.089591 2.939352 

4h (-30.48,0,13.81) -0.087 0.087004 - 0.09376 - 

5h (0,0,13.81) 0.021666 -0.02167 - 0.08776 - 

6h (30.48,0,13.81) 0.247144 -0.24714 - 0.075463 - 
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7h (-30.48,-30.48,13.81) -30.7609 0.280881 -0.92153 0.110049 -3.61052 

8h (0,-30.48,13.81) -30.8415 0.36149 -1.18599 0.128355 -4.21112 

9h (30.48,-30.48,13.81) -31.2251 0.745084 -2.4445 0.122559 -4.02095 

 

Table 2: LPS Y measurement 

 

 

N Position(cm) x E(cm) RE(%) SD(cm) RSD(ppt) 

1 (-30.48,30.48,0) 0.38258 -0.38258 - 0.055872 - 

2 (0,-30.48,0) 0.866878 -0.86688 - 0.057341 - 

3 (30.48,-30.48,0) 1.272128 -1.27213 - 0.060285 - 

4 (-30.48,0,0) -0.26769 0.267689 - 0.056752 - 

5 (0,0,0) -0.02898 0.028976 - 0.061154 - 

6 (30.48,0,0) 0.272253 -0.27225 - 0.071956 - 

7 (-30.48,-30.48,0) -1.07823 1.07823 - 0.072232 - 

8 (0,-30.48,0) -0.55138 0.551375 - 0.070238 - 

9 (30.48,-30.48,0) -0.32909 0.329089 - 0.074573 - 

1h (-30.48,30.48,13.81) 13.8939 -0.08268 -0.59865 0.042462 3.0745 

2h (0,-30.48,13.81) 14.5875 -0.7762 -5.62006 0.046279 3.3508 

3h (30.48,-30.48,13.81) 15.4288 -1.61753 -11.7117 0.058732 4.2525 

4h (-30.48,0,13.81) 13.507 0.304223 2.202719 0.052317 3.788 

5h (0,0,13.81) 13.78 0.031277 0.226457 0.050758 3.6751 

6h (30.48,0,13.81) 14.0848 -0.27351 -1.98037 0.041304 2.9906 
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7h (-30.48,-30.48,13.81) 12.6569 1.154385 8.358296 0.056881 4.1184 

8h (0,-30.48,13.81) 13.1454 0.6659 4.82143 0.06458 4.6759 

9h (30.48,-30.48,13.81) 13.2059 0.605388 4.383296 0.062222 4.5051 

 

Table 3: LPS Z measurement 

 

Comparing table 1, 2, 3, we can see x direction measurements had high precision than 

y and z direction measurements (about one decimal less in RSD), which indicates the 

system has higher precision in measuring horizontal direction movements. An 

approximately       is observed for almost all of the measurements. That is considered 

to be the error caused by instrument limitation of the reference measurements. This error 

might also have contributed to other kind of uncertainty and reduced accuracy. 

5.2. Measurement Resolution 

Resolution defines the ability to distinguish one reading from another. For this 

measurement system, the measurement resolution was determined by its accuracy for one 

measurement, and its repeatability for multi-measurements. The precision of LPS 

recorded in the experiments was about         and accuracy less than      , thus this 

system would identify millimeters movements with errors at centimeters level. Yet, the 

errors were possibly caused by limitation of human measuring. The measurements 

resolution was at least       and at best     . 

In this case study, less than one centimeter error in measuring meters object was 

observed for all 18 nodes, and      stand deviation for all 1000 times measurement was 



38 

 

calculated, which indicates Local Posing System (LPS) has very precision and a good 

accuracy. The measurement resolution of this system is at least     .  

 

 

 

 

6. Visual Odometry for MAV Positioning 

In this section, the visual odometry systems that were designed for our quadrotor 

visual positioning will be discussed. Originally, the system was developed under the 

assumption that the camera attached to the aircraft had the orientation vertically downside, 

and can be maintained in that pose during operation through control methods. The 

downside camera constantly produces a video stream about the ground features, which 

provides the most abundant information for MAV localization. In that case, the visual 

odometry was only assigned with in-plane movements, and the complexity of a VO was 

reduced with a concentration in translation only. This application was aimed to measure 

the local position changes for MAV by observing the ground facts, in a touch-free, GSP 

denied, and accuracy desired tasks. In comparison with LPS, this VO operated as an on-

board camera system, without field of view limitations. Moreover, the VO utilized 

ground information by taking images under normal exposure condition, which avoid the 

complexity in marker design and exposure limitation. By considering the vehicle as a 

rigid body, this VO focused on the location information in the real-world coordinates, but 
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produced the results with higher accuracy in comparison with a GSP system. The VO 

system included: 

 Monocular Visual Odometry: Correspondences are specified in 2D image 

coordinates and the camera motion is estimated with 2D-to-2D motion methods. 

 Stereo Visual Odometry: Correspondences are specified in 3D world coordinates 

and the camera motion is estimated with 3D-to-3D motion methods. 

This section is organized as follows. Section 6.1 and 6.2 present the monocular visual 

odometry and stereo visual odometry, respectively. Section 6.3 gives the experiments and 

results. The geometric model for this approach is introduced in section 6.1.1. The first 

approach presented in section 6.3 was based on DIC. Furthermore, in seeking of a 

solution with the properties of scale- and rotation- invariance, real-time performance, a 

feature-based approach was presented in presented in section 6.4. 

6.1. Monocular Visual Odometry 

The 2D Visual Odometry is based on the Monocular camera. The correspondences 

are detected with either appearance-based methods or feature-based methods and utilized 

to calculate a relative camera motion, due to scale ambiguity in monocular methods. In 

this section, the geometric model for this approach is introduced in section 6.1.1. The first 

approach presented in section 6.1.2 was based on DIC. Furthermore, in seeking of a 

solution with the properties of scale- and rotation- invariance, real-time performance, a 

feature-based approach was presented in presented in section 6.1.3. 
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6.1.1. Visual Odometry Imaging Model 

As shown in figure 20, the ground is setting as a reference plane and assuming 

camera’s lens plane always parallel to the ground, i.e. the camera always looks vertically 

down. Under the assumption that only translation exist and vertical motion are measured 

separately, the in-plane camera movements can be estimated by analyzing the 

concatenation between image pair    and     . Let    and    be the correspondences of a 

ground feature   in frame    and     , respectively. The projection of an ideal interest 

point   together with pixels nearby should form an image feature identifiable enough to 

determine the ground feature point in the image frame. The corresponding features 

detected between    and      gave a sub-pixel movement, which can be converted into 

the camera motion by the camera geometric model, 

                                                                                                              (6-1) 

Here            is the coordinate of protection point    in the  th frame, and    is the 

related vehicle altitude.    is the camera horizontal displacement.  

The camera   direction movement is given by, 

                                                                                                              (6-2) 

Similarly,  

                                                                                                              (6-3) 

Projections of the ground feature point   are extracted as correspondences in frame    

and     . By analyzing the pixel movement of correspondences, a simple geometric 

relationship can be utilized to estimate camera motion for the sub-pixel movement. (2) is 

a   direction side view: Demonstrating the 1D geometric relationship that convert     

into    . 
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Figure 20: Monocular VO Positioning model 

 

6.1.2. Monocular Visual Odometry with DIC 

In this section, the sub-image motion estimation in is utilized to analyze the camera 

motion and can be measured by the movement of sub-image centroid. In equation 2-4, if 

        ̃  or  ̃     representing a correspondence of   in image   , correlation 

coefficient   should equal to 1. Practically, due to uncertainties like imaging noise and 

exposure time difference, correlation coefficient   can hardly reach 1. Thus, the 

maximum value of   was selected to estimate the position of correspondence    in the 

displaced image.  Figure 21 gives an example of image correlation. With the pair of input 

image    and     , a sub-image are formed with the pixels inside of window. Results 
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showed the correlated sub-image in    corresponding to     . The correlation coefficient 

is denoted by the intensity of red. Large intensity of red represents a correlation 

coefficient close to 1. The correlation coefficient is increased rapidly near point    to the 

peak value. The red color near the correspondence makes it easy to be identified (shown 

as the red dot in figure 21-4). The demonstration of DIC in finding image 

correspondences represents a high accurate result. DIC could eventually be utilized by 

the VO system as a technique for image identification.  

 

Figure 21: Image correlation for VO 

The success of image correlation depends on the uniqueness of the sub-image. As 

shown in figure 21, Structures occurs frequently in the search area not distinctive enough 

to be located. Red color stands for a correlation coefficient close to 1 representing similar 

image intensity as the marked region in figure 21. The sub-region occurs frequently and 

is not distinctive enough to locate through peak value.  

(1)                                           (2) 
 

𝑃  

(3)                                           (4) 

𝑃  
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Camera motion can be estimated by analyzing subpixel movements which is 

generated by matching two corresponding features in two or more images. The general 

idea of DIC feature matching is searching for maximum correlation coefficient between 

two image pixel value matrixes. Pixel intensity is a number between 1~255 representing 

the grayscale value of an image and corresponding features tend to have the similarly 

pixel intensity distribution between two images. Yet, DIC feature matching, as a matrix 

correlation procedure, is computational expensive. The rest of this section gives a 

demonstration of the DIC approach done with a one-dimensional camera motion case.  

6.1.3. Monocular Visual Odometry with SURF 

DIC works satisfactorily with translation of distinctive scenes. Corresponding regions 

in images with only small camera motion can be matched appropriately by utilizing this 

algorithm. Yet, it is very sensitive to rotation, scale and affine variations. Take apart its 

time performance, DIC is still not a suggested descriptor for feature analysis in most real-

world and complicated task. Thus more powerful descriptors with good invariance to 

scale, rotation and illumination changes are desired. 

For real time application, one dimensional VO is limited. An algorithm that 

concentrates on detecting the corresponding features over images is required for real time 

applications. Considering intensity based method is computational expensive and variant 

to various facts, a feature based method are suggested for real-time image processing. For 

this approach, the SURF detector and descriptor were utilized for image analyzing. The 

corresponding features were matched by computing the correspondence metric matrix   

for the detected feature sets         and         using sum-of-absolute differences (SAD). 
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       ∑                                  
                                                            

(6-4)    

Where          and          are the normalized feature vectors in    and    

respectively.   is a     matrix with its column and row representing the feature 

vectors in         and        , respectively. Low values in the scoring matrix indicate 

similar feature pairs while the high values indicate features with large difference. For 

computational cost, the features were matched using SAD by searching for the SAD 

score with the minimal value in both its related column and row in a SAD matrix. This 

indicates that       is coincident with the corresponding feature vector       of     , while 

its corresponding feature vector       in the other image is coincident with      . Therefore, 

     and      are declared as a match. The outliers in matched features were first removed 

with epipolar constrain. An example was shown in figure 22. As illustrated, the sub-pixel 

movements were presented by the displacement between tow corresponding features.  

 

Figure 22: Feature based Correspondence Establishing Demonstration 

 

The block diagram of this system was figure 23, a Monocular camera provided 

continuous frame stream from. The correspondences between the current image    and 
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the pervious image      were detected with SURF feature based method and utilized for 

a 2D-to-2D motion estimation to determine the cameras trajectory. With the detected 

features the camera motion is estimate by the monocular VO positioning model. 
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Figure 23: Block diagram of Feature based Monocular VO 

 

6.2. Stereo Visual Odometry 

For the 3D Visual Odometry, the correspondences are specified in world coordination. 

To determine the 3D coordinates of a feature detected in a 2D image, an extra view is 

provided by a camera with a baseline between them, it forms a Stereo Visual Odometry. 

As an alternative solution, the 3D position of correspondence can be estimated with depth 

information from Microsoft Kinect motion capture system which forms the Kinect Visual 

Odometry. 

One efficient solution for scale ambiguity in monocular methods is to give an 

additional view with large baseline between them. Features are extracted in two views 

and corresponded for triangulation to get 3D features from 2D correspondences. The on-

board stereo computing the camera motion (same as the MAV motion) by determining 

the aligning transformation of two 3-D feature sets. As introduced in triangulation section, 

this stereo visual odometry can give the absolute scale from at least three correspondent 
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points in both view, but with errors from interesting rays intersection problem, an 

approximation solution is provided. 

6.2.1. Stereo Camera 

In this section, the general ideal of stereo camera is discussed. In the stereo camera 

model that two cameras assembled in arbitrary position and orientation, the block 

diagram is illustrated in figure 24.  

Two cameras provide two sets of continuous frame inputs. The detected SURF 

features in the left image       , where the subscript denoted the time this image acquired, 

are matched with left image     . The selected feature vectors in        are considered as 

interest features and match with the right image at current time step       . The 

correspondences detected over three frames are illustrated in figure 24, and a 

triangulation stage is applied to the pair of corresponding components at the current time 

step to get a set of 3D features, while the related previous corresponding points are 

triangulate at the previous time step. Therefore, two sets of 3D corresponding features are 

generated. The execution speed is improved without involving entire depth which is not 

interested in this case.  
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Figure 24: Block Diagram of stereo VO 
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As illustrated in figure 25, the features detected with SURF were matched over left 

and right scenes in    and     . The rows presented the left and right images, and the 

columns showed the stereo pair over time in    and     . The red dots denoted the 

matched feature in time domain, and the yellow triangle denoted the matched features in 

the left and right images. Generally, the features detected over the left and right scenes in 

   and      would be matched to produce the 3D correspondence positions by 

triangulating the left and right scenes, and generate camera motion by corresponding pair 

recognition over    and     . Yet, a feature matching over four scenes is complex and 

produces only limited features. As illustrated in figure 25, the inconsistence between the 

detected features denoted red and yellow could be observed. In consequently, in image 
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feature matching over multiple scenes consequently decrease the number of 2-D 

correspondences detected.  

6.2.2. Kinect Visual Odometry 

In this section, an alternative solution for stereo VO would be discussed. The 

Microsoft Kinect introduced a low-cost, stable and high speed solution for robot 

positioning applications such as indoor mapping and navigation, real world coordinates 

measurement, target tracking and motion capturing. The principle of Kinect depth sensor, 

different from binocular camera stereo triangulation, is more similar to sonar sensors. The 

light project from IR light, called structured light, is attenuated by distance and reflects 

signals with multiple intensities onto the IR depth camera to generate objects depth 
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Figure 25: The stereo feature matching 



49 

 

information.  

This technique demonstrates a remarkable advance in computer vision and has 

various robotics applications. As an alternative solution for stereo vision, the Kinect 

sensor providing a frame rate of about 30fps in capturing depth and color images and a 

more than 10Hz frequency in generating real world coordinates data for each pixel from 

depth information at MATLAB environment, as illustrated in figure 26. 

 
Figure 26: Depth map aligned with the color map 

The block diagram of Kinect VO is demonstrated in figure 27. With the color map 

stream, a feature based image processing is operated to detect and match the 2D image 

feature between    and      in the grayscale image. The 3D position (       of most 

pixel in the field of view is generated with the depth information from Kinect IR 

projector. By aligning the color image and the depth map, the real world coordinates of 

2D corresponding features with respect to camera are produced. The feature matching 

only involves two frames at each time. The idea of image processing of a Kinect VO is 

demonstrated in figure 28. 
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Figure 28-1: SUFT Feature detected in gray scale 

image  
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Figure 28-2: Aligning the color image and the depth map 
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    Figure 28-3: Real world coordinates of detected features 
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6.2.3. 3D-to-3D Motion Estimation 

In the stereo vision case the camera transformation    is determined by two 3D 

feature point sets    and      generated through triangulation at two time steps.    and 

    can be considered as beacons with their coordinates marked in camera frame (set left 

camera as the default coordinates) detected at time   and    . The transformation 

between    and      is given by, 

                                                                                                                     (2-33) 

Or 

                                                                                                                (2-34) 

By minimize the noise term   , the transformation    can therefore be determined with 

the constraint, 

         ∑ ‖ ̃ 
     ̃   

 ‖ 
 
                                                                              (2-35)   

Where   denotes the  th feature. The minimal case solution requires at least three 

noncollinear correspondences.  For      correspondences case, the possible solution is 

to compute the translation part    of    by decoupling the parameters by centering 3D 

feature sets about their centroids and solve for the rotation part    that best aligns the 

point sets with SVD, which demonstrated to be the best solution [24], 

    ̅    ̅                                                                                                             (2-36) 

                                                                                                       (2-37) 

Where  ̅  stands for the geometric centroid of point set   , and      are the SVD given 

by, 

     
 

 
       ̅         ̅  

                                                                           (2-38) 
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6.3. Experiment and Results 

In this section, the VO was attached to the test bench and evaluated with the 

membrane potentiometer sensor providing reference measurements. Section 6.3.1 

presents the membrane potentiometer sensor measurement performance analysis and the 

reference measurements were verified. In section 6.3.2, the VO experiments and results 

were presented. 

6.3.1. Linear Positioning Sensor  

In this section, a measurement performance analysis was presented to verify the 

reliability of the membrane potentiometer sensor as a reference measurement system. 

Several random, discrete points were assigned and measured by both sensor measurement 

and human measurement. The analog data generated by this potentiometer sensor was 

read with an Arduino Uno microcontroller board and transferred into MATLAB. The 

acquired analog data was converted into position information, measured in mm, using the 

calibration curve computed in section 3.3. 
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Figure 29: Linear positioning sensor measurement standard deviation 

As illustrated in figure 29, about       fluctuation can be observed. To minimize 

this noise and produce a reliable measuring, several measurements based on various 

times of analog reading were taken, and the average values were considered as the result 

for each measurement. The results were illustrated in figure 30 and table 4. The execution 

time, standard deviation, and absolute error were quantified in comparison with the data 

acquired with five times of reading. As shown in this figure, heavier computation burden 

was observed with an increasing in reading times, while the accuracy and precious were 

not improved significantly. Figure 30 and table 4 gives the 0.1s sampling time with 

accuracy less than 1mm as a suggested sampling time for this membrane potentiometer 

sensor. 
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Figure 30: Membrane potentiometer sensor sampling time test 

 

 

1 2 3 4 5 

Standard Deviation (mm) 3.45 2.46 3.19 2.60 2.60 

Absolut Error (mm) 1.88 0.20 0.53 0.32 0.48 

Sampling Time (s) 0.047 0.100 0.159 0.342 0.713 

Table 4: Membrane potentiometer sensor sampling time test 

With the 0.1s sampling time, several measurements were taken to evaluate the sensor 

measurement performance. The results were listed in table 4. At each point, the analog 

voltage was converted into a position measurement via the calibration curve shown in 

figure 30. Table 4 gives the accuracy of ten measurements. From the result, a less than 

1mm resolution for this calibrated system was observed. And this system can provide a 

satisfactory accuracy as a reference measurement system for the VO experiment. 
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12.8 164.868 12.7285 2.3725 -0.715 -0.55859 

24.1 276.616 24.0771 2.2077 -0.229 -0.09502 

33.9 368.802 33.9396 2.5520 0.396 0.116814 

41.5 439.607 41.4922 2.4764 -0.078 -0.0188 

51.7 541.56 51.6618 2.4698 -0.382 -0.07389 

58.6 612.935 58.5662 2.6843 -0.338 -0.05768 

71.8 753.455 71.7865 2.5783 -0.135 -0.0188 

80.3 846.428 80.2507 2.3818 -0.493 -0.06139 

86.6 919.026 86.6066 2.4265 0.066 0.007621 

 

Table 5: Membrane potentiometer linear positioning sensor calibration test 
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6.3.2. Experiments and Results 

In this section, the VO approaches are experimented in comparison with membrane 

potentiometer linear positioning sensor. The cameras were attached onto the test bench 

and provided with a linear motion, which can be measured accurately by the calibrated 

membrane potentiometer sensor.  

The monocular VO operated as demonstrated in figure 20 and the block diagram in 

23. The altitude of the camera was measured with sonar sensor. And the   and   direction 

motion of the camera are detected with the sub-pixel movements. For the DIC approach, 

the on-dimensional experiment was directed. In one-dimensional case, camera only has 

the  -direction motion. The DIC procedure can be reduced significantly with one-

dimensional row by row scan. Image      and   were taken at      and   . The peak 

value of the correlation coefficient was determined by searching    for the corresponding 

sub-image of     . This stage will be repeated each iteration for new images to estimate 

the displacement of camera during   . In order to evaluate it real-time performance, the 

camera was assembled to the test bench and move it linearly. The position information 

converted from both correlation results and membrane potentiometer sensor are recorded 

each iteration. Figure 31 gives the demonstration of on-line one-dimensional digital 

image correlation.  
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Figure 31: One-Dimensional Digital Image Correlation 

 

The recorded results from visual odometry and linear position sensor are illustrated in 

figure 32. It can be seen that a good match between the VO curve (red line) and the true 

value which representing a good accuracy of the visual odometry system. Yet, a tendency 

of separation at the later part of the two curves can also be observed which was caused by 

error accumulation. Note that, the system realized camera positioning through visual 

information by analyzing two images taken with a time interval. In other words, the 

displacements of camera during a time interval ware measured and accumulated to get 

the camera motion.  
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Figure 32: Results comparison for visual odometry with DIC 

The feature-based VO is built on SURF algorithm and operates as the camera model 

in figure 20. The camera was provided with   and   direction movements which were 

recorded by linear sensor as the blue curves in figure 33. The red curves are the results 

measured with monocular VO. In comparison with the linear sensor measurement, the 

VO measuring presents a good estimation of the camera motion. 

   

Figure 33: 2D Visual odometry with Feature based method 

 

For the Kinect VO, the results are not as accurate as the monocular VO. As illustrated 

in figure 34, the displacements of camera measured with linear positioning sensor are 
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denoted as blue, and the VO measurements are in red. The VO gives an approximately 

estimation of the camera movements, yet is not accurate. To study this error, the data in 

figure 35 was taken in an experiment. In this figure, the red and blue curves present the 

recorded path of the camera. The blue curve is the actual path measured with linear 

positioning sensor. The error accumulated over time and led to the deviation in the 

recorded path. This kind error may have a relation with the feature number detected and 

matched in the image. The camera produce image stream and extract feature for each 

frame automatically. The number of the feature is related to various facts and differs over 

images. Figure 36 gives VO error in comparison with the feature numbers. As illustrated, 

the large error occurred frequently when only a low number of features were involved in 

the motion estimation. At last, an offline approach for this system is presented. In this 

experiment, the feature detection stage was adjusted to produce enough features for 

motion estimation in trade off speed. 500~1000 features were involved for each frame. 

Consequently, as illustrated in figure 37, the accuracy of this measuring system was 

improved.  

 

Figure 34: Camera Displacement comparison 
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Figure 35: Camera path tracking 

                                        

Figure 36: A comparison of measurement error with feature number 

                                  

Figure 37: Offline Kinect positioning result 



62 

 

7. Conclusion 

In this work, a description and performance analysis of three vision-based systems 

have been presented. Those systems, consisting of a local positioning system (LPS) and a 

simplified monocular visual odometry (VO) were designed for the MAV localization 

tasks. The LPS is aimed to provide the 6 DoF information of a quadrotor marked with 

LED markers, based on two local cameras. The monocular VO was designed for the 

MAV positioning by analyzing the in-plane motion. As a solution of 6 DoF problems, the 

Microsoft Kinect was utilized to generate the 3D correspondences to provide an 

alternative solution for stereo matching.  

The LPS was utilized for the quadrotor pose measuring. The LED markers were 

employed for vehicle feature identification in the image frame. As a conclusion of the 

LPS performance analysis, this system has high accuracy and precision. Yet this system 

has its limitations. As a simplified feature detection stage, the LED markers are expected 

to be the only features that can be detected in the image. However, several drawbacks in 

the system have lowered this expectation. First, the image was taken under low exposure 

condition; hence noises from other light source and reflections would disturb the marker 

identification. Second, the local positioning system built up with local cameras has a 

limited field of view, and objects beyond this field will not be seen. This puts limitation 

on the scope of activities of the MAV. Last, marker overlapping (one marker blocks 

another) happened during the experiments. Possible suggestions to mitigate the problem 

are to adjust the cameras downwards, and make LPS concentrate on the local study of 

MAV pose information. 
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In the section 6, a 2D visual odometry model and a 3D visual odometry model are 

discussed. For the 2D visual odometry, the intensity based method and feature based 

method were applied. The intensity based methods establishes correspondence based on 

cross-correlation over a sub region. As a consequence, it is very sensitive to view angular, 

illumination and has low invariance to rotation, scale and affine changes. Although it has 

good accuracy in measure transformation, the execution speed limited its real 

applications. The purpose of this work is to design a vision-based odometry system 

supporting real-time robot applications. Thus, the feature based methods which have a 

good rotation and scale invariance were implemented. SURF extracts the feature with a 

satisfied repeatability in scale space and descripts them with 64D descriptors. In 

comparison with SIFT, SURF has a good real time performance. 

In the monocular camera visual odometry model, the camera was adjusted to look 

vertically down to the ground.  The  ground information was utilized to estimate 

the camera  and  direction movement. This on-board camera system is presented 

without field of view limitations; the imaging processing algorithm has a good tolerance 

for imaging noise and view point changes. This system simplified the monocular 

camera visual odometry into the 2D motion problem, and can be utilized for MAV 

position by using ground feature. 

The stereo visual odometry is composed of two cameras providing an additional view 

and gives a solution for scale ambiguity in monocular methods. The 2D feature points 

were converted into 3D point through triangulation. The cameras took new image pairs, 

and the detected correspondence between the current image pair and the pervious image 

pair is triangulated to generate a 3D features. Yet, feature detection has a limited 
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feedback that only limited features can be matched over multiple images On the other 

hand, the Kinect system generated depth map through IR cameras. The depth information 

can be easily converted into 3D position for most pixels in the field of view, providing an 

alternative solution for stereo triangulations. This system generated 6 DoF information 

with a 3D-to-3D feature detection method. This system is not appropriate for high 

accurate measurement. Yet, as an 3D VO, it can be used as an alternative solution for 

stereo VO. Future developments aim to improving the motion estimation algorithms for 

this VO to get more accurate position and orientation.  
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