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Abstract 

This doctoral dissertation contributes to both model-based and model-free data 

interpretation techniques in vibration-based Structural Health Monitoring (SHM). In 

the model-based category, a surrogate-based finite element (FE) model updating 

algorithm is developed to improve the computational efficiency by replacing the FE 

model with  Response Surface (RS) polynomial models in the optimization problem of 

model calibration. In addition, formulation of the problem in an iterative format in 

time domain is proposed to extract more information from measured signals and 

compensate for the error present in the regressed RS models. This methodology is 

applied to a numerical case study of a steel frame with global nonlinearity. Its 

performance in presence of measurement noise is compared with a method based on 

sensitivity analysis and it is observed that while having comparable accuracy, 

proposed method outperforms the sensitivity-based model updating procedure in terms 

of required time. With the assumption of Gaussian measurement noise, it is also 

shown that this parameter estimation technique has low sensitivity to the standard 

deviation of the measurement noise. This is validated through several parametric 

sensitivity studies performed on numerical simulations of nonlinear systems with 

single and multiple degrees of freedom. The results show the least sensitivity to 

measurement noise level, selected time window for model updating, and location of 

the true model parameters in RS regression domain, when vibration frequency of the 
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system is outside the frequency bandwidth of the load. Further application of this 

method is also presented through a case study of a steel frame with bilinear material 

model under seismic loading. The results indicate the robustness of this parameter 

estimation technique for different cases of input excitation, measurement noise level, 

and true model parameters 

In the model-free category, this dissertation presents data-driven damage 

identification and localization methods based on two-sample control statistics as well 

as damage-sensitive features to be extracted from single- and multivariate regression 

models. For this purpose, sequential normalized likelihood ratio test and two-sample t-

test are adopted to detect the change in two families of damage features based on the 

coefficients of four different linear regression models. The performance of 

combinations of these damage features, regression models and control statistics are 

compared through a scaled two-bay steel frame instrumented with a dense sensor 

network and excited by impact loading. It is shown that the presented methodologies 

are successful in detecting the timing and location of the structural damage, while 

having acceptable false detection quality. In addition, it is observed that incorporating 

multiple mathematical models, damage-sensitive features and change detection tests 

improve the overall performance of these model-free vibration-based structural 

damage detection procedures.  

In order to extend the scalability of the presented data-driven damage detection 

methods, a compressed sensing damage localization algorithm is also proposed. The 

objective is accurate damage localization in a structural component instrumented with 
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a dense sensor network, by processing data only from a subset of sensors. In this 

method, first a set of sensors from the network are randomly sampled. Measurements 

from these sampled sensors are processed to extract damage sensitive features. These 

features undergo statistical change point analysis to establish a new boundary for a 

local search of damage location. As the local search proceeds, probability of the 

damage location is estimated through a Bayesian procedure with a bivariate Gaussian 

likelihood model. The decision boundary and the posterior probability of the damage 

location are updated as new sensors are added to processing subset and more 

information about location of damage becomes available. This procedure is continued 

until enough evidence is collected to infer about damage location.  Performance of this 

method is evaluated using a FE model of a cracked gusset plate connection. Pre- and 

post-damage strain distributions in the plate are used for damage diagnosis. 

Lastly, through study of potential causes of damage to the Washington 

Monument during the 2011 Virginia earthquake, this dissertation demonstrates the role 

that SHM techniques plays in improving the credibility of damage assessment and 

fragility analysis of the constructed structures. An FE model of the Washington 

Monument is developed and updated based on the dynamic characteristics of the 

structure identified through ambient vibration measurement. The calibrated model is 

used to study the behavior of the Monument during 2011 Virginia earthquake. This FE 

model is then modified to limit the tensile capacity of the grout material and 

previously cracked sections to investigate the initiation and propagation of cracking in 

several futuristic earthquake scenarios. The nonlinear FE model is subjected to two 
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ensembles of site-compatible ground motions representing different seismic hazard 

levels for the Washington Monument, and occurrence probability of several structural 

and non-structural damage states is investigated.  
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Chapter 1 

Introduction 

In-service structural systems are inevitably prone to deterioration and damage with 

use, time, and in many cases due to extreme events happening throughout their 

lifetime. Therefore, Structural Health Monitoring (SHM) research community aims to 

develop methodologies that allow fast and easy - and ultimately automated - condition 

assessment of structures in order to maximize the probability of detection of structural 

damage in its early stages and minimize the restoration and maintenance costs. For 

this purpose several non-destructive techniques (Trimm 2003) have been established 

over past decades ranging from visual inspection (Balageas 2006) to more advanced 

methods such as ultrasonic testing (Yehia et al. 2007), acoustic emission (Carpinteri et 

al. 2011), and vibration-based methods (Doebling et al. 1998). In monitoring of civil 

structures and infrastructure systems, vibration-based methods have attained 

significant attention in recent decades. The reason is manifold, to mention a few: 

- unlike other methods, vibration-based SHM techniques are not restricted to 

have direct access to the location of damage (Trimm 2003) 

- with advancement in the sensing technology, vibration measurement of large-

scale structure can be completed with a reasonable budget (Kim et al.  2007) 



 

 

6

- these methods seem more promising for development of a general automated 

SHM framework (Magalhaes et al.  2012) 

Vibration-based SHM includes instrumentation, response measurement, data 

processing, and interpretation. Key components of SHM techniques in processing the 

monitoring vibration data fall into three categories: (1) identification of dynamic 

characteristics of the monitored structures, (2) detection, localization, and 

quantification of the damage in the system, and (3) updating the finite element (FE) 

simulations of the structures based on their measured responses.  

While two or more of these methods commonly contribute in monitoring projects, 

each of these components offer unique benefits in understanding the structural 

characteristics and behavior. Therefore, research in all three aspects is ongoing to 

develop methodologies that are efficient and applicable to a wide range of structural 

systems. FE calibration methods attracted significant attention in the recent decades, 

mainly because having a FE model calibrated with reference to the actual structure, 

enables a variety of applications such as futuristic reliability study, assessment of 

retrofit alternatives, and designing structural control strategies. Moreover, parameter 

estimation through model calibration serves as the basis for many model-based 

damage detection algorithms which aim to assess the structural damage in a more 

objective way than non-parametric damage detection procedures.  

Structural damage detection is one of the main goals of SHM projects. Over last 

decades numerous vibration-based algorithms have been proposed to fulfill this goal. 
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These techniques can be classified based on their damage indicators (local/global), or 

their approaches (physics-based or data-driven). While physics-based approaches 

seem more appropriate for in-depth investigation of behavior of a particular structure, 

low computational demand associated with the data-driven approaches make them 

more suitable for developing automated damage localization frameworks and dealing 

with ever-growing volumes of monitoring data.  

1.1. Scope of the research 

This doctoral dissertation contributes in two of the main components of vibration-

based SHM data interpretation methods: FE model updating and data-driven damage 

detection.  

A surrogate-based FE model updating algorithm is developed to improve the 

efficiency of model updating techniques. While this algorithm is developed to update 

non-linear FE models in time domain, the overall framework is applicable to structures 

with linear or non-linear behavior. Efficiency of this method is compared with 

sensitivity-based FE model updating. Moreover, robustness of the algorithm with 

respect to the frequency content of the input excitation and noise in the measurement 

is studied. Furthermore, application of this method in updating the FE model of the 

Washington Monument is demonstrated.  

Second contribution of this dissertation is in model-free damage detection 

techniques, specifically in establishing and comparing the effectiveness of several 

data-driven damage indicators and statistical tests for SHM applications. The 
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comparison  is performed on a scaled steel frame tested in the laboratory of Advanced 

Technology for Large Structural Systems (ATLSS) at Lehigh University. In addition, 

a compressed sensing damage detection algorithm is proposed that process minimum 

amount of data from a dense sensor network to accurately localize the structural 

damage. Application of this compressed damage localization technique for single and 

multiple damage cases are demonstrated through FE simulations of a steel gusset plate 

connection.  

Lastly, through study of potential causes of damage to the Washington Monument 

during the 2011 Virginia earthquake, this dissertation demonstrates the role that SHM 

techniques plays in improving the credibility of damage assessment and fragility 

analysis of the constructed structures.  

1.2. Organization of the dissertation 

Chapter 2 of this dissertation presents a review of the existing literature on finite 

element model (FEM) updating and damage detection.  

Chapter 3 describes the developed algorithm for non-linear model updating in 

time-domain. Performance of this algorithm is validated numerically through an 

example of a scaled steel frame.  

Chapter 4 investigates the robustness of the model updating methodology 

presented in chapter 3 with respect to input excitation and measurement noise. For this 

purpose, several sensitivity studies were performed on structures with single and 
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multiple degrees of freedom. Robustness estimation is investigated in scenarios where 

structure is excited with harmonic as well as seismic loading. 

Chapter 5 describes a study conducted to investigate the potential causes of 

damage to the Washington Monument following the 2011 Virginia earthquake.  

Chapter 6 describes contributions of this research in the model-free methods in 

structural damage detection.  

Chapter 7 presents the proposed damage detection methodology with compact 

sensing approach.  

Chapter 8 concludes the dissertation with a summary of the presented research, 

conclusions, and future work. 
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Chapter 2 

Literature Review 

Over recent decades numerous vibration-based structural damage detection 

techniques have been proposed that can be classified based on the features they 

interpret as damage indicators and/or their approaches (physics-based or data-driven). 

In physics-based (also called model-based) procedures, selected parameters of an FEM 

of the system are updated with respect to the measured responses to identify the 

existence and extent of the structural damage (Jaishi and Ren (2007); Kim and 

Kawatani (2008);Weber and Paultre (2010); Moaveni et al. (2012)). On the other 

hand, data-driven (also called model-free approaches) use the measured responses 

directly in numerical algorithms so that there is no need for prior information about 

the structure’s properties or suspected location of damage (Bodeux and Golinval 

(2003); Lu and Gao (2005); Deraemaeker and Preumont (2006); Kumar et al. (2012)).  

There are advantages and disadvantages about each category of methods. The 

model-based methods are usually more laborious to implement and require certain a 

priori knowledge of structural properties, and location of damage; however, these 

methods are more objective in the interpretation of their results. In addition, the 

calibrated model can be used for design of repair scenarios or estimating the remaining 

life of the damaged structure. The main advantage of the second group is their 
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efficiency, and that they can be readily applied to measured signals without any prior 

information. This property has made them more suitable in analyzing the data from 

dense sensor networks to identify relatively localized damage; a scenario in which a 

model-based algorithm can hardly perform successfully within reasonable 

computational effort. Moreover, the application of the data-driven methods  as a 

general automated damage detection platform is more promising. One the other hand,  

these model-free techniques would be ineffective without statistical analyses to 

determine a change threshold for the extracted features. 

Another classification for SHM damage detection methods is based on the features 

that are used to monitor the condition of the structures. Modal parameters (vibration 

frequencies, mode shapes, mode shape curvatures, etc.) have been widely used as 

damage sensitive features in the SHM field (West (1984); Pandey and Biswas (1995); 

Doebling et al. (1998)). However, since these damage indicators are global in nature, 

they are generally unable to detect local damages (Farrar et al. (1994)). Additionally, 

they require measurement data with high signal to noise ratio as well as moderate 

damage levels to identify the damage in the system (Farrar et al. (1994); Alvandi and 

Cremona (2006)). Research is still ongoing to extract features from structural 

responses that are sensitive enough to local and minor damage, yet robust to the 

common changes in the structural responses and measurement noise. Examples of 

such damage indicators are statistical features generated from sensor networks data 

(Nair et al. (2006); Figueiredo et al. (2011); Kiremidjian et al. (2011); Yao and Pakzad 

(2013); Dorvash et al. (2013a)). Such features seem more promising for applications 
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on in-service structures, as with the recent advancement in sensing technology, 

literature reports numerous successful implementations of sensor networks on large-

scale structures (for example, Lynch et al. (2006); Cruz and Salgado (2009); Pakzad 

(2010); Jang et al. (2011); Labuz et al. (2011); Hu et al. (2013)) 

The contribution of this dissertation is in both categories of model-based and 

model-free methods in SHM. In the model-based category, a surrogate-based model 

updating technique is proposed for efficient calibration of non-linear FEMs, and in the 

second category, model-free damage identification and localization methods based on 

two-sample control statistics are presented. In addition, these data-driven techniques 

are also extended to consider compressed damage localization, when the system is 

monitored using a dense sensor network.  

Next sections review the related literature in the area of non-linear FEM updating 

and data-driven damage localization. 

2.1. Finite Element Model Updating 

Finite element model updating is an inverse problem of modifying the uncertain 

parameters of a FE model in order to improve the correlation between certain 

analytical response features and their experimental counterparts. Over recent decades 

several computational procedures have been developed to update parameters of 

analytical models based on experimental results. These procedures can be categorized 

according to their domain of applicability. In linear model updating experimentally 

identified modal quantities (mainly natural frequencies and mode shapes) are used as 
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reference features to update finite element models of structures (Bell et al. 2007; 

Zimmerman and Lynch 2009; Weber and Paultre 2010; Moaveni and Behmanesh 

2012; Moaveni et al. 2012). This technique is widely used especially with 

improvement of sensing technology and rapid deployment of wireless sensor networks 

in recent decades which made it more convenient to obtain valuable information about 

behavior of in-service structures (Lynch et al. 2003; Lynch and Kenneth 2006 ; 

Whelan and Janoyan 2009; Zaurin and Catbas 2010 ; Jang et al. 2011; Dorvash et al. 

2012). Direct and iterative methods for linear model updating are well-documented in 

the literature (Imregun and Visser 1991; Friswell and Mottershead 1995). In direct 

methods as the elements of the structural matrices are updated in one step, the 

structural connectivity may be violated and make it difficult to interpret the updated 

matrices (Baruch 1978; Baruch 1984; Berman and Nagy 1983; Friswell et al. 1998; 

Yang and Chen 2009). Therefore, iterative model updating methods which directly 

modify the preselected parameters of FE models are more popular (Brownjohn and 

Xia 2000; Zhang et al. 2000; Brownjohn et al. 2001; Jaishi and Ren 2006; Hua et al. 

2009; Wang et al. 2010; Ribeirio et al. 2012; Zona et al. 2012). These techniques are 

mainly based on the sensitivity analysis and linearization of the generally non-linear 

relationship between measured responses and the uncertain model parameters 

(Mottershead et al. 2010). Such methods are generally computationally intensive, and 

may cause convergence difficulties since they are based on iterative determination of 

local gradients (Ren and Chen 2010). Moreover, in the presence of any non-linearity 

in the structure the procedures based on modal information fail to yield the parameters 

associated with non-linear behavior of the model and other measures are required to 
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update the model. Silva et al. (2009) performed a comparison between different 

metrics for use in non-linear model updating using vibration test data and concluded 

that such metrics are effective in updating the structural models with local and weak 

non-linearities. Therefore, our objective is to present a procedure to overcome these 

problems in updating non-linear systems. 

One of the proposed approaches to decrease the computational effort in model 

updating problems is to replace the FE model with a mathematical expression which 

approximates the relationship between pre-selected inputs and output of the FE 

models. This approach was successfully implemented in the structural optimization 

problems where function approximations reduce the cost of function evaluations to 

find the global optimum of the problem (Roux et al. 1998; Heinonen and Pajunen 

2011). In FEM updating, the parameters of the surrogate model are directly modified 

with respect to the measured data. One of the commonly used surrogate models are 

polynomial functions constructed based on Response Surface (RS) methodology 

which is originally a statistical method for exploring the relation of explanatory 

variables of a system and its responses. To find a mathematical model to represent this 

relationship, there are several subsets that can be chosen from the entire design space. 

Techniques of design of experiments (DOE) can be employed to provide specific 

designs consisting of limited number of points in the whole design space with 

reasonable distribution under the assurance of modeling accuracy (Box and Draper 

1987; Montgomery 2001). This method is promising in modifying FE model 

parameters. Guo and Zhang (2004) and Ren and Chen (2010) present studies of 
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comparison between RS-based and Sensitivity-based linear model updating 

techniques. They found that while the RS-based method gives likewise accurate 

predictions, it requires far fewer number of FE analyses and the rate of convergence is 

significantly higher.  Zhang et al. (2005) concluded that RS modeling considerably 

decreases the computational effort regarding implementation of genetic algorithm for 

model updating. The results of application of this procedure on a numerical case study 

revealed that unlike the sensitivity-based method, RS-based genetic algorithm model 

updating successfully reached the global optima. Marwala (2004, 2010) present a 

comparison of the computational expense and accuracy of RS based FE model 

updating with methods using evolutionary optimization algorithms on full FE model 

for updating. This study implements a genetic algorithm to optimize multilayer neural-

network based RS models in two case studies of a linear beam and a linear 

unsymmetrical H-shaped structure. Comparison of the results concluded that the 

proposed method requires the least computational load, while the predicted modal 

properties are of the same order of accuracy as those obtained by simulated annealing 

and genetic algorithm.  

While in the previous studies, designs such as central composite and d-optimal 

were used to generate the input levels for RS modeling, Ren et al. (2011) 

demonstrated that for complex structures with large number of uncertain parameters 

uniform design economizes the computation of constructing  RS models.  

The application of RS-based model updating has been also studied for damage 

detection. Cundy (2002) applied this method on damage identification of a simulated 
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mass–spring–damper system and a tested cantilever beam in the laboratory. The study 

found that damage identification using RS modeling is successful in locating damage 

and quantifying its severity with some degree of accuracy and robustness to the 

experimental variability (i.e. noise). Fang and Perera (2009) presented a systematic 

structural damage identification technique based on RS methodology comprising four 

sequential steps of feature selection, parameter screening, primary RS modeling and 

updating of the intact and damaged structures.  

There are few examples of application of RS-based model updating in the 

literature for structures with non-linearities. Schultze et al. (2001) introduced a new 

approach called feature extraction for parameter selection in model updating problems 

based on 2k factorial design. This approach was used to select the significant 

parameters to update a model consisting of a cylindrical steel impactor and a foam 

layer assembled on a mounting plate attached to a drop table under impact on a 

concrete floor. Quadratic RS models were then used to estimate the response features 

to update the selected parameters of the model. Zhang and Guo (2007) proposed a 

model updating procedure based on Principal Component Decomposition and RS 

method to update a frame model with thin wall components showing strain-rate-

dependence non-linearity under impact test. 

2.2. Data-driven Structural Damage Detection 

Another contribution of this dissertation is in presenting model-free (i.e. Data-

driven) damage identification and localization methods based on two-sample control 
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statistics.  In such data-driven methods, first time series analysis or signal processing 

techniques are employed to extract damage sensitive feature from measured signals. 

Choosing an effective damage feature is crucial for successful damage detection. 

These features can be used to establish control statistics which were originally used to 

monitor a change in a process. Once a significant change is encountered in the process 

(here the damage indicators), the control statistic can capture this change with the use 

of a threshold value. Once the threshold value is crossed, the process can be deemed 

out of control. These charts can be used to compare the choice of damage sensitive 

features in damage detection schemes because different features will have different 

sensitivities and produce different damage detection and localization results.  

There are many different parameters that have been used by researchers as damage 

sensitive features for model-free damage detection. In order to find and use dynamic 

characteristics of a structure as damage features, Huang (2001) proposed a procedure 

that uses the multivariate AR model for numerical simulations of a six-story shear 

building subjected to white-noise and low-pass filtered white-noise input, while 

simulated acceleration and velocity responses were used in separate scenarios to study 

the effect of signal type. Similarly, He and De Roeck (1997) uses multivariate 

autoregressive models to find the modal parameters of a water transmission tower 

from measured acceleration responses during ambient vibration. Furthermore, Hung et 

al. (2004) identifies modal parameters from measured input and output data using a 

vector backward autoregressive with exogenous model. This method was 

experimentally validated using measured acceleration responses of a five-story scaled 
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steel frame under a shake table test. Zheng and Mita (2007) fit Auto regressive moving 

average (ARMA) models to the time series of acceleration responses of the structure 

and use the distance between the ARMA models to detect the existence of the damage, 

which is consequently localized by minimizing the cross-correlation of multiple 

excitations through pre-whitening filtering. Gul and Catbas (2011) create ARX models 

based on acceleration responses of different sensor clusters of the healthy structure, 

these models are then used for predicting the data from the damaged structure, while 

the difference between the fit ratios are used as damage sensitive features. 

Effectiveness of autoregressive models are investigated in several other studies by 

using the time history of acceleration responses of the system to generate damage 

indicators (for example, Fugate et al. (2001); Nair et al. (2006); Zheng and Mita 

(2009); De Lautour and Omenzetter (2010) ; Dorvash et al. (2013b)); however, there 

are also successful applications of these models for damage localization in the 

literature which use time histories of measured strain signals (Sohn et al. (2001); Noh 

et al. (2009); Dorvash et al. (2013c)). While some of these studies use data from real-

world systems for validation (Sohn et al. (2001); Gul and Catbas (2011)), most of the 

proposed damage detection techniques are verified through laboratory testing of 

specimens with different levels of complexity from retrofitted reinforced concrete 

column (Fugate et al.  2001) to four–story two-bay by two-bay steel braced frame 

(Nair et al.  2006). 

After extracting the damage features from the signals measured over time, 

significance of variation in the features should be examined to distinguish any change 
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that is outside the range of random variation of measurements. For this purpose, there 

are several types of control statistics that can be used for change point detection 

(Amiri and Allahyari 2011). These statistics can be used to detect a single change or 

multiple changes in the mean or variance of the feature vectors. One of the first charts 

generated, the standard univariate Shewhart �� control chart, was introduced in 1924 

by Walter Shewhart to detect a change in the mean of a population (Wilcox  2003). 

Since then, control schemes have found widespread application in different disciplines 

and become more effective. Fugate et al. (2001) is an example of application of 

Shewhart control chart in damage detection of a concrete bridge column. One major 

flaw in using univariate control statistics is that they can only monitor one variable at a 

time. If one were to observe a set of quality characteristics that have components with 

the potential to be interrelated, the univariate control schemes become obsolete. 

Although it could be argued that univariate control charts could be applied 

independently to each component of the multivariate data, misleading results may be 

obtained in some cases due to failure to allow for the inherent relationship among the 

components of the multivariate data (Zamba and Hawkins 2006). Therefore, in this 

research muliti-dimensional damage features are condensed into a single feature to 

develop univariate control statistics. 

One control chart used in this study is a Likelihood Ratio Test (LRT) of which 

there are many types.  Srivastava and Worsley (1986) propose a form of the LRT that 

is more effective in detecting a shift involving only the mean vector, while other 

researchers present improved LRT-based statistical methods capable of detecting 
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shifts in the mean and variance of a vector of observations (Sullivan and Woodall 

(1996); Hawkins and Zamba (2005); Zhang et al. (2010); Zhou et al. (2010)). Zou et 

al. (2006) presents a control chart based on change point models for monitoring the 

intercept, slope or standard deviation of the linear profiles and names the proposed 

method the standardized likelihood ratio test. The literature related to application of 

such change point techniques for structural damage detection is scarce (El-Ouafi 

Bahlous et al. 2007). This dissertation uses the Normalized Likelihood Ratio Test 

(NLRT) from Sullivan and Woodall (1996), which has not been used in SHM 

schemes. The details of this method are presented in the next section.  

Another change point analysis used in the present research is based on a two-

sample t-test; a form of statistical hypothesis testing to distinguish significant 

differences in the means of two sets of data. Montegomery and Loftis (1987) show the 

applicability of this t-test for detecting trends in water quality variables. Additionally, 

Hawkins and Zamba (2005) use the t-test in conjunction with the generalized 

likelihood ratio test in order to distinguish between a shift in the mean and the 

variance in a gold mining quality control example. In effect, there are many different 

variations of such statistical tests that can be used based on different initial 

assumptions about the mean and variance of the data. For example, the Satterthwaite-

Welch method (Welch 1974) is used with the assumption that the variance of the two 

populations is unknown and unequal. However, in this research, the Student’s t-test is 

used in which it is assumed that the variance of the two populations is unknown but 

equal.  
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Chapter 3 

Generalized Response Surface Model 

Updating Using Time Domain Data 

The objective of this chapter is to present a procedure to construct accurate yet less 

computationally demanding surrogate models to replace FE models in non-linear 

model updating problems. For this purpose, RS model updating is used and extended 

into non-linear FE updating through time domain data. FE model updating using RS 

modelling consists of two main steps: first, a polynomial model is constructed based 

on a finite number of FE runs. Then, the objective function in the form of the residuals 

of measured responses and corresponding RS models is optimized. However, the 

solution of optimization procedure is not reliable unless the RS model regressed in the 

first step is able to predict the response of FE model well. Therefore, the main issue 

regarding construction of RS models is how to create accurate surrogate models.  The 

number of levels for each parameter and also the order of RS polynomial models 

result in models with different accuracy. Consequently, the procedure for finding an 

appropriate design to build the surrogate model in regard with the nature of problem 

requires a number of trials and errors with different designs and subset models. Such 

procedures increase the computational cost associated with RS modeling, as the cost 

of a RS model depends on the total number of FE runs required to achieve the desired 



 

 

22

accuracy. Several design families are available such as full factorial, fractional 

factorial, central composite design, Box Behnken design, etc (Montgomery 2001). Full 

factorial design consists of all possible combinations of levels of parameters. Other 

designs are mainly based on a subset of design points sampled from a full factorial 

design. Figure 3.1 displays the design points of three different designs for a problem 

with three model parameters. This figure shows that full factorial, Box Behnken and 

central composite designs have 27, 15 and 20 design points respectively. It is seen that 

while full factorial design contains more design points, it is beneficial in uniformly 

sampling from the corners of the domain as well as the central area. In this study a 

systematic procedure is proposed to sample the design points in the domain of model 

parameters which adopt a full factorial design with minimum number of levels for 

each parameter followed by adding design points to the domain when required after 

evaluation of the regressed RS models.  

 

Figure 3.1. Full factorial (a), Box Behnken (b) and central composite (c) design for a model with 

three parameters 

Another issue appears in using pre-defined designs while dealing with the bounds 

of the variables in the optimization problem. It should be noted that the regressed RS 
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model can only replace the FE model in the joint region of the input data used in the 

regression (Montgomery et al. 2004). In many of the experimental designs, not all 

levels of the parameters are present in the design; therefore, updating the RS model in 

the original regions of model parameters can cause extrapolation beyond the 

regression domain. Figure 3.2 illustrates the original and joint region of parameters for 

a model with two parameters. The figure shows that while both points A and B are in 

the area made by original regions of model parameters, point A is outside of the 

regression domain. To prevent this phenomenon, called the hidden extrapolation, 

another constraint should be imposed on the optimization problem to specify the 

infeasibility of the solution outside the joint region of the variables.  

 

Figure 3.2. An example of extrapolation in multiple regression 
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In this chapter, a procedure is proposed for designing the levels of input 

parameters and constructing the RS model. Since the proposed procedure is based on 

the full factorial design of parameters, it addresses the hidden extrapolation problem 

by expanding the joint region of parameters into a set containing the original regions 

of all the parameters. This method results in a RS model capable of generating the 

response of FE model analysis in a specific domain of input variables. Furthermore, it 

is also proposed to formulate and solve the optimization problem of model 

modification through time history of responses iteratively. This approach is beneficial 

in extracting more information from the measured experimental signals as opposed to 

the traditional approaches in which the whole measured signals are summarized into 

one or more response features. Another advantage of this approach is that it is not 

limited to the type of model behavior or analysis. It can be applied to linear or non-

linear models under static or dynamic analysis.  

3.1. Generalized Response Surface Model Updating  

To provide the model updating process with more information from measured 

data, it is proposed to update FE models through time history of measured responses. 

The experimental input force is used to generate the equivalent responses of FE model 

at different levels of the model parameters. In every time step a RS model is 

constructed to produce the corresponding response of the FE model at that time step  

)(Θ= ll hRS  (3.1) 
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Eq. (3.1) denotes the generalized RS model at the 
thl  time step, where h is the 

polynomial surrogate model in that time step and Θ  represents a vector of model 

parameters selected for modification. By completing this process for every response, 

an objective function is formulated to minimize a function of residuals of RS-based 

and experimental response features at every time step. Eq. (3.2) represents this 

minimization problem which should be solved inside the domain of model 

parameters. 

)),((min explll YHf Θ
θ

 (3.2) 

In Eq. (3.2) 
lH  and 

lYexp
 are vectors containing all the surrogate models and 

corresponding experimental responses at the 
thl  time step. 

Prior to RS modeling, the appropriate design and model order should be found so 

that the regressed RS models are accurate at the associated time steps. The 

computational procedure proposed here to construct accurate RS models and update 

them in time domain is called Generalized Response Surface Model Updating 

(GRSMU) (Shahidi and Pakzad 2014a). This method is categorized into three parts: 

model construction, evaluation, and optimization. The next subsections describe these 

three steps in detail. 
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3.2. RS Model Construction 

The steps of model construction and evaluation are completed for each time step to 

find appropriate levels and order of the RS models. To start RS modeling, an initial 

region for the pre-selected uncertain parameters of the FE model should be chosen.  

This region, in which the FE model is replaced by the RS model, is called RS domain. 

To regress the polynomial RS models, a number of points are sampled in the RS 

domain based on full factorial design of the model parameters. The regression model 

in matrix notation for the 
thl  time step is given by 

lll Xy εβ +=  

where ],...,,[ 21 nxxxX =  

(3.3) 

In Eq. (3.3) 
ly is 1×n

 
vector of observations at the 

thl  time step of the history of 

response y and ]...1[),...,,( 2121 ikiiimiii xxxgx == θθθ is )1(1 +× k  row vector 

mapped to the 
thi  design point by vector-valued function g . ),...,,( 21 imii θθθ  denotes 

the domain of g  as 1×m vector of the updating parameters and 
ijx in general is a 

polynomial function of one of the updating parameters at the 
thi  design point. 

lβ
 
is 

1)1( ×+k  vector of regression coefficients and 
lε  is 1×n  vector of random errors 

corresponding to the 
thl time step. Parameters m, n and k are the number of the 

updating parameters, the design points in the RS domain and the terms included in the 

RS models, respectively. 
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The RS model construction starts with a full factorial design with three levels for 

each parameter. FE model with the parameters of each design point is analyzed 

repeatedly to generate 
ly vector in Eq. (3.3) which is the vector of FE model responses 

corresponding to the experimental ones at the 
thl step of the time history of y . The 

regression begins with including linear terms of the updating parameters in the RS 

models. The regressed RS model associated with the 
thl  time step approximates the 

response of the FE model at that time step for any points inside the RS domain 

lml xRS βθθθ ˆ),...,,( 000201 =  
(3.4) 

In Eq. (3.4), ]...1[),...,,( 001002010 km xxgx == θθθ is the vector of polynomial 

terms included in the RS model at a point inside the RS domain with coordinates 

),...,,( 00201 mθθθ . 
lβ̂  is the least square estimator of the regression coefficients at the 

thl  

time step (Montgomery et al. 2004; Kariya and Karuta 2004; Johnson and 

Bhattacharyya 2009). The regressed RS model prior to replacing the FE model should 

be evaluated in terms of adequacy of the fit and predictability of the response with 

respect to the new data. 

3.3. RS Model Evaluation 

One of the objectives of GRSMU is to find polynomial models capable of 

approximating the FE model responses with good accuracy while having minimum 

design points and model order. Therefore, model construction begins with regressing 

linear RS models onto a design space containing three levels for each parameter and 
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the performance of the regressed models are checked. If the RS models are not 

accurate enough to substitute the FE model throughout the entire time history, the 

sampled design points and model order will be changed.  

Initially the performance of the RS models is checked at the design points. For this 

purpose 
lll yXe −= β̂   the residuals of the RS and FE models at the 

thl  time step is 

calculated. Large residuals indicate that the regression is not successful at the design 

points.  

The overall adequacy of the RS models can be further evaluated by adjusted R2 

statistics. This parameter is used to measure the effect of adding new variables to the 

model. As more terms are added to the model, unadjusted R2 always increases 

regardless of the degree of the contribution of the additional variables. In contrast, 

adjusted R2 will only increase by adding a variable to the model if the addition of that 

variable adds to the explanatory power of the regression model (Montgomery et al. 

2004). Use of such statistics is common in validation of the regressed polynomial RS 

models in FE model updating (Zhang and Gue (2004, 2007); Fang and Perera 2009; 

Ren and Chen 2010; and Ren et al. 2011). Eq. (3.5) gives R2
adj statistics for the RS 

model regressed at the 
thl time step of the analysis. 

)1/(

)1/(
1 Re2

−
−−−=

nSS

knSS
R

Tl

sl
adjl  (3.5) 

where 
l

TT

ll

T

lsl XXyySS ββ ˆˆ
Re −=  and 

n

y
yySS

n

i il

l

T

lTl

2

1
)(∑ =−=   
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In Eq. (3.5) slSSRe and TlSS  are residual and total sum of squares in the 
thl  time 

step. TlSS measures the variation in the response of the FE model about the mean 

value and slSSRe indicates the variation in the response that the regressed RS model 

fails to explain. Since in Eq. (3.5) )1/( −nSSTl is constant regardless of how many 

variables were included in the model, R2
adjl increases if the additional variables reduce 

the term )1/(Re −− knSS sl . If R2
adjl is close to one, it implies a perfect regression. 

Therefore, when R2
adjl is much smaller than one, the RS model is not accurate in 

estimating the FE responses at the design points. After completing R2
adj calculation 

through the time domain history, if the regressed RS models are not fitted well to the 

design points, higher order terms of the model parameters should be added to the RS 

models and the model evaluation repeated.  

After finding the appropriate model order, the prediction quality of the RS models 

should be checked. For this purpose, residuals are calculated at points that did not 

contribute in the regression. These points, which are called intermediate points, are 

sampled from RS domain in different sets. Each set represents the intermediate levels 

for one parameter. To sample a set of new points corresponding to a parameter, one of 

the original data points is replicated, and then the selected parameter is replaced by the 

average of one pair of its original levels.  Intermediate points which result in larger 

residuals than the original design points indicate that although the RS model has been 

fitted well to the original data, it cannot predict the FE responses for new points. 

Therefore, the design of levels of parameters should become finer. As the same design 
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and model order is used throughout the entire time history, the maximum normalized 

residuals are compared at original and intermediate levels all through the time history. 

Since the intermediate design points of each parameter are generated with the constant 

values for other parameters in that set, the decision of adding more levels to the design 

is made for each parameter separately and the design space will not get populated 

blindly.  

By repeating this procedure, the appropriate RS model with high quality in 

regression and prediction is constructed for every time step of the data. This procedure 

is completed for every response feature.  It should be noted that by implementing this 

algorithm, the RS models of all the response features at all the time steps can be 

constructed and evaluated simultaneously. 

3.4. RS Model Optimization 

Iterative model construction and evaluation results in construction of an accurate 

RS model for the measured response in every time step. The optimization problem is, 

then, formulated and solved at every time step leading to histograms of the updated 

parameters. Eq. (3.6) formulates the optimization problem corresponding to the 
thl time 

step subjected to the constraints regarding the bounds of parameters in RS domain. 
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In Eq. (3.6) ),...,,( 21 milRS θθθ  denotes the RS model built for the 
thl  time step and 

the 
thi response feature and 

ilyexp
 is the 

thi response measured at the 
thl  time step. By 

formulating the FE model updating in this explicit format, the problem can be solved 

using any optimization algorithm for non-linear constrained systems.  

Figure 3.3 presents GRSMU in a flowchart. RS model construction and evaluation 

are completed in the time domain to find the proper design and model order. Then the 

accurate RS models are regressed and the optimization problem is solved for every 

time step. The optimization step can be repeated in a smaller region for model 

parameters based on the results of the first round of minimization. Using the design 

and polynomial functions established in the first cycle, only the following steps are 

needed: (1) generate the FE responses for new levels; (2) fit the new RS models 

through the time history; and (3) optimize the new objective function iteratively. 

These steps are illustrated by the highlighted blocks in Figure 3.3. The procedure can 

be repeated until the variation of updated parameters falls within the desired threshold. 

When the analysis is static, the steps of model construction and evaluation are 

completed once, and the optimization step is done through the time history of the 

measured data. It should be noted that shrinkage of the RS domain is an extension to 

the optimization step to achieve more accurate estimates for the updated parameters. 

To avoid inefficient computations, this extension should be performed in cases that the 

updated parameters are not accurate enough. This can be assessed by using the 

statistical inferences drawn from the histograms of the updated parameters as input to 
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the finite element model and investigating the correlation of the corresponding 

responses of the model with the measured results. 

 

Figure 3.3. Methodology for GRSMU 
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3.5. Validation of the Proposed Model Updating Procedure  

Several studies on linear FE model updating based on RS models established 

numerical validation studies on simple structures such as a simply supported or 

continues beams (Ren and Chen 2010; Ren et al. 2011; and Deng and Cai 2010). They 

mainly verified the proposed methods for one set of true model parameters, which is 

assumed to be around the center of the pre-selected RS domain where the RS model’s 

prediction is more accurate than other points in this domain. In this study a simulated 

numerical case study of a steel frame with bilinear behavior was chosen to validate 

GRSMU. Since in the general framework of RS modeling the full FE model is 

replaced with the surrogate RS models, complexity of the structure primarily only 

adds to the computational cost of the FE runs, but does not change the fundamental 

principles of the formulation of the problem. As the location of true model parameters 

in the RS domain is always unknown in the inverse problem of model updating, 

different cases for the initial domain of the model parameters are assumed to evaluate 

the performance of GRSMU in updating the selected parameters. Details of the 

simulated case study along with the results of the updating procedures are presented in 

the following subsections. 

3.5.1. Non-linear steel frame 

The case study presented here is a steel frame with non-linear material properties 

under dynamic loading. The frame consists of one span with overall length of 228.6 

cm (7’ 6”) supported by columns that are 83.8 cm (2’ 9”) long. The cross section of 
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the beam and column members is uniform hollow 5.08 cm (2”) tube, with 0.21 cm 

(0.083”) wall thickness. The column supports are fixed and the frame is considered a 

“plane frame” which constrains out-of-plane and torsional degrees of freedom. The 

steel has bilinear behavior with the yield stress of 344.8 MPa (50 ksi). Modulus of 

elasticity (E) and post yielding stiffness ratio of steel (b) were chosen as the updating 

parameters. To simulate the experimental data, these parameters were set to 217.2 GPa 

(31500 ksi), and 0.125 for E and b respectively.   The loading is a concentrated 

harmonic lateral load with amplitude 22.2 kN (5 kips) and 5 sec period, applied at the 

beam column joint. The amplitude of the load is selected so that under lateral loading 

the stress in the columns and beam exceeds the yield stress. To update the selected 

parameters, simulated time histories of displacement at two locations on the frame 

were assumed as the experimental data. Figure 3.4 shows the configuration of the steel 

frame, loading and the responses used in the updating procedure.  

 

Figure 3.4. Configuration of the non-linear steel frame 
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3.5.2. Simulated model 

 A 2-dimensional mathematical model was developed by Opensees (Mazzoni et al. 

2009) software. The model consists of 8 nodes and 7 elements dividing beam and 

columns members into two and three segments, respectively. Each node has three 

degrees of freedom, ux, uy and θz which allows for translation and rotation in xy plane. 

Elements were modeled as nonlinearBeamColumn having Steel01 uniaxialMaterial 

properties to construct a bilinear steel material object with kinematic strain hardening 

as shown in Figure 3.5. Five integration points were assigned along each element to 

model the distributed plasticity. A fiber section procedure was used to build the 

tubular steel section from 152 fibers patched together. A transient analysis object was 

used to apply the Newmark method integrated with the modified Newton-Raphson 

algorithm to solve the non-linear equitation of motion under harmonic loading. In 

order to avoid convergence problems during time history analysis of the non-linear 

frame in the model construction step, a small time step of 2.5e-4 sec were used for the 

dynamic analysis followed by data resampling with 400Hz sampling rate. 
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Figure 3.5. Material model for the steel  

 

3.5.3. FE updating of the non-linear frame 

Since the initial assumption for the model parameters plays an important role in 

performance of model updating procedures, the non-linear model was updated 

multiple times assuming different domains for the model parameters. Figure 3.6 shows 

four scenarios that were designed for this purpose. In the first scenario, the initial 

domain of the updating parameters was set to 186.2 to 227.5 GPa (27000 to 33000 ksi) 

for E and 0.05 to 0.25 for b to reflect different levels of uncertainty in estimation of 

these parameters. 
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Figure 3.6. Configuration of RS domains in the validation scenarios 

The RS model construction starts with full factorial design of parameters having 

three levels for each parameter.  Figure 3.7 demonstrates the time history of 

displacements u1 and u2 for a FE model taking the levels of the 33 ×
 
design along with 

the window selected for RS model construction, evaluation and optimization. This 

window was chosen from the time history of displacements so that the responses of 

the FE model are well separated at different design levels to avoid numerical errors in 

the optimization step. The selected time window contains 700 data samples all used 

for the RS model construction, evaluation and optimization.   
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Figure 3.7(a). Time history of response of the non-linear FE model (u1 ) at � × � design points 
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Figure 3.7(b). Time history of response of the non-linear FE model (u2 ) at � × � design points 

RS models having the linear terms of E and b were regressed through the selected 

time domain window. The large residuals associated with the regressed models 

indicate that the RS models are not accurate to replace the FE model in the time 

window. Consequently, quadratic terms were added to the polynomial models and 

regression was repeated. R2
adj statistics of the RS models constructed based on 33 ×

 

design points are plotted in Figure 3.8. This figure shows that adding the quadratic 

terms to the linear models significantly improves the accuracy of the RS models at the 

design points. It is also observed that including the cubic terms in the RS models 

decreases R2
adj statistics due to over parameterization. Therefore, the RS models with 
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quadratic terms of the model parameters were selected for the performance evaluation 

at intermediate levels. 

 

Figure 3.8. R2
adj statistics for linear and quadratic RS models 

 

Figure 3. 9 compares the maximum normalized residuals at original and 

intermediate levels of the 33 × design for the quadratic RS models through the time 

window. In this figure dark bars show the residuals at original design points while 

gray bars represent the residuals at the intermediate design points. The RS models 

generate u2 with smaller residuals; however, they are not successful in predicting both 

u1 and u2 at the intermediate levels corresponding to b. Therefore, the levels associated 

with stiffness ratio, b, in the RS domain should be finer. The steps of model 

construction and evaluation are repeated with 34 × design which shows the RS models 
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are not accurate at intermediate levels of parameter b. Figure 3.10 displays the 

maximum normalized residuals of RS and FE model for a 35 ×
 
design. The RS 

models contain terms up to order 4 and 2 for stiffness ratio, b, and modulus of 

elasticity, E, respectively. Figure 3.10 shows that the RS models perform well at both 

original and intermediate levels. Therefore, these models are accurate for the 

optimization procedure. Figure 3. 11 shows the responses of the FE model and the 

final RS model in the RS domain at t=2.5 sec. 

 

 

Figure 3.9. Maximum normalized residuals of original and intermediate levels using � × �
 
design  
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Figure 3.10. Maximum normalized residuals of the original and intermediate levels using � × � 

design 

 

 

 

 

Figure 3.11. FE and RS model responses for u1 at t=2.5 sec. 
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The constrained optimization problem in Eq. (3.6) was formulated and solved 

using Active-set constrained optimization algorithm (Nocedal and Wright 2006). 

Figure 3.12 shows the histogram of the updated parameters resulted from solving the 

optimization problem in every time step of the selected window in the first scenario. 

This histogram shows where the updated parameters locate in the RS domain. The 

updated model parameters are distributed in a considerably narrower region than the 

initial region used in the RS model construction.  

In order to decrease the variation of the updated parameters, the design and model 

order established in the previous section for E and b are used to repeat the 

optimization problem. The new domain for E and b is centered on the mean value of 

the updated parameters in the first round of optimization. Since in the first round there 

were 3 and 5 levels associated with E and b, the new domain of these parameters is 

designed so that E and b have regions equal to 1/2 and 1/4 of their initial regions. 

Therefore, the RS domain is reduced into 207.4 to 228.1 GPa (30080 to 33080 ksi) for 

E and .095 to 0.145 for b. Figure 3.13 shows the result of the second round of model 

updating in the first scenario in terms of the mean and the coefficient of variation of 

the updated parameters. The variations of the updated parameters are decreased, and 

the mean value of the parameters shows negligible deviation from the true model 

parameters.  

 



 

 

44

 

Figure 3.12. Scenario 1– first optimization round 

 

Figure 3.13. Scenario 1– second optimization round 
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In the second scenario, the initial regions for the model parameters are decreased 

to 186.2 to 227.5 GPa (27000 to 33000 ksi) for E and 0.1 to 0.15 for b. In this scenario 

the model construction and evaluation resulted in 33 ×  design and quadratic RS 

models. Figure 3.14 shows the histogram of the updated parameters where their mean 

values converge to the true model parameters in the first round of optimization.  

 

Figure 3.14. Scenario 2– first optimization round 

In the third scenario, one of the true model parameters is located on the boundary 

of the selected RS domain. The RS domain in this case is from 175.8 to 217.2 GPa 

(25500 to 31500 ksi) for E and .05 to 0.25 for b. The model construction and 

evaluation resulted in 35 × design and model order 4 and 2 for b and E, respectively. 

Figure 3.15 and 3.16 show the result of the first and second optimization rounds. The 

first optimization cycle successfully locates a region for the true model parameters to 
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which the solution of the second round of optimization converges. As it is seen in the 

1st and 3rd cases, shrinkage of the selected domain, reiteration of RS modeling and 

optimization result in convergence to the true model parameters. However, in other 

situations if the true model parameters do not lie in the new region, the constrained 

optimization problem of RS model optimization converges to the closest corner of the 

RS domain to the true model parameters and results in reduction of the uncertainty 

associated with the initial assumptions of model parameters. 

 

Figure 3.15. Scenario 3– first optimization round 
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Figure 3.16. Scenario 3– second optimization round 

 

 RS domain in the last scenario is designed so that both true model parameters 

are located on the boundaries of the RS domain. In the initial RS domain E and b vary 

from 175.8 to 217.2 GPa (25500 to 31500 ksi) and 0.125 to 0.325 respectively. Based 

on the model construction and evaluation 33 ×  design and quadratic RS models were 

selected. Figure 3.17 displays the result of the model updating in this scenario where 

the procedure performs wells in modifying the initial regions for the model parameters 

regardless of the location of the true parameters inside the RS domain used to fit the 

RS models.  



 

 

48

 

Figure 3.17. Scenario 4– first optimization round 

 

In the cases studied in this chapter, the corners of the RS domain were used to 

establish a multi-start optimization process using active-set algorithm. Since the 

resulted histograms from the multi-start optimization procedures were not sensitive to 

the choice of the initial point, in this case study applying a global search technique 

was not necessary. It should be noted that in these case studies, RS model updating 

succeeds in finding the unique solution of the inverse problem. However, in some 

model updating problems, a “family” of solutions could satisfy the optimization 

objectives. Global search of the domain of model parameters discovers possible 

scenarios of meaningful updated parameters for the FE model to generate similar 

response features. The use of RS models readily enables application of any 

optimization techniques to explore the domain of model parameters which may not be 
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feasible using the full FE model. However, RS models are at best approximating the 

FE model responses. They reduce the computation effort of the search for model 

parameters in a lower resolution domain. While this may alter some of the possible 

optimal results, application of RS models in FE model updating proves helpful in 

better parameter estimations than the initial model assumptions in predicting the 

measured responses. 

3.5.4. Performance of the proposed algorithm compared with sensitivity 

method 

To verify the performance of GRSMU, the non-linear model studied in the 

previous section was updated using sensitivity method and the results of the two 

procedures were compared. For each scenario described before the sensitivity method 

model updating was applied using the vertices of the RS domain as the initial point. 

The case of the second scenario with the smallest RS domain was the only one where 

the sensitivity method converges to the true model parameters using any of the starting 

points. In the other scenarios when the initial point is relatively far from the true 

model parameters the procedure does not converge to these parameters. These results 

were summarized in Table 3.1.  
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Table 3.1. Comparison of the performance of GRSMU and the sensitivity method (Noise-free 

simulated data) 

 

 

Furthermore, to evaluate the performance of GRSMU in the presence of noisy 

measurement data, different levels of Gaussian noise were introduced into the 

simulated experimental responses and the updating procedures in cases 1 and 4 were 

obtained.  The sensitivity-based method was also repeated for data from a time 

window, such that the updated parameters of each time step were used as the initial 

point for the next one. The results of these procedures are summarized in Table 3.2.  

 

      Relative error (%) in updated parameters 

  Starting point Sensitivity method GRSMU 

  b 
E 

(GPa) 
b E (GPa) b E (GPa) 

Case 1 
0.05 186.2 0.3 0.1 

0 0.1 
0.25 186.2 N. C.a 

b: 0.05 to 0.25 0.05 227.5 0.3 0.3 

E: 186.2 to 227.5  GPa 0.25 227.5 N. C. 

Case 2 
0.1 186.2 0.2 0 

0.2 0 
0.15 186.2 0.5 0 

b: 0.1 to 0.15 0.1 227.5 0 0.2 

E: 186.2 to 227.5  GPa 0.15 227.5 0.2 0.3 

Case 3 
0.05 175.8 0.1 0 

0 0 
0.25 175.8 N. C. 

b: 0.05 to 0.25 0.05 217.2 0.2 0.3 

E: 175.8 to 217.2  GPa 0.25 217.2 N. C. 

Case 4 0.125 175.8 0.2 0.3 

0.6 0 b: 0.125 to 0.325 0.325 175.8 N. C. 

E: 175.8 to 217.2  GPa 0.325 217.2 N. C. 

a N. C. : No Convergence             
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Table 3.2. Comparison of the performance of GRSMU and the sensitivity method (Simulated 

data with different noise levels) 

 

 

When the noise level is low (1%) for case 1 both methods are similarly accurate 

(less than 1% relative error), while for case 4 the error in updated parameters based on 

GRSMU goes up to 3.5% . It should be noted that scenario 4 was designed to have 

both true model parameters on the boundaries of the domain and as it can be seen in 

Table 3.1 the results of the sensitivity-based method for this scenario are highly 

dependent on the choice of starting point for convergence. In the case of moderate 

noise level (5%) GRSMU outperform the sensitivity-based method in scenario 4. 

Case : 1 1 4704 0.80 -0.3

b: 0.05 to 0.25 5 6538 0.80 0.6

E: 186.2 to 227.5  GPa 10 7043 104.00 -13.2

Case : 4 1 4723 0.00 0.8

b: 0.125 to 0.325 5 6221 21.60 -5.5

E: 175.8 to 217.2  GPa 10 9174 68.80 -10.4

Case : 1 1 1177 0.16 -0.04

b: 0.05 to 0.25 5 1132 4.64 -1.94

E: 186.2 to 227.5  GPa 10 1115 10.72 -3.72

Case : 4 1 288 3.52 -1.40

b: 0.125 to 0.325 5 274 15.20 -5.59

E: 175.8 to 217.2  GPa 10 274 25.60 -7.72

Starting point Sensitivity method

GRSMU

noise 

level(%) time(sec)

Relative error (%) in 

updating parameters

time(sec)

b E(GPa)

b E(GPa)

0.125 175.8

True model Parameters b=0.125 E=217.2(GPa)*

Starting point

b E(GPa)

noise 

level(%)

0.05 186.2

0.05 186.2

0.125 175.8

Relative error (%) in 

updating parameters

b E(GPa)
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Lastly, with high level noise assumption, GRSMU yields significantly more accurate 

results in both scenarios. The performance of these procedures was further compared 

in terms of the time required to complete the updating process. As seen in Table 2 

GRSMU shows to be considerably more time efficient than the other method, for 

instance in case 1 (1% noise) performing 70 steps of sensitivity-based updating took 

4704 seconds, whereas the overall time required for model construction, evaluation 

and optimization for 700 time steps based on GRSMU took 1177 seconds.  

The advantage of using GRSMU is that this procedure successfully finds a smaller 

region for the model parameters regardless of the size of the RS domain, location of 

the true model parameters and the starting point in the optimization process. 

Moreover, the results of GRSMU have corrective information for the initial estimate of 

the RS domain whereas with a relatively far estimate for the parameters the sensitivity 

method may yield meaningless results. Finally, while GRSMU requires significantly 

less computational time than sensitivity-based updating method, it shows more 

robustness to moderate and high level noise. 

3.5.5. Performance of the proposed algorithm in presence of modeling 

error 

Modeling errors proves unavoidable in any FE model simulations. Therefore, 

study of the proposed method’s performance in existence of such errors is of value. 

For this purpose, 1st and 4th scenarios introduced earlier were reiterated by using 

another FE model to generate the measured responses. This model consists of 28 

elements with 602 fibers in their sections modeled with Steel02 uniaxialMaterial 
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properties which adopts uniaxial Giuffre-Menegotto-Pinto steel material model 

(Mazzoni et al 2009). Three time windows were selected for the optimization from 

0.75 sec to 7.625 sec, each having 700 time steps. Due to modeling error introduced to 

generate reference responses, maximum error associated with u1 and u2 in the selected 

time windows are 29.88% and 27.76% relative to the responses from FE model 

without any modeling errors. Root mean square of the error is 6.80% and 6.18 % over 

all three windows. The results of these case studies in terms of the relative error in 

estimation of the parameters are shown in Table 3.3. The error is larger compared to 

cases without modeling error (shown in Table 3.2) except for error in estimation of b 

in case 4 with moderate and high measurement noise levels. 

Table 3.3. Relative error in estimation of the parameters in presence of modeling error and 

measurement noise 

 

3.6. Summary and Conclusions 

This chapter presents a procedure for designing RS models capable of generating 

the results of FE analysis with good accuracy. Also, formulating the model updating 

b E

Case : 1 1 1.42 -3.82

b: 0.05 to 0.25 5 6.01 -4.59

E: 186.2 to 227.5  GPa 10 10.87 -4.60

Case : 4 1 6.62 -5.21

b: 0.125 to 0.325 5 14.41 -7.77

E: 175.8 to 217.2  GPa 10 23.75 -9.20

Noise 

Level   

(%)
mean

Relative error (%) in 

updating parameters
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problem in an iterative format in time domain is demonstrated to update non-linear FE 

models. This procedure is called General Response Surface Model Updating 

(GRSMU). 

GRSMU was applied to a numerical case study of a steel frame with global non-

linearity. In the first and second steps an appropriate design and RS model order were 

successfully established. The optimization in time window performed well in all 

simulated scenarios. The first round of optimization resulted in a considerably 

narrower bounds for the uncertain parameters of the model than the initial boundaries 

set at the beginning of the procedure. Repeating the RS model construction with 

known order and design for the new bounds of parameters and solving the 

optimization problem resulted in updated parameters with slight deviation from the 

true model parameters.  

In order to verify the performance of GRSMU , the simulated scenarios was 

repeated based on a sensitivity-based model updating technique assuming different 

levels of noise in the measurement data. Unlike GRSMU, the convergence of the 

sensitivity-based method depends on the choice of the starting point. Moreover, the 

results of GRSMU have corrective information for the initial estimate of the RS 

domain whereas with a relatively far estimate for the parameters the sensitivity 

method may yield meaningless results. Finally, while GRSMU is considerably more 

time efficient than sensitivity-based updating method, it shows more robustness to 

moderate and high level noise. The performance of GRSMU was also studied in a 

simulation study in presence of modeling error. It was observed that in the case study 
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presented here, GRSMU is successful in estimating the unknown parameters of the 

model, with a larger estimation error than the cases without modeling error, 

particularly when measurement noise level was low. 

Since in the proposed methodology the RS model is optimized in time domain, the 

procedure is applicable to linear or non-linear models under static or dynamic analysis. 

Moreover, parameters related to linear and non-linear behavior of the system can be 

updated simultaneously as done in the simulated case study.  

It should be noted that although replacing the FE model with a polynomial 

function is a critical step in simplifying the model updating problem, the fact that the 

RS model is at best an approximation should not be overlooked. Therefore, 

construction and evaluation of RS models iteratively in time domain is proposed here 

to compensate for the error caused by approximation of the FE model responses.   
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Chapter 4 

Effect of Measurement Noise and 

Excitation on Generalized Response 

Surface Model Updating 

This chapter evaluates the sensitivity of the model updating algorithm presented 

in the previous chapter (GRSMU) with respect to measurement noise (Shahidi and 

Pakzad, 2014b). This evaluation is critical, as noise contamination is inevitable in 

any measurement procedure. In addition, the effect of input excitation frequency 

content and further application of this method in updating a non-linear frame under 

seismic loading are presented. 

In RS-based FE model updating, RS models replace the full FE model in a pre-

selected domain of unknown model parameters, here called RS domain. These RS 

models are constructed using least square techniques (Montgomery et al., 2004) by 

regressing a polynomial function on a set of points sampled from the RS domain. 

Techniques of designs of experiments (Montgomery, 2001) can be employed in order 

to sample these points. However, finding the appropriate model order associated with 

each parameter and design of model parameters’ levels that produce accurate RS 

models, require a number of trials and errors which may contradict the primary 
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motivation for using the RS models to decrease the computational cost of FE model 

analyses in model calibration.  

GRSMU is proposed to systematically design the levels and model order of the RS 

models, and extend the application of RS modeling for non-linear model updating in 

time through RS model construction and optimization iteratively at every time step of 

the analysis. In order to construct accurate RS models capable of predicting the 

response of the FE model throughout the RS domain, GRSMU adopts a full factorial 

design with minimum number of levels and linear RS models. This procedure is 

subsequently followed by evaluation of the regressed RS models in terms of accuracy 

and predictability, and increasing the model order or number of levels associated with 

each model parameters, when required. When RS model order and design are decided, 

any non-linear constrained optimization algorithm can be readily adopted to solve this 

explicitly formulated FE model updating problem formulated in Eq. (4.1) for the 
thl

time step of the non-linear dynamic analysis. 
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In this equation ),...,,( 21 milRS θθθ  denotes the RS model associated with the 
thl  

time step of the analysis representing the 
thi analytical response feature, as a function 

of the pre-selected uncertain model parameters ),...,,( 21 mθθθ , 
jlbθ and 

jubθ  represent the 
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lower and upper bounds of the thj  model parameters in the RS domain, and 
ilyexp

 is 

the 
thi response feature measured at the 

thl  time step of the experiment.  

4.1. Sensitivity of the GRSMU Estimates to Measurement Noise 

This section investigates the effect of measurement noise on the parameter 

estimation results of GRSMU. This study simulates the measurement error as White 

Gaussian noise in which the values at any pair of time instances in the noise signal are 

statistically independent and identically distributed with a zero-mean normal 

probability distribution.  

In order to study the sensitivity of GRSMU estimates to noise, assume a single-

DOF dynamic system. As Eq. (4.2) indicates, the measured output of this system (um) 

at any time instance ti can be considered as a summation of real response (um
r) and 

measurement noise in that time step. 

)()()( ii

r

mim tntutu +=  (4.2) 

where n(ti) is a random variable representing the amplitude of noise in time ti 

having a zero-mean normal distribution with standard deviation σ. 

With assumption of known mass, the response of an FE model simulating this 

system is a function of stiffness (k). Over a small domain of k, a linear RS model can 

approximate the real response of the system at any time step of the analysis. Eq. (4.3) 

presents this linear function at time step ti. 
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In this equation, klb and kub denote the lower and upper bounds of domain of k, 

where the linear RS model (with coefficients )(ˆ)(ˆ
10 ii tandt ββ  ) replaces the FE 

model of the system. Eq. (4.4) formulates the model updating procedure in which 

parameter estimation is accomplished by minimizing the residual of the predicted and 

measured responses. 
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 (4.4) 

Since f is a nonnegative function, its minimum value at every time step (ti) 

corresponds to the root of f(k,ti). This statement holds with the assumption that the 

domain of the RS model includes the root of f(k,ti). High amplitudes of noise and/or 

when model parameters locate outside or on the corners of the RS domain can 

contradict this assumption. In such cases the solution of this constraint optimization 

problem is klb or kub whichever associates with a smaller f. 

Therefore, estimation of k based on the measured response kest in time instance ti is  

)(ˆ

)(ˆ)(
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iim
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β
β−=  (4.5) 

It should be noted that if f(k,ti) in Eq. (4.5) has two roots (klb and kub) in the 

domain, the formulation of the problem does not change. Double roots in the domain 
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could occur because (1) klb and kub generate the same response at time step ti, or (2) klb 

and kub generate the same response time history.  In case (1), as the time history of the 

responses are not the same in other time steps,  through  the parameter estimation in 

time history of the reponse, the true k will be estimated. In case (2), by solving Eq. (4) 

using a global optimization framework which is able to find multiple optima, both klb 

and kub are estimated. Therefore, in both cases, Eq. (4.5) can be used to demonstrate 

the estimated stiffness with reference to the measured response of the system. 

Since )(ˆ)(ˆ,)( 10 iii

r

m tandttu ββ  are independent of measurement noise, the 

expected value of 
)( iest tk

can be written as  

[ ]
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therefore, its sensitivity with respect to the standard deviation of White Gaussian 

noise is 

 

[ ]
0

)( =
∂

∂
σ

iest tkE
 (4.7) 

This results show that the expected value of the estimated stiffness in time is not 

sensitive to the measurement noise amplitude. The main assumption in derivation of 

Eq. (4.7) is zero-mean assumption for the noise signal. Therefore, for any non-

Gaussian or non-stationary noise, it is expected to observe similar estimation 

performance as long as the zero-mean assumption for the underlying probability 

density function of the noise signal holds. In the following sections, several parametric 
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sensitivity studies are performed to accomplish this goal with assumption of White 

Gaussian measurement noise.  

4.2. Non-linear Model Updating Using Harmonic Loading 

This section describes the implementation of the methodology that was developed 

in previous section to study the robustness of GRSMU in a single-DOF and a multi-

DOF bilinear system. In each case, the response of the system is simulated under 

several assumptions of measurement noise level and input excitation. The parameter 

estimation is then completed in two different time-domain windows, and the 

estimation error is investigated. The following subsections describe the sensitivity 

study carried out for these systems in detail. 

4.2.1. Numerical simulation: Single-DOF system 

This section studies the sensitivity of GRSMU estimates to the measurement noise 

level through a numerical case study of a single-DOF non-linear system under 

harmonic loading. This single-DOF system is simulated with unit mass (1 lb.sec2/in = 

175.09 kg) and bilinear stiffness material model.  Stiffness of the system (k) and 

yielding force are 4 lb/in (0.7 N/mm) and 4 lb (17.79 N), respectively. The natural 

period of vibration of this system (Tn) is 3.14 seconds. Post yielding stiffness ratio of 

the system (α) is selected as an uncertain model parameter varying between 0.2 and 

0.8 to be estimated from the time history of the displacement of the mass. 
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In order to study the impact of the frequency of the input harmonic loading, in 

different scenarios period of the applied load (Tload) varies so that the ratio of the 

loading frequency over the natural vibration frequency varies from 0.1 to 10. In these 

scenarios the amplitude of the load is adjusted so that in all the cases maximum 

displacement of the system in the longer window used for parameter estimation is 3 in 

(7.62 cm).  A time step of 0.001 sec is used in the time history analysis of this non-

linear system, which satisfies a convergence test with 10e-6 lb (4.45e-6 N) tolerance 

for the norm of the unbalanced force in every time step of the dynamic analysis. This 

time step is small enough, not to affect the accuracy of the results, as selection of a 

smaller time step did not change the results of the dynamic analysis.  

In every scenario, two time-domain windows are used for the parameter 

estimation: (1) a Tn-sec long window, and (2) a Tload-sec long window. The model 

construction and evaluation steps in the longer window of (1) and (2) in every scenario 

are completed to obtain the RS models of displacement as functions of α. 

Subsequently, residuals of simulated measured displacement and regressed RS models 

are minimized along the selected time window to update α. 

The optimization problem of model updating in the Tn-sec long time window is 

completed with sampling frequency of 100 Hz based on a multi-start optimization 

framework using interior-point algorithm (Nocedal and Wright 2006). Different levels 

of the measurement noise are assumed in each case. Noise level denotes the ratio of 

the root mean square of the simulated Gaussian noise signal to the root mean square of 

the simulated measured signal. Figures 4.1 to 4.4 show the results of the updating 
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procedures where α is set equal to 0.625 and 0.2 to simulate the measured 

displacement signal. 

 

Figure 4.1. Error sensitivity in estimated α (Single-DOF system, αtrue=0.625 and Tn-sec long 

window): mean  

 

 

Figure 4.2. Error sensitivity in estimated α (Single-DOF system, αtrue=0.625 and Tn-sec long 

window): median 
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Figure 4.3. Error sensitivity in estimated α (Single-DOF system, αtrue=0.2, and Tn-sec long 

window): mean  

 

 

Figure 4.4. Error sensitivity in estimated α (Single-DOF system, αtrue=0.2, and Tn-sec long 

window): median 

 

The results show that, as indicated by Eq. (4.6), the mean of the updated α is fairly 

insensitive to the measurement noise level, particularly when it is low or medium. 

However, when the assumptions made in derivation of Eq. (4.4) are violated, the 

constrained optimization problem of RS model updating is likely to result in the 

bounds of the selected RS domain as the optima.  This can cause the mean value of the 
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estimated α deviate considerably from αtrue, while the median - having a breakdown 

point of 50% -robustly estimates the true α. Therefore, in the following cases, the 

median of the updated model parameters are reported as the point estimate of the true 

parameters. These figures also show that, when sampling frequency in the response 

measurement is high enough relative to the loading frequency, frequency of the input 

excitation does not significantly influence the accuracy of the estimated parameters, 

particularly at low levels of measurement noise. 

The updating procedure in the previous scenarios is iterated in a time window 

equivalent to the period of loading (Tload) in each case. The optimization frequency in 

these cases is adjusted to have the same number of time steps as for the cases with Tn-

sec long time window. Figure 4.5 and 4.6 display the error sensitivity of the median of 

the updated parameters to the measurement noise, when the parameter estimation of 

this single-DOF system is completed in a Tload-sec long time window. This figure 

shows that when αtrue=0.625, the estimation error is less sensitive to the noise level and 

the length of the time window compared to the cases when αtrue=0.2. Furthermore, in 

the latter cases, the largest estimation error of all of the noise levels is observed when 

frequency of the loading approaches natural vibration frequency of the system. 
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Figure 4.5. Error sensitivity of the median estimated α (Single-DOF system, Tload-sec long 

window): αtrue=0.625  

 

 

Figure 4.6. Error sensitivity of the median estimated α (Single-DOF system, Tload-sec long 

window): αtrue=0.2  

It should be noted that, amongst all the cases of the single-DOF model updating, 

the results of the cases with Tload/Tn =10 (“slow” loading) consistently show 

robustness to 20% measurement noise level. When the harmonic load is applied “fast” 

(Tload/Tn =0.1) and Tload-sec window is used for parameter estimation, the estimation 
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error is comparable to the results of the “slow” loading; however, when updating is 

completed in the constant length time window (Tn sec), the estimation error for the 

“fast” loading case is larger than the “slow” loading case, at 20% measurement noise 

level.  Figures 4.7 to 4.10 illustrate the normalized median deviation of the parameter 

estimation in all the cases studied here. Since the median is selected as the point 

estimate of the updated parameters in each scenario, the absolute median deviation 

with respect to the median of the histograms of updated α is calculated and normalized 

by the true model parameters in each case. 

 

 

Figure 4.7. Normalized median absolute deviation of the estimated α (Single-DOF system, Tn-sec 

long window): αtrue=0.625  



 

 

68

 

 Figure 4.8. Normalized median absolute deviation of the estimated α (Single-DOF system, 

Tn-sec long window): αtrue=0.2 

 

 

 

Figure 4.9.  Normalized median absolute deviation of the estimated α (Single-DOF system, Tload-

sec long window): αtrue=0.625  
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Figure 4.10.  Normalized median absolute deviation of the estimated α (Single-DOF system, Tload-

sec long window): αtrue=0.2  

These figures show that the dispersion of the updated α is roughly insensitive to 

the selected time window, with the exception of the cases with small ratio of Tload/Tn 

when αtrue=0.625.  Furthermore, the largest deviation corresponds to the cases with the 

highest level of noise contamination. When αtrue=0.2, the deviation of the updated α 

increases considerably as the period of the harmonic loading approaches the vibration 

period of the system. The reason is that in such cases, the response of this non-linear 

system in the selected time windows has low sensitivity to permutation of the post 

yielding stiffness ratio, and thus in the cases with high simulated measurement noise, 

dispersion of the optimization results increases significantly. 

4.2.2. Numerical simulation: Multi-DOF system 

In order to further investigate the sensitivity of GRSMU to the measurement noise 

and input excitation, a multi-DOF system is considered. This simulation is for a 

cantilever steel beam with non-linear material model under a harmonic load, applying 
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vertically at its tip. Figure 4.11 shows the configuration of this simulated beam. This 

beam, with 30 in (76.2 cm) length, has a 2” (5.08 cm) square section. The steel 

behaves bilinearly with modulus of elasticity (E) and yield stress of 29,000 ksi (200 

GPa) and 50 ksi (344.8 MPa), respectively. A uniform dead load on the beam is 

designed so that the fundamental vibration period of this system (T1) is 1.57 sec. Post 

yielding stiffness ratio of the material (α) is selected as uncertain model parameter 

varying between 0.2 and 0.8. Time history of displacement at the tip of the beam (u(t)) 

is used to estimate α in this range in scenarios with different ratios of Tload /T1 varying 

between 0.2 to 20. In all these cases, maximum displacement in the longer model 

updating window and the true model parameters are the same as for the single-DOF 

case discussed previously. 

 

Figure 4.11. Configuration of the simulated cantilever beam 

It should be noted that GRSMU framework can be used for parameter estimation 

in linear and non-linear systems. For linear systems, in addition to using input-output 

data for model updating, natural frequencies and mode shapes can be used for 

parameter estimation through GRSMU which requires no prior knowledge of the input 

excitation. However, in the cases of non-linear systems, to use the time domain data 

for updating the uncertain model parameters, known input excitation is used to run the 
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FE model, generate, and validate the RS surrogate models. Therefore, RS model 

construction and evaluation in all these single- and multi-DOF cases are completed 

with assumption of known experimental input excitation, and thus the type of 

excitation (harmonic, random, etc.) does not bear any effect on the proposed 

methodology for parametric sensitivity study. In order to study the robustness of 

GRSMU results to the frequency content of the input excitation, single harmonic 

loading is chosen in this study which allows controlling one parameter (loading 

period) at a time and studying the potential effect of dynamic amplification of the 

system on GRSMU estimates, while in each case several levels of measurement noise 

contamination is also considered. In applying the input harmonic excitation, the period 

of loading is set while the amplitude is adjusted in each Tload/T1 case to have equal 

maximum displacement response in the longer model updating window. This load 

adjustment is required to establish a fair comparison of the parameter estimation 

accuracy when loading period is widely changing in different cases. 

The bilinear material behavior considered in these case studies is plastic, i.e., 

during the unloading phase the material takes its initial stiffness. Based on this 

assumption, the instantaneous fundamental period of these single- and multi-DOF 

systems change between two values; elastic period of vibration and elongated period 

which is bounded to [1/√0.8 1/√0.2]�� = [1.12 2.34]��.  In order to compare the 

results of all the cases considered, fundamental period of vibration (in elastic range) is 

selected. Since the elongation bound is constant in all the considered scenarios, this 

would not change the interpretation of results in terms of the “fast” or “slow” loading. 
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A 2-dimensional lumped mass FE model is developed in Opensees software 

(Mazzoni et al. 2009) using fiber section procedure, Steel01 uniaxialMaterial model, 

and non-linearBeamColumn elements. This FE model consists of 10 frame elements, 

11 nodes, and overall 30 DOFs. A transient analysis object is used to apply the 

Newmark method integrated with the Krylov-Newton (Scott and Fenves, 2010) to 

solve the non-linear equiation of motion in each case with a time step of 0.001 sec.  

In order to study characteristics of noise signals as samples of a desired Gaussian 

population, for each case of Tload/T1 ratio, 50 rounds of simulations are conducted for 

the same noise level. In every scenario, two time windows were used for the parameter 

estimation: (1) a T1-sec long window, and (2) a Tload-sec long window. The steps of 

RS model construction and validation in each case is carried out in the longer window 

between (1) and (2). It should be noted that when Tload/T1=0.2, due to rapid change of 

the stiffness of the beam elements under high frequency loading, the response of beam 

is not predictable so the regressed RS models fail to estimate the response of the FE 

model over the entire domain of α. Therefore, RS model evaluation is not possible, 

and thus the optimization step is not completed in the cases corresponding to loading 

with this period. 

Figures 4.12 and 4.13 show the error sensitivity of the median estimated α for all of 

the 50 simulations when Tload/T1 is 20, 2, and 0.4, and with the assumption of 

αtrue=0.625 and 0.2, respectively. These figures show that the estimated α has larger 

variation as the noise level increases. When αtrue=0.2, the estimation error is sensitive 
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to the length of the selected time window, such that model updating in a longer time 

window, results in higher estimation error.  

Figures 4.14 to 4.17 display the estimation error of the median of the estimated α 

in all the 50 cases associated with each noise level and Tload/T1 ratio. These figures 

show that as the noise level increases, the estimation error increases particularly when 

αtrue is at the corner of the selected RS domain. Furthermore, the estimation error in 

the cases with the largest ratio of Tload/T1 appears to have the least sensitivity to the 

noise level and the selected time window. The reason is that when the vibration 

frequency of the system is outside of the frequency bandwidth of the load, the 

response of the model at different levels of the uncertain model parameters has the 

same frequency content as for the loading (a “steady-state” response). Therefore, the 

results of the model parameter estimation in time are robust to high measurement 

noise level and selected time window. 
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Figure 4.12. Error sensitivity of the median estimated α, 50 noise signal simulations: (Multi-DOF 

system, αtrue=0.625) 
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Figure 4.13. Error sensitivity of the median estimated α, 50 noise signal simulations: (Multi-DOF 

system, αtrue=0.2) 
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Figure 4.14. Error sensitivity of the median of the median estimated α (Multi-DOF system, 

αtrue=0.625): T1-sec long window  

 

 

Figure 4.15. Error sensitivity of the median of the median estimated α (Multi-DOF system, 

αtrue=0.625): Tload-sec long window 
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Figure 4.16. Error sensitivity of the median of the median estimated α (Multi-DOF system, 

αtrue=0.2) T1-sec long window  

 

 

Figure 4.17. Error sensitivity of the median of the median estimated α (Multi-DOF system, 

αtrue=0.2) Tload-sec long window 

4.2.3.  Effect of damping 

In order to study the effect of damping in the performance of GRSMU, different 

levels of damping are considered for the non-linear cantilever beam. In these 

simulations, Rayleigh damping is assumed, and the mass- and stiffness-proportional 
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damping coefficients are designed so that 1st and 5th natural modes of vibration of the 

beam have 0.02, 0.05, and 0.1 damping ratios in different cases. Two levels of loading 

period (Tload/T1), and four levels of noise contamination are considered. Parameter 

estimation is carried out in T1-sec and Tload-sec long widows. The results of parameter 

estimation (shown in Figure 4.18) are consistent with the observations in the previous 

sections; when frequency of loading is high relative to natural frequency of the 

system, estimation error is sensitive to the length of optimization window.  

 

Figure 4.18. Error sensitivity in estimated α:  (a) Tload/T1=0.4 and αtrue=0.2 and (b) Tload/T1=0.4 

and αtrue=0.625 (c) Tload/T1=20 and αtrue=0.2 and (d) Tload/T1=20 and αtrue=0.625 
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4.3. Non-linear Model Updating Using Seismic Data 

The previous section demonstrated that GRSMU estimates show robustness to the 

measurement noise, particularly in the cases where the input excitation has lower 

frequency content than the fundamental frequency of the system. This implies further 

application of this method in updating parameters of non-linear models in time under 

seismic loading. To validate such application, in this section a steel frame with bilinear 

material model is considered. 

Details of the simulated steel frame, description of the factors considered to study 

the variability of the results, and the results of the updating procedures are presented in 

the following subsections. 

4.3.1. Non-linear frame 

The model presented in this section is a steel frame with non-linear material 

properties under dynamic loading. The frame consists of one span with overall length 

of 7’ 6” (228.6 cm) supported by columns that are 2’ 9” (83.8 cm) long. The cross 

section of the beam and column members is uniform hollow 2” (5.08 cm) tube, with 

0.083” (0.21 cm) wall thickness. The column supports are fixed and the frame is 

considered a “plane frame” which constrains out-of-plane and torsional degrees of 

freedom. The steel has bilinear behavior with the yield stress of 50 ksi (344.8 MPa). 

Modulus of elasticity (E) and post yielding stiffness ratio of steel (b) are chosen as the 

updating parameters. The input excitation in this model is a dynamic load resulting 

from selected earthquake records applied to the left column-beam joint. To update the 
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pre-selected parameters of the model, simulated time histories of displacement at two 

locations on the frame are used. Figure 4.19 shows the configuration of the frame, 

loading and responses used for updating the FE model.  

 

Figure 4.19. Configuration of the non-linear steel frame 

4.3.2. Simulated model 

A 2-dimensional massless model is developed in Opensees software (Mazzoni et 

al. 2009). The model consists of 8 nodes and 7 elements dividing beam and columns 

members into two and three segments, respectively. Each node has three degrees of 

freedom, ux, uy and θz which allow for translation and rotation in xy plane. Elements 

are modeled as non-linearBeamColumn having Steel01 uniaxialMaterial properties to 

construct a bilinear steel material object with kinematic strain hardening.  Five 

integration points were assigned along each element to model the distributed 

plasticity. A fiber section procedure is used to build the tubular steel section from 92 

fibers patched together. Due to zero-mass assumption for the steel tube section, the 

behavior of the system is not dynamic, and thus static or transient analysis objects with 

appropriate integrators can be used to solve the equation of motion under seismic 
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loading. In this study, a transient analysis object is used to apply the Newmark method 

integrated with the KrylovNewton algorithm (Scott et al., 2010). 

The main purpose of studying these numerical simulations is to investigate the 

effect of frequency band limited excitations -at different measurement noise levels- on 

the GRSMU estimates. As shown in Section 4.2.3, this can be completed regardless of 

the damping level of the system.  Therefore, for this non-linear frame model damping 

was not considered. 

4.3.3. Parametric study  

In order to evaluate the performance of GRSMU algorithm using seismic loading, 

variability of the model updating results are studied by considering: earthquake loads 

with different characteristics; various assumptions for true model parameters; and 

several levels of noise to contaminate the simulated response of the structure.  

In this simulation, the RS domain for the updating parameters is set to 27,000 to 

33,000 ksi (186.2 to 227.5 GPa) for E and 0.05 to 0.25 for b. Since the location of true 

model parameters in the RS domain is always unknown in the inverse problem of 

model updating, four pairs of model parameters are selected from the RS domain to 

simulate the measured responses of the non-linear frame under earthquake loading. 

Table 4.1 presents the true model parameters that are used for simulation.  
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Table 4. 1. Case studies of model parameters used to simulate the measured signals 

 

Three earthquake records with different characteristics in terms of duration, fault 

distance, and frequency content are selected to study the sensitivity of the parameter 

estimation procedure to seismic input excitation. Figure 4.20 shows the time history 

and Fourier amplitude spectra of these ground motion records. 

 

Figure 4. 20. Acceleration time history and Fourier amplitude spectra of: (a) Kern County 

earthquake (1952), (b) Northridge earthquake (1994), and (c) Imperial Valley earthquake (1940) 

The selected earthquake records are: (1) Fault-normal component of Kern County 

earthquake (1952) recorded at LA Hollywood Stor Pe Lot station (PEER, 2013) which 

is a long duration far-fault record with a relatively long strong motion portion, (2) 

Fault-normal component of Northridge earthquake (1994) recorded at Rinaldi 

b E( x10
3
 ksi) E( GPa)

Case (1) 0.065 27.5 189.6

Case (2) 0.05 33 227.5

Case (3) 0.18 28 193.1

Case (4) 0.125 31.5 217.2

True model parameters
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Receiving station (PEER, 2013), a near-fault short duration record with a pronounced 

pulse in its time history, and (3) North-south component of horizontal ground 

acceleration of the Imperial Valley earthquake (1940) recorded at EL Centro station 

(PEER, 2013)  which has a frequency content more uniform than the first two records 

and a relatively medium length strong shaking part.  These earthquake records are 

scaled to simulate a dynamic lateral force at floor level which creates 1 in (2.54 cm) 

maximum u1(t), when model behaves linearly with E=33,000 ksi (227.5 GPa). The 

effect of measurement noise is also investigated by contamination of the simulated 

reference responses with Gaussian noise signals with different standard deviations. 

4.3.4. Parameter estimation using GRSMU 

The unknown model parameters are estimated based on the measured responses of 

the frame in 60 simulated scenarios resulting from three different input excitation, 4 

different pairs of true model parameters, and 5 different levels of measurement noise. 

The model construction and evaluation steps of the GRSMU algorithm resulted in a 

5x3 design for b and E. The RS models regressed on this design have model order of 4 

for b, and 2 for E. In the optimization step, the resulting optimization problem in Eq. 

(1) is formulated and solved iteratively in a window selected from the response of 

system to the strong motion segment of each earthquake loading. Table 4.2 

summarizes the information regarding the model updating window associated with 

each earthquake loading case. 
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Table 4.2. Details of the steel frame model calibration using Earthquake records 

 

In order to find the global minimum of the formulated objective function at each 

time step,  a multi-start optimization framework is adopted based on interior-point 

algorithm (Nocedal and Wright 2006) using four corners of the RS domain as starting 

point. Figures 4.21 and 4.22 display the histograms of the updating parameters using 

EQ (1) record to simulate the input seismic loading on the frame. These figures show 

that GRSMU successfully estimates the model parameters regardless of the location of 

the true model parameters in the selected RS domain. The parameter estimation 

procedures are reiterated to capture the variability of the results with respect to the 

input excitation and noise level in each case. Figure 4.23 summarizes the estimation 

error in all the 60 cases considered in this study. This figure indicates low error 

sensitivity of GRSMU estimates to measurement noise level in all cases with the 

exception of case (2) with high level measurement noise. Moreover, it is observed that 

the results are not sensitive to the choice of the ground motion record used for 

earthquake loading simulation. 

EQ(1) Kern County 11.95 21.5 0.005 0.010 955

EQ(2) Northridge 2.4 3 0.001 0.001 600

EQ(3) Imperial Valley  1.66 4.8 0.002 0.004 785

5: number of time steps used in the parameter estimation

2: end of the time window used in model calibration

3: time step used in finite element analysis (FEA)

4: time step used for parameter etimation in the selected time window

N opt

1: beginning of the time window used in the model calibration

dt opt (sec)Earthquake Record ts opt (sec) te opt (sec) dt FEA (sec)
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Figure 4.21. Histograms of the updated parameters using EQ (1) record (noise-free data): Case 

(1), (b) Case (2)  

 

Figure 4.22. Histograms of the updated parameters using EQ (1) record (noise-free data): Case 

(3), (b) Case (4)  

 



 

 

86

 

Figure 4.23. Error sensitivity in parameter estimation of the steel frame: case (1), (b) case (2), (c) 

Case (3) ,and (d) Case (4) 

4.4. Summary and Conclusions 

GRSMU is a generalized procedure for non-linear model updating using time-

domain data. In GRSMU, the parameter estimation is accomplished through 

approximation of the input-output relationship of the non-linear FE model with RS 

models, and optimization of an objective function based on measured response and 

regressed RS models successively through the time history of the measured data. This 

chapter is primarily concerned with the sensitivity of GRSMU estimates to noise, 

since a reliable parameter estimation technique should be robust to measurement noise 

which inevitably exists in any monitoring data.  

In this study, with the assumption of White Gaussian measurement noise, it is 

analytically shown that the GRSMU estimates have low sensitivity to the standard 

deviation of the noise. Numerical simulations of non-linear systems with several 

assumptions for measurement noise level, input excitation, true updating parameters, 
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and time-domain window for parameter estimation are used to validate this 

methodology. The results of the estimation of the post yielding stiffness ratio of the 

material in these systems through GRSMU show that the estimation error is fairly 

insensitive to low and medium measurement noise level. Additionally, when the 

vibration frequency of the system is outside of the frequency bandwidth of the load, 

the results show the least sensitivity to measurement noise level, selected time window 

for optimization, and location of the true model parameters in the RS domain. 

 Further application of GRSMU is also studied through a case study of a steel 

frame with bilinear material under seismic loading. In this simulation, three 

earthquake records with different characteristics in terms of duration, fault distance, 

and frequency content are selected to capture the variability of the parameter 

estimation results. The uncertain model parameters are successfully estimated based 

on the measured responses of the frame in 60 simulated scenarios resulting from 3 

different input excitation, 4 pairs of true model parameters, and 5 increasing levels of 

measurement noise. 

It should be noted that as this study is mainly concerned with evaluation of the 

overall performance of GRSMU algorithm, uniform spatial distribution is assumed for 

the unknown model parameters. In model-based damage detection scenarios, different 

spatial distribution could be possibly assumed in order to locate and quantify the 

structural damage.  
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Chapter 5 

Assessment of the 2011 Virginia 

Earthquake Damage and Seismic 

Fragility Analysis  

of  

the Washington Monument 

The 2011 Virginia Earthquake underlines the need to assess seismic vulnerability 

of structures in the Central and Eastern United States (CEUS), where according to the 

United States Geological Survey (USGS), due to the unique geological and 

geotechnical conditions, ground shaking although less frequent can be felt over a 

significantly broader region compared to similar events in the Western United States, 

and therefore the consequential damage is expected to be more widespread.  One 

example of this phenomenon is the damage observed in the Washington Monument 

following the August 2011 Virginia Earthquake, which occurred despite being located 

over 130 km away from the epicenter of this 5.8 Mw earthquake in Mineral, VA. 

Several damage observations in this structure were reported including cracks, surface 

spalling, and dislodging of stone blocks in the pyramidion, crumbled mortar, as well 

as damage to the elevator (Wiss, Janney, Elstner Associates, Inc. 2011). The structure 

was immediately evacuated and remained closed to public for nearly three years to 
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complete the repairs to the Monument.  Due to architectural and national significance 

of this structure, it is of substantial interest to study the possibility of damage to this 

structure under future seismic events. Such a prediction is beneficial for decision 

making in regards to the development of health monitoring plans for the structure. 

This chapter investigates the fragility of the Washington Monument at different 

seismic hazard levels. For this purpose, a finite element model (FEM) of the structure 

is developed and calibrated with reference to the dynamic characteristics of the 

structure identified through ambient vibration measurements (Shahidi et al. 2015a). 

The updated model is then used to study the behavior of the structure during 2011 

Virginia earthquake to explain the potential causes of the observed damage following 

this event. Finally, a fragility analysis is performed to study the probability of 

occurrence of similar structural and non-structural damage states in the future.  

The focus of this chapter is the causes of damage to the shaft of Monument 

during Virginia earthquake as well as the possibility of damage to the shaft in the 

future. While the effect of top section of the structure -which is called pyramidion- on 

overall dynamic behavior of the Monument is included in the FEM, this section is not 

modeled in detail due to lack of available information for modeling as well as interior 

access for sensor deployment and structural identification of such a complicated 

system. Wells et al. (2015) presents a vulnerability assessment on the Monument, 

where pyramidion section was modeled in more details; however, the FEM developed 

in that study was not validated with the vibration characteristics of the structure, and 



 

 

90

vibration periods appear to deviate from measured vibration periods presented in this 

chapter. 

5.1. Washington Monument: Structural Description 

This section briefly describes the construction history and structural details of 

the Washington Monument.  Construction of this structure was completed in two 

phases with a two-decade suspension due to lack of funding and the occurrence of the 

Civil War. 

During the period of 1848 to 1856 a 23.3 ft. (7.1 m) deep stair stepped pyramid 

foundation having a square base with 80 ft. (24.4 m) long sides was constructed of 

blue gneiss. Marble and bluestone masonry walls that were 55.5 ft. (16.9 m) wide and 

15 ft. (4.57 m) thick at the ground level were raised to about 156 ft. (47.5 m).  

During the period of 1879 to 1884 a second phase of construction occurred 

involving the strengthening of the original foundation using a system of tunneling and 

filling with concrete. The new foundation with a base of 126 ft. 5.5 in. (38.5 m) long 

at each side and a depth of 36 ft. 10 in. (11.2 m) fully encased the primary foundation 

in concrete (John Milner Associates, Inc.  2004). Construction of walls was resumed 

by first reducing them to a height of 150 ft. (45.7 m), and then rising them to the 500 

ft. (152.4 m) level to create a shaft.  These walls are 34.5 ft. (10.5 m) wide and 1.5 ft. 

(0.46 m) thick at the top, are made of marble and granite below the 450 ft. (137.2 m) 

level and marble from the 450 ft. (137.2 m) to 500 ft. (152.4 m) level. Finally, the 

pyramidion section was built from 500 ft. (152.4 m) to 555.4 ft. (169.3 m), making the 

height of the Monument approximately ten times its baseline dimension. Figure 5.1 
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shows vertical and horizontal sections of this structure based on a historic blueprint 

(Historic American Engineering Record 1986). This historic blueprint provides some 

information about the inner structure of the Monument, which consisted of horizontal 

platforms and staircases located at every ten feet (3.05 m) along the height of the 

structure, vertical columns supporting the platforms and staircases, and an elevator 

shaft which runs through the center of the Monument.  More detailed blueprints of the 

interior structure (Oehrlein and Associates Architects 1993) show  eight columns, 

running vertically over the height of the Monument (See Figure 5.2). These columns 

are called “Phoenix Column” and are each a circular pipe column made of iron, 

commonly used during the time of this construction.  

 

 

 

Figure 5.1. Washington Monument: (a) vertical section through north and south walls, (b) 

horizontal section at 180 ft. (54.9 m) level, and (c) horizontal section at 480 ft. (146.6 m) level 
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Figure 5.2. Detailed interior structure of the Washington Monument. (a) 150 ft (45.7 m) 

level and (b) 160 ft (48.8 m) level (Oehrlein and Associates Architects, 1993) Note: Gray circles 

represent vertical iron Phoenix columns (Note: 25’ = 7.6 m and 31’-5 ½” = 9.6 m) 

 

5.2. Post-earthquake Assessment of the Washington Monument  

The Washington Monument suffered damage during the 2011 Virginia 

earthquake causing it to be closed to the public until repairs could be completed 

(planned for early 2014). The main types of damage observed in the Monument were 

cracking and spalling of the exterior stone. Cracking and spalling occurred over the 

entire height of the structure, with a larger density of cracking occurring in the 

pyramidion as well as the upper section of the shaft around 450 ft. (137.2 m) level. 

Figure 5.3 shows examples of cracking in the marble pyramidion panels. The crack 

shown in Figure 5.3(a) is approximately 4 ft. 4 in. (1.32 m) in length and 7 in. (0.18 
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m) deep, and cuts through the entire depth of the marble panel. Figure 5.3(b) shows a 

close-up view of cracking of a previously repaired crack in a pyramidion panel. 

Examples of the observed spalling are provided in Figure 5.4, where Figure 

5.4(a) displays spalling of the corner of a marble pyramidion panel and Figure 5.4(b) 

shows a complex spall at a previously repaired corner. 

It should be noted that some of the observed damage had been documented in 

previously published historic assessment reports and did not necessarily occur during 

the 2011 Virginia earthquake. In order to investigate this issue, Figure 5 presents a 

timeline of the documented condition surveys of the Washington Monument. Figure 

5.5(a) shows the condition of the exterior stones of the Monument in 1934 (John 

Milner Associates, Inc. 2004); where the spalling was more severe below the 150 ft. 

level of the shaft. Figure 5.5(b) displays the results of a crack survey on the exterior of 

the Washington Monument published in 1993, which shows two main categories of 

cracking on all faces of the Monument: (1) lower level cracks, running between the 

160 ft. (48.8 m) and 234 ft. (71.3 m) levels, and (2) the upper level cracks, above the 

450 ft. (137.2 m) level (Oehrlein and Associates Architects 1993).  Figures 5.5(c) and 

5.5(d) respectively, show vertical cracking above the 150 ft. (45.7 m) level (west 

elevation) and 420 ft. (128 m) level (inside) the Monument, documented in 2004 (John 

Milner Associates, Inc. 2004). Figures 5.5(e), (f) and (g) are from the post-earthquake 

assessment of the Washington Monument performed by Wiss, Janney, Elstner 

Associates, Inc. (2011). These figures show the loss of mortar in a vertical joint above 

the 450 ft. (137.2 m) level, the cracking of a previously repaired vertical joint on the 

west elevation and deep spalling on the west elevation near the pyramidion.  Finally, 
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Figure 5.5(h), published in The Washington Post (July 9, 2012), shows the damaged 

masonry stones of the Monument on its four elevations. These observations from the 

timeline imply that the 2011 Virginia earthquake-induced damage on the Washington 

Monument is most likely on the pyramidion and upper as well as the middle levels of 

the masonry shaft. 

 

Figure 5.3. Cracking in pyramidion of the Washington Monument. (a) A newly developed 

crack on the west face of the pyramidion (b) Additional cracking along a historic crack (Wiss, 

Janney, Elstner Associates, Inc., 2011) 

 

 

Figure 5.4. Spalling of pyramidion panels of the Washington Monument: (a) North face, (b) 

Northeast corner (Wiss, Janney, Elstner Associates, Inc., 2011) 
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Figure 5.5. Timeline of the Washington Monument condition survey 

 

5.3. Structural Modeling 

This section describes the procedure adopted in this study to create the finite 

element model of the structure. In the analytical modeling of Washington 

Monument, like any other structural systems, a number of assumptions are made, 

particularly in terms of material properties. Hence, the calibration of the model with 
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the vibration characteristics of the structure from field testing is essential prior to 

deriving any conclusions regarding the causes of the damage due the earthquake.   

Information obtained from the blueprints of the Monument was used to construct 

a 3D finite element model of the structure using the computer program SAP2000 

(Computer and Structures, Inc. 2010). The overall dimensions used for the exterior of 

the Monument were a height of 500 ft. (152.4 m) from the base to the bottom of the 

pyramidion with baseline dimensions of 55 ft. 6 in. (16.9 m). The interior dimensions 

were 25 ft. (7.6 m) by 25 ft. (7.6 m) from the base up to the 150 ft. (45.7 m) level 

where they expand linearly to 31.5 ft. (9.6 m) by 31.5 ft. (9.6 m) at the 160 ft. (48.8 m) 

level and continue up to the 500 ft. (152.4 m) level. The wall thickness of the structure 

varied from 15 ft. (4.6 m) at the base to 1.5 ft. (0.46 m) at the top.  

This study is primarily concerned with the modeling of the Washington 

Monument shaft, and thus the details of the pyramidion section were not included in 

the model. However, its effect was modeled as a distributed vertical gravity force at 

multiple locations from the 470 ft. (143.3 m) level (where the panels that support the 

pyramidion are integrated into the shaft’s walls) to the 500 ft. (152.4 m) level, adding 

up to the estimated weight of the pyramidion. Choosing the dead load as the source to 

define the nodal masses for the dynamic analysis, the corresponding pyramidion mass 

was added to the nodal lumped masses obtained from the solid elements in the FEM. 

As shown in Figure 5.1 the outer walls of the Monument are constructed from a 

combination of marble and granite. Therefore, in the model, an average of the material 
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properties of these two types of stone was used. Table 1 shows the range of values for 

the modulus of elasticity and unit weight of granite, marble, and iron. 45 GPa and 85 

GPa were used as lower and upper bounds of the modulus of elasticity of the stone and 

165 pcf (25.9 kN/m3) for its unit weight.  The material model for iron was defined 

using 190 GPa and 210 GPa as lower and upper bound values, and 485 pcf (76.2 

kN/m3) unit weight.   

The finite element model of the masonry shaft was constructed using 3D solid 

elements. In order to ensure the accuracy of the model, different meshes were 

developed by increasing the number of elements in each model (shown in Figure 5.6). 

Amongst these, the FEM with 5,600 solid elements (shown in figure 5.6(d)) was 

chosen since using a finer mesh of elements would change the natural frequencies of 

the model less than 0.1%. Phoenix columns were modeled with beam elements 

defined with pipe section properties. In order to include the effects of the stairs and 

platforms, diaphragm constraints are assigned to the inner nodes of the shaft at each 

ten foot level.  
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Figure 5.6. FEMs of the masonry shaft with (a) 784, (b) 1456, (c) 2800, (d) 5600, and (e) 11200 

solid elements 

The foundation was modeled as a lumped mass located at its center of mass and 

a group of uncoupled springs at the base of the foundation to represent the compliance 

of the sub-structure with respect to translation and rotation about all three principal 

directions of the model. The stiffness of these springs were calculated according to 

“Seismic Rehabilitation of Buildings” (FEMA 356). In this method, the foundation is 

assumed rigid with respect to the supporting soil, and hence the uncoupled spring 

model represents the stiffness of the surrounding soil. The equivalent spring 

coefficients are found based on the dimensions of the footing and effective shear 

modulus of the underlying soil. In this procedure, values for the unit weight and 

Poisson ratio of the soil were respectively assumed as 17 kN/m3 and 0.2, and the 

average measured shear wave velocity of 1274.3 ft/sec (388.4 m/sec) of the soil strata 

to the base of foundation were used. Correction factors are applied in order to consider 
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the effect of the soil embedment on the foundation stiffness. Table 5.2 summarizes the 

stiffness of the springs used to model the sub-structure. 

Table 5.1. Material properties of stone and iron 

 

 

 

Table 5.2. Description of the foundation springs 

 

 

5.4. Parametric Study 

In order to consider the uncertainty associated with the adopted modeling 

approach, as well as the impact of foundation modeling, different cases were studied 

by permutation of the material properties of the structure as well as the stiffness of the 

foundation springs. The average of the lower and upper bounds of elastic modulus of 

granite and marble were used as the lower and upper bound values of the modulus of 

elasticity of the stone throughout the shaft. Therefore, the lower bound of the stone 

modulus of elasticity was assumed to be equal to 45 GPa (average of 40 GPa and 50 

granite 40 - 70 5,801 - 10,152 168 26.4

marble 50 - 100 7,241 - 14,503 160 25.1

 iron 190-210 27,557-30,458 485 76.2

Material 
Elastic modulus 

(GPa)

Elastic modulus 

(ksi)

Unit weight 

(lb/ft
3
)

Unit weight 

(kN/m
3
)

KX Translation along X-axis 2.9322E+06 4.2806E+07

KY Translation along Y-axis 2.9322E+06 4.2806E+07

KZ Translation along Z-axis 2.4159E+06 3.5268E+07

KXX Rocking about X-axis 9.2632E+09 1.2552E+10

KYY Rocking about Y-axis 9.2632E+09 1.2552E+10

KZZ Torsion about Z-axis 1.9532E+10 2.6467E+10

Kips.ft/rad kN.m/rad

Degree of freedom Stiffness Unit Stiffness Unit

Kips/ft kN/m

Spring
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GPa), and a value of 85 GPa (average of 70 GPa and 100 GPa) was used as the upper 

bound. The lower and upper bound values of the foundation stiffness were established 

using a factor of 0.5 and 2 to the stiffness calculated based on FEMA 356 to account 

for the uncertainty associated with the modeling of the foundation (FEMA 2000). To 

this end, twelve different cases of FEMs were studied where the first six cases are 

based on estimated lower and upper bound values for material properties and 

foundation stiffness, and the last six cases are based on assumption of average 

elasticity moduli for stone and iron, and foundation stiffness having values shown in 

Table 5.2.  

In Case (1) the modeling of the foundation is not considered, and the iron and 

stone in the super-structure were modeled using the upper bound value of the moduli 

of elasticity given in Table 1. In Cases (2) and (3),  upper and lower bound values of 

the foundation stiffness were considered, respectively, while the super-structure 

material properties are the same as that in Case (1). Three other permutations are made 

by assigning the lower bound moduli of elasticity to the masonry shaft and the 

Phoenix columns to create Cases (4), (5) and (6). In Case (4) the super-structure is 

modeled with the lower bound value of the material properties and is fixed at the 

ground level. In Cases (5) and (6), the lower bound values for the material properties 

of the super-structure are used; however, the foundation is modeled with upper bound 

(Case 5) and lower bound (Case 6) values. Case (7) is created by assigning average of 

lower and upper bound values of the moduli of elasticity (65 GPa) to stone and iron 

without including the foundation in the model. In Cases (8), foundation springs 

(having the values shown in Table 2) are added to this model. Case (9) and (10) are 
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created to study the effect of uncertainty in foundation stiffness when the super-

structure is modeled with average of the bounds of the material properties. Finally, in 

Case (11) and (12) upper and lower values for the material properties of the super-

structure are used, while foundation springs are modeled with values tabulated in 

Table 5.2. Table 5.3 summarizes the modeling assumptions of this parametric study.  

Table 5.3. Description of the parametric study 

 

 

Tables 5.4 and 5.5 present the results of modal analysis of these twelve cases. 

These tables show that the structural characteristics change extensively with the 

permutation of the material properties and the foundation stiffness. Additionally, 

modeling the foundation significantly affects the period and shape of the structural 

vibration modes in the model. 

 

 

 

Case (1) maximum moduli of elasticity foundation was not modeled

Case (2) maximum moduli of elasticity maximum estimated stiffness

Case (3) maximum moduli of elasticity minimum estimated stiffness

Case (4) minimum moduli of elasticity foundation was not modeled

Case (5) minimum moduli of elasticity maximum estimated stiffness

Case (6) minimum moduli of elasticity minimum estimated stiffness

Case (7) average moduli of elasticity foundation was not modeled

Case (8) average moduli of elasticity from TABLE 2

Case (9) average moduli of elasticity maximum estimated stiffness

Case (10) average moduli of elasticity minimum estimated stiffness

Case (11) maximum moduli of elasticity from TABLE 2

Case (12) minimum moduli of elasticity from TABLE 2

Super-structure material 

properties
Sub-structure stiffness 
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Table 5.4. Periods of vibration and description of the mode shapes, FEM cases 1–6 

 

 
 

Table 5.5. Periods of vibration and description of the mode shapes, FEM cases 7–12 

 

 

5.5. Ambient Vibration Measurements 

In order to minimize the uncertainty in the finite element modeling of the 

Washington Monument, field vibration tests were conducted to establish the dynamic 

characteristics of the structure and use them as a basis to select the FEM case which 

1 0.809 trans-Y 1.014 trans-Y 1.495 trans-Y 1.112 trans-Y 1.266 trans-Y 1.667 trans-Y

2 0.809 trans-X 1.014 trans-X 1.494 trans-X 1.112 trans-X 1.265 trans-X 1.667 trans-X

3 0.218 trans-Y 0.288 trans-Y 0.414 axial 0.300 trans-Y 0.359 trans-Y 0.451 trans-Y

4 0.218 trans-X 0.288 trans-X 0.372 trans-Y 0.300 trans-X 0.359 trans-X 0.451 trans-X

5 0.116 torsional 0.211 axial 0.372 trans-X 0.159 torsional 0.217 axial 0.417 axial

6 0.099 trans-Y 0.146 trans-Y 0.216 trans-Y 0.136 trans-Y 0.175 trans-Y 0.246 trans-Y

7 0.099 trans-X 0.146 trans-X 0.216 trans-X 0.136 trans-X 0.175 trans-X 0.246 trans-X

8 0.073 axial 0.120 torsional 0.134 torsional 0.100 axial 0.162 torsional 0.172 torsional

9 0.058 trans-Y 0.097 trans-Y 0.114 trans-Y 0.080 trans-Y 0.117 trans-Y 0.148 trans-Y

10 0.058 trans-X 0.097 trans-X 0.114 trans-X 0.080 trans-X 0.117 trans-X 0.148 trans-X

P: Period (sec)

M. D. : Mode Discription

P M. D.

Case (6)

P M. D. P M. D. P M. D. P M. D. P

Mode 

number

Case (1) Case (2) Case (3) Case (4) Case (5)

M. D.

1 0.925 trans-Y 1.272 trans-Y 1.107 trans-Y 1.556 trans-Y 1.193 trans-Y 1.409 trans-Y

2 0.925 trans-X 1.271 trans-X 1.107 trans-X 1.556 trans-X 1.193 trans-X 1.409 trans-X

3 0.250 trans-Y 0.354 trans-Y 0.315 trans-Y 0.415 axial 0.324 trans-Y 0.399 trans-Y

4 0.250 trans-X 0.354 trans-X 0.315 trans-X 0.402 trans-Y 0.324 trans-X 0.399 trans-X

5 0.132 torsional 0.296 axial 0.213 axial 0.402 trans-X 0.295 axial 0.298 axial

6 0.113 trans-Y 0.187 trans-Y 0.157 trans-Y 0.229 trans-Y 0.176 trans-Y 0.203 trans-Y

7 0.113 trans-X 0.187 trans-X 0.157 trans-X 0.229 trans-X 0.176 trans-X 0.203 trans-X

8 0.083 axial 0.140 torsional 0.136 torsional 0.148 torsional 0.125 torsional 0.165 torsional

9 0.067 trans-Y 0.118 trans-Y 0.105 trans-Y 0.128 trans-Y 0.107 trans-Y 0.134 trans-Y

10 0.067 trans-X 0.118 trans-X 0.105 trans-X 0.128 trans-X 0.107 trans-X 0.134 trans-X

P: Period (sec)

M. D. : Mode Discription

M. D. P M. D. P M. D.M. D. P M. D. P M. D. P

Mode 

number

Case (7) Case (8) Case (9) Case (10) Case (11) Case (12)

P
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best represents the actual structure. This section presents the details of 

instrumentation, vibration monitoring, and structural identification of the Monument. 

Ambient vibration measurement of the Washington Monument was conducted 

using a network of 8 sensors and a portable data acquisition system (DAQ) (shown in 

figure 5.7). The sensors are single channel accelerometers manufactured by Silicon 

Designs, Inc. (model number 2210-002). The DAQ has a 24-bit analog to digital 

convertor (ADC), with a quantization resolution of less than 1 ��. The sensors have a 

characteristic noise floor of 13 �� √��⁄ , which for a signal filtered at 15 Hz translates 

to about 50 �� root mean squared (RMS) noise.  

 Two wired accelerometers were located at each corner of the masonry shaft of 

the Monument at the 491 ft. (149.7 m) level to measure the horizontal vibration of the 

structure in two orthogonal transverse directions. Figure 5.8(a) shows the layout of 

this sensor network and figures 5.8(b) and (c) show sensors A1 and A2 attached to the 

Washington Monument. Ambient vibrations were measured for over a 60 minute 

duration using a sampling frequency of 200 Hz (720,000 samples per channel).   

Figure 5.9(a) shows the time history of the data collected at the southwest corner 

of the WAMO after removing the unwanted trend due to temperature change caused 

by wind and sunshine.  This figure shows that the ambient vibration amplitude is 

about 300 ��. The collected data are further studied in the frequency domain.  Figure 

5.9(b) presents the average power spectral density (PSD) of the 8 measured signals 

obtained using the Welch method (Welch, 1967). This figure shows distinct peaks of 
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the PSD, corresponding to the natural vibration frequencies of the system. The peaks 

are distinct and clear, and repeat in data from all sensors. 

 

 

Figure 5.7. (a) Silicon Designs accelerometer,  (b) Portable data acquisition system, (c) 
Single channel wired sensors at 491 ft. (149.7 m) level 

 

Figure 5.8. Instrumentation plan at: (a) 491 ft. (149.7 m) level; (b) and (c) sensors A1 and A2 

attached to the southeast corner of the Monument 
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Figure 5.9. Acceleration measured through sensor A1: (a) detrended time history, and (b) 

power spectral density 

5.6. Modal Parameter Identification 

Modal parameter identification is performed using the output-only Eigen 

Realization Algorithm (ERA-OKID). Using a software package developed at Lehigh 

University for convenient modal identification of dynamic systems [SMIT or 

Structural Modal Identification Toolsuite; Chang and Pakzad (2013)], the optimum 

model order was found from the stabilization diagrams (with convergence thresholds 

of 5%, 95%, and 10% for frequencies, MAC values (Allemang 2003) and damping 

ratios, respectively) and the modal properties were extracted. Figure 5.10 shows the 

stabilization diagrams created based on the ambient acceleration signals measured in 

the EW and NS directions. In these plots, the identified modal parameters at every 

model order are marked if they fall within the pre-specified stability threshold of the 

identified modal parameters at the previous model order.  
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Table 5.6 shows the first 7 identified structural modes using the entire data set. It 

should be noted that because the sensor deployment was located at only one level of 

the WAMO, no spatial information along the height of the structure for the mode 

shapes are available, and thus the modal ordinates are used to distinguish between 

modes in the two transverse directions and twisting (i.e., torsional modes). Moreover, 

since in this project a short-term ambient vibration analysis was conducted, a study of 

the effect of environmental factors on the dynamic characteristics of the Monument 

was not of primary focus. 

 

 

Figure 5.10. Stabilization diagrams in 0–9 Hz frequency range based on the acceleration signals. 

PSD—power spectral density; MAC—modal assurance criterion. (a) Measured in east-west (X) 

direction. (b) Measured in north-south (Y) direction. 
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Table 5.6. Dynamic characteristics of the Monument identified through measurements 

 

5.7. Baseline FEM 

The parametric study presented earlier showed that among all the cases, the one 

with lower bound values for the modeling parameters has the closest periods to the 

identified natural frequencies from the ambient vibration measurements. Therefore, 

the set of modeling parameters from this case is used to create a baseline FEM in 

which the effect of mass of the soil on top of the foundation was also considered. This 

model was created using ABAQUS (Dassault Systèmes 2013): (1) in order to cross-

validate the previous SAP2000 modeling, and (2) because of its capability to assign 

non-linear material model to continuum elements to be able to perform fragility 

analysis. A comparison between the ABAQUS and SAP2000 baseline FEMs showed 

that these models are in good agreement;  less than 1.8% and 6.5% relative difference 

exist, respectively, in the first 20 vibration periods and maximum tensile stresses 

predicted by the models. Table 5.7 summarizes the modeling parameters of this 

baseline model. In order to further minimize the estimation error of the developed 

FEM, the uncertainty associated with the modeling parameters are identified, and 
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subsequently a systematic search in domain of uncertain model parameters is 

conducted.  

 

 

 

 

 

 

 

 

 

Table 5.7. Modeling parameters of the baseline FEM  

 

 

 

 

value value

(unit) (unit) 

672 305

(kips) (tons)

0.165 2.64

(kips/ft
3
) (ton/m

3
)

6.79E+04 3.08E+04

(kips) (tons)

2.31E+04 1.05E+04

(kips) (tons)

9.3984E+05 45

(ksf) (GPa)

1.4669E+06 2.1414E+07

(kips/ft) (kN/m)

1.2084E+06 1.7640E+07

(kips/ft) (kN/m)

4.6387E+09 6.2855E+09

(kips.ft/rad) (kN.m/rad)

9.7849E+09 1.3259E+10

(kips.ft/rad) (kN.m/rad)

unit weight of masonry walls 

stiffness of sub-structure in twisting 

about vertical axis (z)

stiffness of sub-structure in rocking 

about horizontal axes (x & y)

stiffness of sub-structure              

along vertical axis (z)

stiffness of sub-structure                

along horizontal axes (x & y)

weight of  foundation

elasticity modulus of masonry walls 

weight of soil on top of  foundation

weight of  pyramidion 

Modeling parameter
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5.8. FE model updating based on the identified modal quantities 

As the first step for model calibration, the model parameters possessing 

uncertainty are identified. Model parameters describing the super-structure mass (i.e., 

mass of masonry walls and pyramidion section) and sub-structure mass (i.e., mass of 

foundation with soil on top of it) were verified through a comparison with previous 

estimations (Casey 1885). Therefore, the main sources of uncertainty in the FEM are 

the modulus of the elasticity of the masonry walls of the shaft and the spring model of 

the soil. Two separate parameters are considered to calibrate the moduli of elasticity of 

the shaft: P1 and P2. These two updating parameters are unitless factors to be applied 

to the moduli of elasticity of masonry material shown in Table 1 during the calibration 

procedure.  P1 is applied to the modulus of elasticity of lower part of the shaft (0-150 

ft. (0-45.7 m) elevation) and P2 is applied to the modulus of elasticity  of  the upper 

part of the shaft (150-500 ft. (45.7-152.4m) elevation). This distinction is made 

because the lower portion of the structure was constructed three decades earlier than 

the upper part. Also,  the layout of these two sections are different; where the upper 

portion is made of marble and granite stone blocks and the lower portion has a layer of 

infill rubble masonry in between the interior and exterior stone wythes. It is expected 

then that the lower portion of the shaft will have a lower modulus of elasticity than the 

upper portion. The third uncertainty is represented by the parameter P3, where P3 is a 

unitless factor to be assigned to the spring model of the soil (shown in Table 5.6) in 

the calibration process.  
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Two calibration techniques are used to update the selected parameters of the 

FEM with reference to the identified vibration frequencies of the structure, and their 

results and computational costs are compared. First, a sensitivity-based method  is 

used (Mottershead et al. 2010). In this method, an error function is formulated on the 

basis of a truncated Taylor series expansion of the natural periods of the model, 

written in terms of the uncertain model parameters and a sensitivity matrix consisting 

of first derivatives of the vibration periods with respect to the model parameters. 

Starting with an initial estimate for the model parameters, this error function is 

iteratively minimized by updating the model parameters and the sensitivity matrix 

associated with them. Convergence is achieved when the periods of the updated model 

fall within a certain threshold from the identified periods (5% in this study), or when 

further updating iterations does not change the updating parameters (a 1% threshold is 

used for the average change in the updating parameters in this study). Since 

convergence of this method depends on the choice of the initial set of the model 

parameters, and also to ensure that the updated model parameters correspond to global 

optima of the error function, the model updating process is repeated using several 

different initial values for the parameters. Table 5.8 summarizes the initial and final 

set of values for model parameters identified with uncertainty as well as their error in 

predicting the identified periods. 
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Table 5.8. Model updating results using sensitivity method 

 

 

In the second calibration method, the GRSMU framework described in the 

previous chapters is used for model calibration. In this method, first, polynomial RS 

functions are trained to predict the response of the FE simulation in a pre-selected 

domain of model parameters. Then, the model updating problem is solved through 

minimization of the RS-based objective function shown in Eq. (5.1):   

7,5,3,1
)3,2,1(

3,2,1

min
2

=






 −
∑ i

T

TPPPRS

PPP i i

ii  
(5.1) 

In this equation, Ti  represents the ith identified natural period (shown in Table 2), 

and RSi denotes the RS model predicting the period of the FEM corresponding to Ti. 

In order to find RS models that are capable of predicting the response of the FE model 

throughout the domain of model parameters.The minimization problem is solved using 

the “active-set” algorithm (Nocedal and Wright 2006) in a multi-start framework 

P1 P2 P3 P1 P2 P3

Case 1 0.5 0.5 0.9 10.5 0.56 0.67 0.96 6.3 17

Case 2 1 0.5 0.9 8.4 NC
2

NC NC 8.4 12

Case 3 0.5 1 0.9 7.8 0.56 0.68 0.95 6.3 37

Case 4 1 1 0.9 14.0 0.56 0.67 0.96 6.3 37

Case 5 0.5 0.5 1.4 8.1 0.56 0.67 0.96 6.3 33

Case 6 1 0.5 1.4 11.3 NC NC NC 11.3 8

Case 7 0.5 1 1.4 13.0 0.56 0.67 0.96 6.3 25

Case 8 1 1 1.4 20.7 0.56 0.67 0.96 6.3 41
1
 RMSE: root mean square error in estimating the periods T1 , T3, T5, and T7 

2
 NC: no convergence 

3
 FEA count: number of finite element analysis (FEA) in updating process

FEA 

count
3

initial values RMSE
1 

(%)

updated values RMSE 

(%)
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starting from all vertices of the selected RS domain, which are in effect the starting 

points used in the sensitivity-based procedure described previously. Figure 5.11 shows 

the search history of each parameter. It is observed that regardless of the starting 

points convergence is achieved, and updated parameters using this method confirm the 

results of the sensitivity-based analysis performed earlier. Moreover, the construction 

and validation of the RS models are completed with 33 FE analyses. Compared to the 

total number of FE runs associated with the sensitivity method (shown in Table 5.8), it 

is observed that the cost of the global search of the RS domain of uncertain model 

parameters are six times lower than the sensitivity method.  

 

Figure 5.11. RS-based search history of the updating parameters: (a) P1, (b)P2, and (c)P3 
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Figure 5.12 presents four vibration modes of the updated FEM: the first-three 

translational modes in a transverse direction, along with the first torsional mode. 

Translational modes in the orthogonal transverse direction are not pictured here due to 

symmetry. Table 5.9, summarizes the vibration periods of the baseline and updated 

FEMs and their errors with respect to the identified vibration periods of the structure 

(shown in Table. 2). This table shows that the updated FE model (where P1=0.56, 

P2=0.67, and P3=0.96) better estimates the vibration periods of the Monument 

compared to the baseline FE model (where P1=1, P2=1, and P3=1).    

 

Figure 5.12. Vibration modes of the updated ABAQUS model, periods: (a) 1.874 sec, (b) 

0.515 sec, (c) 0.289, and (d) 0.213 sec  
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Table 5.9. Comparison of the estimation error of  FE model before and after model calibration 

with respect to the identified vibration periods from measurements 

 

5.9. Virginia Earthquake (2011) 

Recorded ground accelerations during the 2011 Virginia earthquake were used to 

investigate the behavior of the monument during this event. For this purpose, ground 

shaking at the foundation level (FL) of the Washington Monument was estimated 

based on the USGS recording of this earthquake in Reston, VA (Reston Fire Station 

25). This choice is justified because this station is the closest USGS station to the site 

(about 31 km away) and Reston and Washington, DC have comparable distances with 

respect to the epicenter of the earthquake, Mineral, VA (both located northeast of 

Mineral, VA about 122 km and 130 km away, respectively). Shear wave velocity 

profiles at these two sites were measured by USGS and used to estimate the ground 

shaking at the site of Washington Monument during the earthquake based on the 

recorded ground shaking at Reston. These measurements are shown in Figure 5.13, 

and are aggregated with the estimated shear wave velocity at the deeper levels through 

bedrock. 

The bidirectional (E-W and N-S) ground motions recorded at the Reston station 

were rotated into path-parallel and path-normal components along the source-to-

recording site orientation (Mineral-Reston). These components at the ground surface 

Mode number

P: Period (sec)  E: Error (%) P(sec) E(%) P(sec) E(%) P(sec) E(%) P(sec) E(%)

baseline FEM 1.632 8.827 0.449 -7.231 0.260 -17.981 0.171 -22.624

updated FEM 1.874 4.693 0.515 6.488 0.289 -8.896 0.213 -3.710

1 3 5 7
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(GS) were then deconvoluted to the hard rock level at Reston using the shear wave 

velocity profile at the station’s site (shown in figure 5.13(a)). Hard rock motions in 

Reston were considered to be representative of the hard rock motions at the Monument 

site due to their proximity and respective distances to the earthquake source. Hard 

rock motions at the base of the Reston profile were rotated into (Mineral-Monument 

site) path-parallel and path-normal components. Site response analysis was then 

performed using Deepsoil (Hashash et al. 2012) to propagate the rotated rock motions 

up to the FL at the Washington Monument site using the velocity profile at the site 

(shown in figure 5.13(b)). Finally, an angular transformation was used to rotate the 

estimated FL and GS motions into the E-W and N-S directions to be applied to the 

base of the FEM. Figure 5.14 shows the time history and response spectrum of the GS 

and FL ground motions in the E-W and N-S directions, respectively.  

 

Figure 5.13. Shear wave velocity profile of the soil strata at (a) Reston (b) Washington Monument 

site 
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5.10. Behavior of the Monument during 2011 Virginia Earthquake 

Time histories of the FL acceleration in the N-S and E-W directions are applied 

bidirectionally to the base of the calibrated FEM.  Linear modal time history analysis 

are performed using a time step of 0.005 sec and zero initial conditions, and a 2% 

damping ratio for the structure is assumed which is in the range of the damping ratios 

obtained from the structural identification (shown in Table 5.7). This is also consistent 

with the identified damping ratios of masonry structures reported in the literature (De 

Sortis et al. 2005; Gentile and Saisi 2007). Time histories of E-W components of 

displacement and acceleration predicted by the calibrated FEM during the Virginia 

earthquake at the observation level (at 500 ft. (152.4 m)) are shown in Figure 5.15(a). 

This figure indicates a high range of acceleration occurs at this level, where the 

acceleration at the observation level are amplified by about 10 times compared to the 

maximum accelerations at the ground level. The distribution of maximum stresses in 

the vertical direction on the outer surface of the shaft is shown in figure 5.15(b). This 

figure shows the envelop of tensile stresses along the vertical direction of the shaft due 

to the combined effect of the self-weight of structure and bidirectional ground 

motions. The color scale in the figure indicates the magnitude of the stresses where the 

highest tensile stresses are shown in dark blue and white represents zero tensile stress. 

The tensile stresses are highly concentrated around the 350 ft. (106.7 m) level. These 

tensile stresses are significantly smaller than the reported tensile strength of masonry 

stone, but they are at the level of the tensile strength of the grout material. Table 5 

summarizes the reported tensile and compressive strength of these materials (ASTM 
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2010 and 2011). The maximum compressive stress throughout the entire structure (-

72.1 ksf (-3.45 MPa)) is also considerably smaller than the reported compressive 

strength of marble, granite, and grout as shown in Table 5.10. Therefore, the 

concentration of the maximum tensile stresses explains the cracking damage observed 

around these levels of the Monument shaft in terms of the mortar loss and re-cracking 

of the previously repaired cracks. 

  

 

Figure 5.14. Accelerograms and response spectra (2% damping) 
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Figure 5.15. FEM predicted structural response during Virginia earthquake: (a) history of 

acceleration and displacement at observation level (E-W direction), (b) distribution of maximum 

tensile stresses (ksf) in vertical (Z) direction  

 

 

Table 5.10. Compressive and tensile strength of masonry materials 

 

5.11. Fragility Study 

This section presents a fragility study to investigate the possibility of damage to 

the Washington Monument in future earthquake scenarios. The fragility function (FR 

in Eq. (5.2)) provides the probability of occurrence of a damage state conditioned on a 

ksf MPa ksf MPa

marble 144 6.9 -1080 -51.6

granite 216 10.3 -2736 -130.8

grout -288 -13.8

Masonry 

material

Tensile strength Compresive strength 

*

* tensile strength of the grout is assumed to be about 10% of 

its compressive strength
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seismic intensity measure (SIM) (e.g., peak ground acceleration, spectral acceleration 

at the fundamental period of vibration, etc.):  

)()()( SIMPSIMPSIMF LSDLSR θθ ≥==  (5.2) 

where 
Dθ  and LSθ  denote the seismic demand and structural capacity, 

respectively, associated with the limit state LS, both in terms of a specific engineering 

demand parameter (EDP) (e.g., interstory drift, peak floor acceleration, etc.). This 

function is commonly modeled as a two-parameter lognormal cumulative distribution 

function expressed by Eq. (5.3) (Shinozuka et al. 2000; Ellingwood et al. 2007): 

]
)/ln(

[)(
comb

LS
R

SIMSIM
SIMF

β
Φ=

 
(5.3) 

In this equation, LSSIM  is the median structural capacity associated with the 

limit state LS, Φ  denotes the standard normal cumulative probability function, and 

combβ  is the combined standard deviation reflecting the overall (aleatoric and 

epistemic) uncertainty in the fragility analysis. In effect, two sets of information are 

required for estimating the parameters of this lognormal fragility function: (1) 

probabilistic seismic demand model as a function of selected SIM, and (2) probability 

characteristics of the structural capacity associated with the limit state LS. 

The probabilistic seismic demand model in this study is a power function (shown 

in Eq. (5.4)) relating the selected structural demand to the SIM. This model was 

previously used for the fragility analysis of other types of structures such as reinforced 
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concrete frames (Celik and Ellingwood 2010) and steel frames (Cornell et all 2002, 

Kinali and Ellingwood 2007). 

εθ b

D SIMa=  (5.4) 

In logarithmic form this model can be written as 

)(ln)ln(ln)(ln εθ ++= SIMbaD  (5.5) 

Constants a and b are estimated using the least squares technique and a dataset 

generated from a non-linear time history analysis using an ensemble of earthquakes. 

)(ln ε  is the random error component in the regression analysis. In this model the 

errors are assumed to be uncorrelated and follow a zero mean Gaussian distribution 

(Montgomery et al. 2004). Therefore, )(ln SIMDθ  follows a normal distribution 

(Montgomery et al. 2004), where  

)),ln(ˆˆ(ln~)(ln )ln(εσθ SIMbaNSIMD +
 

(5.6) 

In Eq.(5.6), â and b̂ are the least square estimates for a and b, and 
)ln( εσ is the 

standard deviation of the error of the regression model shown in Eq. (5.6).  

In order to obtain the seismic intensity measure associated with the performance 

limit state, the model established in Eq. (5.4) can be used. Therefore, )(ln LSLS SIMθ

follows a normal distribution as shown in Eq. (5.7) 
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)),ln(ˆˆ(ln~)(ln LSLSLSLS SIMbaNSIM βθ +  (5.7) 

LSβ (the logarithmic standard deviation of LSθ ) is usually determined from an 

existing database (Ellingwood and Tekie 2001).  

 Having the probabilistic models of demand and capacity, Eq. (2) can be written 

as  

)0ln(ln)()( SIMPSIMPSIMF LSDLSDR ≥−=≥= θθθθ
 

(5.8) 

Substituting the Eqs. (5.6) and (5.7) into Eq. (5.8) reformulates the fragility 

function as 

]
ˆ/)(

)/ln(
[]

)ln(ˆ)ln(ˆ
[)(

222

ln

22

ln b

SIMSIMSIMbSIMb
SIMF

LS

LS

LS

LS
R

βσβσ εε +
Φ=

+

−
Φ=

 

(5.9) 

The quantity 
Mβ  is typically included in the standard deviation of this fragility 

function to represent the epistemic uncertainty associated with the error in the 

structural modeling (Kinali and Ellingwood 2007). Therefore, the logarithmic standard 

deviation of the fragility function shown in Eq. (3) is written as 

2222

ln
ˆ/)( MLScomb b ββσβ ε ++=

 
(5.10) 
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5.11.1. Generation of hazard level compatible earthquake ensembles 

As stated before, the first step in the fragility analysis is to establish a 

probabilistic demand model (shown in Eq. (5.4)). For this purpose, the FEM of the 

structure is analyzed using a suite of ground motions representing future potential 

ground shaking at the site of the structure. In this study, two sets of 22 bidirectional 

bedrock motions are utilized at the Design Basis Earthquake (DBE) and Maximum 

Credible Earthquake (MCE) hazard levels. These bedrock motions were originally 

developed by McGuire et al. (2001) as a set of 151 tri-dimensional bedrock motions to 

represent the CEUS ground shaking. Setting the DBE and MCE uniform hazard 

response spectrum (UHRS) developed by USGS at the bedrock level of the 

Washington Monument (Site Class A) as the target spectrum, the geometric mean of 

the horizontal components of these bedrock motions are uniformly scaled to match the 

target, and 22 sets of motions with the least overall error between the scaled spectra 

and the target spectrum (over periods smaller than 2 sec) are selected for the structural 

fragility analysis in this study (Chu et al. in preparation). A site response analysis is 

subsequently performed using Deepsoil (Hashash et al. 2012) to propagate the bedrock 

motions to the foundation level (FL) and ground surface (GS) using the shear wave 

velocity profile of the site (shown in figure 5.13(b)). Figure 5.16 shows the response 

spectra of the generated ground motions at DBE and MCE hazard levels.  



 

 

123

 

Figure 5.16. Acceleration response spectra (5% damping) (a) DBE hazard level (b) MCE 

hazard level 

5.11.2. Description of the ABAQUS non-linear FE model 

In order to study the fragility of the Monument, the updated ABAQUS FEM 

described above is modified to consider the fragility of the grout and previously 

damaged sections of the shaft tension and compressive failure during future 

earthquakes. Therefore, an elasto-plastic material model with the appropriate tensile 

and compressive strengths is introduced for the solid elements of the model of the 

shaft. For this material model, cracking in tension is governed by the maximum 

principal stress, while in compression maximum Von Mises criteria governs the 

maximum compressive stress. In this study, the maximum uniaxial tensile strength 

was set to 50% of the assumed tensile strength for the grout (see Table 5.10) to reflect 

the deteriorated state of the grout based on the post-earthquake assessment report 

(Wiss, Janney, Elstner Associates, Inc. 2011). The maximum uniaxial compression 

strength is set to the minimum of compressive strength of materials shown in Table 

5.10. However, this limit did not govern the material behavior in any of the MCE and 

DBE earthquake scenarios. Non-linear time history analyses are performed for each 

FL ground motion pair using the Hilber-Hughes-Taylor direct integration method (α=-
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0.05) with a 0.005 sec time step. Rayleigh proportional damping was used in the 

model based on 2% damping in the 2nd and 3rd translational modes.  

5.11.3. Acceleration-based Fragility analysis  

The analysis results showed that during the Virginia earthquake  the acceleration 

at the observation level is amplified by about 17 times compared to the input 

acceleration at the foundation level (i.e., FL). This high amount of acceleration 

amplification may explain the cause of the observed damage at the upper sections of 

the shaft, pyramidion, and fallen debris near the observation level following this 

earthquake. This section concentrates on the fragility of the “acceleration-sensitive” 

non-structural components (e.g. mechanical systems, elevator, lighting fixtures, etc.) at 

the observation level.   

In this study, the peak floor acceleration response at the observation level (500 

ft. (152.4 m)) and average (2% damping) FL spectral acceleration of the first three 

translational modes in E-W and N-S direction (Save) are selected as EDP and SIM, 

respectively. Figure 5.17(a) shows the EDP database resulted from the non-linear time 

history analysis of the FEM at the DBE and MCE hazard levels, as well as the 

developed probabilistic demand model. This demand model along with the  median 

capacity ( LSθ ) is used to create fragility functions. In order to improve this estimation, 

an interval associated with a selected statistical confidence level can be used. Since the 

demand model of Eq. (5.5) is developed with the assumption that )(ln ε is normally 

distributed the t-distribution is used to construct a 100(1-α) percent confidence interval 
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(CI) for ))((ln SIME Dθ , where α is the level of significance in the confidence interval 

and shows the rejection regions under the probability distribution function associated 

with )(ln SIMDθ . Figure 5.17 (b) shows the demand model predicted with the 95% 

confidence. Also shown on this plot is the 95% CI associated with predicting 

observations outside the range of datasets used in the regression analysis.   

Peak floor acceleration limits defined in HAZUS (FEMA 2012) for non-

structural acceleration-sensitive components of “Pre-Code” structures are adopted 

here. On this basis, four limits for progressively increasing non-structural damage are 

defined: “Slight” damage ( gLS 2.0=θ ), “Moderate” damage ( gLS 4.0=θ ), 

“Extensive” damage ( gLS 8.0=θ ), and “Complete” damage ( gLS 6.1=θ ). The three 

contributors to the damage variability are obtained as follows: (1) record-to-record 

variability is accounted for by using a point estimator for 
)ln( εσ from the regression of 

the demand model presented in figure 5.17; (2) as HAZUS suggests, LSβ is set to 0.6 

to consider the uncertainty in the damage state thresholds; and, (3) uncertainty 

associated with the capacity estimation using the updated FEM is also considered by 

setting 
Mβ  to 0.1. Figure 5.18(a) shows the fragility curves created for acceleration-

sensitive components at the observation level of the Washington Monument based on 

median EDP. Figure 5.18(b) shows the fragility regions created on the basis of the 

confidence intervals discussed above. For the “Moderate” and “Extensive” damage 

states, the 95% CI associated with estimation of  median EDP is used. However, for 

the “Slight” and “Complete” damage states, where the threshold falls outside of the 
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range of the dataset generated with DBE and MCE earthquake ensembles, the 

confidence interval for predicting observations outside the range of regression data is 

utilized to create the fragility regions. It is observed that with this method, more 

uncertainty is considered in estimating the fragility of the structure in the “Complete” 

damage state. Figure 5.18 indicates that for the Virginia earthquake with a 0.076 g 

average FL spectral acceleration at the first three translational modes of the updated 

FEM (spectral acceleration corresponding to first three translational modes in X(E-W) 

direction are 0.008g, 0.189g, and 0.168g, and spectral acceleration corresponding to 

first three translational modes in Y(N-S) direction are 0.003g, 0.062g, and 0.025g), 

there is a 85% to 98% probability of reaching the “Slight” damage state, 55% to 75% 

probability of reaching the “Moderate” damage state, and a low probability (less than 

25%) of reaching the “Extensive” and “Complete” damage states. 

 

Figure 5.17. Acceleration-based demand model: (a) generated dataset and regression 

model; (b) 95% estimation and prediction confidence level 
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Figure 5.18. (a) Acceleration-based fragility curves; (b) acceleration-based fragility regions 

(CI= 95%) 

5.11.4. Stress-based Fragility analysis 

Since cracking under tensile stresses is one of the main damage modes of 

masonry structures, the fragility of the Washington Monument associated with crack 

initiation and propagation is also investigated. For this purpose, three limit states are 

defined as follows:  (1) crack initiation; (2) crack propagation to more than 25% of the 

outer surface of the masonry shaft (representing the “Moderate” damage); and (3) 

crack propagation to more than 50% of the outer surface of the masonry shaft 

(representing the “Extensive” damage). The cracked area in each earthquake scenario 

is obtained by examining the area on the outer surface of the FEM to determine where 

a residual plastic strain exists at the end of each non-linear time history analysis. Table 

5.11 presents the probability of occurrence of these limit states at the DBE and MCE 

hazard levels. It is observed that for a DBE level earthquake scenario, there is high 



 

 

128

probability associated with crack initiation; however, it is unlikely that the cracking 

extends to a moderately large area on the outer surface of the Monument.  For a MCE 

level event on the other hand, the probability of crack initiation as well as the 

extensive crack propagation is high. For the Virginia earthquake with a 0.076 g 

average FL spectral acceleration at the first three translational modes of the updated 

FEM, the probability of crack initiation is high, whereas the probability of reaching 

the “Moderate” and “Extensive” damage state is low. This is consistent with the 

observations from damage reconnaissance reports following the Virginia earthquake. 

Table 5.11. Probability of occurrence of limit states associated with cracking  

 

5.12. Summary and conclusions 

This chapter explores potential causes of damage to the Washington Monument 

during the Virginia earthquake as well as the estimation of the probability of 

occurrence of similar patterns of damage to this structure during future earthquakes. 

For this purpose, a FEM of the Washington Monument is developed using the 

ABAQUS computer program. The focus of this study is to investigate the cause of 

damage to the shaft of the Monument during the Virginia earthquake as well as the 

possibility of damage to the shaft in the future. While the effect of pyramidion section 

on overall dynamic behavior of the Monument was included in the FEM, this section 

was not modeled in detail due to lack of available information for modeling as well as 

 (1) crack 

initiation

(2) moderate 

crack 

 (3) extensive 

crack 

DBE 10% 475 0.088 82% 23% 0%

MCE 2% 2475 0.190 100% 100% 59%

0.118 91% 61% 30%

Hazard 

Level

Probability of exceedance           

in 50 years

Retrun 

period 

(years)

median 

Save (g)

Probability of occurrence of limit state

Overall
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interior access for sensor deployment and structural identification of such a 

complicated system.  

The modeling primarily focuses on the sub- and super-structure of the outer 

masonry shaft of the Monument. In the sub-structure, the total mass of the foundation 

and soil on top of it is lumped at its center of mass and a group of uncoupled springs is 

used at the base of the foundation to model the compliance of the surrounding soil. In 

order to minimize the uncertainty in the modeling procedure, ambient vibration 

measurements are used to identify the dynamic characteristics of the structure. The 

FEM is then calibrated with reference to the extracted natural periods of the structure. 

Due to the lack of recorded ground motions in the immediate Washington, DC area, 

ground motions that occurred during the Virginia earthquake at the site of the 

Washington Monument are estimated by applying angular transformations and site 

response analysis using shear wave velocity profiles of soil layers measured by USGS 

to ground surface accelerations recorded in Reston, VA.  

A fragility study is also performed in order to estimate the probability of 

occurrence of similar types of damage in future earthquakes. Two site-compatible 

suites of ground motions at the DBE and MCE hazard levels are generated. A non-

linear FEM is developed to consider the brittle behavior of the grout and sealant 

material in tension. Probabilistic demand and capacity models are established, and 

fragility intervals associated with a 95% confidence level are developed for four stages 

of damage in acceleration-sensitive non-structural components. Moreover, the 
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occurrence probability of three damage states associated with initiation and extent of 

cracking of grout and repaired masonry materials are established.  

The principal findings of this research are as follows: 

1. This study highlights the importance of structural monitoring in 

providing valuable information about the dynamic characteristics of existing structures 

to be used as a basis for reduction of modeling uncertainty.  

2. The cross validation of the model calibration techniques reveals that 

while sensitivity-based and surrogate-based model updating methods yield the same 

results, surrogate-based model calibration requires less computational effort for global 

search in the domain of model parameters. 

3. Time history analysis of the calibrated FEM of the Washington 

Monument using the estimated ground shaking during the 2011 Virginia earthquake, 

show high acceleration at the top of the Monument as well as a concentration of 

tensile stress at the upper levels of the masonry shaft. These observations correlate 

with the damage observed in the pyramidion section and cracking of repaired sections 

and loss of mortar in the upper levels of the shaft. 

4. The fragility analyses performed indicate the probability of structural 

and non-structural damage to this structure in future earthquake scenarios. Fragility 

curves are beneficial in establishing the probability of several states of acceleration-

based damage at the observation level based on average spectral acceleration of a 

selected earthquake scenario.  
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5. The damage states associated with cracking of the grout material also 

shows a high probability associated with initiation and propagation of such cracks on 

the outer surface of the masonry shaft of the Monument during a future earthquake. 

6. The study highlights the critical need for improved recognition and 

greater awareness of the seismic vulnerability of constructed facilities and lifelines in 

the Central and  Eastern United States. 
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Chapter 6 

Structural damage detection  

and localization using multivariate 

regression models and two-sample 

control statistics  

This chapter presents model-free damage identification and localization methods 

based on two-sample control statistics. The proposed methodology consists of two 

steps: (1) damage feature extraction, and (2) decision making through change point 

analysis. Performance of combinations of several damage features, regression models, 

and control statistics on a scaled two-bay steel frame instrumented with a dense sensor 

array is compared. The acceleration response of the frame recorded from two different 

physical states are measured and control charts are used to find the significance of 

change between the two.  The first state is a baseline (here “healthy”) state of the 

structure, and the second is an unknown state. In effect, two sets of data are created 

that would be taken from a structure pre- and post- a damaging event (or a regular 

maintenance check). Damage features are created based on linear regression 

parameters, and are utilized in the control charts to make the distinction, if any, 

between an undamaged and an unknown state of the structure. The following sections 

describe the damage sensitive features and change point statistics used in this research.  
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6.1. Change point analysis using Normalized Likelihood Ratio test 

The Normalized Likelihood Ratio test (NLRT) can detect a shift in the mean 

and/or variance of a data set. It assumes that there are m independent observations that 

are normally distributed with mean µ and standard deviation σ. If a process is in-

control, at any partition of the data, the two sets would have similar means and 

variances. However, if there was a change in the process, the means and variances of 

the two subgroups would vary substantially from one another.   

As explained in Sullivan and Woodall (1996), the log of the likelihood function for 

the first m1 observations can be written as 

� = − ��
2 ���[2� !] −  �� �"!

2 ! − ��#$̅� − �&!
2 !  (6.1) 

 

Here, $̅� and  �"!
, represent the mean and variance of the first m1 observations, 

while � and  ! represent the population mean and variance. This function can be 

maximized to generate l1 presented below. 

�� = − ��
2 ���[2�] −  ��

2 ���' �( !) − ��
2  (6.2) 

This procedure can be repeated for the remaining �! #= � − ��& observations to 

find the maximum value of the likelihood function, l2. In this way of partitioning the 

process into m1 and m2, there is an assumption that there is a change in the data at 

point m1 +1. However, if this were not the case and the process was in-control for all m 

observations, the likelihood function would be maximized using $̅ and  !*, the mean 
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and variance of all m observations. This would generate lo, the maximum of the 

likelihood function for an assumed in-control process. If la, the sum of l1 and l2, is 

much larger than lo, the process is deemed to be out of control. For this reason, the 

likelihood ratio test detects the significance of the difference between the two. It is 

defined as �+,[��, �!] = −2#�. − �/& and has an asymptotic chi-squared distribution 

(0!) with two degrees of freedom (Sullivan and Woodall 1996). 

This statistics is normalized to create the NLRT with a threshold value of unity. In 

normalizing the statistic in this damage detection scheme, any value of the likelihood 

ratio for a damage feature that is above one represents an out of control feature. This 

can then be correlated to a location on a structure if the damage feature originated 

from data taken from a localized sensor network. In order to normalize the statistics, it 

is divided by its expected value (E), based on the dimensionality of the observations, 

p, and an upper control limit (UCL) based on a desired overall in-control false alarm 

probability, ω. As explained in Sullivan and Woodall (1996), the in-control expected 

value is not the same for all values of m1. If m1 and m2 are small, the expected value is 

larger than when both are the same. Therefore, when the model order is 1, the 

expected value can be approximated by simulation or  

1 = 2 2 �� + �! − 2
#�� − 1&#�! − 1& + 14 (6.3) 

The test statistics is also normalized using an upper control limit which is usually 

set to give a specified in-control average run length. Based on m and p, the upper 
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control limit can be approximated. Its value has been tabulated in Sullivan and 

Woodall (1996) using Eq. (6.4): 

567 = 1
1.7 9:�[#1 − ;&�

<∗] (6.4) 

Here >∗ = −4.76 + 3.187@#�&. F denotes the cumulative distribution function of 

a 0! distribution with two degrees of freedom. In this implementation, the vector of 

damage features is successively tested using NLRT (starting from m1=2, to avoid 

numerical instability, through m1=m-2) to detect the timing and location of the 

potential structural damage. 

6.2. Change point analysis using Student’s t-test 

The other change control threshold that is utilized in this dissertation bases on the 

Student’s t-test. The two-sample t-test is a common procedure for testing the 

differences between the means of two samples (Montgomery and Loftis 1987). There 

are three assumptions that this Student’s t-test follows: (1) samples come from a 

parent population that is normally distributed, (2) the two sample groups are from 

populations with equal variances, and (3) sample observations are independent. The 

statistics of this test has A − 2 degrees of freedom (A being the combined length of 

the two sample vectors) and is given by 

, =  ��� − ��!
BCD 1@� + 1@!

 (6.5) 
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where the variables ���and  ��! are the means, @� and @! are the size of the two 

samples, and BC represents their pooled standard deviation equal to  

BC! = #@� − 1&B�! + #@! − 1&B!!
#@� + @! − 2&  (6.6) 

 

S1 and S2 are the sample standard deviations. 

This method, used for cases in which the variance is assumed to be unchanged, can 

be used with linear regression parameters. This is because it represents the realistic 

condition when a property of the structure is changed due to damage if the change 

does not affect the estimation uncertainty of the damage feature. In this chapter this 

two-sample t-test is applied sequentially through the vector of damage features to 

identify and localize the structural damage. 

 Upper and lower control limits (UCL and LCL) for this test are then calculated 

using the Student's t inverse cumulative distribution function at a certain confidence 

level #1 − ;&% and A − 2 degrees of freedom #A =  @�  + @!& based on Eq. (6.7).  

567 = ,F�:G! H,I:! 

767 = ,G! ,I:! 

(6.7) 

6.3. Localized Damage Detection Method: Mathematical Models 

The damage features studied in this dissertation come from the linear regression 

coefficients produced by an algorithm called Influenced-based Damage Detection 
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Algorithm (IDDA) developed by Dorvash et al. (2013a and 2013b). These damage 

features are shown to be viable ways of detecting damage in a structure because they 

are sensitive to the changing properties of a structure. The IDDA algorithm correlates 

the response (measured acceleration signals in Dorvash et al. (2013a) and measured 

strain signals in Dorvash (2013b)) of a structure at various locations by creating 

influence coefficients from a linear regression model based on output of a dense 

sensor network. When damage occurs, the relationship between responses changes, 

which will be reflected in the influence coefficients and indicate the existence of 

damage. The location can then be pinpointed by correlating such data driven damage 

features to the location of the sensors.  

6.3.1. Single Variate Regression Model 

The simplest linear mapping model is the Single Variate Regression (SVR) model. 

It relates the acceleration response of one location to another location at the current 

time step. This version of the model can be represented using Eq. (6.8) 

JK = LJM + N + O (6.8) 

which correlates the response at node P to current response at node Q through L 

with intercept N and error O. Since the effects of previous time steps are removed from 

this equation, the intercept (N) is added into Eq. 6.8 to account for the initial 

conditions. The influence coefficient L is then used to extract damage feature from the 

linear regression model in this study. The derivation and validation of this simplified 

mathematical model can be found in Dorvash et al. (2013a) on a scaled beam-column 



 

 

138

connection. Since this damage feature has already been proven to detect and localize 

damage in small- and large-scale structural models (Dorvash et al., 2013a and 2013b), 

it is used as a basis for comparison and derivation of the proceeding damage features 

discussed in the following sections.  

6.3.2. Auto-Regressive Models 

The SVR model can be expanded to include more information about the system 

from past and present time steps of the structural response.  In effect, this Auto 

Regressive with Exogenous term (ARX) model can be written as       

JK#@& + R LKCJK#@ − S& = R LMTJM#@ − U&
V

TWX
+  Y#@&

Z

CW�
 (6.9) 

where yj and yi are outputs at locations j and i respectively, αjp’s and αiq’s are the 

ARX coefficients, Y#@& represents the residuals, @ is the time index, and [ and \ are 

orders of the autoregressive and exogenous parts of  the ARX model, respectively. 

Derivation and validation of this formulation can be found in Yao et al. (2012).  

This ARX model can be simplified to just include one location on a structure. This 

regression may produce more localized results if only one location is involved in the 

model. Acceleration response at the same location in time can be established using an 

Auto Regressive (AR) model as 

JK#@& = R LCJK#@ − S&
Z

CW�
+  Y#@& (6.10) 
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In this formulation, yj is the output at location j, αC’s are AR coefficients, Y#@& 

represents the residuals, @ is the time index, and [ is the order of  the AR model. In 

this study, the regression coefficients (αC’s , αjp’s, and αiq’s) are used to generate 

damage sensitive features from the AR and ARX linear regression models to be tested 

in the change point analyses. 

The order of the AR and ARX models must be determined before the influence 

coefficients can effectively be used in damage control charts. The accuracy of the two 

regression models depends on the selected model orders based on the data from the 

localized sensor networks. While higher model orders, in general, deliver more details 

of the system and reduce the estimation bias, it is always desired to keep the order at 

the minimum level to avoid over-parameterization. One way to establish the model 

order is to minimize the Akaike’s Information Criterion (AIC) which is used in 

Friedlander and Porat (1984) and Figueiredo et al. (2011) as, 

^_6#S& = #7 − S& × 7@#B1& + 2S (6.11) 

In Eq. (6.11), p is the number of parameters in the AR model and SE is the sum of 

the squared regression residuals divided by 7 − S (7 being the total number of data 

samples). Once the model order number is found and the AR and ARX coefficients are 

regressed, their coefficients are condensed to generate a univariate control statistics.   

6.3.3. Collinear Regression Model 

The SVR model can also be modified to correlate three locations on a structure 

without over parameterizing the system. This model is called the Collinear Regression 
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(CR) model. There are many different types of regressors that can be used in CR 

models. For this implementation, JM in Eq. 8 is changed to the average of two outputs. 

In effect, the mathematical model would be calculated as 

J< = LMK<
#JM + JK&

2 + N + O (6.12) 

 

Here, an additional location’s acceleration output, J<, can be included to create the 

new coefficient LMK< . The effectiveness of CR influence coefficient is analyzed and 

compared to the AR, ARX, and SVR model parameters presented above in the 

structural damage detection based on change point analysis.  

6.4. Localized Damage Detection Method: Damage Features 

There are two types of features that are used to test the null hypothesis that the 

mean of the two observation samples from different states of the system are equal. The 

first of these is a scalar function of the regression coefficients – referred to as Alpha-

based Coefficients in this chapter – obtained from the regression models discussed 

above. In cases of the SVR and CR models, the output of this function is the influence 

coefficients themselves, whereas for the AR and ARX models, the Mahalanobis 

distance is utilized to find a scalar representation of the multivariate regression 

coefficients corresponding to a condition of interest and those corresponding to a 

reference condition (Mosavi et al., 2012). The Mahalanobis distance `a#b& can be 

computed by using Eq. (6.13) 
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cd#$& = e#$ − �&fB:�#$ − �& (6.13) 

 

where $ is the matrix of the reference regression coefficients with mean �, and S is 

its covariance matrix. Once the distances are calculated, these scalar representations of 

the influence coefficients are used in the change point analysis.  

The second damage feature used in this study is called the Angle Coefficient. This 

coefficient measures the angle between regressed lines from two different states of the 

system. In other words, for damage detection methods, instead of measuring the 

difference in slope between a healthy state line and an unknown state line of a 

structure, the angle between the two lines can be compared to detect change as well. In 

effect, the Angle Coefficient can be written as  

g = h�i:� j k∗kl
‖k‖‖kl‖j=h�i:� j nnlo�

√npo�√nlpo�j (6.14) 

 

Here q and q′ correspond to a vector [ −1, L] ffor an undamaged state and a 

vector [ −1, α′] s for an unknown state, respectively. In this formulation, α and α′  are 

the respective influence coefficients from SVR or CR models. For ARX and AR 

regression models (with model order S), q = [−1, L�, L! … L!Co�]fand q =
[−1, L�, L! … LC]f, respectively. 

These two sets of coefficients, Alpha-based Coefficients and Angle Coefficients, 

are extracted from the acceleration signals measured from a baseline and an unknown 

state. They are then tested for a change in their mean using the NLRT or t-test method 

discussed in Section 6.1.  
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6.5. Test Setup  

A two-bay steel tube frame testbed was constructed at the laboratory of Advanced 

Technology for Large Structural Systems (ATLSS) at Lehigh University. In this 

chapter, this specimen is used to analyze the effectiveness of the damage features 

discussed above. This frame was built as a testbed for damage detection, mainly to 

represent typical building frames or bridge girders. It has nine interchangeable 

sections, 0.2 m in length, that can be changed throughout the frame in order to 

simulate damage. These interchangeable sections have different cross sectional 

properties than the healthy state (shown in Table 6.1) which correspond to 20% 

reduction in member stiffness. In order to simulate a realistic damage scenario, the 

length of these switchable members was designed so that a negligible change would 

occur in the global behavior of the frame pre- and post- damage. Figure 6.1 shows the 

experimental setup used in this study.  
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Figure 6.1. Experimental setup: (a) scaled frame (b) switch-out member (c) wired accelerometer 

 

 

Figure 6.2. Sketch of the specimen and the location of the introduced damage 

 

In order to collect data, the specimen was instrumented with 21 wired 

accelerometers, labeled in figure 6.2 with L, C, or R on left, center, and right portions 



 

 

144

of the frame. During testing, there were a total of 40 runs of data collected. For each 

run, the sampling rate was 500 Hz and 1000 samples were recorded so that each test 

lasted a total of 2 seconds. The first 20 runs were taken when the frame was in an 

undamaged state, where the first 10 tests of this group serve as a known healthy 

baseline for comparison throughout this research. The Mahalanobis distance between 

these first 10 healthy runs and the next 10 healthy runs creates a baseline distance for 

comparison.  It was at this point (run 21) that damage was simulated for the second 

half of the experiment. For this study, the damage case consists of replacing a healthy 

section with one of less stiffness at the location of sensor R5, which corresponds to 

less than a 1% change in the lateral stiffness as well as the first three natural 

frequencies of the frame. After this section is exchanged, an additional 20 tests were 

taken. These tests will serve as the unknown state of the structure after a damaging 

event by comparing the Mahalanobis distance between these 20 ‘damaged’ runs and 

the baseline distance from the healthy start runs. The results, shown in Section 6, 

should detect the timing of the damage after the 20th test and localize it to the right 

column of the frame.  
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Table 6.1. Geometry of baseline and interchangeable sections 

 

There are two sets of data collected, which represent measurements that would be 

taken pre- and post- a damaging event or regular maintenance of a structure. 

Therefore, it is possible to assume that the structure behaves linearly during data 

collections. Additionally, Dorvash et al. (2010) show that the type of excitation used 

with IDDA does not affect the detection of damage.  In order to dynamically excite the 

frame, impact loading is chosen as the excitation method for this implementation. This 

excitation is similar to ambient vibration in not imposing any specified excitation 

frequency to the frame. The impact amplitude was limited to ensure that the linear 

behavior assumption for the experimental frame holds. Therefore, the acceleration 

response of frame is recorded while the frame is struck with a hammer on the right 

column and the frame freely vibrates on its own. The data from this experiment was 

previously used in Nigro et al. (2014) to investigate the performance of IDDA damage 

features using a change point framework, where statistics such as univariate 

Cumulative Sum (CUSUM), Exponentially Weighted Moving Average (EWMA), 

Mean Square Error (MSE), Modified MSE, Mahalanobis distances, and Fisher 

Feature Baseline Sections Interchangeable ‘Damage’ sections 

Outer Dimension of Hollow 

Cross Section 
0.05 m (1.97 in) 0.05 m (1.97 in) 

Tube Thickness 2.16 mm (0.085 in) 1.65 mm (0.065 in) 

Cross Sectional Area 410.57 mm
2
 (0.64 in

2
) 324.57 mm

2
 (0.5 in

2
) 

Moment of Inertia 162526 mm4 (0.39 in4) 130811 mm4 (0.31 in4) 
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Criterion are used. As stated, in this chapter two-sample change point statistics are 

implemented for different combinations of damage features and regression models. 

6.6. Results  

As shown in figure 6.2, the damage case in question for this study includes 

damage at a section on the right side column; therefore, the results should detect 

damage at or near this location. Three sensor clusters on the left, center, and right 

portions of the frame are used for damage detection. It should be noted that the data 

measured with sensors L1, C3, C5, and C9 were excluded from the damage detection 

process, as the preliminary inspection of the measured signals revealed faulty behavior 

of these sensors. Considering there are five or six sensors in each sensor group, there 

are many different combinations of sensors that can be paired in the different linear 

regression models. Therefore, only sensors within the same cluster will be paired with 

one another. In effect, for a sensor cluster consisting of six sensors, in cases where two 

sensor nodes are paired with one another, 30 pairs can be made without pairing a 

sensor with itself. This occurs in SVR and ARX linear models. However, based on the 

CR model, 120 different combinations can be made. This section presents the results 

of the damage detection techniques described in the previous sections using the 

acceleration data collected from the scaled steel frame. 

6.6.1. Single variate regression results 

The coefficients made using SVR model are readily used in the NLRT and t-test. 

Since the Angle Coefficients are found in reference to the first baseline run of the 
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experiment, a possible damage point should be detected when both damage features 

are split into two groups of 20 tests.  Figure 6.3 shows the Likelihood Ratio (LR) and 

absolute t-statistics of the Alpha-based and Angle Coefficients in this case. All these 

plots show peaks on the split at run number 20 which implies the possible timing of 

the damage. These peaks correspond to the maximum test statistics; since the t- or LR-

test statistics are sequentially created for every two partitions of the observations as a 

means to signify the difference between two partitions, these statistics are maximized 

when all the observations in each partition belong to one state (healthy or damaged) of 

the system. For Alpha-based and Angle Coefficients extracted from SVR models, this 

corresponds to splitting observations at run number 20. 

The change detection threshold is also plotted for both tests in these plots. It is 

seen that when run number at the split is 20, the extracted damage features from left 

and right side of the frame cross the change threshold, and this identifies the 

occurrence of damage at the 21st run of the experiment. The damage features extracted 

from the left and right sensor clusters at this split are plotted in figure 6.4. As the 

entire frame’s response is changing with the switch of the damaged section, it is 

expected that the damage features on the left side also cross the change threshold. 

However, the detected change at the right side of the frame is more pronounced than 

the left side.  This implies that with a sensor located at right or left side of the frame, 

the occurrence of the damage is most likely successfully identified; however, 

localizing the damage to a specific location on the frame requires denser 

instrumentation.  
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The average of the test statistics associated with each sensor location that indicates 

a statistically significant change in the extracted damage features are used in order to 

localize the identified damage. This quantity correlates the severity of the change in 

the damage features with the sensor locations on the structure. Figure 6.5 shows these 

localized damage indicators extracted from the SVR models. This figure shows that 

based on the maximum averaged test statistics, damage is localized to R6. With this 

measure, the actual location of the damage R5, has the second largest damage 

indicator. Therefore, it can be concluded that this change detection method 

successfully localizes the damage to its true locale.  
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Figure 6.3. Test statistics of the damage features extracted from the SVR models: (a) LR-

statistics, Alpha-based Coefficients; (b) LR-statistics, Angle Coefficients; (c) absolute t-statistics, 

Alpha-based Coefficients; (d) absolute t-statistics, Angle Coefficients  
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Figure 6.4. Test statistics of the damage features extracted from the SVR models (split at the 20th 

run): (a) Alpha-based Coefficients at the LEFT side; (b) Alpha-based Coefficients at the RIGHT 

side 

 

 



 

 

151

 

 

 

 Figure 6.4. Test statistics of the damage features extracted from the SVR models (split at the 20th 

run): (c) Angle Coefficients at the LEFT side; (d) Angle Coefficients at the RIGHT side 
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Figure 6.5. Localized damage indicators using SVR models: (a) Average absolute t-statistics, (b) 

Averaged LR-statistics 

 

6.6.2. ARX model results 

The regression coefficients of ARX models, with model order 4, are first 

condensed into a scalar damage feature using Mahalanobis distance which is then used 

in the developed damage detection methods. The model order selection in this 

implementation is based on the AIC criteria described in Section 6.2.2 along with the 
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fact that the first 10 test runs are assumed to be conducted on a known healthy 

structural configuration, and thus are used as reference to calculate the Mahalanobis 

distances. Therefore, Mahalanobis distances are calculated between coefficients from 

the first 10 healthy state runs and the last 10 healthy state runs. This step creates a 

baseline distance. Then, the first 10 healthy runs and the 20 damaged runs are used to 

create a distance to compare to the reference. The distances calculated in the latter 

coefficients should be bigger than the baseline condition at areas of damage. In effect, 

a possible significant change is expected to happen when the run number at the split is 

10. As the proposed Angle Coefficients are scalar quantities, no preprocessing is 

required prior to the change point analysis, and therefore the timing of possible 

damage is expected to be detected at the split with run number 20. Figure 6.6 shows 

the test statistics of the features extracted from ARX models. This figure shows that 

the damage features from the ARX model do identify the correct timing of damage.  

The damage features at the identified change time are plotted in Figures 6.7 and 

6.8. These figures show that, similar to the SVR results, at time of the damage (11th 

run in case of Alpha-based coefficients, and 21st run based on Angle Coefficients), 

several coefficients on the left and right side of the girder cross the change threshold. 

The test statistics are then analyzed for their effectiveness in localizing the damage. 

The results are displayed in Figure 6.9. This figure shows that the averaged test 

statistics of the Mahalanobis distance locate the damage at R4, while such damage 

indicators based on Angle Coefficients localize the damage to its true location at R5. 
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Figure 6.6. Test statistics of the damage features extracted from the ARX models: (a) LR-

statistics, Alpha-based Coefficients; (b) LR-statistics, Angle Coefficients; (c) absolute t-statistics, 

Alpha-based Coefficients; (d) absolute t-statistics, Angle Coefficients  
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Figure 6.7. The t-statistics of the Alpha-based Coefficients extracted from the ARX models (split 

at 10th run): (a) at the LEFT side and (b) at the RIGHT side 
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Figure 6.8. The LR-statistics of the Angle Coefficients extracted from the ARX models (split at 

20th run): (a) at the LEFT side and (b) at the RIGHT side 
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Figure 6.9. Localized damage indicators using ARX models: (a) Average absolute t-statistics, (b) 

Averaged LR-statistics 

 

6.6.3. Collinear regression results 

Collinear Regression (CR) in this implementation involves three different 

locations. In effect, the results may show a more localized detection of damage 

because the coefficients themselves include a higher spatial distribution. It is still 

expected that the coefficients with combinations of the locations on the right side 

column will show more significant change than those extracted from the left side of 
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the frame. The results for the Alpha-based and Angle Coefficients are shown in figure 

6.10. These plots are initially analyzed for the timing of damage.  

All plots show a peak when the vector of the coefficients is split at the 20th run of 

testing. As these peaks occur above the change threshold with 95% confidence level, it 

can be concluded that this is the correct time of the damaging event. The results can 

then be analyzed for their effectiveness in localizing the damage to the right side 

column of the frame. Figure 6.11 shows the localized damage indicators. This figure 

shows that the Angle Coefficients generated from CR models find the true location of 

the damage (R5) using LR- or Student’s t-test, while the performance of the Alpha-

based Coefficients depends on the test statistics; location of the damage is pinpointed 

to the location of sensor C6 when using t-test, and R6 using LR-test.  
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Figure 6.10. Test statistics of the damage features extracted from the CR models: (a) LR-

statistics, Alpha-based Coefficients; (b) LR-statistics, Angle Coefficients; (c) absolute t-statistics, 

Alpha-based Coefficients; (d) absolute t-statistics, Angle Coefficients  
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Figure 6.11. Localized damage indicators using CR models: (a) Average absolute t-statistics, (b) 

Averaged LR-statistics 

 

6.6.4. AR model results 

AR models are also tested in the developed damage detection strategies. The 

Alpha-based and Angle Coefficients in this case are generated as for the ARX models. 

These coefficients are different from those generated based on the ARX models, in 

that the damage features extracted from the AR models represent one sensor node on 



 

 

161

the frame. Figure 6.12 summarizes the results of the two-sample change detection on 

the extracted damage features from AR models. These figures show that for the AR 

models, the peaks of the change point test statistics are not as distinct as in the 

previous cases. While using the Mahalanobis distance, the timing of the damage is 

detected correctly, the Angle Coefficients are not successful in detecting the time or 

location of the damage with this model. The LR-test statistics are shown in Figure 

6.13 for Alpha-based Coefficients when data is split at 10th run. This figure shows that 

the extracted damage features are not successful in pinpointing the damage to its true 

location. This is most likely due to the fact that the simulated damage in this 

experiment (20% stiffness reduction in a 0.2 m long segment of one of the columns) 

does not significantly change the natural vibration frequency of the frame as well as 

the characteristic roots of the AR models extracted from the acceleration response of 

the frame at different locations. Additionally, Yao and Pakzad (2012) showed that 

estimates of such AR coefficients has low robustness to environmental factors and 

measurement noise, and therefore to use the AR model for structural damage detection 

purposes other damage features such as autocorrelation function of the AR residuals 

and AR model spectrum are more promising. 



 

 

162

 

Figure 6.12. Test statistics of the damage features extracted from the AR models: (a) LR-

statistics, Alpha-based Coefficients; (b) LR-statistics, Angle Coefficients; (c) absolute t-statistics, 

Alpha-based Coefficients; (d) absolute t-statistics, Angle Coefficients  
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Figure 6.13. The LR-statistics of the Alpha-based Coefficients extracted from the AR models 

(split at the 10th run): (a) at the LEFT side and (b) at the RIGHT side 

6.6.5. False detection check 

Prior to concluding that the proposed damage detection methods are viable ways 

of identifying the structural damage, their false detection quality should also be tested. 
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For this purpose, these methods are iterated on a group of 40 runs consists of the first 

20 tests on the healthy configuration of the frame combined with a random 

permutation of these 20 runs. As all the tests are from the same structural condition, it 

is expected that no damage is detected using the damage sensitive features in this case. 

Figure 6.14 shows the LR- and t-statistics extracted from the coefficients of the SVR, 

ARX, CR, and AR models for these 40 sets of data from the undamaged state, along 

with the change detection threshold corresponding to 95% confidence level. This 

figure shows that when all the observations belong to one state of system, no large and 

distinct peaks are evident above the change threshold as in the previous cases. 

However, it is also seen that some of the statistics do cross the change threshold. This 

does not signify damage as it is consistence with average false detection of the 

corresponding tests on observations from a normal distribution at 95% confidence 

level.  
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Figure 6.14: Test statistics of the damage features extracted from different regression models: (a) 

AR model, LR-statistics, Alpha-based Coefficients; (b) SVR model, LR-statistics, Angle 

Coefficients; (c) ARX model, absolute t-statistics, Alpha-based Coefficients; (d) CR model, 

absolute t-statistics, Angle Coefficients  

 

6.7. Summary and Conclusions  

This study is concerned with the effectiveness of different damage features and 

multivariate linear regression models used in data-driven structural damage 

identification. For this purpose, a successive normalized likelihood ratio test and a 

sequential two-sample t-test are adopted to test the change in two different damage 
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sensitive features based on the regression coefficients of four different linear 

regression models (SVR, CR, ARX, and AR models). This methodology is tested on a 

scaled two-span frame in which damage is simulated by switching a segment of one of 

the columns with a section with 20% less stiffness. It was observed that all of the 

mathematical models were successful in identifying the occurrence of the damage, 

except when the Angle Coefficients from AR models were tested. The location of 

damage was then identified based on the test statistics from SVR, CR, and ARX 

models.  These results are summarized in Table 6.2.  This table shows that the Angle 

Coefficients have a better performance in localizing the damage, as in all cases the 

simulated structural damage is localized to its true or neighboring sensor node. Alpha-

based Coefficients, however, perform less accurate and robust in damage localization; 

their damage localization performance depends on the underlying mathematical model 

and the change point test statistics. It is also observed that the ARX model has the 

most accurate localization estimate regardless of the test statistics used, and its 

performance is improved in combination with the proposed Angle Coefficients. 

It should be noted that in any damage detection experimental testbed similar to the 

one used here, assembly procedure for simulation of damage could change the system 

and generate misleading results in the change point analysis. To address this issue, 

note the following: (1) through the presented methods, damage is successfully 

localized to its true neighborhood, (2) damage detection methods in this chapter are all 

model-free techniques. Model-based damage detection methods with appropriate 

parameterization could have benefits of detecting such changes, and (3) the 
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consistency of the assembly of the testbed was examined in preliminary experiments, 

by repeating the experiments in healthy/damaged states. A procedure for the sequence 

of testbed assembly is established to ensure that the results remain consistent.  

Table 6.2. Summary of the damage identification of the steel girder  

 

Since the false detection quality of the proposed methods were also verified using  

data sets from the healthy condition of the structure, it can be concluded that these 

methods are viable techniques to identify and locate damage in structural systems. It 

was shown that incorporating multiple mathematical models, damage sensitive 

features and change detection tests improve the overall performance of these model-

free structural damage detection when impact loading is used to dynamically excite 

the steel frame. This shows potential application of such methodologies in automated 

damage localization during events like earthquake; however, in order to extend the 

application of these methods, their performance should also be evaluated using 

ambient vibration as excitation in future research. In addition, in this single damage 

scenario, it was observed that when damage features are developed based on relative 

change in the acceleration response at nodes inside each sensor cluster, occurrence of 

damage could be statistically identified even using the data from a sensor that is 

  Identified damage location* 

Change point 

method 
t-test LR-test 

Damage features 

Alpha-

based 

Coefficients   

Angle 

Coefficients   

Alpha-

based 

Coefficients   

Angle 

Coefficients   

SVR model R6 R6 R6 R6 

ARX model R4 R5 R4 R5 

CR model C6 R5 R6 R5 

* True damage location is R5 
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located relatively far from the damaged member. This implies that these methods are 

most likely capable of detecting the timing of damage in multiple damage scenarios as 

well.  
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Chapter 7 

 Structural damage identification 

with a  

compressed sensing approach  

This chapter extends the data-driven damage detection methods presented in the 

previous chapter into a damage localization technique with a compressed sensing 

(CS) approach. The motivation is to identify the least amount of data that is required 

to process in order to successfully localize structural damage in its early stage. This 

is important because the volume of monitoring data is growing drastically with 

improvement in sensing technology. Therefore, while installing high resolution 

sensing networks has become affordable, the requirements for data storage and 

processing the monitoring data could become a bottleneck for the previously damage 

detection algorithms which work on the basis of analyzing the entire collected data 

set in order to make a decision (Matarazzo et al. 2015). This has become a 

concerning issue in the SHM field in the recent years, and research is ongoing to find 

efficient ways of processing, transmitting, and storing the monitoring data while 

maintaining comparable accuracy in the results. Some of the works in this area have 

investigated this issue in SHM applications for the purpose of modal identification, 

while others tackle the problem of compressed data-driven damage detection. Bao et 
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al. (2013) proposed and validated a CS-based approach for the acceleration time 

series recovery and modal parameters identification on data collected from the 

Jinzhou West Bridge and the Structural Health Monitoring System on the National 

Aquatics Center in Beijing. The results indicated that recovery accuracy depends on 

the sparsity characteristic of the collected signals in some orthonormal basis. 

O’Connor et al. (2014) proposed a CS strategy for sub-Nyquist random sampling and 

off-line target signal reconstruction to perform modal identification on a three span 

highway bridge instrumented with wireless sensor network. Haile and Ghoshal 

(2012) presented a CS technique for reconstruction of full-field strain data from 

discrete strain samples in a numerical experiment. Mascareñas et al. (2013) 

implemented a prototype compressed sensor that can collect compressed coefficients 

and send it to off-board processer for reconstruction, also investigated the suitability 

of the CS coefficients for damage detection. Zhou et al. (2013) proposed a structural 

damage identification method based on the sub-structure-based sensitivity analysis 

and the sparse constraints regularization. Finally, Yao et al. (2015) proposed a 

compressive sensing damage detection method based on spatial correlation of 

random samples and Ant Colony optimization.  

 In this chapter a CS-based damage localization algorithm is proposed which 

performs based on three components of random sensor location sampling, change 

point analysis, and recursive Bayesian probability estimation. The damage detection 

starts with selecting a subset from entire monitoring network. Data from these 

sensors are processed for feature extraction and change point analysis. When the 
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change point analysis signifies a potential candidate for damage location, 

neighborhood of the suspect location is investigated further in a local sampling step. 

A recursive Bayesian estimation procedure is also adopted in order to iteratively 

update the probability of damage location as data from more sensors are considered 

for processing. This procedure is terminated when damage is localized with a certain 

probability. The following sections of this chapter describe this damage localization 

methodology in details. Performance of this technique is also shown using a FE 

model of a steel gusset plate.  

7.1. Compressed damage detection and localization: single damage 

scenario 

The data-driven damage detection methodology proposed here consists of 

iterative global and local sampling steps from a dense sensor network. With a 

uniform prior probability for the location of damage, the global sampling step starts 

by taking samples uniformly from the entire sensor network. This iterative global 

sampling ensures high reliability in finding a proper start point to establish an initial 

local search boundary. Data from the sampled sensors are processed for feature 

extraction and statistical testing based on change detection methods. As test statistics 

from sampled sensor locations cross the specified change threshold, likelihood of the 

damage location is calculated, and is used to obtain the posterior probability of the 

damage location. The local sampling steps start with taking samples inside a smaller 

window centered on the location with maximum posterior probability. The steps of 

local sampling, feature extraction, change point analysis, likelihood and posterior 
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probability estimation are repeated until damage is localized beyond a pre-specified 

probability threshold. The local sampling window is also updated if a new sampled 

point reveals the highest change statistics over the current search window. Figure 7.1 

shows the details of the proposed method in a flowchart. As this figure indicates, in 

the case of multiple damage detection, first number of desired local search 

boundaries are assumed (Nw). Then  kmean clustering algorithm (Lloyd 1982) is 

used to divide the change points into Nw classes to set Nw search boundaries where a 

separate local search begins using a moving window as explained before.  

 

 

Figure 7.1. (a) Flowchart of the proposed compressed damage localization algorithm  
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Figure 7.1. (b) Flowchart of the proposed compressed damage localization algorithm  
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7.2. Application of the Proposed Compressed Damage Detection 

Algorithm on a Steel Gusset Plate Simulation 

Accuracy and robustness of the proposed compressive damage diagnosis 

framework is evaluated through FE simulations of damage and undamaged structural 

connections used to generate strain data. Figure 7.2 shows the simulated two-way 

gusset plate connection used for numerical validation in this research. The assembled 

connection is 52 inches long and undergoes a 50 kips (222.4 kN) axial tensile load. It 

should be noted that the gusset plate is designed to withstand up to 100 kips (444.8 

kN) of axial tensile force. The simulated damage is a one inch long cut in the free 

section of the gusset plate. Figure 7.3 and 7.4 show the FEM of the simulated single 

and multiple damage cases. Strain filed of the gusset plate before and after damage is 

used to simulate the test data. In both damaged and undamaged cases, Gaussian noise 

is added to the data to create a more realistic monitoring scenario and generate 30 

sets of strain data for each structure’s health condition.  
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Figure 7.2. Simulated gusset plate connection under axial loading: undamaged state 

 

 

 

Figure 7.3. Simulated gusset plate connection under axial loading: single damage scenario 
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Figure 7.4. Simulated gusset plate connection under axial loading: multiple damage scenario 

 

7.3. Damage Features Extraction 

The damage features used in this study is a dimensionless scalar feature based on 

the relative change in the strain at neighboring grid nodes. Since direction of the 

potential cracking is not known in real damage cases, this feature establishes a 

relationship between strain at every node of the FE mesh and those from points close 

to that node in the two orthogonal directions.  Eq. (7.1) shows this damage feature. In 

this equation εi,j denotes strain at a node with coordinate (i,j). 
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When the gusset plate is intact, each term in Eq. (7.1) is close to unity, since there 

is no abrupt change of strain between neighboring nodes in the middle section of the 
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gusset plate. When a crack is formed; however, a drastic change in the vicinity of the 

crack occurs in form of stress reduction along the cracked section and intensified 

stress around the crack tips. With these changes, the damage features would deviate 

from their counterparts extracted from the “healthy” state of the structure. In order to 

statistically test the significance of change in these damage features, vectors of 

features shown in Eq. (7.1) from damaged and undamaged FE models are tested to 

find a statistically significant change in their means.  

7.4. Change Point Analysis 

In order to test the change in the damage sensitive features described before, two-

sample t-test is used here. This control statistics is based on the Student’s t-test and is 

a common procedure for testing the significance of difference between the means of 

two samples (Montgomery and Loftis 1987), and has been successfully adopted for 

data-driven damage detection (Labuz et al. 2010, Shahidi et al. 2014). The statistics 

of this test has N-2 degrees of freedom (N being the combined length of the two 

sample vectors) and is given in Eq. (7.2): 
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where the variables 1X̂ and 2X̂ are the means, n1 and n2 are the sizes of the two 

samples, and Sp represents their pooled standard deviation. Upper and lower control 

limits for this test are then calculated using the Student’s t inverse cumulative 

distribution function at a certain confidence level and N-2 degrees of freedom. When a 
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vector of test statistics crosses these control limits, significance of the change in the 

statistics is inferred. As sensors are located closer to the location of damage, their 

change statistics increase. This is the basis for finding the location of damage.  

7.5. Recursive Bayesian Estimation 

In the proposed algorithm, a Bayesian estimation framework (Thrun et al. 2005) is 

adopted to find the probability of damage over the sensor network to terminate the 

sampling process when enough evidence is available for damage localization. This 

Bayesian estimation process starts with a uniform prior for the entire grid of the FE 

mesh under investigation. A bivariate Gaussian model is then utilized to find the 

likelihood of each damage location hypothesis with respect to the new detected 

change point. Eq. (7.3) shows the formulation of this bivariate Gaussian model, 

where Dk shows the coordinate of the kth detected change point (i.e. kk ydxdD ][= ) 

and yxH , represents the hypothesis that damage is located at the coordinate (x,y).  
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Eq. (7.4) shows the kth iteration in the Bayesian estimation process.  
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In this equation Prk and Pok respectively indicate prior and posterior probability of 

damage for the kth iteration. As stated before, when k equals one, a uniform prior is 

used as there is no knowledge about the location of damage prior to observing a 

significant change in the sampled sensors’ data. When k exceeds one, posterior 

probability estimated in the previous step (i.e. )( ,1 yxk HPo − ) is recursively used as the 

prior probability of the damage location. 

7.6. Results 

This section presents the results of the proposed damage detection method 

applied on the data simulated with the FEM of the Gusset plate shown before. Figure 

7.5 shows the complete feature domain for the single damage scenario when simulated 

noise has a small amplitude; at each node standard deviation of the noise signal is 1% 

of strain value. In the probability estimation step, for the likelihood function, standard 

deviation of 3 for detection in x and y direction with zero correlation is assumed. The 

damage detection is terminated when with 90% probability damage is localized to four 

sensor locations, which in effect would be the smallest block size for the simulated 

sensor network.  Figure 7.6 and 7.7 shows the results of the single damage localization 

algorithm when noise level is 1% and 10% respectively. Figure 7.8 compares the 

entire feature domain with the compressed features when noise level is 10% and a 

compression ratio of 90.9% is obtained. Figure 7.9 and 7.10 shows the results of 

multiple damage detection scenario with 5% noise level, compression ratio  in this 
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case is 86.3%. It should be noted that in all these cases, the global sampling starts with 

sampling 4% out of the entire feature domain. 

 Since the global sampling step establishes the local sampling boundary, it is 

important to investigate the effect of the ratio of global sampling on the damage 

localization results. The damage detection is repeated in several cases where global 

sampling ratio is varying from 2% to 20%. In order to consider the variation in the 

measurement noise, 50 different noise simulations is performed for each case. Table 

7.1 and 7.2 shows the results of damage detection for single and multiple damage 

scenarios with different global sampling ratio. It is observed that with 4% global 

sampling, single damage localization would be successful with high reliability (98%). 

However, in the case of multiple damage detection, it would be better to start with 

higher global sampling ratio to have about 90% reliability for correct damage 

detection.  

Finally, the robustness of the proposed methodology to the measurement noise 

is investigated by considering different noise amplitudes.  For each noise level, 50 

sets of simulation are performed and single damage detection procedure is repeated. 

Table 7.3 summarizes the results of these simulations in terms of successful 

detection and compression ratio. This table shows that as noise level is increasing, 

the successful detection performance is deteriorating; however, in the successful 

cases the compression ratio is still very high (more than 85%).  
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Figure 7. 5. Damage features: single damage scenario, 1% noise 

 

 

Figure 7. 6. CS damage detection results:  single damage scenario, 1% noise 
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Figure 7. 7. CS damage detection results:  single damage scenario, 10% noise 

 

 

 

 

Figure 7. 8. (a) Entire damage features, (b) compressed damage features single damage scenario, 

10% noise 
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Figure 7. 9. CS damage detection results: double damage scenario, 5% noise 

 

 

Figure 7. 10. (a) Entire damage features, (b) compressed damage features double damage 

scenario, 5% noise 
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Table 7. 1. Comparison of the performance of CS damage detection with different global 

sampling: single damage scenario, 5% noise 

 

 

Table 7. 2. Comparison of the performance of CS damage detection with different global 

sampling: Multiple damage scenario, 5% noise 

 

 

Table 7. 3. Comparison of the performance of CS damage detection with different noise level: 

Single damage scenario, 4% global sampling 

 

 

7.3. Summary and Conclusions  

This chapter presents a methodology for compressed damage diagnosis. The main 

motivation for developing such damage detection methods is to improve the 

scalability of damage diagnosis frameworks. With rapid advancement in SHM 

hardware over recent decades, dense contact and non-contact sensor networks are 

readily used in the monitoring projects, and thus measurements with high resolution 
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in time and space are obtained. While higher resolution measurement techniques 

could be beneficial in accurate structural damage detection, it is important to 

improve the scalability of damage detection algorithms for processing the SHM BIG 

DATA. The proposed algorithm in this chapter aims to present a method that 

accurately localize damage in the structure, while a very small subset of sensor nodes 

are used for processing. The method works on the basis of change point analysis and 

recursive Bayesian probability estimation. This algorithm is applied for damage 

detection in a simulated gusset plate under axial loading. A single and a multiple 

damage scenario is considered by introducing one-inch long cuts in the gusset plate. 

Thirty sets of noisy strain field are generated from undamaged and damaged states of 

the structure. The effect of global sampling on the damage detection performance is 

investigated. The multiple damage scenario is seen to be more sensitive to the global 

sampling rate. The success rate in this case is more than 75%, when damage 

detection starts with only 4% of the entire data.  Different noise amplitudes are 

considered to investigate the robustness of the proposed methodology to the 

measurement noise.  For each noise level, 50 sets of simulation were performed and 

damage detection procedure is repeated. The results show that with processing less 

than 15% of the monitoring data, this procedure is successful in single damage 

localization for low and moderate noise levels.  
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Chapter 8 

Contributions and Future Directions   

8.1. Contributions 

This dissertation presents model-based and model-free algorithms for processing 

SHM data. The research presented in this dissertation can be divided into four parts: 

(1) developing a non-linear FEM updating algorithm and validation of its performance 

in terms of accuracy, computational cost, and robustness, (2) damage assessment and 

fragility analysis of the Washington Monument following 2011 Virginia earthquake 

through modal identification and model calibration, (3) developing and comparing 

data-driven damage detection methods, and (4) a compressed sensing damage 

detection algorithm is proposed and applied to localize cracks in a steel gusset plate 

connection. This section presents a summary of contributions of different parts of the 

research presented in this dissertation.  

The contribution of the first part of this research is to develop a surrogate-based 

non-linear FEM updating algorithm (called GRSMU), through which appropriate RS 

models are created to replace the non-linear FEM in the minimization problem of 

model calibration.  Performance of GRSMU in terms of accuracy and computational 

cost was compared with sensitivity-based model calibration; the most common and 
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generalized model calibration technique used for this purpose. This comparison 

shows that GRSMU is computationally cheaper, while having comparable accuracy. 

The research findings were published in Volume 140 of the Journal of Structural 

Engineering-ASCE (Shahidi and Pakzad 2014a). 

Another contribution of this part is in developing analytical and numerical 

procedure to investigate the robustness of GRSMU results with respect to the standard 

deviation of the measurement noise. Several parametric studies were performed on 

single- and multi-dof structures, and it was observed that for a zero-mean noise 

structure, the estimation error is fairly insensitive to low and medium measurement 

noise level. In addition, robustness of the GRSMU results regarding frequency content 

of the input load was also explored. This was accomplished through assuming a 

sinusoidal input load on the structure, and change the frequency of this excitation with 

respect to the fundamental vibration frequency of the structure in several scenarios. It 

was observed that when the vibration frequency of the system is outside of the 

frequency bandwidth of the load, the results show the least sensitivity to measurement 

noise level, selected time window for optimization, and location of the true model 

parameters in the RS domain. Similar observations were made when GRSMU was 

used to estimate modeling parameters of  an steel frame with bilinear material model 

under seismic loading. The research findings were published in Volume 75 of the 

Engineering Structures Journal (Shahidi and Pakzad 2014b). 

Contribution of the second part of this dissertation is to present the role that SHM 

algorithms plays in improving the credibility of damage assessment and seismic 
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fragility analysis. In this part of the research, a finite element model of the Washington 

Monument is developed and updated based on the dynamic characteristics of the 

structure identified through ambient vibration measurement and modal identification 

after the earthquake. The calibrated model is used to study the potential causes of  the 

observed damage to the Washington Monument during 2011 Virginia earthquake. This 

FEM is then modified to limit the tensile capacity of the grout material and previously 

cracked sections to investigate the initiation and propagation of cracking in several 

futuristic earthquake scenarios. The non-linear FEM is subjected to two ensembles of 

site-compatible ground motions representing different seismic hazard levels for the 

Washington Monument, and occurrence probability of several structural and non-

structural damage states is investigated. Summary of our findings in the vibration 

testing and damage assessment phase of the project were published by Geological 

Society of America in a special paper volume on “The 2011 Mineral, Virginia, 

Earthquake, and Its Significance for Seismic Hazards in Eastern North America” ( 

Shahidi et al. 2015a). Results of the second phase of our research in seismic fragility 

assessment of the Washington Monument was submitted  to Earthquake Spectra 

Journal and is currently under revision. 

In the last part of this research, data-driven damage detection methods are 

presented and effectiveness of combination of different regression models, damage 

features, and test statistics are compared. In effect, a successive normalized 

likelihood ratio test and a sequential two-sample t-test are adopted to test the change 

in the damage sensitive features extracted from different linear regression models.  
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This methodology is tested on a scaled two-span frame instrumented with a dense 

sensor of accelerometers where damage is simulated by switching a segment of one 

of the columns with a section with 20% less stiffness. It was observed that all of the 

presented damage detection methods are successful in identifying the occurrence of 

the damage; however, with different localization accuracy. The contribution of this 

part is in data-driven damage detection is in establishing and comparing the 

effectiveness of different regression models, damage indicators, and two-sample test 

methodologies for SHM applications. In addition, a damage sensitive feature based 

on the change in the angle of regression coefficient vectors is introduced which is 

applicable to both single and multivariate regression models. The application of the 

collinear regression model and sequential two-sample statistical tests for damage 

detection and localization is also introduced. The paper presenting our contributions 

in this part was published in the Volume 11 of the journal of Structure and 

Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and 

Performance. 

 Finally, in the last part of this research a compressed sensing data-driven damage 

detection algorithm is presented. This algorithm works based on strategic sampling of 

sensors from a dense sensor network, change point analysis, and recursive Bayesian 

probability estimation. The contribution of this part is in developing a novel scalable 

single and multiple damage detection strategy to localize the structural damage 

accurately, while only a small portion of data is processed.  
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8.2. Future directions 

While this dissertation contributes different approaches for vibration-based SHM 

research, as a result a wide range of research topics are also opened. This section 

describes possible future directions for continuation of the research presented in this 

dissertation.  The following presents these future research ideas classified based on the 

related problem. 

8.2.1. RS-based non-linear FEM updating 

While this dissertation presents several examples of implementing the GRSMU 

algorithm for input-output non-linear model updating as well as output-only linear 

model calibration, one future direction for extending the application of this algorithm 

is to develop output-only GRSMU for non-linear model updating. This can be 

accomplished by including an input excitation estimation step or alternatively by 

performing the model calibration on short-term Fourier transforms of the time domain 

data. In addition, another future research direction is to implement GRSMU for model 

updating of structures with different sources of non-linearity than what assumed in this 

dissertation.  Moreover, given availability of long-term monitoring data, the overall 

GRSMU framework can be extended to develop RS functions of structural parameters 

as well as environmental factors such as temperature. This would be beneficial to 

establish an efficient on-line damage detection algorithm.  



 

 

191

8.2.2. Data-driven Damage detection 

This dissertation presents a comprehensive comparison of the performance of several 

data-driven damage localization techniques on a scaled steel frame under impact 

loading. Implementation of these damage detection frameworks on in-service real 

world structures by measuring their ambient vibration would provide a more realistic 

comparison of the performance of  these techniques. In effect, this can be readily 

accomplished using the graphical toolsuit developed in Lehigh University’s SHM 

research group. This toolsuite is available for download at http://dit.atlss.lehigh.edu 

(Shahidi et al, 2015b).  

8.2.3. Damage detection with a compressed sensing approach 

Compressed sensing and its application in SHM is relatively a new research topic. 

Therefore, several future directions are possible to take for further research in this 

area. One direction for future research is to study the effects of sensor network 

resolution on the accuracy of the proposed CS algorithm. Moreover, performance of 

other damage sensitive features, global or local sampling techniques, and  likelihood 

models can be further studied. Finally, one could develop CS-based SHM algorithms 

with compression in terms of data transmission as well as sensor location selection.  
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