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Abstract 

 

A magneto-rheological (MR) damper is a cylindrical device that consists of a 

two chamber system filled with MR fluid, where the chambers are separated by a piston 

head. The movement of the piston rod of the damper results in the MR fluid passing 

from one chamber to the other, past a small orifice between the piston head and the 

inner wall of the cylinder of the damper. Coils are located in the piston head. When a 

current is input into the coil a magnetic field develops near the orifice. The shear 

strength and viscosity of the MR fluid, which consists of carbonate iron particles 

suspended in a fluid, is sensitive to the strength of the magnetic field. An MR damper 

can have its force capacity altered by changing the amount of current input into the 

damper. A number of semi-active control laws for MR dampers have consequently been 

developed, which alter the current input of the damper in order to reduce the dynamic 

response of a structure. 

During the last couple of decades a number of researchers have investigated the 

behavior of MR dampers and semi-active control laws associated with using these 

devices for vibration reduction of civil engineering structural systems. A majority of 

this research, however, has involved small-scale MR dampers, while only a few studies 

have been conducted with large-scale MR dampers. No performance-based practical 

design procedures have been developed for structural systems with MR dampers that 

enable the determination of damper capacity and the deployment of dampers to be done 

in conjunction with achieving building performance objectives in the design. In 
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addition, existing MR damper models have not been validated for large-scale dampers 

subject to realistic seismic demand. 

This dissertation focuses on the seismic hazard mitigation of buildings with 

magneto-rheological dampers. Existing MR damper models for the prediction of the 

behavior of large-scale dampers under earthquake demand are investigated. The 

advantages and disadvantages of the existing MR damper models are discussed and a 

new MR damper model, called Maxwell Nonlinear Slider (MNS) model, is introduced. 

The MNS model can accurately account for the highly nonlinear behavior of MR 

dampers under the demand induced from a large earthquake. The robust MNS model 

makes it possible to predict the seismic behavior of structures with MR dampers more 

accurately and to validate the design procedure of these structures.  

A simplified static analysis method to predict the response of a structure with 

MR dampers is developed based on a quasi-static MR damper model. This method is 

then integrated into a design procedure to develop the simplified design procedure 

(SDP) for the performance-based design procedure of structures with MR dampers. The 

design procedure is applied to a 3-story building structure with MR dampers, where 

three performance objectives are specified that are associated with two different seismic 

hazard levels. A series of 44 nonlinear time history analyses of the 3-story building is 

conducted using the MNS model to validate the proposed design procedure. The results 

of the analyses show that the SDP enables the 3-story building to achieve its 

performance objectives, with the design predictions from the SDP in close agreement 

with the median response of the structure acquired from the time history analysis. The 
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SDP was also validated using real-time hybrid simulations with the DBE level ground 

motions. The conclusions derived from the experimental results are in close agreement 

with those from the comparison of the SDP and numerical simulations involving 

nonlinear time history analyses. 

Various structural control strategies are evaluated by conducting numerical and 

experimental studies of the 3-story building structure. The experimental studies 

involved performing real-time hybrid simulations with large-scale MR dampers. The 

control strategies in the study include semi-active control where the current is changed 

in accordance with a control law, and passive control where the current is held constant. 

The semi-active controllers studied in this dissertation include: (1) linear quadratic 

regulator control; (2) sliding mode control; (3) decentralized bang-bang control; and (4) 

a newly developed controller called the Phase Angle Control. Statistical results for the 

3-story building structure show that the performance of the structure achieved with 

passive control is similar to that achieved with the semi-active controllers under the 

design basis earthquake (DBE) and the maximum consider earthquake (MCE), where 

the former and latter have an average return period of 475 years and 2475 years, 

respectively. The numerical and experimental results are in close agreement with each 

other, validating the use of real-time hybrid simulation as a means of investigating the 

seismic performance of structures with semi-active MR dampers subject to DBE and 

MCE level ground motions.  

Numerical and experimental studies are conducted to evaluate the collapse 

resistance of structures with MR dampers under extreme ground motions. Incremental 
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dynamic analyses (IDAs) are performed using OpenSees to obtain the statistical 

response and the collapse margin ratio (CMR) of the 3-story building structure with 

various control strategies. The results of the study show that dampers can improve the 

collapse resistance of the building, however, there is only a marginal difference in the 

collapse resistance of the building with passive control compared to semi-active control. 

Real-time hybrid simulations are performed to experimentally validate the numerical 

results. The real-time hybrid simulation results are in close agreement with the 

numerical results, validating the time history analysis results, the real-time hybrid 

simulation method, and the MNS damper model for demands associated with extreme 

ground motions that lead to structural collapse. 
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Chapter 1 

Introduction 

 

1.1. General 

Civil infrastructure such as buildings, highways and bridges are susceptible to 

damage over their life time due to extreme loads. Among extreme loads, earthquake 

loading is one major concerns for structural engineers. During the Northridge 

earthquake that occurred on January 17th, 1994, fifty-seven people died, more than 

9,000 were injured, and over 20,000 were displaced from their homes by the effects of 

the earthquake. The estimated losses caused by the earthquake were $20 billion. The 

Northridge earthquake is considered one of the costliest natural disasters in United 

States history and reminds structural engineers again of the importance of seismic 

resistant design of structures. 

The occurrence of damaging earthquakes has led to many revisions to seismic 

design methods. Earthquakes in the early part of the 20th century led to the development 

of regulations to provide for minimum levels of lateral strength. In the latter part of the 

20th century earthquakes such as the 1971 San Fernando earthquake led to the 

realization that, in addition to strength, buildings needed to have the ability to deform 

without catastrophic failure, e.g., a characteristic known as ductility (FEMA 2006).  The 

design paradigm has been changed once more after the 1994 Northridge and 1995 Kobe 

earthquakes. Before these earthquakes, building owners and insurers generally believed 

that code-compliant structures would not suffer any severe damage during an 
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earthquake. However, these earthquakes led to losses that were unexpected and 

subsequently huge financial loss, pushing researchers and practitioners toward the 

development of a new design methodology, i.e., performance-based seismic design, 

which considers seismic hazards, vulnerabilities, and consequences of damage. 

Traditional prescriptive design focuses mainly on achieving an acceptable 

demand-to-capacity ratio; the objective of performance-based design is to achieve a 

specified level of performance (see Table 1.1), given the hazards that exist. Prescriptive 

design criteria can provide certain levels of structural performance, but more rigorous 

evaluations of structural performance are not assessed. Thus, the performance of some 

buildings designed to these prescriptive criteria can be better than the minimum 

performance anticipated by the code, while the performance of others could be worse. 

Figure 1.1 shows the general procedure for performance-based design. The 

process begins with the selection of design criteria stated in the form of one or more 

performance objectives, followed by the development of an appropriate preliminary 

design concept. Then, the structural performance is assessed considering hazard level, 

determination of probable damage to structural or non-structural components, 

computation of the expected future losses, etc. The design is revised until the desired 

performance level is achieved. If the performance objectives cannot be met then an 

alternative structural system may be selected. 

Energy dissipation devices can be effective tools in performance-based seismic 

design because they can efficiently reduce the response of structures subjected to 

earthquake ground motions, subsequently, enhancing the performance of the structure. 
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Energy dissipation systems can be classified into three distinctive categories: i) passive 

controlled systems; ii) active controlled systems; and iii) semi-active controlled systems.  

A passive energy dissipation system can include a range of materials and 

devices for enhancing the damping, stiffness and strength of the system. The 

performance of the structural system is improved by passive movement of the energy 

dissipation devices from the excitation of the structure. Passive devices generally 

operate on principles such as frictional sliding, yielding of metals, phase transformation 

in metals, deformation of visco-elastic (VE) solids or fluids, fluid orificing, etc. (Soong 

and Spencer 2002). The inherent stability of a structural system with passive energy 

dissipation devices is one of the great advantages of this type of system. Although 

passive energy dissipation systems do not have the ability to adjust their energy 

dissipation properties to adapt to changes in usage patterns or environmental loadings, 

they are widely accepted in the structural engineering design community due to their 

simplicity (Spencer and Nagarajaiah 2003). 

Active controlled structural systems employ force delivery devices integrated 

with real-time processing controllers and sensors within the structure. Active controlled 

structural systems are comprised of three main components: i) sensors that measure 

external excitations, or structural response, or both; ii) devices to process the measured 

information and to compute necessary control forces based on a selected control 

algorithm; and iii) actuators to produce the required force from the control device 

(Soong and Constantinou 1994). Active controlled structural systems have more 

versatility than passive controlled structural systems. Through the use of control devices 
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and the actuators generating the optimal control forces based on measured information 

and user-defined control algorithms, structural control objectives are more easily 

attainable by active controlled systems than by passive controlled systems. The 

uncertainty however associated with structural properties and a limited number of 

sensors can lead to a control signal to the actuators that can cause the structural system 

to become unstable. Moreover, in an active controlled structural system the actuators 

are typically large and require significant power sources, as well as control hardware 

and sensors. Consequently, active controlled structural systems are more expensive than 

passive controlled structural systems. One of the alternatives to active controlled 

structural systems is the use of a hybrid controlled system, generally referred to a 

combined passive and active controlled system. Since a portion of the control objective 

is accomplished by the passive system, less active control effort is required and fewer 

stability issues arise than that of the active controlled structural system. This is 

considered as one of the reasons why hybrid controlled systems rather than active 

controlled structural systems are more readily used in civil engineering structures 

(Housner et al 1997, Soong and Spencer 2002, Spencer and Nagarajaiah 2003). 

Semi-active controlled structural systems combine the features of passive and 

active controlled structural systems. Semi-active controlled structural systems do not 

add energy into the structural system; hence, they do not have the potential to 

destabilize the system. In particular, they have the ability to adjust the energy 

dissipation capacity or system stiffness by adaptively changing the properties associated 

with either stiffness, damping, or friction, while the power consumption is considerably 
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lower than that of an active controlled structural system. These unique features of semi-

active controlled structural systems have attracted the attention of many researchers and 

engineers during the last couple of decades. Semi-active controlled structural systems 

employ devices such as variable-orifice fluid dampers, controllable friction devices, 

variable-stiffness devices, smart tuned mass or liquid dampers, and controllable fluid 

dampers (Spencer and Nagarajaiah 2003). 

The magneto-rheological (MR) damper is one popular semi-active controlled 

device. Figure 1.2 shows a schematic of a large-scale MR damper. The MR damper 

force depends on the yield stress of the MR fluid inside the damper, which is generally 

a function of the magnetic flux in the damper. When the MR fluid is subjected to a 

magnetic field by the electromagnetic coil, the iron particles in the fluid are aligned and 

form linear chains parallel to the line of magnetic flux, changing the state of the fluid to 

a semi-solid which restricts the fluid movement through the orifices of the MR damper. 

Owing to this feature, devices using MR fluids have been used in various applications 

in mechanical vibration such as vibration absorbers in vehicles (Han et al. 2002, Stelzer 

et. al. 2003) and disk brakes or clutches (Carlson et al. 1995). 

In this dissertation, the dynamic behavior of structures with MR dampers is 

studied for the purpose of seismic hazard mitigation. Large-scale MR dampers are 

installed in the structure based on a simplified design procedure developed in this 

dissertation. The procedure includes considering selected performance levels of the 

structural system exposed to selected hazard levels. The performance of various control 

strategies for MR dampers are compared, and numerically and experimentally studied, 
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the latter by conducting real-time hybrid simulations. Collapse simulations of structures 

with MR dampers are conducted to assess the collapse potential of structures with MR 

dampers using the incremental dynamic analysis (IDA) procedure. The following 

section describes the objectives of this dissertation. 

 

1.2 Research Objectives 

 The objectives of this dissertation are as follows: 

• Develop a new MR damper model that can accurately predict the response of 

large-scale MR dampers in structural systems subject to earthquake ground 

motions; 

• Develop a simplified seismic design procedure for structures with MR dampers 

satisfying selected performance objectives for earthquake conditions; 

• Evaluate the performance of various control strategies for MR dampers, 

including passive and semi-active controllers to reduce structural response to 

seismic loading conditions; 

• Assess the collapse potential of structures with MR dampers under earthquake 

motions using the incremental dynamic analysis procedure; 

• Conduct real-time hybrid simulations to experimentally study the seismic 

behavior of structures with MR dampers and to validate the results of numerical 

simulations. 

 

1.3 Organization of Dissertation 



11 
 

This dissertation consists of 12 chapters, with the remaining chapters organized 

as follows: 

• Chapter 2 reviews background information on the modeling and control of MR 

dampers developed in prior research studies. 

• Chapter 3 describes a new MR damper model, called the Maxwell Nonlinear 

Slider (MNS) model. Chapter 3 is mainly dedicated to describe the behavior of 

an MR damper under constant current input, i.e., in passive mode. 

Characterization tests of a large-scale MR damper are presented. The basic 

mechanical theory for this MNS damper model is based on separating the pre-

yield and post-yield behavior of an MR damper. The procedure for identification 

of model parameters from characterization test data is presented using the 

particle swarm optimization algorithm (PSO). The predictions of damper 

behavior by the MNS model are compared to the experimental results from the 

characterization tests, damper displacement histories based on Gaussian white 

noise and earthquake loading.  

• Chapter 4 presents the behavior of MR dampers under variable current, which 

is for associated with semi-active controlled dampers. The dynamics of an MR 

damper is described using electromagnetic theory, considering the eddy current 

effect and magnetization behavior of damper materials. A nonlinear equation 

correlating the current in the damper coil with the equivalent static current for 

the prediction of damper force is proposed. The prediction of MR damper 

behavior under variable current via the nonlinear equation is compared to 
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experimental results from real-time hybrid simulations of a 3-story building 

structure with MR dampers. 

• Chapter 5 develops a systematic procedure for the dynamic response prediction 

of a SDOF structure with a diagonal brace and an MR damper. The prediction is 

based on a quasi-static MR damper model, from which the amplitude dependent 

loss factor and equivalent stiffness are calculated. Examples of this procedure 

are demonstrated and compared to the results of nonlinear time history analysis 

with the MNS model. 

• Chapter 6 provides a simplified design procedure (SDP) for the performance-

based seismic design of structures with MR dampers. The procedure in Chapter 

5 is extended to MDOF structures and is incorporated into the simplified design 

procedure. This simplified design procedure is demonstrated through a design 

example for a 3-story building structure satisfying three different performance 

objectives involving two levels of seismic hazard. 

• Chapter 7 validates the simplified design procedure proposed in Chapter 6 

through a series of nonlinear time history analysis using OpenSees. The 

predicted responses from the simplified design procedure are compared to the 

results of the nonlinear time history analysis and the accuracy of the simplified 

design procedure is discussed. 

• Chapter 8 provides a newly developed semi-active controller called the phase 

angle control (PAC). The PAC is based on impulse response function theory and 

the phase angle of a structure. The PAC is first explained for an SDOF system 
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and extended to MDOF systems based on modal analysis theory. Unlike the 

linear quadratic regulator (LQR) and the sliding mode control (SMC), the PAC 

does not require any user-defined model parameters. 

• Chapter 9 evaluates the performance of various control strategies for MR 

dampers. Four different semi-active controllers are selected for the comparison: 

i) linear quadratic regulator (LQR); ii) sliding mode control (SMC); iii) 

decentralized bang-bang control (DBB); and, iv) phase angle control (PAC). The 

structural responses resulting from the use of the semi-active controllers are 

compared to that using a passive controller. In addition, the issues of uncertainty 

related to incorrect structural properties, noise in the feedback data, and the 

effect of response time of MR damper associated with variable current input are 

studied. 

• Chapter 10 investigates the collapse potential of a 3-story building structure 

with MR dampers by performing incremental dynamic analyses (IDAs). The 

building structure designed in Chapter 6 is used and the IDAs are conducted 

using OpenSees. A phenomenological based deterioration model for member 

plastic flexural hinges that is calibrated from experimental data is implemented 

into OpenSees, and five different controllers including the four semi-active 

controllers from Chapter 9 and a passive controller for the MR damper are used 

in the IDAs. Collapse fragility curves for these cases are obtained and compared 

to each other. 
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• Chapter 11 describes the real-time hybrid simulations conducted for the 

experimental investigation of the seismic behavior of structural systems with 

MR dampers. The evaluation of the control strategies studied in Chapter 9 are 

experimentally assessed through the real-time hybrid simulations, using a group 

of selected ground motions. Moreover, the collapse simulation conducted in 

Chapter 10 is performed for a selected ground motion, and compared to the 

results of the numerical simulations. 

• Chapter 12 summarizes the findings and conclusions from this study, and 

makes recommendations for future research.  
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Table 1.1 Damage control and building performance levels (FEMA 2000b) 

 
Target Building Performance Levels 

Collapse 
Prevention Level Life Safety Level Immediate 

Occupancy Level Operational Level 

Overall 
Damage Severe Moderate Light Very Light 

General 

Little residual 
stiffness and 
strength, but load 
bearing columns 
and walls function. 
Large permanent 
drifts. Some exits 
blocked. Infills and 
unbraced parapets 
failed or at 
incipient failure. 
Building is near 
collapse 

Some residual 
strength and 
stiffness left in all 
stories. Gravity-
load-bearing 
elements function. 
No out-of-plane 
failure of walls or 
tipping of parapets. 
Some permanent 
drift. Damage to 
partitions. Building 
may be beyond 
economical repair. 

No permanent drift. 
Structure 
substantially retains 
original strength 
and stiffness. Minor 
cracking of facades, 
partitions, and 
ceilings as well as 
structural elements. 
Elevators can be 
restarted. Fire 
protection operable. 

No permanent drift. 
Structure 
substantially retains 
original strength 
and stiffness. Minor 
cracking of facades, 
partitions, and 
ceilings as well as 
structural elements. 
All systems 
important to normal 
operation are 
functional. 

Nonstructural 
components 

Extensive damage Falling hazards 
mitigated but many 
architectural, 
mechanical, and 
electrical systems 
are damaged. 

Equipment and 
contents are 
generally secure, 
but may not operate 
due to mechanical 
failure or lack of 
utilities. 

Negligible damage 
occurs. Power and 
other utilities are 
available, possibly 
from standby 
sources. 
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Figure 1.1 Performance-based design flow 

 

 
Figure 1.2 Schematic of the 1st generation large-scale MR damper manufactured by 

Lord Corporation (after Yang 2001) 
 

Select performance 
objectives

Develop preliminary 
building design concept

Assess 
performance

Does performance 
meet objectives? Done

Revise 
design
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Chapter 2 

Background: MR Damper Models and Semi-Active Control Laws 

 

2.1. General 

 In this chapter, previous relevant research related to the modeling of MR 

dampers and semi-active control strategies for MR dampers is summarized. This is 

followed by a description of the basic theory for semi-active controllers. 

 

2.2 Modeling of MR Dampers 

2.2.1 Bingham Model 

The Bingham model, due to its simplicity, is frequently used to describe the 

behavior of small-scale MR dampers. The model consists of a dashpot and a friction 

element connected in parallel as shown in Figure 2.1. In Figure 2.1,  is the damper 

displacement. The damper force  in the Bingham model is  

 

 sgn  (2.1)   

 

where  and  are equal to the damping coefficient and the slider friction force, 

respectively. In Equation (2.1) sgn() is the signum function. The damping force is 

linearly dependent on the damper velocity , whereas the friction force is dependent on 

the sign of the velocity. The Bingham model generally provides a good prediction of the 

force-displacement relationship for MR dampers. However, it cannot adequately 
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describe the frequency dependent behavior of an MR damper (see the experimental 

force-displacement and force-velocity relationships with various frequencies shown in 

Figures 3.7 and 3.8, respectively) because it has only one path in the force-velocity 

curve (see Figure 5.2(a)). Moreover, this model assumes that the MR fluid remains rigid 

in the pre-yield region; thus it cannot accurately account for the pre-yield behavior of an 

MR damper.  

 

2.2.2 Gamota and Filisko Model  

Figure 2.2 shows a schematic of the model proposed by Gamota and Filisko 

(1991). This model was originally developed to model an electro-rheological (ER) 

damper, but it has been applied to the modeling of an MR damper by Spencer et al. 

(1997). This model consists of Bingham model in series with a standard model of a 

linear solid. The governing equations for this model are 

 

 sgn if | |  (2.2)   

 if | |  (2.3)   

 

where  = damping coefficient for Bingham model; and , , and  are stiffness and 

viscous damping coefficients, respectively, associated with a linear solid material. 

Although this model can describe the behavior of an MR damper better than the 

Bingham model, it has the shortcoming that a very small time step on the order of 10  
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is required in the response determination using numerical integration. This is because 

Equations (2.2) and (2.3) are extremely stiff differential equations (Spencer et al. 1997).  

 

2.2.3 BingMax Model 

 Makris et al. (1996) formulated a phenomenological model for an MR damper, 

called the BingMax model. The model is based on the Maxwell element and Bingham 

model as shown in Figure 2.3. The constitutive law of the BingMax model is expressed 

as 

 

 exp sgn  (2.4)   

 

where /  is the quotient of the dashpot  and the spring , and  is the frictional 

force in the slider. Equation (2.4) can be conveniently expressed in differential equation 

form (Butz and Von Stryk 2002) as 

 

 sgn  (2.5)   

 

Makris et al. (1996) showed that the BingMax model captures both hysteretic and 

frequency-dependent behavior of an MR damper. Makris et al. also showed that the 

BingMax model achieves a better prediction of experimental response compared to the 

Bingham model. However, it is difficult for the BingMax model to account for non-
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Newtonian MR fluid behavior (i.e., shear thinning and thickening behavior of the MR 

fluid) due to the linear dashpot that is present in the model. 

 

2.2.4 Bouc-Wen Model 

In order to capture the force roll-off phenomenon that occurs in an MR damper 

near the zero velocity region, Spencer et al. (1997) developed a more sophisticated 

model based on the combination of dashpots and springs with the Bouc-Wen element as 

shown in Figure 2.4. The damper force of this model is obtained by solving the 

following equations: 

 

  (2.6)   

  (2.7)   

 | | | | | |  (2.8)   

 

In this model,  represent the damper accumulator stiffness and  is the dashpot 

coefficient associated with viscous damping at larger velocities. A dashpot  is 

included in model to produce roll-off that was observed in experimental data at low 

velocities,  is present to control the stiffness at larger velocities, and  is an initial 

displacement of spring  associated with nominal damper force due to the accumulator. 

Since the Bouc-Wen model can predict the behavior of MR dampers well, many 

researchers have used this model for the numerical simulation of structures with MR 

dampers. It was also used to model the first generation large-scale MR damper 
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manufactured by Lord Corporation (Yang et al. 2002). However, the initial guess of 

model parameters in algorithms to identify the model parameters needs to be done by 

trial and error, and it is difficult for this model to account for the non-Newtonian MR 

fluid behavior because the post-yield behavior is governed by the linear dashpot . 

 

2.2.5. Hyperbolic Tangent Model  

Gavin (2001) developed the hyperbolic tangent model for the description of the 

dynamic behavior of an electro-rheological (ER) damper. The model consists of a series 

of Voigt visco-elastic elements combined with a lumped mass element and a nonlinear 

friction element as in Figure 2.5. The damper force of this model is represented as 

 

  (2.9)   

 tanh ⁄  (2.10)   

 

A dashpot  and a spring  describe the pre-yield behavior of the MR damper; and the 

post-yield behavior is described by a dashpot , a spring  and a nonlinear slider 

based on the hyperbolic tangent function, tanh . In Equation (2.10),  is a reference 

velocity normalizing .  is a coefficient associated with the nonlinear friction 

element. The inertia of the MR damper is associated with the lumped mass . Bass 

and Christenson (2007) used the hyperbolic tangent model to predict the behavior of the 

second generation large-scale MR dampers manufactured by Lord Corporation. The 

hyperbolic tangent model has shown a good performance to describe the nonlinear MR 
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damper response. However, the initial guess of model parameters needs to be done by 

trial and error, like the Bouc-Wen model, and it is also difficult for this model to 

account for non-Newtonian MR fluid behavior because the post-yield behavior is 

governed by the linear dashpot . 

 

2.2.6 Models Based on Intelligent Systems 

 In addition to mechanical MR damper models, intelligent prediction systems 

such as neural networks and fuzzy inference systems have also been developed to 

model MR dampers. A neural network system consists of multi-layer perceptrons 

(MLP), where nodes are arranged in multiple layers to provide connections from one 

layer to the next. The connection between the nodes is described by weights whose 

values are determined through training. Data is fed forward through the network to 

produce output. An error is determined from the output and propagated backwards 

through the layers. A back-propagation algorithm allows for movement to a minimal 

error over the course of the training process. Each time the weights are changed, the 

direction and magnitude of the change is determined so as to make a move towards the 

minimal error. An activation function is assigned to each node and used to increase the 

modeling flexibility. 

 Chang and Roschke (1998) developed a neural network based MR damper 

model. They used a feedforward neural network (FNN). The input of the FNN consists 

of a time series of displacements and voltages as well as delayed damper forces. Output 

is the damper force for the current time step. To optimize the network, an optimal brain 
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surgeon (OBS) strategy was applied to prune the superfluous weights from the network. 

They utilized the Bouc-Wen model shown in Figure 2.4 to train and validate their 

neural network system. Although they provided an alternative methodology for 

modeling MR dampers using the FNN, the model is not able to stand alone because it 

requires measured damper force as an input, which is not applicable to pure numerical 

simulations. To resolve this problem, Wang and Liao (2005) applied a recurrent neural 

network (RNN) to the modeling of MR dampers. Instead of measured damper forces, a 

series of predicted damper forces are fed into the input layers along with the time series 

of displacements and voltages. The architecture of this system is illustrated in Figure 

2.6.  

 Schurter and Roschke (2000) presented an alternative for modeling of MR 

damper by using an adaptive neuro-fuzzy inference system (ANFIS). ANFIS uses a 

hybrid learning algorithm that combines the back-propagation gradient descent and least 

squares method to create a fuzzy inference system whose membership functions are 

iteratively adjusted according to a given set of input and output data. To cover the 

spectrum of operation in which the damper will function, they selected a set of 

displacement training data from Gaussian white noise with an amplitude of 4cm and 

frequency range approximately 0-3Hz. The voltage training data is selected to cover 0-4 

volts and 0-3Hz frequency ranges. To train and validate the system, Schurter and 

Roschke used the Bouc-Wen model shown in Figure 2.4. The prediction by the ANFIS 

showed good agreement with target damper forces, although it did not capture the low 

frequency damper dynamic characteristics very well. The performance of both neural 
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networks and the ANFIS rely on the quality of training data. Therefore, the training set 

for these systems needs to be selected carefully, and the performance should be verified 

further through experimental work.  

 

2.3 Semi-Active Controllers for MR Dampers 

MR dampers can be used either in passive or semi-active mode for the control of 

structures. In a passive controlled system, shown in the block diagram in Figure 2.7, a 

constant current is supplied to the MR damper. No feedback data are required in the 

controller and the damper force is generated passively for the given current. In this 

system, passive-on or passive-off control is usually referred as to the case when the 

maximum current or minimum current is applied to the damper.  

The semi-active controlled system shown in Figure 2.8 uses feedback data, 

requiring the use of sensors and a controller. The commonly accepted definition of a 

semi-active control device is the one that has properties which does not input energy 

into the system that is being controlled. In MR dampers the current going into the 

damper controls the damper force. This current can change the magnitude of damper 

force by changing the intensity of the magnetic flux from the electromagnetic coil, but it 

cannot change the direction of the damper force in a given state, like an active controller. 

To determine the appropriate control force, a semi-active controller involves the use of 

optimal control theory along with feedback data collected from sensors, such as 

accelerometers, load cells, displacement transducers, etc. 
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Since the force in an MR damper can be controlled by adjusting the input 

current into the damper, many researchers have studied the performance of an MR 

damper controlled by a semi-active controller. The command current to the damper 

from a semi-active control law can be a continuous form or a simple on-off type 

command, i.e., either the maximum current or minimum current. The latter type of 

command current is widely used. In this section, various semi-active controllers applied 

to the control of MR dampers and associated prior research are briefly introduced.  

 

2.3.1 Controllers Based on LQR and LQG 

Linear quadratic regulator (LQR) control is frequently used to control structures. 

LQR involves using is a feedback controller to minimize a quadratic cost function, 

subsequently resulting in stable motions. Dyke et al. (1996) developed a clipped-

optimal controller based on the H2/LQG (linear quadratic Gaussian) method to suppress 

the vibration of a scaled 3-story shear building structure subjected to the El Centro 

earthquake ground motion. Jansen and Dyke (2000) investigated the response of a 6-

story small scale shear building with two MR dampers mounted in the 1st and 2nd stories 

and employed various semi-active control algorithms, including the clipped-optimal 

controller to control the response of the structure to ground motions. Yi et al. (2001) 

applied the clipped-optimal controller to a small scale 6-story shear building and 

compared the experimental response obtained using a Lyapnov controller. Xu et al. 

(2000) proposed optimal displacement control strategies for MR and ER dampers based 

on LQR control theory, and drew the conclusion that the performance of their semi-
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active controllers is better than that of a passive device. Tsang et al. (2006) developed a 

simplified inverse dynamic (SID) model for determining the command current to 

produce the desired damper force. The SID was based on a mechanical MR damper 

model such as the Bingham model and the Bouc-Wen model. Tsang et al. selected a 3-

story shear building and applied the LQR controller to a MR damper installed in the 1st 

story to verify their SID model for determining the command current into the damper. 

Guo et al. (2009) performed shaking table tests on a base-isolated bridge to investigate 

the pounding effect between adjacent superstructures under earthquake ground motions. 

MR dampers were installed under the superstructure along with rubber bearings to 

control the relative structural movement between the foundation and the superstructure. 

The LQR was selected as a semi-active controller and the results were compared with 

those of passive controllers.      

 

2.3.2 Sliding Mode Control (SMC) 

The basic theory of sliding mode control (SMC) is to design the controller to 

drive the response trajectory along a sliding surface, where the motion on the sliding 

surface is stable (Yang et al. 1995). Moon et al. (2002) applied SMC based on Yang’s 

work to control the response of a cable-stayed bridge to earthquake excitations. They 

showed the robustness of SMC by investigating the performance of SMC associated 

with uncertainties in stiffness. Hiemenz et al. (2003) compared the performance of three 

different semi-active controllers for a 3-story shear building, which included a skyhook 

controller, LQR controller, and continuous sliding mode (CSM) control. Both steady-
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state frequency responses and transient seismic response were simulated. It was found 

that CSM outperformed the LQR and skyhook controllers in their results. Fan et al. 

(2008) performed a shaking table test on a 3-story steel frame equipped with a 

pendulum isolator system on the 1st floor. The isolator system was composed of a single 

MR damper with 6kN force capacity, a friction pendulum-type isolator, and a piece of 

mechanical equipment with known mass (mass equipment) on the friction isolator. They 

used a set of two decentralized sliding mode controls (DSMCs), where the command 

signal was determined only using the local feedback signals, as well as the LQR 

controller. The maximum acceleration of the mass equipment and the maximum 

displacement of the isolator were measured during the tests, and Fan et al. reported 

trade-offs between the acceleration and the displacement. Lu et al. (2008) conducted an 

experimental study of a 1/4 scale 6-story steel frame structure. 3kN MR dampers 

manufactured by Lord Corporation were installed in the building structure with four 

different damper deployment profiles. Several DSMCs were designed and applied to the 

structure along with the LQR controllers. The results from shaking table tests with these 

controllers showed the benefit of the DSMC over the LQR controllers.  

 

2.3.3 Controllers Based on Lyapunov Stability Theory 

 Lyapunov stability theory provides a powerful tool for dealing with stability 

problems in both linear and nonlinear systems (Ogata 1997). This stability theory has 

been frequently applied to the design of controllers; the linear quadratic regulator and 

the sliding mode controller are based on Lyapunov stability theory.. 
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Jansen and Dyke (2000) investigated the response of a 6-story small scale shear 

building with a controller based on Lyapunov theory. They showed that the Lyapunov 

controller worked comparably well to the clipped-optimal controller. Albarez and 

Jimenez (2003) studied the behavior of a 3-story shear building with an MR damper in 

the 1st story. They used a Lyapnov controller and conducted numerical simulations 

using the MR damper model based on a dynamic friction model. Their semi-active 

controller resulted in a significant reduction in structural response compared to the 

uncontrolled case. Sahasrabudhe and Nagarajaiah (2005) performed both experimental 

and numerical studies on a 1:20 scaled bridge model, where the MR damper was 

installed between the bridge deck and the pier. The Lyapunov function for their 

controller consisted of the total strain energy, the total dissipated energy, and the total 

kinetic energy. They showed that the semi-actively controlled MR damper reduces 

bearing displacements further than the passive low- and high-damping cases, while 

maintaining isolation level forces less than the passive high-damping case. Soneji and 

Jangid (2006) investigated the behavior of the Quincy Bay-view Bridge at Illinois, 

where the bridge is assumed to have isolators consisting of high damping rubber 

bearings (HDRB) and MR dampers. The controller based on Lyapunov stability theory 

showed better performance than that of the passive controlled case. 

 

2.3.4 Neural Network Controllers 

 Intelligent controllers such as neural networks and fuzzy inference systems can 

be thought of as adaptive or self-organizing systems that learn through interaction with 



29 
 

their environment with little a priori knowledge (Housner et al 1997). A structural 

system with semi-actively controlled MR dampers could be a highly nonlinear system, 

considering the nonlinear characteristics of the MR dampers as well as the nonlinearity 

of the structure itself. Neural networks can be effectively applied to this kind of 

complex system. The main advantage of the neural network approach is that 

identification of an unknown system and evaluation of response can be performed 

without building a mathematical model of the system (Gallent 1993).  

 Xu et al. (2003) proposed an on-line real-time control method for semi-active 

control of structures with MR dampers using neural networks. The neural networks 

predict the displacement and velocity of the structure. If the predicted displacement is 

less than the desired value, then, the command current into the MR damper is zero. 

Otherwise, the current is gradually increased until it reaches the maximum current input. 

The predicted responses are compared with the measured (or calculated) structural 

responses with MR dampers, and the neural network is trained in such a manner that the 

errors between predicted and measured responses are minimized. Bani-Hani and Sheban 

(2006) applied a neural network system to control a 6-story building structure mounted 

on a semi-active base isolation system combined with MR dampers. An inverse neural 

network model (INV-MR) was constructed to replicate the inverse dynamics of the MR 

damper. Next, an LQG controller was designed to produce the optimal control force. 

The coupled LQG and INV-MR system was used to train a semi-active neuro-controller, 

designated as SA-NC, which produces the necessary control voltage into the MR 

damper. The effectiveness of the SA-NC was illustrated and compared to other passive 
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systems. Karmodin and Kazemi (2010) used a similar procedure to the one proposed by 

Bani-Hani and Sheban (2006) to control the 3-story ASCE benchmark structure (Ohtori 

et al. 2004) with MR dampers. According to their conclusions, the semi-active neuro-

controller performed better than the clipped-optimal controller to reduce the story drift 

in the structure. 

 

2.3.5 Fuzzy Controllers 

Fuzzy control uses expert knowledge instead of a sophisticated mathematical 

model to describe a system. It is a process that uses fuzzy information to determine 

desirable control actions and is utilized in complex systems for which there are no 

simple mathematical model (Wilson 2005).  

Zhou et al. (2003) provided an adaptive fuzzy control algorithm for the control 

of linear and nonlinear SDOF and MDOF structures with an MR damper. The algorithm 

involves the design of a fuzzy controller and an adaptation law for the combined 

structure-MR damper system. Numerical simulation conducted on a 3-story shear 

building structure with an MR damper in the 1st story showed the effectiveness of their 

semi-active controller. Choi et al. (2004) developed a fuzzy controller and applied it to 

the control of 3-story shear building structure used by Dyke et al. (1996). Based on their 

membership functions and fuzzy inference rule, Choi et al. (2004) generated a 

continuous command voltage into the MR damper between 0V and the maximum 

voltage. By comparing their results with those of passive controllers and the clipped-

optimal controller, they illustrated the effectiveness of the fuzzy semi-active controller. 
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Lin et al. (2007) conducted experimental studies involving 21,772kg mass and a hybrid 

isolation system with four high damping rubber bearings (HDRBs) and a 300kN MR 

damper. Three different fuzzy logics were utilized to generate appropriate command 

voltages for the MR damper. The results with semi-active fuzzy controllers were 

compared with those of passive control cases, showing that the semi-active fuzzy 

controller exhibits good performance in reducing both the displacement and the 

acceleration of the isolated structure. Gu and Oyandiji (2008) utilized an adaptive 

neuro-fuzzy inference system (ANFIS) method to control structures with MR dampers. 

The LQG controller was used to generate a training data set and a force-feedback 

control scheme was employed in their controller. No significant difference in reducing 

the displacement of a 3-story shear building was reported between the ANFIS and the 

LQR controllers. 

 

2.4 Basic Theory for Semi-Active Controllers 

In this section, the basic theory for three different semi-active controllers is 

introduced, including: i) linear quadratic regulator; ii) sliding mode control; iii) 

decentralized bang-bang control. These controllers will be used in Chapter 9 for the 

evaluation of the performance of semi-active controllers in reducing structural response 

under seismic loading. 

 

2.4.1 Equilibrium Equations 
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The motion of a linear-elastic structure subjected to a single component of 

horizontal ground motion is governed by the following set of equilibrium equations: 

 

  (2.11)    

 

where   = mass matrix ( );  =  damping matrix ( );  = stiffness 

matrix ( );  = MR damper location matrix ( );  = damper force vector 

( 1);  = unit vector of which all the row are 1 ( 1);  = vector of displacements 

( 1 ;  = vector of velocities ( 1 ;  = vector of accelerations ( 1 ; and =  

input ground acceleration.  is the number of degrees-of-freedom(DOFs) of the 

structure and  is the number of MR dampers placed in the structure. The state-space 

form of Equation (2.11) can be written as 

 

  (2.12)   

  (2.13)   

 

where, z is the state vector consisting of T  T T  and y is an output vector. 

Matrices A, B, and E are defined as 

 

 ,  ,   (2.14)   

 

2.4.2 Linear Quadratic Regulator (LQR) 



33 
 

2.4.2.1 Basic Theory 

In the LQR control theory, the optimal damper forces are obtained by 

minimizing the scalar performance index defined as (Ogata 1997) 

 

 T T  (2.15)   

 

where, Q and R are positive-definite symmetric matrices. These are user-defined 

weighting matrices of which dimensions are (2 2 ) and ( ), respectively. The 

optimal control force is determined by using the LQR gain matrix   

 

  (2.16)   

 

The objective of the LQR controller is to find an optimal gain matrix  ( 2 ) that 

minimizes the performance index of Equation (2.15). The term containing the ground 

motion in Equation (2.12) is considered as a disturbance in the optimization procedure 

for determining  and ignored. Substituting Equation (2.16) into Equation (2.12), and 

ignoring the ground acceleration term, the following equation is obtained 

 

  (2.17)   

 

In the following derivations, the matrix  is assumed to be stable. Substituting 

Equation (2.16) into Equation (2.15) yields 
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 T T  (2.18)   

 

Assuming 

 

 T T T  (2.19)   

 

where  is a positive-definite symmetric matrix, then 

 

 
T T T T  

T T  
(2.20)   

 

Comparing both sides of Equation (2.20) and noting that this equation must hold true 

for any , it is required that 

 

 T T  (2.21)   

 

According to Lyapunov’s stability theory, if the system is stable, there exists a positive-

definite matrix . Using Equation (2.19), the performance index  can be evaluated as 
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T T T |

T ∞ ∞ T 0 0  

(2.22)   

 

Since the system is assumed to be stable, then ∞ . Thus,  

 

 T 0 0  (2.23)   

 

which means the performance index is obtained in terms of the initial conditions 0  

and . The optimization problem becomes one that involves finding  that minimizes 

Equation (2.23) for given initial values. 

Since  has been assumed to be a positive-definite symmetric matrix, it can be 

written as 

 

 T  (2.24)   

 

where  is a nonsingular matrix. Then, Equation (2.21) can be written as 

 

 T T T T T  (2.25)   

 

which can be rearranged as 
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T T T T T T

T  
(2.26)   

 

The minimization of  with respect to  requires the minimization of 

 

 T T T T T T  (2.27)   

 

with respect to  (Ogata 1997). Since Equation (2.27) is quadratic in terms of  and 

nonnegative, the minimum occurs when it is zero, that is when 

 

 T T  (2.28)   

 

Hence, the optimal LQR gain  is obtained as 

 

 T T T  (2.29)   

 

Consequently, the optimal damper force calculated from the minimization of the 

performance index  is given as 

 

 T  (2.30)   
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where the matrix  is obtained by solving Equation (2.21) or the following reduced 

form of Equation (2.21) 

 T T  (2.31)   

 

Equation (2.31) is called the reduced-matrix Riccati equation. 

 

2.4.2.2 Control Law 

Since an MR damper is a semi-active device, it cannot always produce the 

optimal damper force obtained from Equation (2.30). The command current for an MR 

damper is therefore obtained using the following criteria, which is known as the clipped 

optimum control law: 

 

  if · 0 and 0 
0      otherwise          

 (2.32)   

 

where, ,  , and  are the command current, maximum current, optimal force 

and measured force of the ith MR damper in a structure, respectively.  

 

2.4.3 Sliding Mode Control (SMC) 

The basic theory of sliding mode control (SMC) is to design the controller to 

drive the response trajectory along a sliding surface, where the motion on the sliding 

surface is stable (Yang et al. 1995). This sliding surface defines the rule for switching of 

the controller gain. When the response trajectory is above the surface, the feedback path 
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has one gain, and if the trajectory drops below the surface then a different gain. The 

sliding surface, , is a set of hyper planes consisting of linear combinations of a state 

vector , which is expressed as 

 

  (2.33)    

 

where  is a gradient matrix for the sliding surface. There are several different 

methods to determine , including the poll placement method, optimal quadratic 

minimization method and eigenstructure assignment method (Utkin 1992, Edwards and 

Spurgeon 1998). The optimal quadratic minimization method is used with the procedure 

for the design of the sliding surface that is described in the following section. 

 

2.4.3.1 Design of Sliding Surface 

 From Equation (2.12), the equation of the system in state-space form without a 

ground motion term is given as 

 

  (2.34)   

 

In the sliding mode control, Equation (2.34) is converted to a particular canonical form, 

the so-called regular form, in order to get a convenient interpretation of the reduced-

order sliding mode dynamics. Equation (2.34) is transformed to a regular form using an 

orthogonal transformation matrix, , as follows 
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  (2.35)   

 

where, 

 

     T     (2.36)   

 

In Equation (2.36),  and .  can be any orthogonal matrix that 

makes  nonsingular. In this study,  is obtained from a unitary matrix after 

performing the QR decomposition of , and the upper triangular matrix becomes . 

The sliding surface is now represented I n terms of  and  .  

  (2.37)   

 

where,  and  have the following relationship with  

 

 T  (2.38)   

 

During the sliding motion, the sliding surface will be identically zero 

 

  (2.39)   
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which can be rewritten as 

 

  (2.40)   

 

where  from Equation (2.40) is equal to 

 

  (2.41)   

 

As can be seen in Equation (2.40) that  is linearly related to , and therefore by using 

Equations (2.40) and (2.35) the equations of sliding mode are rewritten as  

 

  (2.42)   

  (2.43)   

 

This is an (2N-L)th order system where  has the role of a linear full-state feedback 

control signal. By closing the loop with feedback from Equation (2.43), Equation (2.42) 

yields the following combined equations 

 

  (2.44)   

 

It should be noted that fixing  does not uniquely determine . The matrix  has no 

direct effect on the dynamics of the sliding motion and acts only as a scaling factor for 
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the sliding surface (Edwards and Spurgeon 1998). One convenient approach to 

determine  is letting it be equal to the identity matrix , from which the 

sliding surface is determined from Equations (2.38) and (2.41) 

 

  (2.45)   

 

 can be determined by using several methods such as the poll placement method, 

optimal quadratic minimization method and eigenstructure assignment method. In the 

following section, the quadratic minimization procedure is demonstrated for 

determining an optimal . 

 

2.4.3.2 Quadratic Minimization 

 The performance index, which is quadratic in terms of the state vector, is 

considered as an objective function to be minimized during the sliding mode, where 

 

 
1
2

T  (2.46)   

 

In Equation (2.46),  is a user-defined matrix and is both symmetric and positive 

definite.  is the time at which the sliding motion commences. The aim is to minimize 

Equation (2.46) subject to the system Equation (2.34). As the first step, the matrix  is 

transformed and partitioned considering the compatibly with  and  by using the 

transformation matrix : 
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 T  (2.47)   

 

where, T . Equation (2.46) can be expressed in terms of  and , along with 

Equation (2.47) 

 

 
1
2

T 2 T T  (2.48)   

In order to get the standard LQR form, the following equations are used to eliminate the 

2 T  term in Equation (2.48), where 

 

 
2 T T T T  

T T 
(2.49)   

 

Substituting Equation (2.49) into Equation (2.48) yields 

 

 
1
2

T T  (2.50)   

 

where, 

 

  (2.51)   
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  (2.52)   

 

Solving for  in Equations (2.52) and then substituting the result into Equation (2.42) 

yields the following modified constraint equations: 

 

  (2.53)   

 

where, 

 

  (2.54)   

 

Now the problem becomes one in standard LQR form (i.e., Equation (2.15)) with the 

objective function of Equation (2.50) that is constrained by Equation (2.53). Proceeding 

as before in the LQR the optimal  minimizing Equation (2.50) is therefore obtained by 

using Equations (2.30) and (2.31) 

 

 T  (2.55)   

 

where,  is given by solving the following algebraic matrix Ricatti equation 

 

 T T  (2.56)   
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Substituting Equation (2.55) into Equation (2.52) results in 

 

 T  (2.57)   

 

Comparing this with Equation (2.40) yields 

 

 T  (2.58)   

 

Finally,  for the sliding surface is determined by substituting Equation (2.58) into 

Equation (2.45). 

 

2.4.3.3 Control Law 

Once  is determined the semi-active control law for the MR dampers can be 

established using the Lyapunov stability criterion, where the Lyapunov function is 

decided by using the sliding surface: 

 

 
1
2

T 1
2

T T  (2.59)   

 

The time derivative of  is obtained by differentiating Equation (2.59) and using the 

state form of Equation (2.12), whereby 
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 T T T T T  (2.60)   

 

Since  is positive-definite, the condition of  0 assures the stability of the system. 

To make  as large and negative as possible, the last term containing the control force  

in Equation (2.60) is used in the control law. Letting T T ; the control law 

which minimizes  is given as 

 

 if · 0
0 otherwise

 (2.61)   

 

where i is associated with the ith damper, and therefore   is the component of ith row in 

 and  is the measured force in the ith damper.  

 

2.4.4 Decentralized Bang-Bang Control (DBB) 

2.4.4.1 Basic Theory 

In decentralized bang-bang control (DBB), the Lyapunov function is used to 

represent the total vibratory energy in the structure (Jenson and Dyke 2000). The total 

vibratory energy is the sum of the kinetic and potential energy, where 

 

 
1
2

T T
 (2.62)   

 

The time derivative of  is given by 
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 T T
 (2.63)   

 

2.4.4.2 Control Law 

Similar to the method used in sliding mode control, the control law is chosen in 

such a manner that makes the term containing the damper force a minimum for , 

whereby: 

 

 if TΛ 0
0 otherwise

 (2.64)   

 

where, Λ  is the i-th column of the  matrix. It should be noted that this method does 

not require the need to define values for control law parameters. 

 

2.5 Summary 

 In this chapter, various MR damper models and semi-active control strategies 

have been reviewed. Accurate MR damper models are essential to take advantage of 

MR dampers, by enabling numerical simulations of structural systems with dampers to 

be conducted to assess control law designs and structural performance under earthquake 

ground motions. Although various kinds of semi-active control algorithms have been 

developed, most of the research has focused on the effectiveness of the algorithm itself, 

and not a rigorous comparison with the performance of a passive controller and the 



47 
 

consideration of costs compared to a passive control system. Some research has shown 

a better performance of a system with semi-active controllers for selected structures and 

ground motions, while the others showed similar or poor structural performance of 

systems with semi-active control.  
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Figure 2.1 Bingham MR damper model 

 

 

Figure 2.2 Model proposed by Gamota and Filisko (1991) 

 

 

 

Figure 2.3 BingMax model 
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Figure 2.4 Phenomenological Bouc-Wen MR damper model 
 
 

 

Figure 2.5 Hyperbolic tangent MR damper model 

 

 

Figure 2.6 Three layer recurrent neural network (RNN) with 18-18-1 neurons  
(Wang and Liao 2005) 
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Figure 2.7 Block diagram for a passive controlled system with MR dampers 

 

                                    

 

 
 

Figure 2.8 Block diagram for a semi-active controlled system with MR dampers 
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Chapter 3 

Modeling of a Large-Scale Magneto-Rheological Damper for Seismic Hazard 

Mitigation: Passive Mode 

 

3.1 General 

The feasibility of using an MR damper as a device for the vibration reduction of 

a structure has been studied by numerous researchers (Dyke et al. 1996, Jenson and 

Dyke 2000, Xu et al 2000, Schurter and Roschke 2001, Ribakov and Gluck 2002, Moon 

et al 2002, Bani-Hani and Sheban 2006, Fan et al 2008). Most of those studies involved 

the use of small-scale MR dampers, which would not be applicable to full-scale 

structures. Lord Corporation developed its first generation large-scale MR damper 

(Carlson and Spencer 1996). Yang (2001) rigorously investigated the dynamic behavior 

of the damper, where he performed a series of characterization tests for obtaining data 

to model the MR damper. The maximum velocity in the characterization tests was 

restricted to 72.6mm/sec due to the limited capacity of the driving actuator. This 

maximum velocity is not adequate to describe the response of dampers under the design 

basis earthquake (DBE) or the maximum considered earthquake (MCE) level of ground 

motions, since the damper can exceed this velocity during these seismic hazard levels, 

as will be presented in Chapter 7. The MCE ground motion is represented by a ground 

shaking response spectra that has a 2% probability of exceedance in 50 years, and the 

DBE ground motion has a severity 2/3rd  that of MCE ground motion (FEMA 2000a). In 

2005, Lord Corporation developed its second generation large-scale MR damper. Bass 
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and Christenson (2007) performed system identification of this damper using the 

hyperbolic tangent MR damper model.  

The study reported herein describes a new MR damper model called the 

Maxwell Nonlinear Slider (MNS) model. This model is used to model large-scale MR 

dampers subject to realistic earthquake deformation and velocity demands. The MNS 

MR damper model can independently describe the pre-yield and post-yield behavior of 

an MR damper, which makes it easier to identify the parameters for the model. The 

Hershel-Bulkely visco-plastic element is incorporated into the MNS model for the 

description of the post-yield mode of the damper, so that the non-Newtonian MR fluid 

property can be effectively accounted for.  

Characterization tests were performed, and the data was used to assign values to 

the parameters of the MNS model. The response from various experimental data and 

that predicted using the MNS model are compared and discussed for constant current 

input (i.e., with the damper in passive mode).  

 

3.2 Experimental Setup for Characterization Test 

The characterization tests were performed at the Lehigh NEES equipment site 

on a large-scale MR damper. The damper was manufactured by Lord Corporation and is 

their second generation large-scale MR damper. A schematic of the damper is shown in 

Figure 3.1. The length and available stroke of the damper are 1.5m and ±279mm, 

respectively. The electromagnetic coil consists of 368 turns of 18 AWG magnet wire 

with an annular gap of 1.0 mm between the piston head and the inside diameter of the 
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cylinder. The damper is filled with approximately 19 liters of MRF-132DG type MR 

fluid manufactured by Lord Corporation.  

The experimental setup for the characterization test consists of two primary 

parts: i) a hydraulic actuator to control the movement of the MR damper; and ii) 

electrical hardware to supply an appropriate current to the damper for the control of the 

damper force. Figures 3.2 and 3.3 show the test setup for the characterization tests of 

the MR damper. The MR damper is connected to the hydraulic actuator through a stiff 

horizontal steel section. This is done in order to extend the arm of the actuator piston to 

accommodate the spacing of anchor locations for threaded rods that secure the damper 

and actuator to the laboratory strong floor. The maximum force capacity of the actuator 

is 1,700kN; with the actuator having the ability to generate approximately 500kN of 

force at a piston velocity of 1.0m/sec. A 534kN load cell is installed between the 

horizontal steel section and the damper piston to directly measure the force developed 

in the damper.   

The current going into the damper is controlled by a pulse width modulation 

(PWM) type current driver manufactured by Advanced Motion Controls (30A8). Figure 

3.4 shows an electrical hardware setup for the control of the current into the MR damper. 

The PWM servo-amplifier can supply current to the electrical circuit up to 30A by 

driving the DC motor at a high rate of switching frequency (22kHz). To reduce the 

noise from the electrical power source, a Schaffner line filter is deployed in front of the 

DC power supply that provides 72 DC voltage to the PWM servo-amplifier. The 

command current is transferred to the PWM servo-amplifier through voltage signals 
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from -10V to +10V to produce the desired current utilizing pulse width modulation. The 

current going into the MR damper is monitored by a current probe (CR Magnetics 

current transformer).  

To monitor the temperature of the damper, four thermocouples are installed on 

the surface of the damper cylinder housing along the circumference at mid-length of the 

damper. Dyke et al (1996) stated that the property of MR fluid is not sensitive to a 

change of temperature. However, Yang (2001) reported that 15~25% force drop was 

observed when the damper temperature increased from room temperature to 180ºF, 

while the damper was subjected to cyclic triangular displacement excitations. Thus, it is 

important to maintain the damper near ambient temperature in order to minimize the 

effect of temperature on the damper characterization tests. Each characterization test 

was performed with an initial temperature of 72ºF to 75ºF.  

 

3.3 Test Matrix for Characterization Test 

To identify the frequency and velocity dependent behavior of the MR damper, 

characterization tests consisting of sinusoidal displacement at the selected amplitudes 

and frequencies listed in Table 3.1 were performed on the large-scale MR damper. The 

test matrix in Table 3.1 covers a velocity range from 8 mm/sec to 479mm/sec. These 

sinusoidal tests were conducted with six different constant current levels, including 0.0, 

0.5, 1.0, 1.5, 2.0 and 2.5Amps. 

 

3.4 Characterization Test Results 
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Figure 3.5 shows a set of sinusoidal test results for various current input with 

25.4mm displacement amplitude and 1.0Hz frequency. The results illustrate the 

response of the damper displacement and damper force subjected to this displacement 

history for a different current input. Figure 3.6 show the associated force-displacement 

and the force-velocity relationships of the MR damper. As can be observed in Figures 

3.5 and 3.6, the damper force is dependent on the current input; i.e., a larger damper 

force can be observed with a higher current input. Figures 3.7 and 3.8 show the 

response of the MR damper under sinusoidal displacement inputs with various 

frequencies when the current inputs are I=0.0Amp  and I=2.5Amp, respectively.  

Tests were also performed that included random displacement histories. Five 

random displacement inputs are considered based on Gaussian white noise with a 

frequency bandwidth ranging from 2 to 50 Hz, as indicated in Table 3.2. Three different 

current inputs were considered for each case: 0.0, 1.0 and 2.5Amps. In addition to the 

MNS model, the parameters for the Bouc-Wen and the hyperbolic tangent models were 

both identified. These test results will be used to assess and compare the predictions by 

three MR damper models being considered with experimental response. 

In addition, a test was performed using a pre-defined input displacement based 

on the simulated response of an MR damper model in a structure subject to earthquake 

ground motion. 

 

3.5 Maxwell Nonlinear Slider (MNS) MR Damper Model 
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The Bouc-Wen model and the hyperbolic tangent model are among the more 

commonly-used MR damper models. However, due to the complexity of these models, 

which includes nonlinear components, the estimation of the model parameters for these 

damper models is not easy. In particular, the initial guess for the model parameters used 

in the process to identify the final parameters needs to be done by trial and error. Since 

the post-yield behavior is dominantly described by the dashpot  (see Figures 2.4 and 

2.5) in both the Bouc-Wen model and the hyperbolic tangent model, the post-yield 

behavior of these two models have the characteristics of a Newtonian fluid where the 

damper force is proportional to velocity. It is difficult for these models to therefore 

describe the shear thinning or thickening behavior (see Figure 3.9) that occurs in an MR 

fluid (Yang 2001), especially in the post yield response at high velocities. Consequently, 

an inaccurate prediction of damper force at large amplitudes and high velocities can 

occur in these models. 

A schematic of the MNS model is shown in Figure 3.10. The model has two 

modes: pre-yield and post-yield. In Figure 3.10, x is the degree of freedom of the model 

that is associated with the displacement of the MR damper piston relative to its initial 

position, while y and z are variables associated with the pre-yield mode of the model. In 

this study,  and  are referred to as the damper displacement and the damper velocity, 

respectively, for simplicity. The variables  and  are related through the velocities  

and  as well as the force  in the damper. The variables  and  are related through 

equilibrium with the damper force  applied to the model.  
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One of the advantages of the MNS model is that the pre- and post-yield modes 

of response can be separated from each other, enabling the model parameters that 

describe these two modes of behavior to be independently identified. This makes it 

easier to identify the parameters for the model compared to other existing MR damper 

models. The following sections provide a detailed explanation of the MNS model and 

the estimation of its parameters. 

 

3.5.1 Pre-yield Mode 

In the pre-yield mode, the behavior of the damper is described by a Maxwell 

element consisting of a dashpot with coefficient  and stiffness  (see Figure 3.10) 

where the damper force f is determined by solving the following differential equation 

 

  (3.1)    

 

When the damper is in pre-yield mode,  is equal to the damper velocity . The initial 

value of  is set to be equal to ; thus Equation (3.1) can be solved in terms of  for a 

given , enabling the damper force  to be determined. The parameters for the Maxwell 

element can be easily estimated from the visco-elastic behavior of the MR damper, 

especially when the damper is subjected to small displacement amplitudes and low 

velocities. The values of  and  of the Maxwell element are obtained from the force-

velocity relationship by selecting two appropriate points on the hysteretic force-velocity 

curve and then applying visco-elasticity theory. Assuming the Maxwell element is 
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subjected to a harmonic motion with an amplitude of  and circular excitation 

frequency of , the coefficients  and  are calculated as follows 

 

 
1

,
1

 (3.2)    

 

where  and  are damper forces when the velocities are zero and a maximum, 

respectively. The derivation for the relationships for  and  is given in Appendix 1. 

Figure 3.11 illustrates the steady-state force-velocity relationship of a Maxwell element 

under a harmonic excitation and the definition of  and . Figure 3.12 shows the 

comparison of damper forces when the damper is subjected to two different sinusoidal 

displacement histories with frequencies of f=0.5Hz and f=1.0Hz. The amplitude and the 

current input are 1.5mm and 2.5A, respectively, for both tests. The parameters for the 

Maxwell element are calculated as =11,804 kN-sec/m and =115,000 kN/m based on 

Equation (3.2) for the sinusoidal test result with f=1.0Hz, where =50 kN and =80 

kN, respectively. As can be observed from Figure 3.12, the MNS model shows good 

agreement with experimental data for both cases with f=0.5Hz and f=1.0Hz. The values 

for parameter  and  can be refined using the optimization algorithm discussed later in 

this chapter. 

 

3.5.2 Post-yield Mode 

The post yield behavior of an MR damper is closely related to the velocity . A 

damper model based on Hershel-Bulkley visco-plasticity theory can describe the non-
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Newtonian fluid behavior that occurs in the MR fluid, i.e., the shear thinning and shear 

thickening behavior of the fluid, by using a power law model (Wang and Gordaninejad 

2000, Lee and Wereley 2000). Yang (2001) used the Hershel-Bulkley model to describe 

the quasi-static behavior of MR dampers and found that the Hershel-Bulkley model has 

good agreement with the experimental behavior of the 20-ton large-scale MR damper. 

Yang used the Hershel-Bulkley model to only describe the quasi-static behavior of the 

MR damper. For the dynamic modeling of the MR damper involving the hysteretic 

response, the Bouc-Wen hysteresis model was used in his study.  

In the MNS model, only the nonlinear slider is used to describe the post-yield 

response of the MR damper, where the post-yield behavior is assumed to be described 

by a post-yield curve that is a pre-defined trajectory of damper force in the force-

velocity plane. Figure 3.13 shows the post-yield curves for the MNS model. The post-

yield curve consists of a curve based on the Hershel-Bulkley model and a linear line 

which is tangential to the curve at the velocity of  or . Mathematical representation 

of the positive force post-yield curve for the MNS model is given as 

 

 
| | if

if  (3.3)    

 

where , , , and  are parameters to be identified, and | | , 

| | . The negative force post-yield curve, , can be defined in a similar manner 

as , using the appropriate values for the negative force post-yield curve 

parameters. Most MR dampers are manufactured with imperfections whereby their 



60 
 

force-velocity hysteretic response does not show a perfect symmetry. Thus, defining the 

post-yield curves separately for the positive and negative force curves can improve the 

accuracy of the damper model by fitting the curves to the experimental data.  

 The experimental post-yield curve in quadrant I and III in Figure 3.13 can be 

obtained from a constant velocity or sinusoidal test. The parameters , , and  in 

Equation (3.3) can be identified from the experimental data using optimization theory. 

Due to the simplicity of the Hershel-Bulkley model, the initial guess of the parameters 

is attainable with minimum effort and this procedure is completely independent of the 

identification of the value for  and  that describe the pre-yield mode of the MNS 

model. As noted above, the tangential line is added to define the post yield curve in 

quadrant II and IV. A small positive value for  and negative value for  can be 

initially used and then, their values are adjusted using an optimization algorithm so that 

the model matches the available experimental data. 

Identifying the post-yield curves in quadrant II and IV may be quite a 

challenging task because it is difficult to obtain the experimental post-yield data from 

the constant velocity test in these quadrants. In this study, the tangential lines in 

quadrants II and IV are used to make it easy to describe the change of mode from post-

yield to pre-yield. In the MNS model, the change of mode from post-yield to pre-yield 

usually occurs near zero velocity. For example, suppose the damper is in the post-yield 

mode and the damper force decreases along the path of the positive force post-yield 

curve. In general, the mode change occurs when the positive velocity approaches zero 

velocity. If the acceleration is large, however, the damper force tends to keep moving 
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down along the path of the positive force post-yield curve; hence, the post-yield curve 

in quadrant II needs to be defined appropriately by the use of the tangential line to 

replace the post-yield curve in quadrant II. In this case, the mode change occurs at a 

negative velocity, but not far from zero velocity. A small positive value for  is 

usually used to minimize the distortion of the Hershel-Bulkley curve in quadrant I, but 

not too small because the tangential line needs to have an appropriate slope to match the 

experimental data observed in quadrant II. The same phenomenon exists along the path 

of the negative force post-yield curve in quadrants III and IV. 

The post-yield curve is composed of two phases in the MNS model, namely, a 

increasing phase and decreasing phase. If the magnitude of the damper force is 

increasing during the post-yield mode, the damper is in the increasing phase. On the 

contrary, the damper is in the decreasing phase if the magnitude of the damper force is 

decreasing. Since the post yield curve shows a monotonic increase or decrease in 

damper force with respect to the velocity , the damper is in the increasing phase when 

0 in the positive force post-yield mode where  is the damper acceleration, while it 

is in the decreasing phase when 0. Experimental data from the characterization 

tests show the trajectory of damper forces can be slightly different during the increasing 

and decreasing phase as can be observed in Figure 3.14. The arrows in the figure show 

the path of cyclic damper force in the force-velocity plot for the case involving a 

frequency of f=3.0Hz. For the other cases involving other frequencies, a similar trend 

was found. The solid and dashed arrows represent the paths of the pre-yield mode and 

post-yield mode, respectively. When the mode changes from the pre-yield to the post-
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yield, the slope of the damper force abruptly changes, enabling the mode change to be 

identified in the experimental data by examining the slope of the damper force in the 

force-velocity plot. After the mode change occurs, the damper force generally increases 

with increasing velocity (i.e., increasing phase). When the velocity begins to decrease 

after passing the maximum velocity, the damper force also decreases (i.e., decreasing 

phase). The difference between the paths for the increasing and decreasing phases can 

be distinctly observed in Figure 3.14 (a) where the current is I=1.0A. For the case of 

I=2.5A, the discrepancy between the force paths in quadrant I is not as significant as 

that in quadrant III. To account for this force discrepancy, an inertial term is added to 

the post-yield damper force for the MNS model. When the damper force is on the 

positive force post-yield curve (i.e., quadrants I or II), the final damper force is 

determined as 

 

 
0; increasing phase 
0; decreasing phase (3.4)   

 

When the damper force is on the negative force post-yield curve (i.e., quadrants III and 

IV), the damper force is  

 

 
0; increasing phase 
0; decreasing phase (3.5)   
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In Equations (3.4) and (3.5)  is a mass to account for the above force discrepancy. 

The parameter  can be estimated by equating the product of the measured 

acceleration  and  to the experimental force discrepancy between the increasing and 

decreasing phases. 

 

3.5.3 Criteria for Mode Changes 

When the damper force f from the Maxwell element reaches the post-yield curve, 

the nonlinear slider in the MNS model is activated and the mode changes from the pre-

yield to the post-yield state. Mathematically, this condition is expressed as 

 

 | |  (3.6)    

 

where  is associated with either the positive or negative force post-yield curve. If f 

reaches  or , then the damper force is determined by Equation (3.4) or 

Equation (3.5), respectively, in the post-yield mode. Equation (3.6) implies that the 

generated damper force is always bounded by the positive and negative force post-yield 

curves in the MNS model. The transition from the post-yield mode to the pre-yield 

mode occurs when the following velocity equation is satisfied during the post-yield 

mode: 

 

  (3.7)    
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where,  is calculated from 

 

  (3.8)    

 

Equation (3.8) is obtained by rearranging Equation (3.1) to arrive at an expression for  

and then taking the time derivative of y. The value for  is calculated by substituting the 

damper force  and the time derivative of the damper force, , from the post-yield mode 

into Equation (3.8). To obtain a smooth transition from the post-yield mode to the pre-

yield mode, during the post-yield mode the pre-yield mode variables  and  of the 

MNS model are continuously updated by solving Equation (3.1) for  and  using the 

force f developed in the damper during the post-yield mode. The details of the state 

determination during the pre- and post-yield mode are given in Appendix 2. 

 

3.6 Identification of Model Parameters 

3.6.1 Particle Swarm Optimization  

The parameters of the damper models are identified in such a manner that the 

errors between the response prediction by the models and the experimental data is 

minimized. The particle swarm optimization (PSO) algorithm was used to identify the 

parameters. The PSO concept is motivated from the social behavior of a swarm of 

animals such as a flock of birds or school of fish (Kennedy and Eberhart 1995). In the 

PSO algorithm, a particle is defined as a set of the model parameters to be identified 

(see Tables 3.3 through 3.5). The initial position (i.e., the initial parameters of the model) 
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of the particles is assigned in a random manner. Each parameter of the particle is 

assigned a random number from a uniform distribution over the possible range of the 

parameter. Thus, the range of the parameter needs to be established. In the MNS model, 

the range of parameters is determined based on the initial guess of the model parameters 

described in Section 3.5.1 and 3.5.2. Each particle in the PSO roams on a hyper-plane of 

variables to be identified according to a specific velocity rule to find the best solution 

for the values of the model parameters. During the simulation, a particle adjusts its 

position based on its own experience and the experiences of its neighbors, and the best 

previous position experienced by itself and its neighbors. This method is considered the 

“less sensitive to local minimization problems” and is known to be more accurate than 

other traditional optimization methods (Ye and Wang 2007).  

In the PSO algorithm, the position of a particle is defined by the following 

equations: 

 

 
1

 
(3.9)   

 1 1  (3.10)   

 

where,  and  are the position and velocity of the th particle, respectively, and  is 

the iteration index.  and  are learning factors, which are defined as 2 in 

this study.  and  are random numbers that are uniformly distributed between zero 

and one.  is the position of the th particle that has the best solution in the history 
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of th particle.  is the best solution among all the particles and all iterations, and 

referred to as the global best solution.  is an inertia weight, which is defined as the 

following linear decreasing function: 

 

  (3.11)   

 

where  and  are the final weight and the initial weight, respectively, and  

is the maximum iteration number selected for the search. In this study, the inertia 

weight  is set to vary from 0.9 at the beginning of the search to 0.4 at the end of the 

search (i.e., 0.9 and 0.4). The entire solution procedure for the PSO is 

summarized in Figure 3.15.   

An example of the PSO is illustrated in Figure 3.16. The objective function to be 

minimized is given as: , 100 1 , where  and  are 

real numbers. The analytical solution for this example is 1. As can be shown 

in Figure 3.16, 30 particles in the swarm are initially distributed randomly on a plane 

consisting of the variable  and . As the iteration continues, the particles move 

toward the optimal solution, and finally, most of the particles are located near the 

optimal solution after 100 iterations. The solution using the PSO is 1.00, 

which is the same as the analytical solution. 

 

3.6.2 Parameter Identification of MR Damper Model 
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In this study, the normalized root mean square (RMS) error, , is used as the 

objective function  to be minimized for the optimization of the model parameters. 

 

 
∑

∑
 (3.12)    

 

In Equation (3.12), ,  and  are the experimental damper force, the predicted 

damper force by the damper model, and the number of data samples considered, 

respectively. If 0 , the predicted damper force is exactly the same as the 

experimental value. The parameters for the model are always dependent on the selected 

experimental data set. The target experimental data set for the identification of the 

model parameters needs to be representative of the expected range of response of the 

damper. The velocity of the damper is considered as one of the important factors that 

characterizes the damper force, and it is therefore desirable that the selected data set 

includes a proper range of velocity. Four different sinusoidal characterization tests with 

excitation frequency of 0.5Hz, 1.0Hz, 2.0Hz and 3.0Hz, and amplitude of 25.4mm per 

each, were therefore chosen to generate experimental data over a range of velocities for 

the model identification. The velocities associated with the tests include maximum 

values up to 479 mm/sec. 

 Table 3.3 summarizes the identified parameters for the MNS model for various 

current levels using the PSO algorithm. The number of particles and the maximum 

iteration number for the PSO algorithm are 50 and 150, respectively. As 
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noted previously, the performance of the MNS model was compared with the Bouc-

Wen and hyperbolic tangent models, the parameters for these models are also identified 

using the PSO algorithm with the same experimental data set, number of particles and 

iteration numbers as those for the MNS model. The identified parameters for the Bouc-

Wen and hyperbolic tangent models are presented in Tables 3.4 and 3.5 for 0.0A and 

2.5A current levels. Figure 3.17 illustrates convergence of the PSO algorithm applied to 

identify the parameters for the three damper models when the damper current I is 2.5A. 

The normalized RMS errors after 150 iterations are 0.0242 for the MNS model, 0.0375 

for the Bouc-Wen model and 0.0274 for the hyperbolic tangent model. These results 

show the superior performance of the MNS model over the other models. In particular, 

the difference in the normalized RMS error for the MNS model between the initial and 

final iteration is much less than that of the hyperbolic tangent and the Bouc-Wen 

models. This means the initial estimation of parameters for  and , and , , , , and 

 for the MNS model established using Equations (3.2), (3.3), (3.4) and (3.5) are close 

to their final optimal values.  

 

3.7 Comparison of MR Damper Models under Constant Current 

 Figure 3.18 compares the post-yield behavior of the MR damper and model 

prediction. The experimental data points shown are from five sinusoidal tests with the 

different frequencies of 0.2Hz, 0.5Hz, 1Hz, 2Hz and 3Hz. The amplitude of the sine 

wave is 25.4 mm. The data points identified in Figure 3.18 represent the measured 

damper force corresponding to the maximum velocity in each sinusoidal test when the 
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acceleration is zero (see Figures 3.7 (b) and 3.8 (b)). The curve showing the prediction 

by each model describes the quasi-static behavior of the MR damper, which is a trace of 

damper force under constant velocity. It is noticeable that the experimental data for 

I=0.0A shown in Figure 3.18 (a) has a shear thickening behavior, while the one for 

I=2.5A in Figure 3.18 (b) shows a shear thinning behavior. As can be seen, the MNS 

model shows better agreement with the experimental data due to the ability of the model 

to account for the properties of a Non-Newtonian fluid with shear thinning or shear 

thickening behavior. The damper force-velocity curves for the hyperbolic tangent and 

the Bouc-Wen models have an almost linear relationship and thereby show a 

discrepancy with the experimental damper force.  

  Figures 3.20 ~ 3.22 show the prediction of damper force using the three different 

MR damper models, where they are compared to experimental data with a damper 

current input of I=0.0A. The Gaussian white noise-based displacement history with a 

bandwidth of 2Hz shown in Figure 3.19 was used as the input displacement. The 

experimental data clearly shows the shear thickening behavior as shown in Figure 3.20 

(c). The prediction made by the MNS model (Figure 3.20) shows good agreement with 

the experimental data. However, damper forces predicted by the Bouc-Wen model 

(Figure 3.21) and hyperbolic tangent model (Figure 3.22) both show some discrepancy 

with the experimental data, especially when the velocity is high due to the shear 

thickening of the MR fluid. The post-yield force-velocity behavior of these two models 

is almost linear in the force-velocity curves due to the linear dashpot in the models; thus, 

the predicted maximum damper forces by the Bouc-Wen and hyperbolic tangent models 
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are less than the experimental data. The superior performance of the MNS model over 

the two existing models can be observed as well in Tables 3.6 and 3.7, where 

comparisons of the normalized RMS errors and maximum (minimum) damper forces 

are provided, respectively. 

  In Figures 3.24 ~ 3.26, the responses of the MR damper models are compared to 

the experimental data with the Gaussian white noise displacement input shown in 

Figure 3.23 and a current input of I=2.5A. The MNS model predicts the damper force 

accurately, and has the smallest normalized RMS error and maximum (minimum) 

damper force errors among the models listed in Tables 3.6 and 3.7, respectively. 

An assessment of MR damper models subject to demand from earthquake 

ground motion involved using a pre-defined displacement input, where the 

displacement history is obtained from a numerical simulation of the 2-story linear 

elastic shear building structure shown in Figure 3.27. In the simulation, the MR 

dampers are analytically modeled using the MNS model. The structural properties are 

as follows: 8.08 10  kN · s /m,  5.80 10  kN · s /m, 5.486

10  kN/m , and 9.732 10  kN/m . The diagonal braces are assumed to be 

axially rigid and a 5% viscous damping ratio for modes 1 and 2 is used. The 1994 

Northridge earthquake record at the Canoga Park station (360 component) is used as the 

ground motion shown in Figure 3.28. By utilizing the procedure proposed by 

Somerville et al. (1997), the ground motion is scaled up by a scale factor of 3.33 to 

simulate the intensity of the DBE, where the variables for the DBE response spectrum 

are chosen as =1.0g and =0.6g based on the deterministic limit for the maximum 
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considered earthquake ground motion (ICC 2003). It is assumed that there are eight 

dampers in the 1st story and one damper in the 2nd story of the structure. The maximum 

story drifts of the building from time history analysis are 1.22% and 0.85% for the 1st 

and the 2nd stories, respectively. Figure 3.29 shows the numerically obtained 

displacement history of the first story MR damper when a constant current of I=2.5A is 

used. This displacement history is then imposed on the damper in the laboratory test 

setup by the servo-hydraulic actuator with a current input of I=2.5A to obtain the 

experimental damper force time history. The displacement input is pre-defined; thus, it 

should be noted that this test is different from a typical real-time hybrid simulation, 

where the damper displacement is sequentially determined by numerical integration of 

the equations of motion during the simulation. To eliminate a possible displacement 

error from any delayed response of the hydraulic actuator, the measured displacement 

of the damper in the test setup is used as the input for the MNS, Bouc-Wen and 

hyperbolic tangent models. Shown in Figure 3.30 is the comparison of damper force 

from the experiment and that predicted by the MNS model. The shear thinning behavior 

in the experimental data is shown to be accurately predicted by the MNS model. The 

prediction by the Bouc-Wen and hyperbolic tangent models are presented in Figures 

3.31 and 3.32. Due to the linear relationship in the post-yield behavior of the Bouc-Wen 

and hyperbolic tangent models, errors in damper forces are more significant than for the 

MNS model. The MNS model shows a smaller normalized RMS error in Table 3.6, and 

the maximum (minimum) damper forces of the MNS model in Table 3.7 exhibits less 
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discrepancy from the experimental results as well. These results demonstrate the 

superior performance of the MNS model over the existing damper models. 

 

3.8 Summary 

A newly developed MR damper model called the Maxwell Nonlinear Slider 

model has been introduced for the prediction of the dynamic behavior of a large-scale 

MR damper. In the MNS model the pre-yield and post-yield behavior of the MR 

damper is independently described. This makes it easy to estimate model parameters 

from  characterization test data. The MNS model utilizes the Hershel-Bulkley model to 

describe the post-yield behavior, which has the ability to account for the properties of a 

non-Newtonian fluid, i.e., the shear thinning or shear thickening behavior of the MR 

fluid. This is a feature of the MNS model that the Bouc-Wen and hyperbolic tangent 

models do not possess. The Bouc-Wen and hyperbolic tangent models have a linear 

relationship between velocity and damper force when the damper is in the post-yield 

mode. The MNS model exhibited good agreement with experimental data for both pre-

yield and post-yield behavior and was overall more accurate than the Bouc-Wen and 

hyperbolic tangent models.  

The modeling of the large-scale MR damper under constant current was 

described in this chapter, which is used to simulate the dynamic behavior of an MR 

damper in the passive mode. The dynamics of an MR damper associated with variable 

current input for the semi-active control of an MR damper is discussed in Chapter 4. 
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Table 3.1 Characterization test matrix:  amplitude and frequency combinations for 
sinusoidal test with DC power supply (the number in the table indicates the maximum 

velocity in mm/sec) 
 

Freq. (Hz) 
Amplitude (mm) 

2.54 25.4 152.4 
0.1 - 16 - 
0.2 - 32 - 
0.5 8 80 479 
1.0 - 160 - 
2.0 32 319 - 
3.0 - 479 - 
5.0 80 - - 

 

 

 

Table 3.2 Input data for random displacement characterization test 

Case Bandwidth 
(Hz) 

Max. disp. 
(mm) 

Max. vel. 
(mm/sec) 

RMS* of disp. 
(mm) 

Duration 
(sec) 

1 2 50.0 441 18.0 20 

2 4 30.0 543 11.0 20 

3 5 10.1 110 3.2 300 

4 25 2.3 120 0.6 300 

5 50 1.3 105 0.3 300 
* RMS: Root Mean Square 
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Table 3.3 Identified parameters for MNS damper model 
 

Current 
I 

(Amps) 
 

(kN s/m) 
 

(kN/m) 

Positive force post-yield curve Negative force post yield curve 
 

(kNs /m)a 
(kN)

b 
(kN s/m ) n  

(m/s) 
a 

(kN) 
b 

(kN s/m ) n  
(m/s) 

0.0 10,000 100,000 7.5 243.5 1.62 0.010 -7.3 -235.6 1.60 -0.010 0.50 

0.5 11,000 100,000 53.1 162.5 0.85 0.010 -53.1 -162.5 0.85 -0.010 0.50 

1.0 12,000 118,000 91.5 122.5 0.52 0.010 -96.0 -134.9 0.60 -0.010 1.60 

1.5 12,000 118,000 126.7 152.1 0.58 0.010 -126.7 -152.1 0.58 -0.010 1.50 

2.0 11,491 110,030 148.5 166.3 0.66 0.003 -146.8 -182.1 0.71 -0.003 1.05 

2.5 12,278 112,890 138.5 161.8 0.46 0.017 -133.5 -171.8 0.46 -0.012 1.04 

 
 
 

Table 3.4 Identified parameters for Bouc-Wen model 

Current 
I (Amps) 

k0 
(kN/m) 

k1 
(kN/m) 

c0 
(kN s/m)

c1 
(kN s/m) 

x0 
(m) 

α 
(kN/m)

β 
(m-2) 

γ 
(m-2) n A 

 0.0 29.39 1.39 133.3 123370 0.30 0.9 39.97 2184.3 7.22 779.7 

2.5 10.36 1.21 209.0 11651 0.12 170.9 5.92 610.7 4.80 650.5 

 

 
Table 3.5 Identified parameters for hyperbolic tangent model 

 
Current 

I (Amps) 
k0 

(kN/m) 
k1 

(kN/m) 
c0 

(kN s/m) 
c1 

(kN s/m) 
m0 

(kN s2/m) 
f0 

(kN) 
Vref 
(m/s) 

0.0 2.45 226895 125.7 173.3 0.589 2.4 0.00818 

2.5 4.58 100404 186.0 563.2 1.682 174.2 0.01387 
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Table 3.6 Comparison of normalized RMS error of MR damper models  
 

Damper input 
displacement 

Current  
I (Amps) 

Normalized RMS error 

Bouc-Wen 
model 

Hyperbolic  
tangent model MNS model 

Gaussian 
white noise 

input 

0.0 0.1291 0.0992 0.0688 

2.5 0.0420 0.0409 0.0370 

Earthquake 
response input 2.5 0.0473 0.0528 0.0465 

 
 

Table 3.7 Comparison of minimum and maximum damper force of MR damper models  
 

 
Experimental
damper force 

(kN) 

Predicted damper force (kN) 

Bouc-Wen 
model 

Hyperbolic 
tangent 
model 

MNS 
model 

Gaussian 
white noise 

input 

I=0.0A 

Min -74.1 -61.2 
 (-17.5%)* 

-59.2 
 (-20.1%) 

-74.2  
(0.1%) 

Max 63.4 54.3  
(-14.4%) 

53.2  
(-16.0%) 

64.4  
(1.5%) 

I=2.5A 

Min -259.1 -271.4 
 (4.7%) 

-267.9 
(3.4%) 

-258.3 
 (-0.3%) 

Max 261.0 268.7  
(3.0%) 

266.2 
(2.0%) 

254.6  
(-2.4%) 

Earthquake 
response 

input 
I=2.5A 

Min -260.0 -269.4  
(3.7%) 

-265.1 
(2.1%) 

-257.1  
(-1.0%) 

Max 254.0 272.0  
(7.1%) 

269.3 
(6.1%) 

256.3 
 (0.9%) 

 
* Numbers in parenthesis denote the percent difference compared to the experimental 

force  
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Figure 3.1 Schematic of 2nd generation large-scale MR damper manufactured by Lord 
Corporation (after Bass and Christenson 2007) 
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Figure 3.2 Photograph of experimental setup for MR damper characterization tests 

 
 
 

 
 

 

 

 

 

 

 

Figure 3.3 Schematic of experimental test setup  
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Figure 3.4 Photograph of electrical hardware controlling the current into MR damper  
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Figure 3.5 Response of MR damper under sinusoidal displacement input with various 
constant current levels (frequency=1.0Hz, amplitude=25.4mm): (a) time history of input 

damper displacement; (b) time history of damper force 
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(a) 

 
(b) 

 
Figure 3.6 Response of MR damper under sinusoidal displacement input with various 

constant current levels (frequency=1.0Hz, amplitude=25.4mm): (a) force-displacement 
relationship; (b) force-velocity relationship 
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(a) 

 
(b) 

 
Figure 3.7 MR damper responses under sinusoidal displacement input with various 

frequency inputs (amplitude=25.4mm, I=0.0A): (a) force-displacement relationship; (b) 
force-velocity relationship  
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(a) 

 
(b) 

 
Figure 3.8 MR damper responses under sinusoidal displacement input with various 
frequency inputs (amplitude=25.4mm, I=2.5A): (a) force-displacement relationship; (b) 
force-velocity relationship 
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Figure 3.9 Visco-plasticity behavior of MR fluid 

 

 
 
 

Figure 3.10 Proposed phenomenological MR damper model:  Maxwell Nonlinear Slider 
(MNS) MR damper model 
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Figure 3.11 Force-velocity relationship of Maxwell element under harmonic motion 

 

                                       (a)                                                                  (b) 
 

Figure 3.12 Comparison of pre-yield behavior of MR damper (I=2.5A): (a) force-
displacement relationship; (b) force-velocity relationship 
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Figure 3.13 Pre-defined post-yield curves of MNS model 
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(a) 

 
(b) 

Figure 3.14 Experimental force-velocity relationship of MR damper under sinusoidal 

displacement input with various frequencies (amplitude=25.4mm): (a) I=1.0A; (b) 

I=2.5A  
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1) Set the iteration index   to zero. Initialize randomly the swarm   of   particles such that 
the position  0  and velocity  0  of each particle meets the prescribed conditions 
(i.e., the range of parameters). Also, initialize the inertia weight  0 . 

 
2) Evaluate the fitness of each particle  , where   is an objective function to be 
minimized. 

 
3) Compare the personal best of each particle      to its current fitness and set 

    to the better performance 
 

1    if  1
                   otherwise                                            

 
4) Set the global best   to the position of the particle with the best fitness within the 
swarm 

  min   ,   , . . . ,    
 
5) Change the velocity vector for each particle according to Equation (3.9), then the velocity 
of each particle is updated according to the following relation 

 

 1  
              if  1    

           if  1  
1     otherwise                        

 

 
     where   is a constant in order to control excessive roaming of particles. 
 
6) Move each particle to its new position, according to Equation (3.10). 
 
7) Update the inertia weight according to Equation (3.11). 
 
8) Let j = j + 1. 
 
9) Go to step 2), and repeat until the stop criteria are met. The stop criteria can be that the 
maximum iteration number is reached or the minimum value for the objective function has 
been obtained. 

 
 

Figure 3.15 Solution procedure for the PSO algorithm 
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Figure 3.16 Graphical illustration of the PSO algorithm 
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Figure 3.17 Convergence characteristics of normalized RMS error for MR damper 
models using the PSO algorithm (I=2.5A) 
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(a) 
 

 
 

(b) 
 

Figure 3.18. Quasi-static behavior of damper models and comparison with sinusoidal 
test results: (a) I=0.0A; (b) I=2.5A 
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Figure 3.19 Gaussian white noise input displacement with 2.0Hz bandwidth

 
Figure 3.20 Comparison of predicted damper force by MNS model with experimental 

data under the displacement input of Figure 3.19 (I=0.0A): (a) damper force time 
history; (b) force-displacement relationship; (c) force-velocity relationship 
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Figure 3.21 Comparison of predicted damper force by Bouc-Wen model with 
experimental data under the displacement input of Figure 3.19 (I=0.0A): (a) damper 

force time history; (b) force-displacement relationship; (c) force-velocity relationship 
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Figure 3.22 Comparison of predicted damper force by hyperbolic tangent model with 
experimental data under the displacement input of Figure 3.19 (I=0.0A): (a) damper 

force time history; (b) force-displacement relationship; (c) force-velocity relationship 
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Figure 3.23 Gaussian white noise input displacement with 4.0Hz bandwidth 
 

 
Figure 3.24 Comparison of predicted damper force by MNS model with experimental 

data under the displacement input of Figure 3.23 (I=2.5A): (a) damper force time 
history; (b) force-displacement relationship; (c) force-velocity relationship 
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 Figure 3.25 Comparison of predicted damper force by Bouc-Wen model with 
experimental data under the displacement input of Figure 3.23 (I=2.5A): (a) damper 

force time history; (b) force-displacement relationship; (c) force-velocity relationship 
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Figure 3.26 Comparison of predicted damper force by hyperbolic tangent model with 

experimental data under displacement input of Figure 3.23 and I=2.5A (a) damper force 
time history; (b) force-displacement relationship; (c) force-velocity relationship 
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Figure 3.27 Two-story shear building structure with MR dampers 
 
 

 
Figure 3.28 Scaled input ground motion (1994 Northridge) with scale factor of 3.33 

 
 

 
Figure 3.29 Displacement history of MR damper in the 1st story 
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Figure 3.30 Comparison of predicted damper force by MNS model with experimental 

data under earthquake response input (I=2.5A): (a) damper force time history; (b) force-
displacement relationship; (c) force-velocity relationship  
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Figure 3.31 Comparison of predicted damper force by Bouc-Wen model with 

experimental data under earthquake response input (I=2.5A): (a) damper force time 
history; (b) force-displacement relationship; (c) force-velocity relationship
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Figure 3.32 Comparison of predicted damper force by hyperbolic tangent model with 
experimental data under earthquake response input (I=2.5A): (a) damper force time 

history; (b) force-displacement relationship; (c) force-velocity relationship 
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Chapter 4 

Modeling of a Large-Scale Magneto-Rheological Damper for Seismic Hazard 

Mitigation: Semi-Active Mode 

 

4.1 General 

As noted in Chapter 1, an MR damper contains MR fluid, which has iron 

carbonate particles suspended in the carrier liquid. The MR damper force depends on 

the magnetic field around the MR fluid as well as the velocity of the damper. When 

there is no magnetic field applied to the MR fluid, the iron particles are suspended 

uniformly in the MR fluid by a strong surface active agent (Shiraishi et al 2004). Under 

a magnetic field, the iron particles become aligned and form chain-like clusters.   

The electromagnetic coil in the MR damper controls the magnetic flux around 

the MR fluid by changing the current in the coil. To investigate the behavior of an MR 

damper under variable current, the relationship between the current in the coil and the 

magnetic flux generated by the coil needs to be studied. In this chapter, electromagnetic 

theory including the eddy current effect and the magnetization behavior of materials is 

used to describe the dynamics of an MR damper associated with variable current input. 

A nonlinear differential equation relating the coil current to the MR damper force is 

used to describe the damper behavior under variable current. The solution to the 

differential equation is used to determine an equivalent static current and the associated 

damper force. The predicted damper force is compared to experimental damper forces 

from several tests. 
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4.2 Dynamics of Current Driver 

The command current needs to be developed quickly in the electromagnetic coil 

of the damper to avoid control problems caused by delay in the current in the coil. Due 

to the inductance of the electromagnetic coil, the current in the coil changes slowly if a 

voltage driven power supply is used (Yang 2001). To obtain a quick change in the 

current in the coil, a current driver (see Figure 2.8) based on a pulse width modulation 

(PWM) servo amplifier is used in this study. The amplifier is manufactured by 

Advanced Motion Controls (30A8) and is shown in Figure 4.1. 

The identification of the current driver is conducted by applying a band-limited 

Gaussian white noise command to the current driver. Figure 4.2 shows the frequency 

response of the current driver obtained from these characterization tests, which shows 

the relationship between the input command current into the current driver and the 

current developed in the coil by the current driver. Input command currents to the 

current driver are band-limited white noise (100Hz) with three different levels of root 

mean square (RMS) command current equal to 0.3A, 0.6A, and 1.2A. The amplitude 

response of the current driver shows an apparent nonlinear behavior and dependence on 

the input command current, while the phase angle response does not appear to be 

sensitive to the amplitude of the input command current.  

Yang (2001) proposed a differential equation to describe a current driver based 

on the duty cycle of a PWM servo-amplifier with a PI controller, where  
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 (4.1)   

 

In Equation (4.1)  = current output developed in the coil;  = command current into 

the current driver;  = inductance of coil;  = resistance of coil;  = sensitivity of the 

current sensing; and ,  = parameters associated with PI gains for the current driver. 

Based on Equation (4.1), the following transfer function for the current driver of this 

study is proposed  

 

 
235 44522

302 44522 (4.2)    

 

where  is the Laplacian variable.  of Equation (4.2) is called current driver model 

in this study. The current driver model correlates the input command current with the 

current developed in the coil, i.e., . The coefficients of Equation 

(4.2) are obtained by utilizing the system identification toolbox in MATLAB (2009) 

and applying it to an experimental data set consisting of  and  as the input and 

output for Equation (4.1). In Figure 4.2, the solid black line is the frequency response 

represented by Equation (4.2). A good match is observed with the data, however 

Equation (4.2) fits the low amplitude response data better (i.e., RMS command current 

values of 0.3A and 0.6A). Thus, Equation (4.2) may not work well when the command 

current is large. Figure 4.3 shows the step response of the current driver as well as the 

predicted response using the proposed current driver model in Equation (4.2). Due to 
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the dynamics of the current driver, overshooting can be observed in Figure 4.3 in both 

the step-up and step-down response. The rise time of the current driver is measured to 

be about 17 msec, while the settling time is about 8 msec. The model represented by 

Equation (4.2) has a faster response for a step-up response than the measured response, 

and predicts well the measured step-down response.  

 

4.3 Dynamics of Electromagnetism of MR Damper 

According to Faraday’s law, a change in the magnetic flux due to the damper 

coil induces a counter-electromotive force in the electric conductors near the annular 

gap between the piston head and cylinder housing of the damper, creating an eddy 

current. This eddy current generates a new magnetic flux that opposes the original 

magnetic flux by the current in the coil (Lenz’s law). The new magnetic flux slows the 

formation of the magnetic field around the annular gap, creating a slow response of an 

MR damper under a variable current input (Takesue et al. 2004). To understand the 

dynamics of an MR damper better, it is necessary to investigate the dynamic behavior 

of the magnetic field in the damper associated with variable current. Figure 4.4 shows a 

schematic of the magnetic field around the electromagnetic coil. The total average 

magnetic flux around the annular gap can consist of two parts: i) magnetic flux due to 

the electromagnetic coil, ; and ii) the induced magnetic flux due to the eddy current 

of the electric conductor around the annular gap, , that is, 

 

  (4.3)    
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where,  is the total average magnetic flux around the annular gap. The magnetic flux 

of a wire is proportional to the current in the wire according to electromagnetic theory. 

Therefore, the generated magnetic flux due to the damper coil can be written as follows. 

 

  (4.4)    

 

where  is a constant and  is the current developed in the coil of the damper. Ignoring 

the electric potential term, the density of the eddy current is proportional to the time 

derivative of the magnetic vector potential (Takesue et al. 2004). Thus, the magnetic 

flux due to the eddy current can be expressed as  

 

 1
 (4.5)    

 

where  is a constant. The negative sign in Equation (4.5) implies that the magnetic flux 

due to the eddy current is induced in the direction opposite to the change in total 

magnetic flux. In Equation (4.5), the effect of the eddy current in the cylinder housing, 

which is generated when the damper piston moves with current in the coil, is ignored 

for simplicity. Substitution of Equations (4.4) and (4.5) into (4.3) leads to the following 

differential equation. 

 

  (4.6)    
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The same magnetic flux  can be generated by supplying a static current into the 

damper coil. This current is referred to as the equivalent static current in this study. If 

the eddy current due to the movement of the piston of the MR damper is ignored,  is 

proportional to the equivalent static current, i.e., 

 

  (4.7)    

 

where  is the equivalent static current. Substituting Equation (4.7) into Equation (4.6) 

gives  

 

  (4.8)    

 

Equation (4.8) is exactly the same as the first order filter equation proposed by Spencer 

et al. (1997) to account for the dynamics of MR dampers associated with variable 

current input. The equivalent static current can be directly used for the prediction of the 

MR damper force under a variable current because the parameters of an MR damper 

model are identified from characterization tests involving a constant current input. The 

equivalent static current  is determined by numerically integrating Equation (4.8). In 

this study, the forward Euler method was used, along with a time step of 1/1024 sec and 

the appropriate initial condition for . 

The MR damper model has a set of identified parameters corresponding to 

several values of constant current input (e.g., see Table 3.3). The parameter set for an 
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equivalent static current other than the current levels listed in Table 3.3 can be obtained 

using linear interpolation.  

Figure 4.5 illustrates a block diagram of an MR damper model under variable 

current input. The command current ( ) is input into the current driver, and the 

generated current from the current driver (i.e., the current developed in the damper coil 

by the current driver, ) goes into the damper, causing the dynamics of the 

electromagnetism around the annular gap in the damper. The next block in Figure 4.5 is 

introduced to account for the dynamic response of the electromagnetism by converting 

the input current to the equivalent static current . The damper force is finally 

determined from the interpolated model parameters at the given equivalent static current 

along with the displacement, velocity and acceleration inputs imposed on the 

mechanical MR damper model.  

 

4.4 Step Response of MR Damper 

Figure 4.6 shows a step response from tests when the MR damper is subjected to 

a step current input of I=2.5A, while the piston of the damper moves at a constant 

velocity of =50 mm/sec. The constant  in Equation (4.8) can be obtained from 

nonlinear optimization theory by minimizing the RMS error of the predicted damper 

force developed under the step current input. For a selected  value, the time history for 

the equivalent static current under the step current input is determined by solving 

Equation (4.8), where the zero equivalent static current is used as the initial condition. 

The parameters of the MNS model for a constant current input equal to the equivalent 
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static current is then determined, and the MR damper force is calculated with the model 

parameters. The RMS error of Equation (3.12), which is related to , is evaluated and 

the optimal  value is determined by minimizing the RMS error with respect to . The 

PSO algorithm is used to find the optimal  value, where a particle is defined to be a 

one-dimensional variable consisting of . After 100 iterations with 50 particles, the 

optimal  value for the experimental step response plotted in Figure 4.6 is identified to 

be 2.39.  

As can be seen in Figure 4.6, the predicted response using the solution of the 

first order filter (it is referred to as the MNS model with the first order filter) with the 

optimal value of 2.39 shows a large discrepancy compared to the experimental 

results, especially for the damper force associated with the step-down response. 

Moreover, the step-down response of the MR damper appears to be slower than the 

step-up response. The time for reaching 95% of the final damper force is measured to be 

about 0.92 sec during the step-up response and 1.75 sec during the step-down response. 

The major reason for the difference in 0.92 sec and 1.75 sec is thought to be due 

to nonlinear magnetization behavior of the materials around the annular gap and MR 

fluid itself. Due to hysteresis of the magnetization, the piston head and cylinder housing 

around the annular gap can develop a residual magnetic field after the applied magnetic 

field has been removed. This nonlinear hysteretic behavior can affect not only the 

induction of the eddy current, but it can also disturb the formation of the total magnetic 

field. In addition, the hysteretic magnetization response of the MR fluid, which is 

directly related to the clustering of iron particles in the fluid, makes it difficult to 
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accurately predict the damper force. To obtain a better prediction for the damper force 

under a variable current the following nonlinear differential equation that relates the coil 

current to the equivalent static current is proposed: 

  

  (4.9)    

 

The function  is determined from the Equations (4.10) and (4.11): 

 

 if 0
if 0

 (4.10)    

  (4.11)    

 

where, , ,  and  are constants which can be obtained by utilizing nonlinear 

optimization theory to minimize the error between the model predicted and 

experimental measured damper force.  in Equation (4.11) is the reference current that 

can simulate the dynamics of the electromagnetism to account for the eddy current 

effect, while Equation (4.10) is used to accommodate the effect of a residual magnetic 

field due to the nonlinear hysteretic behavior of the magnetization in the damper. In this 

study, the solution of Equation (4.9) is obtained from the numerical integration utilizing 

the forward Euler method. The PSO algorithm is employed for the identification of the 

parameters, where using the experimental data associated with the damper force plotted 

in Figure 4.6, results in 18.90, 1.61, 0.11 and 0.34. In this 

case, a particle consists of four variables, i.e., , ,  and . Like the first order 
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filter case, 50 particles and 100 iterations were used to find the optimal values for these 

parameters. As can be seen in Figure 4.6, the MNS model with the nonlinear equation 

based on Equation (4.9) for the dynamics of electromagnetism, which is referred to as 

the variable current MNS model, shows better prediction for damper force developed 

under a step current than the first order filter. The equivalent static current of Equation 

(4.9) was obtained using the numerical integration method similar to that described for 

Equation (4.8). 

 

4.5 Experimental Assessment of MNS Model 

4.5.1 Predefined Input 

To validate the MNS model with variable current, a pre-defined displacement 

and current that mimics the demand on the damper associated with the response of a 

structure to an earthquake with a semi-active controller is used in this section. The 2-

story shear building structure in Figure 3.27 subjected to the ground motion shown in 

Figure 3.28 is used in conjunction with the semi-active controller based on the linear 

quadratic regulator (LQR). Equation (4.9) with the parameters identified from the step 

response data is employed to account for the effect of the dynamics of the MR damper 

associated with a variable current during the numerical simulation. Figure 4.7 shows the 

displacement response of the MR damper in the first story along with the corresponding 

command current generated by the semi-active controller. These are used as pre-defined 

inputs to the damper in the test setup prescribed in Chapter 3 (see Figures 3.2 and 3.3) 

to obtain the experimental damper force shown in Figure 4.8 (a).  
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In order to match the results better between the predicted damper forces and the 

experimental data for this pre-defined displacement input, new parameter sets for the 

first order filter of Equation (4.8) and the proposed method of Equation (4.9) are 

identified using the PSO algorithm applied to the pre-defined displacement input. The 

newly identified parameters are 10.9  for the first order filter; and 24.96 , 

3.57 , 0.31 , 0.30  for Equation (4.9). Figure 4.8 (a) shows the 

comparison of damper force history during the time when a strong response is observed. 

The predicted damper forces by the MNS model with the first order filter and the 

variable current MNS model show good agreement with the experimental damper force. 

However, the normalized RMS error of the variable current MNS model has a lower 

value (0.0503) than the one for the MNS model with the first order filter (0.0871), 

which demonstrates a better performance for the proposed method based on Equation 

(4.9). The predicted current using the current driver model based on the transfer 

function of Equation (4.2) has good agreement with the measured current in the damper 

coil as shown in Figure 4.8 (b). Figure 4.8 (c) shows the comparison of the equivalent 

static currents from the first order filter and Equation (4.9) with the current predicted by 

the current driver model  of Equation (4.2). In Figure 4.9, close-up views of Figure 

4.8 are illustrated between t=7.0 sec and 7.6 sec. Good prediction of the damper force 

by the variable current MNS model can be observed in Figure 4.9 (a). The equivalent 

static currents of the first order filter and Equation (4.9) always lag behind the predicted 

current by the current driver model, as can be observed in Figure 4.9 (c), so that they 

can account for the time lag of the MR damper associated with a variable current input. 
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Figure 4.10 illustrates the damper force-displacement relationship of both 

models. The variable current MNS model track the experimental data well, while the 

MNS model with the first order filter estimates the damper force less accurately, 

especially in the second and fourth quadrants in Figure 4.10 (b) where the command 

current is zero and a drop in damper force occurs during the experiments.  

 

4.5.2 Real-Time Hybrid Simulation 

To further assess the variable current MNS damper model, a real-time hybrid 

simulation is conducted for the structure shown in Figure 4.11 and the measured 

experimental results compared to the numerical results from a time history analysis of 

the structure. The structure represents a 3-story, 6-bay office building located in 

Southern California (Chae et al. 2010). The moment resisting frame (MRF) of the 

building is designed to satisfy strength requirements of the International Building Code 

(ICC 2006). In the real-time hybrid simulation the building structure is reduced to 0.6 

scale and one large-scale MR damper is installed in the 3rd story to limit the story drift 

of the scaled building structure to less than 2.0%. The sliding mode controller (SMC) is 

used as the semi-active controller for the large-scale MR damper. By taking the 

advantage of symmetry in the floor plan of the structure, only one-quarter of the floor 

plan is considered in the hybrid simulation and the numerical simulation of the building 

response. The real-time hybrid simulation involves two substructures: i) the 

experimental substructure consisting of an MR damper and a hydraulic actuator as 

shown in Figure 3.2; and ii) the analytical substructure that includes the remaining 
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structural components of the building such as the moment resisting frame (MRF) and 

gravity frames to consider the P-Δ effect, as shown in Figure 4.12. The lean-on column 

represents the gravity frames that are tributary to the MRF. The tributary mass 

associated with one-quarter of the structure is placed on the lean-on column, along with 

the tributary gravity loads to capture the P-Δ effect induced by the gravity loads. The 

lean-on column is connected to the MRF through rigid links to simulate the effects of a 

rigid diaphragm (i.e., the floor slab), where the MRF and lean-on column have the same 

horizontal degree of freedom at each respective floor level. The seismic weights of one-

quarter of the structure are W W  991.8 kN, W  721.0kN. The beams and 

columns of the MRF are modeled using a concentrated plastic hinge element. The lean-

on column is modeled using a linear elastic beam-column element with an area of 

3.61 10 m2 and a moment of inertia of 1.448 10  m4, which are obtained from 

the summation of the area and moment of inertia of the gravity columns in the 

associated one-quarter of the building floor plan, respectively. The natural frequencies 

based on the initial stiffness of the structure are f =0.95Hz, f =2.84Hz, and f =6.36Hz. 

Rayleigh damping with a 5% damping ratio for the 1st and 2nd mode is used. 

 The explicit unconditionally stable CR integration algorithm (Chen et al. 2009), 

a robust nonlinear finite element code, called HybridFEM (Karavasilis et al. 2009), and 

an inverse compensation scheme to minimize actuator delay (Chen and Ricles 2010) are 

integrated together and used in the real-time hybrid simulation to compute the structural 

response based on feedback restoring forces from the experimental and analytical 

substructures. More details about these aspects of real-time hybrid simulation are 
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discussed in Chapter 11. The 1989 Loma Prieta earthquake (Hollister station, HSP090 

component) scaled to the DBE level (scale factor = 2.04) is used as a ground motion.   

 For the numerical simulations, the variable current MNS model was 

implemented into HybridFEM and HybridFEM was used to model and conduct a time 

history analysis of the above structure.  

Figure 4.13 compares the story drifts. Good agreement in the story drifts are 

observed between the real-time hybrid simulation (RTHS) and the pure numerical 

simulation. The same variable current MNS model parameters derived from pre-defined 

earthquake response and pre-defined command current data (Section 4.5.1) were used 

(i.e., 24.96 , 3.57 , 0.31 , 0.30 ). Figure 4.14 compares the 

damper response from the real-time hybrid simulation and numerical simulation. The 

predicted damper force by the variable current MNS model matches well with the 

experimental damper force obtained from the real-time hybrid simulation; the command 

current of the numerical simulation also shows good agreement with that from the real-

time hybrid simulation. The results shown in Figure 4.13 and 4.14 demonstrate the 

robustness and accuracy of the variable current MNS MR damper model.  

 

4.8 Summary 

In this chapter, the dynamics of an MR damper associated with variable current 

input was studied by utilizing electromagnetism theory to consider the effect of eddy 

currents and hysteretic magnetization of the damper materials. Prediction of damper 

force under variable current was made based on solving a nonlinear differential 
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equation which relates the current developed in the damper coil to an equivalent static 

current which is used as the current input to the MNS model. The parameters for the 

coefficients of the differential equation were optimally identified from the pre-defined 

earthquake response and command current data as given in Section 4.5.1. The response 

of the variable current MNS model with these parameters showed good agreement with 

the measured damper response from experimental results based on the predefined input 

for the damper as well as a real-time hybrid simulation, demonstrating the robustness of 

the variable current MNS MR damper model. 
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Figure 4.1 Current driver manufactured by Advanced Motion Controls 

 
Figure 4.2 Frequency response of current driver under Gaussian white noise with 

bandwidth of 100Hz and with various RMS amplitudes: (a) amplitude response; (b) 
phase angle response  
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Figure 4.3 Step response of current driver: (a) step-up response; (b) step-down response  
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Figure 4.4 Schematic of magnetic flux around the annular gap of MR damper 
   

 
 
 
 
 

 
 

Figure 4.5 Block diagram for MR damper model under variable current 
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(a) 

 
(b) 

 
Figure 4.6 Response of MR damper under step current input: (a) step-up response; (b) 

step-down response 
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Figure 4.7 Input data of MR damper for the semi-active control: (a) displacement input; 

(b) current input 
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Figure 4.8 Comparison of response of semi-actively controlled MR damper with model 
predictions: (a) time history of damper force; (b) current; (c) equivalent static current  
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Figure 4.9 Comparison of response of semi-actively controlled MR damper with model 
predictions (close-up view of Figure 4.8): (a) time history of damper force; (b) current; 

(c) equivalent static current 
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(a) 

 
(b) 

 
Figure 4.10 Hysteresis loop of MR damper with semi-actively controlled input data: (a) 

variable current MNS model; (b) MNS model with the first order filter 
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Figure 4.11 Prototype building structure for real-time hybrid simulation 
 
 
 

 
Figure 4.12 Analytical substructure for real-time hybrid simulation 
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Figure 4.13 Comparison of story drifts between the real-time hybrid simulation (RTHS) 

and the numerical simulation under the 1989 Loma Prieta earthquake ground motion 
with sliding mode controller 
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Figure 4.14 Comparison of damper response under the 1989 Loma Prieta earthquake 

ground motion with sliding mode controller: (a) time history of damper force; (b) time 
history of command current; (c) force-displacement relationship; (d) force-velocity 

relationship 
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Chapter 5 

Equivalent Linear System for SDOF Structure with MR dampers 

 

5.1 General 

It is well-known that supplemental damping devices increase the energy 

dissipation capacity of structures, reducing the seismic demand on the primary structure 

(Constantinou et al. 1998; Soong and Dargush 1997). A structural system with 

supplemental dampers is often represented by an equivalent linear system. Kwan and 

Billington (2003) derived optimal equations for the equivalent period and damping ratio 

of SDOF systems with various nonlinear hysteresis loops based on time history analysis 

and regression analysis. Symans and Constantinou (1998) studied the dynamic behavior 

of SDOF systems with linear or nonlinear viscous fluid dampers and derived an 

equation for the equivalent damping ratio of the nonlinear viscous fluid damper. 

Ramirez et al (2002) proposed a simplified method to estimate displacement, velocity 

and acceleration for yielding structures with linear or nonlinear viscous dampers. Lin 

and Chopra (2003) investigated the behavior of SDOF systems with a brace and 

nonlinear viscous damper by transforming the system to an equivalent linear Kelvin 

model.  

Fan (1998) investigated the behavior of non-ductile reinforced concrete frame 

buildings with viscoelastic dampers. He derived an equivalent elastic-viscous model 

based on the complex stiffness and energy dissipation of the viscoelastic system, and 

proposed a simplified design procedure for a structure with viscoelastic dampers. Lee et 
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al. (2005 and 2009) applied this method to structures with elastomeric dampers and 

validated the simplified design procedure with numerical simulation results.  

In this chapter a systematic analysis procedure for use in the design of structures 

with MR dampers is developed, which is called the simplified analysis procedure. The 

procedure is similar to that developed by Lee et al. (2005 and 2009). A quasi-static MR 

damper model for determining the loss factor and the effective stiffness of an MR 

damper is introduced and incorporated into the procedure to predict the behavior of an 

SDOF structure with an MR damper. The procedure is evaluated by comparing the 

predicted response by the procedure to that of a nonlinear time history analysis of an 

SDOF structure. The procedure provides a basic methodology for a performance-based 

design procedure for structures with MR dampers. This procedure will be presented in 

Chapter 6. 

 

5.2 Quasi-Static MR Damper Models 

The quasi-static behavior of an MR damper is one that describes the behavior of 

an MR damper under constant velocity. The MR damper force is closely related to the 

velocity and the quasi-static behavior has a unique relationship between velocity and 

damper force. 

The first quasi-static model is a simple frictional model shown in Figure 5.1. 

The force-displacement loop is of a rectangular shape and the damper force and is 

described as follows: 
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  sign (5.1)   

 

where  is the damper displacement. The second quasi-static model is the Bingham MR 

damper model shown in Figure 5.2. As discussed in Chapter 2, the Bingham plasticity 

model is comprised of a linear dashpot in parallel with a friction element; where, the 

damper force is obtained as 

 

  sign   (5.2)   

 

In Equation (5.2)  is a dashpot coefficient. Due to its simplicity, the Bingham model 

has been used frequently to describe the dynamic behavior of a small scale MR damper.   

The last quasi-static MR damper model considered is the Hershel-Bulkley model 

shown in Figure 5.3. The damper force is given as 

 

  sign | |   (5.3)   

 

This model consists of a friction element in parallel with a nonlinear viscous dashpot. 

This damper model can simulate both a simple frictional model and the Bingham model 

by adjusting the values for  and  (i.e. 0 for the simple frictional model, 1 

for Bingham model). It should be noted that the values of , , and  are dependent on 

the current in the damper. 

 



130 
 

5.3 Energy Dissipation of Quasi-Static MR Damper Model 

 For the simplified analysis procedure developed in this chapter, the energy 

dissipation of an MR damper is characterized by a quasi-static model. Since the 

Hershel-Bulkley model can account for the behavior of the simple frictional model and 

the Bingham model by adjusting the values of  and , the energy dissipation of the 

quasi-static MR damper model is calculated based on the Hershel-Bulkley model.  

Suppose that the MR damper is subjected to a harmonic displacement motion 

 

  sin (5.4)   

 

where,  is the amplitude of displacement and  is the excitation frequency of the 

damper. The energy dissipated by the damper over one cycle of the harmonic motion is 

equal to 

 

    (5.5)   

 

Substitution of Equations (5.3) and (5.4) into Equation (5.5), and evaluation of the 

resulting integral results in 

 

  4 2   (5.6)   

 

where 
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Γ 1 2
Γ 2   (5.7)   

 

In Equation (5.7) Γ  is the gamma function (Soong and Constantinou 1994). For the 

simple frictional model, the energy dissipation during one cycle of harmonic motion can 

be obtained by setting 0, whereby 

 

  4   (5.8)   

 

By inserting 1 into Equation (5.6), the dissipated energy of the Bingham model can 

be calculated as 

 

  4   (5.9)   

 

When the MR damper is semi-actively controlled, the force-deformation 

hysteresis loop stays within that of a passive controlled MR damper as shown in Figure 

5.4. During the semi-active control of an MR damper, the command current for the 

damper is between the minimum and maximum currents (  and ). Thus, the 

hysteresis loop under the semi-active control mode is bounded by the hysteresis loops 

for the two passive controlled cases with constant current inputs of  and 

. Since the area within the hysteresis loop for a semi-active controlled MR 

damper is smaller than that for passive control with , the energy dissipated by 
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the semi-active controlled MR damper  is defined as a linear interpolation between 

the energy dissipated under passive mode with the current on and with the current off: 

 

  1 0 1   (5.10)   

 

where    and  are the energy dissipation of the passive controlled MR damper 

defined in Equation (5.6) with 0  and  , respectively.  is a constant 

between zero and one whose value needs to be established from experimental 

observations of the damper characteristics associated with the semi-active control law.   

 

5.4 Equivalent Stiffness of MR Damper 

 The equivalent stiffness of the MR damper, , is used for estimating the 

equivalent damping ratio and the effective stiffness of a structure with MR dampers. 

Since the MR damper effects the period of the structure, the equivalent stiffness of the 

MR damper needs to be defined appropriately. In this dissertation, two different 

approaches are described for determining the equivalent stiffness of an MR damper. 

These two approaches are illustrated in Figure 5.5, and include: i) secant stiffness 

method, ksec; and ii) a method based on the root mean square (RMS) displacement of 

damper (hereafter, referred as to the RMS stiffness method), kRMS. The secant stiffness of 

a passive controlled MR damper, , is determined by the maximum displacement of 

the damper and its corresponding damper force, where 
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  /   (5.11)   

 

where,  is the damper force when the damper displacement is equal to the maximum 

displacement , and is dependent of the current of the damper.  

For the RMS stiffness method of a passive controlled MR damper, the 

equivalent stiffness is obtained from the RMS displacement of the MR damper and its 

corresponding damper force. The RMS displacement, ,  for a harmonic motion is 

 

 
2

/ √2
2   (5.12)   

 

The velocity of the damper is determined by differentiating Equation (5.4) with respect 

to time 

 

  cos (5.13)   

 

From Equations (5.4) and (5.12), it is apparent that when sin √2/2, 

√2/2 . The velocity at the time when  is therefore obtained by 

substituting /4  into Equation (5.13), whereby 

 

  √2/2  (5.14)   
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The damper force corresponding to  is obtained by substituting Equation (5.14) 

into Equation (5.3), whereby 

 

 
√2
2   (5.15)   

 

Finally, the equivalent stiffness based on the RMS stiffness method, , is defined as 

 

 
√2

√2
  (5.16)   

 

Since  and ,  is always greater than . Note that 

both  and  depend on the displacement of the damper, which means the 

effective period of the structure with an MR damper will depend on the amplitude of the 

structural response. 

The equivalent stiffness of the semi-active controlled MR damper  can be 

obtained either from the secant stiffness method (  ) or the RMS stiffness method 

(  ) as well. The damper force of the semi-active controlled MR damper is always 

lower than the passive controlled MR damper with ; thus,   and 

 as shown in Figure 5.5, where  and  are the secant stiffness and 

the RMS stiffness of the passive controlled MR damper with  . The equivalent 

stiffness of the semi-active controlled MR damper  is expressed as a linear 

interpolation between the stiffness at maximum current and zero current 
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  1 0 1   (5.17)   

 

where   and  are the equivalent stiffness of the passive controlled MR damper 

with 0  and , respectively , which is determined from either  or . 

  is a constant between zero and one, whose value needs to be established from 

experimental observations of the damper characteristics associated with the semi-active 

control law.   

 Both constants  and  for the semi-active controlled MR damper depend on the 

control algorithm for the MR damper. The hysteresis loop of the semi-active MR 

damper needs to be appropriately defined based on the characteristics of a specified 

semi-active control algorithm. In this dissertation, the equivalent linear system for 

structures with MR dampers and the simplified analysis procedure is based on the 

passive controlled MR damper with  (i.e., 1.0). The determination of 

 and  for the semi-active controlled MR damper is not studied in this dissertation, 

and remains for a future study. The assumption of using 1.0 in the design of a 

structure with semi-active controlled MR dampers is evaluated and presented in Chapter 

9. 

 

5.5 Equivalent Linear System for SDOF Structure with MR Damper and Diagonal 

Bracing 

 Figure 5.6 shows an SDOF system with an MR damper and diagonal bracing. 

This model could represent an equivalent SDOF model of an MDOF structural system 
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with MR dampers and bracing. The equilibrium equation of the SDOF system is 

expressed as 

 

  ,   (5.18)   

  ,   (5.19)   

 

where, ,  is an MR damper force that is determined by the relative motion of  and 

, and where  is the diagonal brace deformation in the horizontal direction. In Figure 

5.6,  is the lateral stiffness of the frame and  is the lateral stiffness of the diagonal 

bracing in terms of the global displacement DOF . The mass and the dashpot 

coefficient for viscous damping of the system is represented by  and , respectively.  

The MR damper in Figure 5.6 is assumed to be passively controlled. The energy 

dissipation of the passive MR damper in the SDOF system is obtained by using a 

procedure similar to the one presented in Section 5.4. The SDOF system is assumed to 

be subjected to a harmonic excitation, where 

 

  sin (5.20)   

 

The damper displacement and velocity,  and , respectively, are expressed as 

 

    (5.21)   

    (5.22)   
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Although  is a harmonic motion, the damper displacement  is not harmonic 

because the nonlinear damper force results in a non-harmonic displacement . For the 

simplicity of estimating the response of the SDOF system, the assumption is made that  

 

The maximum displacement, , and velocity, , of the MR damper occur 

when  and  are a maximum, respectively.   

 

This assumption greatly simplifies the estimate of the maximum displacement and 

velocity of MR damper. When the damper reaches its maximum displacement, the 

velocity of the damper  is equal to zero and the damper force becomes  from 

Equation (5.3). The diagonal bracing deformation  becomes /  from 

Equation (5.19). Therefore, considering the above assumption, the maximum 

displacement of damper  is determined by substituting the diagonal bracing 

deformation into Equation (5.21) 

      

  /   (5.23)   

 

When the velocity of the damper reaches a maximum value, the damper has a 

maximum damping force  as can be seen in Figure 5.3 (a). The time derivative of  

when  is zero. Hence, at this instant  is zero from the time derivative of 

Equation (5.19). Considering the above assumption and Equation (5.22), the maximum 

damper velocity  has the same value as the maximum velocity   
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    (5.24)   

 

The above assumption, Equations (5.23) and (5.24) are always true when the simple 

frictional MR damper model, i.e., Equation (5.1), is used as an MR damper model. 

Figure 5.7 shows a mechanical model for the simple frictional model combined with a 

diagonal bracing in series, which is subjected to a harmonic motion. Figure 5.8 shows 

the force-displacement relationship for the simple frictional model and the simple 

frictional model combined with a diagonal bracing in series (e.g., combined structure). 

The time history of displacements for the combined structure is presented in Figure 5.9. 

During the transition from point O to point A, all the deformation of the combined 

structure is in the spring (i.e., diagonal bracing) and the frictional element is not 

deformed (i.e., 0). When the force developed in the spring reaches , then the 

slip in the frictional element occurs and the spring has a constant deformation of /  

during the slip of the frictional element. The damper displacement and velocity during 

the slip are expressed as follows: 

 

  sin /   (5.25)   

  cos (5.26)   

 

The slip continues until  reaches its maximum value of  at point B. Right after the 

point B, the direction of  changes and the friction element is locked again. All the 

deformation is in the spring until the force of the spring reaches  at point C. 
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Between point B and point C, the damper displacement is constant and equal to be 

/ . After point C, a reverse slip begins in the friction element and the 

damper velocity becomes negative where the damper displacement is obtained to be 

sin /  from Equation (5.25). The slip of the friction 

element continues until  reaches its negative maximum at point D. After point D, the 

friction element is locked and has a constant displacement of /  until 

the spring force becomes  at point E. The slip in the frictional element begins at point 

E and continues to the point A of the next cycle. 

It is obvious that the maximum damper displacement is obtained to be 

/ , from Figure 5.9 and Equation (5.25), and it occurs at the same time with 

the maximum displacement of . The maximum damper velocity is equal to the 

maximum velocity of  (i.e., ), as can be determined from Equation 

(5.26), and it occurs at /  when the maximum velocity of  occurs.  

When the Hershel-Bulkley model is used, it may be difficult to get an analytical 

solution for the damper displacement due to the highly nonlinear terms in Equation 

(5.3). The above assumption was made based on the observation from the simple 

frictional model and makes it easy to derive a linearized system for structures with MR 

dampers. 

Equations (5.23) and (5.24) provide basic information to enable the equivalent 

damping ratio and stiffness of the system to be calculated, making it possible to 

estimate the response of the structure using these structural properties and a response 
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spectrum. Substituting the maximum damper displacement of  for the displacement 

amplitude  into Equation (5.6) results in 

 

  4 2   (5.27)   

 

The strain energy of the MR damper is calculated from the equivalent stiffness of the 

damper and the maximum damper displacement 

 

 
1
2   (5.28)   

 

where the equivalent stiffness  of the MR damper can be selected to be either  or 

. The loss factor  of the MR damper by definition is  

 

 
1

2
4 2

  (5.29)   

 

The equivalent damping ratio of the system, , is calculated by utilizing the lateral 

force energy (LFE) method (Sause et al. 1994) and is given as  

 

 
2   (5.30)   
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where,  is the force applied to the SDOF,  is the force developed in the damper and 

 is the inherent damping ratio of the SDOF system. Theoretically, this method is 

exactly the same as the one proposed by Chopra (2001) to determine .  and  can 

be expressed in terms of the stiffness and displacement 

 

  ,         (5.31)   

 

where, the stiffness of system, , is 

 

    (5.32)   

 

By substituting Equations (5.29) and (5.27) into Equation (5.28) 

 

 
2

2 2
  (5.33)   

 

Because  and  are a function of ,  of Equation (5.33) is a function of  

and  for a given structural system and MR damper properties. If the excitation 

frequency is equal to the effective frequency of the system,   
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    (5.34)   

 

then  is a function of only the maximum displacement of the system . Therefore, 

an iterative method needs to be utilized to estimate the maximum displacement  of 

the system via a response spectrum, where the response of structure is characterized by 

an effective period  and the equivalent damping ratio . Once the maximum 

displacement  is determined, the maximum damper force can be calculated using 

Equations (5.24) and (5.3) 

 

    (5.35)   

 

Figure 5.10 summarizes the solution procedure for estimating the maximum 

displacement  and the maximum damper force  for an SDOF system consisting 

of an MR damper and lateral load resisting frame of stiffness . In this study, this 

prediction procedure is referred as to the simplified analysis procedure. 

 

5.6 Assessment of Simplified Analysis Procedure 

 To assess the accuracy of the simplified analysis procedure, the linear-elastic 

SDOF structure shown in Figure 5.6(a) is analyzed as the period is varied. The analysis 

results are compared to the results from nonlinear time history analysis of the structure, 

where the nonlinearity comes from the MNS MR damper model. The comparison was 
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made with the response statistics of the nonlinear time history analysis of the SDOF 

system involving the ensemble of the 44 ground motions listed in Appendix 3. The 

response spectrum for the simplified analysis procedure is based on the design response 

spectrum in the IBC code (ICC 2003). The structure is assumed to be located on stiff 

soil (site class D) in Southern California. The spectral response acceleration parameters 

at short periods and 1.0 sec period are based on the deterministic limit for maximum 

considered earthquake ground motion in the IBC code (ICC 2003) and equal to 

1.0  and 0.6 , respectively. The equivalent damping ratio of structures 

with supplemental damping devices will have a larger damping ratio than 5% which is 

used for a typical design spectrum. Therefore, it is required to reduce the spectral 

acceleration of the response spectrum by using a damping reduction factor, such as  

and  from FEMA (2000b), for damping ratios greater than 5%. 

The properties for the MR damper are given as: 138.5 kN , 

161.8 kN sec/m and 0.46. These properties represent the Hershel-Bulkley curve of 

the MNS model with a current input of 2.5A, where a =f0 and b = C (see Equation (3.3) 

and Table 3.3). One MR damper is installed between the diagonal bracing and the beam 

of the frame. The ratio of horizontal brace stiffness to the story stiffness k0 , , is 

assumed to be 10 so that  can be obtained from known values for  and . The 

inherent damping of the system is assumed to be 5%. The period of structure 

without the MR damper is  

 

  2 /   (5.36)   
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The assessment of the simplified analysis procedure was performed for three different 

values for the equivalent damping ratio, namely,  0.10, 0.20, and 0.30. Six 

different periods are chosen for each value of , namely, =0.5, 1.0, 1.5, 2.0, 2.5, and 

4.0 sec. To define the structural properties, either  or  needs to be specified for a 

given period . Table 5.1 summarizes the values for mass corresponding to the 

selected natural periods and equivalent damping ratios. For a given equivalent damping 

ratio  and a period , the mass of the SDOF system can be determined iteratively 

using the simplified analysis procedure given in Figure 5.10. The unknown variables are 

, , and . There are three known equations to solve these variables: i)  from 

Equation (5.36), which is a function of  and ; ii)  from Step 5 of the simplified 

analysis procedure, which is a function of , , and ; and iii) the updated value for 

 from Step 6 of the simplified analysis procedure, which is a function of , , and 

current . The value of the mass depends on what the equivalent stiffness of damper is 

based on (i.e., secant stiffness or RMS stiffness). The values for mass in Table 5.1 are 

obtained using the secant stiffness method.  

With the damper and structural properties defined, a series of nonlinear time 

history analysis involving the MNS model is performed and compared to the estimation 

by the simplified analysis procedure. The 44 ground motions listed in Appendix 3 are 

scaled to the DBE. The procedure proposed by Somerville et al. (1997) was used to 

scale each ground motion, where 
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    (5.37)   

 

In Equation (5.37)  is a scale factor for a given earthquake, and  and 

 are the spectral accelerations of the target hazard spectrum (i.e., the design 

response spectrum in the IBC code) and a given ground motion at the period , 

respectively.  are weight factors with values of 0.1, 0.3, 0.3, and 0.3 associated with 

four periods. A total of six different periods for the structural system, , were selected. 

For each period , four different values of  are selected as shown in Table 5.2 to get 

the median spectrum of the 44 ground motions to match the target response spectrum 

near the period . Hence, each ground motion has six different scale factors, one for 

each . Figures 5.11 through 5.16 show the response spectrum for the ground motions 

that are scaled to the DBE level for the six different periods of the structure ( ). 

 Figure 5.17 compares estimations from the simplified analysis procedure with 

the nonlinear time history analysis (NTHA) results for the maximum displacement and 

the maximum damper force. The MNS model presented in Chapter 3 is used for the 

time history analysis. The simplified analysis procedure shows good agreement with the 

NTHA results. The vertical lines in the NTHA represent the range of one standard 

deviation above and below the median value of the response for the 44 ground motions.  

The median value of the maximum displacement of the NTHA closely matches the 

estmation from the simplified analysis procedure using the RMS stiffness method when 

the equivalent damping ratios are 10% and 20%. The secant stiffness method provides a 
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more conservative estimation of the response, and better agreement with the NTHA 

when the equivalent damping ratio is 30%, while the RMS stiffness method 

underestimates the displacement from the NTHA results, especially when the period is 

long. 

 In terms of the MR damper force, the secant and RMS stiffness methods provide 

a similar estimation for the maximum damper force . They both show good 

agreement with the median value from the NTHA up to 1.5sec. However, as the 

period of the structural system gets longer, the maximum damper force from the NTHA 

is larger than the estimation from the simplified analysis procedure.  

The discrepancies noted between the median NTHA and the estimation from the 

simplified analysis procedure are attributed to the use of the pseudo-velocity in 

calculating the RMS stiffness as well as the maximum damper force.  The simplified 

analysis procedure uses a pseudo-velocity from the response spectrum for the 

calculation of the maximum damper force as can be observed in Step 8 of Figure 5.10. 

The maximum damper velocity is assumed to be equal to the maximum velocity of  

that is obtained from the pseudo-velocity of .  

The pseudo-velocity response spectrum becomes constant when the effective 

period of structure is greater than .  is defined by FEMA (2000b) as: 

 

    (5.38)   
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where  and  are the damping reduction factors. TS is equal to 0.65 sec, 0.72 sec, and 

0.81 sec for the cases of  0.10, 0.20, and 0.30, respectively. When  , the 

maximum velocity from the response spectrum is in accordance with FEMA (2000b) 

 

 
2   (5.39)   

 

Therefore, the maximum damper force, when ,  is obtained by substituting 

Equation (5.39) into Equation (5.35) via Equation (5.24), whereby: 

 

 
2   (5.40)   

 

Thus,  is independent of the effective period. This explains why the maximum 

damper force is shown to be a constant value for the longer periods in Figure 5.17. In 

addition, Hudson (1962) found that for longer periods the use of pseudo-velocity 

introduces more appreciable error, and for damping values 20% or more significant 

differences can also exist (Clough and Penzein, 1993). To avoid errors introduced by 

the use of pseudo-velocity, the relative velocity response spectrum can be used instead. 

  Although the maximum damper force is underestimated when the period is long, 

the results from the simplified analysis procedure appear to be sufficient close to the 

results of NTHA for design purpose.  
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5.7 Summary 

In this chapter a systematic procedure for estimating the response of an SDOF 

system with diagonal bracing and a passive MR damper was developed. The purpose of 

this simplified analysis procedure is to enable the design of structures with MR dampers 

without performing a nonlinear time history analysis. The simplified analysis procedure 

is based on an effective period and equivalent damping ratio. The equations describing 

the energy dissipation for a structure with an MR damper under a harmonic motion are 

developed based on the Hershel-Bulkley visco-plasticity model. Two different 

approaches for determining the equivalent stiffness of an MR damper are presented, the 

secant and RMS stiffness methods, and are incorporated into the equation for equivalent 

damping ratio as well as the equation for determining the effective period of the SDOF 

system.  

The accuracy of the simplified analysis procedure was assessed by comparing 

the estimated response from this procedure with the results of nonlinear time history 

analyses of linear SDOF systems with a passive MR damper. Good agreement was 

observed, although the maximum damper force is underestimated when the structure 

has a long period. The simplified analysis procedure for an SDOF system will be 

extended to MDOF systems in the next chapter.  

The energy dissipation and equivalent stiffness of a semi-active MR damper was 

also discussed in this chapter. The factors to describe the reduced energy dissipation and 

equivalent stiffness (i.e.,  and ) were introduced based on an assumed hysteresis loop 

for the semi-active MR damper. These constants are dependent on the semi-active 
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control algorithm used for the MR damper. The dynamic behavior of structures with 

semi-active controlled MR dampers will be investigated in Chapter 9 and the result will 

be discussed and compared to that predicted by the simplified analysis procedure based 

on the properties of the passive MR damper. 
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Table 5.1 Mass for SDOF analysis 

Equivalent 
damping ratio 

Mass,  (kN sec2/m) 

=0.5 sec =1.0 sec =1.5 sec =2.0 sec =2.5 sec =3.0 sec 

10% 419 670 1005 1340 1675 2010 

20% 174 247 371 494 618 741 

30% 120 148 223 297 371 445 
 

Table 5.2 Selected  for scaling of ground motions (sec) 

 
Period of structure without MR damper 

=0.5 
sec 

=1.0 
sec 

=1.5 
sec 

=2.0 
sec 

=2.5 
sec 

=3.0 
sec 

 0.2 0.5 1.0 1.0 1.5 2.0 

 0.3 0.6 1.2 1.2 1.8 2.2 

 0.4 0.8 1.3 1.7 2.2 2.5 

 0.5 1.0 1.5 2.0 2.5 3.0 
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                                      (a)                                                        (b) 
 
Figure 5.1 Simple frictional model for MR damper: (a) force-velocity relationship; (b) 

force-displacement relationship 
 

 
                                      (a)                                                        (b) 
 

Figure 5.2 Bingham MR damper model: (a) force-velocity relationship; (b) force-
displacement relationship 

 
 

 
 
                                      (a)                                                        (b) 

 
Figure 5.3 Hershel-Bulkley MR damper model: (a) force-velocity relationship; (b) 

force-displacement relationship 
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Figure 5.4 Energy dissipation by semi-active controlled MR damper 

 
 
 
 
 

 
 

Figure 5.5 Graphical representations of secant stiffness and RMS stiffness of MR 
damper 
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                                (a)                                                                     (b) 

Figure 5.6 (a) schematic of equivalent SDOF system with MR damper and brace; (b) 
mechanical model  

 
 
 

 
Figure 5.7 Simple frictional model combined with diagonal bracing in series 

 
 

 
                                   (a)                                                             (b) 

Figure 5.8 Force-displacement relationship: (a) for simple frictional model; (b) for 
combined structure 
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Figure 5.9 Displacement time history for simple frictional model combined with 

diagonal bracing in series 
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Given: 
  MR damper properties:  ,  ,   
  Structural properties:  ,  ,  ,   
 
 
Step 1.   Assume   and set  /  
 
Step 2.   Determine the maximum damper displacement 

/  
 
Step 3.   Calculate the damper equivalent stiffness,   

For secant stiffness:  /  

For RMS stiffness:   √
√

 

 
Step 4.   Revise the effective frequency and effective period  

,   where   

2 /  
 
Step 5.  Calculate the equivalent damping ratio 

   

 
Step 6.   Find the maximum displacement from the response spectrum 

,  
 
Step 7.  Check  convergence:  if ∆  >  tolerance,  then  set   

and go to Step 2, and repeat Step 2 ~ Step 7 until    converges. 
 
Step 8.  Set   and determine the maximum damper force,    

   
 

 

Figure 5.10 Simplified analysis procedure for estimating the response of an SDOF 

system with lateral load resisting frame of stiffness  and an MR damper 
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Figure 5.11 Response spectrum of scaled ground motions to DBE response spectrum 

( =0.5sec) 
 
 

 
Figure 5.12 Response spectrum of scaled ground motions to DBE response spectrum 

( =1.0sec) 
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Figure 5.13 Response spectrum of scaled ground motions to DBE response spectrum 

( =1.5sec) 
 
 

 
Figure 5.14 Response spectrum of scaled ground motions to DBE response spectrum 

( =2.0sec) 
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Figure 5.15 Response spectrum of scaled ground motions to DBE response spectrum 
( =2.5sec) 

 
 

 
Figure 5.16 Response spectrum of scaled ground motions to DBE response spectrum 

( =3.0sec) 
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(a) 10% 

 
(b) 20% 

 
(c) 30% 

 
Figure 5.17 Comparison of SDOF maximum displacement and damper force between 

the simplified analysis procedure (with secant stiffness and RMS stiffness methods) and 
the nonlinear time history analysis (vertical line of NTHA shows the range one standard 

deviation above and below the median response)     
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Chapter 6 

Performance-Based Design Procedure for Structures with MR Dampers 

 

6.1 General 

In this chapter, a simplified design procedure (SDP) similar to the one 

developed by Lee et al. (2005 and 2009) is formulated for structures with passive MR 

dampers. The equivalent stiffness and damping ratio of MDOF structures are calculated 

by extending the simplified analysis procedure presented in Chapter 5. The procedure is 

incorporated into the design of a structure with MR dampers to satisfy specified 

performance objectives for the structure. A performance-based design procedure for a 

3-story building structure with MR dampers is demonstrated in this chapter based on the 

SDP. 

 

6.2 Equivalent Stiffness and Damping Ratio 

In order to obtain an effective period for an MDOF structure with MR dampers, 

the combined stiffness of the MR dampers and diagonal bracing needs to be added to 

the global stiffness of the structure; thus, the global effective stiffness of the MDOF 

system is given as 

 

  (6.1)   
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where  is the stiffness of the structure without braces and MR dampers, and 

 is the stiffness associated with the braces and MR dampers. The structure is 

assumed to have N DOF, thus the dimension of  is . The combined stiffness 

of the brace and MR damper at i-th MR damper location, K , is 

 

  K   (6.2)   

 

where,  and  are the horizontal stiffness of the diagonal bracing and MR damper 

at the i-th MR damper location.  can be calculated utilizing either the secant or RMS 

stiffness method. The individual combined stiffnesses based on Equation (6.2) are 

appropriately assembled to form . The effective periods and mode shapes of 

the structure can then be calculated by performing an eigenvalue analysis. 

 The equivalent damping ratio of an MDOF system can be expressed using the 

lateral force energy method (Sause et al 1994), where 

 

 
1
2

∑
T   (6.3)   

 

where,  and  is the loss factor and damper displacement of the i-th MR damper, 

respectively.  is the number of MR dampers. Since the damper displacement is unique 

for each MR damper, the loss factor of each individual MR damper, which is a function 
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of damper displacement, is unique for each damper.  is obtained from Equation (5.29). 

 in Equation (6.3) is the inherent damping ratio and  is the vector of the 

displacements of the structure that develop under the lateral force . The individual 

damper force  and the lateral force vector  are defined as 

 

  ,   (6.4)   

 

Equation (6.3) can be also expressed in matrix form, where 

 

 
1
2

T

T   (6.5)   

 

where,  and  are  diagonal matrices with diagonal terms that are defined as 

[     and   , respectively.   is the damper displacement vector, 

that is,   T.  

 

6.3 Simplified Design Procedure for MDOF Structures with MR Dampers 

In the SDP developed by Lee et al. (2005 and 2009), the supplemental damper 

properties are represented by , which is the ratio of the damper stiffness per story in 

the global direction to the lateral load resisting frame story stiffness, , without 

dampers and braces. The structural system with dampers is converted into a linear 

elastic system characterized by the initial stiffness of the structure,  (the ratio of brace 
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stiffness per story in the global direction to the lateral load resisting frame story 

stiffness ), , and . By conducting elastic-static analysis with equivalent lateral 

forces (ELF), the expected member forces and story drift are determined and checked 

against the design requirements.  

Since the loss factor of an MR damper depends on the displacement of the 

structure, i.e.,  is no longer constant as for elastomeric dampers (Lee et al. 2005 and 

2009), the SDP for elastomeric damper needs to be modified appropriately for 

structures with MR dampers. The loss factor  is associated with the energy dissipation 

of the damper over a cycle. For purpose of calculating the energy dissipation over a 

cycle of displacement, the property of the MR damper (i.e., , , and ) are assumed to 

remain constant. The impact of this assumption in performance prediction by the SDP is 

assessed in Chapter 9.  

Figure 6.1 summarizes the SDP for structures with MR dampers. In Step 1, the 

seismic performance objectives and associated design criteria are established for the 

design of the structure. In Step 2, the structure is designed without MR dampers in 

accordance with the design code selected in Step 1 to satisfy the strength requirement 

for the members in the structure; In Step 3, the MR dampers are incorporated into the 

design of the structure to satisfy the specified performance objectives. The response of 

the structure is estimated in terms of the , , and a constant loss factor  based on the 

simple frictional MR damper model. Then, the required MR damper sizes are 

determined in Step 4 based on the  value that meets the design criteria and 

performance objectives in Step 1. Since the simple frictional damper model does not 
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account for the velocity dependent behavior of an MR damper, the story drift and 

member strength of the structure are checked using a more sophisticated MR damper 

model (i.e., Hershel-Bulkley model). A simplified analysis procedure is employed to 

predict more accurately the response of the structure based on the selected MR damper 

properties in Step 4. The design is then revised with final member sizes and MR damper 

sizes are selected (location, number, force capacity, etc). If the performance objectives 

cannot be met in an economical manner, then the performance objectives and/or 

structural system design need to be revised as indicated in Figure 6.1. 

 

6.3.1 Preliminary Estimation Using Frictional MR Damper Model  

The simple frictional model for a passive MR damper discussed in Chapter 5 is 

used for the preliminary estimate of the response of the structure with MR dampers. By 

inserting 0  into Equation (5.29), the loss factor of the simple frictional model 

becomes 

 

 
4

  (6.6)   

 

If the secant stiffness is used, the equivalent stiffness of a simple frictional model is 

 

  /   (6.7)   
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Therefore, the loss factor of a simple frictional model is obtained by substituting 

Equation (6.7) into Equation (6.6) resulting in 

 

 
4
  (6.8)   

 

Since the loss factor is constant, the equivalent damping ratio from Equation (6.5) for a 

structure with MR dampers using the simple frictional model has the following form 

 

 
2 T

T   (6.9)   

 

In the SDP proposed by Lee et al. (2005), the damper displacement can be expressed in 

terms of : 

 

    (6.10)   

 

where,  is a  matrix that associates the total brace and damper deformation with 

. In Equation (6.10) it is assumed that  and  are constant among all floors. If  is 

chosen to be proportional to the -th modal vector (e.g., ) as in the modal strain 

energy method (Chang et al. 1992), then by substituting (6.10) into (6.9), Equation (6.9) 

can be rewritten as  
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2 T T

T   (6.11)   

 

Equation (6.11) implies that since ,  and  are uniquely determined for a given 

 and , the equivalent damping ratio is a function of only the design variables  and , 

not the displacement. Hence, iteration is not necessary to obtain the maximum 

displacement of the structure when a frictional model is used for the MR dampers.  

 Once the maximum damper displacement is determined for a given  and , the 

maximum damper force of the i-th MR damper can be obtained from Equations (6.7) 

and (6.10) 

 

    (6.12)   

 

where,  is the story stiffness and  is the deformation across the diagonal bracing 

and damper in the story where the i-th MR damper is installed.  

 

6.3.2 Simplified Analysis Procedure for MDOF Structures with MR Dampers 

 The simplified analysis procedure provides a methodology for calculation of the 

structural response of an MDOF system with MR dampers. It uses either the equivalent 

lateral force method (ELF) or the response spectrum analysis (RSA) method. In the 

simplified analysis procedure, the maximum structural displacements are determined by 

the equal displacement rule, which is a well-known empirical rule that is used to assess 
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the maximum displacement of nonlinear structures subjected to earthquake ground 

motions. In the equal displacement rule, the maximum displacement of a nonlinear 

structure is assumed to be the same as that of a linear structure with an initial tangent 

stiffness of the nonlinear structure, regardless of the ductility of structure. The equal 

displacement rule is only applicable to structures that lie in the low-frequency and 

medium frequency spectral regions (Newmark and Hall 1973). 

 The simplified analysis procedure utilizing either the ELF or the RSA is 

summarized in Figures 6.2 and 6.3, respectively. Once the maximum displacements and 

MR damper forces are obtained, the required strength of the members in the MDOF 

structure can be determined by applying the maximum displacements and damper 

forces to the structure, as well as the gravity design loads. 

 

6.4 Performance-Based Design of a 3-Story Building with MR Dampers 

6.4.1 Prototype Building Structure 

An example of the SDP for a 3-story building with MR dampers is provided in 

this section. The prototype structure used for this study is shown in Figure 6.5. It 

consists of a 3-story, 6-bay building and represents a typical office building located in 

Southern California. The floor plan of the prototype building is square in plan, 150ft 

(=45.72m) by 150ft (=45.72m), with columns spaced at 25ft (=7.62m). Lateral loads are 

resisted by a total of eight moment resisting frames (MRFs) on the perimeter of the 

building and eight damped braced frames (DBFs) inside the building. MR dampers are 

installed in the DBFs to control the drift of the building by adding supplemental 
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damping to the structure. The DBFs have continuous columns, with pin connections at 

each end of the beams and diagonal bracing. A rigid diaphragm system is assumed to 

exist at each floor level and the roof of the building to transfer the floor inertia loads to 

the MRFs and DBFs. The floor slab, which is assumed to be a rigid diaphragm, is 

supported on the beams of the MRFs, DBFs, and gravity frames. The height of each 

story is 12.5ft (=3.81m). The building has a basement where a point of inflection is 

assigned at 1/3rd of the height of the column from the column base. This point is 

modeled as a hinge support in the analysis model for the building (see Figure 7.1).  

 

6.4.2 Simplified Design Procedure 

 Figure 6.6 illustrates the SDP for the 3-story building structure. In the procedure, 

the MRFs are designed to satisfy the strength requirements of the current building 

seismic code (ICC 2006, AISC 2008). That is, they carry the full seismic base shear of 

the building. The strength contribution from the DBFs and MR dampers is not 

considered when the MRFs are designed since the DBFs and MR dampers are intended 

only to control the story drift of the building system. The DBF members are designed 

by imposing the displacement and damper force demands on the DBF. The following 

sections describe the details of the SDP for the performance-based design of the 3-story 

building structure.      

 

6.4.2.1 Performance Objectives (Step 1) 
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The seismic performance is quantified in terms of story drift and member plastic 

rotation (Lee et al 2009). Table 6.1 summarizes performance levels recommended by 

FEMA (2000b) for steel moment frames. In this example, three different performance 

objectives for the prototype structure are considered: 

 

• Limit the story drift to 1.5% under the DBE ground motion  

• Limit the story drift to 3.0% under the MCE ground motion 

• Design strength of members in the DBF shall not be exceeded by the demand 

imposed by the DBE ground motion 

 

The MCE ground motion is represented by a response spectra that has a 2% probability 

of exceedance in 50 years, and the DBE ground motion is 2/3rd the intensity of the MCE 

ground motion. (FEMA 2000a). The performance objectives of 1.5% story drift satisfies  

the life safety performance level under the DBE. The 3% story drift satisfies the 

collapse prevention level under the MCE, as defined in Table 6.1. To minimize the 

damage and repair cost to the DBF structure, the DBF structure is intended to remain 

elastic under the DBE. 

 

6.4.2.2 Design of MRFs and Gravity Frames (Step 2) 

As noted in Figures 6.1 and 6.6, Step 2 of the SDP involves designing the 

structure without the dampers (i.e., the MRFs and gravity frames) to satisfy the strength 

requirement of current building seismic codes, in this case, the International Building 

Code (IBC) (ICC 2006) along with the AISC Steel Construction Manual (AISC 2008). 
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Design loads and load combinations are determined in accordance with the ASCE/SEI 

7-05 (2006). The dead loads are summarized in Tables 6.2 and 6.3, and the live loads in 

Table 6.4. Live load reduction was considered in determining the live loads. The gravity 

frames are designed first to resist the gravity loads. The MRFs are then designed to 

satisfy the lateral strength requirement without any contribution from the DBFs to the 

lateral resistance. The drift requirement for the structure (ASCE/SEI 7-05) is not 

checked in the design of the MRFs.  

The member forces of the MRF structure are obtained by conducting an elastic-

static analysis of an analytical model developed using SAP2000, where the equivalent 

lateral force procedure is utilized to for the preliminary design. The response 

modification factor is selected as 8.0 in accordance with the IBC (ICC 2006) for 

special steel moment resisting frames. The prototype building is for office occupancy, 

resulting in Seismic Use Group II with an occupancy importance factor, , equal to 1.0. 

The building is assumed to be located on stiff soil, which corresponds to Site Class D. 

The deterministic limits on the maximum considered earthquake ground motion (ICC 

2006) are used to determine the design response spectrum, where the spectral 

acceleration for short period, , and for a 1 second period, , are taken as 1.5g and 

0.6g, respectively. Based on these values, along with the site classification, the site 

coefficients  and  are equal to 1.0 and 1.5, respectively, resulting in the short period 

design spectral response acceleration  and the design spectral response at one second 

 being equal to 1.0g and 0.6g, respectively. The design response spectrum based on 
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these values is shown in Figure 6.7. The inherent damping ratio  of the prototype 

building structure is assumed to be 5.0%. 

The controlling load combinations considered in the design are as follows 

(ASCE/SEI 7-05, Section 2.3.2): 

 

  GRAV1 = 1.2D + 1.6L + 0.5Lr (6.13)   

  GRAV2 = 1.2D + 1.6Lr + 0.5L (6.14)   

  EQ1 = 1.2D + 1.0E + 0.5L (6.15)   

  EQ2 = 0.9D + 1.0E (6.16)   

 

where D=dead load; L=live load; Lr=roof live load; E=earthquake load. The earthquake 

load considers the effect of the horizontal and vertical seismic loads,  and , 

respectively, where 

  

        (for EQ1) (6.17)   

        (for EQ2) (6.18)   

 

where  

 

    (6.19)   

  0.2   (6.20)   
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where  is the short period design spectral response which is defined to be 1.0 as 

above;  is the redundancy factor, which is taken as 1.3 for Seismic Design Category D; 

 is the effect of horizontal seismic forces. By substituting Equations (6.17) through 

(6.20) into Equations (6.15) and (6.16), the load combinations involving earthquake 

loads are redefined as follows:    

 

  EQ1 = 1.4D + 1.3QE + 0.5L (6.21)   

  EQ2 = 0.7D + 1.3QE (6.22)   

 

Effective seismic weights are determined based on the ASCE/SEI 7-05 (Section 

12.7.2). The partition load of 20 psf is added to the total dead load of Table 6.2 for the 

1st and 2nd floors, resulting in the final effective seismic weights listed in Table 6.5. In 

the analysis model for the equivalent lateral force procedure, the gravity frame is 

modeled as a lean-on column with the gravity loading to account for the P-delta effect 

on the structure. Since the prototype structure has a symmetric floor plan, only one-

quarter of the floor plan is considered in the model.  

The seismic base shear is determined from the fundamental period and design 

response spectrum given in Figure 6.7. If the fundamental period obtained from a 

structural model is larger than the upper limit of the fundamental period in ASCE/SEI 

7-05 (Section 12.8.2), the upper limit prescribed in ASCE/SEI 7-05 is used for the 

seismic base shear. An iteration procedure is required to determine the final seismic 

base shear by updating the member sizes and comparing the fundamental periods 
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obtained from the structural model and the IBC. The upper limit of the fundamental 

period for the prototype building is calculated as 0.71 sec, where 

1.4 , 0.028  (steel moment-resisting frame), and 0.8 , according to 

ASCE/SEI 7-05. The height above the base to the highest level of the structure is 

37.5 ft. 

The beams and columns are designed based on criteria from the AISC Steel 

Construction Manual (AISC 2008). The Load and Resistance Factor Design (LRFD) 

interaction equations for member axial force and moment are utilized for checking the 

ratio of demand to capacity as follows 

 

 
8
9 1.0 for 0.2  (6.23)   

 
2 1.0 for 0.2  (6.24)   

 

where,  is the factored axial load in the member;  is the nominal axial load capacity 

of the member;  is a strength reduction factor for axial compression;  is the 

factored moment in the member, which is obtained using the general second-order 

elastic analysis method (AISC 2008);  is the nominal moment capacity of the 

member; and  is a strength reduction factor for flexure. 

The prototype building structure is intended to provide the basis for an MRF and 

DBF which can be constructed for future laboratory tests with MR dampers. Due to 

laboratory constraints, the prototype building structure and resulting MRF and DBF 
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were designed at 0.6-scale. The reduced 0.6-scale and full scale structures have the 

same material; thus, the scale factor for stress is 1.0.  The amplitude of acceleration is 

the same for reduced scale and full scale structures. By employing dimensional analysis, 

scale factors for various physical quantities are listed in Table 6.6.  

Table 6.7 summarizes the final member sizes for the MRF and the gravity frame 

of the scaled structure, respectively. The required column size at the first story is 

extended over the height of the building in MRFs, gravity frames, and DBFs.  

The doubler plate in the panel zone of the MRF was designed based on the 

AISC Steel Construction Manual (AISC 2008) and FEMA 350 (2000a) to satisfy the 

panel zone shear strength. The thicknesses of the doubler plate are 25mm, 25mm, and 

8mm for the panel zones at the beam-column joints of the 1st, 2nd, and roof floors, 

respectively. 

 

6.4.2.3 Determination of α and β Using Frictional MR Damper Model (Step 3) 

Step 3 of the SDP develops a preliminary design of the system with dampers by 

selecting α and β values and using the simple frictional damper model. The MRF 

design being completed, the story drift of the scaled structure is estimated using the 

simple frictional MR damper model for selected values of  and . The stiffness matrix 

of one MRF and the tributary gravity frames including the P-Δ effect are obtained using 

SAP2000. The story stiffness  associated with the stiffness matrix is given in Table 

6.8. The tributary weights and masses for the scaled structure are listed in Table 6.9. A 

value of 10 is assumed for the preliminary design. The ELF method is employed to 
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obtain the story drift. The fundamental period of structure can be obtained from the 

mass matrix and . The equivalent lateral force is then determined based on the 

fundamental period, the equivalent damping ratio defined in Equation (6.11), and the 

time-scaled response spectrum from FEMA (2000b). Since the equivalent damping ratio 

is uniquely defined for a given α and β, the ELF used in this step does not involve an 

iteration procedure. The response modification factor and the deflection amplification 

factor are assumed to be 1.0 and 1.0 (linear elastic), respectively, since the 

equal displacement rule is used. The contribution of the DBF is not considered in this 

step. 

Figure 6.8 shows the response of the structure for various  values, where the 

structure consisting of MRF, gravity frames, and frictional MR dampers combined with 

diagonal braces is subjected to the DBE ground motion. Based on Figure 6.8(a), a value 

of 0.3 is selected in order to satisfy the performance objective of 1.5% story drift, 

where the predicted story drifts are 0.91%, 1.33%, and 1.48% for the 1st, 2nd, and 3rd 

stories, respectively.  

 

6.4.2.4 Preliminary Determination of MR Damper Capacity (Step 4) 

In Step 4 of the SDP, the approximate size and number of MR dampers are 

determined from the  value determined in Step 3. Preliminary values for the required 

damper forces using Equation (6.12) with 0.3 are calculated to be 243kN, 238kN, 

and 129kN for the 1st, 2nd, and 3rd stories MR dampers, respectively. The preliminary 

sizes for the MR dampers are selected based on these required damper forces. The 



176 
 

large-scale MR damper studied in Chapter 3 with a current input of 2.5A can generate a 

200kN damper force at a velocity of 0.1m/sec. For the preliminary design one large-

scale MR damper is selected to be located in each story of the DBF.  

 

6.4.2.5 Elastic-Static Analysis with Hershel-Bulkley Quasi-Static MR Damper 

Model (Step 5) 

In Step 5, the story drifts and the damper forces are calculated using a more 

sophisticated quasi-static MR damper model, i.e., the Hershel-Bulkley model, along 

with the simplified analysis procedure provided in Figures 6.2 and 6.3. During this step 

of the SDP, the size, number, and location of the MR dampers can be further revised to 

satisfy the performance objectives with an optimum layout of MR dampers. The 

predicted story drifts and damper forces are then imposed on the DBF structure to 

calculate member forces needed for a preliminary design of the DBF members. The 

story drifts and damper forces from the preliminary design of the combined structural 

system (i.e., MRF, DBF, MR dampers, and gravity frames) are determined and imposed 

on the DBF to check the strength of the DBF members. If all the strength requirements 

and performance objectives for the building structure are satisfied, the design can be 

finalized. Otherwise, the design needs to be revised (through one or more iterations) 

until the design is satisfactory. 

 

Step 5.1) Calculation of preliminary story drifts and damper forces 
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Table 6.10 summarizes the calculated story drifts and maximum damper forces 

of the scaled building structure under the DBE using the ELF (Figure 6.2) and the RSA 

(Figure 6.3) methods with one large-scale MR damper in each story. In this prediction, 

the contribution of the MR dampers but not the members of the DBF is included. The 

MR damper properties presented in Chapter 3 were used, namely, 138.5 kN , 

161.8 kN sec/m, and 0.46 (Hershel-Bulkley curve at a 2.5A constant current 

input). The secant stiffness method was shown in Chapter 5 to provide reasonably 

conservative response prediction results compared to the RMS stiffness method. Hence, 

the secant stiffness method is used for the damper equivalent stiffness to obtain the 

results given in Table 6.10.  

As can be observed in Table 6.10, when three MR dampers are used the story 

drifts based on the RSA method are less than 1.5%, satisfying the performance 

objective for drift under the DBE ground motion. Included in Table 6.10 is the case 

where the building structure is designed without MR dampers. The use of the three MR 

dampers is shown to significantly reduce the story drift. The structure without dampers 

develops a story drift which exceeds the maximum allowable story drift (2.0%) for the 

prototype building structure (Occupancy Category III) according to the IBC (ICC 2006).  

The results of the ELF method are more conservative than the RSA method. One 

of the reasons is that the total seismic weight of structure is considered in the ELF 

procedure which is simulating the first mode forces. The RSA method is expected to be 

more accurate than the ELF method. Consequently, the RSA method with the damper 
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stiffness based on the secant stiffness is used to develop the final design for the 

structure. 

For future tests which will involve the 0.6-scale structure, only two large-scale 

MR dampers are available. Hence, an investigation was conducted to determine the 

optimum location of two MR dampers. Using the above MRF design along with a value 

of 10 for the braces, the expected story drift under the DBE was calculated using 

the simplified analysis procedure for various locations of the dampers. The results are 

given in Tables 6.11 and Table 6.12, where two MR dampers and one MR damper are 

used, respectively. From these results, the optimal damper location that satisfies the 1.5% 

story drift limit for the DBE appears to be the case where one MR damper is installed in 

each of the 2nd and 3rd stories. With this MR damper configuration, the preliminary 

design of the DBF structure is performed as follows. 

 

Step 5.2) Preliminary design of DBF 

 MR dampers are assumed to be mounted between the top of the diagonal braces 

and at the beam-to-column joint. The DBF must be designed to meet the performance 

objectives where the members remain elastic under the DBE ground motion. To comply 

with this requirement, the force demands on the members of the DBF are determined. 

These demands are determined by subjecting the DBF to the expected design drift while 

also developing the corresponding force in each MR damper.  

The maximum MR damper force does not necessarily occur at the same time as 

the maximum displacement of the structure. If the maximum damper displacement is 
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assumed to occur at the same time as the building reaches the maximum displacement, 

as stated in the assumption in Chapter 5, the damper force corresponding to the 

maximum displacement of the structure is  according to the Hershel-Bulkley quasi-

static MR damper model, which is less than the maximum damper force fmax (see Figure 

5.3(b)). Instead of using  to determine the DBF member design forces, the predicted 

maximum MR damper forces are applied to the DBF structure produce a more 

conservative DBF design.  

The calculated maximum displacements and damper forces (Table 6.11, case [0 

1 1]) from Step 5.1 of the procedure are imposed on the DBF to obtain the DBF 

member forces as shown in Figure 6.9. The damper forces are applied as self-

equilibrating forces at the second and third stories of the structure, while the lateral 

displacements are applied to the DBF as prescribed displacements. A rigid floor slab is 

assumed, whereby the displacements in the DBF are the same as the combined system.  

The DBF member forces are obtained by performing an elastic-static analysis 

with the above mentioned ASCE7-05 load combinations of factored dead loads, live 

loads, and earthquake loads. The earthquake loads  in the load combinations for the 

DBF design are the maximum displacements and damper forces as explained above. 

The member sizes are selected to satisfy the strength requirement based on the 

interaction equations for axial force and bending moment, Equations (6.23) and (6.24). 

The resulting preliminary member sizes for the scaled DBF structure are shown in 

Table 6.13. The beam size is determined based on the gravity load only. The axial force 

in the DBF beams due to the lateral loads is not considered in the DBF design since a 
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rigid diaphragm is assumed, which is attached to both ends of the beams. Thus, the 

beams in the DBF structure have the same sizes as those of the gravity frames. 

 

Step 5.3) Calculation of revised story drifts and damper forces for combined structure 

With the preliminary DBF structure designed in Step 5.2, the story drifts and 

damper forces are revised for the combined structure (i.e., MRF, gravity frames, DBF, 

and MR dampers) using the simplified analysis procedure summarized in Figure 6.3. 

The effective stiffness and effective period of the structure are revised accordingly, 

considering the contribution of the DBF structure. Table 6.14 summarizes the predicted 

story drifts and damper forces of the combined building structure under the DBE 

ground motion. 

 

Step 5.4) Revision of strength check for DBF structure 

Since the DBF designed in Step 5.2 is a preliminary design based on the 

incomplete building structure, the revised story drifts and damper forces in Step 5.3, 

which considers all of the structural components of the building structure, are imposed 

on the DBF structure to check the final member strength. The demand-to-capacity ratios 

for the DBF structure with the member sizes in Table 6.13 are summarized in Table 

6.15 based on Equations (6.23) and (6.24). The design of the braces was controlled by 

stiffness, α = 10, and not strength, hence, the demand-to-capacity ratios for the braces 

are small in Table 6.15. 
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6.4.2.6 Final Design Check 

In this step, the strength requirement and the performance objectives for the 

complete building structure designed using the aforementioned procedure are checked. 

If the structure does not satisfy these criteria, the structure needs to be revised until the 

design is satisfactory.  

The MRF of the building structure was initially designed to satisfy the strength 

requirement without the DBF and MR dampers in Step 2. Therefore, the MRF satisfies 

the strength requirement within the final combined structure since the seismic base 

shear resisted by the MRF in Step 5 is smaller than that used in Step 2 due to the 

additional lateral force resisting systems, i.e., the DBF and MR dampers.  

Three performance objectives, as stated previously, are considered in this 

building design: i) 1.5% story drift under the DBE; ii) 3.0% story drift under the MCE; 

and, iii) linear-elastic behavior of the DBF under the DBE. The calculated response of 

the final 0.6-scale building structure with MR dampers under the DBE and MCE ground 

motions are provided in Table 6.14 and Table 6.16, respectively. The story drifts under 

the DBE ground motion satisfy the 1.5% story drift limit, and those under the MCE 

ground motion satisfy the 3.0% story drift. The linear-elastic behavior of the DBF under 

the DBE is assured by the demand-to-capacity ratios in Table 6.15, which are less than 

1.0. 

The natural periods of the final 0.6-scale building structure are summarized in 

Table 6.17 along with the damping ratios. Those values are identified from the 

simplified analysis procedure of Figure 6.3 for the final scaled building structure. Since 
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the equivalent damping ratio and the effective stiffness of the building structure depend 

on the displacement amplitude, the natural periods and the equivalent damping ratios of 

the building structure under the DBE and MCE ground motions are different as listed in 

Table 6.17. 

 

6.5 Summary 

In this chapter, a simplified design procedure (SDP) for structures with passive 

MR dampers was presented. To calculate the story drifts and MR damper forces of the 

MDOF structure, the SDP was based on an equivalent damping ratio and effective 

stiffness for an MDOF structure with MR dampers. The SDP is used in the 

performance-based design of a 3-story building structure with MR dampers. The MRF 

was designed to satisfy the strength requirement of the current building seismic code. 

The DBF and MR dampers are intended to control the story drift of the building. The 

DBF was designed by imposing the maximum displacements and MR damper forces on 

the DBF, which were predicted from the simplified analysis procedure utilizing the 

Hershel-Bulkley quasi-static MR damper model. The maximum displacements and the 

maximum MR damper forces were assumed to occur concurrently in the SDP and its 

effect on the design of members will be assessed in Chapter 7 using the nonlinear time 

history analysis.  

The designed structure will be used to numerically and experimentally assess the 

performance of various control strategies for MR dampers. In order to validate the 

proposed SDP, the results of a series of nonlinear time history analyses for the 3-story 
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building structure with passive controlled MR dampers are given in Chapter 7. The 

performance of the building with semi-active controlled MR dampers will be discussed 

in Chapter 9 and this performance will be compared to that of the building with passive 

MR dampers. 
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Table 6.1 Structural performance levels for steel moment frames (FEMA 2000b) 

Type 
Structural performance level 

Immediate 
Occupancy Life safety  Collapse prevention 

Primary* Minor local yielding 
at a few places. No 
fractures. Minor 
buckling or 
observable 
permanent distortion 
of members 

Hinges form. Local 
buckling of some beam 
elements. Severe joint 
distortion; isolated 
moment connection 
fractures, but shear 
connections remain intact. 
A few elements may 
experience partial 
fracture. 

Extensive distortion 
of beams and 
column panels. 
Many fractures at 
moment 
connections, but 
shear connections 
remain intact. 

Secondary** Same as primary. Extensive distortion of 
beams and column panels. 
Many fractures at moment 
connections, but shear 
connections remain intact. 

Same as primary. 

Drift 0.7% transient; 
negligible permanent 

2.5% transient; 1% 
permanent 

5% transient or 
permanent 

* Primary elements and components: elements and components that provide the capacity of the 
structure to resist collapse under seismic forces 

** Secondary elements and components: other elements and components than primary ones 
 

Table 6.2 Dead load for 1st and 2nd floors 

Item Description Unit weight (psf) 
Slab 3.5"light weight concrete on 2" metal deck 43 
Deck 2"-18 gage metal deck 3 

Ceiling suspended acoustical tile 3 
Flooring carpet 3 
Systems mechanical/electricity/plumbing 10 

Fireproofing spray on cementitious 3 
Cladding 25psf exterior cladding projected onto floor plan 10 
Structure beams/girders/columns/bracing 15 

Total - 90 
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Table 6.3 Dead load for 3rd floor (roof) 
 

Item Description Unit weight (psf) 

Deck 1.5" Type B metal deck 3 
Finish Insulation and water proofing 11 
Ceiling suspended acoustical tile 3 
Systems mechanical/electricty/plumbing 10 

Fireproofing spray on cementitious 3 
Cladding 25psf on exterior walls 5 
Structure beams/girders/columns… 15 

Equipment mechanical equipment on roof 30 
Total - 80 

 
 

Table 6.4 Live loads 
 

Floor level Unreduced live load 
L0 (psf) 

1 70 

2 70 

3 (roof) 20 

 
 
 

Table 6.5 Effective seismic weights 
 

Floor level Seismic weight (psf) 

1 110 

2 110 

Roof 80 
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Table 6.6 Scale factors 

Quantity Dimension Scale Factor 

Length, width, height L λ=0.6 
Area L2 λ2 

Elastic section modulus S L3 λ3 
Plastic section modulus Z L3 λ3 

Moment of inertia L4 λ4 
Stress S 1 
Force F=S·L2 λ2 

Moment F·L λ3 
Displacement D=L λ 

Velocity V=L/T λ1/2 
Acceleration A=L/T2 1 

Mass F/A λ2 
Time T λ1/2 

Note: L=Length, S=Stress, F=force, T=time, A=acceleration 

 

Table 6.7 Member sizes for MRF and gravity frame of 0.6-scale building structure 

Story  
(or Floor Level) 

MRF Gravity Frame 
Column Beam Column Beam 

1 W8X67 W18X46 W10X30 W8X40 

2 W8X67 W14X38 W10X30 W8X40 

3 W8X67 W10X17 W10X30 W8X40 

 

Table 6.8 Story stiffness of 0.6-scale building considering one MRF and tributary 
gravity frames 

 Story stiffness (kN/m) 

1st story 25,231 

2nd story 16,729 

3rd story 8,008 



187 
 

Table 6.9 Tributary weights and masses for 0.6-scale building structure 

Floor level Weight (kN) Mass (kN·sec2/m) 

1 991.2 101.0 

2 991.2 101.0 

Roof 720.9 73.5 
 

Table 6.10 Preliminary response of 0.6-scale building structure (without DBF) under 
DBE  

Story 

No dampers With three MR dampers 
(one MR damper in each story) 

Story drift (%) Story drift (%) Maximum MR  
damper force (kN) 

RSA* ELF* RSA ELF RSA ELF 

1 1.89 2.27 1.06 1.33 217.4 219.9 

2 2.29 2.90 1.21 1.62 219.7 227.4 

3 2.74 3.34 1.27 1.72 228.9 229.9 

*RSA: response spectrum analysis method; ELF: equivalent lateral force method 

 
 

Table 6.11 Preliminary response of 0.6-scale building structure (without DBF) under 
DBE with two MR dampers  

Story 

Number of dampers and locations 

[1 1 0]* [1 0 1] [0 1 1] 
Story drift 

(%) 
Damper 

force (kN) 
Story drift 

(%) 
Damper 

force (kN) 
Story drift 

(%) 
Damper 

force (kN) 

1 1.18 224.7 1.20 220.1 1.32 - 

2 1.43 223.5 1.51 - 1.37 222.4 

3 1.90 - 1.52 233.7 1.41 232.0 

* [1 1 0] means one MR damper is installed in the 1st and 2nd story, and no MR damper 
in the 3rd story 
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Table 6.12 Preliminary response of 0.6-scale building structure (without DBF) under 
DBE with one MR damper 

Story 

Number of dampers and locations 

[1 0 0] [0 1 0] [0 0 1] 
Story drift 

(%) 
Damper 

force (kN) 
Story drift 

(%) 
Damper 

force (kN) 
Story drift 

(%) 
Damper 

force (kN) 

1 1.44 229.2 1.53 - 1.56 - 

2 1.89 - 1.70 228.3 1.80 - 

3 2.32 - 2.20 - 1.80 239.5 

 
Table 6.13 Member sizes for DBF structure 

Story (or Floor level) Column Beam Diagonal bracing 

1 W10X33 W10X30 - 

2 W10X33 W10X30 W6X20 

3 W10X33 W10X30 W6X20 
 
Table 6.14 Response of 0.6-scale building structure under DBE with two MR dampers 

(case [0 1 1])  

Story Story drift (%) Damper force (kN) 

1 1.18 - 

2 1.35 222.9 

3 1.41 233.6 

 

Table 6.15 The ratio of demand-to-capacity for DBF members 

Story 
(or Floor level) 

Column 
(W10X33) 

Beam 
(W10X30) 

Brace 
(W6X20) 

1 0.955 0.521 - 

2 0.303 0.576 0.270 

3 0.079 0.354 0.283 
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Table 6.16 Response of 0.6-scale building structure under MCE with two MR dampers 
(case [0 1 1]) 

Story Story drift (%) Damper force (kN) 

1 1.91 - 

2 2.32 244.4 

3 2.57 261.6 

 
 

Table 6.17 Natural periods and damping ratios of the final 0.6-scale building structure 

Mode 
No. 

Without MR dampers 
With MR dampers 

DBE level MCE level 
Period 
(sec) 

 
(%) (sec) 

 
(%) 

 
 (sec) 

 
(%) 

1 0.94 5.0 0.85 20.4 0.88 16.2 

2 0.30 5.0 0.28 15.5 0.29 12.1 

3 0.13 5.0 0.13 6.3 0.13 6.5 
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Figure 6.1 General simplified design procedure (SDP) for structures with MR dampers 
  

1. Establish performance objectives and 
design criteria

2. Design structure satisfying given 
strength requirement without damper

3. Choose set of  α and β, then, develop 
preliminary design by conducting elastic-
static analysis with a simple f rictional 
damper model (η=4/π) for each α and β 

4. Select the MR damper capacity 
approximately f rom the smallest β
values that meets the criteria of  Step 1

5. Perform the elastic-static analysis with 
MR damper properties  f rom selected 
MR damper utilizing the Hershel-Bulkley
quasi-static model & simplif ied analysis 
procedure

Meet the criteria 
of  Step 1 ?

End

Adjust size of  members or 
MR damper properties

(size, number of  dampers, 
location, etc)

Yes

No

Revise performance 
objectives and/or 

design criteria if  design 
is unsatisfactory
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Given: 
  MR damper properties:  ,  ,   ( : index of MR damper) 
  Structural properties:  ,  ,  ,   
 
Step  1.  Assume   and  set   (fundamental  frequency  of  structure  without  MR 

dampers) 
 
Step 2.  Determine maximum damper displacements  

/  
: maximum deformation of damper and bracing at the  ‐th MR damper 

 
Step 3.  Calculate equivalent stiffness of MR dampers (secant or RMS stiffness) 

For secant stiffness:  /  

For RMS stiffness:   √
√

  

 

Step 4.  Determine K   for each damper and update   

 
Step 5.  Update the fundamental effective period   2 /  

    eig , , where   is a mass matrix of the structure 
 

Step 6.  Calculate equivalent damping ratio using the lateral force energy method 

∑
T   where   

 
Step 7.  Determine seismic base shear from response spectrum based on   and   

  ( : seismic response coefficient;  : effective seismic weight) 
 
Step 8.  Compute equivalent lateral forces 

 
( : equivalent lateral force;  : vertical distribution factor for  ‐th floor) 

 
Step 9.  Update   by performing elastic‐static analysis with equivalent lateral forces 
 
Step 10. Repeat Step 2 ~ Step 9 until   convergence is achieved. 
 
Step 11. Determine maximum damper force for each damper 

 
 
 
Figure 6.2 Simplified analysis procedure used to design MDOF structures with passive 

MR dampers utilizing equivalent lateral force (ELF) method 
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Given: 
  MR damper properties:  ,  ,   ( : index of MR damper) 
  Structural properties:  ,  ,  ,   (inherent damping ratio of the  ‐th mode) 
 
Step  1.  Assume   and  set   (fundamental  frequency  of  structure  without  MR 

dampers) 
 
Step 2.  Determine maximum damper displacements  

/  
: maximum deformation of damper and bracing at the  ‐th MR damper 

 
Step 3.  Calculate equivalent stiffness of MR dampers (secant or RMS stiffness) 

For secant stiffness:  /  

For RMS stiffness:   √
√

 

 

Step 4.  Determine K   for each damper and update   

 

Step 5.  Update modal frequency    and modal vector   ( 1, … , ) 

 ,     eig , , where   is a mass matrix of the structure 
 

Step 6.  Calculate loss factor of MR damper 

   where   is the fundamental modal frequency 

 
Step 7.  Perform modal analysis from Figure 6.4 
 
Step 8.  Apply modal combination rule (SRSS, CQC, etc) to get the final displacement   and 

velocity of MR damper   
  = function of ( , … , ),      = function of ( , … , ) 

 
Step 9. Repeat Step 2 ~ Step 8 until   convergence is achieved. 
 
Step 10. Calculate maximum damper force  

 

 
Figure 6.3 Simplified analysis procedure used to design MDOF structures with passive 

MR dampers utilizing response spectrum analysis (RSA) method 
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Step 7. For  =1 to  ‐th mode 
 

Substep 1. Assume modal displacement vector    

Substep 2. Determine maximum damper displacement   

/       

: maximum deformation of damper and bracing at the  ‐th MR damper 
in mode   

Substep 3. Calculate equivalent modal damping ratio   

∑
T   

Substep 4. Find maximum modal displacement ( ) from response spectrum 

,  where  2 /  

Substep 5. Update modal displacement vector    

   

                                   : mode vector;  / ; 1: unit vector;  : modal mass (= ) 

Substep 6. Repeat Substep 2 ~ 5 until   convergence is achieved 

Sbustep 7. Calculate maximum damper velocity at  ‐th MR damper    

  

 
Figure 6.4 Modal analysis method for the simplified analysis procedure utilizing 

response spectrum analysis (RSA) method 
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(a) floor plan 
 
 

                   
 

(b) elevation 
 

Figure 6.5 Full-scale building structure 
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Figure 6.6 Simplified design procedure for 3-story building with MR dampers 
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Figure 6.7 Design earthquake response spectrum (ICC 2006) 
 
 

 
 
 

 
                                      (a)                                                                  (b) 

 
Figure 6.8 Response under DBE for various  values utilizing the simple frictional MR 

damper model ( 10): (a) story drift response; (b) required MR damper force 
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Figure 6.9 Application of maximum displacements ( ) and MR damper forces 
( ) to the DBF structure for the design of DBF members 
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Chapter 7 

Assessment of Simplified Design Procedure 

 

7.1 General 

In this chapter, the simplified design procedure (SDP) proposed in Chapter 6 is 

assessed by comparing the expected behavior with results from a series of nonlinear 

time history analyses (NTHA) using OpenSees. The calculated responses from the SDP 

are compared to the results of the NTHA and the accuracy of the SDP is assessed. 

 

7.2 Nonlinear Analytical Modeling Using OpenSees  

The scaled building presented in Chapter 6 is modeled using OpenSees (2009). 

The OpenSees model is shown in Figure 7.1. The member sizes for the MRF and DBF 

are illustrated in Figure 7.2. The beams and columns of the MRF structure are modeled 

with a distributed plasticity force-based beam-column element with five fiber sections 

along the element length. The cross section of the element is discretized into 18 fibers, 

including 12 fibers for the web and 3 fibers each for the top and bottom flanges. Each 

fiber is modeled with a bilinear stress-strain relationship with a small post-yielding 

stiffness, where the elastic modulus and the yield stress of the steel are 2

10  kN/m  and 345,000 kN/m , respectively. The strain-hardening ratio (the 

post-yielding modulus over the elastic modulus) is assigned to be 0.01. The beam-

column joints are modeled using a four-sided panel zone element, where shear and 

symmetric column bending deformations are considered (Seo et al. 2009). The doubler 
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plate in the panel zone is included in the model of the panel zone. The force-based fiber 

element is also used to model the columns of the DBF. The beams and braces of the 

DBF are modeled using linear elastic truss elements. An elastic beam-column element 

with geometric stiffness is used to model the lean-on column. The section properties of 

the lean-on column is obtained by taking the sum of the section properties of each 

gravity column within the tributary area of the MRF and the DBF. The MNS MR 

damper model is implemented in OpenSees as a new material with a zero length 

element. The MR damper is assumed to be located between the top of the brace and the 

beam-column joint. The parameters that appear in Table 3.3 are used for the MNS 

model. The MR dampers are passive controlled with a constant current input of 2.5A. 

 The gravity loads in Table 6.9 from the tributary gravity frames (i.e., one-quarter 

of the floor plan) are applied to the lean-on column to account for the P-Δ effect of the 

building. Included in Table 6.9 is also the mass of each floor. Only horizontal ground 

motion is applied to the building; so only the horizontal mass is defined at each floor 

level, and this mass is located at the lean-on column. A rigid floor diaphragm is 

assumed; hence, the top node of the panel zone element in the MRF and the beam-

column joint in the DBF are horizontally constrained to the node of the lean-on column 

at each floor level, while the vertical and rotational dofs are released.  

Rayleigh damping is used to model the inherent damping of the building with a 

5% damping ratio for the 1st and 2nd modes. 

 

7.3 Results of Nonlinear Time History Analyses 
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 An ensemble of 44 ground motions listed in Appendix 3 is scaled to the DBE 

and MCE levels using the procedure by Somerville et al. (1997). The fundamental 

effective periods of the structure with MR dampers are estimated to be around 0.85 sec 

and 0.88 sec under the DBE and MCE, respectively (see Table 6.17). The  values 

listed in Table 5.2 for =1.0 sec are used for scaling the ground motions to the DBE 

and MCE levels.  

 Statistical results (median value and standard deviation) for the maximum story 

drifts along with the residual story drifts are summarized in Table 7.1. The median 

value of the maximum story drift is less than 1.5% under the DBE and less than 3.0% 

under the MCE. The performance of the structure therefore complies with the 

performance objectives. The median maximum residual story drift is 0.22% and 0.63% 

under the DBE and MCE, respectively, both occurring in the 3rd story of the structure.  

In Table 7.2, the median value and standard deviation for the maximum and residual 

beam plastic rotations of the MRF are summarized. The beams developed yielding at 

each floor level, but the plastic rotations under the DBE are considered to be small and 

under the MCE are considered to be modest and would not lead to local buckling and 

strength degradation of the beams. In Tables 7.3 and 7.4, the median value and standard 

deviation for the maximum and residual column plastic rotations for the MRF and DBF 

are provided, respectively. The MRF structure was designed to satisfy the requirement 

of strong column-weak beam. This is consistent with the results of the NTHA, where 

the columns in the 2nd and 3rd stories remained elastic and yielding developed at only 

the ground level of the first story column. The column plastic rotation at the ground 
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level is small under both the DBE and MCE, leading to a small residual drift in the 

structure, as noted above. The DBF column has behavior similar to that of the MRF 

column, but the amount of plastic rotation at the column base is not as large for both the 

DBE and MCE ground motions. In Table 7.5, the statistics for the maximum MR 

damper forces are summarized. The median values are 231.9kN and 241.5kN in the 2nd 

and 3rd story dampers, respectively, under the DBE. Under the MCE, larger velocities 

developed in the dampers leading to larger median maximum damper forces of 248.4kN 

and 260.2kN in the 2nd and 3rd stories, respectively. The median and standard deviation 

for the maximum MR damper forces are larger in the 3rd story than the 2nd story.  

  

7.4 Comparison of NTHA Response with Expected Response from the Simplified 

Design Procedure 

 The time history response of the structure is given in Figures 7.3 through 7.8 for 

selected ground motions. The response under the 1992 Landers and 1995 Kobe 

earthquakes are selected from among the responses to the 44 records in the ensemble of 

ground motions. Results from these ground motions scaled to the DBE and MCE levels 

are given, respectively. The responses calculated using the SDP are given in Figures 7.3 

through 7.8. Figures 7.9 and 7.10 compare the story drift from the SDP with the median 

values for maximum story drift from the NTHA under the DBE and MCE ground 

motions. The response based on the RSA and ELF methods are both given in Figures 

7.9 and 7.10, where the secant stiffness method was utilized to obtain the equivalent 

stiffness of the MR dampers.. Table 7.6 summarizes the story drifts from the SDP under 
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the DBE and MCE using the RSA and ELF methods. Although a slight underestimation 

of the 3rd story drift under the DBE is observed in Figure 7.9, the story drifts using the 

RSA method in the SDP show good agreement with the median maximum story drifts 

from the NTHA. The RSA method results also show good agreement with the median 

values from the NTHA under the MCE, see Figure 7.10. The results calculated using 

the ELF are a conservative estimate of drift response for both DBE and MCE ground 

motions. The ELF results exceed the median plus one standard deviation NTHA results, 

and therefore represent story drifts that are approximately in the 84th percentile or 

greater.  

 Figure 7.11 compares the maximum MR damper forces from the SDP with the 

median maximum MR damper forces from the NTHA. Maximum damper forces from 

both the RSA and ELF methods are summarized in Table 7.7. The MR damper forces 

from the RSA method are slightly smaller than the median NTHA results for the DBE. 

However, the differences between the RSA and the NTHA are 3.9% and 3.3% for the 

MR dampers in the 2nd and 3rd stories, respectively. The differences for MR damper 

forces from the ELF method are 0.0% and 3.0% for the MR dampers in the 2nd and 3rd 

stories, respectively, compared to the results of the NTHA. For the MCE the differences 

between the median NTHA results and the RSA method for the MR damper forces in 

the 2nd and 3rd stories are 1.6% and 0.5% respectively, and 3.0% and 0.2% for the ELF 

method, respectively. Both the RSA and ELF results show reasonably good agreement 

with the median results from the NTHA for the maximum MR damper forces.  
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In the RSA method, the damper force is based on the total damper velocity 

which is obtained from the combination of the modal damper velocities (see Figures 6.3 

and 6.4). If the maximum damper force is determined from the combination of the 

modal damper forces (i.e., function , where  is the maximum damper 

force of the -th mode), the damper forces under the DBE would be estimated by the 

SRSS (Square Root of the Sum of the Squares) modal combination rule to be  297.5kN 

and 313.7kN for the MR dampers in the 2nd and 3rd stories, respectively. These values 

are too conservative compared to the median maximum damper forces from the NTHA 

(Table 7.5). This is the reason why the maximum damper force in the RSA method is 

determined from the total damper velocity, not by a combination of the modal damper 

forces. 

 Since the MR damper is in series with the braces in the DBF, the axial forces in 

the braces are proportional to the MR damper forces. Thus, the actual force demand on 

the brace members is slightly higher than the forces from the SDP. Figure 7.12 shows 

the histogram of MR damper forces obtained from the NTHA with the 44 ground 

motions. The bell-shaped solid line represents a lognormal distribution of the MR 

damper force based on the mean and standard deviation of the logarithmic values of the 

MR damper forces in each story. Figure 7.12 shows that if a safety factor ( 1.3) for 

the horizontal earthquake load is considered for the design of the diagonal bracing, the 

factored damper forces from the SDP are considerably higher than the median of the 

maximum damper forces from the NTHA. Thus, the design based on the factored SDP 
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damper forces using 1.3 can assure an elastic behavior of the diagonal bracing in 

the DBF.  

 The linear elastic behavior of the DBF columns is confirmed by checking the 

plastic rotation developed in the columns. In the first story, some plastic rotation did 

develop at the base of the column under the DBE. However, the median is zero and the 

standard deviation is 0.0005 radians for the maximum plastic rotation. The median and 

standard deviation of the maximum plastic rotation in the 2nd and 3rd stories columns are 

zero under the DBE ground motion, as given in Table 7.4, which indicates a linear 

elastic behavior of these columns. 

 In the SDP described in Chapter 6, the DBF is designed assuming that the 

maximum damper forces and the maximum displacements of the structure occur at the 

same time. Figure 7.13 provides time histories for normalized story drifts, damper 

forces, and the moment and axial force at the base of the 1st story DBF column under 

the 1992 Landers earthquake scaled to the DBE level. These results represent a typical 

response of the structure to the DBE or MCE ground motions. The structural response is 

divided by the maximum value of the response so that the normalized value is between -

1.0 and 1.0. The 1st story column axial force is primarily associated with the MR 

damper forces in the 2nd and 3rd stories, while the column base moment is primarily 

associated with the 1st story drift. The maximum values of the story drift of the 2nd and 

3rd stories and the damper forces do not occur concurrently in Figures 7.13 (a) and (b) . 

When the maximum 2nd and 3rd story drifts occur at around t=12.2 sec, the damper force 

is about 70% of the maximum damper force. It is also observed that the local maximum 
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moment occurs ahead of the local maximum axial force in some cases, and vice-a-versa 

in other cases. Comparing Figures 7.13 (c), (a), and (b) however it is apparent that the 

maximum 1st story drift and the maximum damper forces at the 2nd and 3rd stories occur 

at the same time, and that these response quantities appear to be in phase with each 

other. Consequently, the column axial force and moment at the base of the column in 

the 1st story are in phase with their maximum values occurring simultaneously, as 

shown in Figure 7.13(d). 

Figure 7.14 shows the time history of the demand-to-capacity ratio for the 

column at the base of the DBF under the 1992 Landers earthquake scaled to the DBE 

level. Since the ratio of the factored axial force to the axial force capacity exceeded 0.2 

(i.e., / 0.2), when the column was designed, Equation (6.23) is used to plot 

the demand-to-capacity ratio. The axial force and moment of the column are obtained 

from the NTHA and combined with the dead and live loads in accordance with 

Equation (6.21). Since the maximum moment and the maximum axial force occur at 

almost the same time (as discussed above), the maximum value of the demand-to-

capacity ratio is close to the design value. Thus, applying the maximum damper force 

along with the maximum displacement for designing the members of the DBF structure 

does not appear to be too conservative. For the design of the upper story columns, 

where the dampers are located in the story, the assumption that the maximum damper 

force and story drift occur simultaneously is conservative.  

  

7.5 Probability of Exceedance     
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The probability of the maximum responses under the DBE or MCE exceeding 

the responses from the SDP was determined. The probability distribution for the 

maximum damper forces, story drifts, residual drifts, member plastic rotations, and 

residual plastic rotations were determined to be best represented by a lognormal 

distribution. The probability of exceeding a prescribed response level was thus obtained 

by using the cumulative distribution along with the lognormal mean and standard 

deviation of the maximum values for the response quantity.  

In Table 7.8 the probabilities of the damper forces exceeding the damper forces 

from the SDP, , are summarized As previously observed in Figure 7.12, 

the predicted damper forces from the SDP are less than the median maximum values 

from the NTHA. The results in Table 7.8 indicate that the probability of the maximum 

damper forces exceeding the design damper forces from the SDP is 0.926 and 0.834 at 

the 2nd and 3rd stories, respectively, under the DBE, and 0.999 and 0.999 under the MCE 

when there is no safety factor (i.e.,  1.0) is used for determining the damper force 

from the SDP. However, when the value of 1.3 is used, then  is 

significantly lower, and equal to 1.11×10-16 and 8.39×10-12 for the 2nd and 3rd stories 

under the DBE, and 5.65×10-8 and 8.58×10-6 under the MCE. The use of 1.3 

produces very conservative design forces associated with the maximum damper forces, 

and possibly investigations of using smaller values of  that are in between 1.0 and 1.3 

are warranted.  

Table 7.9 summarizes the probability of the maximum story drift exceeding the 

story drift limits used in the design of the building. The probability of exceeding the 1.5% 
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story drift limit under the DBE and MCE and the 3.0% story drift limit under the DBE 

and MCE are given. The  value of 1.5%, which is the targeted performance under 

the DBE, shows a maximum probability of exceedance of 0.444 in the 3rd story, 

indicating that the probability of exceeding the performance objective of 1.5% story 

drift under the DBE is reasonably acceptable. The probability of exceeding the 

1.5%.story drift under the MCE ranges from 0.725 (1st story) to 0.930 (3rd story). The 

probability of exceeding the drift limit 3.0% (the target drift used in the design of the 

structure under the MCE) under an MCE ground motion ranges from 0.094 (1st story) to 

0.194 (3rd story); only a small probability of exceedance is observed. Under a DBE 

ground motion, the probability of exceeding the 3.0% story drift ranges from 9.05×10-5 

(1st story) to 3.58×10-4 (3rd story), which is small as expected. 

Performance levels for a steel moment frame recommended by FEMA (2000b) 

are described in Table 6.1. The story drift limits are equal to 0.007, 0.025, and 0.05 rads. 

for the Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) 

levels, respectively. Table 7.10 summarizes the probability of the maximum story drift 

exceeding these story drift limits under the DBE and MCE. The probability of the 

maximum drift exceeding 0.007 rads. under the DBE is high, and therefore, the building 

with MR dampers will not achieve the IO level under the DBE. The probability of 

exceeding the drift associated with the LS level of performance is 0.006 in the 2nd and 

3rd stories under the DBE and 0.402 in the 3rd story under the MCE. The probability of 

exceeding the drift of 0.05 rads. associated with the CP level of performance is a 

maximum value of 4.92×10-8 (2nd story) under the DBE and 0.005 (3rd story) under the 
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MCE. These are considered to be small probabilities of exceedance for these levels of 

seismic hazard. More discussion related to collapse prevention is given in Chapter 10. 

In Table 7.11, the probability of the maximum residual story drift exceeding the 

residual drift limits for various structural performance levels in Table 6.1 is summarized. 

For the IO level, the negligible residual story drift in the table is assumed to be 0.2% in 

this study, which is the drift associated with the required plumbness for the construction 

of steel frames (AISC 2005). The cause of the residual drift under the DBE is the 

yielding of the beams and at the base of the 1st story columns in the MRF. The 

probability of exceeding the residual drift of 0.002 in the 3rd story is 0.794 under the 

DBE and 0.946 under the MCE, which means the likelihood of achieving IO level is 

low under the DBE and MCE. The probability of exceeding the residual drift of 1% in 

the 3rd story associated with the LS level is 0.263 under the DBE and 0.616 under the 

MCE. The probability of exceeding the 5% residual drift is considerably low under the 

DBE and MCE so that the CP performance level can be achieved with a small 

probability of exceedance. The probability of collapse will be discussed more in 

Chapter 10.  

In Tables 7.12 through 7.15, the probability of maximum beam plastic rotation, 

beam residual plastic rotation, column plastic rotation, and column residual plastic 

rotation of the MRF structure exceeding three different levels of the plastic rotation 

(0.005 rads., 0.01 rads., and 0.03 rads.) are provided. The results in Table 7.12 indicate 

that there is a probability of 0.302 (3rd floor) to 0.376 (2nd floor) among the floors that 

the maximum plastic rotation in the beams of the MRF will exceed 0.005 rads., and 
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0.102 (3rd floor) to 0.144 (2nd floor) that 0.01 rads. will be exceeded under the DBE. A 

plastic rotation of 0.005 rads. is considered to be insignificant, and is associated with 

initial yielding in the beam. At a plastic rotation of 0.01 rads. the beams will develop 

significantly more yielding, however for seismic compact sections, the beams will not 

develop local buckling and no deterioration in strength to have occurred. At a plastic 

rotation of 0.03 rads. the beams will typically have developed their maximum capacity, 

and local flange buckling and web distortion is expected, leading to the onset of a 

degradation in capacity with any increase in amplitude of cyclic deformations. Table 

7.12 indicates that the probability of exceeding 0.03 rads. of plastic rotation in the 

beams is 0.007 (3rd floor) to 0.012 (2nd floor) under the DBE and 0.043 (1st floor) to 

0.068 (3rd floor) under the MCE. The probability of the maximum beam residual plastic 

rotations in the MRF (Table 7.13) exceeding the selected values are less than the 

probability of the maximum beam plastic rotations in the MRF exceeding the selected 

values by an average of 2. 

The probability of exceeding 0.005 rads. of plastic rotation in the MRF columns 

in the 2nd and 3rd story is essentially zero, and very unlikely under both the DBE and 

MCE, complying with the design criteria of a weak beam-strong column response. The 

columns in the 1st story develop yielding at the base of the column. Table 7.14 indicates 

that the probability of exceeding the selected values of column plastic rotation of 0.005 

rads. are 0.277 and 0.589 under the DBE and MCE, respectively, implying that there is 

a reasonable chance that yielding will occur at the base of the columns in the MRF 

under the DBE and MCE. The probability of column plastic rotation exceeding 0.01 
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rads. is 0.067 and 0.318 under the DBE and MCE, respectively, while the probability of 

exceeding 0.03 rads. is 0.017 and 0.057 under the DBE and MCE. Plastic rotations of 

0.01 rads. and 0.03 rads. will lead to more significant yielding at the base of the 1st story 

columns, however, because column sections are compact with small flange and web 

slenderness it is expected that local buckling at the base of the columns will not occur. 

Therefore the column damage is expected to be minor. Permanent residual plastic 

rotations at the base of the 1st story columns are small, where the results in Table 7.15 

indicate a low probability of 0.001 under the DBE of exceeding 0.01 rads. 

In Tables 7.16 and 7.17, the probability of maximum column plastic rotation and 

column residual plastic rotation of the DBF structure exceeding the three selected levels 

of plastic rotation (0.005, 0.01, and 0.03) are summarized. Like the MRF, the columns 

in the DBF developed plastic rotation at only the base of the 1st story column. Only 

under the MCE is any plastic rotation expected, where the probability of exceeding 

0.005 rads., 0.01 rads., and 0.03 rads. is 0.109, 0.046, and 0.008. These probabilities are 

less than those for the MRF. No yielding under the DBE is expected in the columns, 

meeting the performance objective used in the design of the DBF where the DBF should 

remain elastic during the DBE. 

 

7.6 Summary 

In this chapter, the simplified design procedure (SDP) was assessed by 

comparing the results from the analyses used in the SDP with the results of nonlinear 

time history analyses. The MNS MR damper model was implemented into the 
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OpenSees computer program and statistics for the response to DBE and MCE ground 

motions were obtained from a series of nonlinear time history analyses using 44 

different ground motions. The story drifts and maximum MR damper forces from the 

SDP showed good agreement with the median values from the nonlinear time history 

analyses, confirming the robustness of the simplified analysis procedure used in the 

SDP. The probability of the responses exceeding specified values was also evaluated 

using results from the nonlinear time history analyses, further confirming the analysis 

used in the SDP. 
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Table 7.1 Median and standard deviation of story drift from nonlinear time history 
analysis 

 

Story 
DBE MCE 

Max story drift 
(%) 

Residual story 
drift (%) 

Max story drift 
(%) 

Residual story 
drift (%) 

1 1.18 
(0.35)* 

0.11 
(0.21) 

1.86 
(0.85) 

0.42 
(0.62) 

2 1.35 
(0.36) 

0.17 
(0.26) 

2.10 
(0.85) 

0.57 
(0.66) 

3 1.46 
(0.33) 

0.22 
(0.27) 

2.32 
(0.84) 

0.63 
(0.69) 

 
* Value in () indicates standard deviation of response 
 
 
 
 
Table 7.2 Median and standard deviation of MRF beam plastic rotation from nonlinear 

time history analysis 
 

Floor 

DBE MCE 
Max plastic 

rotation 
(rad %) 

Residual plastic 
rotation 
(rad %) 

Max plastic 
rotation 
(rad %) 

Residual plastic 
rotation 
(rad %) 

1 0.35 
(0.37)* 

0.16 
(0.27) 

1.05 
(0.86) 

0.49 
(0.63) 

2 0.37 
(0.33) 

0.27 
(0.31) 

1.20 
(0.84) 

0.68 
(0.72) 

Roof 0.31 
(0.30) 

0.18 
(0.30) 

1.17 
(0.86) 

0.67 
(0.78) 

 
* Value in () indicates standard deviation of response 
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Table 7.3 Median and standard deviation of MRF column plastic rotation from 
nonlinear time history analysis 

 

Story 
Location 

along 
column 

DBE MCE 
Max plastic 

rotation 
(rad %) 

Residual 
plastic rotation 

(rad %) 

Max plastic 
rotation 
(rad %) 

Residual 
plastic rotation 

(rad %) 

1 
bottom 0.07 (0.25)* 0.06 (0.19) 0.62 (0.76) 0.41 (0.59) 

top 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 

2 
bottom 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

top 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 

3 
bottom 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

top 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
 
* Value in () indicates standard deviation of response 
 
 
 
Table 7.4 Median and standard deviation of DBF column plastic rotation from nonlinear 

time history analysis 
 

Story 
Location 

along 
column 

DBE MCE 
Max plastic 

rotation 
(rad %) 

Residual 
plastic rotation 

(rad %) 

Max plastic 
rotation 
(rad %) 

Residual 
plastic rotation 

(rad %) 

1 
bottom 0.00 (0.05)* 0.00 (0.04) 0.08 (0.40) 0.07 (0.35) 

top 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

2 
bottom 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

top 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

3 
bottom 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

top 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
 
* Value in () indicates standard deviation of response 
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Table 7.5 Median and standard deviation of maximum damper force from nonlinear 
time history analysis 

Story 
Maximum damper force (kN) 

DBE MCE 

1 - - 

2 231.9 (6.4)* 248.4 (7.3) 

3 241.5 (8.3) 260.2 (9.4) 
 
* Value in () indicates standard deviation of response 
 

 

Table 7.6 Maximum story drift calculated by simplified analysis procedure 

Story 

Story drift (%) 

DBE MCE 

RSA ELF RSA ELF 

1 1.18 1.47 1.91 2.40 

2 1.35 1.81 2.32 3.09 

3 1.41 1.92 2.57 3.38 
 

 

Table 7.7 Maximum MR damper force calculated by simplified analysis procedure 

Story 

Maximum damper force (kN) 

DBE MCE 

RSA ELF RSA ELF 

1 - - - - 

2 222.9 231.8 244.4 255.9 

3 233.6 234.2 261.6 260.8 
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Table 7.8 Probability of maximum damper force  exceeding the predicted damper 
force from SDP ( ) 

 

Story 

 

DBE MCE 

1.0 1.3 1.0 1.3 

1 - - - - 

2 0.926 1.11×10-16 0.999 5.65×10-8 

3 0.834 8.39×10-12 0.999 8.58×10-6 
 

 
Table 7.9 Probability of maximum story drift ( ) exceeding the performance 

objectives for story drift in SDP  
 

 
Story 

 

 = 1.5%  = 3.0% 

DBE MCE DBE MCE 

1 0.166 0.725 9.05×10-5 0.094 

2 0.330 0.852 5.67×10-4 0.135 

3 0.444 0.930 3.58×10-4 0.194 
 
 
Table 7.10 Probability of maximum story drift ( ) exceeding selected levels of story 

drift  
 

Story 
IO level 

0.007   
LS level 

0.025  
CP level 

0.05  
DBE MCE DBE MCE DBE MCE 

1 0.981 0.997 0.001 0.208 3.59×10-9 0.003 

2 0.996 0.999 0.006 0.295 4.92×10-8 0.004 

3 0.999 0.999 0.006 0.402 3.90×10-9 0.005 
IO: Immediate Occupancy 
LS: Life Safety 
CP: Collapse Prevention  
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Table 7.11 Probability of maximum residual story drift ( , ) exceeding selected 
levels of residual story drift  

 

Story 
IO level 
, 0.002  

LS level 
, 0.01  

CP level 
, 0.05  

DBE MCE DBE MCE DBE MCE 

1 0.575 0.827 0.161 0.491 0.015 0.162 

2 0.721 0.904 0.203 0.574 0.012 0.176 

3 0.794 0.946 0.263 0.616 0.018 0.154 
 
 
Table 7.12 Probability of maximum beam plastic rotation ( , ) of MRF exceeding 

selected levels of plastic rotation  
 

Floor 
, 0.005   , 0.01  , 0.03  

DBE MCE DBE MCE DBE MCE 

1 0.353 0.885 0.130 0.530 0.010 0.043 

2 0.376 0.946 0.144 0.633 0.012 0.048 

3 0.302 0.912 0.102 0.599 0.007 0.068 
 
 

Table 7.13 Probability of maximum beam residual plastic rotation ( , ) of MRF 
exceeding selected levels of residual plastic rotation  

 

Floor 
, 0.005  , 0.01  , 0.03  

DBE MCE DBE MCE DBE MCE 

1 0.168 0.490 0.062 0.264 0.007 0.056 

2 0.293 0.600 0.120 0.379 0.015 0.115 

3 0.176 0.619 0.061 0.339 0.006 0.060 
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Table 7.14 Probability of maximum column plastic rotation ( , ) of MRF 
exceeding selected levels of plastic rotation  

 

Story 
, 0.005   , 0.01  , 0.03  

DBE MCE DBE MCE DBE MCE 

1 0.277 0.589 0.067 0.318 0.017 0.057 

2 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.000 0.000 0.000 0.000 0.000 
 
 
 
Table 7.15 Probability of maximum column residual plastic rotation ( , ) of MRF 

exceeding certain levels of residual plastic rotation  
 

Story 
, 0.005  , 0.01  , 0.03  

DBE MCE DBE MCE DBE MCE 

1 0.010 0.353 0.001 0.043 9.85×10-6 5.88×10-5 

2 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 7.16 Probability of maximum column plastic rotation ( , ) of DBF exceeding 
selected levels of plastic rotation  

 

Story 
, 0.005   , 0.01  , 0.03  

DBE MCE DBE MCE DBE MCE 

1 0.000 0.109 0.000 0.046 0.000 0.008 

2 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.000 0.000 0.000 0.000 0.000 
 
 
 
Table 7.17 Probability of maximum column residual plastic rotation ( , ) of DBF 

exceeding selected levels of residual plastic rotation  
 

Story 
, 0.005  , 0.01  , 0.03  

DBE MCE DBE MCE DBE MCE 

1 0.000 0.205 0.000 0.068 0.000 0.011 

2 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.000 0.000 0.000 0.000 0.000 
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Figure 7.1 OpenSees model for 0.6-scale building structure 
 

 
Figure 7.2 Member size of 0.6-scale building structure 
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Figure 7.3 Time history story drift response compared to results from SDP (DBE level, 

EQ: Landers, 1992, Coolwater, longitudinal direction) 
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Figure 7.4 Time history response of MR damper in the 2nd story compared to result 

from SDP (DBE level, EQ: Landers, 1992, Coolwater, longitudinal direction) 
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 Figure 7.5 Time history response of MR damper in the 3rd story compared to result 
from SDP (DBE level, EQ: Landers, 1992, Coolwater, longitudinal direction) 
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Figure 7.6 Time history story drift response compared to results from SDP (MCE level, 

EQ: Kobe, 1995, Nishi-Akashi, 090 component) 
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Figure 7.7 Time history response of MR damper in the 2nd story compared to result 

from SDP (MCE level, EQ: Kobe, 1995, Nishi-Akashi, 090 component) 
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Figure 7.8 Time history response of MR damper in the 3rd story compared to result from 
SDP (MCE level, EQ: Kobe, 1995, Nishi-Akashi, 090 component) 
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(a) 

 
(b) 

 
Figure 7.9 Comparison of story drift between SDP and NTHA under DBE: (a) with 

RSA method; (b) with ELF method 
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(a) 

 
(b) 

 
Figure 7.10 Comparison of story drift between SDP and NTHA under MCE: (a) with 

RSA method; (b) with ELF method 
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(a) 

 

 
(b) 

 
Figure 7.11 Comparison of MR damper force between SDP and NTHA: (a) DBE level; 

(b) MCE level 
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Figure 7.12 Histogram of MR damper forces compared with results from SDP: (a) 2nd 
story MR damper force; (b) 3rd story MR damper force 
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Figure 7.13 Comparison of normalized structural responses (DBE level, EQ: Landers, 
1992, Coolwater, longitudinal direction): (a) 3rd story drift and 3rd story MR damper 

force; (b) 2nd story drift and 2nd story MR damper force; (c) 1st story drift; (d) Moment 
and axial force at the base of the 1st story DBF column  
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Figure 7.14 Demand to capacity ratio at the DBF column base under the 1992 Landers 
earthquake ground motion (Coolwater station, longitudinal direction) scaled to DBE 
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Chapter 8 

Phase Angle Control 

                                                                                                                                                                       

8.1 General 

This chapter introduces a new controller for semi-active controlled MR dampers 

which overcomes a limitation of the existing controllers described in Chapter 2. The 

performance of the linear quadratic regulator (LQR) and the sliding mode control (SMC) 

depends on proper selection of the weighting matrices  and  along with the gradient 

vector of the sliding surface  (see Chapter 2), respectively. Proper selection of these 

parameters can be a challenging task for the design of semi-active controllers for real 

structures. An alternative control algorithm called phase angle control (PAC) is 

developed in this chapter based on the concept of an impulse response function. PAC 

does not require any user-defined parameters.  

 

8.2 Phase Angle Control (PAC) 

Figure 8.1 shows a SDOF system with an MR damper. The MR damper is 

connected to the mass  in parallel with a spring  and a viscous dashpot . A free-

body diagram of the SDOF system is given in Figure 8.1 (b), where , ,  , 

, and  are the spring force, force in viscous dashpot, MR damper force, inertia 

force, and applied external force, respectively. A time varying damper force can be 

represented as a sequence of infinitesimally short impulses , where the response 

of a linear SDOF system to one of these impulses at time  is given by 
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  (8.1)   

 

where,  is the unit impulse response function,  is the damper force at time 

, and . The objective of the PAC controller is to maximize the effect of  

on reducing the structural response. Figure 8.2 illustrates how the phase angle controller 

works with the impulse from the damper. In the PAC, the controller considers the effect 

of damper force impulse at time  to determine the command current into the MR 

damper at time . 

Using PAC, the command current at time  is determined by comparing the 

phase angles of the impulse response and the hypothetical free vibration response from 

the displacement   and velocity  at time . At time , the phase angle of , 

, is either 0 or , depending on the sign of . For an SDOF system, the phase 

angle of the free vibration at time  is determined from the following free vibration 

response for a given   and : 

 

 

cos

sin  

(8.2)   
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where  is the natural frequency of system,  is the damping ratio, and 

1 . The phase angle of the system  under free vibration is  

 

  tan   (8.3)   

 

The period of  is equal to the natural period of the SDOF system. If the absolute 

value of the difference of the two phase angles, | |, is , then the impulse 

response and the free vibration are completely out of phase, and generating a damper 

force as large as possible at this time is effective on reducing the future response. The 

maximum reduction of the response is expected when the phase angle difference is , 

while the maximum amplification of the response occurs when the phase angle 

difference is 0. Thereby, a simple control law can be established by sending the 

maximum current to the MR damper when the phase angle difference is in the range 

between /2 and 3 /2, and the minimum current for other cases. 

 If the Hershel-Bulkley quasi-static MR damper model (see Figure 5.3) is used, 

the command current of PAC always yields the maximum current when 0, as can 

be observed in Figure 8.3.  if 0 , and 0  otherwise. If 0 , the 

phase angle of the SDOF system  is determined based on the sign of  and , where 

the range of  are provided on each quadrant of Figure 8.3 along with the value of . 

It is obvious that the difference of  and  is between /2 and 3 /2 on all the 

quadrants so that the command current is always a maximum when 0.  
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 Figure 8.4 illustrates the phase angle diagram of the SDOF system with the 

Hershel-Bulkley quasi-static MR damper model when 0 . Unlike the case of 

0, the term  in Equation (8.3) creates the shaded area shown in Figure 

8.4. In this region, the impulse response due to the MR damper is in phase with the free 

vibration response determined from   and  so that the command current is zero. Zero 

command current is applied after the peak value of  occurs and is kept until the state of  

 and  is out of the shaded area. For a small value of  the slope of 1/  is large 

and the portion of the shaded area is small compared to the unshaded area, implying that 

the command current is mostly maximum for PAC when the Hershel-Bulkley quasi-

static MR damper model is used. 

The idea for SDOF systems can be extended to MDOF systems. In general, the 

contribution of the fundamental mode of a building structure is dominant under 

earthquake loading and controlling the fundamental mode will reduce the structural 

response. The first mode phase angle of a MDOF system at a given instant of time is 

determined by  

 

  tan   (8.4)   

 

where the modal displacement  and velocity  are calculated as, 

 

 
T

T   (8.5)   
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T

T   (8.6)   

 

In the above equations  is the first mode natural frequency,  is the first mode 

damping ratio, 1   ,  is the first mode vector,  is the MDOF 

system displacement vector,  the MDOF system velocity vector, and  the mass 

matrix of the MDOF system associated with the DOF in . The first modal damper 

force can be obtained by multiplying the damper force vector by the first mode vector:  

 

  T   (8.7)   

 

where,  is the MR damper location matrix defined in Equation (2.11) and   is a 

constant associated with the  MR damper force, . The phase angle of the 

impulse response due to   at time  is represented by , and is either 0 or , 

depending on the sign of . That is, 

 

  0 if 0
otherwise

  (8.8)   

 

Therefore, a control law similar to the one for an SDOF system can be applied to 

MDOF systems, where: 
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   if 2
3
2

0 otherwise  
  (8.9)   

 

8.3 Summary 

 In this chapter, a new semi-active controller, called phase angle control (PAC), 

was developed based on the response of the structure due to an impulse from an MR 

damper. In PAC, the phase angle of the impulse response due to an MR damper and the 

phase angle of the free vibration response of the structure due to the current 

displacement and velocity are calculated at a given time instant. Then, the command 

current into the damper is determined based on the absolute difference of the two phase 

angles.  

Unlike the LQG and SMC, user-defined parameters are not required for PAC, 

which makes PAC attractive to use as a semi-active controller. The performance of 

PAC for controlling the seismic response of the structure described in Chapter 6 will be 

evaluated in Chapter 9 along with other semi-active controllers described in Chapter 2. 
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Figure 8.1 SDOF system with MR damper: (a) mechanical model; (b) free-body 
diagram 

 

 

 

Figure 8.2 Impulse response of SDOF system due to damper 
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Figure 8.3 Phase angle diagram of SDOF system 
(Hershel-Bulkley quasi-static model, 0) 

 

 

 

Figure 8.4 Phase angle diagram of SDOF system 
(Hershel-Bulkley quasi-static model, 0) 
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Chapter 9 

Comparison of MR Damper Controllers 

 

9.1 General 

 In this chapter, the four different semi-active controllers presented previously in 

Chapter 2 are evaluated by comparing the performance of a controlled structure using 

these controllers with that of the same structure using a passive controller. The four 

semi-active controllers include: (1) linear quadratic regulator (LQR); (2) sliding mode 

control (SMC); (3) decentralized bang-bang control (DBB); and, (4) phase angle control 

(PAC). The building structure designed in Chapter 6 is used for the comparison. The 

performance of these four semi-active controllers and the passive controller is 

numerically investigated using the ensemble of ground motions listed in Appendix 3, 

where the ground motions are scaled to the DBE and MCE levels. The MR dampers are 

modeled using the MNS model. Structural response statistics are processed and 

compared.  

Since semi-active controllers rely on feedback data and properties of the 

structure, the effect of uncertainty in the structural properties used in the control design 

and the effect of noise corruption of feedback data are studied in this chapter. In 

addition, the effect of the response time of the MR dampers associated with variable 

current input is evaluated.  

 

9.2 Structural Modeling Using OpenSees  
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The scaled building structure designed in Chapter 6 is used in the evaluation of 

the performance of the various structural controllers. The OpenSees model for this 

structure is shown in Figure 7.1. The modeling for the MRF, DBF, gravity frames, and 

inherent damping of the structure is described in Chapter 7.2. The four semi-active 

controllers are incorporated into the OpenSees along with the MNS MR damper model. 

During the nonlinear time history analysis the feedback of the state vector (e.g., 

displacements and velocities) and the MR damper forces are fed into the semi-active 

controllers and processed to determine the command current into the MR dampers. The 

variable current MNS model with the parameters listed in Table 3.3 along with the 

parameters provided in Chapter 4 for the dynamics of MR dampers associated with 

variable current (i.e., 24.96,  3.57,  0.31,  0.30) is used to simulate 

the semi-active behavior of the MR dampers. 

  

9.3 Implementation of Semi-Active Controllers in the Analysis Model 

To design the semi-active controllers considered in this chapter, structural 

properties and information about the MR dampers (i.e., number, size, and the location 

of dampers in the structure) need to be defined. In the analysis model for the numerical 

analysis, the rotational and vertical inertia forces are ignored and only horizontal mass 

is assigned in the model as provided in Table 6.9. The mass of each MR damper is 

assumed to be 0.5 kN-sec2/m, including the self weight of the damper, fixtures, and 

tributary length of the diagonal bracing. This mass is assigned to the top of the diagonal 

bracing. Therefore, there are five nonzero masses in the structure; three at the floors and 
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two at the MR dampers. For the design of the semi-active controllers, the system 

properties are given as follows:  

 

 

101.0 0 0 0 0
0 101.0 0 0 0
0 0 73.5 0 0
0 0 0 0.5 0
0 0 0 0 0.5

kN · sec /m  (9.1)   

 

 

3.3104 1.3901 0.2177 1.8300 0.4222
1.3901 2.7009 0.4031 0.4209 1.5774
0.2177 0.4031 0.2211 0 0.0004
1.8300 0.4209 0 1.8301 0.4215
0.4222 1.5774 0.0004 0.4215 1.5772

10 kN/m 

(9.2)   

 

            

0 0
1 0
0 1
1 0
0 1

       (9.3)   

 

where,  is the horizontal displacement of the  floor;  is the horizontal 

displacement of the top of the diagonal bracing at the  story; and  is the MR 

damper force at the  story. The stiffness matrix  of Equation (9.2) is obtained from 

the initial tangent stiffness of the building structure by performing static condensation 

on the full stiffness matrix, where the initial tangent stiffness matrix is extracted from 

OpenSees. With the matrices defined in Equations (9.1) through (9.3), the semi-active 

controllers are designed according to the procedures presented in Chapter 2.4 and 

Chapter 8.  
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One of the challenges associated with the design of a semi-active controller is to 

define the user-defined parameters such as  and  for the LQR, and  for the SMC. 

In this study,  is based on the recommendation of Chang and Zhou (2002), and  is 

selected to be small in order that an aggressive controller design is achieved, where  

is large: 

 

  1 10 1 0
0 1   (9.4)   

 

The  matrix for the quadratic minimization in the SMC is assigned to be the identity 

matrix 

 

    (9.5)   

 

 A series of nonlinear time history analysis were conducted using OpenSees. The 

ground motions listed in Appendix 3 were selected and scaled to the DBE and MCE 

levels. A total 44 ground motions are used for each control scheme and the statistics 

from the responses of the structure to the 44 ground motions are compared.  

The semi-active controllers require feedback of the state vector and measured 

MR damper forces. While the damper force and the acceleration can be easily measured 

using a load cell and accelerometer, respectively, the displacement and velocity of the 

structure may be difficult to obtain directly. Hence sensors may not be able to provide 

full-state feedback data. In order to resolve this problem, researchers have used an 
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estimator, or an observer, of the state vector that predicts the full-state feedback from 

the measured information obtained from a limited number of sensors (Yang et al. 1995, 

Dyke et al. 1996, Carrion and Spencer 2007).  

It should be noted that an estimator or observer is not used in this study. Full-

state feedback is assumed to be available to remove any unwanted errors coming from 

the estimator or the observer when the performance of each semi-active controller is 

assessed. Therefore, the performance comparison is made here under the ideal situation 

where full-state feedback data is directly achievable. The effect of sensor noise on the 

performance of semi-active controllers is investigated in the Section 9.6. 

 

9.4 Comparison of Control Strategies 

Figures 9.1 through 9.4 compare the story drift achieved in the structure with 

passive and semi-active controllers under the 1999 Duzce earthquake (Bolu, 90 

component, Turkey). The earthquake ground motion is scaled to the DBE level. Table 

9.1 summarizes the maximum story drift and Table 9.2 the residual story drift under this 

earthquake. For passive control, a constant current of 2.5A is supplied to the MR 

damper, while variable currents from 0.0A to 2.5A are fed into the MR dampers for the 

semi-active controllers. As can be observed in Tables 9.1 and 9.2, the semi-active 

controllers perform equal to or better than passive control under this selected ground 

motion. In particular, the LQR controller results in 12%, 6%, and 2% less story drift for 

the 1st, 2nd, and 3rd story, respectively, than passive control. Moreover, the residual drift 

of the 1st story is reduced by 30% compared to the passive control. Figures 9.5 and 9.6 
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compare the damper response and command current for the 2nd story and the 3rd story 

MR dampers, respectively, when the LQR controller is used. The LQR command 

current for the 2nd story MR damper is continuously turned on around the time of the 

maximum response (at 8.5 sec), so the damper forces for the passive and LQR 

controllers are almost same at that time. Meanwhile, the LQR command current for the 

3rd story MR damper is frequently turned off and on near the time of the maximum 

response so that the LQR damper force is less than the passive control damper force. 

The differences result in better performance of LQR controller compared with the 

passive control. In the cases of the DBB and PAC, the story drifts are almost the same 

as those for the passive control, while the SMC shows a slightly better performance 

than the passive control (see Tables 9.1 and 9.2).  

Under the Duzce earthquake, the LQR controller shows the best performance 

among the five controllers. Although a specific controller may work well for a selected 

ground motion, it may not work well for other ground motions due to the variability 

among the records in the ensemble of ground motions. It is therefore necessary to 

evaluate the performance of the controllers by comparing the statistics for the response 

of the structure. This involves subjecting the structure to an ensemble of ground 

motions that have the same intensity level.  

The statistical response (median and standard deviation) of the structure with the 

above controllers are compared in Tables 9.3 through 9.12 for both the DBE and MCE 

levels. The response includes maximum story drift, beam and column maximum plastic 

rotations, and maximum absolute velocity and maximum absolute acceleration. 
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Included in these tables is the response of the uncontrolled structure (i.e., without MR 

dampers) and the response of the structure with passive control. The median and 

standard deviation values of structural responses are obtained from the response of the 

structure to the 44 ground motions that are scaled to the DBE and MCE levels. The MR 

damper is shown to reduce the response, where the statistics for the maximum responses 

in Table 9.3 through 9.12 for the structure with MR dampers are shown to be smaller 

than the response of the structure without MR dampers.  

However, it is observed that semi-active controllers do not significantly improve 

the performance of the structure compared to the performance with  passive control. 

Both the median and standard deviation for maximum story drift are similar for the 

passive and various semi-active controllers. For example, the largest reduction 

compared to the passive control case in the maximum median story drift under the DBE 

ground motion is about 6 % (SMC) in the 1st story. However, the story drifts for the 2nd 

and 3rd stories of the structure with the SMC are 3 % and 4 %, respectively, larger than 

those for passive control.  

A graphical comparison of the story drift is given in Figures 9.7 and 9.8 for the 

DBE and MCE levels, respectively. The dashed line in the figure indicates the story 

drift from the simplified design procedure (SDP). It is observed that the benefit of MR 

dampers is clearly demonstrated and the performance of the structure with semi-active 

controllers is similar to that of the structure with passive control. Consequently, the 

story drift from the SDP has the same accuracy for both the semi-active controllers and 

passive control. Similar tendencies also can be observed in the beam and column 
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maximum plastic rotations listed in Tables 9.4 through 9.10, where the statistics are 

about the same for the structures with passive and semi-active controllers. It is 

noteworthy that semi-active controllers do not always result in a better structural 

performance than the passive control case. 

The median and standard deviation of the maximum absolute velocity and 

maximum absolute acceleration are compared in Tables 9.11 and 9.12 for the DBE and 

MCE levels, respectively. With MR dampers, the velocity and acceleration are 

generally reduced compared to the structure without dampers. Although the LQR and 

SMC semi-active controllers result in a slight reduction for the 1st and 2nd floors median 

maximum absolute velocity, the velocity is almost the same at each floor level for all 

five controllers. In terms of the absolute acceleration, the SMC appears to reduce the 

acceleration the most. The SMC reduces the absolute floor acceleration of the 2nd floor 

by 10% compared to passive control under the DBE. However, the improvement for 

other floors is not significant, e.g., about a 2% reduction for both the 1st and 3rd floors 

under the DBE. Similar results are observed in the responses under the MCE. A 

graphical comparison of the absolute velocity and the absolute acceleration is given in 

Figures 9.9 through 9.12 for the DBE and MCE levels.  

The statistical comparison of the maximum MR damper force for the various 

controllers is summarized in Table 9.13. As expected, the passive controller has the 

largest maximum MR damper force among the various controllers, while the standard 

deviation of the passive controller is observed to be smaller than that of the semi-active 

controllers. Since the command current varies between I=0.0A and I=2.5A during semi-
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active control of the MR damper, a reduced damper force is observed for the semi-

active controller and a wider range of the MR damper forces can be expected compared 

to the passive control case. 

Overall, the statistics of the response show that passive control produces a 

similar improvement in structural performance compared to the semi-active controllers. 

For passive control, feedback data such as displacement, velocity and damper force is 

not required, which is an advantage of using passive control. 

 

9.5 Sensitivity of Semi-Active Controllers on the Uncertainty of Stiffness 

 Semi-active controllers require a decision block for determining the command 

current for the MR damper. The decision block is designed based on the structural 

properties as well as the user-defined parameters for the semi-active controller. Hence, 

the performance of semi-active controllers may be affected by any discrepancies in the 

structural properties used in the design of the controller.  

The initial tangent stiffness of a building can be estimated from design data or 

identified by utilizing various system identification techniques. One of the structural 

properties used in most of the semi-active controller discussed in Chapter 2 is the 

structural stiffness . The identified stiffness however may differ from the actual 

stiffness of the building so that the performance of semi-active controllers may be 

affected by this discrepancy in stiffness. In this section, the effect of perturbed structural 

stiffness on the performance of semi-active controllers is investigated. The perturbed 
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stiffness matrix representing the uncertainty of the structural properties is obtained 

using the following equation (Moon et al. 2002): 

 

  1   (9.6)   

 

where,  is a perturbation factor. Five different values for  are used here, including: -

20%, -10%, 0%, 10%, and 20%. When = 0%, the semi-active controllers are designed 

with the correct stiffiness matrix. Figures 9.13 and 9.14 show the effect of a perturbed 

stiffness on the semi-active controllers, where the median of the maximum story drift 

and absolute acceleration from the results of the nonlinear time history analysis with the 

44 ground motions are compared for the DBE and MCE levels, respectively. Since the 

decentralized bang-bang controller (DBB) does not utilize the structural stiffness matrix 

for determining the command current, it is excluded in the comparison. As can be 

observed in Figures 9.13 and 9.14, the overall response does not vary too much with 

respect to the perturbed stiffness, implying the performance of semi-active controllers is 

not significantly affected by a perturbation of the stiffness.  

 

9.6 Effect of Noise in Feedback Signal 

 Since the semi-active controllers require feedback data to determine the 

command current for MR dampers, the performance of a semi-active controller may be 

affected by noise in the feedback data from sensors.. In this section, the effect of noise 

in the feedback data is investigated by adding artificial noise to the full-state feedback 
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data. The artificial noise is based on Gaussian noise with a bandwidth of 512Hz. Scaled 

artificial noise is added to the displacement, velocity, and damper force feedback during 

the nonlinear time history analysis. In the investigation, structural response is from 

nonlinear time history analyses where the damper forces are based on command 

currents determined from feedback signals corrupted by noise. The amplitude of the 

noise is based on a selected signal-to-noise ratio (SNR), where the SNR is defined as 

 

  SNR 20 log
RMS
RMS   (9.7)   

 

where RMS  and RMS  are the root mean square (RMS) values of the signal and 

the scaled noise, respectively. The RMS value of each sensor signal (displacement, 

velocity, damper force), RMS , is calculated from the response of the structure with 

passive control. The RMS value of each signal is averaged over the structural response 

from the 44 ground motions. For example, the RMS values of the three floor 

displacements are calculated from the nonlinear time history analysis using 44 ground 

motions, where passive control is used, then, the three RMS floor displacements are 

averaged to get the RMS value for all displacement sensors. For a selected SNR, the 

corresponding value for RMS  is obtained. For the study, values for the SNR of 10, 

20, and 40 dB were selected. Table 9.14 summarizes the RMS values for the noise level 

in each sensor (RMS ) based on Equation (9.7) for the nonlinear time history 

analyses under the DBE and MCE ground motions. The noise with the RMS values 

listed in Table 9.14 are added to the feedback signal of sensors during the nonlinear 
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time history analyses of the structure with semi-active controllers to investigate the 

effect of the sensor noise on the performance of the controllers. Figure 9.15 illustrates a 

displacement signal corrupted by various noise levels. The original signal was obtained 

from the 2nd floor displacement of the building subjected to the 1994 Northridge 

earthquake scaled to the DBE.  

Figures 9.16 and 9.17 show the performance of the semi-active controllers under 

various noise levels in the feedback data for the DBE and MCE levels, respectively, 

where the median values for the maximum story drift and absolute acceleration for the 

various semi-active controllers are plotted as a function of the SNR. For the 3rd story 

drift, the LQR and SMC semi-active controllers appear to be most affected by the noise 

level associated with the structural response to the DBE; however, overall the effect of 

noise on the performance of semi-active controllers is not otherwise significant. Under 

the MCE, the 2nd and 3rd story drift associated with the SMC appears to be affected by 

the noise level, however, similar to the structural response to the DBE the overall effect 

of noise on the performance of semi-active controllers under the MCE is not otherwise 

significant. Even when the noise level is high, it does not result in a significant change 

in the performance for each of the semi-active controllers for the DBE and MCE events. 

 

9.7 Effect of Response Time Associated with Dynamics of an MR Damper 

 The response time of an MR damper under variable current is related to the 

electro-magnetism of the MR fluid and the material around the MR damper as discussed 

in Chapter 4. A quick response of an MR damper subjected to a variable current is 
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defined as one with a fast rise time of the MR damper force. The rise time of an MR 

damper under constant velocity is defined as the time required to make the transition 

from the initial state to 95% of the final state (Koo et al. 2006). As mentioned in 

Chapter 4, the rise time of the large-scale MR damper in this study is about 0.92 sec 

when a step command current from 0.0A to 2.5A is fed into the MR damper while the 

damper is subjected to a constant velocity of V=50mm/sec. In this section, the effect of 

the response time of the MR damper force on the performance of the semi-active 

controllers is studied. The study involves conducting numerical simulations, where the 

rise time of the MR damper force is systematically varied.  

The dynamics of an MR damper is described by Equation (4.9) in Chapter 4. By 

appropriately adjusting the parameters in the equation, the rise time of the MR damper 

can be changed as desired. The damper force response of an MR damper from the MNS 

model with five different rise times is shown in Figure 9.18, where the linear ramp 

displacement with a constant velocity of V=50mm/sec is imposed on the model, while 

the step current from 0.0A to 2.5A is applied at time zero. The parameters in Equation 

(4.9) corresponding to each rise time Tr for the model are listed in Table 9.15. The 

parameters for T =0.27sec. are exactly the same as those used in the previous numerical 

simulations, which mimics the dynamics of the physical MR damper under semi-active 

control mode as in Chapter 4. The use of the values related to the parameters for 

T =0.27sec. were intended to describe the behavior of the MR damper under a semi-

active control mode where a frequent change of the input current, i.e., either 0.0A or 
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2.5A, is expected. The parameters for other rise times are selected by setting 

0 for simplicity, which is exactly the same as a 1st order filter as follows: 

 

    (9.8)   

 

The solution of Equation (9.8) under a step current input from 0.0A to 2.5A at time  

0 is obtained as  

 

  2.5 1 exp   (9.9)   

 

Among five rise time cases, two cases (T 0.05sec and 0.10sec represent a fast MR 

damper and the two cases of T 0.50sec and 1.00sec represent a slow MR damper. 

The performance of semi-active controllers with various rise times is compared 

to that of a passive control in Figures 9.19 and 9.20 for the DBE and MCE levels, 

respectively, where the story drift and absolute acceleration are plotted against the 

damper force rise time. The SMC appears to be most sensitive to the rise time in the 

damper force. In Figures 9.19 and 9.20 an increase in the 3rd story drift is observed to 

occur with a slow rise time. In the case of the SMC, the 3rd story drift increased from 

1.43% to 1.59% for the DBE and from 2.25% to 2.44% for the MCE when the rise time 

was changed from 0.05sec to 1.0sec. The 2nd story drift decreases from 2.25% to 2.13% 

under the MCE for the SMC. The 2nd floor acceleration associated with the SMC semi-

active controller appears to be affected the most by the damper rise time, where the 
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acceleration ranges from 0.45g to 0.5g under the DBE and from 0.6g to 0.68g under the 

MCE when the rise time is increases from 0.5sec to 1.0sec. It appears that the overall 

performance of semi-active controllers is not significantly affected by the rise time and 

is similar to that of a passive controller. Even in some cases, a better performance is 

achieved with a slow rise time (e.g, 2nd floor acceleration for the LQR and PAC under 

the DBE, and 1st and 2nd story drifts for the SMC under the MCE ).   

 

9.8 Summary 

The performance of a 3-story building structure with large-scale MR dampers 

and various MR damper controllers was studied by conducting numerical simulations. 

44 ground motions were selected and scaled to both the DBE and MCE levels. 

Numerical simulations with the MNS MR damper model were conducted using this 

ensemble of ground motions. Statistical results for response show that the overall 

performance of the structure with semi-active controllers is similar to response with 

passive control for the 3-story structure studied. Even if an MR damper with a fast 

response time is used, it is observed that the improvement in structural performance 

from the use of semi-active controllers is not significant compared to the passive control 

case.  

The effects of a perturbed stiffness (i.e., uncertainty in the structural stiffness 

properties used to design the semi-active controller) as well as noise-corrupted feedback 

signals on the performance of semi-active controllers was also investigated. The 
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statistical results show that the performance of semi-active controllers is not 

significantly affected by a perturbed stiffness or noise in the feedback signals. 
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Table 9.1 Maximum story drift under the 1999 Duzce earthquake, Turkey, DBE level 

Story 
Maximum story drifts (%) 

Passive LQR SMC DBB PAC 

1 1.43 1.26 1.32 1.43 1.37 

2 1.74 1.64 1.72 1.77 1.74 

3 1.72 1.68 1.72 1.79 1.77 

 

 

Table 9.2 Residual story drift under the Duzce earthquake, Turkey, DBE level 

Story 
Residual story drifts (%) 

Passive LQR SMC DBB PAC 

1 0.77 0.54 0.65 0.79 0.70 

2 0.90 0.69 0.88 0.95 0.87 

3 0.85 0.67 0.88 0.91 0.83 

 

  



257 
 

Table 9.3 Median and standard deviation values of maximum story drift and residual 
story drift, DBE level 

 
 1st story 2nd story 3rd story 

Maximum 
story drift 

(%) 

No damper 1.36 (0.62)* 1.89 (0.73) 2.61 (0.74) 
Passive 1.18 (0.35) 1.35 (0.36) 1.46 (0.33) 

LQR 1.14 (0.36) 1.35 (0.37) 1.50 (0.34) 
SMC 1.11 (0.37) 1.39 (0.41) 1.52 (0.37) 
DBB 1.19 (0.36) 1.36 (0.37) 1.51 (0.33) 
PAC 1.15 (0.36) 1.33 (0.37) 1.52 (0.33) 

Residual 
story drift 

(%) 

No damper 0.15 (0.27) 0.21 (0.30) 0.26 (0.31) 
Passive 0.11 (0.21) 0.17 (0.26) 0.22 (0.27) 

LQR 0.12 (0.22) 0.19 (0.27) 0.23 (0.28) 
SMC 0.12 (0.22) 0.21 (0.28) 0.26 (0.30) 
DBB 0.11 (0.22) 0.18 (0.27) 0.23 (0.28) 
PAC 0.11 (0.22) 0.17 (0.27) 0.21 (0.28) 

* Value in () denotes standard deviation of response 

 
Table 9.4 Median and standard deviation values of maximum story drift and residual 

story drift, MCE level 
 

 1st story 2nd story 3rd story 

Maximum 
story drift 

(%) 

No damper 2.22 (1.18)* 2.92 (1.29) 3.74 (1.21) 
Passive 1.86 (0.85) 2.10 (0.85) 2.32 (0.84) 

LQR 1.83 (0.85) 2.08 (0.85) 2.33 (0.83) 
SMC 1.88 (0.84)         2.11 (0.88)         2.33 (0.86) 
DBB 1.87 (0.86)         2.11 (0.85)         2.39 (0.84) 
PAC 1.88 (0.86)         2.11 (0.85)         2.38 (0.84)   

Residual 
story drift 

(%) 

No damper 0.45 (0.72) 0.47 (0.77) 0.44 (0.79) 
Passive 0.42 (0.62) 0.57 (0.66) 0.63 (0.69) 

LQR 0.40 (0.62) 0.54 (0.65) 0.61 (0.68) 
SMC 0.38 (0.62)         0.57 (0.65)         0.65 (0.67) 
DBB 0.44 (0.62)         0.58 (0.65)         0.64 (0.68) 
PAC 0.39 (0.62)         0.59 (0.65)         0.65 (0.68) 

* Value in () denotes standard deviation of response 
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Table 9.5 Median and standard deviation values of MRF beam maximum plastic 
rotation and residual plastic rotation, DBE level 

 
 1st floor 2nd floor 3rd floor 

Maximum 
plastic 

rotation 
(rad %) 

No damper 0.68 (0.38)* 1.16 (0.76) 1.62 (0.75) 
Passive 0.35 (0.37) 0.37 (0.33)  0.31 (0.30) 

LQR 0.35 (0.38) 0.39 (0.35) 0.35 (0.32) 
SMC 0.36 (0.40) 0.42 (0.39) 0.34 (0.34) 
DBB 0.36 (0.38) 0.40 (0.34) 0.37 (0.31) 
PAC 0.34 (0.38) 0.37 (0.34) 0.36 (0.31) 

Residual 
plastic 

rotation 
(rad %) 

No damper 0.22 (0.29) 0.31 (0.31) 0.32 (0.33) 
Passive 0.16 (0.27) 0.27 (0.31) 0.18 (0.30) 

LQR 0.16 (0.28) 0.28 (0.32) 0.24 (0.31) 
SMC 0.17 (0.29) 0.35 (0.34) 0.23 (0.32) 
DBB 0.16 (0.28) 0.28 (0.32) 0.19 (0.31) 
PAC 0.15 (0.28) 0.28 (0.31) 0.21 (0.31) 

* Value in () denotes standard deviation of response 

 

Table 9.6 Median and standard deviation values of MRF beam maximum plastic 
rotation and residual plastic rotation, MCE level 

 
 1st floor 2nd floor 3rd floor 

Maximum 
plastic 

rotation 
(rad %) 

No damper 1.45 (1.24)* 2.31 (1.25) 2.82 (1.24) 
Passive 1.05 (0.86) 1.20 (0.84) 1.17 (0.86) 

LQR 1.05 (0.86) 1.18 (0.84) 1.21 (0.84) 
SMC 1.09 (0.87)         1.26 (0.88)         1.21 (0.89) 
DBB 1.06 (0.87)         1.23 (0.85)         1.23 (0.86) 
PAC 1.08 (0.87)         1.23 (0.84)         1.21 (0.86) 

Residual 
plastic 

rotation 
(rad %) 

No damper 0.46 (0.73) 0.53 (0.79) 0.47 (0.84) 
Passive 0.49 (0.63) 0.68 (0.72) 0.67 (0.78) 

LQR 0.48 (0.63)         0.71 (0.71)         0.70 (0.75) 
SMC 0.51 (0.64)         0.74 (0.70)         0.74 (0.73) 
DBB 0.51 (0.63)         0.72 (0.72)         0.70 (0.77) 
PAC 0.51 (0.63)         0.75 (0.71)         0.72 (0.76)   

* Value in () denotes standard deviation of response 
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Table 9.7 Median and standard deviation values of MRF column maximum plastic 
rotation and residual plastic rotation, DBE level 

 
 1st story 2nd story 3rd story 

Maximum 
plastic 

rotation 
(rad %) 

No damper 0.13 (0.49)* 0.00 (0.04) 0.00 (0.02) 
Passive 0.07 (0.25) 0.00 (0.00) 0.00 (0.00) 

LQR 0.05 (0.25) 0.00 (0.00) 0.00 (0.00) 
SMC 0.03 (0.25) 0.00 (0.00) 0.00 (0.00) 
DBB 0.06 (0.26) 0.00 (0.00) 0.00 (0.00) 
PAC 0.06 (0.26) 0.00 (0.00) 0.00 (0.00) 

Residual 
plastic 

rotation 
(rad %) 

No damper 0.10 (0.30) 0.00 (0.04) 0.00 (0.00) 
Passive 0.06 (0.19) 0.00 (0.00) 0.00 (0.00) 

LQR 0.05 (0.19) 0.00 (0.00) 0.00 (0.00) 
SMC 0.02 (0.19) 0.00 (0.00) 0.00 (0.00) 
DBB 0.05 (0.19) 0.00 (0.00) 0.00 (0.00) 
PAC 0.04 (0.19) 0.00 (0.00) 0.00 (0.00) 

* Value in () denotes standard deviation of response 

 

Table 9.8 Median and standard deviation values of MRF column maximum plastic 
rotation and residual plastic rotation, MCE level 

 
 1st story 2nd story 3rd story 

Maximum 
plastic 

rotation 
(rad %) 

No damper 0.90 (1.06)* 0.08 (0.20) 0.00 (0.16) 
Passive 0.62 (0.76) 0.00 (0.00) 0.00 (0.00) 

LQR 0.55 (0.76)         0.00 (0.00)         0.00 (0.00) 
SMC 0.57 (0.74) 0.00 (0.00) 0.00 (0.00) 
DBB 0.61 (0.76) 0.00 (0.00) 0.00 (0.00) 
PAC 0.61 (0.76) 0.00 (0.00) 0.00 (0.00) 

Residual 
plastic 

rotation 
(rad %) 

No damper 0.45 (0.68) 0.08 (0.18) 0.00 (0.08) 
Passive 0.41 (0.59) 0.00 (0.00) 0.00 (0.00) 

LQR 0.39 (0.60) 0.00 (0.00)         0.00 (0.00) 
SMC 0.36 (0.59) 0.00 (0.00) 0.00 (0.00) 
DBB 0.42 (0.59) 0.00 (0.00) 0.00 (0.00) 
PAC 0.41 (0.59) 0.00 (0.00) 0.00 (0.00) 

* Value in () denotes standard deviation of response 
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Table 9.9 Median and standard deviation values of DBF column maximum plastic 
rotation and residual plastic rotation, DBE level 

 
 1st story 2nd story 3rd story 

Maximum 
plastic 

rotation 
(rad %) 

No damper 0.00 (0.19)* 0.00 (0.00) 0.00 (0.00) 
Passive 0.00 (0.05) 0.00 (0.00) 0.00 (0.00) 

LQR 0.00 (0.05) 0.00 (0.00) 0.00 (0.00) 
SMC 0.00 (0.04) 0.00 (0.00) 0.00 (0.00) 
DBB 0.00 (0.06) 0.00 (0.00) 0.00 (0.00) 
PAC 0.00 (0.06) 0.00 (0.00) 0.00 (0.00) 

Residual 
plastic 

rotation 
(rad %) 

No damper 0.00 (0.14) 0.00 (0.00) 0.00 (0.00) 
Passive 0.00 (0.04) 0.00 (0.00) 0.00 (0.00) 

LQR 0.00 (0.04) 0.00 (0.00) 0.00 (0.00) 
SMC 0.00 (0.03) 0.00 (0.00) 0.00 (0.00) 
DBB 0.00 (0.04) 0.00 (0.00) 0.00 (0.00) 
PAC 0.00 (0.04) 0.00 (0.00) 0.00 (0.00) 

* Value in () denotes standard deviation of response 

 

Table 9.10 Median and standard deviation values of DBF column maximum plastic 
rotation and residual plastic rotation, MCE level 

 
 1st story 2nd story 3rd story 

Maximum 
plastic 

rotation 
(rad %) 

No damper 0.16 (0.58)* 0.00 (0.00) 0.00 (0.01) 
Passive 0.08 (0.40) 0.00 (0.00) 0.00 (0.00) 

LQR 0.06 (0.40) 0.00 (0.00) 0.00 (0.00) 
SMC 0.06 (0.38) 0.00 (0.00) 0.00 (0.00) 
DBB 0.07 (0.40) 0.00 (0.00) 0.00 (0.00) 
PAC 0.07 (0.40) 0.00 (0.00) 0.00 (0.00) 

Residual 
plastic 

rotation 
(rad %) 

No damper 0.14 (0.41) 0.00 (0.00) 0.00 (0.01) 
Passive 0.07 (0.35) 0.00 (0.00) 0.00 (0.00) 

LQR 0.06 (0.34) 0.00 (0.00) 0.00 (0.00) 
SMC 0.06 (0.34) 0.00 (0.00) 0.00 (0.00) 
DBB 0.07 (0.35) 0.00 (0.00) 0.00 (0.00) 
PAC 0.07 (0.35) 0.00 (0.00) 0.00 (0.00) 

* Value in () denotes standard deviation of response 
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Table 9.11 Median and standard deviation values of maximum absolute velocity and 
acceleration, DBE level 

 
 1st floor 2nd floor 3rd floor 

Maximum 
absolute 
velocity 
(m/sec) 

No damper 0.495 (0.224)* 0.524 (0.230) 0.792 (0.234) 
Passive 0.445 (0.233) 0.561 (0.231) 0.625 (0.230) 

LQR 0.444 (0.233) 0.546 (0.229) 0.629 (0.231) 
SMC 0.425 (0.231) 0.549 (0.230) 0.632 (0.231) 
DBB 0.441 (0.232) 0.562 (0.231) 0.635 (0.231) 
PAC 0.441 (0.232) 0.559 (0.230) 0.635 (0.230) 

Maximum 
absolute 

acceleration 
(g) 

No damper 0.611 (0.167) 0.548 (0.144) 0.660 (0.104) 
Passive 0.492 (0.089) 0.535 (0.071) 0.605 (0.054) 

LQR 0.493 (0.092) 0.499 (0.071) 0.605 (0.055) 
SMC 0.480 (0.091) 0.482 (0.063) 0.593 (0.056) 
DBB 0.484 (0.091) 0.516 (0.068) 0.606 (0.054) 
PAC 0.512 (0.091) 0.512 (0.071) 0.586 (0.057) 

* Value in () denotes standard deviation of response 

 

Table 9.12 Median and standard deviation values of maximum absolute velocity and 
acceleration, MCE level 

 
 1st floor 2nd floor 3rd floor 

Maximum 
absolute 
velocity 
(m/sec) 

No damper 0.704 (0.335)* 0.695 (0.346) 1.004 (0.329) 
Passive 0.623 (0.354) 0.746 (0.355) 0.834 (0.359) 

LQR 0.618 (0.354) 0.731 (0.355) 0.866 (0.358) 
SMC 0.610 (0.349) 0.725 (0.349) 0.880 (0.352) 
DBB 0.619 (0.354) 0.750 (0.354) 0.845 (0.357) 
PAC 0.626 (0.353) 0.741 (0.354) 0.861 (0.356) 

Maximum 
absolute 

acceleration 
(g) 

No damper 0.849 (0.232) 0.750 (0.221) 0.845 (0.130) 
Passive 0.703 (0.140) 0.683 (0.097) 0.730 (0.092) 

LQR 0.705 (0.148) 0.660 (0.095) 0.729 (0.092) 
SMC 0.697 (0.146) 0.647 (0.101) 0.719 (0.099) 
DBB 0.700 (0.140) 0. 676 (0.096) 0.725 (0.092) 
PAC 0.716 (0.138) 0.682 (0.093) 0.703 (0.089) 

* Value in () denotes a standard deviation of response 
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Table 9.13 Median and standard deviation values of maximum MR damper force 
 

Controller 
Maximum MR damper force (kN) 

DBE MCE 
2nd story 3rd story 2nd story 3rd story 

Passive 231.9 (6.4)* 241.5 (8.3) 248.4 (7.3) 260.2 (9.4) 
LQR 219.2 (7.1) 231.6 (10.4) 239.9 (9.2) 258.7 (12.3) 
SMC 220.0 (7.1) 225.9 (10.3) 239.1 (8.6) 250.6 (13.5) 
DBB 219.4 (7.0) 235.0 (9.9) 238.9 (9.3) 257.8 (11.6) 
PAC 219.4 (7.0) 237.0 (9.8) 238.7 (9.1) 259.3 (11.5) 

* Value in () denotes a standard deviation of response 

 
Table 9.14 RMS value for sensor noise (RMS ) 

 

Sensor 
40dB 20dB 10dB 

DBE MCE DBE MCE DBE MCE 
Displacement 

(m) 1.79e-4 2.82e-4 1.79e-3 2.82e-3 5.66e-3 8.91e-3 

Velocity 
(m/sec) 7.71e-4 1.21e-3 7.71e-3 1.21e-2 2.44e-2 3.84e-2 

Damper 
force (kN) 0.75 0.81 7.52 8.08 23.77 25.54 

 
 

Table 9.15 MNS model parameters depicting various rise times of MR dampers 
 

Rise time 
MNS model parameters 

    

T =0.05 sec 0.00 35.00 0.00 0.00 
T =0.10 sec 0.00 16.00 0.00 0.00 
T =0.27 sec 24.96 3.57 0.31 -0.30 
T =0.50 sec 0.00 3.50 0.00 0.00 
T =1.00 sec 0.00 1.75 0.00 0.00 
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Figure 9.1 Comparison of story drifts between the passive control and the linear 

regulator (LQR) control under the 1999 Duzce ground motion, Turkey, DBE level 
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Figure 9.2 Comparison of story drifts between the passive control and the sliding mode 

control (SMC) under the 1999 Duzce ground motion, Turkey, DBE level 
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Figure 9.3 Comparison of story drifts between the passive control and the decentralized 

bang-bang control (DBB) under the 1999 Duzce ground motion, Turkey, DBE level 
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Figure 9.4 Comparison of story drifts between the passive control and the phase angle 

control (PAC) under the 1999 Duzce ground motion, Turkey, DBE level 
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Figure 9.5 Comparison of damper force and command current (2nd story MR damper) 
between the passive control and the linear quadratic regulator (LQG) control under the 

1999 Duzce ground motion, Turkey, DBE level   
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Figure 9.6 Comparison of damper force and command current (3rd story MR damper) 

between the passive control and the linear quadratic regulator (LQG) control under the 
1999 Duzce ground motion, Turkey, DBE level 
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Figure 9.7 Comparison of maximum story drifts, DBE level 
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Figure 9.8 Comparison of maximum story drifts, MCE level 
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Figure 9.9 Comparison of maximum absolute velocities, DBE level 
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Figure 9.10 Comparison of maximum absolute velocities, MCE level 
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Figure 9.11 Comparison of maximum absolute accelerations, DBE level 
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Figure 9.12 Comparison of maximum absolute accelerations, MCE level 

 
 

0 0.5 1 1.5
Maximum absolute acceleration (g)

1s
t f

lo
or

No damper

Passive

LQR

SMC

DBB

PAC

0 0.5 1 1.5
Maximum absolute acceleration (g)

2n
d 

flo
or

No damper

Passive

LQR

SMC

DBB

PAC

0 0.5 1 1.5
Maximum absolute acceleration (g)

3r
d 

flo
or

No damper

Passive

LQR

SMC

DBB

PAC

median+σmedian



275 
 

 
Figure 9.13 Effect of stiffness perturbation on the performance of semi-active 

controllers (median response, DBE level) 
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Figure 9.14 Effect of stiffness perturbation on the performance of semi-active 

controllers (median response, MCE level) 
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Figure 9.15 Corrupted signal by various noise levels 
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Figure 9.16 Effect of sensor noise level on the performance of semi-active controllers 

(median response, DBE level) 
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Figure 9.17 Effect of sensor noise level on the performance of semi-active controllers 

(median response, MCE level) 
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Figure 9.18 MR damper response with various rise times ( ) 
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Figure 9.19 Effect of MR damper rise time on the performance of semi-active 

controllers (median response, DBE level) 
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Figure 9.20 Effect of MR damper rise time on the performance of semi-active 

controllers (median response, MCE level) 
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Chapter 10 

Assessment of Collapse Potential of Buildings with MR Dampers 

 

10.1 General 

 In earthquake engineering, collapse implies that a structural system, or a part of 

it, is incapable of maintaining gravity load carrying capacity in the presence of seismic 

effects (Ibarra and Krawinkler 2005). When a building is subjected to large story drifts, 

it is vulnerable to dynamic instability due to P-Δ effects and deterioration in strength 

and stiffness of structural components, subsequently, resulting in collapse of the system. 

Protection against collapse has always been a major concern in the design of structures 

The recently developed FEMA P695 (ATC 2009) document provides a methodology 

for collapse assessment of structures. 

 While several studies have been conducted to assess the performance of 

supplemental damping systems and their effectiveness in mitigating the seismic hazard 

of structures under the DBE and MCE, the collapse resistance of buildings with MR 

dampers has not been investigated. The seismic collapse potential of structures with 

passive supplemental damping systems has been investigated by a few researchers using 

the incremental dynamic analysis (IDA) method (Solberg et al. 2007; Marshall and 

Charney 2010; Miyamoto et al. 2010). In this chapter, the collapse resistance capacity 

of the 3-story building structure with MR dampers investigated in Chapters 7 and 9 for 

seismic performance under the DBE and MCE is assessed for collapse based on the 

procedure given in FEMA P695. The nonlinear time history analyses used in the IDA 
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method are conducted using OpenSees. A phenomenological-based model developed by 

Ibarra and Krawinkler (2005) and modified by Lignos (2008) for modeling deterioration 

in beam plastic hinge regions is incorporated into OpenSees. IDA is performed on the 

building using five different controllers (one passive control case and the four semi-

active controllers) presented in Chapter 9. Collapse fragility curves are obtained using 

the ensemble of 44 ground motions listed in Appendix 3. The collapse fragility curves 

for the various control cases are compared in order to assess the performance of the 

control strategies in mitigating structural collapse under extreme earthquake ground 

motions. 

 

10.2 Deterioration Models 

 The P-Δ effect and the strength and stiffness deterioration of structural 

components are considered to be the major contributors to the collapse of a structural 

system under seismic loading. The P-Δ effect is well-understood and mathematical 

models have been formulated for use in linear and nonlinear structural analysis, while 

the modeling of strength and stiffness deterioration under seismic loading is an on-

going research topic. For accurate evaluation of the collapse of a structure, it is 

necessary to construct a model that is capable of capturing the strength and stiffness 

deterioration of structural components under seismic loading. In this section, recently 

developed deterioration models are introduced. The models are used for the IDA 

presented later in this chapter.  
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10.2.1 Ibarra-Krawinkler Model  

 Ibarra and Krawinkler (2005) developed a hysteretic deterioration model to 

describe the moment and rotation behavior in the plastic hinge region of a steel or a 

concrete beam. The model is based on a backbone curve that defines a reference 

skeleton behavior of a non-deteriorated system. A set of rules are used to define the 

basic characteristics of the hysteretic behavior between the bounds defined by the 

backbone curve as well as deterioration in strength and stiffness with respect to the 

backbone curve.  

 The backbone curve is a reference force-deformation relationship that defines 

the bounds within which the hysteretic response of the component is confined. Thus, the 

backbone curve represents the maximum force capacity of element that can be sustained 

under cyclic loading. Figure 10.1 shows the shape of backbone curve by Ibarra and 

Krawinkler (2005). The quantities F and δ are generic force and deformation quantities, 

respectively. For flexural plastic hinge regions F and δ represent the moment and 

rotation angle, i.e., F = M and δ = θ. In this model the emphasis is on the effective 

elastic stiffness , the effective yield strength , the effective strain hardening 

stiffness , the capping point (point of maximum strength) defined by  and 

, the post-capping stiffness , and the residual strength . The ratio /  

is used as a reference value for the deformation capacity of the structural component 

that is being modeled. The Ibarra-Krawinkler model can be employed together with 

numerous basic linearized hysteretic models, e.g., the bilinear model, the peak-oriented 

model, or the pinching model.  
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 The cyclic deterioration rule of the model is based on the hysteretic energy 

dissipated by the component under cyclic loading. In the model it is assumed that the 

component possesses a reference inherent hysteretic energy dissipation capacity, 

regardless of the loading history applied to the component.  

The Ibarra-Krawinkler model is characterized by four different modes of 

deterioration: i) basic strength deterioration; ii) post-cap strength deterioration; iii) 

unloading stiffness deterioration; and iv) accelerated reloading stiffness deterioration. 

The detailed mathematical descriptions about these four modes of deterioration can be 

found in Ibarra and Krwawinkler (2005). 

 

10.2.2 Modified Ibarra-Krawinkler Model 

 Lignos (2008) modified the Ibarra-Krawinkler model based on observations 

from data from several hundreds tests that had been conducted on steel and RC 

elements. Lignos modified the backbone curve and the cyclic deterioration modeling in 

the original Ibarra-Krawinkler model, where the new backbone curve proposed by 

Lignos is shown in Figure 10.2. In the modified model, a new branch is added to the 

original backbone curve that allows the simulation of complete loss of strength which 

can occur at large inelastic deformations, as observed, for example, when ductile tearing 

takes place in steel components. The backbone curve is also modified to be asymmetric 

in the positive and negative loading directions. The definitions of some parameters at 

the original model are also revised in the modified model to achieve a better description 

of the backbone curve. In Figure 10.2,  is the cap deformation (deformation 
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associated with  for monotonic loading);  is the effective yield strength;  is the 

effective yield deformation (= / );  is the effective elastic stiffness;  is the 

residual strength capacity;  is the deformation at residual strength;  is the ultimate 

deformation capacity;  is the plastic deformation capacity associated with monotonic 

loading;  is the post-capping deformation capacity associated with monotonic 

loading; /  is the post-yield strength ratio;  is the predicted effective yield 

strength;  is the nominal effective yield strength;  is the residual strength ratio 

(= / ); and F  is the strength cap (maximum strength, incorporating average strain 

hardening). The strain hardening ratio  and the post-capping stiffness ratio  are 

defined as / / / / and / / / , 

respectively. 

 The cyclic deterioration rule is also changed to enable different rates of cyclic 

deterioration in each loading direction to be considered which can be effectively applied 

to the behavior of composite sections, e.g., a steel beam with a composite concrete floor 

slab. The definition of the reference energy dissipation capacity  is also changed by 

using the parameter  in the normalization of the reference energy dissipation capacity, 

i.e., , where  denotes the reference cumulative deformation capacity. Figure 

10.3 shows the comparison of this modified model with experimental results for the 

moment-chord rotation of a steel beam-to-column moment connection tested by Ricles 

et al. (2004).  

 

10.3 Modeling of the 3-Story Building Structure 
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The 3-story building structure described in Chapter 6 is used for the IDAs. The 

member sizes for the MRF and DBF are illustrated in Figure 7.2. An OpenSees model 

for the implementation of the IDA is provided in Figure 10.4. The model is similar to 

that used for assessing the SDP in Chapter 7 (see Section 7.2) and for assessing various 

controllers in Chapter 9, except for the inclusion of the deterioration element at the ends 

of the beams in the MRFs where plastic hinges are expected to occur.. 

Each beam of the MRF in the IDA model consists of three elements: two 

deterioration elements with zero length at the column faces based on the modified 

Ibarra-Krawinkler model; and one linear elastic element between the deterioration 

elements. The parameters for the deterioration element are summarized in Table 10.1, 

where ,  and  denote the yield moment, plastic rotation capacity and the post-

capping rotation capacity, respectively. The values of these parameters are based on 

Lignos and Krawinkler (2009) for the beam sections used in the structure. 

To account for the P-Δ effect, a lean-on column is included as described in 

Chapter 7. Since the floor diaphragm is assumed to be rigid, the top node of the panel 

zone element in the MRF and the beam-column joint in the DBF are horizontally 

constrained together with the node of the lean-on column at each floor level, while the 

vertical and rotational dofs are released. The beams of the DBF are modeled using a 

linear elastic truss element because it was designed not to have a rotational stiffness at 

the beam-column joint and does not have any axial deformation due to the rigid 

diaphragm assumption. 
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The diagonal bracing in the DBF is modeled using a linear elastic truss element. 

Based on the demand-to-capacity ratio of the diagonal bracing designed in Chapter 6, 

the diagonal bracing remains linear elastic for MR damper forces up to 825kN. 

Therefore, there is a maximum allowable damper velocity that assures the linear elastic 

behavior of the brace. Using the post-yield curve of the MNS MR damper model with a 

current input of 2.5A, the damper velocity corresponding to a damper force of 825kN is 

calculated to be about 23m/sec. Assuming the damper velocity is equal to the pseudo-

velocity of the damper, the damper displacement corresponding to the damper velocity 

of 23m/sec is obtained to be 3.1m based on the fundamental period of the building 

( =0.85 sec), which corresponds to a story drift of 135% based on the story height of 

the building (2.286m). The structure will collapse before reaching the extreme story 

drift of 135%. Therefore, the modeling of the diagonal bracing using the linear elastic 

truss element appears to be reasonable.   

As mentioned previously, the MR damper is assumed to be located between the 

top of the diagonal bracing and beam-column joint. Variable current MNS model is 

used for the nonlinear time history analysis. The parameters listed in Table 3.3 are used 

for the MNS model. The parameters provided in Chapter 4 for the dynamics of MR 

dampers associated with variable current (i.e., 24.96 ,  3.57 ,  0.31 , 

0.30) are in simulating the semi-active behavior of the MR damper.  

 The structural model in Figure 10.4 has two major structural components that 

can lead to dynamic instability under extreme earthquake ground motions: (1) negative 

stiffness induced by the gravity loads (the P-Δ effect); and (2) deterioration elements in 
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the beams of the MRF. The columns of the MRF and DBF are assumed to have 

sufficient strength so that no deterioration in strength or stiffness of the columns is 

expected during the IDAs. 

 The large-scale MR dampers for this study have a stroke limit of ±279mm 

(=±11 inches). The story height of the 3-story building structure is 2.286m, implying 

that the dampers will reach their stroke limit at 12.2% story drift. Since large story drifts 

can be expected in a collapse simulation, the MR damper may bottom out with respect 

to the stroke limit under extreme earthquake ground motions. In this case, a gap or the 

hook element should be included in the model to account for the dynamic behavior 

associated with reaching the stroke limit, as suggested by Miyamoto et al. (2010). The 

MR dampers in this study are assumed to have a sufficient stroke limit to accommodate 

the large story drifts during a collapse simulation. To model the conditions when a 

damper reaches its stroke limit requires the use of experimental data to develop a 

damper model that includes all possible failure limit states (e.g., tension fracture of the 

damper piston rod). These types of experiments have not been conducted, and therefore 

this data does not exist. A future study of this topic is needed. 

 

10.4 Ground Motions 

 The far-field ground motion record set provided in FEMA P695 was selected as 

ground motions for the IDA, and are listed in Appendix 3. These ground motions were 

selected from the PEER-NGA data base to permit evaluation of the record-to-record 

(RTR) variability of the structural response and to permit calculation of the median 
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collapse intensity. Among the 22 earthquakes, 14 are taken from the United States and 7 

are from other countries. Event magnitudes range from M6.5 to M7.6, with an average 

magnitude of M7.0. Each earthquake has two horizontal components so that a total of 

44 ground motions are used for the IDA. 

 FEMA P695 recommends to use the spectral acceleration at the fundamental 

period of a structure, , as the intensity measure (IM). The ground motions are scaled 

up (or down) based on the spectral acceleration at the fundamental period of the 

structure. The MR damper stiffness depends on the displacement amplitude. Hence, the 

effective fundamental period of the structure is dependent on the amplitude of the 

damper displacements, which is a function of the intensity of ground motion. In this 

study, the fundamental period of the structure without MR dampers is used to determine 

the spectral acceleration corresponding to the IM, rather than using the effective 

fundamental period with the dampers. The fundamental period without MR dampers is 

0.94 sec as provided in Table 6.17, and the scaling of ground motions is performed 

based on the spectral acceleration at this period.  

 

10.5 Controllers 

 The controllers employed in Chapter 9 are used here for the IDA, namely: i) 

passive control; ii) linear quadratic regulator (LQR); iii) sliding mode control (SMC); iv) 

decentralized bang-bang control(DBB); and v) phase angle control (PAC). The same 

parameters for each controller (i.e., the LQR gain and the sliding surface for SMC) as 

presented in Chapter 9 are applied to the IDAs. A constant current with I=2.5A is 
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supplied to the MR dampers for passive control, while either I=0.0A or 2.5A is used for 

the semi-active controllers. 

 

10.6 Incremental Dynamic Analyses 

 The incremental dynamic analysis (IDA) curves are a set of plots that correlate a 

damage measure (DM) with the intensity measure (IM) that characterizes the applied 

scaled accelerograms (Vamvatsikos and Cornell 2002).The roof drift ratio of the 

building structure, , is selected as the DM for this study. A ground motion is 

scaled up until dynamic instability occurs, where an IDA curve becomes a flat line, i.e., 

at collapse. In this study, it is assumed that collapse occurs by the time that  

reaches 17%. A selected ground motion is gradually scaled up until  exceeds 17%. 

For the 44 ground motions in the ensemble, the IDA curves all became flat indicating 

collapse before  reached 17%. The median roof drift when the IDA curves become 

flat was approximately 14%.  

Figures 10.5 through 10.8 show individual IDA curves as the various controllers 

are used. Each semi-active controller is compared with the passive control case and the 

case without MR dampers. The IDA curves in the figure are obtained for the 1999 

Kocaeli earthquake (Duzce, 180 component). As can be observed in Figure 10.5, the 

roof drift of the building gradually increases with increasing spectral acceleration and 

collapse occurs at  1.66 g and  2.25 g for the building without MR 

dampers (no damper case) and with passive control, respectively. Apparently, the 

collapse potential of the building is reduced by using the MR dampers. When the semi-
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active controllers are used, collapse of the building occurs at  2.31 g,  2.19 

g,  2.23 g, and  2.23 g for the LQR, SMC, DBB, and PAC semi-active 

controllers, respectively (see Figures 10.5 through 10.8). Although the LQR controller 

shows a marginally higher collapse spectral acceleration than the passive control case, 

overall the collapse potential of the building with semi-active controllers is similar to 

that with passive control for this selected earthquake ground motion. 

As observed in Chapter 9, the structure with MR dampers performs better than 

the building without dampers when the intensity of ground motion is around the DBE or 

MCE level. However, the situation may change when the intensity is large, depending 

on the characteristics of the ground motion and the structural properties. Figure 10.9 

compares the time histories for roof and 1st story drifts for three different control cases 

(no damper, passive control, and LQR) when the building is subjected to the Gilroy 

array#3, 090 component from the 1989 Loma Prieta earthquake scaled to =2.0g. 

The no damper case has the smallest roof drift, compared to the remaining two cases 

with MR dampers. The roof drift for the passive control case gradually increases, 

displaying the potential for incipient collapse due to P-Δ effect and strength 

deterioration, while the LQR case is relatively stable and has a smaller roof drift than 

the passive control case.  

The behavior of a nonlinear structure is path dependent and influenced by the 

input ground motion. The building reaches its peak roof drift in the negative direction at 

t=3.6 sec. At this time instant, the roof drift for the building with MR dampers is less 

than that without MR dampers due to the energy dissipation by the MR dampers. After 
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t=3.6 sec. the building displaces in the positive direction and reaches a local maximum 

roof drift at t=4.3 sec. During this transition from the negative maximum roof drift to 

the positive local maximum roof drift, the roof drift changes by about 12.4%, 13.4%, 

and 13.3% for the no damper, passive, and LQR cases, respectively. The roof drift for 

the no damper case at t=4.3 sec is about 3.5%, while that for the building with MR 

dampers is about 8.7% and 8.3% for the passive and LQR controllers, respectively. 

Since the negative maximum roof drift for the no damper case was larger in amplitude 

in the negative direction than the passive or LQR cases, the roof drift for the no damper 

case becomes the smallest one when the structure reaches the positive local maximum 

roof drift at t=4.3 sec.  

Figure 10.10 shows the base shear and the 1st story drift relationships for the 

three different control strategies. The base shear is obtained from the sum of the story 

shear forces at the near the base of the MRF and DBF columns. When t=4.3 sec, the 1st 

story drift for the passive and LQR cases are 8.7% and 8.3%, where the onset of 

negative stiffness due to the P-Δ effect and strength deterioration of the MRF beams 

occurs, as shown in Figure 10.10. However, the 1st story drift for the no damper case is 

still far from the initiation of a negative stiffness (where at where t=4.3 sec the roof drift 

is 3.5%). After t=4.3 sec, the building undergoes small oscillations in the story drift 

without any significant reversal in the story drift. Thus, the maximum story drift for the 

no damper case is less than that for the cases with MR dampers under this ground 

motion with  = 2.0g. This example illustrates that adding dampers to a building 

does not always result in reduced drift response.  



295 
 

As shown in Figure 10.10, the base shear capacity of the passive control case 

decreases with increasing story drift due to the P-Δ effect. The passive control case has 

a gradual increase in story drift, while the LQR controller has a stable response around 

the story drift of 10% (see Figure 10.9). After t=5.7 sec, the difference in drift between 

the passive and LQR cases is evident, which is consistent with the difference observed 

in the MR damper response as shown in Figures 10.11 and 10.12, where the MR 

damper responses for the 2nd story and the 3rd story MR dampers, respectively, are 

illustrated. Before t=5.7 sec, the MR damper forces for the LQR controller are almost 

the same as those for the passive controller. However, after t=5.7 sec, the command 

current for the 2nd story MR damper from the LQR controller becomes more frequently 

equal to zero, enough to reduce the MR damper force compared to that of the passive 

controller. In particular, the zero command current is mostly applied to the damper 

when the building moves toward its original undeformed shape (i.e., toward zero drift). 

In this situation, the reduced damper force makes the building less resistive to returning 

to its original position than the full damper force from the passive controller, which is 

beneficial to reduce the collapse potential. Therefore the LQR controller is better than 

passive control for this case.  

 Figures 10.13 ~ 10.18 show the IDA curves for the structure with various 

control strategies. These results are for the 44 ground motions. The collapse margin 

ratio (CMR) is defined by FEMA P695 (ATC 2009) as the ratio of the median value for 

the collapse spectral acceleration, , to the spectral acceleration of the MCE, , at 

the fundamental period of the structural system: 
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  CMR   (10.1)   

 

 for each control case is calculated from the IDA curves and marked in Figures 

10.13 ~ 10.18 along with the . Table 10.2 shows the CMR values for each control 

strategy. Since the purpose of this chapter is to evaluate the collapse capacity of a 

structure with MR dampers with various control strategies, the further adjustment of the 

CMR values based on the spectral shape factor (SSF) (ATC 2009) is not considered in 

this study. When the passive controller is used, the CMR value increases by about 26% 

compared to the no damper case, demonstrating the benefit of using MR dampers. The 

overall performance of semi-active controllers is very similar to that of the passive 

control case, except for the LQR controller. The LQR controller shows the highest 

CMR value, but the improvement over the passive control case is only 6.6%. However, 

the improvement in structural collapse performance involving the use of semi-active 

controllers seems to be more evident than the cases studied in Chapter 9 involving less 

intense DBE and MCE ground motions. 

 Figures 10.19 ~ 10.22 illustrate the median IDA curve, where the median IDA 

curves for the semi-active controllers are compared to those of the passive control and 

no damper cases. When the structure is without MR dampers, an almost linear 

relationship between roof drift and spectral acceleration  occurs up to 5 % roof drift, 

followed by a softening behavior of the IDA curve. The IDA curve for the structure 

with passively controlled MR dampers has a smaller drift for the same  than the 

case without MR dampers, demonstrating the improved performance of the structure by 
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employing MR dampers. For the passive control case, a significant softening of the IDA 

curve occurs at 8% roof drift, where the structure shows signs of incipient collapse 

beyond 8% drift.  

 The median IDA curves for semi-active controllers in Figures 10.19 through 

10.22 show almost the same behavior as that for the passive control case, except for the 

LQR controller (see Figure 10.19). The IDA curve for the LQR controller is almost 

identical to that of passive control case up to about 9.5% roof drift. Then the IDA curve 

for the LQR controller exhibits larger  values after 9.5% roof drift than the passive 

control case, resulting in a higher CMR value than the passive control case. The 

improvement in structural performance when using the LQR controller, as noted above, 

is about 6.6% compared to the passive control case.  

 

10.7 Collapse Fragility Curves 

A collapse fragility curve is the cumulative distribution function (CDF) which 

relates the intensity of ground motions to the probability of collapse, and is constructed 

utilizing the results of the IDAs (ATC 2009). For a prescribed level of spectral 

acceleration  the number of cases, NSaT1, where collapse occurs for a spectral 

acceleration equal to or less than this value of  among the IDA curves for the 

various ground motions is counted. The probability of collapse then associated with this 

value of  is NSaT1/Ntot, where Ntot is the total number of IDA curves (i.e., ground 

motions) in the ensemble. The probability of collapse typically follows a lognormal 

distribution. A set of collapse data points can then be fitted using the lognormal 
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distribution to construct the collapse fragility curve. The fitted lognormal distribution is 

defined by two parameters, i.e., the median collapse spectral acceleration ( ), and the 

standard deviation of the natural logarithm of the collapse spectral accelerations ( ). 

The CDF with a lognormal distribution, , is mathematically expressed as 

 

 
1
√2

exp
ln

2 Φ
ln

  (10.2)   

 

where, Φ is the cumulative distribution function of the standard normal distribution and 

ln . Figure 10.23 compares the collapse fragility curves for the passive control 

and the no damper cases. The fragility curve for the passive control case is located to 

the right of the fragility curve for the no damper case, which means the collapse 

potential of the structure with passive control is lower than that for the structure with no 

dampers. This result is also illustrated in Table 10.2 by a comparison of the CMR 

values. The collapse fragility curves for the semi-active control cases are similar to the 

passive control case, except for the LQR controller (see Figures 10.23 ~ 10.27, where 

the collapse fragility curves for various the semi-active control cases are compared to 

the passive control case). The collapse fragility curve for the building with the LQR 

controller is slightly to the right of that for the passive control case (Figure 10.24), 

indicating a lower probability of collapse compared to the passive control case, 

consistent with having a lower CMR value. 

 

10.8 Collapse Mode 
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 The collapse mode of the building structure studied in this chapter is 

characterized by the formation of plastic hinges in the beams and columns leading to a 

collapse mechanism. A soft story mechanism, where both ends of all columns at a 

particular story level develop plastic hinges, did not occur in any of the cases. The 

design methodology based on the strong-column-weak-beam appears to have helped 

avoid a soft story collapse mechanism.  

Figure 10.28 shows the deformed shape of the building with passively controlled 

MR dampers at the time of maximum drift under the 1994 Northridge earthquake 

(Canyon country, 000 component), where the ground motion was scaled to a spectral 

acceleration of =2.25g. Collapse for this ground motion occurs when =2.27g. 

Both ends of each beam in the 1st through 3rd floor in the MRF and the ground level of 

the 1st story columns for both the MRF and CBF formed plastic hinges during the 

earthquake. Figure 10.29 shows the floor displacement of the building structure. The 

displacement of each floor gradually increased due to the P-Δ effect and the strength 

deterioration at the end of beams. After the end of the earthquake event, the roof 

displacement of the building is about 1.04m (15.1% roof drift). Figures 10.30 through 

10.32 show the story shear and story drift relationship for the 1st, 2nd, and 3rd stories, 

respectively. The shear capacity of each story is observed to decrease with increasing 

story drift due to the P-Δ effect. 

Figures 10.33 through 10.35 show beam end moment versus beam end rotation 

data from this simulation. As noted previously, the modified Ibarra-Krawinkler model is 

used to describe the flexural strength deterioration at the ends of beams. As is evident in 
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these figures, the flexural capacity of the beams deteriorates during the response, with a 

negative stiffness developing after the capping strength is reached. The beams all 

accumulate inelastic rotation, indicative of the onset of collapse of the structure. 

 

10.9 Summary   

In this chapter, the collapse potential of a building with MR dampers controlled 

by various control strategies was investigated. The 3-story building designed in Chapter 

6 was used for the study. A brief review of the flexural strength and stiffness 

deterioration of a beam was made. Strength and stiffness deterioration along with the P-

Δ effect is one of the major factors causing the dynamic instability of structures. 

Incremental dynamic analyses based on nonlinear time history earthquake simulation 

with OpenSees were conducted to obtain the statistical response and collapse margin 

ratios (CMRs) for the structure. Five different control strategies for the MR dampers 

were used, and the collapse potential for each case was compared. The passive control 

of MR dampers with a 2.5A constant current input improved the CMR value by about 

26% compared to the structure without MR dampers. When the collapse potential of the 

structure with passive control is compared with that when semi-active controllers are 

used, no significant differences were observed except for the case when the LQR 

controller was used. The median IDA curves and the collapse fragility curves for the 

sliding mode control, the decentralized bang-bang control, and the phase angle control 

resulted in almost the same collapse potential as the passive control case, while the 

LQR controller provided a reduction in the collapse potential. The LQR controller 
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varied the MR damper forces adaptively during the response to the seismic excitation of 

the structure, resulting in better performance than the passive control case; the CMR is 

6.6% greater for the structure with an LQR controller.  

The LQR and SMC controllers require control gains to be specified. The effect 

of the control gains on the collapse potential needs to be investigated further. In 

addition, other semi-active controllers and various structural geometries (e.g. the height 

of the building) should be included in a study to derive a set of general conclusions on 

the collapse potential of structures with semi-active controllers under seismic loading. 

The median roof drift at collapse was approximately 14%. The damper stroke limit 

would result in the dampers “bottoming out” at about 12.2% story drift, before the 

median collapse roof drift is reached (assuming that the dampers have an unlimited 

stroke). The effect of a damper bottoming out on the collapse potential of structures 

with MR dampers needs to be investigated in future studies.  
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Table 10.1 Parameters for deterioration element for MRF beams 

Beam size 
Deterioration element parameters 

 
(kN-m/m) 

 
(kN-m)   

(rad) 
 

(rad)    

W10X17 103531.2 116.28 0.002 0.062 0.207 1.244 0.01 

W14X38 462519.7 382.54 0.002 0.043 0.171 1.084 0.01 

W18X46 855748.0 563.94 0.002 0.033 0.186 1.104 0.01 

 

 

Table 10.2 Collapse margin ratio (CMR) for 3-story building with various control 

strategies 

 No 
damper Passive LQR SMC DBB PAC 

CMR 2.39 3.02 3.23 3.03 3.02 3.05 
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Figure 10.1 Backbone curve of Ibarra-Krawinkler model  
(after Ibarra and Krawinkler 2005) 

 
 

 

Figure 10.2 Modified backbone curve of Ibarra-Krawinkler model (after Lignos 2008) 
 
 



304 
 

 
Figure 10.3 Comparison of the modified Ibarra-Krawinkler model with a test result 

(after Lignos 2008) 
 
 
 

 
 

Figure 10.4 OpenSees model of the 3-story structure for the incremental dynamic 
analysis  
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Figure 10.5 IDA curve for the 3-story building structure subjected to the 1999 Kocaeli 

earthquake (Duzce, 180 component) with different control strategies  
(No damper, Passive, and LQR) 

 
Figure 10.6 IDA curve for the 3-story building structure subjected to the 1999 Kocaeli 

earthquake (Duzce, 180 component) with different control strategies  
(No damper, Passive, and SMC) 
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Figure 10.7 IDA curve for the 3-story building structure subjected to the 1999 Kocaeli 

earthquake (Duzce, 180 component) with different control strategies  
(No damper, Passive, and DBB) 

  
Figure 10.8 IDA curve for the 3-story building structure subjected to the 1999 Kocaeli 

earthquake (Duzce, 180 component) with different control strategies  
(No damper, Passive, and PAC) 
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Figure 10.9 Time history of the drift of the building subjected to the 1989 Loma Prieta 
earthquake (Gilroy array #3, 090 component) with different control strategies (

2.0g): (a) roof drift; (b) 1st story drift 
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 Figure 10.10 Base shear and 1st story drift relationship of the building subjected to the 
1989 Loma Prieta earthquake (Gilroy array #3, 090 component) with different control 

strategies ( 2.0g) 
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Figure 10.11 MR damper behavior in the 2nd story subjected to the 1989 Loma Prieta 
earthquake (Gilroy array #3, 090 component), 2.0g: (a) comparison of damper 
force between passive and LQR controllers; (b) command current of LQR controller 

 
Figure 10.12 MR damper behavior in the 3rd story subjected to the 1989 Loma Prieta 
earthquake (Gilroy array #3, 090 component), 2.0g: (a) comparison of damper 
force between passive and LQR controllers; (b) command current of LQR controller 
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Figure 10.13 IDA curves: no damper case 

 

 

Figure 10.14 IDA curves: passive control 
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Figure 10.15 IDA curves: linear quadratic regulator (LQR) control 

 

Figure 10.16 IDA curves: sliding mode control (SMC)  
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Figure 10.17 IDA curves: decentralized bang-bang (DBB) control 

 

Figure 10.18 IDA curves: phase angle control (PAC)  
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Figure 10.19 Median (50% fractile) IDA curve where the linear quadratic regulator 
(LQR) controller is compared with passive and no damper cases 

 

Figure 10.20 Median (50% fractile) IDA curve where the sliding mode controller (SMC) 
is compared with passive and no damper cases 
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Figure 10.21 Median (50% fractile) IDA curve where the decentralized bang-bang 
(DBB) controller is compared with passive and no damper cases 

 

Figure 10.22 Median (50% fractile) IDA curve where the phase angle controller (PAC) 
is compared with passive and no damper cases 
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Figure 10.23 Collapse fragility curves where the no damper case is compared with the 
passive control case 

 

Figure 10.24 Collapse fragility curves where the linear quadratic regulator (LQR) 
controller is compared with the passive control case 
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Figure 10.25 Collapse fragility curves where the sliding mode controller (SMC) is 
compared with the passive control case 

 

Figure 10.26 Collapse fragility curves where the decentralized bang-bang (DBB) 
controller is compared with the passive control case 
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Figure 10.27 Collapse fragility curves where the phase angle control (PAC) is compared 

with the passive control case 
 

 
 

Figure 10.28 Deformed shape of the building structure at incipient collapse, where the 
solid circles represent the location of plastic hinges and their size denotes the magnitude 

of the plastic rotation; 1994 Northridge ground motion (Canyon country, 000 
component) scaled to a spectral acceleration of =2.25g 
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Figure 10.29 Floor displacement of the building structure; 1994 Northridge ground 
motion (Canyon country, 000 component) scaled to a spectral acceleration of 

=2.25g 
 

 
Figure 10.30 Base shear and 1st story drift relationship of the building structure; 1994 

Northridge ground motion (Canyon country, 000 component) scaled to a spectral 
acceleration of =2.25g 
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Figure 10.31 2nd story shear and 2nd story drift relationship of the building structure; 

1994 Northridge ground motion (Canyon country, 000 component) scaled to a spectral 
acceleration of =2.25g 

 
Figure 10.32 3rd story shear and 3rd story drift relationship of the building structure; 

1994 Northridge ground motion (Canyon country, 000 component) scaled to a spectral 
acceleration of =2.25g 
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Figure 10.33 Moment versus beam end rotation relationship at the end of the 1st floor 
beam; 1994 Northridge ground motion (Canyon country, 000 component) scaled to a 

spectral acceleration of =2.25g  

 
Figure 10.34 Moment versus beam end rotation relationship at the end of the 2nd floor 
beam; 1994 Northridge ground motion (Canyon country, 000 component) scaled to a 

spectral acceleration of =2.25g  
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Figure 10.35 Moment versus beam end rotation relationship at the end of the 3rd floor 
beam; 1994 Northridge ground motion (Canyon country, 000 component) scaled to a 

spectral acceleration of =2.25g  
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Chapter 11 

Real-Time Hybrid Simulation of Structures with MR Dampers 

 

11.1 General 

In this chapter, a set of real-time hybrid simulations are presented. The 

objectives of these simulations are: i) to experimentally assess the simplified design 

procedure (SDP) under realistic seismic demand from the design earthquake (i.e., 

DBE); ii) to experimentally evaluate structural control strategies for MR dampers under 

realistic seismic demands from the design earthquake; and iii) to experimentally 

investigate the collapse potential of structures under realistic seismic demands. The 

real-time hybrid simulations were performed on the structure designed using the SDP as 

presented in Chapter 6, and studied using numerical simulations as presented in 

Chapters 7 and 9. To experimentally assess the SDP and structural control strategies, 

five different ground motions are selected from the ensemble of ground motions listed 

in Appendix 3, and scaled to the DBE level. The various control strategies, including 

passive control and the semi-active controllers studied in Chapter 9, are included in the 

simulations. The assessment involved examining the statistics of the experimental 

response of the structure with the various controllers and comparing them with results 

from the SDP under the DBE ground motions. The behavior of the structure under an 

extreme ground motion is studied by conducting a series of real-time hybrid simulations 

for a selected ground motion, gradually increasing the intensity of the ground motion in 
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each subsequent simulation. Results from the real-time hybrid simulations are presented 

and discussed, and comparisons are made with numerical simulation results.  

 

11.2 Real-Time Hybrid Simulation Concepts 

 Real-time hybrid simulation is an efficient test method for investigating the 

dynamic behavior of complex structures. It combines physical testing and numerical 

simulation to enable the entire structural system to be included in the simulation. Hybrid 

simulation divides a structural system into analytical and experimental substructures, as 

illustrated in Figure 11.1. During a real-time hybrid simulation, the coupling between 

the experimental and analytical substructures is achieved by maintaining compatibility 

and equilibrium at the interface between these substructures. The discretized equations 

of motion of the structure at time step i are expressed as 

 

  (11.1)   

 

where  and  are the mass and viscous damping matrices of the structure, respectively. 

 and  are the restoring forces from the analytical and experimental substructures, 

respectively.  is the external load applied to the structure, and  and   are the velocity 

and acceleration vectors associated with the degrees of freedom of the structure, 

respectively. The inertial and damping forces (the first two terms in the equations of 

motion, Equation (9.1) are calculated analytically. The displacement response of the 

structural system is calculated using an algorithm that integrates the equations of motion 
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in conjunction with restoring forces from the substructures (i.e.,  and ) that are 

developed under the imposed displacement response.  

The analytical and experimental substructures, the integration algorithm, and the 

servo-hydraulic actuators and associated controllers combine together to form the frame 

work for a real-time hybrid simulation. The displacement response from the integration 

algorithm that is intended to be imposed on the experimental substructure at each time 

step is referred to as the command displacement. Real-time hybrid simulation poses 

several challenges, including the requirement that the integration algorithm should be 

efficient, stable, and accurate; the servo-hydraulic system must enable actuators to 

accurately and reliably impose command displacements onto the experimental 

substructure in real-time; the state determination process for the analytical substructures 

to compute the  restoring forces must be efficient, stable and accurate; and the 

communication between the integration algorithm, servo-hydraulic system controller, 

and analytical substructure needs to be synchronized and have minimal delay (Chen et 

al. 2009a). To successfully impose the command displacements on the experimental 

substructure in real time, it is necessary to have accurate actuator control to achieve the 

correct displacement amplitude and to avoid actuator delay. 

Real-time hybrid simulations have been successfully conducted by Chen et al. 

(2009b) to investigate the dynamic behavior of structures with rate-dependent devices. 

When real-time hybrid simulation is utilized to evaluate the performance of a structure 

with MR dampers, the dampers may be modeled as experimental substructures while 

the remaining part of the structural system is modeled analytically (i.e., as the analytical 
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substructure). This is the hybrid simulation arrangement used for the simulations 

presented in this chapter. Compared to shaking table tests, this arrangement of the 

experimental and analytical substructures in a real-time hybrid simulation is economical, 

while the reliability of the simulation results is preserved when the analytical model of 

ths structure used for the analytical substructure is accurate. The added benefit of this 

experimental technique is that it enables a large number of ground motions to be applied 

to the structure, resulting in various levels of structural damage, without the need to 

repair the test specimens if the damage is confied to the analytical substructure. 

 

11.3 Lehigh NEES RTMD Facility 

 The real-time hybrid simulations of this study were conducted at the Real-Time 

Multi-Directional (RTMD) earthquake simulation facility located in the ATLSS 

Engineering Research Center, at Lehigh University. The RTMD is part of the George E. 

Brown, Jr. Network for Earthquake Engineering Simulation (NEES). The Lehigh NEES 

RTMD facility specializes in real-time hybrid simulations in addition to conventional 

hybrid simulations of large-scale structural systems. The ATLSS laboratory includes a 

strong floor that measures 31.1m x 15.2 m in plan, and a multi-directional reaction wall 

up to 15.2 m in height.  

 

11.3.1 RTMD Hydraulic System 

The RTMD facility hydraulic system has five large capacity dynamic actuators, 

three with a 1700kN maximum force capacity and the remaining two with a 2300kN 
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maximum force capacity. Figure 11.2 shows the hydraulic power curve for the actuators. 

Each actuator is ported for three servo valves, where each servo-valve has a maximum 

flow capacity rate of 2,082lpm (550gpm) at a hydraulic supply pressure of 20.7MPa 

(3000psi). The hydraulic supply system consists of 5 pumps, each with a 450 lpm 

(118.9 gpm) capacity, and 16 piston accumulators, 190 liters (50.2 gallons) each, 

connected to 9 Nitrogen gas bottles, 1,325 liters (850.2 gallons) each. This 

configuration enables a typical earthquake to be simulated in real-time for a duration of 

30 seconds with the supply pressure maintained between 20.7 to 24.1MPa, where the 

experimental substructure consists of a 4-story half-scale frame structure. For the real-

time hybrid simulations performed in this study, the experimental substructure consists 

of two MR dampers and two 1,700 kN actuators (to be discussed in Section 11.5) with 

three servo valves mounted on each actuator. 

 

11.3.2 RTMD IT System 

Figure 11.3 shows the architecture of the RTMD IT system. It is an integrated 

system of various modules, designed to enable real-time hybrid simulation of large-

scale structural systems. Each module of the RTMD IT system communicates through 

SCRAMNET, a proprietary shared memory bus based on fiber optic network 

technology. Within the RTMD IT system, the servo controller (RTMDctrl) 

communicates with all of the servo-valves, actuators, HSM control box and simulation 

computer (RTMDsim) with a sampling frequency of 1024Hz. The servo controller 

consists of a digital signal processor (DSP) real-time control card, which is housed in 
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the RTMDctrl. The real-time hybrid simulation is controlled and implemented by the 

RTMDxPC module. A MATLAB Simulink file on the RTMDsim computer is compiled 

and downloaded to RTMDxPC (which is an xPC workstation) which runs Mathwork’s 

real-time Target PC software package. This system provides commands to and receives 

feedback from RTMDctrl in real time over SCRAMNet, which has a communication 

delay of less than 180 nsec between modules. 

 

11.4 Integration Algorithm and Actuator Delay Compensation 

 In this study, the CR integration algorithm (Chen et al. 2009a) is used for the 

numerical integration of the equations of motion during the real-time hybrid simulation. 

In the CR integration algorithm the variation of displacement and velocity over a time 

step are defined as 

 

  ∆   (11.2)   

  i ∆ i ∆ 2
2 i   (11.3)   

 

where,  is the displacement vector of a structure, ∆  is the integration time step, and  

and  are integration parameter matrices obtained from the structural properties. The 

CR integration algorithm was developed using control theory (Chen and Ricles, 2008a) 

and is an explicit unconditionally stable algorithm for the structure with a softening 

behavior (Chen and Ricles 2008b). For the structure with a stiffening behavior, it is 

conditionally stable. The accuracy of the CR integration algorithm is 2nd order and the 
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same as the Newmark-  constant average acceleration method (Chen et al. 2009a). 

Figure 11.4 illustrates how the CR integration algorithm is incorporated into a real-time 

hybrid simulation. 

 As indicated in Figure 11.4, the command displacement for each actuator is 

imposed to the experimental substructure in n substeps, where the substeps have a time 

step size of δt=1/1024 sec. (i.e., the inverse of the sampling frequency of the servo-

controller for the actuators). Since a hydraulic actuator has its own dynamic properties, 

there is a time delay between the input command displacement and the output measured 

displacement of the actuator. If this time delay is not compensated appropriately, the 

result of a real-time hybrid simulation is inaccurate and the system can be unstable if 

the delay is substantial. To minimize the actuator delay problem, the inverse 

compensation method developed by Chen and Ricles (2010) is used in this study. It is 

based on a simplified model of the servo-hydraulic system. By assuming at the end of 

substep j within the (i+1)th time step, (i.e., at time ), that the actuator has achieved 

the displacement , and with the actuator response shown in Figure 11.5, the 

delayed displacement response  at the end of the (j+1)th substep can be 

expressed as 

 

 
1

  (11.4)   
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where  is the interpolated command displacement from the ramp generator for 

the (j+1)th  substep issued to the experimental substructure and α is the ratio of the 

duration td that it takes for the actuator to achieve the displacement  to the 

sampling interval of the servo-controller, δt. A value of α = 1.0 is associated with no 

actuator delay.  Applying the discrete z-transform to Equation (11.4), the discrete 

transfer function  relating the delayed actuator response  to the command 

displacement  is equal to 

 

 
1   (11.5)   

 

where  and  are the discrete z-transforms of  and , respectively. 

The inverse compensation method requires tuning of the delay constant  in order to 

have the method effectively compensate for actuator delay. The method is based on a 

constant delay, although it is effective in compensating for delay in systems which 

develop a moderate amount of variable actuator delay during a simulation (Chen and 

Ricles 2009c). The delay constant  for the 1,700kN actuator connected to the MR 

damper in each test bed of the experimental substructure was identified as 20 

(representing an actuator delay of 19/1024sec) and is the value used in the real-time 

hybrid simulations. The inverse compensation method modifies the command 

displacement to enable the targeted displacement X(z) to be achieved by the actuator at 
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the end of each time step, and is based on inverting Equation (11.5). The discrete 

transfer function Gc(z) associated with the actuator delay compensation is expressed as: 

 

 
1
  (11.6)   

 

In Equation (11.6)  is the modified interpolated command displacement sent to the 

servo-controller for the substep. 

 

11.5 Real-Time Hybrid Simulation for Assessment of the SDP and Evaluation of 

Structural Control Strategies 

A schematic of the real-time hybrid arrangement used for the simulations 

presented in this dissertation is shown in Figure 11.1. The total structure is divided into 

the two analytical and the experimental substructures as shown, where the dampers are 

placed in test setups to create the experimental substructure and the remaining part of 

the structural system is modeled analytically (i.e., as the analytical substructure). The 

restoring forces  and  from the two substructures are appropriately summed to 

enable the equations of motion to be numerically integrated for each time step, as 

illustrated in Figure 11.4.  

 

11.5.1 HybridFEM as a Tool for Real-Time Hybrid Simulation 

The finite element program HybridFEM (Karavasilis et al. 2009) is used to 

model the analytical substructure in the hybrid simulation. HybridFEM is developed 
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using the MATLAB/Simulink software (Mathworks 2009) and is compiled with 

Mathworks’s Real-Time Workshop and placed on the RTMDxPC.  Various structural 

elements and material modeling options are available in the HybridFEM element and 

material libraries to enable complex analytical substructures to be created. The element 

library currently includes linear and nonlinear elements such as a linear-elastic beam-

column element, a nonlinear lumped plastic hinge element, a nonlinear fiber element, a 

nonlinear panel-zone element, a nonlinear strength deterioration element, and a 

nonlinear lean-on column to model the P-delta effect. Currently, the CR integration and 

the Rosenbroke-W (Lamarche et al. 2009) methods are implemented in HybridFEM.  

Figure 11.6 shows the Simulink block diagram for the real-time hybrid 

simulation of the 3-story building structure with either passive or semi-active 

controllers. The ‘Generate Element Restoring Forces’ block represents the analytical 

substructure, and produces the element restoring forces of the analytical substructure. 

The ‘MR dampers” block represents the experimental substructure, where 

communication with the RTMDctrl takes place via SCRAMNet to command the 

actuators to impose the calculated command displacements on the dampers, and to 

provide the measured experimental substructure restoring forces (from the MR 

dampers). The element restoring force vector is added to the measured MR damper 

forces from the ‘MR dampers’ block and fed into the ‘Integrator’ block where the time 

integration of the equations of motion is performed. The displacement and velocity 

from the ‘Integrator’ are supplied to the ‘Generate Element Restoring Forces’ block, the 

‘Controllers’ block, and the ‘MR dampers’ block.  
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The ‘Controllers’ block contains the five different control strategies of Chapter 9, 

where each controller is activated by turning on a multiport switch within the block. 

The ‘Controller’ has three inputs: the displacement and velocity of the structure, and the 

measured damper force, which are used for determining the command currents for the 

MR dampers based on a selected control law. In Chapters 2 and 8, the semi-active 

control designs were described, where each required a feedback force from each damper 

along with the state vector z consisting of either displacement and velocity (LQR, SMC, 

and PAC), or just velocity x&  (DBB). For the real-time hybrid simulations, the feedback 

signal for displacement and velocity of the structure used for the control laws was based 

on the solution from the integration of the equations of motion. The effects of noise 

were excluded, since this issue was studied in Chapter 9, and found not to be significant 

on the performance of the controller. Hence, the two MR dampers are controlled by the 

displacement from the ‘Integrator’ and the command current from the ‘Controllers’ in 

the ‘MR dampers’ block. The inverse compensation algorithm and sub-blocks for 

communicating with the SCRAMNet are embedded into the ‘MR dampers’ block.  

The sampling frequency of the RTMD IT system is 1024Hz. The ‘Integrator’,  

‘Controllers’, and ‘MR dampers’ blocks are implemented with a time step of 1/1024sec. 

to enable the interpolated command displacement for each actuator to be imposed in n 

substeps of δt=1/1024sec over the duration associated with the time step size Δt via the 

ramp generator. The ‘Generate Element Restoring Forces’ block can be run at an integer 

multiple of 1/1024sec (e.g., m/1024sec where m<n) by inserting a rate transition block 

before and after the ‘Generate Element Restoring Forces’ block, since the analytical 
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substructure restoring force is not required to be made available until near the end of the 

time step, as shown in Figure 11.4. In summary, the response of the structure is updated 

every at the end of each time step, where the time step Δt = n/1024sec, and the 

displacements imposed onto the MR dampers by the actuators are controlled by the 

ramped (interpolated) displacement over n substeps. For the real-time hybrid 

simulations of this study values of n=5 and m=4 are used whereby the size of the time 

step Δt for the integration algorithm is 5/1024sec. Convergence studies were performed 

using numerical simulations (i.e., time history analysis) and trial hybrid simulations to 

ensure the value of Δt =5/1024 sec. resulted in an accurate solution from the integration 

algorithm. 

 

11.5.2 Analytical Substructure  

The analytical substructure model is similar to that used for assessing the SDP in 

Chapter 7 (see Section 7.2), except that displacement-based fiber and stress resultant 

beam-column elements were used for modeling of the beams and columns of the 

structure instead of the force-based fiber element. Figure 11.7 shows the analytical 

substructure for real-time hybrid simulation created using HybridFEM. The dampers of 

the experimental substructure are included in Figure 11.7 to illustrate the connectivity 

between the analytical and experimental substructures. The hybrid simulation included 

a total of 190 degrees of freedom, where nodal translational and rotation degrees of 

freedom exist in the model. The displacement-based fiber element has five sections 

along the element length and the cross-section is discretized into 18 fibers, including 12 
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fibers for the web and 3 fibers for each flange of the members. In order to make the 

state determination of the analytical substructure more efficient, since the plastic 

behavior occurs near the ends of the beams and columns of the MRF structure, the 

beams and columns are divided into three parts: one linear elastic element in the middle 

and one displacement-based fiber element at each end. The length of the displacement-

based fiber element is taken as 10% of the member length. This procedure also results 

in a more accurate determination of the plastic rotations near the end of the element, 

since the displacement-based fiber element is based on a formulation that has a linear 

variation in curvature along its length. 

 

11.5.3 Experimental Substructure 

 The test setup for each damper of the experimental substructure was the same as 

that used for the characterization tests that were presented in Chapter 3, and is shown in 

Figure 11.8. A photograph of the test setup showing both dampers is given in Figure 

11.9. Each setup has one servo-hydraulic actuator with supports and roller bearings, a 

reaction frame, and a tie-down beam to secure the damper to the strong floor. In each 

test setup a 1,700kN actuator imposes the command displacement on the MR damper 

and the load cell between the damper and the actuator measures the damper force. The 

electric circuits and current drivers described in Chapter 3 are used to supply the 

command current to the dampers. The command current is 2.5A for the passive control 

and either 0.0A or 2.5A for the semi-active controllers.  

 



335 
 

11.5.4 Ground Motions 

 Five ground motions from Appendix 3 were selected for the real-time hybrid 

simulations and are listed in Table 11.1. The ground motions are scaled to the DBE 

level using the procedure described in Section 5.6. Figure 11.10 shows the response 

spectrum of the ground motions listed in Table 11.1 compared to the design (DBE) 

response spectrum. The response spectrum is for the full-scale structure. The median 

response spectrum of these ground motions matches well the DBE level response 

spectrum (IBC 2006) around the fundamental period of the 0.6-scale building structure 

with MR dampers, which was estimated to be 0.85 sec. (see Table 6.17). Since the 

structure is scaled down with a geometric scale factor of 0.6, the time axis for the 

ground motion is scaled by √0.6 to satisfy similitude laws (see Table 6.6).    

 

11.6 Results of Real-Time Hybrid Simulations for Control Algorithm Assessment 

Five different ground motions and five different control strategies are considered 

in the real-time hybrid simulations to evaluate the performance of the structural control 

strategies. A total of 25 real-time hybrid simulations therefore are conducted; Tables 

11.2 through 11.6 summarize the results of the real-time hybrid simulations. Maximum 

story drift results appear in Table 11.2. When the Duzce ground motion is used, the 

LQR controller works better than the other controllers in reducing the maximum story 

drift, maximum plastic rotations in the members, maximum absolute velocity and 

maximum absolute accelerations in the lower stories and floors. The maximum story 

drift is about 12% less in the first story compared to the passive control case in Table 
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11.2. Moreover, the reduction in the absolute acceleration of the structure when the 

LQR controller is used is large; where a 17% reduction in the maximum acceleration is 

observed at the second floor compared to the passive control case (see Table 11.6). 

However, a more rational assessment of the control strategies is based on statistical 

response results for the various ground motions. The median of the maximum story drift 

and the standard deviation are provided at the bottom of each table. In Table 11.3 the 

median maximum first story drift for the passive control case is slightly larger than that 

for the semi-active controllers; however, the median maximum second and third story 

drifts are lower for the passive control case than for the semi-active controllers. Similar 

to the results given in Chapter 9, the median maximum story drifts for the various semi-

active controllers do not have significant differences. 

The maximum plastic rotations of the beams and columns in the MRF are 

summarized in Tables 11.3 and 11.4. The median maximum responses for the passive 

control case are similar to or lower than those for the semi-active controllers, which is 

also consistent with the results given in Chapter 9 (see Tables 9.5 and 9.7).   

 The maximum absolute velocity and maximum absolute acceleration are 

compared in Tables 11.5 and 11.6. These quantities are used to evaluate the non-

structural component behavior and potential damage in the building. Similar to the story 

drift results, no significant differences between the results for the various controllers are 

observed in the median maximum absolute velocities. For the maximum absolute 

acceleration, the LQR controller has a slightly better performance than the passive 

control for all three floors. The median value of the maximum absolute acceleration at 
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the 3rd floor level, where the maximum acceleration is observed, is about 7.5% less than 

that for the passive control case. However, the maximum 3rd story drift for the LQR 

controller is increased by about 7.2 % compared to the passive control case (see Table 

11.2), illustrating a trade-off between the maximum displacement and maximum 

absolute acceleration response.  

 Although only five ground motions are used for the real-time hybrid simulations, 

the statistical response of the simulations also shows that the performance of passive 

control is similar to that of semi-active controllers, which is consistent with the 

conclusions of Chapter 9 where the numerical study was conducted with 44 ground 

motions. 

 Table 11.7 summarizes the results from the SDP and the median maximum story 

drifts and median maximum damper forces from the real-time hybrid simulations. For 

the 1st and 2nd story drifts the SDP shows good agreement with the results of the real-

time hybrid simulations. The 3rd story drift from the SDP is less than that of the real-

time hybrid simulations (by 7.8%). As discussed in Chapter 7, the SDP results were 

slightly less than the damper force from the nonlinear time history analyses. Similar 

results are observed here where the damper forces from the SDP are less than those 

from the real-time hybrid simulations for the passive control case. In addition, the 

median maximum damper forces for the semi-active control cases are less than that for 

the passive control case from the real-time hybrid simulations. The results from the SDP 

are based on passive control of the MR damper. The median maximum damper forces 

in the 2nd and 3rd stories from the real-time hybrid simulations with passive control are 
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3.3% and 8.3% smaller, respectively, than the SDP results. Overall, reasonably good 

agreement between the SDP results and the real-time hybrid simulation results is 

observed (i.e., within about 8%), experimentally demonstrating the simplified analysis 

procedure in the SDP. 

 

11.7 Validation of Real-Time Hybrid Simulations 

11.7.1 Servo-Hydraulic Actuator Response 

Since the real-time hybrid simulation combines the analytical substructure and 

the experimental substructure into one integrated structure, the restoring forces from the 

two substructures need to be acquired in real-time, and an effective actuator delay 

compensation method is required to accurately impose the command displacements on 

the experimental substructure, so that the experimental substructure restoring forces are 

synchronized with the analytical substructure restoring forces. In this study, the inverse 

compensation algorithm is applied to both 1,700kN actuators as mentioned previously. 

Figures 11.11 and 11.12 compare the time histories of actuator command displacements 

and actuator measured displacements for the 2nd and 3rd story dampers, where the results 

are for the simulation involving the 1992 Landers earthquake ground motion and the 

LQR controller. Figures 11.10 (b) and 11.11(b) provide a close-up near the time at the 

maximum response. A slight difference in the amplitude of the command and measured 

actuator displacements is evident, where the measured displacements are larger. The 

maximum error is 3.8% and 7.2% for the actuators attached to the 2nd and 3rd story 

dampers, respectively. Overall, the measured displacement follows the command 
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displacement very well. The synchronized subspace plots comparing the measured and 

command actuator displacements are given in Figures 11.13 and 11.14. Any deviation 

from a 45 degree line indicates a delay or lead in the actuator response. The results in 

Figures 11.13 and 11.14 show that no significant delay is observed. The overall 

comparison between the command and the measured displacements shows good 

agreement and the inverse compensation method for actuator delay appears to work 

well. 

 

11.7.2 Comparison of Response 

To validate the response of the 3-story building from the real-time hybrid 

simulations, numerical simulations were also conducted using OpenSees with the 

variable current MNS MR damper model and the results are compared with the results 

from the real-time hybrid simulations. The same types of elements as used in 

HybridFEM (Figure 11.7) were employed to model the beams, columns, diagonal 

braces, and panel zones of the structure in the numerical simulations. The time 

integration algorithm used in OpenSees is the Newmark-β method with constant 

average acceleration. The Newton-Raphson method was used to account for element 

nonlinearity and an iteration procedure was performed until the displacement error 

norm (the Eucilidean norm) was of 5 10  for each time step.  

For the dampers in the OpenSees model, the variable current MNS model was 

used where the parameters for the 3rd story damper are the same as those identified in 

Chapter 3 (see Table 3.3). Although both dampers have the same configuration, the 
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dynamic behavior of each damper was slightly different; thus, new characterization test 

was conducted on the 2nd story MR damper using the procedure described in Chapter 3. 

Table 11.8 lists the MNS model parameters for the 2nd story MR damper. The 2nd and 

3rd story MR damper models used the same parameters for the dynamics of 

electromagnetism (i.e., 24.96,  3.57,  0.31,  0.30). 

Figures 11.15 through 11.16 compare the story drift and MR damper responses 

from the real-time hybrid simulation (RTHS) and the numerical simulation with 

OpenSees. The global time step used in the numerical simulations is Δt=0.005 sec. The 

damper force for the MNS models are obtained by evaluating the numerical integration 

with this time step utilizing the procedure given in Appendix 2. Figure 11.15 compares 

the story drift response when the structure is passively controlled and subjected to the 

1987 Superstition Hill ground motion. Figures 11.16 and 11.17 compare the MR 

damper response for the 2nd story and the 3rd story MR dampers, respectively. The 

damper force predicted by the MNS model matches the experimental damper force from 

the real-time hybrid simulation. Good agreement is observed between the story drifts 

from the real-time hybrid simulation and the numerical simulation. The damper force-

displacement relationship and the damper force-velocity relationship from the MNS 

model also show good agreement with the real-time hybrid simulation results. For the 

damper force-displacement relationship, the damper displacements from the real-time 

hybrid simulation are slightly larger than the numerical simulation results. The damper 

displacement was measured by the internal displacement sensor in the actuator in the 

real-time hybrid simulation. However, this does not affect the overall response of real-
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time hybrid simulation significantly because the damper force is mostly determined by 

the damper velocity which is zero at the peak displacement amplitude. A comparison 

for the semi-active controller cases is provided in Figures 11.18 through 11.29 for 

different earthquakes. For each case good agreement between the real-time hybrid 

simulation and the numerical simulation results is observed.  

A statistical comparison is presented in Tables 11.9 and 11.10, where the 

median maximum story drift and the median maximum absolute acceleration are 

tabulated for the real-time hybrid simulations and the numerical simulations using 

OpenSees. Good agreement is observed between the real-time hybrid simulation results 

and the numerical simulation results in these tables as well as in Figures 11.18 through 

11.29, validating the results of the real-time hybrid simulations. 

  

11.8 Real-Time Hybrid Simulations under Extreme Earthquake Ground Motions 

In Chapter 10, a study of collapse potential of the building was conducted using 

incremental dynamic analyses with OpenSees. This section presents a set of real-time 

hybrid simulations conducted to investigate the behavior of the building and to validate 

the incremental dynamic analysis procedure by incrementally increasing the intensity of 

the ground motions over a series of real-time hybrid simulations. In these real-time 

hybrid simulations, three different control strategies were studied: (1) passive 

controller; (2) the linear quadratic regulator (LQR); and (3) the phase angle controller 

(PAC). The sliding mode controller (SMC), the decentralized bang-bang (DBB) 
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controller, and the phase angle controller (PAC) had very similar performance to the 

passive control case in Chapter 10, and therefore only PAC is considered here.  

 

11.8.1 Analytical Substructure 

The analytical model is similar to that used for the numerical simulations 

assessing the collapse potential presented in Chapter 10 (see Section 10.3); an exception 

is the columns where the displacement-based fiber element in HybridFEM is used to 

model the columns of the MRF and the DBF instead of the force-based fiber element. 

Figure 11.30 shows the analytical substructure model for real-time hybrid simulation 

created using HybridFEM. The dampers of the experimental substructure are included 

in Figure 11.30 to illustrate the connectivity between the analytical and experimental 

substructures. The hybrid simulations included a total of 174 degrees of freedom. Nodal 

translational and rotation degrees of freedom were modeled in the model. The 

displacement-based fiber element has five sections along the element length and is 

discretized into 18 fibers, including 12 fibers for the web and 3 fibers for each flange of 

the members. The same parameters for the deterioration element at the end of beams in 

the MRF are used as listed in Table 10.1. In addition, the columns of the MRF are 

divided into three parts, with one linear elastic element in the middle and two 

displacement-based fiber elements at both ends. The length of the displacement-based 

fiber element is taken as 10% of the member length. 

 

11.8.2 Experimental Substructure 
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 The experimental setup describe in Section 11.5.3 was also used for the extreme 

ground motions. The command current was 2.5A for passive controller, and either 0.0A 

or 2.5A for the LQR and the PAC controllers.  

 

11.8.3 Ground Motions 

Only one ground motion was used in these real-time hybrid simulation. The 000 

component of the Canyon Country from 1994 Northridge earthquake (Table 11.1) was 

used. Three different ground motion intensities are considered, including: 1.0 times the 

MCE level, 1.33 times the MCE level, and 2.0 times the MCE level. The basis for the 

maximum intensity being 2.0 times the MCE level is explained later. The spectral 

accelerations at the fundamental period of the 0.6-scale building without the MR 

dampers, =0.94 sec. (see Table 6.17), for these intensity levels are =0.77g, 

=1.02g, and =1.54g, respectively, based on the scaling procedure discussed in 

Chapter 5.  

 

11.9 Results of Real-Time Hybrid Simulation under Extreme Earthquake Ground 

Motions 

 Since three control cases (passive, LQR, and PAC) were used, so a total 9 real-

time hybrid simulations were performed.  

As mentioned in Chapter 10, the large-scale MR dampers of this study have a 

stroke limit of ±279mm, implying that the damper can be operated up to a story drift of 

about 12.2%. The dampers however were not operated to their full stroke in the real-
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time hybrid simulations to avoid damaging them. Moreover, the two actuators in the test 

setup for the experimental substructure each have an operational velocity limit, as can 

be observed in Figure 11.2. With no force in the 1700kN actuator with 3 servo valves, 

the maximum velocity that can be achieved is 1.14m/sec . The maximum intensity of 

the ground motion is therefore limited to 2.0 times the MCE level to avoid exceeding 

the stroke limit of the dampers and the operational limits of the actuators in the test 

setup.  

 Figure 11.31 shows the results of the real-time hybrid simulations (RTHS) 

compared to the IDA curves obtained from the numerical simulations with OpenSees. 

The IDA curve from the numerical simulations shows the LQR controller has better 

performance than passive control and the PAC controller for the selected ground motion. 

This trend is also observed in the numerical simulations in Figure 11.31 as well as the 

results reported in Chapter 10 involving the ensemble of 44 ground motions. When the 

intensity is 2.0 times the MCE level, the structure with the LQR controller has a smaller 

drift than the other cases. At 1.33 times the MCE intensity level, the results from the 

real-time hybrid simulations are slightly different than the results from the numerical 

simulations for the LQR controller. However, an overall comparison shows that the 

hybrid simulation results match well the numerical simulations. Moreover, if 

HybridFEM is used for the numerical simulation, where the MR dampers are 

analytically modeled using the MNS model, the numerical simulation results exhibits 

better agreement with the real-time hybrid simulation results, as shown in Figure 11.32. 

The small difference between the real-time hybrid simulation and numerical simulation 
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results plotted in Figure 11.31 is attributed to the different integration algorithms used 

in the two simulations. As noted previously, the real-time hybrid simulations are 

conducted using HybridFEM in conjunction with the explicit CR integration algorithm. 

OpenSees was used conjunction with an implicit form of the Newmark-β method 

(constant average acceleration) along with Newton-Rahpson iteration. However, no 

significant differences in the predictions made by OpenSees and HybridFEM are 

observed, and the results are very consistent with those from the real-time hybrid 

simulations. 

 Figure 11.33 compares story drift time histories from a real-time hybrid 

simulation and an OpenSees numerical simulation for a ground motion intensity of 2.0 

times the MCE, where the global time step of Δt=0.005 sec is used.. The results in 

Figure 11.33 are for the LQR controller. The maximum displacement of the 3rd floor is 

about 0.4m in both cases, which corresponds to a 6% roof drift (3rd floor displacement 

divided by the building height from the ground level). The floor displacement from 

OpenSees shows good agreement with that from the real-time hybrid simulation. 

Figures 11.34 and 11.35 compare the MR damper response in the 2nd and the 3rd floors, 

respectively. The maximum velocity demand for the 3rd story MR damper is almost 0.9 

m/sec., which is much higher than that for the DBE level ground motion (where the 

maximum damper velocity was about 0.3 to 0.4m/sec). The damper forces from the 

MNS model are shown to match well the experimental damper forces under an extreme 

ground motion intensity.   
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Figures 11.31 through 11.35 validate the real-time hybrid simulation results 

under an extreme ground motion; the responses from the real-time hybrid simulations 

have good agreement with results from the numerical simulations. The MNS model is 

shown to predict well the MR damper response, even when under a high velocity 

demand, providing an accurate response prediction of structures with MR dampers 

under extreme earthquake ground motions.  

 

11.10 Summary 

 Real-time hybrid simulation were conducted to assess the SDP and evaluate the 

structural control strategies under the DBE, and to investigate the behavior of a 

structure under an extreme ground motion. The real-time hybrid simulations were 

performed on the 3-story building with MR dampers designed using the SDP as 

presented in Chapter 6.  The hybrid simulation results were compared with numerical 

simulation results. The numerical simulations were performed using OpenSees, using a 

different integration algorithm. The experimental substructure consisted of two large-

scale MR dampers. The analytical substructure was composed of various nonlinear 

elements considering the shear and flexural deformations at the panel zone, along with 

the moment-axial force interaction in the beams and columns. The real-time hybrid 

simulations were conducted using HybridFEM.  

 The analytical results from the SDP show good agreement with the results of the 

real-time hybrid simulations with the dampers in passive control. The statistical 

experimental response from the structure with various semi-active controllers was also 
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similar to that with passive control, consistent with the finding from the numerical study 

presented in Chapter 9.  

The real-time hybrid simulations conducted under the extreme ground motions 

showed good agreement with the IDA curves obtained from the numerical simulations. 

The MNS model is shown to accurately predict damper behavior under the DBE and 

MCE ground motions, as well as at higher levels of ground motion intensity where 

larger velocity demands are imposed on the dampers. These comparisons verify the 

accuracy of the MNS model and demonstrate its robustness. 
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Table 11.1 Ground motions for real-time hybrid simulation 

ID EQ name Year Station Mag. Comp. DBE scale 
factor 

1 Superstition 
Hills 1987 Poe Road (temp) 6.5 270 1.71 

2 Duzce, Turkey 1999 Bolu 7.1 90 0.64 
3 Landers 1992 Coolwater 7.3 LN 2.15 

4 Imperial 
Valley 1979 El Centro Array #11 6.5 230 1.95 

5 Northridge 1994 Canyon Country-
WLC 6.7 000 1.16 
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Table 11.2 Real-time hybrid simulation result for maximum story drift (%), DBE 
ground motions 

 
  Passive LQR SMC DBB PAC 

Superstition 
Hills 

1st story 1.10 1.11 1.11 1.14 1.10 
2nd story 1.13 1.20 1.14 1.14 1.17 
3rd story 1.26 1.50 1.30 1.32 1.44 

Duzce, Turkey 
1st story 1.37 1.22 1.32 1.36 1.30 
2nd story 1.70 1.66 1.69 1.71 1.68 
3rd story 1.75 1.81 1.75 1.79 1.80 

Landers 
1st story 0.99 0.91 0.96 0.97 0.90 
2nd story 1.11 1.13 1.13 1.12 1.09 
3rd story 1.31 1.34 1.33 1.34 1.35 

Imperial Valley 
1st story 1.57 1.53 1.59 1.58 1.57 
2nd story 1.63 1.70 1.70 1.67 1.72 
3rd story 1.76 1.88 1.84 1.82 1.91 

Northridge 

1st story 1.17 1.11 1.14 1.16 1.15 
2nd story 1.33 1.37 1.34 1.34 1.38 

3rd story 1.52 1.63 1.52 1.55 1.63 

Median 
response 

1st story 1.17 1.11 1.14 1.16 1.15 
2nd story 1.33 1.37 1.34 1.34 1.38 
3rd story 1.52 1.63 1.52 1.55 1.63 

Standard 
deviation 

1st story 0.23 0.23 0.24 0.23 0.25 
2nd story 0.27 0.26 0.28 0.28 0.28 
3rd story 0.24 0.22 0.25 0.24 0.23 
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Table 11.3 Real-time hybrid simulation result for MRF maximum beam plastic rotation 
(rad %), DBE ground motions  

 
  Passive LQR SMC DBB PAC 

Superstition 
Hills 

1st floor 0.24 0.25 0.25 0.27 0.25 
2nd floor 0.10 0.22 0.12 0.11 0.18 
3rd floor 0.15 0.37 0.16 0.20 0.31 

Duzce, Turkey 
1st floor 0.59 0.48 0.56 0.58 0.53 
2nd floor 0.72 0.73 0.72 0.74 0.74 
3rd floor 0.55 0.63 0.54 0.59 0.61 

Landers 
1st floor 0.10 0.06 0.09 0.09 0.04 
2nd floor 0.15 0.18 0.18 0.17 0.16 
3rd floor 0.17 0.19 0.17 0.19 0.22 

Imperial Valley 
1st floor 0.77 0.76 0.81 0.79 0.80 
2nd floor 0.58 0.69 0.68 0.64 0.70 
3rd floor 0.65 0.78 0.74 0.71 0.84 

Northridge 

1st floor 0.31 0.27 0.29 0.30 0.31 

2nd floor 0.35 0.44 0.38 0.37 0.43 

3rd floor 0.34 0.48 0.34 0.38 0.49 

Median 
response 

1st floor 0.31 0.27 0.29 0.30 0.31 
2nd floor 0.35 0.44 0.38 0.37 0.43 
3rd floor 0.34 0.48 0.34 0.38 0.49 

Standard 
deviation 

1st floor 0.27 0.27 0.28 0.28 0.29 

2nd floor 0.27 0.26 0.28 0.28 0.27 

3rd floor 0.22 0.23 0.25 0.23 0.24 
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Table 11.4 Real-time hybrid simulation result for maximum plastic rotation of MRF at 
the 1st story column base (rad %), DBE ground motions  

 
  Passive LQR SMC DBB PAC 

Superstition Hills 0.04 0.04 0.04 0.05 0.04 

Duzce, Turkey 0.16 0.06 0.13 0.15 0.11 

Landers 0.02 0.02 0.02 0.02 0.02 

Imperial Valley 0.34 0.28 0.35 0.34 0.33 

Northridge 0.04 0.02 0.03 0.03 0.03 

Median response 0.04 0.04 0.04 0.05 0.04 

Standard deviation 0.14 0.11 0.14 0.14 0.13 
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Table 11.5 Maximum absolute velocity (m/sec) of structure from real-time hybrid 
simulations, DBE ground motions 

 
  Passive LQR SMC DBB PAC 

Superstition 
Hills 

1st floor 0.401 0.432 0.404 0.402 0.410 
2nd floor 0.474 0.457 0.472 0.465 0.458 
3rd floor 0.595 0.654 0.605 0.604 0.619 

Duzce, Turkey 
1st floor 0.354 0.350 0.349 0.352 0.352 
2nd floor 0.471 0.442 0.456 0.465 0.459 
3rd floor 0.597 0.637 0.595 0.599 0.600 

Landers 
1st floor 0.404 0.393 0.400 0.401 0.399 
2nd floor 0.457 0.425 0.451 0.453 0.438 
3rd floor 0.520 0.523 0.516 0.516 0.504 

Imperial Valley 
1st floor 0.616 0.633 0.618 0.614 0.607 
2nd floor 0.602 0.630 0.616 0.608 0.625 
3rd floor 0.656 0.697 0.663 0.660 0.680 

Northridge 

1st floor 0.366 0.370 0.372 0.367 0.368 

2nd floor 0.399 0.403 0.396 0.395 0.405 

3rd floor 0.526 0.553 0.527 0.527 0.530 

Median 
response 

1st floor 0.401 0.393 0.400 0.401 0.399 
2nd floor 0.471 0.442 0.456 0.465 0.458 
3rd floor 0.595 0.637 0.595 0.599 0.600 

Standard 
deviation 

1st floor 0.107 0.115 0.108 0.107 0.103 
2nd floor 0.074 0.091 0.082 0.079 0.086 
3rd floor 0.056 0.073 0.060 0.060 0.071 
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Table 11.6 Maximum absolute acceleration (g) of structure from real-time hybrid 
simulations, DBE ground motions 

 
  Passive LQR SMC DBB PAC 

Superstition 
Hills 

1st floor 0.509 0.543 0.521 0.515 0.537 
2nd floor 0.555 0.553 0.559 0.560 0.564 
3rd floor 0.703 0.698 0.696 0.702 0.638 

Duzce, Turkey 
1st floor 0.517 0.517 0.472 0.507 0.546 
2nd floor 0.605 0.515 0.568 0.592 0.589 
3rd floor 0.602 0.584 0.589 0.598 0.597 

Landers 
1st floor 0.356 0.356 0.354 0.345 0.363 
2nd floor 0.435 0.409 0.412 0.424 0.420 
3rd floor 0.628 0.584 0.619 0.630 0.581 

Imperial Valley 
1st floor 0.537 0.466 0.539 0.534 0.504 
2nd floor 0.616 0.613 0.623 0.615 0.609 
3rd floor 0.742 0.739 0.738 0.740 0.684 

Northridge 

1st floor 0.393 0.405 0.369 0.389 0.422 

2nd floor 0.459 0.427 0.446 0.452 0.446 

3rd floor 0.562 0.560 0.535 0.559 0.555 

Median 
response 

1st floor 0.509 0.466 0.472 0.507 0.504 

2nd floor 0.555 0.515 0.559 0.560 0.564 
3rd floor 0.628 0.584 0.619 0.630 0.597 

Standard 
deviation 

1st floor 0.082 0.077 0.085 0.085 0.079 

2nd floor 0.083 0.086 0.089 0.085 0.086 

3rd floor 0.074 0.080 0.082 0.074 0.051 
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Table 11.7 Comparison of response from SDP and median maximum response from 
real-time hybrid simulation  

 

  Story SDP 
Real-time hybrid simulation  

Passive LQR SMC DBB PAC 

Maximum 
story drift 

(%) 

1 1.18 1.17 1.11 1.14 1.16 1.15 
2 1.35 1.33 1.37 1.34 1.34 1.38 
3 1.41 1.52 1.63 1.52 1.55 1.63 

Maximum 
damper 
force 
(kN) 

1 - - - - - - 
2 222.9 230.4 222.8 216.6 223.4 216.3 
3 233.6 254.7 226.6 251.2 250.7 242.2 

 
 
 

Table 11.8 MNS model parameters for the 2nd story MR damper 
 

Current 
I 

(Amps) 
 

(kN s/m) 
 

(kN/m) 

Positive force post-yield curve Negative force post yield curve 
 

(kNs /m) a 
(kN)

b 
(kN s/m ) n  

(m/s) 
a 

(kN) 
b 

(kN s/m ) n  
(m/s) 

0.0  12,000 120,000 19.5 158.6 1.30 0.010 -19.5 -158.6 1.30 -0.010 1.50 

0.5  11,500 118,000 41.2 162.5 0.81 0.010 -41.2 -162.5 0.81 -0.010 1.50 

1.0  12,000 118,000 91.5 122.5 0.52 0.010 -96.0 -134.9 0.60 -0.010 1.60 

1.5  12,000 118,000 95.0 195.5 0.61 0.010 -95.0 -195.5 0.61 -0.010 1.50 

2.0  11,491 110,030 111.3 209.3 0.62 0.003 -115.7 -199.3 0.64 -0.003 1.05 

2.5  11,500 115,000 126.6 213.9 0.63 0.010 -127.6 -216.7 0.68 -0.010 1.05 
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Table 11.9 Comparison of maximum story drift between real-time hybrid simulation 
and numerical simulation with OpenSees, DBE ground motions 

 

 
Maximum story drift (%) 

1st story 2nd story 3rd story 

Passive 
RTHS 1.17 1.33 1.52 

OpenSees 1.18 1.36 1.48 

LQR 
RTHS 1.11 1.37 1.63 

OpenSees 1.16 1.40 1.53 

SMC 
RTHS 1.14 1.34 1.52 

OpenSees 1.15 1.37 1.49 

DBB 
RTHS 1.16 1.34 1.55 

OpenSees 1.15 1.38 1.51 

PAC 
RTHS 1.15 1.38 1.63 

OpenSees 1.13 1.37 1.52 
 
 
 
 
 
Table 11.10 Comparison of median maximum absolute acceleration between real-time 

hybrid simulation and numerical simulation with OpenSees, DBE ground motions 
 

 
Maximum absolute acceleration (g) 

1st floor 2nd floor 3rd floor 

Passive 
RTHS 0.509 0.555 0.628 

OpenSees 0.458 0.558 0.610 

LQR 
RTHS 0.466 0.515 0.584 

OpenSees 0.453 0.524 0.621 

SMC 
RTHS 0.472 0.559 0.619 

OpenSees 0.449 0.523 0.600 

DBB 
RTHS 0.507 0.560 0.630 

OpenSees 0.441 0.554 0.606 

PAC 
RTHS 0.504 0.564 0.597 

OpenSees 0.509 0.533 0.595 
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Figure 11.1 Schematic of real-time hybrid simulation for a structure with MR dampers 

 
 

gx&&

iii Frxcxm =++ &&& ιGravity
frames

Structure with MR dampers

restoring force 
vector

Analytical substructure w/o MR dampers

i
ar : Analytical restoring force

Experimental substructure

i
er : Experimental restoring force

Discretized equation of motion

+

( ) ii
e

i
a

i Frrxcxm =+++ &&& ι

Discretized Equation of Motion

W3

W2

W1

Lean-on
Column

truss element

MRF DBF

panel zone
element

fiber element

el
as

tic
el

em
en

t

fib
er

el
em

en
t

truss element

fib
er

el
em

en
t

el
as

tic
el

em
en

t

elastic fiber
element

fiber
element

element

rigid floor diaphragm

tru
ss 

ele
ment

experimental
MR damper



357 
 

 
Figure 11.2 Hydraulic actuator power envelop for (a) a 1,700 kN actuator, and (b) 2,300 

kN actuator with a 20.7 MPa supply pressure 
 

 
Figure 11.3 Architecture of Lehigh RTMD IT system 
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Figure 11.4 Implementation of CR integration algorithm for real-time hybrid simulation 

(after Chen et al. 2009a) 
 
 
 

 
 

Figure 11.5 Conceptual actuator delay for inverse compensation (after Chen and Ricles 
2009c) 
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Figure 11.6 MATLAB Simulink blocks for HybridFEM 
 

 
 

 
 

Figure 11.7 Analytical substructure model for the evaluation of structural control 
strategies (dampers of experimental substructure included for clarity) 
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Figure 11.8 Schematic of test setup for each damper of the experimental substructure  
 
 
 

 
 

Figure 11.9 Experimental substructure with two MR dampers 
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Figure 11.10 Response spectrum of ground motions scaled to DBE 
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Figure 11.11 Comparison of command and measured actuator displacements for 2nd 

story MR damper where structure is subjected to Landers ground motion and damper is 
controlled by LQR controller: (a) overall comparison; (b) close-up near time of 

maximum displacement 

(a) 

(b) 
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Figure 11.12 Comparison of command and measured actuator displacements for 3rd 

story MR damper where structure is subjected to Landers ground motion and damper is 
controlled by LQR controller: (a) overall comparison; (b) close-up near time of 

maximum displacement 

(a) 

(b) 
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Figure 11.13 Synchronized subspace plot for 2nd story damper where structure is 
subjected to Landers ground motion and damper is controlled by LQR controller 
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Figure 11.14 Synchronized subspace plot for 3rd story damper where structure is 
subjected to Landers ground motion and damper is controlled by LQR controller 
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Figure 11.15 Comparison of story drifts between RTHS and OpenSees  

(Input EQ: Superstition Hill ground motion; Controller: passive)  
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Figure 11.16 Comparison of the 2nd story MR damper response 

(Input EQ: Superstition Hill ground motion; Controller: passive)  
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Figure 11.17 Comparison of the 3rd story MR damper response 

(Input EQ: Superstition Hill ground motion; Controller: passive)  
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Figure 11.18 Comparison of story drifts between RTHS and OpenSees  

(Input EQ: Duzce ground motion; Controller: LQR)  
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Figure 11.19 Comparison of the 2nd story MR damper response 

(Input EQ: Duzce ground motion; Controller: LQR)  
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Figure 11.20 Comparison of the 3rd story MR damper response 

(Input EQ: Duzce ground motion; Controller: LQR)  
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Figure 11.21 Comparison of story drifts between RTHS and OpenSees  

(Input EQ: Landers ground motion; Controller: SMC)  
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Figure 11.22 Comparison of the 2nd story MR damper response 

(Input EQ: Landers ground motion; Controller: SMC) 
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Figure 11.23 Comparison of the 3rd story MR damper response 

(Input EQ: Landers ground motion; Controller: SMC) 
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Figure 11.24 Comparison of story drifts between RTHS and OpenSees  

(Input EQ: Imperial Valley ground motion; Controller: DBB)  
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Figure 11.25 Comparison of the 2nd story MR damper response 
(Input EQ: Imperial Valley ground motion; Controller: DBB)  
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Figure 11.26 Comparison of the 3rd story MR damper response 
(Input EQ: Imperial Valley ground motion; Controller: DBB)  
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Figure 11.27 Comparison of story drifts between RTHS and OpenSees  

(Input EQ: Northridge ground motion; Controller: PAC)  
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Figure 11.28 Comparison of the 2nd story MR damper response 

(Input EQ: Northridge ground motion; Controller: PAC)  
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Figure 11.29 Comparison of the 3rd story MR damper response 

(Input EQ: Northridge ground motion; Controller: PAC)  
 
 

  
 
 

Figure 11.30 Modeling of the analytical substructure for real-time hybrid simulation 
with extreme ground motions (dampers of experimental substructure included for 

clarity) 
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Figure 11.31 IDA curves from OpenSees and real-time hybrid simulations for the 

Northridge ground motion  
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Figure 11.32 IDA curves from HybridFEM and real-time hybrid simulations for the 

Northridge ground motion  
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Figure 11.33 Floor displacements of the building with LQR controller subjected to the 

Northridge ground motion with two times the MCE level intensity ( =1.54g) 
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Figure 11.34 2nd story MR damper response of building structure with LQR controller 

subjected to the Northridge ground motion with two times the MCE level intensity 
( =1.54g) 
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Figure 11.35 3rd story MR damper response of building structure with LQR controller 

subjected to the Northridge ground motion with two times the MCE level intensity 
( =1.54g) 
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Chapter 12 

Summary, Conclusions, and Recommended Future Research 

 

12.1 General 

 In this dissertation, the seismic hazard mitigation of buildings using magneto-

rheological (MR) dampers was investigated. The study involved the identification and 

characterization of large-scale MR dampers, the development and assessment of a 

seismic performance-based design procedure, the performance evaluation of various 

MR damper structural control strategies under various seismic hazard levels, and the 

experimental validation of the performance based design procedure and numerical 

results by performing real-time hybrid simulations of a structure with MR dampers. The 

following is a more detailed summary of the research performed in this dissertation. 

 

12.2 Summary 

 In Chapter 2, a review of the existing MR damper models and semi-active 

controllers were conducted. Existing MR damper models based on mechanical 

components and intelligent systems, respectively, were summarized and their 

performance is discussed. The mathematical details for some commonly used semi-

active controllers for MR dampers were introduced. These controllers include: i) linear 

quadratic regulator (LQR); ii) sliding mode control (SMC); and iii) decentralized bang-

bang (DBB) control.  
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 Although various MR damper models have been developed, these models are 

based mostly on experimental data from tests performed on small-scale MR dampers. 

Only a few tests performed using large-scale MR dampers have been reported. The 

Bouc-Wen model and the hyperbolic tangent model have been employed by prior 

researchers to describe the behavior of large-scale MR dampers, and have been shown 

to predict reasonably well the nonlinear behavior of MR dampers. However, due to the 

complexity of these models that includes the nonlinear components of the model, the 

estimation of model parameters for these damper models is not easy. Moreover, it is 

difficult for these models to account for the non-Newtonian fluid behavior (i.e., shear 

thinning or thickening behavior) when a high velocity is imposed on the damper which 

can be prominent during a strong earthquake. To overcome these problems, a new MR 

damper model, called the Maxwell Nonlinear Slider (MNS) model, was developed and 

experimentally validated for passive (constant current input) and semi-active (variable 

current) applications in Chapter 3 and 4, respectively.  

In Chapter 3, characterization tests conducted on a large-scale MR damper and 

the formulation for the MNS damper model are presented, separating the pre-yield and 

post-yield behavior that occurs in the MR damper. A procedure for identifying the 

model parameters was presented using the particle swarm optimization (PSO) algorithm. 

An appropriate initial guess for the model parameters was easily made since the MNS 

model independently describes the pre- and post-yield modes of the damper. The MNS 

model parameters were identified for current levels from 0.0A to 2.5A with a 0.5A 

incremental step. The damper forces from the MNS model were compared to the 
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experimental damper forces from the characterization tests involving random 

displacement input and a pre-defined earthquake response input with a constant current 

input for the MR damper, i.e., in passive mode.  

In Chapter 4 the current driver used to provide variable current to the large-scale 

MR dampers was characterized by applying band limited Gaussian white noise 

command current to the driver. A second order transfer function correlating the 

command current with the output current from the current driver was provided. In order 

to account for the delayed response of the MR damper to a change in current, the eddy 

current effect was considered as well as the magnetization behavior of damper materials. 

The eddy current opposing the formation of a magnetic flux around the orifice of the 

damper causes the slow response of the MR damper to a change of current. An equation 

for a first order filter was derived based on electromagnetism theory, and a nonlinear 

equation correlating the current in the damper coil with an equivalent static current was 

proposed to accurately predict the damper behavior under variable current. The 

predicted damper behavior using the nonlinear equation was compared to the measured 

damper response during real-time hybrid simulations performed on a 3-story building 

structure. 

In order to enable the use of MR dampers for the seismic hazard mitigation of 

structures, a methodology to predict the behavior of MR dampers and to evaluate their 

contribution to reduce the structural response to seismic load needs to be incorporated 

into a design procedure. In this dissertation, a performance-based design procedure is 

proposed for structures with MR dampers based on a quasi-static MR damper model. 
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This procedure is called the simplified design procedure (SDP) because it uses only 

iterative linear elastic-static analyses. A systematic analysis procedure was developed in 

Chapter 5 to calculate the response of an SDOF structure with diagonal bracing and an 

MR damper without performing a nonlinear time history analysis. The prediction was 

based on the Hershel-Bulkley quasi-static MR damper model. The loss factor and 

equivalent stiffness of the MR damper were calculated from the hysteretic response of 

the quasi-static MR damper model. The equivalent damping ratio of the structural 

system was shown to be dependent on the displacement amplitude. Examples of 

response prediction by the procedure were presented and compared to the results of 

nonlinear time history analysis using OpenSees with the MNS model.  

Based on the work in Chapter 5, a simplified design procedure (SDP) for the 

performance-based design of structures with MR dampers was developed in Chapter 6. 

The SDP can be characterized into two major parts: i) estimation of the required MR 

damper capacity using a simple frictional model for the damper; ii) revision of design of 

the structure using a more sophisticated MR damper model. The simple frictional MR 

damper model can approximately provide a required force capacity of MR dampers, and 

designers can select MR dampers based on this information. Once the MR damper 

properties are determined, the Hershel-Bulkley quasi-static MR damper model enables a 

more accurate estimation of the response. A design example of a 3-story building 

structure utilizing the SDP with three different performance objectives was 

demonstrated. The moment resisting frame (MRF) of the building structure was 

designed to satisfy the current building code strength requirements. The drift 
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requirement was satisfied by adding a damped braced frame (DBF) with MR dampers. 

The performance objectives included limiting the maximum story drift of the structure 

to 1.5% and having the DBF remain elastic under the design basis earthquake (DBE), 

while under the maximum considered earthquake (MCE) the maximum story drift is 

limited to 3.0%. In Chapter 7 the SDP was validated by comparing the estimated 

response using the SDP with the statistical results of nonlinear time history analyses. An 

ensemble of 44 ground motions was used to generate the response statistics under the 

DBE and MCE in order to assess whether the performance objectives were met. 

A newly developed semi-active controller, called the Phase Angle Controller 

(PAC), is introduced in Chapter 8. The PAC does not require any user defined control 

parameters. It is based on the concept of having the damper reduce the response of the 

structure by having the current set to a maximum current if an impulse response of the 

damper is out of phase with the free vibration response of the structure based on current 

displacement and velocity.  

An evaluation of the performance of the four different semi-active controllers 

was performed in Chapter 9, including: i) LQR; ii) SMC; iii) DBB; and, iv) PAC. 

Nonlinear time history analyses were conducted with 44 ground motions scaled to the 

DBE and MCE levels, respectively, and statistical responses of the structure for each 

semi-active control case were compared to the passive control case (where the current is 

constant) and the case of the structure without dampers. The structure designed by the 

SDP presented in Chapter 6 was used for these numerical simulations. Issues of 

uncertainty related to incorrect structural properties and noise corruption of feedback 
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data are also studied in Chapter 9, as well as the effect of the response time of the MR 

damper force under variable current input.  

In Chapter 10, incremental dynamic analyses (IDA) using OpenSees are used to 

assess the collapse potential of the 3-story building structure with MR dampers 

designed as presented in Chapter 6 and studied in Chapter 9 under the DBE and MCE. 

The statistical response from the IDA was used to determine the collapse margin ratios 

(CMRs) of the building structure. A brief review of a flexural strength and stiffness 

deterioration structural element based on the modified Ibarra-Krawinkler model was 

presented. Flexural strength and stiffness deterioration in plastic hinge is considered 

along with the P-Δ effect as the major factors leading to the dynamic instability of a 

structure during an earthquake. The four semi-active controllers for MR dampers, the 

passive control case, and the case of no dampers were used in the numerical simulations. 

The collapse resistance of the structure with these various control strategies was 

compared using the CMRs and the collapse fragility curves.  

Chapter 11 describes real-time hybrid simulations that were performed to 

investigate the behavior of a structure with MR dampers under more realistic seismic 

demand. The various control strategies were systematically investigated, including the 

passive control and the four semi-active controllers. Two sets of real-time hybrid 

simulations were conducted. The first set was used to assess the various control 

strategies studied in Chapter 9 under the DBE and to assess the results from the SDP 

studied in Chapter 6. Five earthquake ground motions were selected and used in the 

real-time hybrid simulations. Statistical responses were obtained and the results of the 
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real-time hybrid simulations were compared to those of numerical simulations. The 

second set of real-time hybrid simulations was used to investigate the structural 

response under extreme ground motions that have a larger intensity level than the MCE, 

and which can lead to collapse of the structure. The second set of hybrid simulations 

used one ground motion with the intensity increased in each successive simulation in 

the set. The results were compared to IDA curves that were obtained numerically in 

Chapter 10. The hybrid simulation results for the structure and dampers were compared 

to the numerical simulation results from OpenSees to assess the MNS model as well as 

the real-time hybrid simulation concept over a range of earthquake intensities. 

 

12.3 Conclusions 

 Based on the observations and findings in this dissertation, the following 

conclusions are drawn. 

  

12.3.1 Characterization of MR Dampers 

• Non-Newtonian fluid behavior, i.e., the shear thinning or shear thickening behavior 

of MR fluids, was observed in the characterizations tests, as well as the real-time 

hybrid simulations involving the large-scale MR dampers used in this study. When 

the input current into the MR damper is 2.5A, the damper shows shear thinning 

behavior, while it shows shear thickening behavior for 0.0A current input.  

• It is difficult for the Bouc-Wen and the hyperbolic tangent models to account for the 

non-Newtonian fluid property, since the post-yield behavior of these models are 
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predominantly described by a linear dashpot. The MNS model based on the 

Hershel-Bulkley visco-plasticity element accurately captures the non-Newtonian 

MR fluid behavior.. 

• The damper force predicted by the MNS model shows exceptional agreement with 

the experimentally obtained damper force from tests involving constant and variable 

currents. These tests include the real-time hybrid simulations and tests with a 

predefined displacement input into the damper. The MNS model is shown to have a 

better prediction of actual MR damper behavior than the Bouc-Wen and hyperbolic 

tangent MR damper models.  

• The MNS model shows good response prediction for the cases where high velocity 

demands are imposed on the damper under extreme ground motions. The predicted 

damper forces and story drifts from numerical simulations matched well with the 

experimental damper forces obtained from real-time hybrid simulations, 

demonstrating the robustness of the MNS model. 

• The current driver manufactured by the Advanced Motion Controls exhibits a 

nonlinear response to the command current. The amplitude frequency response of 

the current driver varied according to the amplitude of the input command current, 

while the phase angle response was found not to be sensitive to the variation of 

input command current.  

 

12.3.2 Simplified Design of Structures with MR Dampers 
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• The equivalent stiffness and loss factor of the MR damper were derived from a 

damper hysteretic loop based on the Hershel-Bulkley visco-plasticity model. A 

simplified linear analysis procedure for estimating the response of an SDOF system 

with an MR damper was developed based on this linearized model for dampers. 

Good agreement between the results of nonlinear time history analyses and the 

maximum response from the equivalent SDOF was observed. 

• Using the 3-story building structure designed by the simplified design procedure 

(SDP), the procedure was validated by comparing the response of the structure from 

the SDP with the results of nonlinear time history analyses. The story drifts and 

maximum MR damper forces from the SDP showed good agreement with the 

median nonlinear time history analysis results. The response obtained from the 

nonlinear time history analyses showed that the performance objectives for the 

design of the building were met, confirming the accuracy of the SDP. 

• Two different methods were provided in the SDP for conducting the linear elastic-

static analysis; the equivalent lateral force (ELF) method and the response spectrum 

analysis (RSA) method. The responses calculated using the ELF are more 

conservative than those using the RSA for the 3-story building structure due to the 

fact that the total mass of the structure (instead of the first modal mass) is 

considered in calculating the base shear for the ELF. 

 

12.3.3 Assessment of MR Damper Semi-Active Controllers 
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• The statistical responses from the nonlinear time history analyses of the 3-story 

structure with 44 ground motions scaled to the DBE and MCE levels indicate that 

that the performance of the structure with the dampers in passive control is 

statistically similar to the that of the structure with semi-active controlled dampers. 

No significant differences in the structural response between the cases involving 

passive control and semi-active controllers were observed. 

• The stiffness matrix of the structure used in the design of the semi-active controllers 

was perturbed from -20% to 20 %, and the influence on the performance of semi-

active controllers under DBE and MCE levels of ground motion was investigated. It 

was found that the effect of a perturbed stiffness on the performance of the semi-

active controllers in controlling the structural response was not significant.  

• The study to investigate the effect of noise corruption in the feedback data, band 

limited Gaussian white noise was added to the feedback signal, where the amplitude 

of noise was calculated based on a selected signal-to-noise ratio (SNR). The effect 

of noise on the performance of semi-active controllers under DBE and MCE levels 

of ground motion was found from numerical simulations not to be significant. Even 

when the SNR was low (i.e., the noise level was high), no significant change in the 

performance of the semi-active controllers was observed. 

• The effect of the response time of the MR damper force on the performance of the 

semi-active controllers was numerically evaluated by adjusting the MNS model 

parameters related to the response time of the MR damper force. Some structural 

responses appeared to be affected by the response time when the SMC was used. 
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However, the overall performance of the semi-active controllers was not 

significantly affected by the response time, and in some cases improved 

performance was observed with a slower response time. 

 

12.3.4 Collapse Potential of Structures with MR Dampers 

• Except for the LQR controller, the performance of semi-active controllers was 

found to be similar to the passive control case with regards to the collapse resistance 

of the structure with MR dampers. In the case of the LQR controller, the MR 

damper forces were effectively controlled so that the collapse margin ratio (CMR) 

was improved compared to the passive control case. Although the improvement may 

not be significant (a 6.6% increase in the CMR compared to the passive control 

case), this result is clearly different than the results under the less intense DBE and 

MCE level ground motions where all of the semi-active controllers have similar 

performance to the passive control case. 

 

12.3.5 Real-Time Hybrid Simulation of Structures with MR Dampers 

• The results of real-time hybrid simulations show good agreement with the responses 

from the SDP, demonstrating again the accuracy of the SDP. 

• Results obtained from the real-time hybrid simulations involving the use of 5 

ground motions and various damper control strategies (both passive and semi-active) 

show good agreement with the structural response and damper forces obtained from 

the numerical simulations.  
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• The maximum ground motion intensity that was applied during the real-time hybrid 

simulations was 2.0 times the MCE level. The experimental results from the real-

time hybrid simulations show good agreement with the numerically obtained 

incremental dynamic analysis (IDA) curves.  

• The excellent agreement between the real-time hybrid simulations and the numerical 

simulations validate the method used for the real-time hybrid simulations, and 

demonstrate the accuracy of the MNS model under a range of ground motion 

intensities, ranging from the DBE to intensities larger than the MCE that lead to 

incipient collapse of the structure. In these real-time hybrid simulations, the 

performance of passive control was also found to similar to that of the semi-active 

controllers.  

 

12. 4 Recommended Future Research 

The MNS model of this dissertation does not consider the effect of temperature. 

A rise in the temperature of the dampers was observed during the real-time hybrid 

simulation. A reduction in the damper force with increasing temperature was observed. 

During an earthquake for which the duration of strong motion is less than one minute, 

the temperature rise and its effect on the damper force may not be significant. However, 

if the MR damper is subjected to long duration dynamic loadings, such as wind load, 

the temperature may increase significantly causing the MR damper force to be reduced 

significantly. The effect of temperature on the MR damper response needs to be further 
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studied, and MR damper models possibly refined to account for reduced damper force 

due to temperature rise. 

The dynamics of an MR damper associated with variable current is affected by 

the eddy current and the nonlinear magnetization of damper materials. Although the 

nonlinear differential equation proposed in Chapter 4 works well for the semi-active 

controllers considered this dissertation, it is not general for a wide range of input current 

with various frequencies and amplitudes. A rigorous experimental study needs to be 

performed to enable the development of models that accurately account for the 

hysteretic magnetization of damper materials. 

It is recommended that the SDP be used to design various structures with MR 

dampers to investigate the effect of building geometry (e.g., height, plan layout of 

lateral load resisting frames, mass distribution, and 3-D response) on the accuracy of 

design response prediction and the success of the SDP to achieve the design 

performance objectives. These studies should include different controller designs, 

where the effects of the parameters of the controller on the damper response and the 

structural performance are investigated. 

The conclusion that passive control results in a similar performance compared to 

the semi-active controllers under DBE and MCE ground motions is based on linear 

elastic theory for the controller design. To draw more general conclusions it is 

necessary to consider semi-active controller designs based on nonlinear structural 

response. Moreover, the effect of the user-defined parameters of the semi-active 

controller needs to be further investigated. The performance of the semi-active 
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controllers can be affected by the values of the user-defined parameters. The effect of 

building geometry (e.g., height, plan layout of lateral load resisting frames, mass 

distribution, and 3-D response) on the performance of the controllers needs to be 

investigated. 

Under extreme ground motions the performance of the LQR controller was 

statistically shown to be slightly better than passive control. Although the improvement 

was not very large, this result showed the feasibility of using semi-active controllers to 

enhance the collapse resistance capacity of a structure. It is recommended to further 

study the performance of semi-active controllers under extreme ground motions to 

assess their ability to improve structural response. These studies should include the 

effects of reaching the stroke limit of the dampers (when the dampers bottom out). The 

effect of building geometry should be included in these studies. 

Real-time hybrid simulations need to be conducted involving experimental 

substructures comprised of frames with the dampers. The effects of noise in measured 

response used as feedback data and errors in structural properties used to design the 

controllers can be experimentally evaluated. These types of tests will be of value in 

assessing the accuracy of real-time hybrid simulations in predicting the response of 

actual structures where the simulations are performed involving experimental 

substructures comprised of only the dampers, which is a more economical simulation 

than that with experimental substructures comprised of frames and dampers. The 

measured response of the dampers in these simulations will be of value to further assess 
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damper models to predict damper response and capture any interaction effects between 

the dampers and the frame that occur. 
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Appendix 1  

Determination of Coefficients of Maxwell Element 

 

 
 

 
 

Figure A.1 
 

The equilibrium equation of the Maxwell element shown in Figure A.1 is given by 

 

  (A1.1)   

 

Assuming the Maxwell element is subjected to a harmonic motion 

 

  sin (A1.2)   

 

The time derivative of  is obtained as 

 

  cos (A1.3)   

 

Since  is harmonic,  is also a harmonic motion described as 

 

  sin cos (A1.4)   

 

where,  and  are constants that describes the amplitude of  and the phase delay 

between  and . The time derivative of  is 

0x x

k c
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  cos sin (A1.5)   

 

Substituting (A1.2) ~ (A1.5) into (A1.1) results in 

 

  sin cos 0  (A1.6)   

 

Since the equation (A1.6) needs to be satisfied regardless at all instances of time , the 

following equations are obtained 

 

  0  (A1.7)   

  0  (A1.8)   

 

Thus,  and  are determined by solving (A1.7) and (A1.8) 

 

 
1 1   (A1.9)   

 

where, / . The damper force of the MNS model during the pre-yield mode is 

obtained from the equilibrium equation (A1.1) 

 

  sin cos (A1.10)   

 

When the damper velocity is a maximum, cos 1  from (A1.3); thereby, 

sin 0. Similarly,  cos 0 and sin 1, when the damper velocity is 

zero. Therefore,  and  in Figure 3.11 are determined as follows, by using (A1.10) 

 

    (A1.11)   

    (A1.12)   
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Let / , then, 

 

    (A1.13)   

 

Substituting (A1.13) into (A1.9) 

 

 
1 1   (A1.14)   

 

The damper coefficient  and  are obtained as follows 

 

 
1

  (A1.15)   

 
1

  (A1.16)   

 

By substituting /  into (A1.15) and (A1.16), the damper coefficients finally can 

be expressed as 

 

 
1

,
1

  (A1.17)   
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Appendix 2 

State Determination of MNS Model 

 

A2.1 Formulation Based on the Newmark-  Direct Integration Algorithm 

A2.1.1 Pre-yield Mode 

 The discretized equation of motion of MNS model during the pre-yield mode is 

written as 

 

    (A2.1)   

 

The incremental form of (A2.1) is  

 

  ∆ ∆ ∆   (A2.2)   

 

where, ∆ , ∆ , and ∆ . The incremental form of 

the Newmark-  direct integration algorithm is given as 

 

  ∆ ∆ ∆ ∆ 1 2   (A2.3)   

 

Using the constant average acceleration method (i.e., 1/4, 1/2 ), Equation 

(A2.3) is rewritten as 

 

  ∆
2

∆ ∆ 2   (A2.4)   

 

Substituting Equation (A2.4) into Equation (A2.2) yields, 

 

  ∆
∆ 2

2
∆

  (A2.5)   
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Since  during the pre-yield mode, ∆  in Equation (A2.5) is obtained as 

 

  ∆ ∆   (A2.6)   

 

where,  and  are known values. Therefore, the response at time   including 

values for the variables  and  as well as damper force  are determined using ∆  

from Equation (A2.5) and the known state of the MNS model at time  

 

  ∆   (A2.7)   

  ∆
2

∆ ∆   (A2.8)   

 
2
∆ ∆   (A2.9)   

 

With the given initial values, Equations (A2.7) ~ (A2.9) can be sequentially updated 

during the pre-yield mode. Once the mode changes from pre-yield to post-yield mode, 

these updated values are used as initial values for the state determination during the 

post-yield mode. 

 

A2.1.2 Post-yield Mode 

The variable  and  of the Maxwell element are continuously updated during 

the post-yield mode, and these updated values are used as initial conditions for the state 

determination of the pre-yield mode when the mode changes occurs from post-yield to 

pre-yield mode. The updating procedure for  and  is given below. 

Equation (3.8) at time step  is expressed as 

 

    (A2.10)   

 

The incremental form of Equation (A2.10) is  
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  ∆
∆ ∆

  (A2.11)   

 

where ∆  and ∆ . Since the damper is in the post-yield mode, 

 and  are given from Equation (3.4) or (3.5).  can be determined using the 

backward Euler scheme: 

 

 
∆   (A2.12)   

 

With the definition of , ∆  is determined as 

 

  ∆
2
∆   (A2.13)   

 

As the post-yield mode occurs after the pre-yield mode, the initial value of  can be 

obtained from the pre-yield mode response. Utilizing Equation (A2.4), Equation (A2.11) 

can be rewritten as 

 

  2
∆ ∆ 2

∆ ∆
  (A2.14)   

 

that is, 

 

  ∆
∆
2

∆ ∆
2   (A2.15)   

 

Knowing the state of the MNS model at time ,  is thus obtained as follows 
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  ∆   (A2.16)   

 

Finally,  is calculated by inserting Equation (A2.15) into Equation (A2.5), and then 

solving (A2.7).  

 

A2.2 Formulation Based on the CR Direct Integration Algorithm 

A2.2.1 Pre-yield Mode 

 The variation of displacement and velocity over the time step for the CR direct 

integration algorithm are defined as (Chen et al. 2009) 

 

  ∆   (A2.17)   

  ∆ ∆   (A2.18)   

 

The incremental form based on the CR direct integration algorithm is obtained by 

eliminating the acceleration term and combining Equations (A2.17) and (A2.18), where  

 

  ∆ ∆ ∆   (A2.19)   

 

Since  in the CR direct integration algorithm, Equation (A2.19) can be rewritten 

as 

 

  ∆
∆
∆   (A2.20)   

 

where, ∆ . Substituting (A2.20) into (A2.2) yields, 

 

  ∆
∆

∆
  (A2.21)   
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where, ∆  is obtained using (A2.6). Finally, the response at time   are determined 

using ∆  from Equation (A2.21) and the known state information for : 

 

  ∆   (A2.22)   

  ∆
∆
∆   (A2.23)   

 
∆
∆   (A2.24)   

 

A2.2.2 Post-yield Mode 

The damper forces  and  in post-yield mode are obtained using Equation 

(3.4) or (3.5). Utilizing Equation (A2.20), Equation (A2.11) can be rewritten in terms of 

 instead of  

 

  ∆
∆

∆ ∆
  (A2.25)   

 

where, ∆  is defined by Equation (A2.13). By rearranging Equation (A2.25) with 

respect to ∆ , 

 

  ∆ ∆
∆ ∆

  (A2.26)   

 

Thus,  is obtained as follows 

 

  ∆   (A2.27)   

 

∆  is calculated by inserting Equation (A2.26) into (A2.21) and the damper force is 

determined using Equation (A2.24). The internal variables  and  of the Maxwell 

element are updated during the post-yield mode via Equations (A2.27) and (A2.22). 
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A2.3 Formulation Based on the Forward Euler Method 

A2.3.1 Pre-yield Mode 

 Utilizing the forward Euler method,  is expressed as 

 

  ∆   (A2.28)   

 

where,  is determined based on the MR damper force  

 

    (A2.29)   

 

Since in pre-yield mode the velocities ,   is updated as 

 

  ∆   (A2.30)   

 

where,  and  are known values. Therefore, the damper force at time  is 

obtained from the following equilibrium equation 

 

  (A2.31)   

 

A2.3.2 Post-yield Mode 

 During the post-yield mode,  can be updated using Equations (A2.28) and 

(A2.29), where  is obtained from Equation (3.4) or (3.5).  is updated using the 

forward Euler method as 

 

  ∆   (A2.32)   

 

where,  is obtained from Equation (A2.10).  in Equation (A2.10) can be calculated 

by using either the backward Euler scheme as given by Equation (A2.12) or the forward 

Euler scheme.  



 416   
 

Appendix 3 Ground Motions 

Table A3.1 Far-field ground motions recommended for nonlinear time history analysis 
of structures (ATC 2009) 

 

ID Name Year M Station 
Component  
(file name)

Recorded 
Motion

Horz. 1 Horz.2 PGA
(g) 

PGV
(cm/s)

1 Northridge 1994 6.7 Beverly Hills 
– Mulhol MUL009 MUL279 0.52 63 

2 Northridge 1994 6.7 Canyon Country 
– WLC LOS000 LOS270 0.48 45 

3 Duzce, Turkey 1999 7.1 Bolu BOL000 BOL090 0.82 62 

4 Hector Mine 1999 7.1 Hector HEC000 HEC090 0.34 42 

5 Imperial Valley 1979 6.5 Delta H-DLT262 H-DLT352 0.35 33 

6 Imperial Valley 1979 6.5 El Centro
Array #11 H-E11140 H-E11230 0.38 42 

7 Kobe, Japan 1995 6.9 Nishi-Akashi NIS000 NIS090 0.51 37 

8 Kobe, Japan 1995 6.9 Shin-Osaka SHI000 SHI090 0.24 38 

9 Kocaeli, Turkey 1999 7.5 Duzce DZC180 DZC270 0.36 59 

10 Kocaeli, Turkey 1999 7.5 Arcelik ARC000 ARC090 0.32 40 

11 Landers 1992 7.3 Yermo Fire 
Station YER270 YER360 0.24 52 

12 Landers 1992 7.3 Coolwater CLW-LN CLW-RT 0.42 42 

13 Loma Prieta 1989 6.9 Capitola CAP000 CAP090 0.53 35 

14 Loma Prieta 1989 6.9 Gilroy Array #3 G03000 G03090 0.56 45 

15 Manjil, Iran 1990 7.4 Abbar ABBAR--L ABBAR--T 0.51 54 

16 Superstition Hills 1987 6.5 El Centro Imp. 
Co. B-ICC000 B-ICC090 0.36 46 

17 Superstition Hills 1987 6.5 Poe road (temp) B-POE270 B-POE360 0.45 36 

18 Cape Mendocino 1992 7.0 Rio Dell 
Overpass RIO270 RIO360 0.55 44 

19 Chi-Chi, Taiwan 1999 7.6 CHY101 CHY101-E CHY101-N 0.44 115 

20 Chi-Chi, Taiwan 1999 7.6 TCU045 TCU045-E TCU045-N 0.51 39 

21 San Fernando 1971 6.6 LA –
Hollywood Stor PEL090 PEL180 0.21 19 

22 Friuli, Italy 1976 6.5 Tolmezzo A-TMZ000 A-TMZ270 0.35 31 
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