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Abstract 

 

Nanoscale zero-valent iron (nZVI) is one of the most extensively applied nanomaterials 

for groundwater and hazardous waste treatment. Despite its high potential for 

environmental applications, there is limited knowledge about the fundamental 

properties of nZVI, particularly, its structure, surface composition, and changes in these 

characteristics in the aqueous media as the nanoparticles interact with aqueous 

contaminants. This research aims to investigate the structure and surface chemistry of 

nZVI and to understand how these attributes influence the material's reactivity towards 

various water contaminants. This work first involved a detailed examination of the 

metallic-core-oxide-shell structure using a variety of microscopic and spectroscopic 

tools. It was found that the polycrystalline metallic iron nuclei are spontaneously 

enclosed by a disordered layer of iron oxide that is 2-3 nm thick. Using a group of water 

contaminants (Hg(II), Zn(II) and hydrogen sulfide) as molecular probes, it was shown 

that the nanoparticles were able to utilize multiple pathways including adsorption, 

precipitation, reduction and surface mineralization to effectively immobilize these 

contaminants. The observed multiplexed reactivity is imparted by the particular core-

shell configuration allowing both the oxide and metal components to exert their reactive 

tendency without undue kinetic hindrance. The second theme of this research was to 

examine the structural changes experienced by Pd-doped nZVI during exposure to 

aqueous media. With scanning-TEM X-ray energy-dispersive spectroscopy (STEM-
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XEDS), the translocation of Pd from the surface to regions underneath the oxide layer 

and the rapid loss of the Fe(0) core due to accelerated aqueous corrosion were observed. 

The morphological changes resulted in a severe reduction in the reductive 

dechlorination rate of trichloroethylene (TCE), suggesting that the activity of Pd-doped 

nZVI is a dynamic function of time and particle structure. The close relationship 

between the structure and reactivity of nZVI is further illustrated by reactions with 

aqueous arsenite (As(III)). Notably, nZVI caused simultaneous oxidation and reduction 

of arsenite in the solid phase. Using depth-resolved high-resolution X-ray photoelectron 

spectroscopy (HR-XPS), multi-layered distributions of different arsenic valence states 

in the nanoparticles were observed, where the oxidized arsenic (As(V)) was 

predominantly present at the surface and the reduced form (As(0)) was located at the 

oxide/metal interface. The observed dual redox capability is therefore enabled by the 

metal core and oxide layer independently. The findings presented in this work establish 

that nZVI possesses more complex functionality than bulk-scale ZVI or iron oxides. 

The improved understanding of sequestration mechanisms studied here may inform 

optimal design of nZVI treatment systems and aid development of materials and new 

applications.    
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Chapter 1 

Introduction 

 

1.1 Background and motivation 

Nanotechnology is the science of understanding and control of matter at dimensions 

between approximately 1 and 100 nanometers (National Nanotechnology Initiative, 

2009). Since the term was first mentioned by the prophetic physicist Richard Reyman in 

1959, nanotechnology has evolved into a prominent research field that profoundly 

influences major science and engineering disciplines, where the unusual properties of 

nanomaterials are harnessed in applications impacting virtually all aspects of the 

modern society: energy production, chemical synthesis, electronics, lighting, 

biotechnology, and health care.  Among these, nanotechnology for environmental 

remediation is a highly anticipated frontier, as the growing demand for limited supply of 

clean water places an urgent need on technologies that can deliver faster, cleaner and 

more affordable clean-up measures.   

The field of engineered nanomaterials for environmental clean-up emerged when a 

small amount of nanosized iron particles, or zero valent iron nanoparticles (nZVI), were 

used to rapidly destroy a group of recalcitrant groundwater contaminants including 

tricholoroethylene (TCE) and polychlorinated biphenyls (PCBs) (Wang & Zhang, 2007).  
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This seminal work has stimulated an intense interest in nZVI to degrade a variety of 

water or groundwater contaminants, as reflected in the sharp increase in publications 

related to nZVI in recent years. For example, over three hundred publications can be 

identified by searching the keywords "zero-valent iron" and "nano" in the ISI database. 

The subjects of interest of these publications can be broadly categorized by the types of 

contaminants treated and the various properties and engineering aspects of nZVI being 

investigated (Figure 1.1). The size of each segment reflects the relative number of 

publications in the respective area, which conveys a sense about the breadth of scope 

covered by this multidisciplinary topic and the focuses of recent research efforts.  In 

addition to the well-studied halogenated organic compounds, the list of contaminants 

amenable to nZVI treatment encompasses many inorganic contaminants such as nitrate, 

Cr(VI), arsenic, heavy metals, and radionuclides. With an increasing number of field 

applications being conducted with nZVI for in situ groundwater and soil treatment, 

engineering aspects related to the stability, mobility and long-term eco-toxicological 

impact of nZVI have gained more attention. 

The development of nZVI technology builds upon earlier studies by Gillham and 

O'Hannesin (1994), who discovered that bulk zero-valent iron (ZVI) was able to reduce 

a group of halogenated organic aliphatic compounds in groundwater. This property of 

iron led to the conceptualization of iron permeable reactive barriers (PRBs), which 

involves placing a vertical trench filled with granular ZVI materials in the flow path of 

an underground contaminant plume (Scherer et al., 2000). 
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investigated in the literature (size of the segments reflects the number of publications in 
the respective area based on an open search in the ISI database using the keywords 
"zero-valent iron" and "nano").  

 

Well over one hundred PRB structures have been commissioned in the United States in 

the past two decades to remediate groundwater contaminated with halogenated organics, 

heavy metals, and radionuclides (Sacre, 1997; Gavaskar et al., 1998). This technology 

is considered an attractive alternative to the conventional pump-and-treat approaches, 

which are inherently expensive and operation intensive (EPA, 2001). Although ZVI-

PRBs were shown to be effective for many sites, the limitations have been noted with 

an increasing amount of field data becoming available. The effectiveness of PRBs 

varies with site-specific hydraulic and geochemical conditions. Decreased permeability 

due to precipitation of secondary mineral products and microbial growth is a critical 

concern for the long-term effectiveness of PRB installations (Battelle, 1999; Liang et al., 

2000).  Furthermore, costs associated with construction limit the use of PRBs for 

treating deep aquifers and localized pollution hot spots.  In this context, nanoscale ZVI 

(nZVI), or iron particles with diameters below 100 nm, is regarded as a complementary 

treatment technology (Theron et al., 2008; Karn et al., 2009). Because of their 

diminutive sizes, iron nanoparticles can be directly injected into groundwater by gravity  

or pressurized feed (e.g. via GeoprobeTM method), rendering it a more flexible treatment 

option and adaptable for localized source zones and sites with complex hydro-

geological characteristics (Li et al., 2006). Over 50 pilot or large-scale field applications 

of nZVI have been conducted over the last decade and the target contaminants in these 
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projects have included TCE and other chlorinated compounds, pesticides and chromium 

(Project on Emerging Nanotechnologies, 2009).  

Despite the engineering merits of nZVI technology and the intense research interest 

directed at this topic, fundamental knowledge of the nanoparticles, particularly their 

nanostructures, chemistry of their surfaces where contaminant degradation occurs, and 

changes in these properties in environmental media over time have not been 

systematically investigated. For example, while a huge volume of publications is 

available on the reactions of bimetallic nZVI with chlorinated compounds (Figure 1.1), 

the dynamic changes in reactivity of nZVI towards TCE due to changes in the surface 

properties of the catalytic metal with respect to the iron substrate were barely discussed 

in the literature (Muftikian et al., 1996; Zhu & Lim, 2007). As a result, many 

uncertainties remain concerning the fundamental features of this technology and its 

strengths and challenges compared to PRB-based remediation (Tratnyek & Johnson, 

2006).  

In early nZVI studies, the nanoparticles were viewed as a homogeneous entity of zero-

valent iron, whereas more recent studies suggest that the passivating oxide layer present 

on the nanoparticle surface bears important implications for the particle stability and 

reactivity (Liu et al., 2005; Li & Zhang, 2006). The oxide layer is not only capable of 

adsorbing contaminants and forming coordinative bonds, but is also permeable to 

electron and mass transport. This core-shell structure of nZVI thus imparts the 

nanoparticles with a dual functionality of oxide and metallic iron, and the sequestered 
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contaminants may distribute differentially in the nanoparticles depending on their 

chemical properties. Therefore, reactions enabled by nZVI must be evaluated in terms 

of the core-shell structure. This aspect, however, has not been systematically examined. 

Majority of the studies consider nZVI as a simple reductant (e.g. in reductive 

dechlorination reactions) or surface sorbents similar to iron oxide materials (e.g. in 

sequestration of metal pollutants).  

The research for this thesis was to investigate the basic properties of nZVI, namely, the 

structural and chemical nature of the nanoparticles, placing emphasis on characterizing 

their core-shell structure and the surface chemistry in order to understand how these 

properties affect or shape the interactions between nZVI and water pollutants. Due to 

the interdisciplinary nature of nanoparticle research that involves broad fields of 

material science, chemistry, and chemical engineering, a comprehensive investigation of 

iron nanoparticles requires methodologies developed in those fields. Therefore, a multi-

disciplinary approach was adopted here. The structural and surface chemical properties 

of iron nanoparticles were examined with a suite of microscopic and spectroscopic 

techniques including scanning and transmission electron microscopes (SEM and TEM), 

and high-resolution X-ray photoelectron spectroscopy (HR-XPS). The findings were 

integrated with results from conventional solution chemistry experiments in order to 

form a more complete and accurate understanding of the reactivity of nanoparticles in 

environmental treatment systems. Results from this work help to advance the 

understanding of reaction mechanisms and kinetics, improve the design of remediation 
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systems, and inform the long-term impacts of this technology on the receiving 

ecosystems. This grand scheme is illustrated schematically in Figure 1.2.  

 

Figure 1.2 Proposed research objectives and methods to investigate the reactions 
between nZVI and aqueous contaminants (reaction schemes are for illustration purpose 
and are not definitive).     

 

 

1.2 Research objectives 

Specifically, this research aimed to accomplish the following objectives:  

- Evaluate the microstructure of nZVI using a variety of microscopic (SEM/ 
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TEM/STEM-XEDS), spectroscopic (HR-XPS), and chemical reduction methods. 

Of particular interest was the nature of the core-shell structure of nZVI. 

- Characterize the changes in structure and phase distribution of nZVI materials in 

aqueous environment at different time stages.  

- Measure the solution chemistry, including pH and Eh profiles and the changes in 

contaminant concentrations, through laboratory batch experiments. The latter 

will provide the efficiency of nZVI in sequestering water contaminants. 

Candidate contaminants studied here are of vital environmental concerns, for 

example, copper, mercury, arsenic, and trichloroethylene (TCE).   

- Examine the products of reactions between nZVI and the above contaminants 

with surface analysis techniques (HR-XPS). Time-dependent analysis can be 

employed to characterize the distributions of reaction intermediates and products 

at different stages. Depth-resolved XPS techniques can be used to investigate the 

spatial distributions of contaminants immobilized by nZVI.  

- Integrate results from the above components, and propose improved or new 

models of reaction mechanisms and kinetics.  
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1.3 Dissertation overview 

This section provides an overview of the dissertation and highlights the focus and 

interconnections of later chapters. The sequence of presentation is as follows:  

• Chapter 2 gives a literature review of nZVI technology for water remediation, 

the current state-of-knowledge regarding the underlying mechanisms, and 

engineering experiences from in situ field applications.  

• Chapter 3 describes the methodology adopted in this study with detailed 

descriptions of experimental set-ups and instrument analysis procedures.  

• Chapter 4 examines the structural and chemical properties of nZVI using a suite 

of advanced spectroscopic and microscopic techniques, and proposes the core-

shell model of nZVI. The size of the oxide shell is quantified reliably by three 

independent methods, which provides a basis for later discussion on the unique 

role of the oxide shell in mediating reactions between the nanoparticles and 

environmental contaminants.  

• Chapter 5 examines the non-specific oxidation behavior of palladium-

impregnated nZVI in aqueous environments (dubbed 'aging') and the dynamic 

changes of nZVI structure that results from such aging processes. These changes 

bear important implications for the particle reactivity as reflected through a 

series of trichloroethylene dechlorination experiments. 

• Chapters 6 and 7 investigate the reactivity of nZVI towards a group of well-

chosen inorganic contaminants with varying coordinative, electrochemical and 
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redox properties. These contaminants are selected as molecular probes to 

evaluate the multi-faceted functionality of nZVI imparted by its core-shell 

composite structure. Specifically, Chapter 6 focuses on the role of adsorption, 

reduction, surface precipitation and mineralization processes in the sequestration 

of Hg(II), Zn(II) and hydrogen sulfide. Chapter 7 concentrates on one particular 

contaminant of great concern - arsenic, and shows how the internal structure of 

nZVI imparts a dual redox capability causing concurrent oxidation and reduction 

of arsenite species in the nanoparticles, as well as how these reactions determine 

the locations and chemical states of the solid-bound arsenic species.  

• Chapter 8 summarizes the major findings of this research, identifies new 

questions or research areas arising from these findings, and proposes future 

efforts to address these topics.  
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Chapter 2 

Literature Review 

 

2.1 Overview of ZVI technology development 

Nanotechnology has revolutionized the science of controlling materials at the atomic 

and molecular level since the visionary physicist Richard Feynman predicted that 

―There is plenty of room at the bottom" in 1959 (Feynman, 1959). Collectively, the 

term nanomaterials refer to all engineered or natural materials with a characteristic 

dimension below 100 nm (National Nanotechnology Initiative, 2009). At dimensions 

below 10 nm, materials exhibit novel chemical/photochemical, mechanical, electrical, 

and optical properties due to quantum size effects. More generally, nanomaterials 

exhibit increased chemical reactivity, which is thought to be brought about by a greater 

proportion of surface atoms, especially the more active edge and corner atoms, and 

distinct localized environments created by intermixing of atomic species (Mulvaney, 

2001; Campbell & Parker, 2002). In environmental studies, nanomaterials do not come 

as an entirely new concept. Many naturally-occurring particulate or colloidal materials 

with sizes in the range of a few to several hundred nanometers have been studied by 

environmental scientists, the most well-known examples being iron oxides and alumina 

silicates, which have been extensively studied for their adsorptive properties for 

aqueous ionic species (Stumm, 1992; Morel & Hering, 1993). 
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Zero-valent iron (Fe(0)) is a moderately strong reducing agent and electron donor. It 

reacts favorably with a large group of chemicals that have more positive 

electrochemical potential than iron (Gillham & O'hannesin, 1994). In the realm of 

environmental remediation, ZVI has been applied to the decontamination of 

halogenated hydrocarbons, azo dyes, munitions, nitrate, hexavalent chromium, arsenic, 

and heavy metals by transforming the contaminants into substances less harmful and 

more degradable (Matheson & Tratnyek, 1994; Johnson et al., 1996; Hundal et al., 1997; 

Gavaskar et al., 1998; Gu et al., 1998; Cao et al., 1999; Alowitz & Scherer, 2002; 

Wilkin et al., 2005).  

Since early 1990s, granular ZVI has been employed in a type of engineering fixture 

known as permeable reactive barrier (PRB) for in situ remediation of groundwater 

contaminated with chlorinated solvents or hexavalent chromium (Gavaskar et al., 1998; 

Gu et al., 1998; Wilkin et al., 2005). In essence, a PRB is a vertical wall in a funnel or 

gate design installed below the ground in the path of a contaminant plume. The funnel 

design directs a contaminant plume to the reactive barrier ('gate'), where the 

contaminants react with granular iron in a manner similar to a plug-flow reactor.  The 

effluent from a PRB typically has contaminants reduced to concentrations below the 

applicable USEPA regulatory levels. Several excellent review papers are available in 

the literature on the design, operation, and long-term assessment of PRB structures 

(Sacre 1997; Gavaskar et al., 1998; Scherer et al., 2000).  
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Nanoscale zero-valent iron (nZVI) can be regarded as an extension of zero-valent iron 

(ZVI) technology. The nanoparticles were first synthesized in our lab at Lehigh 

University and received widespread attention because of their greatly enhanced 

reactivity towards TCE and PCBs compared to conventional macro-sized ZVI particles 

(Wang & Zhang, 1997). The same group also synthesized a modified nZVI by doping 

the iron nanoparticles with a second metal, typically Pd, Pt, Cu or Ni, which proved 

even more effective for the degradation of halogenated hydrocarbons owing to the 

catalytic effect introduced by the second metal (Zhang et al., 1998; Lien & Zhang, 1999; 

Xu & Zhang, 2000). Concerted research efforts have been made since then and a wide 

range of contaminants are now identified as amenable to nZVI remediation  (Table 2.1). 

Pilot or large-scale field applications of nZVI have been conducted since early 2000, 

where nZVI was directly injected into the remediation site by gravity flow or under 

pressure into underground contaminant plumes (Elliott & Zhang, 2001) (Figure 2.1). 

More recently, a field test using nZVI in an emulsified state, produced by blending 

nZVI with stabilizing agents such as vegetable oil, has shown this form of nZVI to be 

effective for dehalogenation of a dense non-aqueous phase liquid (DNAPL) site. 

Compared to aqueous suspensions, emulsified nZVI can remain suspended in the liquid 

phase for a longer time, thereby enabling better penetration of the nanoparticles to the 

source zones and increasing the contact time (Quinn et al., 2005). 
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Table 2.1: Environmental contaminants amenable to degradation by nZVI (adapted 

from Li et al., 2006).  

 

Chlorinated Methanes 

Carbon tetrachloride (CCl4) 

Chloroform (CHCl3) 

Dichloromethane (CH2Cl2) 

Chloromethane (CH3Cl) 

Trihalomethanes 

Bromoform (CHBr3) 

Dibromochloromethane (CHBr2Cl) 

Dichlorobromomethane (CHBrCl2) 

 

 

Chlorinated Benzenes 

Hexachlorobenzene (C6Cl6) 

Pentachlorobenzene (C6HCl5) 

Tetrachlorobenzenes (C6H2Cl4) 

Trichlorobenzenes (C6H3Cl3) 

Dichlorobenzenes (C6H4Cl2) 

Chlorobenzene (C6H5Cl) 

 

Chlorinated Ethenes 

Tetrachloroethene (C2Cl4) 

Trichloroethene (C2HCl3) 

cis-Dichloroethene (C2H2Cl2) 

trans-Dichloroethene (C2H2Cl2) 

1,1-Dichloroethene (C2H2Cl2) 

Vinyl Chloride (C2H3Cl) 

 

Pesticides 

DDT (C14H9Cl5) 

Lindane (C6H6Cl6) 

Other Polychlorinated Hydrocarbons 

PCBs 

Pentachlorophenol (C6HCl5O) 

1,1,1-trichloroethane (C2H3Cl3) 

 

Organic Dyes 

Orange II (C16H11N2NaO4S) 

Chrysoidin (C12H13ClN4) 

Tropaeolin O (C12H9N2NaO5S) 

 

Other Organic Contaminants 

N-nitrosodiumethylamine (C4H10N2O) 

TNT (C7H5N3O6) 

 

Heavy Metals 

Mercury (Hg
2+

) 

Nickel (Ni
2+

) 

Cadium (Cd
2+

) 

Lead (Pb
2+

) 

 

Other Inorganic Anions   

Perchlorate (ClO4
−
) 

Nitrate (NO3
-
) 

Dichromate (Cr2O7
2-

) 

Arsenate (AsO4
3-

)  
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Figure 2.1 Schematic drawing of a field application of iron nanoparticles for 

underground contaminant remediation (adapted from PARS Environmental Inc, 2005)  

 

 

2.2 Preparation of nZVI and bimetallic nZVI 

Preparation methods can be categorized into two classes: top-down and bottom-up 

approaches. The latter entails piecing together iron atoms to form Fe(0) clusters at the 

nanometer scale. Typically, this is done by chemical reduction of ferrous (Fe(II)) or 

ferric (Fe(III)) salts (Glavee et al., 1995), or by vapor condensation in a vacuum or 

inert gas (Hahn, 1997). Various chemical reduction schemes have been used, among 

which the most widely adopted one is the borohydride reduction approach, where ferric 
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or ferrous ions react with sodium borohydride in water under intensive mixing (Wang 

& Zhang, 1997). The reaction is shown in Eq. 2.1: 

 4Fe
3+

 + 3BH4
-
 + 9H2O → 4Fe

0
(s) +3H2BO3

-
 + 12H

+
 +6H2 (g)  (2.1) 

This method, conducted under ambient temperature and pressure, can be routinely 

performed in common wet chemistry laboratories. However, the unit cost of wet 

chemistry synthesis is rather expensive (over $200/kg nZVI) due to the high cost of 

sodium borohydride and the labor required. This method is also difficult to scale up to 

an industrial scale due to the several separation steps involved and the large amount of 

wastewater produced (Li et al., 2009). 

Other bottom-up approaches, such as decomposition of iron pentacarbonyl (Fe(CO)5) 

in organic solvents, or reduction of goethite (α-FeOOH) or hematite (α-Fe2O3) by H2 at 

high temperature, have also been reported (Capek, 2004; Nurmi et al., 2005, Majewski 

& Thierry, 2007). However, chemical reactions often consume expensive and toxic 

reagents, and produce not only nZVI but also byproducts such as B(OH)3. For example, 

thermal decomposition of iron pentacarbonyl (Fe(CO)5) generates small (10-20 nm) 

and uniform-sized nZVI (Suslick et al., 1991), but iron pentacarbonyl is a highly toxic 

reagent and thus raises critical safety concerns. 

Top-down approaches start with bulk-sized iron materials, such as granular iron, and 

achieve size reduction through mechanical means. A precision ball-milling technique 

has recently been proposed, which uses stainless steel balls as the grinding media to 



22 
 

fragment the starting iron materials into pieces less than 100 nm in diameter in 

approximately 3 hours. Laboratory batch experiments using such milled nZVI particles 

and several well-studied chlorinated contaminants confirm the milled nZVI (8-hour 

milling time) has slightly higher chemical reactivity over the chemically made nZVI 

(Li et al., 2009). Thus, precision ball-milling offers an attractive route to green 

manufacturing of iron nanoparticles at quantities sufficient for full-scale remediation. 

Currently, this method has been adopted for routine manufacturing of nZVI by PARS 

Environmental, Inc.  

Preparation of bimetallic nZVI involves reductive plating of the as-synthesized nZVI in 

a salt solution of the metal to be added. Because the standard reduction potential of 

these metals (e.g., Pd, Pt, Ni, Cu, and Ag) are more positive than that of Fe(0), they are 

reduced by Fe(0) via classical metal replacement reactions and deposit as solid metals 

onto the nZVI surface (Zhang et al., 1998; Lien & Zhang, 1999; Zhu & Lim, 2007; 

Choi et al., 2008). The salt precursors of these metals can be in chloride (e.g., PdCl2 or 

K2PdCl6) or acetate (e.g., Pd(CH3COO)2) form. Generally, bimetallic nZVI from a 

chloride precursor is prepared in aqueous solutions, whereas those from acetate salts 

are done in ethanol or an ethanol/water mixture.  
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2.3 Characterizing physico-chemical properties of nZVI 

2.3.1 Morphology,  size, and crystallinity 

In SEM or TEM, nZVI appears as spherical particles typically in an aggregated form 

due to chemical and magnetic interactions (Sun et al., 2006). It has been mentioned in 

several studies that nZVI morphology and crystallinity are dependent on the synthesis 

methods. In a study by Nurmi et al., (2005), the morphology and crystallinity of the 

nZVI produced by borohydride reduction method (nZVI
BH

) and those by reduction of 

goethite or hematite by H2 (nZVI
H2

) were compared. nZVI
BH

 are spherical in shape and 

tend to form chain-like aggregates; both attributes are likely associated with the 

synthesis medium being a solution phase. nZVI
H2

 is composed of irregular-shaped 

particles and large faceted plates, the latter likely to be iron oxides (Nurmi et al., 2005).  

In terms of crystallinity, nZVI
BH

 and nZVI
H2

 exhibit distinct properties. The electron 

diffraction pattern of nZVI
BH

 is comprised of diffuse rings, indicating the metal phase is 

bcc polycrystalline iron with individual crystal grain sizes of < 1.5 nm (Liu et al., 2004). 

At this scale, the distinction between amorphous and polycrystalline iron is ambiguous. 

The lack of lattice fringes in HR-TEM micrographs suggests that the oxide phase is 

amorphous and disordered. In contrast, nZVI
H2

 exists mainly as single-crystal Fe(0) 

particles, and a highly crystalline iron oxide phase is evident from the faceted surfaces 

and the appearance of periodic lattice fringes (Nurmi et al., 2005).  
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Similar conclusions have been drawn from XRD studies. The broad peak at 45 2ϴ 

corresponding to bcc Fe
0
 for nZVI

BH
 indicates a highly disordered Fe

0 
core (Liu et al., 

2004). No peaks corresponding to iron oxide were noticed in the XRD spectrum, 

consistent with its amorphous nature. To analyze the fine structure of the oxide layer, 

Mossbauer spectroscopy has been conducted on nZVI
BH

 with the results showing the 

presence of mixed ferrous (Fe(II)) oxide and superparamagnetic ferric (Fe(III)) oxide 

(Kanel et al., 2006).  

Liu et al. (2004) evaluated the effect of crystallinity on TCE reduction rate for freshly 

synthesized nZVI
BH

 and compared to those that had undergone air oxidation (nZVI
ox

) 

and annealing (nZVI
cr

). The fresh nZVI particles had disordered Fe(0) and amorphous 

oxide phases as evident in HR-TEM images and XRD patterns. After three days of air 

exposure at ambient temperature, the oxidized nanoparticles underwent partial oxidation, 

although TEM analysis could not differentiate a significant change in the thickness of 

the oxide layer. Subsequent annealing of the oxidized particles produced nanoparticles 

with significantly more crystalline Fe(0) as bcc-Fe(0). TCE reduction tests showed that 

the fresh and partially oxidized particles were able to activate H2 to reduce TCE, while 

the annealed particles do not have such chemical reactivity. It was suggested in this 

study that disorder in the Fe(0) phase and the oxide layer were key to the reactivity of 

iron nanoparticles.  

Size and size distribution are important parameters for nZVI because they determine the 

effective surface area and relative amount of Fe(0) and oxide in the nanoparticles, 
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which have a direct influence on the total number of surface reactive sites and reactive 

capacity of the particles. The size distribution may be obtained by examining a large 

quantity of particles using TEM or by an ultrasound method. A characterization study 

dedicated to nZVI
BH

 produced in our laboratory showed that the particles were 

polydisperse (median diameter 60 nm with a relatively broad standard deviation of 42%) 

(Sun et al., 2006). In addition to microscopic or acoustic means, the nZVI size can be 

quantified indirectly by BET surface area measurements using the geometric correlation 

between the surface area and size of the nanoparticles (Li et al., 2009). 

 

2.3.2 Electrochemistry 

In applications of iron materials for reduction of chlorinated hydrocarbons and other 

contaminants, the formation of the surface oxide layer may pose long-term problems by 

reducing the activity of the metal surface, clogging pores, and reducing the permeability 

of a PRB structure (Odziemkowski, et al., 1997).  In an aqueous medium, iron 

inevitably reacts with water and releases Fe
2+

 (Eq. 3.2), and in aerobic conditions, it 

also reacts with dissolved oxygen
 
(Eq. 3.3). A portion of Fe

2+
 may further react with 

dissolved oxygen to produce Fe
3+

 (Eq. 3.4).  

 Fe
0
 + 2H2O  Fe

2+
 + H2 + 2OH

- 
(aerobic / anaerobic conditions) (3.2) 

 2Fe
0
 + O2 + 2H2O  2Fe

2+
 + 4OH

-
 (aerobic conditions)   (3.3) 
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 4Fe
2+

 + O2   4Fe
3+

 + 4OH
-
 (aerobic conditions)   (3.4) 

All of the above reactions can lead to increased pH due to production of hydroxyl ions 

(Eq. 3.2-4). However, the pH increase is most prominent in aerobic systems due to 

much higher iron corrosion rates (Matheson & Tratnyek, 1994). In alkaline pH, Fe
2+

 

will precipitate as Fe(OH)2, which may eventually form a surface layer to inhibit further 

iron dissolution (Gillham & O'Hannesin, 1994). Formation of other oxide phases has 

also been suggested, for example, goethite, green rust, and siderite (FeCO3) (Agrawal, 

et al., 2002; Su & Puls, 2004; Kanel et al., 2006). Odziemkowski et al. (1997) used 

Raman spectroscopy to identify the oxide phase formed as a result of granular iron 

corrosion in a simulated groundwater solution. It was found that under anaerobic 

conditions, ferrous hydroxide (Fe(OH)2) was formed during the initial stage of 

corrosion, which gradually transformed to magnetite (Fe3O4) as a more stable product 

regardless of the composition of the groundwater. Green rust was not identified in the 

Raman spectra, although other studies had found it in arsenic-contaminated water based 

on FTIR analysis (Su & Puls, 2004).  

A classical technique to examine the corrosion behavior of a metal is to use an anodic 

polarization voltammogram obtained with a rotating disk electrode (RDE) submersed in 

an electrolyte solution or amperometric measurements using a powder-disk electrode 

(PDE). In a PDE test, the electrodes are constructed in such a way that a small amount 

of nZVI is exposed to the electrode-solution interface. During the test, the potential is 

varied and the currents passed are recorded. A graph is made that plots the log of the 
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current (log(I)) as a function of the electrode potential (Ponder et al., 2001). An 

important feature of the graph is the singularity point where the net current drops to 

zero. The potential at this point is known as the corrosion potential, Ecorr. In the Bulter-

Volmer Equation (Eq. 3.5), Ecorr is the potential when the cathodic reaction rate (water 

reduction) equals the anodic reaction rate (iron corrosion) (Farrell et al., 2001):  

          
                               (3.5) 

 

 

where i is the net current; icorr is the corrosion current, E is the electrode potential, and 

βc and βa are the cathodic and anodic Tafel slopes, respectively.   

Ecorr is sensitive to the oxidation state of the iron material and the tendency of the 

material to corrode in the test medium. Oxidized iron gives a more anodic Ecorr (i.e., 

more positive Ecorr values) than Fe
0
, and similarly, iron covered by a surface-passivating 

oxide has Ecorr shifted to more positive values. Nurmi et al. (2005) compared the 

polarization curves of nZVI
BH

 and nZVI
H2

 versus bulk iron or iron oxides. They noticed 

that the Ecorr values for both nZVI materials shifted significantly to lower potential 

(cathodic shift) compared to bulk Fe
0
. Between the two nZVI materials, Ecorr values 

were similar. The results suggested nano-sized iron corrodes faster than bulk iron, 

which may be due to higher surface areas of nZVI materials or higher surface 

 

 Rate of cathodic 

reactions 

 Rate of anodic 

reactions 
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concentrations of defect sites that are able to facilitate electron passage and accelerate 

Fe(0) oxidation (Nurmi et al., 2005).  

Polarization curves have proven useful in the study of Cr(VI) sequestration by ZVI, 

because the product formed, Cr(III) hydroxide or oxide, is an excellent corrosion 

inhibition agent. Its accumulation on the iron surface results in a shift in Ecorr
 
in the 

voltammogram and a decrease in exchange current (Melitas et al. 2001).   

 

2.3.3 Surface chemistry 

The nature of the nZVI-water interface plays a key role in the reactivity and stability of 

the nanoparticles because the interface is where various processes, including corrosion, 

precipitation, contaminant adsorption and degradation, take place. Knowledge of the 

chemical composition and structure of the interface is indispensable in order to 

understand molecular-level mechanisms underlying the environmental applications. The 

techniques employed to investigate surface chemistry are many, for example, X-ray 

photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), extended X-ray 

absorption fine structure (EXAFS) or X-ray absorption near-edge fine structure 

(XANES), ion scattering spectroscopy (ISS), attenuated total reflection Fourier 

transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and atomic force 

spectroscopy (AFM). Table 2.2 summarizes the working principles of these techniques 

and their analytical capabilities and limitations. Each approach has its own strengths 

and limitations, such as a vacuum requirement and or low detection limits, and a 
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comprehensive understanding of nZVI surface chemistry and how it changes with 

reactions in water requires using more than one technique. Meaningful interpretation of 

these data should also take into account the aqueous phase chemistry to gain a holistic 

picture of the overall system containing both solid and liquid phases.  

A few studies have been published examining the surfaces of ZVI after reactions with 

contaminants. For example, AES was used to map the spatial distribution of Pd on a Pd-

Fe surface by McGuire et al. (2003). The bimetallic particles prepared in a neutral 

solution had Pd mainly at the surface and the Pd distribution was highly heterogeneous 

with distinct domains of Pd-rich and Fe-rich phases. In contrast, Pd-Fe prepared in an 

acidic solution had an intermediate Pd layer buried by an iron oxide surface layer. Such 

structural information may be useful to interpret the reactivity of the bimetallic particles 

because the availability of surface Pd, which are believed to act as catalytic sites for the 

intended reactions, directly influences the key mechanistic steps involved in 

dehalohydrogenation of organic halides.  

In studying nZVI-mediated heavy metal sequestration, XPS is frequently used to 

identify the chemical states of the surface-bound metal species in order to decipher the 

processes responsible for their removal. Li et al. (2007) reported that the actual 

mechanism of metal ion removal by nZVI depends on the redox potential of the metal 

relative to Fe(0) (E
0

h = -0.44 mV). Species with redox potential more negative than or 

close to that of Fe
0
, e.g., Zn(II) and Cd(II), are sequestrated by adsorption. Those with 

more positive redox potentials, e.g., Cu(II) and Ag(I), are entirely reduced to their metal 
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states on nZVI. For Ni(II) and Pb(II), which have redox potential slightly more positive 

than that of iron, both adsorption and reduction contribute to their removal.  

EXAFS and XANES are able to provide information on the local atomic environment 

and interatomic distances, which are particularly useful for elucidating the surface 

complexes formed between nZVI and inorganic ions. For example, XANES analysis of 

the mineral products extracted from a Cr(VI) site remediated by an iron PRB revealed 

that the chromium is converted to Cr(III) and it bonds in part with iron sulfide minerals 

formed as a consequence of microbially mediated sulfate reduction around the PRB area 

(Wilkin et al., 2005). Similar studies on Fe materials reacted with As(III) and As(V) 

have generated insights into the chemical states of the immobilized As species and the 

chelating structure formed by arsenic and iron corrosion products, and this will be the 

topic of discussion in a later section (Section 2.5).  

  



 
 

Table 2.2: Analytical techniques for surface chemistry studies (all instruments, except for EXAFS and XANES, are 

available at Lehigh University). 

Technique Working principle Information 

generated 

Probing 

depth 

(typical) 

Detection 

capability  

Sample 

requirement 

AES Near surface core-hole excitations 

stimulated by 1-10 keV incident 

electrons. Auger electrons with 

characteristic energies are emitted and 

analyzed.  

Elemental 

composition 

2 nm 0.1% Inorganic 

solids, vacuum 

env.  

AFM Bending of the probe due to Van der 

Waals forces between the surface and 

the probe. Probe deflection measured 

by various means.  

Surface morphology, 

magnetic and 

chemical properties 

Sub A 

 

NA All solid 

surfaces 

EELS Energy loss of surface scattered 

electron measured  

Surface electronic 

structure, coordination 

environment of 

surface atoms  

20 nm Few % <30 nm thick 

solids, vacuum 

env.  

ATR-FTIR FTIR spectrum of surface layer Identity and bonding 

geometry of surface 

molecules 

NA NA All solid 

surfaces  

ISS Surface bombarded by incident ions, 

whose momentum is transferred to 

surface atoms. The scattered ions are 

analyzed. 

Surface composition 3A 50 ppm – 

1% 

All solid 

surfaces, 

vacuum env. 

3
1

 



 
 

Table 2.2 Cont'd 

Note: adapted from reference 46-48. 

Technique Working principle Information generated Probing 

depth 

(typical) 

Detection 

capability  

Sample 

requirement 

EXAFS Monoenergetic photons excite a 

core hole. The change in the 

absorption cross section above the 

excitation threshold yields 

information on radial distances to 

neighboring atoms.  

Surface fine structure 

(note: the technique 

applies to bulk materials 

as well) 

Bulk Few % All solid  

XANES X-ray absorption within ~30 eV of 

the excitation threshold is 

measured, which is more sensitive 

to local 3-D geometry.  

Surface fine structure Bulk Few % All solid  

Raman  Raman shift of the scattered 

photons measured. Yields 

complementary information to 

FTIR. 

Identification and bonding 

geometry of surface 

molecules 

Few μm Few % All solid 

surfaces 

XPS  

(a.k.a. 

ESCA) 

Excitation of atoms by incident X-

ray photons generates 

photoelectrons. Energy of the 

emitted photoelectrons measured.   

Surface composition, 

oxidation state 

~3 nm 1 % All solid 

surfaces, 

vacuum env.  

3
2

 



33 

 

2.4 Reactions with chlorinated hydrocarbons 

Halogenated organic compounds are the most prevalent organic contaminants in 

groundwater due to their extensive use as industrial solvents, insulating fluids in 

electronic components, and dry cleaning agents in the past (Urbano & Marinas, 2001; 

Wong et al., 2009). The ability of zero-valent iron (ZVI) to reductively transform 

aqueous chlorinated solvents to less chlorinated compounds was first noted by Gillham 

and O’Hannesin (1994). From a historical perspective, reduction of organic halides by 

zero-valent metals has been in use for over a century in chemical industry for organic 

synthesis (Urbano & Marinas, 2001). It is generally agreed that there are two types of 

reduction at a metal surface: the ―indirect reduction‖ reduces organic halides via 

hydrogen species adsorbed on the metal surface. The metals here do not supply 

electrons, rather, they act as catalytic surfaces for absorption of atomic hydrogen 

species. Many noble metals, e.g. Pd and Pt, are known to mediate reduction through this 

mechanism. The other reduction pathway, "direct reduction‖, involves direct electron 

transfer between the adsorbed organic substrate and the metal surface. This mechanism 

applies to reduction at metals with high hydrogen overpotential, such as iron and zinc 

(Brewster, 1954), where the metals are corroded to provide electrons, hence the name 

―dissolving metal reductions‖.  

 

2.4.1 Monometallic nZVI 
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Micron-sized or bulk metallic iron powder is a moderately strong reductant for 

reductive dechlorination of chlorinated aliphatics (Gillham & O’Hannesin, 1994):  

Fe
0
 +  RCl + H

+
  Fe

2+
 + RH + Cl

-     
(3.6) 

Equation 3.6 is actually the net reaction of two electrochemical half reactions, shown in 

Eq. 3.7-3.8.  

 Fe
0
  Fe

2+
 + 2e

-
   E

0
 = -0.44V   (3.7) 

 RCl+ 2e
-
 + H

+
  RH + Cl

-
  E

0
 = 0.5 ~ 1.5 V at pH 7  (3.8)  

The half reaction of aliphatic chlorinated compounds in Eq. 3.8 has a standard reduction 

potential ranging form +0.5 to +1.5V (Matheson & Tratnyek, 1994). Thus, the reduction 

of chlorinated hydrocarbons by iron metal is thermodynamically favorable. 

Matheson & Tratnyek (1994) proposed three possible pathways of reductive 

dehalogenation:  

Pathway 1: direct reduction at exposed Fe(0) surface (e.g. corrosion pits) by electron 

transfer from the Fe(0) surface to the surface attached alkyl halide. 

Pathway 2: reduction by aqueous Fe
2+

 produced from iron corrosion (Eq. 3.2 & 3.3). 

Pathway 3: reduction by H2 from anaerobic corrosion (Eq. 3.2). 

It is shown by subsequent studies that direct reduction at Fe(0) surface is a minor 

process since the iron surface is inherently enclosed by an oxide layer in a core-shell 

configuration and the particles are continuously deposited with precipitates of corrosion 
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products (Liu et al., 2005; Reardon et al, 2008; Sarathy et al., 2008). Although ferrous 

ions can mediate the reduction of some contaminants such as hexavalent chromium 

(Eary & Rai, 1988), no reduction of carbon tetrachloride was observed in the presence 

of Fe(II) alone (Matheson & Tratneyk, 1994). However, this does not rule out the 

possibility that surface adsorbed Fe(II) may have reduction capability not present in 

aqueous free Fe(II) ions. Pathway 3 is regarded as being kinetically slow in the absence 

of a surface catalyst (e.g. Pd, Pt).  

In an elegant study designed by Weber (1996) using 4-aminoazobenzene as a probe 

molecule, it is confirmed that reduction is mediated by the surface of iron and not 

occurring in the aqueous phase. This study, combined with the above discussion, 

indicates that reductive dehalogenation is a process occurring at the iron surface 

involving electron transfer mediated by the iron oxide layer. Three possible 

mechanisms for such electron transfer were proposed by Scherer et al. (1998), which 

are depicted in Figure 2.2. The first mechanism involves direct electron transfer from 

exposed Fe(0) surface (e.g. corrosion pits) to the adsorbed contaminants. In the second 

mechanism, the oxide layer acts as semiconductor mediating electron passage. The third 

mechanism suggests the oxide behaves as a coordinative surface with surface Fe(II) 

participating in the reduction of the organohalides.  
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Figure 2.2 Possible roles of surface oxides in mediating reduction of chlorinated 

contaminants in water (from Scherer et al., 1998). 
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2.4.2 Bimetallic nZVI 

Bimetallic nZVI nanoparticles refer to a class of nZVI material produced by depositing 

a second metal, such as Pd, Pt, Ni, Cu or Ag, on iron nanoparticles. Among many 

transitional metals studied for catalytic dehalogenation reactions, Pd is the most 

commonly used heterogeneous catalyst for its optimal structural and chemical 

properties to generate hydrogen species and to cleavage the carbon-halogen bond 

(Alonso et al., 2002). Pd-based catalysts in gas phase hydrogenation reactions are well-

established, most well known examples are dehalogenation of CFC compounds, NOx 

reduction in selective catalytic conversion units in electrical power plants, and in 

catalytic converter of automobiles (Wong et al., 2009). Pd catalyst for ground water 

remediation is a relatively new field. Early studies used Pd and hydrogen gas to 

dehalogenate simple aliphatic hydrocarbons. Lowry & Reinhard (1999) studied 

dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE) with Pd on Al2O3 

support in the presence of hydrogen gas. Other than alumina, other supports, such as 

carbon, aluminosilicates, clay materials and various metal oxides have been evaluated 

for Pd catalysts as well (Alonso et al., 2002). 

Another form of Pd catalysts is produced by depositing Pd on top of a second metal, 

such as Fe, Ni, Mg, Au and others. In particular, Pd-Fe bimetallic system has become a 

fast growing field for groundwater remediation studies (a crude search using ―Palladium‖ 

and ―Iron‖ as the key words among leading environmental journals comes up with >200 

references). Early studies on tetrachloroethene (PCE), trichloroethene (TCE) and 
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dichloroethene (DCE) reduction with Pd-Fe particles suggest that palladized iron is able 

to degrade these simple organic halides at much higher rates than monometallic iron. 

Furthermore, Pd-Fe systems give off more saturated products and produce less 

chlorinated intermediates compared to iron alone (Muftikian et al., 1995; Lowry & 

Reinhard, 1999). A series of steps were proposed by Cheng et al. (1997) to account for 

the reductive dehalogenation mechanism in Pd-Fe systems, which is illustrated 

schematically in Figure 2.3: step 1) rapid iron corrosion and water reduction resulting in 

hydrogen gas evolution; step 2) adsorption and intercalation of hydrogen gas into the 

elemental palladium lattice, forming highly active hydrogen species; step 3) reduction 

of organic halides at the Pd surface or Pd-Fe interface. The role of Pd therefore lies 

essentially in its catalytic ability to adsorb and form dissociated hydrogen species as the 

active reducing agent.  
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Figure 2.3 Mechanisms of reductive dechlorination by Pd-nZVI particles (adapted from 

Cheng et al., 1997).   

 

More recent studies support the catalytic model proposed by Cheng et al. (1997), i.e. the 

enhanced reaction rates and the product distribution advantage of Pd-Fe systems are 

resulted from the synergistic effect between Pd and Fe, where Pd serves as the 

hydrodehalogenation and hydrogenation catalyst and Fe provides the hydrogen source 

through water reduction (Cwiertny et al., 2006; Bransfield et al., 2006; Schrick et al., 

2002; Nutt et al., 2005; Song & Carraway, 2008). Cwiertny et al. (2006) compared the 

activity of Pd to other metals (e.g., Cu, Ni, Pt, and Au) on metallic iron for 1,1,1-

trichloroethane reduction. At the same metal loading, Pd exhibited the highest activity 

relative to others, and the reaction rate constants of different bimetallic particles 

correlate very well with the theoretical solubility of atomic hydrogen in each additive 

metal. Another important clue in favor of the catalytic model is that organics with less 
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number of halogenated atoms in the molecule are more easily reduced by Pd, where as 

the opposite trend is followed if the reduction is mediated by iron surface (Alonso et al., 

2002; Song & Carraway, 2008). Since Pd-Fe systems are known to have minimal build-

up of partially chlorinated intermediates, the trend confirms the vital role played by Pd 

in dehalogenation reactions. 

Other mechanisms explaining the enhanced reactivity of Pd-Fe system have been 

proposed, such as galvanic effect, in which the presence of Pd forms a galvanic couple 

with Fe causing accelerated Fe corrosion and hydrogen evolution (Cwiertny et al., 

2007).  

Despite the reactivity enhancement offered by the bimetallic particles, there is a lack of 

systematic studies to characterize the microstructure and surface chemistry of bimetallic 

nZVI materials. Main reason for this is that the additive metal is present at a very small 

quantity relative to iron (typical loading < 5 wt.%) and its distribution on nZVI is often 

non-uniform with feature dimension less than 10 nm, which challenge both the 

detection limits and the resolution power of common analytical instruments. Among a 

handful studies available on bimetallic ZVI material characterizations, majority focus 

on additive metal distribution on iron surface in an attempt to correlate with their 

reactivity data. Using AES elemental mapping or SEM-EDS technique, it is showed that 

the distribution of the additive metal on iron surface is highly heterogeneous, forming 

patches of Fe-rich and additive metal-rich regions (Kim & Carraway, 2003; McGuire et 

al., 2003; Xu et al., 2005; Bransfield et al., 2006; Cwiertny et al., 2006 & 2007). Using 
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XRD, formation of additive Pd nano-islands in the iron matrix has been observed with 

Pd grain size estimated to be 3-4 nm (Lien & Zhang, 2007).  

All characterization works mentioned above were done on the freshly made bimetallic 

materials, and there is an underlying assumption in these studies that the properties 

measured do not change with reactions, while in actual conditions structural and 

surface-chemical changes are likely to occur. Very limited studies have attempted to 

evaluate this aspect. Muftikian et al. (1996) examined the changes in surface chemistry 

of a Pd-on-Fe film after reaction with TCE in aqueous phase. With XPS analysis, they 

noticed a significant decrease in surface Pd/Fe ratio after prolonged exposure to TCE 

solution. The Pd signal was recovered after the surface washed with hydrochloric acid. 

The authors proposed that Pd was buried underneath an iron hydroxide film resulted 

from iron corrosion over time, and cleaning with HCl re-expose the Pd surface by 

dissolving the hydroxide layer.  

 

2.5 Reactions with metal contaminants 

Recent studies show that nZVI is capable of sequestering a variety of metal 

contaminants including Cu(II), Zn(II), Pd(II), Cd(II), Ni(II), U(VI), Cr(VI) and Arsenic 

species (Shokes & Moller, 1999; Ponder et al., 2000; Su & Puls, 2001; Miehr et al., 

2004; Cao & Zhang, 2006; Li & Zhang, 2006 & 2007). Invariably, these studies 

observed significantly higher apparent removal rates with nanoscale iron particles 
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compared to micron-sized particles. Ponder et al. (2000) reported that the apparent rates 

of Cr(VI) and Pd(II) removal by nZVI immobilized on a Ferrogel are up to 30 times 

faster than those of iron filings on an equal molar basis. The enhanced reaction rate is 

primarily attributed to the increase in surface area because the surface-area normalized 

reaction rate constants are similar between bulk iron (iron powder or filings) and nZVI 

(Miehr et al., 2004). Since metal contaminants are eventually bound to the solid phase, 

a greater surface area represents a potentially more voluminous capacity for metal 

uptake. For instance, Cao & Zhang (2006) reported that the capacity for Cr(VI) 

sequestration of nZVI is 50-70 times higher than a commercial micron-scale iron 

powder.    

The mechanisms of metal removal have recently been elucidated with HR-XPS analysis. 

Li & Zhang (2006) have invoked a core-shell model for Ni(II) removal, whereby 

aqueous Ni(II) ions are first bound to the oxide surface via outer or inner-sphere 

complex formation, a portion of which are subsequently reduced to elemental nickel by 

accepting electrons transferred across the oxide layer from Fe(0) core (Li & Zhang, 

2006). In a follow-up study, the core-shell model is extended to a variety of metal 

species with different electrochemical properties (Li & Zhang, 2007). It is shown that 

the final states of the metal species are dictated by the reduction potentials of the metal 

with respect to that of iron. Species with E
0
 (standard reduction potential) more positive 

than iron, such as Cu(II) and Ag(I), are predominantly sequestered in their reduced 

states. Species close to or more negative than the E
0 

of iron (-0.44 V)  (e.g. Zn(II) and 
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Cd(II)) are removed by surface adsorption. Metals with E
0
 slightly higher than iron, for 

instance, Ni(II) and Pd(II), are removed by a combination of adsorption and reduction 

mechanisms (Li & Zhang, 2007). The reactions of nZVI with Cr(VI) and Arsenic 

species are more complex. They are addressed separately in the following discussion. 

 

2.5.1 Cr(VI) 

The stable forms of chromium in the environment are trivalent, Cr(III), and hexavalent 

chromium (Cr(VI), CrO4
2-

 or HCrO4
-
) (Patterson, 1985; Nriagu, 1988). At low 

concentrations, Cr(III) is non-toxic while Cr(VI) is a potent carcinogen. At present, the 

maximum concentration of total chromium in drinking water by USEPA regulation is 

100 µg/L (USEPA, ref 81). Cr(III) is sparingly soluble at circumneutral pH (pH of 5.5–

7.4), whereas Cr(VI) is highly soluble and mobile in the environment (Palmer & 

Wittbrodt, 1991).  

Within pH 2-10, it is shown that chromate ion is a stronger oxidant than water and 

reaction between iron and chromate (Eq. 3.9) dominates over aqueous corrosion (Eq. 

3.2-3.3) (Eary & Rai, 1988; Powell et al., 1995).  

 Fe
0 

+ CrO4
2- 

+ 2H2O + 2H
+
  Fe(OH)3(s) + Cr(OH)3(s)   (3.9) 

Blowes et al. (1997) conducted surface analysis using XPS and XANES (X-ray 

adsorption near-edge spectroscopy), and they confirm that the products of iron 
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oxidation and Cr(VI) reduction are Fe(III) hydroxide and Cr(III) hydroxide as in Eq. 3.9. 

They form a layer of precipitates on the surface of iron materials. Mixed Fe(III)/Cr(III) 

hydroxide solids have also been identified on the iron surface (Manning et al., 2007), 

which may be represented as FexCr1-xOH3 . Furthermore, Blowes et al. (1997) observed 

through SEM X-ray mapping that Cr(III) was not homogeneously distributed in the iron 

hydroxide phase. The goethite phase attracted the highest concentration of Cr(III) while 

other phases such as maghemite and lepidocrocite were low in chromium.    

Li et al. (2008) investigated the reaction products of Cr(VI) and nZVI using HR-XPS. 

Their reaction model, shown in Figure 2.4, suggests that aqueous Cr(VI) is initially 

removed from the solution by sorption and reduction  as enabled by the oxide shell and 

the Fe(0) core, respectively. The reduced Cr(III) species is incorporated into the 

growing surface oxide phase by forming mixed Fe(III)/Cr(III) hydroxide in an 

approximate stoichiometry of Cr0.67Fe0.33O(OH) or Cr0.67Fe0.33(OH)3.   

 

Figure 2.4 Proposed reaction model of nZVI and Cr(VI) (adapted from Li et al., 2008).  Fig. 4 Conceptual model of Cr(VI) immobilization with nZVI

Fe0

FeOOH

(CrxF1-x) (OH)3 (s)
CrxFe1-xOOH (s)

Cr2O7
2- (aq)

Cr (III) (ads.)
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Similar to other heterogeneous reactions, reaction rate of ZVI with Cr(VI) is a function 

of the surface concentration of Fe(0), A, and the aqueous Cr(VI) concentration. When 

abundant Fe(0) surface is present relative to Cr(VI), the rate can be simplified into a 

pseudo- first-order equation (refer to Section 2.6). However, several studies report that 

iron loses reactivity as Cr(VI) concentration increases (Ponder et al., 2000; Melitas et 

al., 2001). In a column study by Melitas et al. (2001), a Cr(VI) feed concentration 

below 5 mg/L resulted in complete chromium removal for over 100 days. Increasing 

Cr(VI) concentration in the feed stream to 10 mg/L led to breakthrough within a few 

days, indicating a loss in iron reactivity. The phenomenon was attributed to the 

passivating effect of Cr(III) hydroxide and mixed hydroxides deposited on the iron 

surface, with the hydroxides acting as an barrier layer inhibiting electron release from 

Fe(0) surface. Interestingly, the same chemistry is applied in metal corrosion prevention 

and accounts for the largest industrial use of chromate in the past. Increasing Cr(VI) 

concentration exacerbates the passivation effect. However, such effect has not been 

observed in field-scale remediation (Wilkin et al., 2005), possibly due to the Cr(VI) 

concentrations there being generally below 10 mg/L.  

It is found that the surface properties of ZVI exert a profound impact on the reaction 

rate and reduction capacity. Cao et al. (2006) reported that the reduction capacity of 

nano-ZVI particles was 50-70 times greater than that of iron powder under the same 

experiment conditions. The increased capacity was attributed to the larger surface area 

of nano-ZVI particles. In addition to surface area effect, metal surface structure is 
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known to affect its reduction potential significantly. It has been reported that iron filings 

by different manufacturers display varying degrees of performance in Cr(VI) removal 

ranging from extremely fast to essentially no effect (Powell et al., 1995). Impurities on 

the iron surface, particularly partially oxidized iron phase, may have caused accelerated 

corrosion of some iron filings as they form additional redox couples with Fe
0
 surface.  

 

2.5.2 Arsenic  

High levels of arsenic in groundwater pose a serious health threat to millions of people 

around the world (Nordstrom, 2002; Smedley & Kinniburgh, 2002). The most important 

anthropogenic sources of arsenic are from smelter operations and fossil fuel combustion 

(Smedley & Kinniburgh, 2002). The principal forms of arsenic in the aqueous 

environment are arsenite (predominantly as H3AsO3) and arsenate (as H2AsO4
-
 or 

HAsO4
2-

)  (Korte & Fernando, 1991; Dixit & Hering, 2003). Unlike chromium or 

selenium, which are more readily adsorbed in their reduced forms, arsenic is relatively 

more mobile in the reduced trivalent state (Smedley & Kinniburgh, 2002). This distinct 

property of arsenic explains its higher concentrations in groundwater than in surface 

waters. The heavy dependence on arsenic-contaminated groundwater as the primary 

source of water for drinking and irrigation uses place developing countries such as 

Bangladesh, India, Vietnam, and Cambodia in a particularly vulnerable situation 

(Meharg & Rahman, 2003; Dittmar et al., 2010), where there is no centralized water 
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treatment facility to remove arsenic to below the WHO guideline of 10 g/L (WHO, 

2008).  

Many options have been explored for arsenic removal and these include coagulation, 

adsorption, ion exchange, and membrane processes. Edwards (1994) studied the 

efficiency of arsenate (As(V)) removal using alum and ferric ions as coagulants. It is 

found that below pH 7.5, aluminum hydroxides are as effective as ferric hydroxides for 

As(V) removal. Ferric salts are more effective at higher pH and for As(III) removal. 

Adsorption of arsenic by naturally occurring metal oxides have been extensively studied. 

Both As(III) and As(V) can adsorb on a wide variety of adsorbents, most notably 

aluminum oxides and iron oxides (Manceau, 1995; Manning & Goldberg, 1997; 

Manning et al., 1998; Goldberg & Johnson, 2001). Adsorption takes place by ligand 

exchange with surface OH2 and/or OH
-
 sites. Many other forms of adsorbents have been 

developed to remove As(III) and As(V), such as surface-treated activated carbon and 

materials prepared from industrial or agricultural by-products, have shown promising 

potentials for low-cost As(V) removal (Huang & Fu, 1984; Huang & Vane, 1989; 

Mohan & Pittman, 2007). 

Raven et al., (1998) studied As(III) and As(V) adsorption on ferrihydrite at different pH. 

At the same arsenic initial concentration and metal oxide loading, the adsorption 

envelope of As(III) has a flat top over a broad pH range (pH 6-10), while adsorption 

maximum of As(V) occurs at pH 4-7.  The authors point out that, contrary to the 

misconception that As(III) is less adsorbable, As(III) can be retained at much higher 
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quantity than As(V) at higher pH (>7.5) or high As concentrations. This point is 

confirmed by other groups (Manning et al., 1998; Dixit & Hering, 2003). Dixit & 

Hering (2003) compared As(III) and As(V) adsorption among amorphous iron oxides 

(HFO), goethite, and magnetite. It is found that HFO has similar densities of sorption 

sites as the crystalline goethite (Table 2.3), but HFO possesses much higher adsorption 

capacity due to its higher specific surface area (600 m
2
/g vs. 54 m

2
/g for goethite). In 

the presence of phosphate ions, adsorption of both As(III) and As(V) adsorption are 

strongly affected, nevertheless, As(III) is still more adsorbable than As(V) over a wide 

range of pH.  

 

Table  2.3: Adsorption site densities of iron oxide materials (based on Dixit & Hering, 

2003). 

Sites/nm
2
 HFO Goethite Magnetite 

As(V) 

 

2.6 2.0 n/a 

As(III) 

 

3.5 2.0 2.2 

 

The implications of these results are multi-fold: since As(III) is adsorbed to a greater 

extent than As(V) over a broad pH, microbial reduction of As(V) in natural waters 

would not necessarily increase arsenic mobility. However, in iron reducing conditions 

occurring in deep aquifers, arsenic release may take place with iron mobilization 

(Sullivan & Aller, 1996). Another potential release mechanism is that, iron oxides 

initially formed in natural waters are amorphous in nature and have high surface areas, 
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however, the amorphous oxides may undergo crystalline transformation over time, 

which will cause decrease in sorption sites and release of solid bound arsenic. 

The molecular-level structures of As(V) or As(III) surface complexes on iron oxides 

have been studied using various spectroscopic techniques (Manceau, 1995; Manning & 

Goldberg, 1997; Manning et al., 1998; Goldberg & Johnson, 2001). Using shift in point 

of zero charge (PZC) as an indicator of inner-sphere complex formation and together 

with FTIR spectroscopic analysis, Goldberg & Johnson (2001) suggest that As(V) 

forms predominantly inner-sphere complexes with iron oxides, while As(III) forms both 

inner and outer-sphere complexes with iron oxides. Using EXAFS technique, Manning 

et al. (1998) and Fendorf et al. (1997) conclude that As(III) forms a single bidentate 

binuclear As(III) surface complex, whereas As(V) forms both bidentate binuclear and 

monodentate mononuclear structures (Figure 7.1 in chapter 7). Other structures, such as 

a bidentate mononuclear structure, have been reported by Ona-Nguema et al. (2005) for 

As(III) adsorption on ferrihydrite and hematite. The detailed structure and their relative 

distributions on the surfaces are found to vary with arsenic surface loading and the type 

of the iron oxide studied.  

Recently, zero-valent iron has been applied to the remediation of arsenic contaminated 

groundwater (Lackovic et al., 2000; Manning et al., 2002; Hussam & Munir, 2007). 

There is a generally accepted notion that the interaction between arsenic and zero-valent 

iron materials are predominantly via surface adsorption onto the oxide layer present on 

the metal iron surface (Lackovic et al., 2000; Farrell et al. 2001). Melitas et al. (2002) 
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suggest that As(V) reduction did not occur in solutions equilibrated with Fe(0)-

corroding surface (based on Tafel diagrams of iron wire electrodes in As(V) solutions), 

thus As(V) was mainly retained by surface adsorption. Similarly, Lackovic et al. (2000) 

found no evidence of As(V) reduction in leachates from ZVI-sand columns. Instead, 

they proposed that arsenate was retained by surface sorption and co-precipitation with 

sulfur species present in the ZVI material. These notions are largely based on aqueous 

analysis only and they are not backed by direct evidence from careful analysis of the 

solid phase.   

 More recent spectroscopic investigations of arsenic speciation in ZVI materials reveal 

that the immobilized arsenic is converted to different oxidation states from their 

aqueous forms, suggesting arsenic redox transformations have played an active part in 

the remediation.  X-ray photoelectron spectroscopy (XPS) analysis by Su & Puls (2001) 

detected no reduction of As(III) by ZVI filings but partial oxidation of As(III) to As(V). 

Manning et al. (2002) reported similar findings with X-ray absorption spectroscopy 

(XANES and EXAFS) for ZVI powders reacted under aerobic conditions, where they 

proposed the oxidation of As(III) might be mediated by iron corrosion products such as 

magnetite/maghemite or lepidocrocite. On the other hand, Bang et al. (2005) found a 

fraction of As(III) being reduced to As(0) on an acid-pretreated iron coupon under 

anoxic conditions. Table 2.4 summarizes findings presented by recent ZVI-arsenic 

studies. The discrepancies in these studies cannot be simply explained due to limited 

spectroscopic data sets available and variations in experimental conditions.  



 

 

Table 2.4: Summary of results of recent arsenic-ZVI studies.  

Iron material 

used 

Initial 

As state 

As 

speciation 

in the solid 

phase 

As state in 

the 

solution 

Reaction 

conditions 

ZVI corrosion 

products  

Proposed 

reaction 

mechanisms 

Reference 

Iron fillings  As(III) As(III) + 

As(V) 

As(III) + 

As(V) 

oxic batch 

reactor 

 Sorption, surface 

oxidation 

Su & Puls, 

2001,  

Iron fillings As(III) As(III) + 

As(V) 

As(III) + 

As(V) 

Oxic batch 

reactor  

Magnetite, 

maghemite, 

lepidocrocite 

Sorption, surface 

or homogeneous 

oxidation 

Manning et 

al., 2002 

Iron filings  As(III) NA NA Iron/sand 

mixed 

column 

 Sorption, 

precipitation 

Nikolaidis 

et al., 2003 

Nanoscale iron 

particles 

As(III)  As(III) + 

As(V)  

NA Oxic batch 

reactor 

amorphous iron 

hydroxide 

(short-term), 

Magnetite, 

maghemite, 

lepidocrocite,  

Sorption, surface 

oxidation 

Kanel et 

al., 2005 

Polished and 

acid-treated 

iron coupon 

As(III) As(III) + 

As(0) 

NA Anoxic 

batch 

reactor 

Iron hydroxide Sorption, 

reduction 

Bang et al., 

2005 

Iron powder 

 

As(III) NA As(III) + 

As(V) 

Oxic batch 

reactor 

 Sorption, 

oxidation 

Hug et al., 

2008 

Iron powder As(III) As(III) + 

As(V) 

NA Oxic batch 

reactor, 

column 

Carbonate green 

rust 

Sorption, co-

precipitation, 

oxidation 

Lien & 

Wilkin, 

2005 

5
1
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The oxidative capability of zero-valent iron is generally considered to be a result of 

Fenton Chemistry involving Fe(II) and H2O2 produced from aerobic ZVI corrosion (Joo 

et al., 2004; Katsoyiannis et al., 2008). The production of Fe(II) and H2O2 follows two-

electron transfer from Fe(0) (Eq. 3.10). H2O2 can be reduced to water with another two-

electron transfer from Fe(0) (Eq. 3.11), alternately, it can react with Fe(II) to produce a 

potent oxidant, OH∙ radical, under acidic conditions or Fe(IV) species at neutral to 

alkaline pH (Joo et al., 2004; Lee & Sedlak, 2008), as shown in Eq. 3.12-3.13. 

 O2 + Fe
0
  Fe

2+
 + H2O2       (3.10) 

 H2O2 + Fe
0
  Fe

2+
 + H2O      (3.11) 

 H2O2 + Fe
2+

 Fe
3+

 + OH∙ + OH
-
 (acidic pH)   (3.12) 

 H2O2 + Fe
2+

  Fe(IV)   (pH > 5)   (3.13) 

Under neutral pH conditions, Fe(II) may react with O2 directly to produce O2∙
-
 radicals.  

 Fe
2+

 + O2  Fe
2+

 + O2∙
-
   (pH ~ 7)   (3.14) 

Compared to bulk iron, nanoscale ZVI yields more H2O2 and Fe(II) due to more rapid 

and continual iron corrosion (Joo et al., 2004). Thus, formation of oxidants such as 

H2O2, OH∙, ferryl species, and O2∙
- 
is more significant. Higher yield of oxidants per mole 

of nZVI added is observed at lower doses of nZVI. This may be related to the increase 

in Fe(II) ion concentration at higher nZVI doses, which serves as a competitive 

scavenger of OH∙ radicals. It is noted that pH plays a large role in the type and quantity 
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of oxidants formed (Katsoyiannis et al., 2008). It is suggested that at pH less than 5, 

OH∙ radicals are the dominant oxidant responsible for As(III) oxidation (Hug & Leupin, 

2003). At neutral pH, a different but weaker oxidant accounts for As(III) oxidation. The 

identity of this weaker oxidant is subject to intense debate, with several species, e.g. 

Fe(IV), HO2∙, and O2∙
-
, being the possible candidates (Hug & Leupin, 2003; 

Katsoyiannis et al., 2008; Lee & Sedlak, 2008). These reactions are given in Eq. 3.15-

3.16. 

  As(III) + OH∙ As(V)   (acidic pH)  (3.15) 

 As(III) + Fe(IV) / HO2∙ / O2∙
- 
  As(V) (neutral pH)  (3.16) 

The facile oxidation of As(III) by Fe(0) in the presence of O2 may be one of the most 

important abiotic pathway for arsenic oxidation, and may explain rapid oxidation of 

As(III) in groundwater to As(V) when pumped to surface (Hug & Leupin, 2003) 

 

2.6 Kinetic models of nZVI treatment 

It is generally observed that the reaction rates of iron nanoparticles follow pseudo-first-

order kinetics. The apparent rate constant, kobs, is proportional to the reactive sites on 

iron surface, which is equivalent to the product of the surface-area-normalized specific 

reaction rate constant, kSA, surface area of iron, s, and the mass concentration of iron in 

solution, m (Johnson et al., 1996), as in Eq. 3.17.  

 -dC/dt = kobsC = kSAsmC       (3.17)  
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Eq. 3.17 suggests that kobs = kSAsm, thus plotting kobs by sm should give kSA, which 

is an intrinsic property of the iron material and is independent of the mass of iron dosed 

or the volume of the system. By comparing the kobs and kSA
 
data of benzoquinone (BQ) 

and carbon tetrachloride (CT), Nurmi et al. (2005) conclude that the intrinsic reactivity 

of nanoscale-ZVI particles is comparable to that of bulk iron. The enhanced rates are 

simply the result of increased specific surface areas.  

Pseudo-first-order kinetic model shown above has been observed during degradation of 

carbon tetrachloride, TCE, nitrobenzene, and chromate with Fe(0) particles (Matheson 

& Tratnyek, 1994; Gillham & O'Hannesin, 1994; Johnson et al., 1996; Miehr et al., 

2004). This model has been shown to be particularly applicable to aliphatic chlorinated 

compounds based on extensive kinetics data obtained using different types of iron 

particles (Miehr et al., 2004). Eq. 3.17 is a simplistic model assuming that there is no 

loss of reactivity of the metal surface over prolonged exposure to contaminant media. In 

practical scenarios, reductions in reaction rate constants have been observed. For 

instance, at elevated Cr(VI) concentrations, iron particles are deactivated due to strong 

passivation effect of Cr(III) hydroxide and mixed oxides formed on the iron surface 

(Ponder et al., 2000; Melitas et al., 2001).  

Another type of deviation from Eq. 3.17 is that the reaction rate constants are found to 

vary with the initial contaminant concentrations. For example, Johnson et al. (1996) 

discovered that carbon tetrachloride degradation rate increased with CT concentrations 

until it reached a saturated value at relatively high concentration. This kind of kinetic 
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behavior is attributed to surface saturation effect. Mixed-order reaction rate model is 

proposed to account for this effect (Eq. 3.18).   

 - dC/dt = 
   

      
       (3.18) 

Where k0 can be interpreted as the maximum reaction rate, and k1/2 as a parameter 

indicating the affinity of contaminants for the surface sites. Eq. 3.18 is in close analogy 

to the well-known Michaelis-Menten Equation.  

 

2.7 Improving nZVI transport in subsurface media  

The potential of nZVI as an in situ remediation agent hinges on the ability of the 

nanoparticles to migrate in subsurface porous media. Early studies reported that bare 

nZVI travelled limited distance in packed sand columns, which was primarily attributed 

to the aggregation of nZVI as commonly noted in many characterization studies (Nurmi 

et al., 2005; Sun et al., 2006). Such aggregation behavior cannot be accounted for by 

the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which predicts that 

the colloidal stability of charged particles is controlled by the attractive Van der Waals 

force and the repulsive electrostatic interactions, thus the net result of the two forces 

would create an energy barrier preventing particle aggregation at low ionic 

concentrations (Elimelech et al., 1995). Latest results indicate that an attractive 

magnetic interaction among nZVI particles may play a crucial role in particle 
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agglomeration, particularly at high particle concentrations. A modified DLVO model 

has been developed which yields potential curves without energy barriers and predicts 

rapid association of the particles in reasonable agreement with the experimental 

observations (Phenrat et al., 2007; Phenrat et al., 2009).  

A variety of engineering approaches have been explored to modify the particle surfaces 

to mitigate particle agglomeration. Many commercially available, non-toxic polymers 

such as polyacrylic acid (PAA), guar gum, and carboxymethylcellulose (CMC) have 

achieved varying degrees of success in improving particle stability (He et al., 2007; 

Tiraferri et al., 2008). There are generally two approaches to introduce a polymeric 

coating onto nZVI surface: by mixing the polymers with pre-formed nanoparticles and 

by synthesizing nZVI in polymeric solutions (He & Zhao, 2005; Phenrat et al., 2009). 

By similar mechanisms, naturally occurring macromolecules such as fulvic acids and 

humic acids can act as stabilizers to retard the aggregation of nanoparticles (Johnson & 

Tratnyek, 2009; Fatisson et al., 2010). Recent modeling efforts show that the presence 

of natural organic matter can carry pressure-injected nZVI slurry for distances up to 

several meters (Johnson & Tratnyek, 2009), and conceivably the migration length can 

be further improved with the amendment of engineered polymeric coatings.  

Improved mobility of the surface-modified nZVI has been confirmed in situ in recent 

field applications, among which, direct treatment of an underground TCE DNAPL 

phase was documented using a type of emulsified nZVI (Quinn et al., 2005). In this 

study, the nanoparticles were trapped in oil-in-water droplets for better contact with the 
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DNAPL plume and were delivered by a pressure pulse injection method. Short-term 

reductions in TCE concentrations indicative of abiotic degradation were recorded. Data 

from a more recent field study using CMC-stabilized Pd-nZVI for PCE and TCE 

remediation suggests that nZVI amendment may invoke rapid abiotic degradation 

within a few weeks after injection and stimulate slower but persistent biodegradation 

processes spanning over several years. In the latter case, iron and surfactant molecules 

served as excellent stimulating agents for the indigenous anaerobic microbial 

populations (He et al., 2010). 
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Chapter 3 

Experimental Methodology 

 

This chapter describes in details the materials and methods used in nZVI experiments. 

The iron nanoparticles used in this study were prepared in the laboratory and were not 

from commercial providers. All chemicals were of reagent grade and were used as 

purchased without further purification. Instrument analyses, unless otherwise noted, 

were performed in the Department of Civil and Environmental Engineering and the 

Center for Advanced Materials and Nanotechnology (CAMN) at Lehigh University.  

 

3.1 Synthesis of nanoparticles 

3.1.1 Iron nanoparticles 

Iron nananoparticles were prepared in batch of ~ 10 g by slowly introducing sodium 

borohydride solution (NaBH4, Finnish Chemicals, 0.2M) into ferric chloride solution 

(FeCl3∙6H2O, Alfa Aesar, 0.05M) until reaching a volume ratio of 1:1.  During the 

process, the aqueous mixture was intensely mixed with a rotary mechanical mixer at a 

speed of 650 rpm at room temperature. The fluid turned from brownish clear solution to 
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jet-black slurry as ferric ions being reduced to metallic iron according to the following 

reaction (Glavee et al., 1995): 

 4Fe
3+

 +3BH4
-
 + 9H2O  4Fe

0
 (s) + 3H2BO3

-
 + 12H

+
 + 6H2

 
(g)  (3.1) 

Note that sodium borohydride in excess of the stoichiometry (Eq. 3.1) was used to 

accelerate the reduction and to control the size distributions of the resultant 

nanoparticles.  

Upon mixing, the suspension was allowed to settle for 30 min before the particles were 

harvested by vacuum filtration. The efficient separation was based upon the fact that the 

nanoparticles, despite having an average diameter of ~ 60 nm (Sun et al., 2006), are 

loosely aggregated to form clusters in the size range of a few hundred nanometers to 

several microns (refer to Chap 4 on characterization of particle sizes). The collected 

particles were rinsed three times with 95% ethanol (Farmco-AAPER) and stored in a 

sealed PTFE container at 4
 o
C prior to use.  

 

3.1.2 Bimetallic nanoparticles 

Pd-Fe bimetallic nanoparticles (Pd-nZVI) were prepared by mixing the freshly prepared 

iron nanoparticles with an ethanol/water (vol. ratio 1:1) solution containing palladium 

chloride (PdCl2, 99.9 %, Alfa Aesar)
 
 at a concentration of 200 mg/L (Figure 3.1). The 
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mixture was sonicated for 10 min, during which Pd(II) ions were reduced and deposited 

on the nZVI surface following the classical metal replacement reaction (Eq. 3.2).  

 Pd
2+

 + Fe
0
 (s)  Pd

0
 (s) + Fe

2+
      (3.2) 

The resulting particles were collected by vacuum filtration.  In this study, the nominal 

loading of Pd with respect to iron was fixed at a mass fraction of 1.5 %, a value which 

was confirmed by measuring the initial and final concentrations of Pd(II) in the 

solutions using inductively coupled plasma-optical emission spectrometry (ICP-OES, 

Perkin-Elmer Optimal 2100DV). 

 

Figure 3.1 Synthesis of palladium-doped bimetallic iron nanoparticles.  

 

 

3.2 Experiment procedures 

3.2.1 Batch equilibrium experiments 
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Equilibrium tests were performed in closed, 120-ml glass serum bottles in which the 

solution volume was 100 ml. The following stock solutions were prepared using the 

indicated chemicals (Table 3.1) 

Table 3.1: List of reagents used to prepare stock solutions for batch experiments. 

Stock solution  Chemical formula Manufacturer 

Inorganic  

Hg(II)  Hg(CH3COO)2 Fisher 

Cu(II)  CuCl2 Fisher 

Zn(II)  ZnCl2 Fisher 

H2S  Saturated H2S solution Ricca Chemical 

As(III)  NaAsO2 Fluka 

As(V)  Na2HAsO4 •7H2O   Fluka 

Organic 

TCE  C2HCl3 Fisher 

 

An appropriate volume of the stock solution was diluted with de-ionized water to 100 

ml. The solutions were deoxygenated by purging with high purity nitrogen (>99.9%) for 

30 min. After a pre-determined amount of nZVI was loaded into the bottle, it was 

closed and the cap was sealed with a teflon liner to prevent air leakage. The bottles were 

agitated on a mechanical shaker at 250  rpm at 25 
0
C.  After a suitable time interval 

(typically 24 hours for reactions with metal species), the reaction was stopped by 

separating the solution and the particles with vacuum filtration. The particles were dried 

and stored in N2-filled glove box before solid phase analysis, and the solution was 

acidified with HNO3 to pH less than two and stored at 4
 0

C before solution analysis. For 
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each set of experiments, a control was performed under identical conditions in parallel 

except there was no iron nanoparticles added.  

For experiments involving volatile compounds (e.g. H2S and TCE), 250-ml serum 

bottles containing 100-ml aqueous solutions were used. After charging a small amount 

of nZVI, the bottles were capped with Teflon Mininert valves and placed on a 

mechanical shaker at 250 rpm at 25 
o
C. Sampling of TCE concentration was done by 

drawing 25-μL aliquot of headspace gas using a gas-tight syringe. Particles were 

collected and dried following the same procedure as described above. 

 

3.2.2 Batch kinetic experiments 

Kinetic experiments of reactions with metal species were performed in a set-up 

illustrated in Figure 3.2. The system consists of a 500-ml three-necked flask equipped 

with mechanical rotating paddle. The remaining necks are connected to N2 gas supply, a 

pH probe and an ORP probe, respectively. Anaerobic conditions were created by 

purging the reaction flask with pure N2 continuously. This allows real-time tracking of 

pH and Eh changes in the solution phase without interrupting the reaction media. 

Periodically, a small volume of the solution (~ 5 ml) was sampled, filtered immediately, 

acidified, and stored at 4 
o
C prior to analysis.  
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For volatile compounds, kinetic experiments were performed following similar 

procedures as in 3.2.1. Sampling was conducted periodically by withdrawing 25-μL of 

headspace gas through the Mininert valve.  

 

Figure 3.2 Experimental set-up for kinetic experiments involving inorganic 

contaminants.  

 

 

3.3 Aqueous analysis 

3.3.1 Atomic absorption 

Total aqueous concentrations of Fe, Cu, Ni, Fe, and Zn were measured with a Perkin 

Elmer atomic absorption (AA) spectrometer (AAnalyst 200). For analysis of each 
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species, a four-point calibration curve was obtained with solutions prepared from the 

respective AA standards (1000 mg/L standards purchased from Fisher). Three replicate 

readings were taken for each analysis. Sample concentrations exceeding linear 

concentration range of the respective wavelength were diluted accordingly. Samples 

with Fe concentration below 3 mg/L were measured with ICP-OES (3.3.2). Mercury 

concentration was analyzed with the same AA spectrometer equipped with a FIAS 100 

flow injection system for cold vapor AA analysis. The procedure employs stannous 

chloride as the reductant and a 'purge and trap' design to capture and concentrate 

elemental mercury vapor generated. This system offers a mercury detection limit of 0.1 

μg/L and has a linear response up to 1 mg/L.  Occasionally for samples with mercury 

above 1 mg/L, the measurement was confirmed by ICP-OES analysis.  

 

3.3.2 Inductively-coupled plasma optical emission spectroscopy 

Total aqueous concentration of Fe, As, and Pd were analyzed with a Perkin Elmer 

Optima 2100 DV inductively-coupled plasma optical emission spectroscopy (ICP-OES). 

A radial plasma view was utilized for concentrations below 1 mg/L and an axial view 

for higher concentrations. Four-point calibration curves were obtained using reference 

solutions prepared from ICP multi-reagent standards (Fisher). Three replicate readings 

were taken for each analysis.  
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3.3.3 Gas chromatography 

The concentrations of TCE were measured by a Shimatzu GC analyzer (GC-17A) 

equipped with a flame ionization detector (FID) and a SUPELCO SPB 624 capillary 

column. The injection port temperature was set at 180 
o
C. The oven temperature was set 

to 50 
o
C and ramped to 200 

o
C at 20 

o
C/min. The detector temperature was 300 

o
C. The 

concentration of headspace H2S was analyzed with the same GC analyzer installed with 

a SPB
TM

-1 sulfur capillary column (Supelco). 

 

3.3.4 pH, DO, and ORP measurements 

Solution pH was measured with a Orion 420A+ bench top pH/ISE analyzer. Three-point 

calibration was performed daily using pH 4.0, 7.0, and 10.0 standard pH buffers 

(Fisher). Oxidation-reduction potential (ORP) was measured using the same analyzer 

equipped with an ORP electrode (Pt band with Ag/AgCl/Saturated KCl reference cell). 

One-point ORP calibration was performed using a Zobel standard solution (Sigma), 

which gives a reading of  ~ +230 mV at 25 
o
C. ORP reading can be converted to the 

standard hydrogen electrode potential (Eh) by adding +197 mV at 25 
o
C. Dissolved 

oxygen (DO) was measured using a HACH HQ20 luminescent DO meter. The sensor 

cap was replaced yearly as directed by the manufacturer and calibration was performed 

using air-saturated water before each use.   
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3.4 Solid phase analysis 

The nature of this study requires extensive characterizations of the morphology, internal 

structure, composition, and surface chemistry of the solid phase, which consists of the 

nanoparticles and the solid products formed after reacting with various contaminants. 

This section presents an overview of the techniques used to conduct these solid-phases 

analyses. Detailed operating parameters used in different sets of experiments can be 

found in the Materials and Methods section of later chapters. Figure 3.3 below 

summarizes sample preparation protocols adopted in this study.   

 

Figure 3.3 Sample preparation protocols for solid phase characterization. 
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3.4.1 Scanning electron microscopy 

Morphology characterization of nZVI was carried out using a field-emission scanning 

electron microscope (FE-SEM) (Hitachi 4300). The popularity of SEM for 

characterizing nanomaterials stems from its capability of obtaining 3-dimensional-like 

topographical images in secondary electron (SE) imaging mode, Z-contrast imaging 

using back-scattered electrons (BSE), and quantitative elemental mapping with energy-

dispersive X-ray spectrometer (XEDS) (Goldstein, et al., 2003). Imaging under SE 

mode was typically conducted at 5 kV accelerating voltage. Samples with poor electron 

conductivity (e.g. severely oxidized surfaces) were coated with a thin layer of iridium to 

minimize surface charging.  

 

3.4.2 Transmission electron microscopy  

Various transmission electron microscopy (TEM) techniques were used in this study.  

Bright field TEM imaging was conducted using JOEL 2000FX at 200 kV for 

microstructure characterization and selected area electron diffraction pattern. Phase 

contrast TEM imaging was obtained with a JOEL 2200FS at 220 kV. High angle 

annular dark field imaging (HAADF) and chemical mapping were carried out at Lehigh 

University using a dedicated Cs-aberration-corrected scanning transmission electron 

microscope-XEDS system (Philips, VG HB603) and an FEI Titan 80-300 STEM-XEDS 

system equipped with a Cs-aberration corrector (CEOS GmbH) at the National Institute 
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of Standards and Technology (NIST). The STEM-XEDS imaging was conducted at 300 

kV.   

While conventional and phase contrast TEM imaging techniques have been extensively 

applied to the characterization of nanoparticulate materials, relatively few applications 

of STEM-XEDS analysis have been reported in the literature. The challenges of STEM-

XEDS analysis lie in the fact that X-ray fluorescence by a single nanoparticle at high 

spatial resolution is extremely low. This can be improved by optimizing detector 

configuration and the solid angle of collection. Additionally, to enhance beam current 

without compromising spatial resolution, the electron beam has to be intensively 

corrected for spherical aberration (Cs). Only a limited number of STEM in the world 

that have been equipped with the sophisticated Cs aberration corrector, and instruments 

at Lehigh and NIST are fortunately among the best in terms of spatial resolution and 

detection limit. The procedure of STEM-XEDS analysis is as follows: first, an HAADF 

image of the area of interest is acquired. The image is divided into an array of pixels 

(typically 128 x 128). The STEM probe then scans across the above area and stopping 

at each pixel for a fixed amount of time (100-200 ms), during which an X-ray spectrum 

from 0- 20 keV is collected by XEDS detector. A collection of X-ray spectra over the 

entire area is called a spectrum image ‘data cube’ (Figure 3.4) (Herzing, et al., 2008).  

The name implies that each data point in the data cube is uniquely defined by three 

coordinates: the first two coordinates for the spatial location (x and y) and the third one 

for the energy of the emitted X-ray photons (E). E is characteristics of the elements 
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present in the pixel, therefore, 2-dimensional maps of elements can be extracted from 

the data cube. Superimposing individual elemental maps gives an overlay image that 

depicts the chemical composition inside a nanoparticle at sub-nanometer resolution.     

 

3.4.3 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS), also known as ESCA (Electron spectroscopy 

for chemical analysis), is a well established technique for quantitative analysis of 

surface composition and oxidation states (Somorjai, 1994). An XPS spectrum is 

obtained by irradiating a specimen with an X-ray beam generated by an aluminum or 

magnesium anode (Figure 3.5a). The incident X-ray photons expel electrons from 

atomic core-levels, and the emitted electrons are detected by a detector as a function of 

their kinetic energy (Ek) (Figure 3.5b). The kinetic energy is used to calculate the 

binding energy (EB) following the equation first proposed by Rutherford (Briggs & 

Seah, 1990) (Eq. 3.3) 

                 (3.3) 

Where h  is the energy of an incident photon.  



 
 

 

Figure 3.4 Schematic diagram illustrating the process underlying a STEM-XEDS analysis (adapted from Herzing et al., 

2008).  
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XPS is a surface sensitive technique. The sampling depth (defined as 3 times the length 

of electron inelastic mean free path, IMFP) is a function of the incident X-ray, the 

analysis angle and the surface electron states (Briggs & Seah, 1990). Several empirical 

formula have been proposed to estimate electron IMFP, such as the CS2 Equation 

(Cumpson & Seah, 1997) in Eq. 3.4. Other models to estimate IMFP are available in the 

literature (Mohai, 2005). Typical sampling depth of XPS is approximately 2-10 nm. 

              
 

  
  

      
    
  

   
       (3.4) 

Where a is the lattice parameter or average monolayer thickness, Ek is the electron 

kinetic energy, and Z is the average atomic number. 

XPS is a quantitative technique, implying that the intensity of photoelectrons from a 

chemical species is a function of its atomic concentration. For a homogenous sample, 

the relationship is simply (Mohai, 2005):  

                        (3.5) 

Where     is the photoelectron intensity from an infinitely thick homogeneous sample, 

  is the incident X-ray flux,   is the photo-ionization cross section, N is the number of 

atoms per unit area, k is an instrument dependent factor, and   is the angle between the 

ejected electrons and the surface normal (Figure 3.5a). 
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The shifts of core-level binding energies in XPS spectra provide information on the 

chemical environment of the atoms. This ability to distinguish and quantify chemical 

states of the detected elements, e.g. oxidized iron (Fe(III)) from metallic iron (Fe(0)), is 

a unique advantage of XPS compared to other spectroscopic techniques that provide 

elemental information only.  

The XPS used in this work is a ESCA 300, which is regarded as among the best XPS 

with regards to energy resolution and analysis throughput. Several features of this 

instrument are worth mentioning here (Figure 3.6). Al Kα x-rays (1486.7eV) are 

generated from a rotating anode which can operate at power levels of up to 7.5 kW. The 

monochromator is a collection of seven α-quartz crystals mounted on three Rowland 

circles, which collects the X-rays from the rotating anode and subsequently projects 

them onto the surface of the sample. A prominent feature of this instrument is the 

hemispherical electron energy analyzer (HMA). It has an average radius of 300 mm 

which allows a high energy resolution and efficient electron detection over a large 

energy window at high speed. The electron detector is a CCD camera combined with 

multi-channel micro-channel plates. The nominal analyzed area is rectangular with 

approximate dimensions of 4 mm x 0.2 mm. The analysis chamber operates in ultra-

high vacuum conditions (UHV) at 5.0 x10
-9

 Torr.  

Spectra are typically collected using a takeoff angle (90
0
 - ϴ) of 90° with respect to the 

surface plane of the samples. The hemispherical analyzer pass energy was set at 150 eV, 

which yields an optimized resolution of the analyzer of ~0.1 eV. The opening of the slit 
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is 0.8 mm. A typical analysis was conducted by pressing N2-dried solids onto an 

adhesive carbon tape mounted on a stainless steel sample bar. The sample was 

immediately sent to the fast-entry chamber, pumped down to low 10
-8

 Torr, and parked 

at preparation chamber prior to analysis. A typical analysis proceeds by collecting a 

survey spectrum (300 eV pass energy) from 0-1200 eV followed by detailed region 

scans using 150 eV pass energy. In most cases, spectra at the following regions were 

collected: C1s, O1s, Fe2p, and the  appropriate transitions of contaminants involved (e.g. 

As3d and Cu2p). Spectra were calibrated against the binding energy of adventitious 

carbon detected in the C1s region (284.6 eV). Curve fitting was carried out using the 

CASA XPS MFC application software (version 2.3.12.8). 
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(a) 

 

(b) 

 

Figure 3.5 schematic illustrations of the XPS process: (a) irradiation of a sample 

surface generates photoelectrons; (b) processes occurring at atomic level.  
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Figure 3.6 Main components of a Scienta ESCA-300 system. 

 

3.4.4 X-ray diffraction 

X-Ray diffractogram was obtained with a Rigaku diffractometer (Rigaku, Japan) with 

Cu Kα (  = 1.5418 A) radiation generated at 40 kV. Bragg Equation (Eq. 3.6) was used 

to convert from diffraction angel ( ) to the lattice spacing (d): 

                   (3.6) 
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Samples were scanned from a 2   range of 10° to 80° with a stepping size of 0.1
0
 and a 

scanning rate of 60 second per step. The crystalline phase was identified by comparing 

with XRD diffraction patterns in the literature (JCPDS, 1998).  

 

3.4.5 BET surface area 

Specific surface area of the iron particles was measured using a Micrometrics Flowsorb 

2305 following the classic Brunauer-Emmett-Teller (BET) method (Bruauer et al., 

1938). Dried samples were first degassed at 170°C for 40 minutes. Adsorption of pure 

nitrogen by iron sample was done in a sample tube at liquid nitrogen temperature 

followed by desorption of nitrogen as temperature ramps up to room conditions. The 

amounts of nitrogen adsorbed and desorbed by the iron particles were measured by a 

potentiometer and were used to calculate the total surface area. 
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Chapter 4 

Characterizing the Core-Shell Structure of nZVI 

 

4.0 Abstract 

This study presents a detailed characterization of the morphology, structure, and 

chemical composition of iron nanoparticles (nZVI). Scanning electron microscopy 

(SEM) images show that the size of individual particles is within a range of 20-100 

nm and particles are aggregated into necklace-like formation due to magnetic 

interactions. The internal structure and elemental distribution of nZVI were 

characterized by X-ray energy-dispersive spectroscopy (XEDS) with nanometer-

scale spatial resolution in an aberration-corrected scanning transmission electron 

microscope (STEM). The analysis provides unequivocal evidence of a layered 

structure of nZVI consisting of a metallic iron core encapsulated by a thin 

amorphous oxide shell. The thickness of the oxide shell was determined using three 

independent methods. High resolution TEM analysis indicates that the shell 

thickness of fresh nZVI is predominantly in the range of 2-4 nm. High-resolution X-

ray photoelectron spectroscopy (HR-XPS) analysis through comparison of the 

relative integrated intensities of metallic and oxidized iron with a topographic 

correction to account for the curved overlayer yield an average shell thickness in the 

range of 2.3-2.8 nm. Finally, the complete oxidation reaction of the nZVI particles 
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by Cu(II) was used as an indication of the zero-valent iron content of the particles, 

which correlates with the oxide thickness through direct geometric correlations. The 

three methods yield remarkably similar results, providing a reliable determination of 

the shell thickness. The results presented here fill an essential gap in our knowledge 

about the nZVI structure and have direct implications for the reactivity of nZVI in 

environmental systems.  

 

4.1 Introduction 

Zero-valent iron (ZVI) has been widely used as a reductant in hazardous waste 

treatment and environmental remediation. Over the past two decades, numerous studies 

have shown that ZVI can effectively degrade a wide array of environmental 

contaminants, such as halogenated hydrocarbons, azo dyes, munitions, pesticides, 

hexavalent chromium, and nitrate by reductively transforming the contaminants into 

benign or less harmful forms (Gillham & Ohannesin, 1994; Matheson & Tratnyek, 1994; 

Johnson et al., 1996; Cao et al., 1999; Hundal et al., 1997; Huang et al. 1998; Alowitz 

& Scherer, 2002).  More recently, the use of nanoscale zero-valent iron (nZVI) has 

attracted increasing attention because of its enhanced reactivity compared to 

conventional bulk ZVI materials (Lien & Zhang, 1999; Kanel et al., 2006; Sohn et al., 

2006), which studies attribute to the substantial increase in surface-to-volume ratio as 

the particle size shrinks to the nanometer scale (Nurmi et al., 2005).  



97 

 

It is generally accepted that nZVI has a core-shell structure with a zero-valent iron core 

surrounded by an iron oxide/hydroxide shell, which grows thicker with the progress of 

iron oxidation. However, it is difficult to measure the exact thickness of the shell due to 

the high reactivity of iron, which reacts very rapidly with both oxygen and water and 

may even oxidize in air. Traditionally, the shell thickness is estimated based upon 

measurement of the zero valent iron content, which is determined from its corrosion rate 

and/or production of hydrogen gas (Hydutsky et al., 2007). However, such experiments 

are tedious, time consuming, and often use hazardous chemicals. 

Detailed structural characterization is essential to understand how the structure of nZVI 

relates to its activity.  The nZVI structure depends on how the nanoparticles are 

synthesized (Huber, 2005; Li & Zhang, 2007), and in this work we focus on fresh nZVI 

produced chemically by the reduction of iron salts. This method was previously shown 

by x-ray photoelectron spectroscopy (XPS) to produce core-shell particles (Li & Zhang, 

2006).  These particles were also analyzed by transmission electron microscopy (TEM) 

and acoustic spectrometric methods, and found to be polydisperse with an average 

diameter of approximately 60 nm and a standard deviation of 15 nm (Sun et al., 2006).  

TEM analysis also indicated that the shell thickness varied significantly, however, a full 

statistical determination of the thickness has not yet been carried out. 

XPS is a powerful tool for probing surface and near-surface elemental composition and 

chemical oxidation state. Quantitatively, the sampling depth of  a photoelectron can be 

defined based on the inelastic mean free path for electron scattering, or the attenuation 
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length, λ, which is the thickness of material through which electrons may pass with a 

probability e
−1

 that they survive without inelastic scattering and thus are detected at 

their characteristic energies (Seah & Dench, 1979). Knowledge of these attenuation 

lengths can be used with XPS data to provide information on the concentration 

variations with depth in the near surface region for non-homogenous distributions 

within the sample.  Analysis often requires a model to be assumed for this distribution, 

but it is common to analyze flat, planar films and layers by comparing the relative 

intensity of signals characteristic of the bulk and film or overlayer (Fadley, 1978). 

Effects such as surface roughness can also be accounted for by geometrical corrections 

(Gunter & Niemantsverdriet, 1995 ; Mohai & Bertoli, 2004; Gillet & Meunier, 2005).
 

In this study, a variety of characterization methods were employed to analyze the 

physicochemical properties of nZVI and the thickness of the oxide shell. Specifically, 

the morphology, size distribution, and surface area of nZVI particles were determined 

by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) method. 

The micro-structure of nZVI was characterized by advanced TEM techniques including 

bright-Field TEM, phase-contrast TEM and a state-of-the-art scanning transmission 

electron microscope (STEM) equipped with an X-ray energy-dispersive spectrometer 

(XEDS). The instrument employs a sub-nanometer probe afforded by a Cs-aberration 

corrector to perform XEDS spectrum imaging, which is able to map out the elemental 

compositions at a nanometer-scale spatial resolution, thus enabling for the first time 

direct visualization of the core-shell structure. 
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The thickness of the nZVI oxide shell was determined by three independent methods: (i) 

high-resolution TEM imaging, (ii) high-resolution XPS, and (iii) chemical oxidation of 

ZVI. TEM analysis provides direct images of the core-shell structure, the dimension and 

variation of the shell thickness in the area analyzed. However, TEM technique 

inherently suffers the drawback of limited sampling statistics.  HR-XPS analysis, by 

comparing the intensities of metallic versus oxidized iron core-level peaks, was applied 

in order to calculate the mean and standard deviation of the distribution of shell 

thicknesses by using a geometrical correction to account for the spherical structure of 

the nanoparticles (Mohai & Bertoli, 2004). This thickness determination was compared 

with a magic angle analysis where topographical effects are limited (Kappen et al., 

2000). Furthermore, the average shell thickness can be estimated independently based 

on the sample total mass and iron content of the sample determined by using 

stoichiometric oxidation of iron by Cu(II).        

 

4.2 Materials and methods 

nZVI  Synthesis. Nanoscale zero valent iron particles were prepared as previously 

reported (Chapter 3).  

BET Surface Area. Specific surface area of nZVI was measured following the classic 

Brunauer-Emmett-Teller (BET) method as described in Chapter 3.  
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Electron microscopy characterization. SEM imaging was performed using a field-

emission SEM (Hitachi S-4300) operating at 5-10 kV. Samples for transmission 

electron microscopy (TEM) and scanning transmission electron microscopy (STEM) 

analysis were prepared by allowing a drop of the nZVI in ethanol solution to dry on a 

lacey-carbon film supported on a 300-mesh copper grid. Conventional bright-field 

imaging was carried out using a JEOL 2000FX TEM equipped with a LaB6 filament 

operating at 200 kV. High-resolution lattice imaging was performed using a JEOL 

2200FS TEM with a field-emission gun operating at 200 kV. Chemical microanalysis 

and annular dark-field (ADF) imaging were performed using a 300kV VG HB603 

dedicated STEM equipped with a Nion spherical aberration corrector and an Oxford 

Instruments INCA 300 system for energy dispersive X-ray spectrometry (XEDS). X-ray 

spectrum images were acquired by first collecting an ADF image of the area of interest, 

which was then divided into an array of 128 x 128 pixels.  The electron probe was then 

scanned over this array, stopping at each pixel for 200 ms during which an entire x-ray 

spectrum from 0 to 20 keV was collected with a resolution of 20 eV/channel.  In this 

fashion, a data cube is created with dimensions defined by the position coordinates of 

the image pixels (x and y) and the x-ray energy spectrum (z).  This type of data set is 

highly-redundant and thus lends itself particularly well to data processing techniques 

such as multi-variate statistical analysis (MSA), which allows for the isolation of the 

principal components within the data cube. The overall noise in the data cube was 

significantly reduced by reconstructing the dataset using only the principal components 
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identified as independently varying by the MSA technique (MSAXESP v0.6) 

(Watanabe et al., 2006). After this reconstruction process, elemental maps of the 

constituent elements were extracted from the data cubes in the Gatan Digital 

Micrograph software environment. Further details regarding this technique have been 

published elsewhere (Herzing et al., 2008; Watanabe et al., 2006).   

XPS Measurements. High-resolution X-ray photoelectron spectroscopy (HR-XPS) was 

carried out on nZVI material using a Scienta ESCA-300 instrument. Detailed 

procedures of XPS analysis are provided in Chapter 3.  

Estimation of oxide-layer thickness by reduction of Cu (II). When ZVI is in contact 

with Cu(II) ion in solution, a galvanic cell is established. At the anode, Fe
0
 is oxidized 

to Fe(II), and the electrons are taken up by the Cu(II) ion at the cathode to form Cu
0
 as 

shown in the following equation:  

Cu
2+

(aq) + Fe
0
(s)

 
  Cu

0
(s) + Fe

2+
(aq)    (4.1)  

In an oxygen-free solution at near-neutral pH, the reduction of water by nZVI is 

relatively slow and reaction 4.1 predominates in the solution (Speller, 1951). The 

kinetics of the above reaction have been studied and the rate scales with the surface area 

of iron metal (Khudenko & Gould, 1991). In addition, it has been demonstrated that 

nano-scale iron particles, with a surface area on the order of 20-30 m
2
/g, are able to 

reduce copper ions rapidly (Li & Zhang, 2007). From the quantity of copper reduced, 

the amount of Fe
0
 originally present in the nanoparticles can be estimated and thereby 
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the thickness of the oxide layer can be deduced by a simple calculation involving the 

total mass of the nanoparticle sample.   

To carry out this measurement, aqueous Cu(II) solutions were prepared from cupric 

chloride salt. The solution was purged with nitrogen for 30 minutes prior to addition of 

ZVI nanoparticles to remove dissolved oxygen. A set of experiments were conducted at 

various initial concentrations of Cu(II) with the iron nanoparticle concentration fixed at 

0.25 g/L. The bottles were capped, tape-sealed, and agitated for 1 hour. After the 

reaction, the solutions were filtered and the concentrations of Cu(II) remaining in the 

aqueous phase were analyzed by an atomic absorption spectrometer (Perkin-Elmer 

AAnalyst200).   

 

4.3 Results and discussion 

4.3.1 Morphology, size distribution and surface area of nZVI 

The surface morphology of nZVI is shown in Figure 4.1. SEM images show that the 

fresh nZVI particles are generally spherical in shape with the majority in the size range 

of 50-100 nm. A close-up image (Figure 4.1b) reveals that the particles are connected in 

chains due to magnetic dipole interactions and chemical aggregation. A few large flaky 

materials are oxidized products of nZVI. Figure 4.1c shows a bright field TEM 

micrograph of a typical nZVI cluster. In the absence of stabilizing agents such as 
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polyacrylic acid (PAA),
  

the nanoparticles appear agglomerated, forming chain-like 

formation due to magnetic and electrostatic interactions. It is clearly shown in the image 

that a single particle comprises of a dense core surrounded by a thin shell exhibiting 

markedly less contrast than the interior core. Selected area electron diffraction (SAED) 

of the core region shows diffused ring patterns (Figure 4.1e) that are characteristic of 

very fine crystallites (or nanocrystalline) body-centered cubic (bcc) iron metal as 

evidenced by the the presence of {110}, {200} and {211} rings. The thickness of the 

shell was found to vary significantly among different nZVI particles and within each 

individual particle. Typically, the oxide layers were in the range of 2-4 nm, although 

shells as thick as 25 nm and as thin as 1 nm were occasionally observed. It is noticed 

that the chains of connected nanoparticles have a continuous oxide shell, but the 

individual metallic cores are separated from each other by a thinner (~1 nm) interfacial 

oxide layer. Phase-contrast TEM image (Figure 4.1d) shows the oxide shell has a 

speckly contrast and lacks periodic lattice-fringes, suggesting the oxide layer is 

amorphous in character. The disordered oxide layer can be explained by the extremely 

small radii of the nanoparticles and the curvature of the oxide shell, which impose 

considerable stress hindering crystalline formation. Moreover, the presence of a small 

amount of boron in the oxide film from borohydride precursor used in the synthesis step 

may contribute to defective sites and alter the oxide structure as well. (Carpenter et al., 

2003; Ponder et al., 2001). 
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Figure 4.1 (a) & (b) SEM images of freshly-made nZVI particles. (c) Bright-field TEM 

micrograph of a nanoparticle agglomerate. (d) Phase contrast TEM image showing a 

continuous surface amorphous layer that encapsulates the agglomerate. (e) Selected-

area electron diffraction (SAED) pattern of fresh nZVI particles characteristic of 

polycrystalline bcc iron. 

(c) (d) 

10 nm 5 nm 

(e) 
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Although SEM & TEM imaging provides direct visual evidence of the particle size, it 

cannot quantify the size with high statistical confidence due to limited number of iron 

particles sampled during analysis. An indirect but more reliable approach to gauge the 

particle size is to measure the surface area. In this study, BET specific surface area (as) 

of fresh nZVI was measured to be 29 m
2
/g. Assuming a spherical geometry, specific 

surface area (as) of a particle is directly related to the particle diameter (D) as in Eq. 4.2: 

D
D

D

Mass

Surface
aAreaSurfaceSpecific s




 6

6

1
    

3

2

                     (4.2) 

where ρ represents the density of metallic iron (7,800 kg m
-3

). Given the specific 

surface area, an equivalent sphere diameter (D) of iron particles can be calculated from 

Eq. 4.2.   

Eq. 4.2 yields an average particle diameter of 26 nm, which is significantly smaller than 

the size measured by the acoustic spectrometer method reported by Sun et al., (Sun et 

al., 2007), which indicates a median size of 60 nm, and it is also smaller than the size 

range shown in SEM images (Figure 4.1). The discrepancy can be explained by 

acknowledging that the particles tend to agglomerate into chain-like structures due to 

magnetic or chemical interactions, thus the assumption of well-separated particles in 

Eq.4.2 does not hold. As particle size increases to micron-scale, it is noticed that the 

SSA is a fairly accurate indicator of the average particle size (Li et al., 2009).  Since 
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acoustic spectrometry is a more appropriate method for estimating nanoparticle size, the 

diameter measured by this method (median diameter 60nm) is adopted in subsequent 

discussions. 

4.3.2 Direct visualization of core-shell structure by STEM-XEDS 

Figure 4.2a shows an annular dark-field (ADF) image and the corresponding STEM-

XEDS elemental maps (Figure 4.2b-d) from a typical agglomerate of the nZVI particles. 

As shown in Figure 4.2b, the Fe K map exhibits strong intensity in the bulk of the 

agglomerate, but depicts a clear decrease in intensity at the edge region corresponding 

to the amorphous shell. By comparison, the O K map (Figure 4.2c) has a fairly flat 

contrast level across the centre of the agglomerate but is much brighter at the edge in 

the amorphous region. Overlay of the elemental maps, shown in Figure 4.2d where red 

and green represent O and Fe respectively, clearly illustrates the presence of the 

amorphous oxide phase both at the agglomerate surface and between the individual 

particles. While the structure of nZVI has been characterized by various microscopic, 

spectroscopic and chemical reduction methods in recent publications (Cao et al., 2008; 

Martin et al., 2008; Nurmi et al., 2005; Sun et al., 2006), direct visual presentation of 

the chemical composition and the micro-structure of the nanoparticles were not 

attainable in those studies. The STEM-XEDS technique employed in this study is able 

to unambiguously map out elemental distribution at a nanometer-scale spatial solution, 
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and thereby provides direct evidence of a core-shell layered structure existing in these 

nZVI materials. 

 

   

  

Figure 4.2 (a) ADF image and corresponding (b) Fe Kα, and (c) O Kα STEM-XEDS 

elemental maps of an nZVI agglomerate. The color image in (d) is an overlay of the 

elemental maps (red-O; green-Fe), which emphasizes the presence of an oxide layer 

both at the agglomerate surface and between the individual particles. 

 

  

(a) (b) 

(c) (d) 
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4.3.3 Estimation of oxide-shell thickness by HR-XPS 

An XPS survey scan from 0-1100 eV BE was acquired for the as-prepared nZVI sample, 

as shown in Figure 4.3a.  This broad, low resolution scan indicates the predominate 

elements present in the near-surface region of the sample. It shows the presence of 

principally iron and oxygen, as indicated by the Fe 2p3/2 peaks at 715 eV BE and the O 

1s peak at 530 eV BE.  In addition, adventitious carbon on the sample is indicated by a 

peak at 284.6 eV BE, and peaks at 1071 and 182 eV BE from Na 1s and B 1s, 

respectively, which are believed to be from residual NaBH4 from the synthesis process.   

  

Figure 4.3 (a) Broad survey scan in XPS of the nZVI sample. (b) High-resolution XPS 

scan of the Fe2p3/2 region. 

 

(a) (b) 
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Iron detected in this survey scan can be attributed to metallic iron within the core of the 

particles as well as iron oxides and iron oxyhydroxide, FeOOH, within the shell (Li & 

Zhang, 2006; Li & Zhang, 2007; Sun et al., 2006). To delineate the different iron 

chemical (oxidation) states present in the particles, a high resolution scan of the Fe 2p 

region was performed. Because the Fe 2p1/2 and 2p3/2 spin-orbit split peaks in XPS 

reveal the same chemical information, we show only the more intense Fe 2p3/2 region in 

Figure 4.3b. As expected, we observed chemically shifted peaks due to metallic iron, 

Fe
0
, and from oxidized iron, (a combination of Fe

2+  
and Fe

3+
)
 
. Figure 4.3b establishes 

clearly that some metallic iron remains in the nZVI, in the core of the particles, however 

it is not obvious by inspection how much metallic iron is present and, in particular, what 

is the thickness of the oxidized iron shell. XPS is a quantitative analytical technique, 

and the intensity of the Fe 2p signal in XPS is proportional to the number of Fe atoms in 

the sampled near-surface region.  This relationship is independent of the Fe atom 

environment, i.e., independent of the Fe oxidation state, and so in principle the relative 

amount of oxidized iron and metallic iron in the sample can be calculated by analysis of 

a spectrum such as that shown in Figure 4.3b. In this analysis, a Shirley-type 

background subtraction was applied to distinguish the Fe 2p photoelectron peaks from 

an inelastic scattering background.  The 2p1/2 and 2p 3/2 peaks for both oxidized iron and 

Fe
0
 were assigned individual Gaussian-Laurentian components for deconvolution and 

the area under each peak was integrated.  A relative intensity ratio, 0.233, was 
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determined as the sum of the 2p1/2 and 2p3/2 areas for Fe
0
 divided by the corresponding 

areas of the 2p1/2 and 2p3/2 signals for the oxidized iron component.    

The nZVI shell thickness was calculated with XPS Multiquant software using a 

geometric correction to compensate for spherical topography (Mohai & Bertoli, 2004 ; 

Mohai, 2004 ; Mohai, 2005).
 
For a metal covered by a metal oxide layer with a flat 

topography, the relative intensity of zero-valent to oxidized metal is defined by (Mohai, 

2005):  
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where Ime is the photoelectron intensity of the metal, Iox is the intensity of the oxidized 

metal, N is the number of atoms per unit volume, λ is the inelastic mean free path, d is 

the oxide layer thickness, and θ is the detection angle.  For normal take-off angle (θ = 

90
0
), the layer thickness can be calculated as

 
(Mohai, 2005): 
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However, for a spherical nanoparticle, the curved surface of the nanoparticle causes 

changes in the relative intensity of photoelectrons originating from the core or shell.  

For a detector placed above the sample surface, photoelectrons escaping from the edge 

of a nanoparticle will originate predominantly from the shell while those photoelectrons 

escaping from the apex will more likely emanate from both the core and shell.  
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Although the shell thickness may be constant around the particle, the effective thickness, 

d
eff

, will vary at different positions across the diameter of the nanoparticle (Mohai, 

2005). This topology effect is corrected by dividing the particle into many slides at 

different angles and assigning different weightage for the overlayer (shell) and substrat 

(core) components at these angles. Since the nanoparticles were analyzed in powder 

form, a second correction was applied to account for signals originating from lower 

layers of spheres. These calculation can be routinely performed by the XPS multiquant 

software (Mohai, 2005; Martin et al., 2008). 

The inelastic mean free path was calculated using the CS2 semi-empirical method 

(Cumpson & Seah, 1997). This is based on calculations of the attenuation length, λAL : 
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aAL                                       (4.5) 

where a is the lattice parameter or monolayer thickness in nm, E is the kinetic energy, 

and Z is the average atomic number.  Since the relative intensities are from the same 

element, corrections for sensitivity factors or contamination need not be applied.     

For Fe photoelectrons moving through the metallic core and oxide shell, λme = 1.10 nm 

and  λox = 1.42 nm.  One limitation of this model is that the thickness can only be 

determined if the layer is within a certain range.  This range is governed by the 

sampling depth of the photoelectrons analyzed, with a maximum sampling depth of 
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approximately several multiples of λ.  Therefore, the XPS technique is most accurate for 

measurements of oxide layers less than 5-10 nm in thickness.  

 The density of bulk iron, 7.87 g/cm
3
, and bulk goethite (FeOOH), 4.28 gm/cm

3 
(Yang 

et al., 2006)
 
, were utilized to approximate the density of the core and shell layers.  It 

has been shown by TEM and acoustic spectrometry method that the median 

nanoparticle diameter was 60 nm (Sun et al., 2006).  Based on this particle size, the 

calculated average shell thickness was 2.4 nm.  The effect of varying diameter was 

assessed because these nanoparticles are very polydisperse, possessing a broad range of 

sizes.  Since the distribution of particle diameters was mainly between 10 and 200 nm, 

the thickness was calculated at intervals within this range (Table 4.1).  

Table 4.1: Thickness determination for varying average particle diameters. 

Diameter (nm) 10 20 30 40 50 60 100 200 

Oxide-shell 

thickness (nm) 

2.85 2.57 2.49 2.45 2.42 2.40 2.38 2.36 

  

Based on these values, the maximum error due to polydispersity was calculated.  For a 

constant intensity, a nanoparticle of 10-nm diameter has a thickness of 2.85 nm, and a 

particle of 200-nm diameter a thickness of 2.36 nm.  This provides a maximum error of 

± 0.25 nm.  Based on this model, most of the error is attributed to the smaller 

nanoparticles.  This is because the effects of the edge are slightly more exaggerated for 

smaller particles.  The relatively narrow range of the average shell thickness reflects the 
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nature of the shell formation in that the thickness is controlled by the rate of mass or 

electron transfer across the oxide layer.  

 

4.3.4 Estimation of oxide-shell thickness by Cu(II) reduction 

Another approach to estimate the shell thickness is to experimentally measure the 

content of zero-valent iron in the particles, which can be done in a number of ways.  For 

example, some researchers have measured the amount of hydrogen gas produced from 

iron reactions with water (Nurmi et al., 2005).  The facile reaction of nZVI with Cu(II) 

aqueous solution is exploited for the fast measurement of the zero-valent iron content. 

We tested the rapid and complete reduction of Cu(II) with nZVI to independently verify 

the results obtained by both TEM and XPS analysis.  

Figure 4.4a shows the XPS spectrum of the Cu 2p3/2 region for the nZVI particles after 

the particles were reacted with copper. A peak at 932.4 eV BE arises from Cu(0), 

suggesting that Cu(II) was reduced and immobilized on nZVI.  To exclude the 

possibility that the Cu signal is from precipitation of copper hydroxide, the solution pH 

was measured after reaction and found to be in the range of 4-5, thus ensuring that the 

Cu was indeed reduced to elemental copper on the nZVI particles. To further confirm 

the product is metallic copper, X-ray analysis was performed on the reacted particles 

and the result is shown in Figure 4.4b. The diffraction pattern corresponds well to that 

of Cu(0) in (111), (200) and (220) directions. There is no peak indicative of the   
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Figure 4.4 (a) High-resolution XPS scan of the Cu2p3/2 region showing the presence of 

a peak at 932.4 eV BE indicative of Cu
0
. (b) XRD diffractogram confirms the formation 

of crystalline Cu
0
 after reaction with nZVI.  
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presence of CuO or Cu2O phase. The sharp peaks observed imply the metallic copper is 

crystalline in character, which agrees with SEM observations (results not shown). 

Given that essentially all sequestrated copper is converted to Cu(0) by nZVI, the ideal 

stoichiometry of Cu(II) sequestration by nZVI is 1:1 on a mole basis (Eq. 4.1). In reality, 

the actual stoichiometry deviates from 1: 1 ratio primarily because iron nanoparticles 

are not made of pure Fe(0) but a composite of metallic iron enclosed by an iron oxide 

shell. Thus the amount of Cu(II) being reduced is related to the metallic iron content in 

the nanoparticles.  To evaluate the iron concent, a set of experiments were performed 

with a fixed dose of nZVI particles while varying the Cu(II) concentration. The results 

were plotted in terms of copper removal per unit mass of nZVI added as a function of 

the initial Cu(II) to nZVI ratio (Figure 4.5). Two auxiliary lines are plotted on the figure 

to assist the interpretation of the data. The dashed line with a slope of unity represents 

the hypothetical scenario of 100% Cu(II) removal when Cu(II) is the limiting species. 

The horizontal line indicates the maximum Cu(II) sequestration capacity (mM-Cu/g-

nZVI) when metal iron is limiting. As shown in Figure 4.5, the experimental data 

exhibits a clear “crank” shape revealing two distinct domains. At low initial Cu(II) 

concentration, the Cu(II) being removed per gram of iron nanoparticles increases with 

the initial copper concentration. The match of the experimental data to the unit-slope 

line, which represents the scenario for complete removal of the Cu(II), indicates all 

Cu(II) is sequestrated when iron is present in excess. At higher Cu/Fe mass ratios, iron 

became the limiting reagent. The curve bends sharply and approaches a plateau 
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corresponding to a maximum removal capacity of 14.5 mM-Cu/g-nZVI, or 0.922 g-

Cu/g-nZVI.  

As shown in Figure 4.5, the total reduction is approximately 0.922 g-Cu(II)/g-iron 

nanoparticles. Since 1 mole of Fe
0
 is consumed for every mole of Cu

2+
 reduced, the 

mass fraction of Fe
0
 in the nanoparticles is calculated as 0.810 g-Fe

0
/g-nanoparticles. 

Using a median particle diameter of 60 nm and the bulk densities of Fe
0
 and FeOOH 

given earlier, the thickness of the oxide shell is estimated to be 3.4 nm. This is in fairly 

good agreement with the TEM and XPS results considering that the calculation of shell 

thickness from mass fraction is sensitive to the size of the nanoparticles. If compared on 

the basis of reduction capacity, the values obtained by XPS analysis and Cu(II) 

reduction experiments are in close agreement with a discrepancy of less than 7% (Table 

4.2). The slightly lower reduction capacity obtained by the copper reduction 

experiments is to be expected because a small quantity of Fe
0
 is inevitably consumed by 

reaction with water.  
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Figure 4.5 Cu(II) removal capacity at different Cu(II)/nZVI loading ratios showing two 

behavioral domains. The initial concentration of Cu(II) varied from 50 to 1000 mg/L, 

with the concentration of iron nanoparticles fixed at 0.25g/L. The auxiliary lines 

represent the ideal cases where i) Cu(II) is completely removed by nZVI when Cu(II) is 

limiting; or ii) nZVI is exhausted when Fe(0) is limiting.  

 

Table 4.2: Shell thickness and reductive capacity of iron nanoparticles  predicted by 

XPS measurements and Cu(II) reduction experiments. 

 Cu(II) reduction 

experiments 

XPS analysis 

Oxide shell thickness  

(nm) 

~ 3.4* ~ 2.4  

Mass fraction of Fe
0
 in nZVI 

(g-Fe
0
/g-nanoparticles) 

0.810  0.866
*
  

Cu(II) reduction capacity  

(meq/g-nanoparticles) 

29.0  31.0
*
  

*
  Calculated based on an average nanoparticle diameter of 60 nm. 
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4.4 Conclusion  

In summary, a series of detailed characterizations of iron nanoparticles were presented 

here using a variety of microscopic and spectroscopic characterization tools. SEM 

imaging clearly shows the agglomeration of individual nanoparticles due to magnetic 

and chemical interactions. Bright field and phase contrast TEM methods indicate the 

polycrystalline metal iron core is surrounded by a continuous oxide layer. Advanced 

STEM-XEDS imaging technique provide for the first time direct evidence of the core-

shell structure. Additionally, phase contrast TEM suggests the oxide layer lacks long-

range order and is amorphous in character. This property may have significant 

implications for particle adsorptive and redox activity as will be examined in details in 

later chapters.  The thickness of the oxide shell was determined using three independent 

methods. High-resolution TEM images indicate that fresh nZVI nanoparticles have the 

shell thickness vary from region to region, predominantly within 2-4 nm. High-

resolution XPS analysis, using the relative integrated intensities of metallic and 

oxidized iron with a geometric correction applied to account for the curved overlayer, 

yield an average shell thickness in the range of 2.3-2.8 nm. Thirdly, the complete 

oxidation reaction of the nZVI particles by Cu(II) indicated a shell thickness (3.4 nm) 

consistent with these analyses. The three methods yielded very similar results and thus 

we have made a reliable determination of the shell thickness for fresh nZVI 

nanoparticles. This information fills an essential gap in our knowledge about the nZVI 

structure.  In addition, we note that the methods presented in this work can also be 



119 

 

applied to the study of the aging process of nZVI and may also prove useful for the 

measurement and characterization of other metallic nanoparticles.  
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Chapter 5 

Aging of nZVI in Aqueous Media and Implications  

for Particle Reactivity 

 

5.0 Abstract 

Iron nanoparticles have been extensively employed to degrade halogenated organic 

compounds in lab and field studies, yet the structure, especially the distribution of a 

second metal additive, which serves as a catalyst of reductive dehalogenation reactions, 

within the nanoparticles have not been specifically examined due to the resolution 

challenge imposed by the nanoscale particles. In this work, the structural evolution of 

palladized nanoscale iron particles (Pd-nZVI, with a mass fraction of Pd of 1.5%) was 

examined using X-ray photoelectron spectroscopy (XPS), scanning transmission 

electron microscopy (STEM), and X-ray energy dispersive spectroscopy (XEDS) 

techniques. For a freshly made Pd-nZVI sample, the particles consist of a metallic iron 

core and a thin amorphous oxide shell, and Pd is observed to form 2 to 5 nm islands 

decorating the outer surface of the nanoparticles. Upon exposure to water, Pd-nZVI 

undergoes substantial morphological and compositional changes. STEM-XEDS 

elemental maps show that Pd infiltrates through the oxide layer to the metallic iron 

interface, which is accompanied by oxidation and outward diffusion of the iron species. 

Within a 24 h period, Pd is completely buried underneath a growing iron oxide matrix, 
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and a fraction of the nanoparticles exhibits a hollowed-out morphology with no metallic 

iron remaining. The microstructural variations observed concur with the reactivity data, 

which shows the aged bimetallic particles display an 80% decrease in dechlorination 

rate of trichloroethene (TCE) compared to the fresh particles. These findings shed new 

insight into the function of palladium in hydrodechlorination reactions, nZVI particle 

aging and deactivation, and the longevity of Pd-nZVI for in-situ remediation 

applications.   

 

5.1 Introduction 

Nanoscale zero-valent iron (nZVI) represents one of the most widely studied engineered 

nanomaterials in environmental remediation and toxic waste treatment. The reactivity of 

nZVI can be substantially improved by impregnating with a second metal, typically Pd, 

Pt, Ni, Ag or Cu, to form so-called bimetallic nanoparticles. Among these transition 

metal additives, Pd-doped nZVI (Pd-nZVI) is known to exhibit higher reactivity than 

the other reported bimetallic systems (Alonso et al., 2002; Cwiertny et al., 2006). For 

treatment of chlorinated organic compounds (e.g., trichloroethene and 

tetrachloroethene), Pd-Fe bimetallic materials yield more-saturated products (i.e., C2H6) 

and generate less toxic intermediates, such as dichloroethenes and vinyl chloride, which 

are often produced with monometallic iron (Alonso et al., 2002; Lien & Zhang, 2007). 

Ample literature exists on reductive dehalogenation using Pd-Fe bimetallic materials, 
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and Table 5.1 summarizes some of the most frequently-cited laboratory and field 

studies.  

Table 5.1: Common halogenated contaminants treated by Pd-Fe bimetallic 
nanoparticles in recent studies. 
 
Contaminant  Pd-Fe materials Reference 

Chlorinated methane 

 

As synthesized Pd(0.05-1 % by 
mass)-Fe nanoparticles 

Lien & Zhang, 
1999 

Carbon tetrachloride Palladized iron cathode in flow 
through cell 

Li & Farrell, 2000 

Tetrachloroethene (PCE), 
Trichloroethene (TCE), 
Dichloroethene (DCE), 
Vinyl chloride (VC) 

As-synthesized Pd-Fe 
nanoparticles 

Zhang et al., 1998 

Trichloroethene (TCE) Pd(11 % by mass)-Fe 
nanoparticles embedded in 
polymer matrix 

Xu et al., 2005 

Trichloroethene (TCE) Starch stabilized Pd(0.1 % by 
mass)-Fe nanoparticles 

He et al., 2007 

Trichloroethene (TCE) As synthesized Pd(0.3 % by 
mass)-Fe nanoparticles for field 
evaluation 

Korte et al., 2000; 

Elliott & Zhang, 
2001 

Chlorophenols Encapsulated Pd-Fe in magnetic 
stabilized fluid bed reactor 

Graham & 
Jovanovic, 1999 

Polychlorinated biphenyls 
(PCB) 

As-synthesized Pd-Fe 
nanoparticles 

Wang & Zhang, 
1997 

Polychlorinated biphenyls 
(PCB) 

As-synthesized Pd-Fe on granular 
activated carbon support 

Choi et al., 2008 

Chlorobenzenes As-synthesized and regenerated 
Pd(0.1 % by mass)-Fe 
nanoparticles  

Zhu & Lim, 2007 

  



127 

 

Palladium metal is a well-known heterogeneous catalyst for gas phase dehalogenation 

and hydrogenation reactions (Alonso et al., 2002; Wong et al., 2009). The use of Pd-

impregnated iron (Pd-Fe) for groundwater remediation is a relatively recent application. 

Mechanistic studies of the degradation of simple aliphatic chlorinated compounds in 

water suggest that the iron component of the Pd-Fe material serves as the source of 

electrons, which reduces water and produces H2 via aqueous corrosion. On the other 

hand, palladium behaves as a catalytic surface for hydrogen adsorption, activation, and 

the subsequent formation of dissociated hydrogen species, which in turn act as the 

reducing agents responsible for the dechlorination and hydrogenation of the 

contaminants (Kim & Carraway, 2003; Cwiertny et al., 2006; Lien & Zhang, 2007).  

In contrast to gas phase reactions, the use of iron materials in water remediation 

applications inevitably requires that they sustain prolonged contact with the aqueous 

environment and undergo reactions with water. Moreover, in the presence of Pd, iron 

reaction with water is accelerated due to the galvanic effect between iron and palladium 

in addition to the well known ability of the latter to catalytically promote the reduction 

of water and hydrogen generation (Uhlig, 1971; Cwiertny et al., 2006). Because of the 

large excess of water molecules relative to those contaminants of concern, the 

interaction of the Pd-Fe particles with water determines the longevity of these materials 

and their long-term effectiveness for contaminant remediation applications. Stability in 

water is particularly important for nanoscale, Fe-based materials due to the enhanced 

reactivity imparted by their high surface area. Despite the popular use of doped nZVI 
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materials in water research, only a few studies have been conducted to investigate the 

effect of aqueous exposure on the structure and composition of these bimetallic 

nanoparticles (Muftikian et al., 1996; Zhu & Lim, 2007).  

In this work, state-of-the-art X-ray energy dispersive spectroscopy (XEDS) spectrum 

imaging in an aberration-corrected scanning transmission electron microscope (STEM) 

(Burke et al., 2006; Watanabe  et al., 2006; Herzing et al., 2008) is utilized for high 

resolution elemental mapping of Pd-nZVI bimetallic nanoparticles. The STEM-XEDS 

technique enables direct visualization of the nanoscale structural and compositional 

changes of the bimetallic particles induced by their aging in water. These findings are 

correlated with the results from X-ray photoelectron spectroscopy (XPS) and batch 

experiments with trichloroethene (TCE) in an effort to generate a more complete 

understanding of the reactivity and stability of Pd-nZVI particles in aqueous media over 

time. Implications of these results for water treatment and remediation are discussed. 

 

5.2 Materials and methods 

Preparation of nanoparticles. Iron nanoparticles (nZVI) were prepared using a sodium 

borohydride reduction method as described previously (Chapter 3). The nanoparticles 

were previously characterized and found to have a median diameter of 60 nm with more 

than 80 % of the particles being smaller than 100 nm (Sun et al., 2006). The BET 
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surface area was found to be 29 m2/g. Pd-Fe bimetallic nanoparticles (Pd-nZVI) were 

prepared following the procedure described in Chapter 3.   

Aging Experiments. The aging experiment was performed in 120 mL serum bottles 

containing 100 mL of de-ionized water. An appropriate amount of freshly made nZVI 

or Pd-nZVI nanoparticles were added into 100 mL DI water to reach a concentration of 

5 g/L. The bottles were sealed with crimp caps having a Teflon-lined septum, and 

placed on a mechanical shaker at 25 oC for 24 h. The solid residues were harvested by 

vacuum filtration and dried in a glove bag containing high purity N2.  

XPS and XRD analysis. High-resolution X-ray photoelectron spectroscopy (HR-XPS) 

analysis was performed on a Scienta ESCA 300 spectrometer. Samples were placed in 

the HR-XPS analysis chamber held at 6.7x10-7 Pa (5x10-9 Torr) where general survey 

spectra and detailed spectra for the C 1s, O 1s, Fe 2p and Pd 3d regions were acquired. 

Detailed spectrum analysis and curve-fitting procedures are described in Chapter 3. 

XRD analysis was performed on a Rigaku diffractometer with Cu Kα radiation (λ = 

0.15406 nm). Samples were scanned over a 2θ angular range from 10° to 80° with a 

step size of 0.1° and a scanning rate of 30 s per step. 

Electron Microscopy Analysis. Samples for transmission electron microscopy (TEM) 

and scanning transmission electron microscopy (STEM) analysis were prepared by 

allowing a drop of a dilute ethanol suspension of the nanoparticles to dry on a lacey-

carbon film supported on a 300-mesh copper TEM grid. Conventional bright-field and 



130 

 

phase contrast imaging experiments were carried out using a JEOL 2200FS FEG-TEM 

operating at 200 kV. High-angle annular dark-field (HAADF) imaging and XEDS 

spectrum imaging were performed using an FEI Titan 80-300 TEM/STEM operating at 

300 kV in scanning (STEM) mode. This instrument is equipped with a double-hexapole 

spherical aberration (Cs) corrector (CEOS GmbH) and an EDAX r-TEM system for 

XEDS analysis.  

The details of XEDS spectrum imaging have been described elsewhere (Burke et al., 

2006; Watanabe  et al., 2006; Herzing et al., 2008). Briefly, the electron probe is slowly 

scanned over a two-dimensional area of interest, collecting an entire X-ray fluorescence 

spectrum at each pixel. Because the aberration-corrected STEM probe is only about 100 

pm in diameter, this type of analysis can be carried out at very high spatial resolution.  

In the present case, the data was collected using the Titan Image and Analysis (TIA) 

software package (FEI Co.) with a pixel size of 1 nm2 or less and a spectrum collection 

time of 200 ms per pixel.  The spectra were collected from 0 keV to 40 keV at 10 

eV/channel, and drift-correction was carried out periodically during the acquisition by 

cross-correlation of the STEM-HAADF image intensity with a static reference image.  

The end result of this acquisition is a spectrum image data cube, the dimensions of 

which are defined by the spatial coordinates of the pixels (x and y) and the energy 

channels of the XEDS spectra (E). In order to analyze the information contained in the 

resulting data cube and extract background-subtracted elemental maps, post-processing 

was carried out using Lispix (ref. 22).  Background subtraction was carried out using a 
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three-window method for the Fe and Pd signals, while only two windows were utilized 

for O due to the difficulty in background modeling of low energy X-rays. 

Batch Experiments. TCE dechlorination experiments were conducted to compare the 

reactivity of fresh and aged Pd-nZVI particles. To remove hydrogen species 

accumulated in the solid phase during the aging process, which may contribute to TCE 

dechlorination, the aged nZVI suspension was sonicated for 10 min in air before 

collection by vacuum filtration and use in the subsequent TCE batch experiments. At 

the beginning of each experiment, a 100-mL of aqueous TCE solution (50 mg/L) was 

charged into a 250-mL serum bottle containing 0.25 g Pd-nZVI. The bottle was capped 

with a Teflon Mininert valve and mixed on a mechanical shaker at 250 rpm at room 

temperature (25 oC). Periodically, a 25-uL aliquot of headspace gas was withdrawn 

using a gastight syringe for gas chromatography (GC) analysis. Concentration of TCE 

was measured by a Shimatzu GC analyzer (GC-17A) equipped with a flame ionization 

detector and a SUPELCO SPB 624 capillary column. Each experiment was repeated 

and data shown were the average of two runs. A blank experiment was performed in 

parallel under the identical conditions but without the addition of Pd-nZVI particles.  
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5.3 Results and discussion 

5.3.1 Surface chemistry analysis with XPS 

Figures 5.1a and 5.1b show the Fe 2p XPS spectra of the nZVI and Pd-nZVI materials, 

respectively. The two spectra displayed for each type of nanoparticle correspond to the 

freshly made nanoparticles and those aged in water for one day. The Fe 2p3/2 

photoelectron peaks at 706.6 eV and 710.8 eV can be assigned to metallic iron (Fe(0)) 

and oxidized iron (Fe(III)) based on the binding energies (B.E.) (Martin et al., 2008).  

For the freshly made nZVI and Pd-nZVI particles, a strong Fe(III) peak was present 

along with a relatively small Fe(0) peak. Considering that the typical sampling depth of 

the XPS technique is less than 10 nm, the iron XPS spectra agree with the core-shell 

model described in the literature, in which a metallic iron core is surrounded by a thin 

layer of oxidized iron. The overlayer is thought to form spontaneously upon synthesis 

and serves to prevent the underlying metallic iron core from rapid oxidation (Carpenter 

et al., 2003; Li & Zhang, 2007). Prior analysis of O 1s spectra of freshly made nZVI 

suggests that the oxide phase has a stoichiometry of iron oxyhydroxide (FeOOH) (Li & 

Zhang, 2007). The relative abundance of Fe(0) to Fe(III) are comparable for the nZVI 

and Pd-nZVI materials, suggesting that the Pd impregnation process does not cause a 

significant alteration to the core-shell structure.  
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Figure 5.1 Fe2p XPS spectra of (a) monometallic iron nanoparticles (nZVI) and (b) Pd-
impregnated iron nanoparticles (Pd-nZVI). Figure (c) Pd3d spectra of Pd-nZVI. The 
spectra in blue represent freshly made nanoparticles, and those in pink are for particles 
aged in aqueous media for 24 h.  

 

After aging in water for one day, the Fe(0) peak remains detectable for the undoped Fe 

nanoparticles (Figure 5.1a). However, the intensity is markedly reduced, which 

indicates that surface corrosion may have occurred effectively increasing the shell 

thickness during the aging process. In contrast, the Pd-nZVI nanoparticles immersed in 

water for one day did not exhibit any metallic iron component in the XPS spectrum 

(Figure 5.1b), implying that the particles had undergone severe oxidation during the 

aging period. Figure 5.1c overlays the Pd 3d XPS spectra of the freshly made and the 

aged Pd-nZVI materials. The fresh Pd-nZVI exhibits two prominent peaks with binding 
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energies of 334.7 eV and 340.0 eV, respectively, which can be assigned to the 3d5/2 and 

3d3/2 components for Pd(0) (Muftikian et al., 1996). No other Pd valence state was 

observed, thus confirming that the impregnated Pd was completely reduced to Pd(0) via 

a Pd(II)-Fe(0) replacement reaction: 

 Pd2+(aq.) + Fe0 (s) = Pd0 (s) + Fe2+ (aq.)    (5.1) 

However, after a one-day exposure to an aqueous environment, the Pd 3d5/2 and 3d3/2 

signals were severely attenuated and barely discernible from the background noise. 

Analysis of the solution in which Pd-nZVI particles were suspended showed no elution 

of Pd ions into the aqueous phase, suggesting Pd may have become effectively buried 

underneath a growing layer of iron corrosion products during the aging test period. The 

combined results of Fe 2p and Pd 3d XPS analysis imply that the bimetallic particles 

experienced much more rapid corrosion in water than the monometallic iron 

nanoparticles.   

 

5.3.2 XRD characterization 

The structures of the fresh and aged Pd-nZVI particles were also examined using XRD. 

The reflections in the XRD patterns of both the fresh and aged samples are broad 

(Figure 5.2), indicating that the particles under examination are nanocrystalline in 

nature. While several of the expected XRD peaks for bcc Fe, fcc Pd and iron oxide 
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phases are within close proximity and therefore have overlaps, there is clear evidence of 

an overall increase in 6-line ferrihydrite phase after aging.  

Figure 5.2 X-ray diffractograms acquired from the as-synthesized Pd-impregnated 
nZVI sample (black line) and the n-ZVI sample aged in water for 24 hours (pink line).  
While several of the diffraction peaks in question overlap, there is a clear increase in 6-
line ferrihydrite (Fh) content upon aging, suggesting accelerated oxidation of the sample 
in water. 
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5.3.3 TEM, HAADF and STEM-XEDS characterization 

Figure 5.3a shows a high-angle annular dark field (HAADF) image of a typical fresh 

undoped nZVI spherical particle. The signal collected via this technique is sensitive to 

atomic number, with the heavier elements scattering more effectively to the high 

collection angles employed.  Thus, the locations of the specimen with greater average 

through-thickness atomic number will appear brighter, and compositional information 

can, to a certain extent, be garnered directly from the images.   

 

Figure 5.3 (a) HAADF image of an undoped nZVI particle showing the Fe-core/iron 
oxide-shell morphology. (b) a color overlay of STEM-XEDS elemental maps generated 
from the Fe Kα and the O Kα X-ray peaks (Red = Fe, Blue = O). 

       

The particle in Figure 5.3a consists of a bright core, corresponding to metallic iron, 

enclosed by a ~5 nm thick shell, which is thought to be iron oxide. Previous combined 

TEM and XPS studies (Chapter 4) have identified the core of the n-ZVI particle to 

(a) HAADF (b) STEM-XEDS



138 

 

consist of nanocrystalline (bcc) metallic Fe, while the shell is a highly disordered oxide 

layer resembling iron oxyhydroxide (FeOOH) in stoichiometry (Li & Zhang, 2007). 

This structural identification is further verified by the STEM-XEDS compositional 

maps shown in Figure 5.3b, which is produced by overlaying Fe Kα (red) and O Kα  

(blue) elemental maps, respectively. Notably,  there is a reduced intensity in Fe signals 

and much enhanced O signals in the oxide shell region. The physical extent of the oxide 

layer relative to the nanoparticle is readily visualized using the STEM-XEDS mapping 

technique. 

Figure 5.4a and Figure 5.4b show corresponding HAADF images of two typical particle 

morphologies found in the freshly prepared Pd-nZVI material. When compared to the 

HAADF images of the undoped nZVI (Figure 5.3a), the fresh Pd-nZVI particles have a 

considerably rougher surface profile, and, in the case of the particle shown in Figure 

5.4b, the surface is decorated with 2 nm to 5 nm particles. After exposure to water for 

24 h the Pd-nZVI particles undergo gross morphological changes as evidenced in the 

three HAADF images presented in Figures 5.4c - 5.4e. The starting Pd-nZVI structures 

and the three co-existing ‘water-aged’ morphologies (labeled X, Y and Z) can be 

interpreted more fully when considered in conjunction with their corresponding STEM-

XEDS elemental maps, which are presented in Figure 5.5 & 5.6. Each set of STEM-

XEDS maps consists of individual elemental maps for Fe Kα, O Kα, and Pd Lα, and a 

color overlay map of the three elements. 
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Figure 5.4 (previous page) HAADF images of Pd-nZVI material. (a) & (b) freshly 
made Pd-nZVI. (c) - (e) Pd-nZVI after aqueous aging for 24 h.  

 

STEM-XEDS mapping data of the two main morphologies found in the fresh Pd-nZVI 

sample are shown in Figure 5.5. Figures 5.5a shows the Fe Kα, O Kα and Pd Lα 

elemental maps acquired from the cluster of particles shown previously in Figure 5.4a, 

where the Pd forms an almost continuous layer over the surface of the Fe/oxide core-

shell particle. The color overlay map (last column of Figure 5.5a), where the elemental 

distribution of Pd is represented in green, clearly highlights the nearly continuous Pd 

layer on the exterior surface. However, the vast majority of the particles found in the 

fresh Pd-nZVI sample are more like that shown in Figure 5.5b. The corresponding 

elemental maps from this type of particle clearly show that there are discrete (green) Pd 

nanoparticles decorating the surface of the n-ZVI species. The XPS spectra acquired 

from these fresh samples Pd-nZVI samples (Figure 5.1c) suggest that these are metallic 

rather than oxidized Pd nanoparticles. 

Figure 5.6 shows the Fe Kα, O Kα and Pd Lα STEM-XEDS elemental maps from the 

‘after–aging’ morphologies, which are denoted as Type-X, Type-Y, and Type-Z 

morphology, respectively, in Figure 5.4.  Close examination of the Type-X morphology 

(Figure 5.6a) suggests that Pd is beginning to penetrate through the less dense oxide 

outerlayer towards the metallic Fe core.   
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Figure 5.5 STEM-XEDS elemental maps of the Fe Kα, O Kα , Pd Lα X-ray signals and a 
color overlay (Red = Fe, Blue = O, and Green = Pd) of the fresh Pd-nZVI particles 
shown in Figure 5.4a (corresponding to 5.5a) and 5.4b (corresponding to 5.5b).  
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STEM-XEDS mapping of fresh Pd-nZVI nanoparticles
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Figure 5.6 STEM-XEDS elemental maps of the Fe Kα, O Kα , Pd Lα X-ray signals and a 
color overlay (Red = Fe, Blue = O, and Green = Pd) of the aged Pd-nZVI particles 
shown in Figure 5.4c-5.4e. (a) - (c) correspond to the aged Type-X, Y, and Z  
morphology, respectively.  

 

OverlayFe Kαααα O Kαααα Pd Lαααα

(a) Type-X

STEM-XEDS mapping of aged Pd-nZVI nanoparticles  

(b) Type-Y

(c) Type-Z
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The elemental maps corresponding to the ‘after–aging’ morphology denoted as type-Y 

in Figure 5.4d are presented in Figure 5.6b. The spatial extent of the Pd signal is found 

to be considerably smaller than that of the Fe signal, suggesting that the Pd in this 

particle is now all sub-surface. The color overlay of elemental maps demonstrates the 

situation where all Pd is accumulating as a buried (green) layer at the metallic Fe/oxide 

interface. This observation of a buried interfacial layer of Pd is consistent with the XPS 

data, where a dramatic decrease in overall surface Pd signal was noted for the samples 

aged in water (Figure 5.1c).  

The third distinct (type-Z) morphology of aged Pd-nZVI particle shows a characteristic 

low level of contrast at its center in HAADF images (Figure 5.4e), suggesting that it 

may in fact have a hollow core.  Figure 5.6c shows the corresponding STEM-XEDS 

elemental data for this particle type.  The Fe Kα and O Kα elemental maps show a very 

close correspondence, suggesting that complete oxidation of metallic iron has occurred,  

and both display an intensity decrease at the particle center indicative of the presence of 

a central void. The Pd distribution shown in Figure 5.6c indicates that the Pd is located 

under the oxide layer, seemingly defining the interior surface of the pore. We believe 

that while the Pd is diffusing inward to the Fe/oxide interface, the metallic Fe associated 

with the core simultaneously diffuses outward, oxidizes and contributes to the oxide 

shell, which then grows in thickness until eventually all the metallic Fe is consumed. 

This oxidation process could be controlled by several factors, such as the particle 

surface area, exposure of different surface facets, etc.  Therefore, the microstructural 



 

heterogeneities in the system cause the reaction rate to vary from particle to particle, 

and we observe multiple types of micros

progression from one morphology to the next cannot be unequivocally addressed in this 

study, since our structural characterization was carried out at only one aging interval (24 
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particles, which originally have Pd on their outer surfaces, sequentially transform 
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5.7).   

Figure 5.7 Schematic il
nanoparticles during immersion in aqueous media. 
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heterogeneities in the system cause the reaction rate to vary from particle to particle, 

and we observe multiple types of microstructure (X, Y and Z) in the aged sample.  The 

progression from one morphology to the next cannot be unequivocally addressed in this 

study, since our structural characterization was carried out at only one aging interval (24 

h).  However, our interpretation of the data is that during exposure to water, nZVI 

particles, which originally have Pd on their outer surfaces, sequentially transform 

though the X, Y and Z microstructures that have been identified in this study

Schematic illustration of the progressive transformation of Pd
nanoparticles during immersion in aqueous media.  

heterogeneities in the system cause the reaction rate to vary from particle to particle, 

tructure (X, Y and Z) in the aged sample.  The 

progression from one morphology to the next cannot be unequivocally addressed in this 

study, since our structural characterization was carried out at only one aging interval (24 

n of the data is that during exposure to water, nZVI 

particles, which originally have Pd on their outer surfaces, sequentially transform 

though the X, Y and Z microstructures that have been identified in this study (Figure 

 

lustration of the progressive transformation of Pd-nZVI 
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5.3.4 Interpretation of the observed structural transformations 

The structural changes observed due to aging, namely, the increase in oxide layer 

thickness, the enclosure of the initial surface Pd by the oxide layer, and in some cases 

the evacuation of the metallic iron core to give a characteristic “hollowed-out” structure, 

may result from several processes. The growth of the oxide layer is the net result of iron 

oxidation, outward diffusion of Fe(II), and oxidation and precipitation of Fe(II) upon 

reactions with water, dissolved oxygen and other potential oxidants in the solution 

phase (Wang et al., 2005; Reardon et al., 2008). Similar phenomena including the 

outward diffusion of the metal species and the growth of an oxide shell have been 

observed previously during the oxidation of iron and cobalt nanoparticles in gas or 

aqueous media (Wang et al., 2005; Yin et al., 2004).  The inward migration of 

palladium metal is also favored thermodynamically since the core region has the highest 

concentration of metallic iron, which reduces Pd(II) and stabilizes elemental palladium.  

Due to the very large surface-area-to-volume ratio and short diffusion distances 

associated with these nanoscale particles, the mass transport could easily result in void 

formation and eventually a hollow structure within reasonably short time frames. 

In the case of Pd-nZVI, the process of iron oxidation is significantly accelerated 

compared to the undoped nZVI particles. The effect is attributed to the galvanic contact 

between palladium and iron, which creates a large electrochemical potential difference 

(∆Eo = 1.355 V) (Bard et al., 1985) driving iron oxidation. In addition, palladium is also 

a well-known hydrogenation catalyst (Alonso et al., 2002; Wong et al., 2009) for water 
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reduction to hydrogen. Both effects result in enhanced iron corrosion. Indeed, we 

conducted experiments to evaluate the hydrogen generation rate by nZVI and Pd-nZVI 

in water, and the results confirm there is a more than 30-fold increase in hydrogen 

evolution rate by doping the nanoparticles with mass fraction of 1% of palladium (Table 

5.2). The experiments were performed in 1 L of deoxygenated DI water with varying 

doses of iron-based nanoparticles. The suspension was mixed with a magnet stirrer at 

400 rpm. Rotating stirring paddle, which was commonly used in batch kinetic 

experiments, was not employed here due to concern over possible gas leakage through 

the rotating fixture. The pressure of the headspace inside the reactor was monitored by a 

pressure sensor. Reaction time was 20 h for Pd-nZVI and ranged from 100 to 250 h for 

nZVI. 

We observed that the curves of hydrogen generation vs. time can be reasonably fitted 

using a straight line (data not shown), thus a simple linear hydrogen evolution rate is 

assumed in life-span estimations. The following reaction stoichiometry is used 

(Reardon et al., 2008):  

 3Fe(s) + 4H2O � Fe3O4 + 4H2 (g)      (5.2) 

 

By approximating with a linear model of hydrogen generation with time, the life span of 

our Pd-nZVI nanoparticles is estimated to be approximately 38 h (Table 5.2). This 

number is in good agreement with the observation that a sizable proportion of the aged 

Pd-nZVI had their metallic iron interior hollowed out after 24 h of aging in water. It 
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should be noted that the estimated life span of undoped nZVI is extrapolated from H2 

evolution experiments that lasted for up to 250 h, thus it is assumed herein that Fe(0) 

corrodes at a constant rate until complete exhaustion. However, previous studies have 

reported that the rate of iron corrosion declines with time (Reardon et al., 2008), so the 

actual longevity of nZVI may be substantially higher than the value estimated here.   

Table 5.2: Laboratory evaluated hydrogen evolution rates for nZVI and Pd-nZVI and 
the estimated life-spans of the nanoparticles.  

Nanoparticles Dose (g) H2 evolution rate 
(mg-H2/g-Fe/h) 

Estimated life-span of 
the nanoparticles 
before complete 

oxidation 
nZVI 0.1 2.27 x 10-2 87 d 

 
 0.25 4.82 x 10-2 41 d 

 
 0.5 4.09 x 10-2 49 d 

 
Pd-nZVI (Pd at 

1wt%) 
0.5 1.24 38 h 

 

 

5.3.5 Implications for water remediation applications 

nZVI-based bimetallic materials have been extensively studied for their enhanced 

reactivity and the generation of more benign end-products in the reductive 

dehalogenation of organic halides (Table 5.1). However, most studies have not 

considered the possibility of dynamic structural changes of the bimetallic nanoparticles 

in the aqueous reaction media. Structural characterization studies are typically 
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performed on the fresh material, and it is assumed that the nanostructure and elemental 

distribution remain unchanged during the course of the remediation treatment. The 

observation that the Pd-Fe bimetallic nanoparticles can undergo massive structural and 

compositional changes in water over a time-frame comparable to that of the 

contaminant transformation process calls for a significant modification of the reaction 

models of bimetallic nanoparticles.  Enclosure of Pd by an extensive iron oxide layer 

due to aqueous aging clearly requires the contaminants (e.g., TCE) to penetrate into the 

particle and the products (e.g., ethane) to diffuse out through the oxide layer, which may 

affect reaction kinetics, alter the rate-limiting steps, and influence final product 

distributions. No detailed study has been performed yet on these aspects, but the 

apparent loss of reactivity for Pd-Fe materials after aging in water is observed in TCE 

batch experiments (Figure 5.8). The apparent reaction rate constant based on a pseudo-

first-order reaction rate model decreased from 5.7 h-1 for the fresh particles to 0.96 h-1 

upon 24 h aging. Decreased reaction rates have also been reported in prior studies over 

repeated use of Pd-Fe particles in aqueous solutions (Zhu & Lim, 2007), and these 

findings are consistent with the rapid enclosure of surface Pd sites by a growing iron 

oxide shell as illustrated in Figure 5.7.  

Prior studies have attempted to correlate the reactivity of the bimetallic particles with 

the mass loading of the additive metal. Instead of following a monotonically increasing 

trend, it has been observed that an optimal dosage exists and the reactivity declines with 

a further increase in the additive metal loading (Nutt et al., 2005; Cwiertny et al., 2006; 
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Lien & Zhang, 2007). The behavior may conceivably be attributable to accelerated 

particle aging and more rapid surface deactivation with increasing Pd dopant level. This 

hypothesis needs to be confirmed by systematically extending this study to Pd-Fe 

nanoparticles with different Pd contents. Differences in the initial structure of nZVI, the 

doping procedure, and the aging medium (for instance, in solvent/water mixture) may 

also affect the reactivity and aging of the bimetallic nanoparticles.  

 

Figure 5.8 TCE removal by fresh and aged Pd-nZVI particles. Initial TCE 
concentration was 50 mg/L, and particle dose was 2.5 g/L. The error bars represent the 
results of duplicate runs.  
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With regards to the potential application of bimetallic nanoparticles for in-situ treatment 

of halogenated contaminants, our results imply that particle age and storage 

environment will play a critical role in determining the effectiveness of the remediation. 

For field applications of the palladized nZVI, palladium should be introduced onto the 

nZVI at the time of use due to the high reactivity and limited life span of Pd-nZVI. It 

has been noted that the presence of dissolved silica may impede iron corrosion by 

adsorbing to the anodic surface (Reardon et al., 2008). It may be the case that, in actual 

field applications, the life span of Pd-nZVI in a soil matrix containing silica and other 

corrosion inhibitors may be longer as compared to the life times in pure water studied 

here. On the other hand, Pd in the aged particles is embedded in the growing oxide 

phase and there is no dislodging of Pd metal or elution of Pd(II) ions into the aqueous 

phase. This attribute is highly favorable for the collection and recycling of palladium 

material and for addressing concerns regarding possible palladium leaching into the 

environment.     
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Chapter 6 

Reactions of Inorganic Pollutants with nZVI: Role of  

the Core-shell Structure 

 

6.0 Abstract 

Aspects of the core-shell model of nanoscale zero-valent iron (nZVI) and their 

environmental implications were examined in this work. The structure of the 

nanoparticles and the chemical nature of the oxide coating and the highly reducing 

Fe(0) nuclei revealed by previous microscopic and spectroscopic characterizations 

were summarized herein, which provides a basis for understanding the structure-

reactivity relationship of nZVI material and exploring new environmental abatement 

applications. Three aqueous environmental contaminants, namely Hg(II), Zn(II) and 

hydrogen sulfide, were used to probe the reactive properties of nZVI. High-

resolution X-ray photoelectron spectroscopy (HR-XPS) analysis of the reacted 

particles indicated that Hg(II) was sequestrated via chemical reduction to elemental 

mercury. On the other hand, Zn(II) removal was achieved via sorption to the iron 

oxide shell followed by zinc hydroxide precipitation. Hydrogen sulfide was 

immobilized on the nZVI surface as disulfide (S2
2-

) and monosulfide (S
2-

) species. 

Their relative abundance in the final products suggests that the retention of 

hydrogen sulfide occurs via reactions with the oxide shell to form iron sulfide (FeS) 
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and subsequent conversion to iron disulfide (FeS2). The results presented herein 

highlight the multiple reactive pathways permissible with nZVI owing to its two 

functional constituents. The core-shell structure imparts nZVI with manifold 

functional properties previously unexamined and grants the material with potentially 

new applications. 

 

6.1 Introduction 

Engineered nanomaterials have found increasing applications in environmental 

technologies, including water and wastewater treatment, air, water and soil remediation, 

and hazardous waste treatment, owing to their superior reactivity towards a variety of 

recalcitrant contaminants and their enhanced capacities for contaminant abatement (Li 

et al., 2006; Tratnyek & Johnson, 2006; Karn et al., 2009). Amongst this promising 

class of remediation agents, nanoscale zero-valent iron (nZVI) perhaps has received the 

most attention and has been shown to effectively degrade a wide spectrum of water 

contaminants, such as halogenated hydrocarbons, nitroaromatic compounds, azo dyes, 

perchlorate, nitrate, hexavalent chromium and various heavy metal ions (Kanel et al., 

2005; Li & Zhang, 2006, 2007; Lowry & Johnson, 2004; Ponder et al., 2000; Ponder et 

al. 2001; Tee et al., 2005).  

Microscopic and spectroscopic studies have suggested that nZVI in the aqueous 

environment consists mainly of zero-valent iron and a surface layer of iron oxide 
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(Martin et al., 2008; Nurmi et al., 2005; Sun et al., 2006). The oxide layer is thought to 

comprise of mixed Fe(II)/Fe(III) oxides near the interface with Fe
0
 and mostly Fe(III) 

oxide near the oxide/water interface (Signorini et al., 2003; Wang et al., 2009). This 

core-shell structure has important implications for the chemical properties of nZVI. The 

defective and disordered nature of the oxide shell renders it potentially more reactive 

than a simple passive oxide layer formed on bulk iron materials (Wang et al., 2009). 

The relative composition of the oxide and the metal in nZVI is also markedly different 

from that of bulk ZVI. These considerations make the core-shell structure a highly 

important aspect to consider when studying the activity of nZVI for various remediation 

processes.  The presence of two nano-constituents in the core-shell structure may impart 

combinational properties for contaminant removal: the metallic iron acts as the electron 

source and exerts a reducing character, while the oxide shell facilitates sorption of 

contaminants via electrostatic interactions and surface complexation, and at the same 

time, permits electron passage from the metal core. Figure 6.1 proposes conceptually a 

structural model of nZVI and its reactions with several contaminants that are examined 

in this work.  

So far, the majority of published work have focused on the reductive properties of nZVI,  

e.g., reductive dehalogenation of organic compounds and reductive precipitation of 

hexavalent chromium (Lowry & Johnson, 2004; Ponder et al., 2001), There is no study 

that has examined the specific functions of the metal-core and the oxide-shell in 

different remediation systems. More information on the core-shell structure and the 
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surface chemistry of nZVI materials can accelerate the development of new applications, 

especially in the dealing of inorganic contaminants, whose treatment typically involves 

surface-mediated complexation and/or redox transformations (Stumm, 1992). Another 

aspect which has received less attention in the literature is the inevitable reaction of 

nZVI with water and its effect on the solution and surface chemistry. This is of 

particular relevance to the treatment of ionic species including heavy metal ions, 

because their speciation and reactivity are profoundly dependent on the solution as well 

as the surface pH.  

 

Figure 6.1 The core-shell model of nZVI and schematic representations of the reaction 

mechanisms for the removal of Hg(II), Ni(II), Zn(II) and H2S investigated in this study.   
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The objective of this work is to demonstrate the multi-faceted reactivity of nZVI 

towards different contaminants on the basis of its nanostructure. The study proceeds 

with a discussion about the nature of the core-shell structure confirmed by the recently 

available microscopic and spectroscopic evidence and the pertinent properties of the 

oxide shell and the metallic core components. Experimental studies involving three 

common aqueous contaminants, viz., Hg(II), Zn(II), and hydrogen sulfide (H2S), are 

then presented. These contaminants are markedly different from one another in terms of 

electrochemical or coordinative properties and are used as probe molecules to 

emphasize various reactive pathways permissible with nZVI treatment. For each 

contaminant studied, aspects related to reaction kinetics, sequestration efficiency, and 

the proposed reaction mechanism(s) based on spectroscopic and solution phase 

evidence are discussed. The distinct reaction pathways and the remarkable reactivity 

and capacity demonstrated by nZVI in these systems underline the notion that nZVI has 

manifold functions in addition to reductive-transformations, and has potential 

applications in treating a diverse group of environmental contaminants.  

 

6.2 Materials and methods 

Synthesis of iron nanoparticles. nZVI was prepared following procedures reported 

previously (Chapter 3). Our previous characterization work (Sun et al., 2006) showed 

that the median diameter of single nanoparticles was approximately 60 nm, although in 
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the absence of stabilizers, individual nanoparticles readily form chain-like aggregates of 

several hundreds of nanometers in size due to magnetic interactions. The tendency to 

form larger aggregates permit facile separation of the nanoparticles from aqueous 

solutions via conventional filtration method. The Brunauer-Emmett-Teller (BET) 

surface area was found to be 29 m
2
/g (Chapter 4). 

X-ray Photoelectron Spectroscopy. The surface chemistry of nZVI samples before and 

after reaction was analyzed with a Scienta ESCA-300 high-resolution X-ray 

photoelectron spectrometer (HR-XPS). Detailed procedures of XPS analysis are 

available in Chapter 3.  

Batch experiments. In all experiments, deoxygenated water was used, which was 

prepared by purging the deionized (DI) water with nitrogen (>99.8% purity) for 30 

minutes prior to use. Hg(II) and Zn(II) solutions were prepared from mercury acetate 

(Hg(CH3COO)2, Fisher) and zinc chloride (ZnCl2, Fisher), respectively. Hydrogen 

sulfide water (a saturated solution prepared from > 99.5% purity H2S) was obtained 

from Ricca Chemical. All chemicals used were of ACS reagent grade. A typical batch 

experiment entails adding a pre-determined amount of nZVI into a solution containing 

one of the above species and allowing the mixture to undergo mechanical agitation at 

250 rpm and 25
0
C.  Mercury and zinc removal experiments were performed in 200-mL 

serum bottles sealed with PTFE-lined caps and a small volume of solution sample was 

taken at selected time intervals. Hydrogen sulfide experiments were carried out in 100-

mL serum bottles capped with a Teflon Mininert valve and sampling was performed 
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periodically by withdrawing 20 μl of headspace gas using a gas-tight syringe for GC 

analysis. For comparative purposes, a commercial grade micro-scale iron powder (from 

BASF, mean agglomerate diameter 4.1 μm) was studied in some experiments. Dilute 

acid treatment of the BASF iron powder refers to soaking the iron particles in 0.1 N 

HCl for 10 min followed by rinsing with DI water just prior to performing the 

respective experiments. 

Analytical Methods. All solution samples were filtered with 0.2-m PTFE syringe 

filters before analysis. Solution samples with mercury concentration > 1 mg/L were 

analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES, 

Perkin-Elmer Optimal 2100DV). Samples with mercury below 1 mg/L were analyzed 

by cold vapor atomic absorption using an atomic absorption (AA) spectrometer 

equipped with a flow injection system (Perkin-Elmer AAnalyst 200-FIAS 100), which 

offers a detection limit of 0.1 g/L. Zinc concentrations in the aqueous solutions were 

determined using an atomic absorption spectrometer (Perkin-Elmer AAnalyst200, 

detection limit 0.1 mg/L). Concentrations of hydrogen sulfide in the headspace were 

analyzed with a Shimadzu Model 17A Gas Chromatograph (GC) equipped with a flame 

ionization detector (FID) and a SPB
TM

-1 sulfur capillary column (Supelco). 

 

6.3 Results and discussion 

6.3.1 The core-structure of nZVI revisited 
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Chapter 4 presents a detailed characterization of microstructure of nZVI. Bright-field 

transmission electron microscope (TEM) images of freshly synthesized nZV reveal that 

the electron-dense metallic iron nuclei aggregate into chain-like structures, which is 

enclosed by a continuous, smooth oxide outer-layer varying in thickness from 2-20 nm. 

Using high-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis of the 

metallic and oxidized iron signals, we estimated an average oxide thickness to be ~ 2-3 

nm (Martin et al., 2008). Thickness estimation obtained by chemical reduction method 

yields results in good agreement with the HR-XPS method. Close-examination of the 

oxide layer with phase-contrast TEM shows the oxide shell does not contain orderly 

structure and appears to be amorphous in character (Chapter 4). Similar findings are 

noted via X-ray diffraction pattern as no distinct patterns corresponding to crystalline 

forms of iron oxides (e.g. lepidocrocite  -FeOOH, goethite α-FeOOH, or magnetite 

Fe3O4) were observed. The disordered structure may result from a large curvature 

caused by the small radii of the particles, imposing difficulty in lattice alignment. 

Additionally, detailed XPS analysis of the oxide surface indicates there is a significant 

level of impurities such as boron from synthesis precursor (sodium borohydride) in the 

oxide layer, which may contribute to its glassy, amorphous nature (Figure 4.3a).  

The chemical composition of the oxide layer has been analyzed in previous studies. It is 

reported that the oxide layer consists of a mixed Fe(II)/Fe(III) phase in proximity to the 

metallic core and a predominantly Fe(III) oxide phase at the surface of the nanoparticles 

(Signorini et al., 2003; Wang et al., 2009). The detailed arrangement of the oxide 
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structure depends on the synthesis process, particle size, and storage conditions (Wang 

et al., 2009; Wang et al. 2010). XPS analysis of our freshly made nZVI particles reveals 

that the surface of the oxide is attached with a layer of hydroxide groups (OH
-
) (Figure 

6.2), which is consistent with the origin of the particles from aqueous-based synthesis 

process (Baer et al., 2010). By analyzing O1s (Figure 6.2) and Fe2p XPS spectra, an 

apparent stoichiometry close to FeOOH is proposed (Li & Zhang, 2006). We wish to 

emphasize that this is just an apparent formula based on the XPS measurement and it 

does not suggests resemblance in structure to the commonly known iron oxy-

hydroxides (e.g. lepidocrocite  -FeOOH, goethite α-FeOOH).  

 

Figure 6.2 XPS spectra at O1s region of freshly made nZVI and those exposed to water 

for 3 hours.  
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The surface  Fe-OH groups may function as reactive sites to bind with contaminants in 

the solution, in a mode similar to surface adsorption on iron (oxyhydro)oxide. At the 

same time, the oxide layer is known to possess semiconductor properties (Balko and 

Tratnyek, 1998; Wang et al., 2009), where charge transfer is a relatively facile process 

owing to its exceedingly small thickness and the presence of defective sites, allowing 

rapid reduction of contaminants to occur. This implies that nZVI may exhibit the 

combined reactivity of iron oxides and the metallic iron. Since the actual processes at 

work likely vary with the contaminants of interest and the reaction conditions, three 

specific cases are discussed in the following sections to demonstrate the possible roles 

played by the core-shell structure in different remediation systems. 

 

6.3.2 Reduction property of nZVI - Removal of Hg(II)  

Mercury is among the most notorious metal contaminants released from many industrial 

activities including mining and coal burning. In water, mercury exists predominantly as 

Hg(II). Sequestration of Hg(II) in aqueous solution was investigated here at different 

iron doses. To attain sufficient (> 0.1 at.%) mercury on nZVI surface for unambiguous 

XPS characterization, an initial Hg(II) concentration of 40 mg/L was used in the 

experiments. As shown in Figure 6.3a, the addition of 2 g/L nZVI particles resulted in a 

removal of 98% of the Hg(II) initially present in the aqueous phase in 2 minutes. At a 
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lower nZVI loading (0.5 g/L), the sequestration kinetics is still considerably rapid with 

greater than 97% Hg(II) removal in 10 minutes.  

The reacted nZVI particles were collected for XPS analysis to determine the chemical 

state of mercury on the nZVI surface. As shown in Figure 6.3b, Hg 4f7/2 XPS spectrum 

has a single peak at ca. 99.7 eV, which matches with the binding energy of Hg(0) 

(Behra et al., 2001; Ehrhardt et al., 2000). There was no peak occurring between 100.6-

100.7 eV that would otherwise have implied the presence of Hg(I) or Hg(II) on the 

surface, hence we conclude that the immobilized mercury was completely reduced to 

elemental mercury. 

Reduction of Hg(II) by Fe(0) is energetically favorable given the large difference 

between the standard redox potential of iron
 
(E

0
h = -0.44 V) and mercury

 
(E

0
h = +0.86 V) 

(Eq. 6.1) (Bard et al., 1985). With excess Hg(II), ferrous ions can be further oxidized to 

ferric ions via reaction in Eq. 6.2 (O’Loughlin et al., 2003).  

 Hg
2+

 (aq.) + Fe
0 

(s)  Hg
0
 (l) + Fe

2+
 (aq.)       ΔE

0
 = 1.30V (6.1) 

 Hg
2+

 (aq.) + 2Fe
2+

 (aq.)  Hg
0
 (l) + 2Fe

3+ 
(aq.)  ΔE

0
 = 0.09V

 
(6.2) 

Although XPS reveals only the presence of elemental mercury on the surface of nZVI, 

we cannot exclude sorption of Hg(II) to nZVI prior to its reduction since the oxide layer 

on nZVI has high affinity for heavy metal ions. For example, we proposed in a prior 

study that sorption of Ni(II) onto nZVI is a proceeding step of surface reduction based 



167 
 

on the observed surface speciation of Ni(II) at different reaction times (Li & Zhang, 

2006). 

The reactivity of nZVI was compared to a commercial grade micro-scale iron powder 

(denoted as ‘mZVI’ with a mean diameter of 4.1 μm). As shown in Figure 6.3a, no 

appreciable Hg(II) uptake was observed during the first 1 hour sampling period for the 

mZVI while nearly all Hg(II) ions were sequestrated by nZVI at the same mass loading 

(0.5 g/L). It is suspected that the reactivity of mZVI was hindered by the presence of a 

surface passivation layer of iron oxide.  Pre-treatment of mZVI in dilute HCl was 

conducted to remove the surface passivation layer. However, the reactivity of the pre-

treated mZVI was still considerably lower than that of nZVI, and approximately 77% of 

the Hg(II) originally present in the solution remained after the reaction. The results 

demonstrate that the large surface area possessed by nZVI imparts significant 

advantages in reaction rate and sequestration efficiency compared to the bulk-scale iron 

materials. Similar findings have been reported for the remediation of hexavalent 

chromium and Ni(II) with ZVI materials (Li & Zhang, 2006; Shokes & Moller, 1999).  
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Figure 6.3 (a) Hg(II) removal from solutions containing various doses of nZVI (Hg(II) 

initial concentration was 40 mg/L; mZVI refers to microscale zero-valent iron; solution 

pH of nZVI systems varied from 5.9 to 6.9). (b) Hg4f7/2 XPS spectrum of nZVI 

particles reacted with Hg(II) for 1 hour. 
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To fully assess the potential of nZVI for mercury abatement, the stability of the reaction 

products needs to be considered as elemental mercury tends to revert back to its ionic 

state via biological or chemical processes (Lalonde et al., 2004; Siciliano et al., 2002). 

By doping fresh nZVI with a small amount of noble metal, such as Cu, Ag or Pd, which 

are known to form stable amalgam with mercury (Huttenloch et al., 2003), the 

elemental mercury can be securely retained in the solid phase. Figure 6.4 compares the 

Hg(II) sequestration performance of nZVI and two bimetallic nanoparticles (nZVI-Ag 

and nZVI-Pd). The second metal (Ag or Pd) was impregnated on nZVI surface at a 

mass fraction of 1%. It is evident in Figure 6.4 that the presence of a small amount of 

silver or palladium on nZVI improves remarkably the mercury retention efficiency. The 

residue mercury concentrations in the solution were below 5 µg/L, whereas treatment 

with pure nZVI can only achieve a final mercury concentration of approximately 50 

µg/L. Further studies to systematically evaluate the performance of bimetallic nZVI for 

mercury abatement applications are underway.  
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Figure 6.4 Removal of Hg(II) by nZVI and bimetallic nZVI (nZVI-1%Ag or nZVI-

1%Pd). Initial Hg(II) concentration was 1000 µg/L. nZVI or bimetallic nZVI dose was 

0.5 g/L. Initial pH was 5. Final pH varied from 5 to 6.4. Mass fraction of the second 

metal (Ag or Pd) was 1% of the mass of nZVI. 
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Zn(II) removal capacity, obtained at a initial concentration of 800 mg/L, was 393 mg-

Zn/g-nZVI. The value is more than one order of magnitude higher than the theoretical 

uptake capacity afforded by surface adsorption, considering that nZVI has a BET 

surface area of 30 m
2
/g (Sun et al., 2006) and the surface co-ordination site density of 

the oxide shell is 2-3 sites/nm
2
 (Smith, 1996). The discrepancy implies that additional 

mechanisms other than adsorption are responsible for the highly effective Zn(II) 

removal.  

Figure 6.5b shows the XPS spectrum of the reacted particles. The Zn 2p3/2 spectrum 

exhibits a single peak at 1022 eV, consistent with the binding energy reported for Zn(II) 

oxide (Herbert, 2003). Additional auger electron analysis confirms that zinc is bound in 

its oxide state, thus no reduction was involved in the sequestration process, as would be 

expected from the more negative standard redox potential of zinc (E
0

Zn = -0.76 V) 

compared to iron (E
0

Fe = -0.44 V) (Bard et al., 1985). Solution chemistry measurement 

recorded that the removal of Zn(II) ions was accompanied by a concurrent pH increase 

as revealed in Figure 6.5a. In all experiments, the solutions registered steep pH 

increases in the first few hours. In the subsequent period of 4 days, pH continued to rise, 

albeit at much slower rates, gradually approaching a common plateau with a final pH in 

the vicinity of 8. These pH trends are attributed to spontaneous reaction between nZVI 

and water, which, owing to the relatively high concentration (~56 M) of water 

molecules, predominates other reactions in the solution and controls the pH of the 

solution. In anaerobic conditions, this reaction is described as (Reardon, 1995):  
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 Fe
0
(s) + 2H2O  Fe

2+
 + H2 (g)+ 2OH

-
 (aq.)     (6.3) 

Fresh nZVI tends to experience a rapid oxidation phase upon entering into the aqueous 

phase (Reardon, 1995), thus contributing to the initial pH surge. As hydroxyl ions 

accumulate on the particles, a passivating oxyhydroxide coating is formed, slowing 

down further oxidation  (and pH increase) until a meta-stable equilibrium is established 

between the oxide and the solution.     

Zn(II) adsorption is known to be strongly influenced by solution pH. Multi-layer 

sorption of Zn(II) could lead to surface precipitation, and at elevated pH, bulk 

precipitation of zinc hydroxide may take place (Farley et al., 1985). Figure 6.5c 

overlays the solution pH and aqueous zinc concentrations recorded at different stages of 

the experiments onto the theoretical zinc predominance diagram. Carbonate species are 

not shown because they are deemed to be effectively stripped out of the system due to 

the pre-purging step. The dashed line in Figure 6.5c represents the theoretical boundary 

between soluble Zn(II) species and zinc hydroxide solid phase. The figure shows that, at 

the early stage of the reaction (< 5 hour), zinc predominately exists as aqueous Zn(II) 

species. Zn(II) uptake in this early stage was likely brought about by non-specific 

sorption or surface complexation with the iron oxide shell. With the changes in pH due 

to nZVI-water reaction in Eq. 6.3, the solution conditions shifted towards the phase 

boundary. After 5 hours, the solutions were observed to cluster around the contour line 

of the phase boundary, indicating zinc removal at this stage was governed by the 

precipitation of zinc hydroxide. Taken together, the remarkable capacity of nZVI for Zn 
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removal is a result of a combination of sorption and precipitation. Although the actual 

contributions of sorption and precipitation may vary with the initial Zn(II) concentration, 

nZVI dosage and solution conditions, this study demonstrates that for cationic species 

amenable to adsorption and/or precipitation (e.g. Zn(II)), nZVI corrosion in water will 

foster an alkaline condition that fortuitously promotes both processes. 
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Figure 6.5  (a) Zn(II) removal from solutions at various initial concentrations (nZVI 

loading was 2g/L) and the corresponding changes in solution pH. (b) Zn2p XPS 

spectrum of nZVI reacted with Zn(II) for 3 hours. (c) Overlay of aqueous Zn(II) 

concentrations and solution pH recorded at different reaction times on a theoretical 

Zn(II) predominance diagram.  
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6.3.4 Sorption and surface mineralization - Sequestration of H2S 

Hydrogen sulfide (H2S) is a major sulfur-containing compound contributing to nuisance 

odors in wastewater and municipal solid wastes (Li et al., 2007). H2S sequestration with 

nZVI is studied here to exploit the strong iron-sulfur interactions (Figure 6.6). Figure 

6.6a illustrates the concentrations of hydrogen sulfide in the head space of the reaction 

vials upon the addition of nZVI particles. Control experiment showed less than 10% 

loss of hydrogen sulfide over the entire sampling period. Doping nZVI into the 

solutions resulted in rapid uptake of hydrogen sulfide. For all doses of nZVI studied 

(varying from 0.5 to 5 g/L), effectively all hydrogen sulfide (>99%) was removed 

within 15 minutes.   

A high-resolution XPS spectrum in the S2p region of the reacted nZVI particles is 

shown in Figure 6.6b. The spectrum was curve-fitted using the same full-width-half-

maximum (FWHM) for 2p3/2 and 2p1/2 doublets and setting 2p1/2 peak area to be half 

that of 2p3/2 peak with a fixed spin-orbit splitting of 1.2 eV (Cantrell et al., 2003; Mullet 

et al., 2002). The first doublet with 2p3/2 component at 160.7 eV is attributed to 

monosulfide (S
2-

). The doublet with 2p3/2 component at 161.5 eV corresponds to 

disulfide (S2
2-

). The peak assignments are based on the binding energies reported in the 

literature for FeS and FeS2 (Boursiquot et al., 2002; Mullet et al., 2002). The low-rise 

tail at higher binding energies is thought to arise from a polysulfide (Sn
2-

) or elemental 

sulfur (Sn
0
) component, however its contribution is markedly smaller in comparison to 

the S
2-

 and S2
2-

 components.   
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(c)  

 

Figure 6.6 (a) H2S concentrations in the headspace of solutions containing various 

doses of nZVI (CH2S, initial= 1000 mg/L). (b) S2p XPS spectrum of nZVI reacted with 

hydrogen sulfide for 1 hour. (c) XPS peak area ratios of S
2-

 and S2
2-

 to total sulfur 

content. 

 

The same cure-fitting procedure was applied to other S 2p spectra taken at different 

reaction times. Figure 6.6c shows the relative distribution of the two major sulfur 

species at various reaction times. At 1 hour, 44% of total sulfur was in the form of S
2-

. 

After 4 hours, there was a slight decrease in S
2-

 abundance to 36% accompanied by a 

corresponding increase in S2
2- 

fraction, indicating S
2-

 is being converted to S2
2-

. The 

relative abundances of the two species only varied very slightly after this point.  
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FeS may be produced when hydrogen sulfide reacts directly with the zerovalent iron 

(Wieckowska, 1995):  

 Fe
0
 + H2S   FeS + H2(g)       (6.4) 

H2S can also react with the oxyhydroxide shell of the nanoparticles (FeOOH) via Eq. 

6.5 (Cantrell et al., 2003): 

 2FeOOH + 3H2S
 
 2FeS + 1/8S8 + 4H2O    (6.5) 

It should be noted that, during the course of the H2S sequestration experiments, the pH 

rose rapidly after nZVI introduction and was stable thereafter at pH 8 (Figure 6.6a). 

Under this condition, H2S exists primarily in the deprotonated form (HS
-
). The 

isoelectric point of nZVI in aqueous solution is reported to be similar to iron oxide (c.a. 

pH 8.3) (Sun et al., 2006).
 
Hence, in the reaction medium it is electrostatically favorable 

for HS
-
 to attach to the iron particles, where it undergoes further reactions. The FeS 

formed is metastable and it is readily oxidized by the elemental sulfur to form iron 

disulfide (FeS2) (Lennie et al., 1997; Luther, 1991; Mullet
  
et al., 2002): 

 FeS + 1/8S8  FeS2       (6.6) 

The net reaction of Eq. 6.5 and 6.6 is therefore:  

 2FeOOH + 3H2S
 
 FeS + FeS2 + 4H2O    (6.7) 
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It has been suggested that FeS2 may also be produced from reaction between FeS and 

H2S, where H2S in its protonated form acts as an electrophile (Rickard and Luther, 

2007). This particular pathway was unlikely to play a significant role in the present case 

due to the prevalent existence of hydrogen sulfide as HS
-
 and the rapid depletion of H2S 

upon the addition of nZVI. The relative contributions of the two reactive pathways, i.e. 

Eq. 6.4 & 6.7, can be inferred from the measured product distribution. Eq. 6.7 suggests 

an atomic ratio of monosufide to disulfide of 1:2. The actual abundance of the two 

species, estimated after 2 days as indicated in Figure 6.6c, is approximately 1:1.9. The 

close match between these two ratios implies that H2S sequestration took place 

predominately via reactions with the oxide shell (i.e., via Eq. 6.5-6.7). In comparison, 

the pathway involving metallic iron (via Eq. 6.4) only contributed a minor part to 

sulfide mineralization. However the indirect role of metallic iron should not be 

overlooked in the overall process, since iron corrosion creates a strongly reducing 

environment with mild alkalinity, conditions that stabilize the sulfide species in the 

solution phase and potentially promote sulfide binding to the nZVI surface.   

 

6.4 Conclusion 

Previous microscopic characterizations and XPS analyses provide unequivocal evidence 

of a core-shell structure for the nZVI material, where a Fe(0) core is encapsulated by a 

thin layer of amorphous iron oxide. This particular structure and the nature of the oxide 

layer allow the particle to possess the reductive character of metallic iron and the 
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sorptive and coordinative properties of iron oxide. Solution experiments involving 

Hg(II), Zn(II) and hydrogen sulfide and subsequent surface product analysis with HR-

XPS reveal that nZVI is capable of enacting distinctive reactive pathways for specific 

contaminants, and typically more than one mechanism is involved in the respective 

sequestration processes. The mechanisms observed in the present work and from our 

previous study on Ni(II) removal (Li & Zhang, 2006) are thus consistent with the core-

shell model illustrated in Figure 6.1. The multiple functionality imparted by the core-

shell structure of nZVI has not been examined in the prior studies, which focused 

chiefly on the reductant role of nZVI in degrading halogenated organic compounds and 

inorganic contaminants. The results presented here imply that nZVI is potentially 

applicable to a broader spectrum of contaminants amenable to reduction, surface 

sorption, precipitation, or indeed combinations of the above. It is worth noting that the 

core-shell structure is an important feature of nZVI owing to the reactive, nanometer-

scale oxide layer and its significant proportion relative to the metal component. The 

reactivity of nZVI observed here may not manifest in bulk-sized ZVI materials due to a 

much smaller surface-to-volume ratio and the more passivating nature of its oxide layer. 
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Chapter 7 

Reactions of Arsenic with nZVI : A Dual Redox Functionality 

Enabled by the Core-shell Structure 

 

7.0 Abstract 

Nanoscale zerovalent iron (nZVI) has shown a high efficacy for removing arsenite 

(As(III)), which is one of the the most highly concerned contaminants in groundwater. 

However, mechanistic details underlying arsenite sequstration are only partially 

understood, and reactions on the the solid phase are inferred predominantly from 

indirect aqueous phase analyses. This study investigates the reactions between nZVI 

and arsenite using high resolution X-ray photoelectron spectroscopy (HR-XPS), which 

offers new insights into the chemical states and spatial loci of arsenic inside nZVI 

particles. Highly efficient arsenite removal from water followed by a series of redox 

reactions on the surface of nZVI were observed, resulting in multiple arsenic valence 

states (i.e., As(0), As(III) and As(V)) in the solid phase. The parallel arsenite oxidation 

(to As(V)) and reduction (to As(0)) manifests a dual redox reactivity of nZVI that has 

not been reported prior to this study. To understand this novel functionality, time-

dependent and multiline XPS analyses were employed to resolve the spatial and 

temporal changes of arsenic species in the nanoparticles. As(III) was rapidly oxidized to 

As(V) within 10 min at the particle surface, and the oxidized arsenic reverted to As(III) 
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at a slower rate in the presence of Fe(0). Meanwhile, infiltration of arsenite through the 

oxide layer resulted in As(0) formation near the Fe(0) interface. The relative extents of 

these reactions and the resultant arsenic speciation and spatial distribution are strongly 

dependent on the amount of nZVI present. When a small dose of nZVI was used (0.4 or 

1 g/L), extensive Fe(0) corrosion results in arsenite being captured as a mixture of 

As(III) and As(V) in the corrosion products. In the presence of a relatively large dose of 

nZVI (5 g/L), layered distributions in the order of As(V) > As(III) > As(0) were 

established from the surface to the iron metal interface. In both cases, nZVI serves as a 

sink for arsenic with the contaminant being embedded in the solid phase on a small time 

scale. These attributes suggests nZVI a  potentially more capacious and versatile arsenic 

abatement material than conventional arsenic adsorbent materials.    

  

7.1 Introduction 

High levels of arsenic in groundwater pose a serious health threat to millions of people 

around the world (Nordstrom, 2002; Smedley & Kinniburgh, 2002). The situation is of 

particular concern in rural areas of developing countries such as Bangladesh, India, 

Vietnam, and Cambodia, where there is no centralized water treatment facility and the 

contaminated groundwater is heavily utilized for drinking and irrigation of food crops 

(Meharg & Rahman, 2003; Dittmar et al., 2010). In the United States, groundwater 

supplies about one-third of the country’s drinking water. However, there are many 
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locations in the southwestern states where groundwater contains arsenic concentrations 

in excess of the World Health Organization (WHO) guidelines and the U.S. 

Environmental Protection Agency (USEPA) drinking water standard of 10 µg/L (Welch 

et al., 2000; USEPA, 2003; WHO, 2008). Severe health implications including cancers 

have been traced to long-term arsenic intake (Mandal & Suzuki, 2002), and on a world-

wide scale, it has been estimated that over 137 million people in more than 70 countries 

are affected by arsenic poisoning of drinking water (Smedley & Kinniburgh, 2002).  

Many options have been explored for arsenic removal and these include coagulation, 

adsorption, ion exchange, and membrane processes (Edwards, 1997; Sarkar et al., 2005; 

Mohan & Pittman, 2007; Hussam & Munir, 2007). Coagulation with alum or ferric 

chloride is commonly used in large-scale water treatment plants and can be further 

optimized for arsenic removal (Edwards, 1997), whereas sorbents such as metal oxides 

or ion-exchange-based filtration units can be tailored for household or small community 

use and are currently a more practical solution in rural regions of the affected countries 

(Sarkar et al., 2005; Mohan & Pittman, 2007; Hussam & Munir, 2007).  

The principal forms of arsenic in natural waters are arsenate [As(V)] and arsenite 

[As(III)]. Arsenate exists as oxyanions (H2AsO4
-
 or HAsO4

2-
) in a pH range of 2 to 12, 

while arsenite remains as neutral undissociated species (H3AsO3) below a pH of 9.2 

(Manning et al., 2002; Kanel et al., 2006). As(III) oxidation to As(V) by dissolved 

oxygen alone is kinetically slow (Smedley & Kinniburgh, 2002; Scott & Morgan, 1995). 

Amorphous or crystalline iron oxides possess strong affinity for both As(V) and As(III) 
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species. Under neutral or alkaline pH, As(III) adsorbs to a greater extent than As(V) 

onto iron oxide surfaces via inner-sphere complex formation (Dixit & Hering, 2003; 

Raven et al, 1998; Manning et al., 1998) and the molecular structures of arsenic-iron 

oxide complexes have been characterized by advanced spectroscopic techniques 

(Manning et al., 1998; Manceau, 1995; Goldberg & Johnston, 2001; Ona-Nguema et al., 

2005). Figure 7.1 depicts the molecular structures of different As(V) surface complexes 

formed on goethite based on the inter-atomic distances determined from extended X-ray 

absorption fine structure (EXAFS) spectroscopy (Fendorf et al., 1997).  

 

Figure 7.1 Surface complex structure of As(V) on goethite proposed based on EXAFS 

spectroscopic study (adapted from Fendorf et al., 1997).  

 

Recent studies have shown that zero-valent iron is an effective remediation agent for 

treating arsenic-laden groundwater or drinking water (Lackovic et al., 2000; Su & Puls, 

2001; Manning, et al. 2002; Bang et al., 2005; Lien & Wilkin, 2005).  It is generally 

Monodentate Mononuclear 
bidentate

binuclear 
bidentate



191 
 

conceived that As(III) or As(V) is removed by adsorbing to the iron oxide layer on the 

ZVI particles (Su & Puls, 2001; Manning, et al. 2002) or forming co-precipitates with 

iron hydroxide produced during in situ iron corrosion (Lackovic et al., 2000; Lien & 

Wilkin, 2005).  However, spectroscopic investigations of arsenic speciation in ZVI 

materials reveal that the immobilized arsenic is converted to different oxidation states 

from their aqueous forms, suggesting arsenic redox transformations have played an 

active part in the remediation process. X-ray photoelectron spectroscopy (XPS) analysis 

by Su et al. detected no reduction of As(III) by ZVI filings but partial oxidation of 

As(III) to As(V) (Su & Puls, 2001). Manning et al. (2002) reported similar findings 

with X-ray absorption spectroscopy (XANES and EXAFS) for ZVI powders reacted 

under aerobic conditions, where they proposed the oxidation of As(III) might be 

mediated by iron corrosion products such as magnetite/maghemite or lepidocrocite. On 

the other hand, Bang et al. found a fraction of As(III) being reduced to As(0) on an 

acid-pretreated iron coupon under anoxic conditions (Bang et al., 2005). The variations 

in the experimental parameters and the limited spectroscopic data sets available make it 

difficult to interpret these results on a consistent basis.  

In recent years, attention has been focused on nanoscale zero-valent iron (nZVI) for its 

effectiveness in treating halogenated hydrocarbons, hexavalent chromium and other 

heavy metal species in water (Ponder et al., 2000; Liu et al., 2005; Li & Zhang, 2007). 

The particles' small size gives rise to an increased surface area, greater remediation 

capacity, and favorable field injection and transport properties for in situ remediation. 
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While the nanoparticles have shown a remarkable efficacy to immobilize aqueous 

arsenic species (Kanel et al., 2005 & 2006), the reactions involved appear to be more 

complex than those of iron oxide based sorbents and the bulk-sized ZVI materials. 

Previous characterization shows nZVI consists of a reactive Fe(0) phase enclosed by a 

thin layer of amorphous iron oxide averaging ~ 3 nm in thickness (Martin et al., 2008). 

The nanometer scale and the defective nature of the oxide film may increase the rates of 

charge transfer or mass diffusion processes, thus the nanoparticles exhibit interesting 

redox behaviors on a relatively small time scale, which may not manifest to an 

appreciable extent in the bulk iron counterparts. In this context, studying nZVI-arsenic 

interactions will not only help to reveal the mechanisms underlying nZVI’s efficient 

arsenic sequestration performance, but also shed light on the long-term fate and stability 

of the immobilized arsenic species.  

In this work, high-resolution X-ray photoelectron-spectrometry (HR-XPS) is employed 

to investigate solid-phase arsenic speciation upon reactions between nZVI and aqueous 

As(III). High surface sensitivity and the availability of quantitative information on 

arsenic in different valence states render XPS a powerful tool for the purpose of this 

study. Specifically, we compared arsenic speciation in reacted nZVI with that in model 

iron oxide compounds under similar conditions to understand the difference in 

reactivity of nZVI relative to that of the well-characterized iron oxides. Using XPS 

multi-line analysis, we show for the first time that different arsenic oxidation states 

observed on nZVI are enriched in different layers of the nanoparticles, suggesting nZVI 
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possesses a dual redox functionality enabled by the core-shell structure. We also 

evaluated the effects of initial As(III) concentration, reaction time, and nZVI dose on 

the reaction products, which in conjunction with solution phase analysis, allows us to 

propose a more well-defined reaction model between As(III) and nZVI. 

 

7.2 Materials and methods 

Preparation of iron materials. Synthesis of iron nanoparticles (nZVI) follows the 

procedure described in Chapter 3. Two iron oxides, Fe3O4 and Fe2O3 (>99%, Fisher 

Chemical), were used in this study for comparison, whose reactions with As(III) have 

been extensively studied. XRD characterization shows that the predominant mineral 

phases for Fe3O4 and Fe2O3 are magnetite and hematite, respectively (Figure 7.2). The 

BET surface areas of all iron materials are summarized in Table 7.1. 

Batch experiments. As(III) and As(V) solutions were prepared from NaAsO2 and 

Na2HAsO4 •7H2O (>98.5%, Fluka), respectively. Batch experiments of As(III) removal 

were performed in 120-ml serum bottles containing 100 ml of As(III) solution at 100 

mg/L. The solution was deoxygenated by sparging with nitrogen (high purity, >99.9%) 

for 30 minutes immediately before the experiments. Upon adding an appropriate 

amount of iron material, the bottle was sealed with a screw cap lined with a Teflon-

coated septum and placed on a mechanical shaker (250 rpm) at 25C. After a 

predetermined reaction time, a batch reactor was sacrificed and the solids were 
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separated from the solutions by vacuum filtration, dried and stored in a N2-glovebox 

before XPS analysis. The solution samples were stored in 40-ml glass vials at 4 
o
C prior 

to analysis. Samples were analyzed within 48 hours of preparation.  

 

 

Figure 7.2 X-ray diffractograms of the iron oxides (Fe2O3 and Fe3O4) used in this study, 

which are characteristic of hematite (Hm) and magnetite (Mt), respectively.   
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Table 7.1: Characteristics of iron-based materials used in this work. 

Iron 

material 

Source Mean 

diameter, 

nm 

BET specific 

surface 

area, m
2
/g 

Crystalline 

phase  

nZVI This work (refer to 

ref (4) for preparation 

procedure) 

60 
a
  29 Polycrystalline 

bcc Fe(0) 
b 

Fe3O4 Fisher
®
, laboratory 

grade 

n/a 30 Magnetite 
c 

Fe2O3 Fisher
®
, 

certified >99% purity 

n/a 42 Hematite 
c 

a
 determined by acoustic spectrometry (Sun et al., 2006) 

b 
determined by selected area electron diffraction (SAED) pattern   

c
 determined by XRD analysis 

 

Aqueous phase analysis. Arsenic and iron concentrations in the solution phase were 

determined by inductively-coupled plasma-optical emission spectroscopy (ICP-OES; 

Perkin Elmer Optima 2100 DV), which has a detection limit of 50 µg/L and 10 μg/L for 

arsenic and iron, respectively. The pH and Eh values of the solutions after reactions 

were measured, respectively, with a pH probe (Orion) and an ORP probe with a 

Ag/AgCl reference electrode (Cole-Parmer). The reported Eh values are referenced to 

the standard hydrogen electrode (SHE). 

Solid phase analysis. Dried samples of nZVI, after reaction with As(III) or As(V) 

solutions, were characterized using High Resolution X-ray Photoelectron Spectroscopy 

(HR-XPS) performed on a Scienta ESCA 300 spectrometer. Analysis procedure and 
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instrument parameters are available in Chapter 3. The full-width-at-half-maximum 

(FWHM) of each component peak was set to 1.2 eV, 1.6 eV, and 1.3 eV for As3d, 

As2p3/2  and O1s spectra, respectively. The As3d5/2 and As3d3/2 components of the As3d 

spin orbit-split doublet peak were fixed at a constant intensity ratio of 3:2 and at a fixed 

separation of 0.70 eV. 

 

7.3 Results and discussion 

7.3.1 Aqueous phase analysis   

Effective aresnic removal involves the transfer of As(III) species from the aqueous 

phase to the surface of nZVI particles. Although the focus of this study is on reactions 

at the solid phase, aqueous phase analyses were necessary in order to quantify the 

amounts of arsenic captured by nZVI at different reaction stages. To afford direct 

examination of arsenic reactions in the solid phase, arsenic concentrations higher than 

those found in natural environmental settings (< 1000 g/L) are needed to ensure 

adequate arsenic presence in the solids for accurate speciation analysis. For XPS 

analysis using the high-intensity Scienta ESCA 300, a minimal aqueous concentration 

of 10 mg/L is needed to generate a convenient amount of arsenic (> 0.1 at.%) in nZVI. 

Samples prepared at lower arsenic concentrations (10-1000 g/L) require a scan time 

orders of magnitude longer than a typical As 3d or As2p3/2 analysis (in the order of min) 

to obtain a reasonable signal-to-noise ratio, which may cause chemical shifts due to X-
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ray irradiation and is therefore not used in this study. For most experiments presented in 

this work, an initial As(III) concentration of 100 mg/L was used for the HR-XPS 

analysis.  

Figure 7.3 compares the rate of As(III) removal by nZVI and Fe3O4 at a mass dose of 5 

g/L. Rapid loss of aqueous As(III) from the solution phase was observed upon addition 

of nZVI. The total aqueous arsenic concentration decreased to 106 µg/L (corresponding 

to ~ 99.9% removal) at 10 min and it was below the detection limit after 1 h of mixing. 

Since the nZVI samples for XPS analysis were collected after at least 10 min of reaction, 

rapid loss of arsenic in the solution phase suggests that changes in arsenic speciation 

observed by XPS were resulted from solid-phase reactions instead of sorption of 

homogenous reaction products.  

Similar experiments using Fe3O4 (at the same mass dose of 5 g/L) resulted in 

sequestration of only 13% of the aqueous As(III). A large difference in As(III) retention 

capacity between nZVI and the iron oxides can be clearly seen in the inset of Figure 7.3, 

which compares final As(III) removal after 24 hrs by various doses (0.4 – 5 g/L) of 

nZVI,  Fe3O4, and Fe2O3.  Despite a relatively high initial concentration (100 mg/L), 

nearly complete removal of As(III) was obtained with a nZVI dose as low as 1 g/L, 

whereas the removal efficiency remained below 20% even at the highest dose (5 g/L) of 

Fe3O4 and Fe2O3. Since the BET specific surface areas of nZVI and the two oxides are 

comparable (Table 7.1), direct comparison of mass-normalized As(III) removal capacity 
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Figure 7.3 Change in aqueous arsenic concentration with time. Initial As(III) 

concentration (C0) was 100 mg/L; nZVI or iron oxide dose was 5 g/L. Inset: percentage 

As(III) removal at various dose of iron materials after 24 hours.  

 

can be made. For nZVI, the maximum As(III) loading capacity is 2.2 mM As/g, while 

the value of the oxides is no more than 0.17 mM As/g. Applying a surface complexation 

model in which the average adsorption site density of an iron oxide surface is ~3 

sites/nm
2  

(Dixit & Hering, 2003),  we can estimate a maximum As(III) adsorption of ~ 

0.2 mM As/g, which is consistent with the observed capacities of the iron oxides. On 

the other hand, the arsenite loading capacity of nZVI is well in excess of the total 

surface adsorption sites available, which suggests arsenite is captured in more than a 
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mere surface layer. Previous studies have attributed similar results to As(III) forming 

co-precipitates with ferric ions (Lackovic et al., 2000; Lien & Wilkin, 2005) and the 

continuous production of iron corrosion products supplying additional surface sites for 

As(III) uptake (Manning et al., 2002; Bang et al., 2005). Although arsenite oxidation 

(Su & Puls, 2001; Katsoyiannis et al., 2008) and reduction (Bang et al., 2005) were 

observed in the presence of ZVI, the mechanisms of these redox exchanges and the 

implications for arsenic abatement applications have not been explicitly discussed.      

 

7.3.2 Arsenic speciation on the solid phase 

For all samples analyzed by XPS, spectra of major elements such as Fe, O, and As were 

collected and analyzed. Composition as atomic percent for each element i was 

 calculated according to Eq. (7.1) 

 



Ci 
Ai /Si

Ai /Si
i


        (7.1) 

where Ai is the measured peak area and Si is the relative sensitivity factor (RSF).  These 

latter values were taken from literature (Fairley & Carrick, 2005) as: S(C1s)=1.0, 

S(O1s)=2.93, S(Fe2p)=16.4, and S(As3d)=1.82. The value of S(As2p) was determined 

empirically from a pure As2O3 sample to be 31.5. The atomic percentages obtained as 

such are apparent concentrations because of the inherent assumption in the calculation 

that each element is distributed homogeneously throughout the probe depth. The results 
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are tabulated in Table 7.2 together with the pH and Eh readings of the solutions in 

equilibrium with these samples.  

Figure 7.4 displays XPS spectra of the As3d region of nZVI before (a) and after 

reactions with As(V) (b) and As(III) (c) species, respectively. The XPS peak positions 

were assigned by comparison to As3d5/2binding energies reported in the literature 

(Moulder et al., 1992).  No arsenic was detected on pristine nZVI, but As peaks were 

clearly detected on reacted nZVI. The XPS spectra reveal the presence of multiple 

arsenic valence states, viz., As(V), As(III), and As(0) on the nZVI surfaces. As3d peak 

for each chemical state has two unresolved components due to spin-orbit splitting 

corresponding to the As3d3/2 (at higher BE) and As3d5/2 (at lower BE) peaks separated 

by 0.7 eV.  

As shown in Figure 7.4b, when 5 g/L nZVI was added to 100-mg/L arsenate [As(V)] 

solution, significant amounts of As(III) and As(0) were detected on the nZVI surface in 

24 hours, establishing As(V) reduction to As(III) and As(0). The numbers indicated in 

Figure 7.4 are the proportions of the respective arsenic species as percentages of the 

total arsenic detected. It should be noted that each of these spectra were not affected by 

increasing the X-ray irradiation time by a factor of six under the instrument conditions 

used in this study, i.e., XPS analysis had no observable effect on the arsenic valence 

state within the prescribed scan-time used in this study (~ 10 min).  
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Earlier studies reported the reduction of arsenate to arsenite species by iron fillings or 

nanoscale ZVI , but the kinetics were considerably slow (e.g., >30 days before As(III) 

was detected). The predominant mechanism for As(V) uptake is generally thought to be 

surface sorption and precipitation (Lackovic et al., 2000; Su & Puls, 2001). Results 

presented in Figure 7.4 clearly show that nZVI is capable of reducing As(V) with 

reasonably fast kinetics and reduction to elemental arsenic is a feasible mechanistic step. 

As will be discussed later herein, the variances in environmental conditions, in 

particular arsenic concentration and solution pH, and the properties of iron materials 

play crucial roles in determining the final arsenic speciation.  

Analysis of nZVI reacted with 100 mg/L arsenite [As(III)] solution  (Figure 7.4c) shows 

51 % of the surface-bound arsenic remained as As(III). Meanwhile, 14% and 35% of 

the total arsenic emerged as As(V) and As(0), respectively, indicating that both As(III) 

oxidation and reduction had occurred to significant extents. While As(III) oxidation by 

ZVI was noticed in prior studies (Manning et al., 2002; Su & Puls, 2001; Katsoyiannis 

et al, 2008), the concomitant observation of oxidation and reduction of arsenic (III) has 

not been reported before. This behavior implies that the nanoparticles used here have a 

more complex character than being a monofunctional reductant as widely 

acknowledged.   

 



 
 

Table 7.2: Solution pH and Eh conditions and surface composition analyzed by XPS. * 

Initial As 

species 

Iron 

material 

Reaction 

time 

Solid phase  Solution 

As(V)^ 

(rel. %) 

As(III)^ 

(rel. %) 

As(0)^ 

(rel. %) 

Total 

As 

(at. %)  

Total 

Fe 

(at. %) 

Total O  

(at. %) 

Final 

pH 

Final 

Eh 

(mV) 

Figure 7.4            

As(III)  5 g/L nZVI 24 h 14 51 35 1.4 16.8 67.2 8.9 -49 

As(V) 5 g/L nZVI 24 h 76 11% 13 3.0 18.4 78.6 9.3 115 

Nil 5g/L nZVI 24 h 0 0 0 0 13.3 86.7 - - 

           

Figure 7.6           

Pure NaAsO2 - - 100 0 0 18.3 0 42.4 - - 

As(III) 5 g/L Fe2O3 24 h 40 60 0 2.0 21.7 49.5 10.0 306 

As(III) 5 g/L Fe3O4 24 h 38 62 0 2.3 21.7 53.9 9.9 279 

As(III) 5 g/L nZVI 24 h 16 44 40 1.4 19.6 62.8 9.2 -90 

           

Figure 7.10           

As(III) 50 mg/L 5 g/L nZVI 24 h 25 30 45 1.4 21.2 77.3 8.5 -198 

           100 mg/L 5 g/L nZVI 24 h 14 51 35 1.4 16.8 67.2 8.9 -49 

           500 mg/L 5 g/L nZVI 24 h 33 67 0 4.8 16.0 79.3 10.8 152 

         1000 mg/L 5 g/L nZVI 24 h 25 75 0 5.9 15.0 78.0 11.0 158 

           

Figure 7.13           

As(III) 5 g/L nZVI 10 min 40 45 15 2.2 15.8 69.8 - - 

As(III) 5 g/L nZVI 1 h 23 51 26 1.5 16.0 67.5 9.1 -44 

As(III) 5 g/L nZVI 4 h 21 51 28 1.2 17.6 66.6 9.0 -48 

As(III) 5 g/L nZVI 24 h 14 51 35 1.4 16.8 67.2 8.9 -49 

As(III) 5 g/L nZVI 15 d 21 49 30 1.8 14.9 61.1 8.7 -44 

 

2
0
2

 



 
 

Table 7.2 Continued 

Initial As 

species 

Iron 

material 

Reaction 

time 

Solid phase  Solution 

As(V)^ 

(rel. %) 

As(III)^ 

(rel. %) 

As(0)^ 

(rel. %) 

Total 

As 

(at. %)  

Total 

Fe 

(at. %) 

Total 

O  

(at. %) 

Final 

pH 

Final 

Eh 

(mV) 

Figure 7.14            

As(III) 0.4 g/L 

nZVI 

24 h 45 55 0 3.8 10.4 56.1 9.5 199 

As(III) 1 g/L nZVI 24 h 27 73 0 6.6 8.0 44.1 9.9 157 

As(III) 5 g/L nZVI 24 h 14 51 35 1.4 16.8 67.2 8.9 -49 

           

 

 *Surface compositions reported as atomic percent, as calculated from XPS spectra using the measured peak areas and 

appropriate relative sensitivity factors.  The calculations assume a homogeneous distribution of elements in the sample.  

^ Refer to relative abundances of arsenic in different oxidation states as estimated from As3d spectra.  

  

2
0
3
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Figure 7.4 As3d HR-XPS spectra of (a) fresh nZVI and (b) nZVI reacted with 100 

mg/L As(V),  and (c) nZVI reacted with 100 mg/L As(III).  The nZVI loading in (b) and 

(c) was 5 g/L. The proportions of the respective species as percentages of the total As 

detected are annotated on the spectra. The intensity scale varies for each curve. 
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To understand the properties of nZVI, the material constituents present in individual 

nZVI particles were characterized with TEM.  A bright field-TEM image shows a 

composite layered structure comprised of a dense metallic center enclosed by a thin 

layer of iron-oxide material (Figure 7.5a). Phase-contrast TEM imaging did not reveal 

periodic lattice-fringes in the oxide layer (Figure 7.5b), which suggests that the oxide is 

largely amorphous in agreement with prior characterizations (Chapter 4). The oxide 

outer-shell measures on average approximately 3 nm in thickness and has an apparent 

composition of FeOOH as determined previously from Fe2p and O1s XPS spectra 

(Martin et al., 2008). The oxide layer is thought to form instantaneously upon nZVI 

synthesis to passivate the highly reactive Fe
0
 core and it may be practically viewed as 

an inherent part of the nanoparticle. The very fine dimension and disordered nature of 

the oxide layer support earlier notions that the oxide phase is capable of electron 

passage via tunneling effects or defect sites (Nurmi et al., 2005; Li & Zhang, 2006), 

thereby conserving the reducing characteristics of Fe
0
 and accounting for As(III) 

reduction. On the other hand,  iron oxides are known to possess strong adsorptive ability 

for both As(III) and As(V) species, and certain iron oxides formed from Fe
0
 corrosion 

are able to cause As(III) oxidation to As(V) (Manning & Goldberg, 1997; Manning et 

al., 2002). In our studies, as the nanoparticles are comprised of Fe
0
 nuclei encapsulated 

by an thin layer of iron oxide, we hypothesize this core-shell configuration would 

permit each component to exert its distinctive reactivity without significant kinetic 

constraints. The composite particles therefore possess dual properties of the two 
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components and this leads to unconventional chemical behavior such as the concurrent 

oxidation, reduction and sorption of As(III) illustrated in Figure 7.4c.  

 

 

Figure 7.5 (a) Bright field-TEM micrograph of nZVI nanoparticles showing a core-

shell structure comprised of a dense metallic center and a thin, continuous oxide skin. 

The inset shows the electron diffraction pattern of the metallic core, which suggests a 

polycrystalline bcc structure. (b) HR-TEM micrograph of a single nZVI nanoparticle. 

The lack of long-range periodic lattice fringes in the oxide layer suggests that it is 

amorphous in character.  

 

7.3.3 Depth-dependent distribution of arsenic in nZVI 

7.3.3.1 XPS multiline analysis 

Insights into the dual reductive and oxidative properties manifested by nZVI in As(III) 

systems may be obtained if arsenic speciation and their spatial distributions in the solid 
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phase can be carefully resolved. In this section, we investigate the reactions between 

nZVI and arsenite using XPS multiline analysis, wherein HR-XPS spectra for two 

arsenic core-levels widely separated in binding energy (BE), As2p3/2  (~1326 eV BE) 

and As3d (~44 eV BE), were collected. Due to the large BE differences in these core 

levels, the photoelectrons analyzed in these spectra have markedly different kinetic 

energies and thus “escape depths” (3λ, where λ is the attenuation length or mean free 

path for inelastic scattering at the respective kinetic energy), which are estimated to be 

1.4 nm and 6.8 nm, respectively, in FeOOH based on the semi-empirical CS2 equation 

(Cumpson & Seah, 1997).
 
The different surface sensitivity of each of these As2p3/2 and 

As3d spectra enables us to resolve the distribution of arsenic species within a ~7-nm 

thick surface region. This depth-dependent information cannot be obtained by bulk 

analysis or less surface sensitive methods such as X-ray energy absorption techniques 

(e.g. EXAFS) (Manning et al., 1998; Manceau, 1995), while other depth-profiling 

techniques, such as angle-resolved XPS measurements, are especially complicated by 

the spherical geometry and size distribution of the nanoparticles. 

Figure 7.6a-b show As2p3/2 and As3d spectra of different iron materials that have been 

reacted with As(III) solutions for 24 hours. Each arsenic oxidation state gives rise to 

two peaks in the As3d spectra (Figure 7.6b), due to the spin orbit-split As3d5/2 and 

As3d3/2 components, and a single peak in the As2p3/2 spectra (Figure 7.6a). For Fe2O3 

and Fe3O4 particles, approximately 40 at.% of the original As(III) was found to be 

oxidized to As(V). All solutions were sparged with pure N2 for 30 minutes immediately 



208 
 

before the introduction of iron materials, so direct oxidation of As(III) by dissolved 

oxygen was effectively avoided. Prior studies have reported As(III) oxidation in the 

presence of hematite and surfaces with mixed valent Fe(II)-Fe(III) species (Manning et 

al., 2002; Amstaetter et al., 2010), which may account for the As(V) species observed 

here for Fe2O3 and Fe3O4 samples. 

HR-XPS spectra of the nZVI sample in Figure 7.6 reveal the presence of As(0), 

As(III) and As(V), respectively, although the aqueous phase initially contained 

100% As(III) only. The observation of multiple arsenic valence states in the solid 

residues confirms that nZVI exhibits a combination of adsorptive, reductive and 

oxidative abilities towards As(III) as previously noted (refer to Section 7.3.2). 

However, deconvolution of the spectra shows that the apparent proportions of 

arsenic species at different oxidation states differ significantly in the As2p3/2 and 

As3d spectra. Specifically, As(0) constitutes 40 at.% of the total arsenic in the As3d 

spectrum, while it contributes only 16 at.% in the As2p3/2 spectrum. The opposite 

trend is observed for As(V) species. Clearly, these arsenic species are distributed at 

varying depths of the nanoparticles. 
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Figure 7.6 (previous page) HR-XPS spectra of (a) As2p3/2 and (b) As3d regions of 

various Fe materials reacted with As(III) solutions. These two core-levels were 

chosen because of their difference in surface sensitivity. The top spectrum of each 

column is that of pure sodium arsenite (NaAsO2), which was used to prepare the 

As(III) solutions used in these experiments. The vertical scale of the two spectra 

from the nZVI sample is enlarged five-fold. 

 

To delineate the depth-dependent distributions of arsenic species, we evaluated the 

ratio of the As2p3/2 to As3d peak areas in Figure 7.6, after correcting each by a 

relative sensitivity factor (RSF) to account for the difference in ionization cross-

sections and instrument-dependent response functions (Moulder et al., 1992). The 

result, referred to as the normalized As2p3/2 and As3d intensity ratio (or simply 'the 

ratio'), tells much information about the depth range within which the species of 

interest is located, as illustrated in Figure 7.7.  

 

Figure 7.7 Inference of depth-dependent distributions of arsenic species from the 

normalized As2p3/2 and As3d intensity ratio.  
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Figure 7.7 suggests that arsenic species that are homogeneously distributed in the 

surface region should have an As2p3/2/As3d intensity ratio close to unity. Arsenic 

species that are more concentrated at the surface will have an As2p3/2/As3d ratio greater 

than one, and conversely, arsenic species enriched in subsurface layers will have a ratio 

less than one. 

 

7.3.3.2 Arsenic distribution in iron oxide materials 

The normalized intensity ratios of the samples shown in Figure 7.6 are plotted in Figure 

7.8. A pure homogeneous solid sample, NaAsO2, which is the precursor of As(III) used 

in the experiments, is included in the figure to verify this approach. As expected, this 

reference material shows a ratio close to unity (Figure 7.8), thus confirming the 

relationship depicted in Figure 7.7.  

For the Fe2O3 sample, the As2p3/2/As3d ratios of As(III) and As(V) equal to 2.2. This 

value, much greater than one, implies that both species are present predominantly in a 

surface overlayer. Assuming the overlayer thickness is d, the relationship between the 

intensity of As2p3/2 line and d can be expressed quantitatively as (Mohai, 1995): 

 ))
cos

exp(1(
2

22
 pAs

pAspAs

d
II        (7.2) 
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Where 

p2AsI  is the intensity of As2p3/2 photoelectrons generated from a pure 

homogeneous arsenic specimen, and 
pAs 2 is the inelastic mean-free path (IMFP) of 

As2p3/2 photoelectrons. 

A similar equation can be written for As3d line (Eq. 7.3): 

 ))
cos

exp(1(
3

33
 dAs

dAsdAs

d
II        (7.3) 

Where 

dAsI 3
 is the intensity of As3d photoelectrons generated from a pure 

homogeneous arsenic specimen, and dAs3 is the inelastic mean-free path (IMFP) of 

As2p3/2 photoelectrons. 

Take the ratio of Eq. 7.2 over Eq. 7.3, cancel out the cosine terms (due to normal take-

off angle), and replace the terms 

p2AsI  and 

d3AsI  by their respective sensitivity factors 

yield the following relationship:   

  
)/exp(1

)/exp(1
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      (7.4) 

The left-hand-side of Eq. 7.4 is equivalent to the normalized intensity ratio of 

As2p3/2 and As3d signals. Plugging in the ratio measured from the Fe2O3 sample 

(=2.2), the calculated thickness of the arsenic-laden layer (d) is approximately 0.7 

nm. This value is considerably close to the monolayer thickness of arsenic-iron 

oxide surface complexes derived from X-ray absorption studies (Manceau, 1995; 
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Manning et al., 1998),
 
confirming that As(III) and As(V) are essentially bound as a 

surface complex layer on the Fe2O3 particles. For Fe3O4, a similar spatial 

distribution profile is obtained, except that As(III) is distributed in a slightly thicker 

layer than As(V), a probable result of short-range diffusion of As(III) into the Fe3O4 

particles via micropores or defect sites (Axe & Trivedi, 2002). 

 

Figure 7.8 Normalized intensity ratios of the As2p3/2 to As3d peaks in HR-XPS 

spectra. 
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Figure 7.9 Schematic illustrations of the depth distribution of arsenic species in iron 

oxides and nZVI. The left-hand scale bars indicate the escape depth (3λ) of As3d 

photoelectrons in iron oxide. The thickness of the surface oxide layer for nZVI is 

calculated from the relative intensities of metallic and oxidized iron contributions in 

the Fe2p spectrum. 

 

7.3.3.3 Arsenic distribution in nZVI 

In contrast to iron oxides, arsenic species detected in the nZVI sample display a marked 

disparity in the As2p3/2/As3d intensity ratios. As(V)
 
species, with a normalized intensity 

ratio of 2.1, is clearly enriched at the surface. As(III), with a ratio of 0.82, has a fairly 

uniform presence across the sampling depth, and As(0)
 
(ratio = 0.34) is localized in a 

subsurface region. Examination of the Fe2p XPS spectrum of this sample showed a 

small peak at 707.0 eV corresponding to Fe
0
 (spectrum not shown). Following our 

previous approach to quantifying the oxide layer thickness from the relative intensity of 
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the metallic and oxidized iron peaks and applying XPS Multiquant with topographic 

corrections (Martin et al., 2008; Mohai, 2005), we estimate that the average oxide 

thickness of this nZVI sample is ~ 4 nm. Across this oxide layer, the As2p3/2 

photoelectrons are strongly attenuated while the As3d photoelectrons are not as much. It 

is therefore reasonable to infer that the As(0) signals emanate mainly from a region 

close to the core-shell interface. This is illustrated in Figure 7.9, which provides a 

schematic of the depth distribution of arsenic based on the present analysis.  

The stratified concentration profiles of arsenic species in nZVI expose several novel 

aspects of the reactions between As(III) and nZVI. The results offer clear evidence 

of a dual redox functionality exhibited by the nanoparticles. The distinct layers 

where As(V) and As(0) reside imply As(III) oxidation and reduction are enabled by 

different components of the nanoparticles. Surface enrichment of As(V) is consistent 

with an adsorption/oxidation model in which As(III) attaches to the surface 

coordination sites of the oxide shell and subsequent oxidation is facilitated by the 

oxide surface and the rearrangement of H2O or OH
-
 ligands (Scott & Morgan, 1995; 

Amstaetter et al., 2010).
 
On the other hand, As(0) residing predominantly in a 

subsurface region implies that the reduction is enabled by the metallic core. This 

would entail inward diffusion of As(III) species and migration of reductants from 

the core region, which can be facilitated by the defect sites (e.g. vacancies or 

impurites) present in the disordered oxide layer (Wang et al., 2009). This charge and 

mass transpot processes may cause As(III) reduction to be more kinetically limiting 
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than its surface oxidation, and further study to evalute nZVI samples reacted with 

arsenite for different lengths of time is needed (to be discussed in Section 7.3.5).   

Figure 7.8 shows that the As2p3/2/As3d ratio for the total arsenic detected in nZVI, 

obtained by summing together all of the different arsenic species present, has a 

value of 0.8. This implies that the solid-bound arsenic exists mostly underneath the 

surface. The ability to impregnate arsenic into the solid phase renders nZVI a 

potentially more voluminous sink for arsenic compared to the widely used iron 

oxides, whose capacities are limited by the available surface coordinative sites and 

are subject to competition from co-existing anions in the water (Yavuz et al., 2006; 

Hug et al., 2008).
 
This attribute of nZVI explains in part the much higher efficacy of 

nZVI for As(III) removal relative to that of the iron oxides as observed in our 

solution experiments, considering that the surface areas of these materials are 

comparable (Figure 7.3). Furthermore, infiltration of arsenic induced by reactions 

with Fe
0
 may offer an engineering methodology to encapsulate arsenic for 

remediation and waste disposal applications. In this context, continuing studies to 

evaluate the performance of nZVI for arsenite treatment in a broad spectrum of 

environmental conditions are warranted. 
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7.3.4 Effect of As(III) initial concentrations 

Figure 7.10 presents results following reaction of nZVI with arsenite at different initial 

As(III) concentrations. The initial As(III) concentration in the solution was in the range 

of 50-1,000 mg/L. The relative abundance of arsenic chemical states is vastly affected 

by the initial As(III) concentration.  As clearly can be seen in Figure 7.10, the relative 

amount of As(0) formed is the greatest at the lowest initial concentration of As(III) 

(50mg/L), with approximately one-half of the total arsenic present as As(0). The 

proportion decreased to 17% when the initial As (III) concentration was increased to 

100 mg/L, and no As(0) was detected when As(III) concentration was increased to 500 

and 1,000 mg/L.  

The solution conditions measured at the end of the experiments (tabulated in Table 7.2) 

offer a clue to the strong dependence of arsenite reduction on its initial aqueous 

concentration. Figure 7.12 plots the changes in initial and equilibrium pH values as a 

function of the As(III) aqueous concentrations. The initial pH readings showed an 

increasing trend as the As(III) initial concentration increased, due to arsenite hydrolysis 

and the release of hydroxyl ions (AsO2
-
 + H2O  H3AsO3/ H2AsO2

-
+ OH

-
). The 

equilibrium pH follows a close trend by increasing from circumneutral (pH 8.5) to 

alkaline (pH 11) as the As(III) concentration increased from 50 to 1,000 mg/L. The 

alkaline condition associated with high Ar(III) concentrations promotes ferric ion 

precipitation, which may act as barriers altering the surface properties of the 

nanoparticles.  
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Figure 7.10 As3d HR-XPS spectra from nZVI particles exposed to different initial 

concentrations of As(III). The nZVI loading was 5g/L in all cases. The inset of (a) and 

(b) are vertically expanded views of the respective spectrum.  
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The purported precipitation of ferric hydroxide in solutions containing relatively high 

concentrations of As(III)  is supported by two lines of evidence. One is from the O1s 

XPS spectra of the reacted sample (Figure 7.11). The curves can be decomposed into 

different oxygen species, namely, H2O at 531.8 eV, OH
-
 at 530.7 eV, and O

2-
 at 529.5 

eV (Grosvenor et al., 2004). The higher concentration samples (Figure 7.11c-d) reflect a 

marked increase in OH
-
 component, indicating growth of hydroxide precipitates in 

addition to surface sorbed hydroxide species on the sample surfaces. Another piece of 

evidence comes from SEM images of the reacted particles (shown in Figure 7.12 

bottom). Particles after reactions with 100 mg/L of As(III) retained spherical 

morphology with a noticeable amount of loose, flaky materials scattered across the 

particle surface. The sample after reaction with 1000 mg/L As(III), in comparison, 

exhibited more pronounced platelet formation resembling typical formations of iron 

corrosion. The large amounts of oxidation products effectively form an interconnected 

matrix burying the nanoparticles inside and rendering them barely discernable. The Eh 

values in Table 7.2 confirms the build-up of corrosion products in the more 

concentrated As(III) solutions. Specifically, the Eh potentials registered a sharp increase 

with As(III) concentration at 500 and 1000 mg/L (Table 7.2), suggesting the prevalence 

of iron oxidation products observed in O1s HR-XPS and SEM at those high 

concentrations forms a barrier layer on top of metallic iron and diminishes Fe
0
 reducing 

capability.  
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Figure 7.11 O1s XPS spectra of samples shown in Figure 7.10, where the initial As(III) 

concentration was varied. The different forms of oxygen are indicated in the top 

spectrum: H2O at 531.8 eV, OH
-
 at 530.7 eV, and O

2-
 at 529.5 eV. The prominent 

increase in OH
-
 at the two highest As(III) concentrations indicates substantial iron 

hydroxide formation at the solid surface. 

 

CasaXPS (T his string can be edited in CasaXPS.DEF/PrintFootNote.txt)

O1s

534 533 532 531 530 529 528 527
Binding Energy (eV)

a) 50 ppm As(III) 

b) 100 ppm As(III) 

c) 500 ppm As(III) 

d) 1000 ppm As(III) 

O
2- 

H2O 

OH- 

In
te

n
s
it
y
 (

a
rb

it
ra

ry
 u

n
it
s
) 



221 
 

 

Figure 7.12 Initial and final solution pH at various initial As(III) concentrations. nZVI 

loading was fixed at 5 g/L. Initial pH was measured before nZVI loading. Equilibrium 

pH was obtained after a reaction time of 24 hours.  The dashed line corresponds to the 

pKa value (pH 9.2) of H3AsO3, which dissociates to H2AsO3
-
 at pH > pKa.  

Bottom row from left to right: SEM images of fresh nZVI, nZVI reacted with 100 mg/L 

As(III) for 24 hours, and those reacted with 1000 mg/L As(III) for 24 hours.  All images 

were taken at 60k magnification.  
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In summary, As(III) concentration exerts a pronounced effect on As(III) reduction by 

controlling solution chemistry and influencing the nZVI surface conditions. Formation 

of As(0) was more evident at lower concentrations and it was absent at above 100 mg/L 

due to substantial iron oxidation and precipitate formation. Although the concentration 

range evaluated here is higher than arsenic occurrence in natural waters (typical range 

1-5000 μg/L)
 
(Smedley & Kinniburgh, 2002), the trend revealed in Figure 7.10 strongly 

implies that reduction of arsenite at trace levels such as in natural waters is likely to 

occur in the presence of nZVI. As(0) not being observed in previous studies (e.g., Su & 

Puls, 2001; Manning  et al., 2002; Lien & Wilkin, 2005) may be attributed to 

instrumental limitations and the specific reaction conditions used. In those studies, 

relatively high As(III) concentrations were used since conventional XPS analysis 

requires a significant amount of arsenic deposited on the particle surfaces to be detected. 

Under those conditions, As(0) formation is not favored for the reasons just mentioned 

above, and surface saturation with adsorbed arsenic species may attenuate the already 

weak As(0) signal. In the present HR-XPS study, we used a Scienta ESCA 300 

instrument, which has an intense rotating anode X-ray source and enhanced signal 

detection utilizing a 300-mm radius hemispherical analyzer and position-sensitive 

detector, thereby greatly lowering the arsenic detection limit and improving the energy 

resolution.  This enables us to study nZVI reactions with arsenic at lower initial 

concentrations, which are conditions more relevant to the natural systems. 
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Compared to reduction of As(III) to As(0), oxidation of As(III) to As(V) is less 

sensitive to the initial As(III) concentration (Figure 7.10). In all cases, As(V) formation 

was observed, but to a moderate extent accounting for less than one third of the total 

sequestered arsenic. As(III) oxidation by nZVI has been reported in previous studies, 

although the exact mechanism remains uncertain. It is conceived that there may exist 

more than one oxidant, including peroxide or radical species generated from Fe
0
 

corrosion, hydroxide species, and iron oxides (Manning & Goldberg, 1997; Joo et al., 

2004; Katsoyiannis et al., 2008). Peroxide or oxygen-containing radical generation 

requires dissolved O2 in acidic medium (Joo et al., 2004; Katsoyiannis et al., 2008), thus 

they are not likely to be involved considering our reaction conditions. As(III) oxidation 

in aqueous phase by hydroxyl ions is plausible (Manning & Goldberg, 1997), but the 

resultant As(V) species in the solution phase is unlikely to re-attach to the nZVI surface 

due to surface charge repulsion between As(V) and the oxide layer at neutral to alkaline 

pH. It is more likely that As(III) was oxidized by iron oxide, which was proceeded via 

formation of iron oxide-As(III) surface complexes (Manning et al., 2002; Amstaetter et 

al., 2010). The lack of a distinct trend for As(III) oxidation within the concentration 

range studied is probably a result of several interacting effects, since the affinity of 

As(III) for iron oxides, the amount of iron oxides available as adsorptive sites, and the 

oxidation potential of iron oxides are intricately affected by pH.  

 

7.3.5 Effect of reaction time  
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The evidence for the simultaneous occurrence of oxidation, reduction and adsorption of 

As(III) on nZVI surface suggest that the two components of nZVI are able to bring 

about different reactions in parallel, which by itself is a novel property that has not been 

reported before. The progressive transformation of arsenic species in nZVI was 

investigated by analyzing the reaction products at various times between 10 min to 15 

days (Figure 7.13).  

Solution phase analysis confirms that 99.9% of the aqueous As(III) was captured by 

nZVI within 10 min (Figure 7.3), and therefore the total amount of arsenic present in 

the solid phase was effectively constant during the monitoring period. As shown in 

Figure 7.13, the maximum formation of As(V) (~ 40% of the total arsenic intensity) was 

observed at 10 min, and As(V) then gradually declined with time over 24 h. The 

opposite trend can be noted for As(0), which contributes 15% of the total As intensity at 

10 min, and rises steadily to 35% after 24 h. The data indicate arsenite oxidation is a 

rapid reaction that is completed on a time scale of minutes upon loading nZVI into the 

solution. Facile As(III) oxidation has been reported in the presence of Fe(II)-adsorbed 

goethite and other mineral surfaces (Amstaetter et al., 2010), where these surfaces 

catalyze oxidation reactions of adsorbed As(III). This surface-mediated oxidation model 

is also consistent with our prior finding that As(V) exists at the outer surface of the 

nanoparticles (refer to Section 7.3.3).   
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Figure 7.13 As3d HR-XPS spectra of nZVI reacted with As(III) for different times. 

Initial As(III) concentration was 100 mg/L; nZVI loading was 5 g/L.  
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The gradual loss of As(V) after the first 10 min in Figure 7.13 indicates As(III) 

conversion to As(V) is reversible. A similar finding, i.e., rapid initial As(III) oxidation 

followed by a slower transformation in the opposite direction, has been noted in the 

As(III)-Fe(II)-goethite system (Amstaetter et al., 2010). On the other hand, the 

relatively slow emergence of As(0) corroborates with As(0) being formed at the Fe(0) 

interface, because this would entail arsenite to migrate through the oxide layer, which 

would likely be a rate-limiting step. Sample reacted for 15 days (Figure 7.13) shows 

that there were no significant changes compared to the 24 hrs data, suggesting that the 

reduced arsenic encapsulated by the oxide layer will persist for a substantial amount of 

time in anoxic conditions. 

 

7.3.6 Effect of nZVI dose 

Figure 7.14 shows As3d XPS spectra of samples reacted with As(III) solutions at 

different nZVI doses. The formation of As(0) was observed at the highest dose of nZVI 

(5 g/L), but not in lower dose samples. The accompanying Fe2p XPS spectra (Figure 

7.15) suggest an apparent association between the presence of As(0) and Fe(0). Notably, 

an Fe(0) 2p3/2 component at 707.0 eV BE is present in the 5 g/L sample (Figure 7.15), 

whereas the solids contain only oxidized iron species in the 0.4 and 1 g/L samples. The 

concomitant appearance of As(0) and Fe(0) in XPS is consistent with As(0) residing at 

the Fe(0)-oxide interface as previously noted. Considering the XPS probe depth for 
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Fe2p photoelectrons is ~ 6 nm, absence of a metallic iron signal in the low dose samples 

indicates the nanoparticles underwent substantial corrosion, resulting in deposition of 

oxidation products on the surface. Extensive surface passivation may also be inferred 

from the solution phase Eh values shown in Table 7.2, where the final Eh values in 0.4 

and 1 g/L nZVI systems are higher than that of a freely corroding iron surface (Melitas 

et al., 2002).  

Additionally, it is noticed that the proportion of As(V) increased with decreasing nZVI 

dose. Based on the previous analysis of nZVI reacted for different amounts of time, it is 

conceived that the amount of As(V) present was controlled by the relatively fast As(V) 

formation and a slower reaction in the reverse direction. Severe corrosion or depletion 

of Fe(0) when only a small amount of nZVI was added may effectively quench the 

reverse reaction and result in more As(V) in the solid phase.  

As described in Section 7.3.3, information regarding the depth-dependent distributions 

of arsenic species within the nanoparticles can be gleaned from the intensities of As3d 

and As2p3/2 XPS spectra (Figure 7.7). Figure 7.16 plots the intensity ratios of individual 

arsenic valence states and the total arsenic detected in samples shown in Figure 7.14 

and 7.15. The ratio of a pure homogeneous arsenic material (sodium arsenite) is denoted 

on the figure, thus ratios greater or smaller than this benchmark value imply surface or 

deep-lying species, respectively. For the 5g/L nZVI sample, a stratified (or layered) 

distribution of different arsenic species is implied by the widely staggered ratios for 
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different valent states, as noted previously. These layers are predominated by As(V), 

As(III), and As(0), respectively, in the order from surface towards interior.  

At lower nZVI doses (0.4 g/L or 1 g/L), only As(III) and As(V) were detected. Their 

intensity ratios are close to that of a homogeneous sample, suggesting As(III) and As(V) 

are intermixed along the depth as opposed to the layered formation seen in the 5 g/L 

sample. This is somewhat expected because the near surface regions of these low dose 

samples are made entirely of iron oxides and no metallic iron. Without a strong 

reducing source to drive electron passage and the reduction reaction, As(III) or As(V) 

are expected to persist in these samples.  In all cases, the As2p3/2 and As3d intensity 

ratios of the total arsenic are less than one, and this implies the bulk of the sequestered 

arsenic was embedded below the surface, gradually overlayed by the oxide phase 

formed through on-going corrosion of iron in the aqueous solution.   
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Figure 7.14 As3d HR-XPS spectra of varying dose of nZVI reacted with 100 mg/L 

As(III) for 24 hours.  
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Figure 7.15 Fe2p XPS spectra of varying dose of nZVI reacted with As(III) solutions.  

Initial As(III) concentration was 100 mg/L; reaction time was 24 hours.  

705710715720725730

In
te

n
s
ity

 (a
rb

itr
a

ry
 u

n
its

)

Binding Energy (eV)

0.4 g/L

5.0 g/L

Fe2p1/2

Fe2p3/2

707.0

Fe0

720.2

Fe0

HR-XPS

1.0 g/L



231 
 

Figure 7.16 Intensity ratios of the As2p3/2 and As3d XPS spectra for the three samples 

in Figure 7.14 & 7.15. The raw intensities have been corrected by the relative sensitivity 

factors (S): SAs2p= 31.5 and SAs3d= 1.82. The value of SAs2p was determined empirically 

(section 7.3.3) and SAs3d was from literature (Fairley & Carrick, 2005). Using sodium 

arsenite (NaAsO2) as a standard, we determined the intensity ratio of uniformly 

distributed arsenic species is 1.1 as indicated on the figure.  
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composition of nZVI during on-going corrosion. This stresses the importance of 

viewing the arsenic-nZVI system as dynamic instead of as a static, equilibrium-

controlled system. Previous studies of reaction kinetics between iron materials and 

water contaminants rely largely on measurements of contaminant concentrations in bulk 

solutions. The temporal and spatial variations of arsenic speciation in nZVI observed in 

this study suggest more attention may be given to the kinetics of solid-phase redox 

reactions so as to obtain a more complete understanding of the reaction mechanisms. 

The redox interactions reported here have significant implications on nZVI remediation 

performance as well as arsenic speciation and distribution in the final products. A 

distinct feature of nZVI relative to conventional adsorbents is that a large proportion of 

arsenic is embedded within the oxide structure instead of being retained as surface 

adsorbed species. Continuous iron corrosion in this case, not only serves to encapsulate 

the sequestered arsenic, but also supplies a continuous source of reactive sites for 

arsenic abatement. As such, nZVI exhibits much larger arsenic removal capacities than 

iron oxides on a mass or surface area basis, and the retained arsenic is potentially less 

susceptible to leaching caused by pH changes (Dixit & Hering, 2003; Raven et al., 1998) 

and competing anions (e.g., phosphate) (Korte & Fernando, 1991; Hug et al., 2008). 

Compared to bulk ZVI materials, nZVI is capable of both arsenite oxidation and 

reduction, and this results in heterogeneous spatial distributions of arsenic valence states 

in the solids that represents a new form of arsenic sequestration product previously not 

discussed.  From application point of view, the removal kinetics and arsenic loading per 
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unit mass of nZVI are expected to be significantly higher than those of bulk ZVI 

materials owing to its larger reactive surface and a greater "volume" participated in the 

solid-phase redox exchanges. These virtues render nZVI a good candidate for in situ 

applications in underground source zones and for use in centralized water treatment 

facilities. Since nZVI is a reactive and consumable material, the evolution of these 

nanoparticles and the stability of sequestered arsenic over long time periods (on the 

order of months or longer) in environmentally relevant conditions need to be 

systematically evaluated for these applications.  
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Figure 7.17 Schematic diagram summarizing processes responsible for arsenic removal 

in As(III)-nZVI system in anoxic conditions. The relative scale of the core and shell 

components of nZVI are for illustration only and do not reflect actual dimensions. 

As(III) may be taken up from the aqueous phase by adsorption or co-precipitation. The 

solid-bound As(III) is oxidized rapidly at the oxide surface, and the As(V) formed may 

be reverted to As(III) at a slower rate. Some As(III) diffuses towards Fe(0) core and is 

reduced to elemental arsenic (As(0)) near the oxide/Fe(0) interface.  
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Chapter 8 

Summary and Future Work 

 

8.1 Summary of contributions 

nZVI is one of the most extensively studied and applied engineered nanomaterials for 

environmental remediation. Despite its promising potential for environmental 

applications, there is limited knowledge about the fundamental properties of nZVI, 

particularly, its structure, surface composition, and changes in these characteristics in 

the aqueous media as the nanoparticles interact with the contaminants. As such, the 

mechanisms of contaminant abatement, reaction kinetics, and long-term effectiveness of 

nZVI-enabled remediation technology are not well understood. The overarching goal of 

this research is to understand the microstructure and surface chemistry of nanoscale 

zero-valent iron (nZVI) and how these properties influence nZVI interactions with 

water contaminants. The scope of this research calls for a multi-disciplinary approach 

where tools developed in material science, surface chemistry, and water chemistry are 

utilized. The key results of the present research can be summarized into the following 

interrelated topics.  
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8.1.1 Characterizing the core-shell structure of nZVI 

This part of the work investigated the core-shell structure of nZVI with aptly designed 

experiments using a suite of advanced electron microscopic (SEM, TEM and STEM-

XEDS) and spectroscopic tools (XPS). It is found that: 1) freshly-made nZVI adoptes a 

metal-core-oxide-shell structure, whereby the polycrystalline bcc metal iron nuclei were 

clad by a continuous, thin layer of iron (oxy-hydr)oxide of amorphous nature. This 

core-shell configuration was directly visualized for the first time with the ultra-high 

resolution STEM-XEDS elemental mapping technique. 2) the average thickness of the 

oxide layer is 2-3 nm based on a quantitative analysis of HR-XPS intensities of the 

Fe2p region with appropriate topographic corrections. This finding is corroborated by 

chemical redox titration method using Cu(II) as the oxidant. 3) the core-shell structure 

is not stationary, but evolves with time when nZVI is reacting with contaminants in 

aqueous solutions.  

8.1.2 Role of the core-shell structure in contaminant sequestration  

The minuscule dimension of the oxide overlayer, the highly disordered structure, and 

the abundance of defects such as vacancies and impurities render the oxide layer to be 

more permeable to mass and electron transport relative to the passivating oxide on the 

bulk-scale ZVI materials. This implies that nZVI is capable of enacting more diverse 

remediation pathways than pure Fe(0) or iron oxides. Using a group of well-studied 

water contaminants as probe molecules, the results showed that, depending on the 
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electrochemical and coordinative properties of the contaminants, nZVI has exhibited the 

reactivity of the oxide component (e.g. formation of surface adsorption complex with 

Zn(II)) and that of the Fe(0) core (e.g., reduction of Hg(II) to Hg(0)). In addition, 

spontaneous reaction of Fe(0) with water created an locally alkaline environment that 

was conducive for sulfide surface mineralization to iron disulfide and the formation of 

metal hydroxide precipitates such as zinc hydroxide. Overall, the core-shell structure 

imparts the nanoparticles with multiple reactive mechanisms for contaminant 

sequestration, and the nanoparticles may be potentially applicable to remediating a 

broad variety of inorganic contaminants in addition to halogenated hydrocarbons.    

8.1.3 Aging of nZVI in water and implications for reactivity 

Spontaneous reaction with water continuouslly modifies the chemical composition and 

structure of ZVI particles during the course of remediation. This aspect is particularly 

important for bimetallic nZVI, a type of iron nanoparticles coated with a small amount 

of catalyst metals (e.g. Pd or Ni) for catalytic degradation of halogenated hydrocarbons. 

Rapid reactions of nZVI with contaminants and water may lead to fouling of the 

additive metal surface by iron oxide deposits and potential loss of catalyst to the 

aqueous phase.  In this part of the work, it is reported for the first time that Pd-doped 

nZVI (Pd mass fraction at 1.5 wt%), one of the most extensively applied bimetallic 

nZVI, underwent massive structural changes during exposure to water for 24 hours. 

Using a state-of-the-art STEM-XEDS technique capable of mapping out elemental 
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distribution at 1-nm resolution, it was shown that the structure of the Pd-doped nZVI 

experienced several stages of transformation. The freshly-synthesized nanoparticles had 

heterogeneous coverage of Pd on the surface, whereby Pd formed islands of 2-5 nm in 

diameters decorating the surface of the iron particles. During immersion in an aqueous 

solution, the surface Pd migrated through the oxide layer and was relocated to the 

Fe(0)/oxide shell interface. Meantime, corrosion of Fe(0) caused surface deposition of 

oxide formation, and eventually this led to a hollowed-out structure with Pd being 

completely buried underneath the extensive oxide matrix. This aqueous aging process 

translates to a significant decrease in the dechlorination activity towards 

trichloroethylene. An 80% decrease in apparent reaction rate constant was observed for 

the particles aged in water for 24 hours. This findings suggest that the activity of Pd is a 

dynamic function of time and the nanoparticle structure.    

8.1.4 Reactions with arsenic 

nZVI is a potentially attractive candidate for the treatment of arsenic-laden groundwater 

because of their diminutive sizes and high surface reactivity, which can translate to 

higher remediation efficiency, and in the case of in situ application, enhanced particle 

dispersion and transport in the underground environment. However, the mechanisms of 

arsenic removal with ZVI materials are poorly characterized. Most research in the 

literature focused on arsenic speciation in the aqueous phase, and there are relatively 

few studies considering reactions at the iron surface and the chemical states of arsenic 
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in the final products. HR-XPS in conjunction with solution chemistry analysis were 

used to conduct the first systematic study of reactions of arsenic at the surface of iron 

nanoparticles. The results confirm that arsenic sequestration by nZVI involves several 

redox reactions mediated by the particle surface. One key finding is the simultaneous 

oxidation and reduction of As(III) upon reacting aqueous As(III) with the nanoparticles. 

With XPS multiline analysis to resolve the depth distributions of different arsenic 

valence states in the solid phase, it is shown that the dual redox functionality was 

enabled by the core-shell structure. Specifically, As(V) was present predominantly at 

the surface, indicating arsenite oxidation mediated by the oxide layer in the presence of 

water and hydroxyl ions. The reduced form, As(0), was concentrated at the Fe(0)/oxide 

interface, suggesting direct As(III) reduction by Fe(0). Time-resolved XPS studies show 

that As(III) was rapidly oxidized to As(V) in 10 min at the particle surface, and As(V) 

was reverted to As(III) at a slower rate in the presence of Fe(0). Infiltration of arsenite 

through the oxide layer and As(0) formation near the Fe(0) interface occurred on a time 

scale of hours. The relative extents of these reactions and the resultant arsenic 

speciation and spatial distribution are strongly dependent on the amount of nZVI 

present. In all conditions studied, arsenic was embedded in the solid phase as opposed 

to surface retention by iron oxide sorbents. This ability of nZVI may give rise to 

attributes favorable for in situ treatment applications or for sound disposal of arsenic-

rich wastes.  
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8.2 Recommended future work 

Although iron nanoparticles for environmental applications have been actively studied 

for over a decade, there are few studies focusing on the reactions at the surface or 

within the nanoparticles. While this work has contributed to an improved understanding 

of the fundamental properties of nZVI and the mechanisms underlying the particle's 

remediation capability, many areas pertaining to the long-term effectiveness of the 

technology in field conditions remain unexplored. The subsequent section lists several 

topic worth further investigations. In a broader sense, direct characterization of 

environmental processes at surfaces or interfaces using multidisciplinary methods is a 

relatively new field. The methodology developed in this work, i.e., combining solution 

analysis with surface and microscopic analyses, is applicable not only to iron 

nanoparticles and water contaminants, but also to many other aqueous/solid 

heterogeneous systems. Of particular interest is the interactions of nanoparticles with 

geochemical and biological surfaces in the natural environment, since these processes 

are expected to influence the aggregation state, surface reactive properties, and the long 

term fate and transport of the nanoparticles.  

 8.2.1 Effect of NOM and common groundwater solutes on nZVI surface chemistry 

As the first systematic attempt to investigate the structure and surface chemistry of 

nZVI in aqueous environment, experiments in this work were conducted in simple 

aqueous solutions without amending background constituents such as natural organic 
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matter (NOM) and common electrolytes (e.g. ferrous, chloride, carbonate, nitrate, 

sulfate, and phosphate ions). Recent studies have shown that NOM binds with iron 

nanoparticles through electrostatic and surface complex interactions, thereby affecting 

the nanoparticle's stability and reactivity (Giasuddin et al., 2007). Groundwater solutes 

not only may serve as potential oxidants (e.g. nitrate), but also may alter the rate of Fe(0) 

corrosion and the nature of the oxide formed (e.g. iron green rust formed in the presence 

of carbonate and sulfate species) (Liu et al., 2007; Reinsch et al., 2010). The presence 

of phosphate ions will be of particular interest because of its reported strong 

competition with arsenic species for active sites on the iron oxide surface (Hug et al., 

2008). Further studies to evaluate the effects of these constituents on nZVI surface 

chemistry and colloidal stability, contaminant sequestration efficiency, and the aging 

behavior of the nanoparticles are necessary. The methods developed in this work can be 

readily tailored to study these topics, and the results will enlighten the question about 

how reliably and consistently will nZVI perform in realistic in situ conditions.   

8.2.2 Three-dimension profiling of contaminant distributions in nZVI  

Heterogeneous distribution of inorganic contaminants inside the nanoparticles has been 

noted in this study, which is conceivably driven by the difference in chemical potential 

across the metal core and the oxide shell of the nanoparticles. As a result, contaminants 

with different redox, coordinative and hydrophilic properties are expected to persist at 

different layers of the nanoparticles, and their spatial distributions may vary with time 
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as the nanoparticles undergo continuous oxidation in water. This thus results in a three-

dimensional contaminant distribution model which is considerably different from 

conventional adsorbents where contaminants are bound at surfaces only. To delineate 

the spatial locations of pollutants sequestered by nZVI particles, well-established XPS 

depth-profiling methods, e.g. multiline, angle-resolved and sputtering-assisted analysis 

can be used. Additionally, techniques complementary to XPS spectroscopy, including 

STEM-XEDS chemical mapping technique and electron energy loss spectroscopy 

(EELS) may be applied to pinpoint the locations as well as chemical speciation of 

contaminants within an entire nanoparticle. knowledge in this regard will generate fresh 

insights into the mode of sequestration and the long-term fate of contaminants 

sequestered by iron-based nanoparticles. 

8.2.3 Optimizing the reactivity of bimetallic nZVI  

The work on Pd-doped nZVI suggests that particle reactivity and longevity may be 

improved by optimizing the synthesis route of Pd-nZVI, the Pd loading content, the 

storage medium, and the application of surfactants as surface modifier. Preliminary 

studies suggest, for example, that the precursor of Pd has an important effect on the 

particle's aging history (data not shown). Recent studies also indicate that the presence 

of silica and other anodic inhibitors in the soil environment may significantly prolong 

the life-span of nZVI particles (Reardon et al., 2008). The application of polymeric 

surfactants, known to stabilize the nanoparticles via steric effect or charge neutralization 
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(Hydutsky et al., 2007; Phenrat et al., 2009), may help to impede the deactivation of 

particles by protecting the active surface sites from build-up of oxidation products and 

from being attached by deactivating agents in the aqueous solution such as chloride ions. 

Because of an extensive interest in bimetallic nZVI for halogenated hydrocarbon 

remediation, the potential to improve the activity of surface catalysts and to prolong the 

particle life-span will have immediate practical implications.    

8.2.4 In situ characterization of reactions at particle surfaces 

Most surface and structural characterization methods used in this study are ex situ 

techniques conducted in ultra-high-vacuum conditions. Direct, in situ characterization 

of environmental processes at interfaces has rarely been explored in the past. This, 

however, can be achieved with vibration spectroscopic tools such as ATR-FTIR and 

Raman spectroscopy, atomic force spectroscopy (AFM), and X-ray absorption 

spectroscopy (XAS). IR and Raman spectroscopy probes molecular stretching and 

vibrations at the solid/water interfaces, while XAS examines the bonding environment 

of contaminants both at the surfaces and within the bulk of the solids. Complementary 

information can be obtained by carefully designed experiments using multiple 

techniques. The information obtained may answer questions such as the kinetics of solid 

phase reactions, the identity of intermediates formed, and the in-depth mechanisms at 

molecular level. 
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