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ABSTRACT 

 The study involves the development of two environmental applications using 

hybrid polymeric/ inorganic ion exchangers. First, the hybrid polymeric ion exchangers 

supported hydrated zirconium oxide (HZO) nanoparticles, referred to as HIX-Zr were 

developed for selective removal of heavy metals and anionic ligands. Second, salt-free 

water softening processes were presented using three different heterogeneous cation 

exchanger resins along with novel regeneration schemes.  

 The HIX-Zr nanosorbents have been prepared, characterized, and extensively 

studied in relation to heavy metal (i.e., zinc) and anionic ligand (i.e., arsenate and 

fluoride) removal in fixed-bed processes at trace concentrations with the presence of high 

concentrations of innocuous competing ions. The HIX-Zr adsorbents are essentially 

nanoparticles of HZO irreversibly dispersed onto the polymeric phase of either anion 

exchangers containing quaternary ammonium functional (R4N
+
) groups or cation 

exchangers containing sulfonate (SO3
-
) functional groups which are referred to as HAIX-

Zr and HCIX-Zr, respectively. The new class of hybrid nanosorbents provides a synergy 

unattainable separately by either inorganic metal oxide nanoparticles or polymeric ion 

exchangers alone. HZO particles have long been known for their high chemical stability 

under varying conditions of pH and redox and exhibit amphoteric sorption properties near 

neutral pH. Besides providing high durability, the Donnan membrane effect from the 

polymeric ion exchanger plays an important role to enhance the permeation of target 

contaminants. HIX-Zr nano-adsorbents were characterized by scanning electron 

microscopy equipped with energy dispersive X-ray spectroscopy (SEM/ EDX), high 
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resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). 

The HZO nanoparticles were uniformly distributed throughout the polymeric ion 

exchanger phases at an approximately 12% (w/w) with sizes well below 50 nm, while the 

material’s high surface area from the amorphous structure of HZO still remains even after 

5 cycles of sorption-desorption as confirmed by XRD. From the equilibrium batch 

isothermal test, the arsenic and fluoride sorption behaviors follow the Langmuir isotherm 

with the maximum sorption capacity of 20 mg As(V)/g at pH 7 and 35 mg F/g at pH 5, 

respectively. The sorption capacity of the HAIX-Zr for both arsenic and fluoride is three 

times higher than the most commonly used activated alumina (AA). Kinetic studies on 

arsenate and fluoride adsorption onto the HAIX-Zr confirmed that intraparticle diffusion 

was the rate limiting step. The HAIX-Zr nanosorbents are amendable to efficient 

regeneration with more than 90% recovery within 15 bed volumes and can be reused for 

many cycles of sorption-desorption. The regenerable nature of HAIX-Zr reduces the 

volume of disposable waste more than 100-fold versus the commercially available 

granulated metal oxide adsorbents. Due to the high chemical stability of HZO 

nanoparticles, the HAIX-Zr can be disposed of safely in a landfill without risk of toxic 

leaching. 

 In general water softening processes, lime soda and ion exchange are the most 

widely used techniques for removal of hardness (e.g., Ca
2+

, Mg
2+

, etc.) from hard water, 

however, these technologies generate voluminous sludge and concentrated brine/mineral 

acid as waste stream, respectively. Residual management and long-term sustainability 

issues will continue to be major concerns with these processes.  In this study, three 
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different salt-free water softening processes using different cation exchangers and 

regeneration schemes are developed. First, the shallow shell technology (SST) resins with 

dry-ice regeneration; second, a weak acid cation exchanger (WAC) with biodegradable 

organic acid regeneration (i.e., diluted acetic acid); and third, a strong acid cation 

exchanger in the aluminum form (SAC-Al) and stoichiometric of aluminium salt 

regeneration are evaluated for simultaneous softening of hard water and removal of 

fluoride at high pH.   

 For the commercially available SST resins, the process takes advantage of the 

shorter diffusion path length due to the inert core of the resin similar to the ion exchange 

fibers used previously and the high preference of hydrogen ions from the weak acid 

cation (WAC) exchanger. From the experimental hardness removal column runs and 

solid CO2 (dry ice) regeneration study, we found that the solid CO2 sparged in DI water 

was not effective for desorption of hardness (i.e., Ca
2+

) from the SST resins as expected. 

Although, the solid CO2 (dry ice) is available, there are some difficulties to control the 

flow rate of CO2 dissolved in water as regenerant solution at high pressure including the 

CO2 gas in solution tend to disturb the resin bed.  

 For the second salt-free water softening scheme, we decided to use the traditional 

spherical weak acid cation (WAC) exchange resins which have high affinity toward 

hydrogen ions and using the diluted biodegradable organic acid such as 2% acetic acid 

instead of aggressive 5% inorganic HCl acid as hydrogen source as a regenerant.  From 

the hardness regeneration studies, we found that the calcium recoveries as high as 98% 

were achieved with only 10 bed volumes by using stoichiometric amounts of dilute acetic 
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acid. The novel water softening process by using WAC resins and stoichiometric 

amounts of dilute biodegradable organic acids (i.e., acetic acid) results in two main 

attributes; first the WAC have higher capacity than the traditional SAC resins, and the 

second benefit is that the waste acid generated from the process is much less (near 

stoichiometric efficiency) than the brine solution (only 30% efficiency). Moreover the 

organic acids are biodegradable while the brine solution is permanently present in the 

environment.  

 The third salt-free water softening process uses polymeric cation exchangers pre-

loaded with aluminum (SAC-Al) or other polyvalent cations (i.e., SAC-Fe). The process 

uses close to stoichiometric amounts of aluminum salts (i.e., Al2(SO4)3, AlCl3 ) for 

regeneration and significantly less volume of waste brine is generated compared to 

traditional brine regeneration for strong acid cation exchange processes. Since no NaCl is 

added during regeneration, sodium is virtually absent in the disposable waste regenerant. 

The spent regenerant essentially contains only salts of hardness (e.g. Ca
2+

, Mg
2+

) 

removed during the regeneration cycle. Also, no mineral acid is needed for regeneration. 

Along with hardness, the process also removes fluoride when the bed is initially in the 

Al
3+

 form or contains precipitated aluminum (hydr) oxide. 
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CHAPTER 1  

INTRODUCTION 

1.1 Polymeric Ion Exchanger    

Ion exchange is a heterogeneous process, defined as the interchange of ions 

between a solid phase (ion exchanger) and a liquid surrounding the solid. Ion exchange 

materials can vary from natural materials such as zeolites (alumino silicates), kaolinite, 

montmorillonite or synthetic materials such as polymeric ion exchange resins, fibers, and 

membranes. Ion exchange technology has been applied for the separation of ionic 

compounds in many fields for nearly a century. Natural ion exchange dates back to 

biblical times when Moses sweetened the waters of Mariah during their journey using a 

tree (Exodus 15:23-25). It can be inferred that the oxidized cellulose of the tree 

undergoes an ion exchange reaction with the bitter electrolytes of the water. (1) The first 

systematic study an ion exchange was reported in 1854 by H.S. Thomson and J. Thomas 

Way, English agricultural chemists, which related the exchange of calcium and 

ammonium ions in soil. In 1906, Robert Gans, a German chemist, used natural and 

synthetic aluminium silicates (zeolite) for industrial purposes to soften water. In 1935, 

Leibknecht developed a sulfonated coal exchanger in Germany, and Adams and Homes 

synthesized the first high capacity phenol-formaldehyde exchangers in England. In 1945, 

D’ Alelio in the United States developed and patented sulfonated crosslinked polystyrene 

resin. In 1946, the first large-scale water softening plant was built in California by using 

synthetic silica-based media, and then was later changed to polymeric polystyrene divinyl 
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benzene cation exchange resin. (1-5) Modern ion exchangers are synthesized from a 

polymer matrix, usually a polystyrene crosslinked with 3 to 8% divinylbenzene (DVB), 

which offer improvement in faster exchange kinetics, higher capacity, and longer 

lifetimes than the natural ion exchange materials. Polymeric ion exchangers consist of a 

solid phase where a number of functional groups (fixed coions) are covalently attached to 

a polymer matrix. Ions in the aqueous phase with the same charge as the fixed functional 

groups are called “co-ions” and the ions with the opposite charges are referred to as 

“counter-ions” The counter-ions can permeate in and out of the resin, but the co-ions are 

excluded from the polymer phase by the phenomenon called “Donnan membrane 

effect”(2). Figure 1.1 represents a two-dimensional bead consisting of polystyrene 

polymer chains held together by divinylbenzene crosslinking.  

 

Figure 1.1 Organic cation-exchanger bead comprising polystyrene polymer cross-linked 

with divinylbenzene with fixed co-ions (negatively charges) balanced by mobile 

positively charged counter-ions (2). 
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Traditional ion exchange resins can be classified based on their functional groups, 

which consist of four main categories: strong acid cation (SAC) exchanger (e.g., 

sulfonate, -SO3
-
); weak acid cation (WAC) exchanger (e.g., carboxylate, -COO

-
); strong 

base anion (SBA) exchanger (e.g., quaternary amine, -N
+
(CH3)3) and weak base anion 

(WBA) exchanger (e.g., tertiary amine, -N(CH3)2). Special types of polymeric ion 

exchangers such as chelating ion exchangers are not mentioned in this study because they 

were developed for specific purposes and have a high cost of implementation on a large 

scale. Four different types of polymeric ion exchangers with different functional groups 

are focused in this research and are shown in figure 1.2. (6) 

Polymeric ion exchangers are suitable for use in fixed-bed columns because they 

exhibit a high mechanical strength and are attrition resistant. The ion exchange 

technology is simple, reversible (i.e., reusable), has high capacity, and is efficient.  Also, 

it is able to operate at a relatively high flow rate with a small footprint, to operate without 

electricity, and can withstand fluctuations in the feed flow rate or concentration. 

Nowadays, hundreds of different ion exchange materials are synthesized and used in 

many processes, including water softening, water demineralization, environmental 

remediation, wastewater treatment, hydrometallurgy, chromatography, biomolecular 

separation, catalysis, etc. (3). For environmental applications, ion exchange is a powerful 

technology for removing many ionic impurities form water and wastewater. Ion exchange 

technology is primarily used for water softening and demineralization. Moreover, it is 

usually used to remove nitrate, barium, radium, chromate, perchlorate (4, 7).  

However, for complex problems, the concentration of background nontoxic 

cations (e.g., Ca
2+

, Na
+
)  and anions (e.g., SO4

2-
, Cl

-
, HCO3

-
) are at much higher 
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concentrations than the target toxic heavy metals (e.g., Zn
2+

, Cu
2+

)  and/or anionic ligands 

(e.g., arsenate, phosphate, fluoride, etc.). The ion exchange resins are unable to 

selectively remove those trace species. The limitations and challenges of applying ion 

exchange for the removal of trace ionic species are mentioned in section 1.1.1. 

 

 
 

Strong Acid Cation (SAC) Exchanger 

(Styrene-DVB matrix 

with sulfonate (-SO3
-
) functional groups) 

Strong Base Anion (SBA) Exchanger 

(Styrene-DVB matrix with quaternary 

ammonium (-N
+
(CH3)3) functional groups) 

 

 

  

Weakly Acidic Cation (WAC) Exchanger 

(Acrylic-DVB matrix with carboxylate        

(-COO
-
) functional groups) 

Weakly Basic Anion (WBA) Exchanger 

(Styrene-DVB matrix with tertiary amine, 

(-N(CH3)2) functional groups) 

 

Figure 1.2 Chemical structures of the four major types of polymeric ion exchangers (6) 
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Moreover, although the ion exchange process can be reversible, high 

concentrations or aggressive chemicals have to be used to overcome the selectivity 

reversal. For example, a high concentration of salt (12-15% NaCl) or acid (5% HCl) 

solution have to use for hardness regeneration by using strong acid cation (SAC) 

exchanger in the Na
+
 form or weak acid cation exchanger in the H

+
 form, respectively. 

Both limitations and challenges are discussed in section 1.1.2. 

 

1.1.1 Inability to Selectively Remove Trace Ionic Species 

 The preference of ion exchangers for one specific ion over another can be 

expressed qualitatively by a selectivity sequence as shown in the table 1.1 and 

quantitatively by the separation factor (α) or a selectivity coefficient (K) for binary 

exchange. Table 1.1 shows the selectivity sequence (from the bottom to the top) and the 

separation factor (αi/Na and αj/Cl) of the strong acid cation (SAC) and strong base anion 

(SBA) exchangers with respect to the sodium and chloride ions, respectively. Weak acid 

cation (WAC) exchangers with carboxylic acid functional groups have the same 

selectivity sequence (not the selectivity value) as SAC resins except that hydrogen ion 

(H
+
) is the most preferred for WAC resins. Similarly, WBA and SBA resins exhibit the 

same selectivity sequence, except that hydroxide ions (OH
-
) are the most preferred by 

WBA resins. Note that special resins such as chelating resins exhibit a different 

selectivity sequence and values from the traditional resins, and are not mentioned for this 

study. (2) For dilute solutions, the ion exchange resins prefer counter ions of higher 

charge, atomic number, or ionic radius (4). However, some exceptions may apply and 

will not be discussed in this research. 
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Table 1.1 Relative affinities of ion for resins (2) 

Strong acid cation (SAC)
**

 resins Strong base anion (SBA)
***

 resins 

Cation, i α i/Na Anion, j α j/Cl 

H
+
 0.67 F

-
 0.07 

Na
+
 1.0 CH3COO

-
 0.14 

NH4
+
 1.3 HCO3

-
 0.27 

Mn
2+

 1.6 BrO3
-
 0.9 

K
+
 1.67 Cl

-
 1.0 

Mg
2+

 1.67 NO2
-
 1.1 

Fe
2+

 1.7 HSO3
-
 1.2 

Zn
2+

 1.8 SeO3
2-

 1.3 

Ca
2+

 1.9 Br
-
 2.3 

Cu
2+

 2.6 NO3
-
 3.2 

Sr
2+

 4.8 HSO4
-
 4.1 

Pb
2+

 5.0 HAsO4
2-

 4.5 

Ba
2+

 5.8 SO4
2-

 9.1 

Ra
2+

 13.0 SeO4
2-

 17 

  CrO4
2-

 100 

  ClO4
-
 150 

  UO2(CO3)3
4-

 3200 

 

 *The above values are approximate separation factors for 0.005-0.010 N solution          

  (TDS = 250-500 mg/L as CaCO3). 

**SAC resin is polystyrene divinylbenzene matrix with sulfonate functional groups. 

***SBA resin is polystyrene divinylbenzene matrix with –N
+
(CH3)3 functional groups 
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 The inability of ion exchangers to remove trace species out of high concentrations 

of innocuous ionic species inevitably present in the water can be explained by using the 

concepts of separation factor and selectivity coefficient. For example, there are 

difficulties in removing trace concentrations of toxic heavy metals such as Zn
2+

, Cd
2+

, 

Cu
2+

, etc. from the aqueous phase where the high concentrations of innocuous Ca
2+

 or 

other polyvalent species are inevitably present can be explained as follows: 

 

        ̅̅ ̅̅ ̅̅ ̅ + Zn
2+

 =     ̅̅ ̅̅ ̅̅ ̅ + Ca
2+    (1-1) 

 

where the overbar represents the cation exchange phase and R represents the polymer 

matrix with fixed anionic charged (e.g., –SO3
-
) functional groups. Assuming ideality, the 

equilibrium constant or selectivity coefficient of Zn
2+

 over Ca
2+

 (KZn/Ca) of the equation 

1-2 is as follows: 

            
[    ̅̅ ̅̅ ̅̅ ̅̅ ][    ]

[    ][    ̅̅ ̅̅ ̅̅ ̅]
  

      

      
   (1-2) 

 

where qZn and qCa represent the concentration of Zn
2+

, Ca
2+

 in the resin phase and CCa, 

and CZn represent the concentration of Ca
2+ 

and Zn
2+

 of the liquid. The ratio of Zn
2+

 to 

Ca
2+

 in the aqueous phase is much less thus in order to selectively remove Zn
2+

 over Ca
2+

 

(high    ), the equilibrium constant or selectivity coefficient (      ) has to be very 

high. However, the traditional ion exchange processes are based on Coulombic 

(electrostatic) type interactions, thus they are unable to attain a high selectivity toward 

zinc. (8) 
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Similarly, trace arsenate (HASO4
2-

), fluoride (F
-
), phosphate (HPO4

2-
), and 

chromate (CrO4
2-

) are not selectively removed by tradition anion exchangers under the 

presence of competing high concentration ions such as SO4
2-

. From figure 1.3, it can be 

inferred that arsenate or As(V) is poorly removed by traditional anion exchangers under 

the presence of sulfate.  

 

 

 

Figure 1.3 An effluent history of an As(V) contaminated water for a fixed-bed column 

run using a strong-base anion exchanger (IRA-958)  
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1.1.2 High Concentration of Waste Generated from the Regeneration of Ion 

Exchange Processes 

 The selectivity values shown in table 1.1 were carried out at a general dilute 

concentration. For traditional ion exchange processes, the concentration of the solute also 

has a strong effect toward the selectivity of the target contaminants. If the system is 

dealing with the same charge (monovalent/monovalent or divalent/divalent), the 

selectivity coefficient (K) from eq. 1-2 and separation factor (αi/j) from eq.1-5 are equal. 

For exchange ions of different valence, the separation factor (αi/j) is not equivalent to the 

selectivity coefficient (K). For example, the water softening process where Ca
2+

 or other 

polyvalent cations from the water are exchanged with Na
+
 ion from the SAC resin is 

shown as (2): 

       ̅̅ ̅̅ ̅̅ ̅ + Ca2+ =     ̅̅ ̅̅ ̅̅ ̅ + 2Na+     (1-3) 

           
      

 

   
    

      (1-4) 

 The binary separation factor (αi/j) is defined as the ratio of distribution of ion i 

between phases and the distribution of ion j between phases. For this case, the separation 

factor between Ca
2+ 

and Na
+
 is; 

 

        
           

           
 

   

   

   

   
 

              

              
 

   

   

   

   
            (1-5) 

 

where YNa and YCa are the equivalent fraction of Na
+
 and Ca

2+
 in the resin phase 

XNa and XCa are the equivalent fraction of Na
+
 and Ca

2+
 in the liquid phase, 
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qNa, qCa, and q represent the concentration of Na
+
, Ca

2+
, and total capacity in the resin, 

CNa, CCa, and C represent the concentration of Na
+
, Ca

2+
, and total ionic concentration of 

the liquid. 

 Using the combination of eq. 1-4 and eq. 1-5 gives:  

                 
    

    
     (1-6) 

 For heterovalent exchange (divalent/monovalent), the separation factor (αi/j) 

depends inversely on solution concentration C and directly on the distribution ratio 

YNa/XNa or qNa between the resin and the water, with q constant. The higher concentration 

C, the lower the divalent/monovalent separation factor (i.e., selectivity will reverse in 

favor of the monovalent Na
+
 ion). That is why a traditional water softening process using 

SAC can be regenerated with high concentration of salt (10-12% NaCl) as the 

concentration is high enough to cause selectivity reversal. From figure 1.4, the high 

concentration of Na
+
 ion is concentrated in the resin (y axis) at high TDS of the solution 

(150,000 mg/L or 15%). 

 For water softening processes, high concentrations of salt (12-15% NaCl) or 

aggressive acid (5% HCl) are usually used to regenerate the resin resulting in high 

concentration of waste discharged from the process. High concentration of brine or acid 

is needed to drive the reaction to overcome the selectivity reversal. Waste brine solutions 

correspond with high total dissolved solids (TDS) in aquatic systems, which is harmful to 

aquatic life. There are regulations for salt-free regeneration of water softeners throughout 

the US, notably with recent legislation in California, Texas, and Florida. Effluents with 

high sodium or TDS also cause significant problems to water reclamation and reuse 
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facilities and septic systems. There is a need for clean technology that avoids discharge of 

high concentrations of salt into natural waters or using a mild acid solution for 

regeneration of WAC resins that can be used for household water softeners. 

 

 

 

Figure 1.4 The Na
+
-Ca

2+
 equilibrium for sulfonic acid cation exchange resin (4)  
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1.2 Hybrid Polymeric Ion Exchanger Supported Hydrated Zr(IV) Oxide 

Nanoparticles for Selective Removal of Trace Anionic Ligands and 

Heavy Metals 

1.2.1 Trace Environmental Contaminants: Ligands and Heavy Metals 

 Many environmental ionic contaminants of concern such as heavy metals (e.g., 

Zn
2+

, Pb
2+

, Pb
2+

, Cd
2+

, Ni
2+

, etc.) and anionic ligands (e.g., arsenate, phosphate, fluoride, 

selenite, etc.) are very toxic and present in water body at trace concentration (typically in 

the range of ppm and may be as low as ppb level). As mentioned earlier, traditional 

cation and anion exchangers cannot remove these contaminants if high concentrations of 

innocuous cations (i.e., Ca
2+

, Mg
2+

, etc.) and anions (i.e., SO4
2-

, Cl
-
, HCO3

-
, etc.) are also 

present in the aqueous phase. Important trace anionic contaminants can be categorized as 

anionic ligands (Lewis bases) or anions that can form strong complexes with metal ions 

(Lewis acids). Examples of the Lewis-base type contaminants include phosphate, 

arsenate, chromate, selenite, cyanide, oxalate, and phthalate. Because of the associated 

environmental impacts and health risks, these Lewis-base type contaminants are often 

subject to stringent environmental regulations. Arsenic and fluoride are selected for the 

sorption study due to the massive-scale of health problems. There are several hundred 

million people mainly in Asia (e.g., India, Bangladesh, China, Vietnam, and Cambodia), 

South America (e.g., Argentina, Mexico), Africa, including many states in the US that are 

contaminated with arsenic and fluoride in the groundwater (9-14). 

 Many technologies have been used to remove these contaminants such as 

chemical precipitation/ co-precipitation, membrane processes (e.g., reverse osmosis (RO) 



17 
 

and nanofiltration (NF)), but removal of such low concentrations are faced with many 

challenges to meet the stringent standards, be cost effective, and remain a sustainable 

processes. For example, the chemical precipitation techniques result in residual 

contaminants (cannot meet the standard) due to the solubility limit and generate a large 

quantity of sludge which is both environmental and economic issues. Similarly, most of 

the membrane processes are complex and require a high investment and operating cost 

and thus are not suitable for use in certain areas. Fixed-bed adsorption processes or ion 

exchange technology can remove contaminants to near zero concentration, are simple to 

operate, and open the possibility for concentrating these toxic compounds and/or reuse 

for some industries. Two main technologies that are compatible and suitable for the 

fixed-bed configuration are ion exchange and adsorption onto metal oxide particles.  

 

1.2.2 Arsenic and Fluoride Problems  

 Arsenic is a metalloid mostly found in groundwater due to natural weathering 

reactions. The speciation of arsenic depends on the pH and redox of the water body. 

Arsenic is present mostly as inorganic arsenate or As(V) and arsenite or As(III) as shown 

in the table 1.2 and figure 1.5. Studies have demonstrated that chronic exposure to arsenic 

can lead to liver, lung, kidney, bladder, and skin cancer cause cardio vascular system 

problems, and affect the mental development in children. (15, 16) Accordingly, the 

United States Environmental Protection Agency (USEPA) revised the maximum 

contaminated levels (MCL) for arsenic in drinking water from 50 to 10 µg/L in 2001, and 

required compliance with this level since January 2006. Note that estimates of people at 

risk of poisoning are very difficult to quantify, particularly in areas where geochemical 
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surveys are limited. The worldwide distribution of arsenic contaminated regions is 

provided in the figure 1.6. (17) 

Table 1.2 Oxyacids and Conjugate Anions of As(V) and As(III) (15, 16) 

Parent 

oxyacids 

pKa values Predominant 

dissolved species  

at pH 6.0 

Predominant 

dissolved species 

at pH 8.0 

Sorption 

interaction 

As(V): 

H3AsO4 

pKa1 = 2.2 

pKa2 = 6.98 

pKa3= 11.6 

  

Undergo 

Coulombic and 

Lewis acid-

base interaction 

As(III): 

HAsO2 
pKa1 =9.2 

 

Only Lewis 

acid-base 

interaction 

 

 

Figure 1.5 Distribution of As(V) and As(III) oxyacids and their conjugate anions as a 

function of pH (16) 
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Figure 1.6 Worldwide distributions of arsenic contaminated regions, showing source of 

arsenic and numbers of people at risk of chronic exposure  (17)                                       

 

Fluoride contamination in drinking water sources has also attracted attention in 

relation to its adverse health effects such as dental and skeletal fluorosis. More than 70 

million people are suffering with fluorosis globally. The MCL from USEPA is 4 mg/L. 

However, the World Health Organization (WHO) recommended guideline is only 1.5 

mg/L (18). Globally, high fluoride levels are found in belts that stretch from Syria 

through Jordan, Egypt, Libya, Algeria, Sudan, Kenya, Tanzania and from Turkey through 

Iraq, Iran, Afghanistan, India, Thailand and China.(19) The fluoride probability model in 

groundwater exceeding WHO guideline of 1.5 ppm is shown in the figure 1.7A (14) and 

the fluoride map for the affecting countries is also given in the figure 1.7B (20).  
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Figure 1.7 Model global probability of fluoride concentration in groundwater exceeding 

the WHO guideline for drinking water of 1.5 mg/L (14, 20)  

                            

A 

B 
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   1.2.3 Adsorption by Metal Oxide Particles and Their Limitation 

 Oxides of some polyvalent metals such as Al(III), Fe(III), Si(IV), Ti(IV), Zr(IV), 

etc. are environmentally benign, and exhibit amphoteric sorption properties near neutral 

pH(21). They can selectively bind both Lewis acid or transition metal cations (e.g., Zn
2+

, 

Cu
2+

, etc.) and Lewis bases or anionic ligands (e.g., arsenic, phosphorus, fluoride, etc.) 

through the formation of inner-sphere complexes (19, 22-30). Unlike traditional cation 

exchangers, these metal oxide particles can selectively sorb trace toxic concentrations of 

transition metal cations (e.g. Zn
2+

, Cu
2+

, etc.)  in preference to other competing high 

concentrations of innocuous alkaline or alkaline earth metals such as Ca
2+

, Mg
2+

, Na
+
.  

Similarly, these metal oxides can selectively bind with trace anionic ligands (e.g., arsenic, 

phosphorus, fluoride, etc.) within the presence of high concentrations of competing 

anions such as sulfate, nitrate, chloride, and bicarbonate. The advantages and 

disadvantages between the tradition polymeric ion exchangers and the metal oxide 

particles are summarized in the table 1.3.  

 The methodology of preparation of these inorganic metal oxide nanoparticles is 

environmentally safe, operationally simple, and inexpensive. Because sorption sites 

reside predominantly on the surface, the nano-scale metal oxide particles offer very high 

sorption capacity and rapid kinetics. However, the metal oxide particles cannot be used in 

fixed-bed columns, in groundwater reactive barriers, or in any plug flow type 

configurations due to excessive pressure drops. Also, these inorganic nanoparticles are 

not durable and lack mechanical strength. 
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Table 1.3 Advantages and disadvantages of ion exchange and metal oxide adsorption 

adapt from Clifford (2) 

Polymeric Ion Exchange Process 

Advantages 

 Essentially zero level of effluent concentration possible 

 Relatively insensitive to flow variations, operate on demand, influent 

concentration 

 Be able to operate without electricity 

 Large variety of specific resins available for specific applications 

 Beneficial selectivity reversal  commonly occurs upon regeneration 

Disadvantages 

 Not selective toward trace concentration at high levels of competing ions  

 Not feasible at high level of total dissolved solids  

 Potential for chromatographic elution  

 Large volumes and high concentration of TDS from spent regeneration solution 

 

Adsorption by Polyvalent Metal Oxide Particles 

Advantages 

 Essentially zero level of effluent concentration possible 

 Relatively insensitive to flow variations, operate on demand, influent 

concentration 

 Relatively insensitive to the presence of competing ions and total dissolved solids 

 Highly selective toward trace concentration of transition metals and anionic 

ligands such as arsenic, phosphate, and fluoride 

Disadvantages 

 Media tend to dissolve (some metal oxide exhibit chemical instability), producing 

fine particles (low mechanical strength and attrition resistant) 

 Inefficient to regeneration (for granulated type metal oxide adsorbents )  
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Many studies attempt to develop metal oxide based hybrid sorbents such as 

activated carbon, alginate, chitosan, cellulose and polymer beads doped with metal oxide 

nanoparticles. These hybrid sorbents improve the permeability in the fixed-bed systems, 

but most of them have low sorption capacity and unreliable results. The granulated typed 

metal oxide sorbents such as granulated ferric oxide (GFO), granulated titanium oxide 

(GTO), mesoporous zirconium oxide particles, and activated alumina (AA), etc. have 

been developed, and are currently available in the market for the removal of arsenic, 

fluoride and other contaminants (31, 32). Although these commercial granulated metal 

oxide adsorbents offer higher sorption capacity than the previously mentioned hybrid 

sorbents, they also have improved permeation in the fixed-bed systems. However, they 

exhibit a low attritional resistance (i.e., fine particles are formed) and are not effectively 

regenerated, thus they are mostly recommended for a single usage (23, 33). Note that the 

commercially mesoporous zirconium oxide sorbents cannot be directly used in the fixed-

bed column, and a high pressure pump is needed to operate the system.  

Activated alumina has been reported to have low mechanical strength (i.e. it turns 

into fine particles after several cycles), low sorption capacity at neutral pH, and is unable 

to remove As(III) effectively. Moreover, the exhausted materials generate a waste 

contaminated with high concentrations of toxic arsenic and pose a significant risk to the 

environment (i.e., iron based sorbents) (34, 35). Currently, there is no sustainable, long 

term adsorbent for both contaminants. There is the need to develop sorbents that exhibit 

high affinity and have high capacity toward target anionic ligands, able to be regenerated 

to reduce the cost of operation,  minimize the waste generated from the process, and it 
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should be safe to dispose the exhausted sorbent into a landfill without a risk of toxic 

materials leaching into the environment. 

 

1.2.4 Mechanism of Ligand and Heavy Metal Sorption onto the Surface of Metal 

Oxide Particles 

 The hydrated metal oxides show strong Lewis acid-base characteristics; the 

central metal atom exhibits Lewis acid character (electron pair acceptor) while the 

oxygen exhibits Lewis base behavior (electron donor). They can selectively bind 

transition metal cations (Lewis acids) e.g., Zn
2+

, Cu
2+

, Cd
2+

 and anionic ligands (Lewis 

bases) e.g., HAsO4
2-

, CrO4
2-

, HPO4
2-

, F
-
 through the formation of innersphere complexes 

both individually and simultaneously.(36)
 

 The hydrated metal oxides can be viewed as diprotic weak acids that can 

deprotonate as follows: 

      
 ̅̅ ̅̅ ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅̅ ̅        pKa1   (1-7) 

    ̅̅ ̅̅ ̅̅ ̅        ̅̅ ̅̅ ̅̅                   pKa2   (1-8) 

 Depending on pH, the hydrated metal oxide surface may exhibit fixed positive 

charges, negatively charges, or be electrically neutral. At a pH lower than the point of 

zero charge (PZC), the metal oxides are protonated (     
 ̅̅ ̅̅ ̅̅ ̅̅ ̅ ) to have positive charges and 

behave as a Lewis acid (electron pair acceptor). These metal oxides can selectively sorb 

anionic ligands (arsenic, phosphorus, fluoride, etc.) which act as a Lewis base (electron 

donor). At a pH greater than their PZC, the surface of metal oxides are deprotonated 

(   ̅̅ ̅̅ ̅̅ ) to have negative charges and exhibit Lewis base characteristics which can 

selectively bind with Lewis acid contaminants such as transition metals (e.g. Zn
2+

, Cu
2+

, 
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Ni
2+

,Pb
2+

, etc.). Note that other competing cations (e.g., Na
+
, K

+
, Ca

2+
, etc.) and anions 

(e.g. SO4
2-

, HCO3
-
, Cl

-
) form only weak outer sphere complexes through electrostatic 

(Coulombic) interactions, thus they poorly bind onto the surface of metal oxides.(36) 

Since sorption or binding sites reside only on the surface, nanoscale metal oxide particles 

with very high surface area to volume ratio offer significantly enhanced sorption 

capacity.  Figure 1.8 shows the binding of various contaminants on the hydrated metal 

oxide particles through the formation of inner-sphere complexes. 

 

 

Figure 1.8 A schematic diagram illustrating the binding of several of solutes onto 

hydrated metal oxides at circum-neutral pH 
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 The selective sorption of transition metal cations and anionic ligands onto the 

surface of the metal oxide can be expressed according to the complexation model 

adsorption reaction. At the standard state, the overall free energy at equilibrium between 

surface of metal oxide and transition metals or anionic ligands is given by the following 

(8, 16): 

 

           
       

       
       (1-9) 

                                        (1-10) 

                          (1-11) 

 

 For the metal oxide, KLAB is very high for most of the heavy metals and anionic 

ligands due to their Lewis acid base characteristics. Therefor KOverall is very high. In 

contrast with other competing cations (e.g., Na
+
, K

+
, Ca

2+
, etc.) and anions (e.g. SO4

2-
, 

HCO3
-
, Cl

-
), the Lewis acid-base (LAB) is absent so KOverall is equal to the KCou. Based on 

this concept, there are many applications based on the Lewis acid base interaction for 

selective removal of trace concentrations of toxic heavy metals and anionic ligands such 

as chelating resins for trace metal removal, granulated metal oxides for selective removal 

of arsenate, phosphate, fluoride, etc. With KOverall >> KCou, the selectivity sequence will 

change dramatically compares to the traditional exchange. For example, the sorption of 

many contaminants using activated alumina (AA) operated in the pH range of 5.5 to 8.5 

prefers anions in the following order (2): 

OH
-
 > H2AsO4

-
 > Si(OH)3O

-
 > F

-
 > HSeO3

-
 > SO4

2- 
> CrO4

2- 
>> HCO3

-
 > Cl

-
 > NO3

-
 > Br

-
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1.2.5 Concept of Hybrid Polymeric/ Inorganic Ion Exchanger 

To overcome the disadvantageous of nano-scale metal oxide particles, it would be 

desirable to encapsulate these nanoparticles within robust support materials which can 

offer excellent mechanical strength, durability, and favorable hydraulic properties. A 

hybrid ion exchanger essentially contains two phases: a functionalized polymeric ion 

exchanger host and metal oxide nanoparticles dispersed within the polymer phase as 

illustrated in figure 1.9.  

 

 

 

Figure 1.9 The concept of polymer-supported inorganic metal oxide nanoparticles or 

hybrid ion exchanger 
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These hybrid nanosorbents incorporate some of the advantageous properties of 

several current anionic ligand (e.g., arsenate, phosphate, etc.) or heavy metal (e.g. zinc, 

copper, etc.) removal technologies. While traditional anion/cation exchange resins offer 

excellent hydraulic properties, the target contaminant (trace anionic ligands and transition 

metals) selectivity is relatively poor, especially in the presence of competing ions. Also, 

ion exchange resins show no affinity toward nonionic species such as As(III) at circum-

neutral pH. Conversely, metal oxides such as hydrated Fe(III) oxide particles or HFO 

offer excellent heavy metals and anionic ligands such as arsenic selectivity for both  

anionic As(V) and non-ionized As(III) species, but perform poorly in terms of hydraulic 

properties and mechanical strength. By dispersing metal oxide nanoparticles into the ion 

exchanger, excellent hydraulic properties and heavy metals or anionic ligands e.g. 

arsenic, phosphorus, fluoride selectivity can be effectively integrated. These advantages 

and disadvantages are summarized in table 1.4.  

Table 1.4 Synergy Effect of Hybrid Ion Exchanger 

Properties 
Polymer Support 

Ion Exchangers 

Metal Oxide 

Nanoparticles 

Hybrid Ion 

Exchangers 

Environmental safe Yes Yes Yes 

Suitable for fixed bed Yes No Yes 

Ability to regenerate/reuse Yes No Yes 

Mechanical strength High Low High 

Enhanced kinetics/ capacity 

by exert Donnan membrane 

effect 

Yes No Yes 

Surface area Medium High High 

Selectivity toward arsenic 

and toxic metal 
Low High High 
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1.2.6 Role of Donnan Membrane Effect 

 In the past, hydrated ferric oxide (HFO) nanoparticles were dispersed in both 

spherical polymeric cation and anion exchanger beads containing sulfonic acid and 

quaternary ammonium fuctional groups, respectively (15, 29, 37). These hybrid cation 

and anion exchangers containing impregnated HFO nanoparticles have distinctly 

different sorption properties. Due to the Donnan membrane effect, the hybrid anion 

exchanger (HAIX) allows enhanced permeation of arsenate oxyanions inside the anion 

exchanger, and subsequently selectively bind onto dispersed HFO nanoparticles.  

 

 

 

Figure 1.10 Donnan membrane effect from the parent ion exchanger 

 

 Activated carbon, alginate, and porous polymers have also been used as host 

materials for doping HFO, but the favorable Donnan membrane effect is absent in these 
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hybrid materials (38, 39). The HAIX-Fe, now commercially available as LayneRT, offers 

a very high selectivity for sorption of arsenic due to the Donnan membrane effect as 

illustarted in figure 1.10. The choice of the ion exchanger host material for HFO 

nanaparticles can completely reject the transition-metal cations while allowing enhanced 

selective sorption of anionic ligands and vice versa. Thus, in principle, an amphoteric 

metal oxide nanoparticle can be tailored to behave either as a strictly metal-selective 

sorbent or as a ligand-selective exchanger. The HFO particles which are dispersed within 

the hybrid nanosorbents efficiently remove dissolved ligands such as oxyacids and 

oxyanions of As(III), As(IV), and phosphorus from the background of commonly 

occurring anions namely Cl
-
, SO4

2-
, NO3

-
, etc. They are also capable of selectively 

removing heavy metal cations such as Zn
2+

, Cu
2+

, and Cd
2+

 from the background of 

cations including Na
+
, K

+
, Mg

2+
, Ca

2+
, etc. 

 

1.2.7 Disadvantages of Hydrated Fe(III) Oxide (HFO) Nanoparticles 

 Currently in developed western nations, toxic materials such as arsenic-laden 

sludge and/or adsorbents are routinely disposed of in landfills. However, several recent 

investigations have revealed that leaching of arsenic is stimulated or enhanced in a 

landfill or a hazardous waste site environment (34, 35). Both pH and redox conditions 

uniquely determine speciation of arsenic and iron that in turn controls arsenic 

leachability. From the composite predominant diagram (pe-pH diagram) as illustrated in 

figure 1.11, Fe(II) and As(III) are practically the sole species in the reducing landfill 

environment. The relatively high solubility of Fe(II) and low sorption affinity of As(III) 
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would always render the iron-laden sludge more susceptible to rapid leaching under the 

oxygen-starved environment of the landfill or underground waste site. 

 

1.2.8 Use of Chemically Stable Hydrated Zirconium Oxide (HZO) Nanoparticles 

 For this study, new hybrid polymeric ion exchangers were developed by using the 

hydrated zirconium oxide (HZO) nanoparticles instead of previously used hydrated ferric 

oxide (HFO). The HZO nanoparticles also exhibit high selectivity toward both transition 

metals and anionic ligands. The HZO have higher chemical stability than the HFO. 

Therefore, the used sorbents can be disposed of safely in landfills without the chance of 

metal reduction, and toxic leaching which can occur with the HFO based nanosorbents. 

Moreover, the HZO particles also exhibit fluoride sorption property while HFO particles 

are not.  

 

Figure 1.11 Composite predominant diagram, Fe- As and Zr-As  (adapt from (40)) 
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Unlike HFO, HZO particles are chemically stable under the reducing environment 

of landfills. Figure 1.11 (RHS) shows the composite predominance diagram for various 

arsenic and zirconium species. Zr(IV) species are the sole species in both oxidizing and 

reducing environments. It will be safe to dispose of the materials laden with arsenic in the 

reducing environment such as in landfills. Both amorphous and crystalline HZO exhibit 

strong sorption affinity toward both As(III) and As(V) oxyacids and oxyanions through 

ligand exchange in the coordination spheres of structural Zr atoms (23). Figure 1.11 

(LHS) represents the composite pe-pH diagram for arsenic-iron. Note that Fe(III) and 

As(III) predominate in the oxidizing environment while reduced Fe(II) and As(III) are 

practically the sole species in the reducing environments such as in a landfill. Unlike 

Fe(III), Zr(IV) is chemically stable under reducing environment such as landfill. In 

general tetravalent metals bind to oxygen so strongly that dissolved complexes are partly 

deprotonated in aqueous solution. Corresponding zirconia (ZrO2) is virtually insoluble in 

aqueous solution as shown in figure 1.12.(41) The major environmental challenge lies not 

just in removing dissolved arsenic or other contaminants from contaminated groundwater 

but also in attaining safe, long term disposal of toxic-laden sludge. The volume of sludge 

is often small, but disposal of used iron based sorbent laden arsenic in the reducing 

environment of a landfill will stimulate iron reduction and release arsenic into 

environment. 
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Figure 1.12 Speciation of zirconium products as a function of solution pH (41).  

 

1.3 Water Softening: Problems, Challenges, and New Opportunities 

 Hardness is caused by the presence of polyvalent cations mainly divalent cations 

such as calcium, magnesium, and iron. The hardness is usually expressed as milligrams 

per liter as CaCO3 and classified into soft water (0-60 mg/L), moderately hard water (61-

120 mg/L), hard water (121-250 mg/L), and very hard water (250+ mg/L) as CaCO3 (42, 

43). Many industrial unit operations and unit processes require near-complete removal of 

hardness (e.g., to minimize scale in heat transfer equipment, to prevent fouling in 

membranes, high concentrations of detergents and sequestering chemicals in cooling and 

wash water). The scale (CaCO3) precipitated in heating pipes is shown in the figure 

1.13A. The distribution of hard water throughout the United States is shown in figure 

1.13B. 
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 Hardness can be classified based on the anions associated with the cations (2): 

• Carbonate hardness: Carbonate hardness or temporary hardness is caused by cations 

from the dissolution of calcium and magnesium carbonate and bicarbonate in the water. 

• Non-carbonate hardness: Non-carbonate hardness or permanent hardness is caused 

by cations from calcium and magnesium compounds of sulfate, chloride, or silicate that 

are dissolved in the water.  

• Total hardness: Total hardness represents the sum of multivalent cations which are 

mainly calcium and magnesium. 

 

1.3.1 Current Technology: Problems and Challenges 

1.3.1.1 Lime–Soda Softening 

 Lime soda softening removes hardness through chemical addition. This process is 

operationally simple and suitable for large scale softening unit operations. In general, the 

chemicals required are inexpensive. However, calcium removal is limited to 35 mg/L as 

CaCO3 and magnesium removal is 12 mg/L due to the solubility of the product species 

listed in the flowing reactions. The following precipitation reactions govern this process: 

Ca
2+

 (aq) + CO3
2-

 (aq)        CaCO3(s)               Ksp = 3.36 x 10
-9      

(1-12) 

Mg
2+

 (aq) + 2OH
-
 (aq)        Mg(OH)2 (s)          Ksp = 9.0 x 10

-12  
(1-13) 

The disposal of residuals produced as a byproduct in the water treatment 

processes represents a significant portion of the overall treatment cost. To minimize the 

weight of these solids, the water content is often reduced through the use of a vacuum 
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filter, or belt press. Such unit processes add significant operating cost, space, and 

complexity to any treatment process scheme.  

 

 

 

Figure 1.13 (A) pipe scaling due to the presence of hardness in water (42)                    

(B) Distribution of hard water as milligram per liter as CaCO3 in the United States (43) 

A 

B 
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1.3.1.2 Ion Exchange Processes 

Ion exchange softening processes are common at both industrial and residential 

scales. The calcium or magnesium ions that constitute hardness are exchanged with 

sodium or hydrogen ions from the ion exchanger phases. The following reactions are 

representative of the sorption steps in a traditional strong and weak acid ion exchange 

processes for removal of temporary hardness, respectively: 

 2(R SO3
-
)Na

+
  + Ca(HCO3)2                 (R – SO3

-
)2Ca

2+
  + 2HCO3

-
          (1-14) 

2(R -COOH)    + Ca(HCO3)2               (R - COO
-
)2Ca

2+
 + 2H2CO3        (1-15) 

where the overbar represents the ion exchange phase of the strong acid cation exchanger 

in a sodium form containing sulfonic acid (-SO3
-
) functional groups and the weak acid 

cation exchanger in a hydrogen form containing carboxylic (-COO
-
) functional groups. 

Once the exchange capacity of the resin has been exhausted, the material must be either 

regenerated using a concentrated sodium chloride solution at approximately 10-12% (for 

SAC resins) or an inorganic acid solution around 5% HCl (for WAC resins): 

(R – SO3
-
)2Ca

2+
  + 2Na

+
              2(R SO3

-
)Na

+
  + Ca

2+                       
(1-16) 

(R - COO
-
)2Ca

2+
 + 2H

+
               2(R -COOH)  + Ca

2+   
      (1-17) 

The strong acid cation (SAC) exchange resins have been widely used in both 

household and industrial softening processes. Regeneration is accomplished by passing a 

concentrated 10-12% brine solution through the calcium and magnesium saturated bed. 

At these high salt concentrations, the resin undergoes a phenomenon called “selectivity 

reversal”, allowing the sorbed calcium or magnesium to be exchanged for sodium. These 



37 
 

salt concentrations are greatly in excess of the ion exchange stoichiometry, which results 

in the formation of the brine-laden waste (containing sodium, calcium, magnesium, and 

chlorine). In certain areas, these salt discharges can pose an environmental threat. For 

example, in California and Arizona, where there is a significant level of evaporation, salt 

discharged can add to the already high total dissolved solids (TDS) content for receiving 

water bodies. Under such circumstances, any increase in TDS can pose a distinct threat to 

aquatic lives, plants, and agricultural production. 

 

1.3.2 Need for Salt/Acid Free Water Softening Processes 

 Traditional hardness removal processes use strong acid cation (SAC) exchangers 

in the Na
+
 form. Calcium, magnesium, and other polyvalent cations corresponding to the 

hardness are exchanged with the sodium in resin phase. Exhausted resins are typically 

regenerated with brine solution such as sodium chloride, potassium chloride with high 

concentration approximately 10-12 % to overcome selectivity reversal. This process is 

inefficient and requires an excess amount of brine solution resulting in excess brine 

discharge of nearly 50%. Both waste brine solution corresponds to high TDS in aquatic 

system and harmful for aquatic life, there are regulations for “salt ban regeneration water 

softening processes” mainly in California and other states throughout the United States. 

Moreover, sodium ions which exchanged with hard ions (i.e. Ca
2+

, Mg
2+

) from water are 

added into treated water with the same amount (meq.) of the calcium being exchanged. 

The adding of sodium to treated water may cause a problem especially for the people 

who have heart-related diseases. There is a need for salt free technology. 
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1.3.3 Previous Development of Salt-Free Water Softening Process Using IX-Fibers 

and CO2 Regeneration  

Based on an earlier study, an environmentally benign hardness removal process 

using IX fibers has been developed (44, 45). The process is illustrated in figure 1.14. Ion 

exchange fibers from the heart of the process offer unique opportunities to use and 

consume CO2 for efficient regeneration. The fibers are essentially long polypropylene 

cylinders with an average diameter of approximately 25 µm as illustrated in figure 1.15. 

Ion exchange fibers containing carboxylate (-COOH) functional groups are the sorbent 

for the process, and the following steps constitute the softening process. F represents the 

fiber matrix and the overbar denotes the solid phase:  

1. Hardness removal by ion exchange fibers 

2 F – COOH + Ca(HCO3)2               (F – COO)2Ca + 2H2CO3                        (1-18)  

2. Regeneration with CO2 sparged water 

2CO2(g) + 2H2O                    2 H2CO3 (aq)               pKH = 1.41 at 20
o
C             (1-19) 

      2 H2CO3 (aq)                         2 H
+
 + 2 HCO3

-                 
pKa1 = 6.38 at 20

o
C             (1-20) 

     (F – COO)2Ca  + H
+
                 2 F – COOH   +  Ca

2+
                                        (1-21) 

3. Overall: 

   (F – COO)2Ca  +  2CO2(g) + 2H2O                 2F – COOH    + Ca
2+

  + 2HCO3
-
     (1-22) 

IX-Fibers vs. IX Resins: Regeneration Mechanism: The affinity sequence for 

WAC fibers with carboxylic functional groups can be described as follows: H
+
 >> Ca

2+
 > 

Na
+
. For this reason, hydrogen ions as provided by the carbonate system (eq. 1-20) can be 
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an effective regenerant for IX-fibers used in the removal of hardness. The above 

mentioned reactions (eqs.1-18-22) are equally applicable for commercial weak-acid 

cation exchange resins. However, the mechanism of sorption/desorption kinetics is 

intrinsically different between IX-fibers and commercial resin beads. That is why 

commercial ion exchange resins are not amenable to regeneration with carbon dioxide. In 

figure 1.16, the resin gradually shrinks during the regeneration progress through the 

exchange of Ca
2+

 and H
+
. This exchange would thereby decrease the intra-particle 

diffusivity in the peripheral regions of the resin. On the contrary in ion exchange fibers, 

the functional groups essentially reside on the surface and they are readily accessible. 

Thus, intra-particle diffusion is nearly absent and protonation of weak-acid functional 

groups do not retard the regeneration process.  

 

1.3.4 Development of Salt-free Water Softening Processes  

1.3.4.1 Use of Shallow Shell Technology (SST) Resin and Solid CO2 Regeneration 

Due to the limitation of IX fibers in regards to the commercial availability, price, 

and foreign dependence, the IX fibers cannot be easily applied to use at industrial and 

household scales. The new commercial available materials, SST, are a good candidate for 

this application. The SST IX resins have a unique physical configuration; the functional 

groups reside only on the outer shell resulting in reduced diffusion path lengths as shown 

in figure 1.17. 
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Figure 1.14  Laboratory set-up depicting the CO2 in water used in the hardness removal 

cycles of fiber and resin ion exchange materials (45). 

 

Figure 1.15 (A) Weak acid ion exchange fibers with carboxylate functional groups (B) 

Virgin fiber materials photographed at x10 magnification. (C) SEM photograph of a 

single fiber (x2000) (46). 
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Figure 1.16 (A) Schematic depicting the regeneration of weak-acid cation exchange 

beads. (B) Schematic depicting the regeneration of weak-acid cation exchange fibers.(45) 

 

 

Figure 1.17 Comparison of different structure of weak acid cation exchangers (A) 

Purolite C104, (B) Purolite SST 104, and (C) Fiban K4 

 Besides CO2, no other chemicals are required for the regeneration process. The 

waste regenerant streams do not contain any regulated chemicals or an unusually high 

C104 SST 104 Fibers 
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content of total dissolved solids (TDS). Rainwater, snowmelt, or any source of water with 

low alkalinity can be used for CO2 dissolution. SST ion exchange resins are 

commercially available at competitive prices, chemically stable, and mechanically 

durable. Covalently attached functional groups reside primarily on the outer shell of 

spherical beads thus offering excellent sorption/desorption kinetics. SST can be 

conveniently used in fixed bed units and hence do not pose any operational problems.   

1.3.4.2 Use of Weak Acid Cation (WAC) Exchange Resin and Biodegradable 

Organic Acid Regeneration 

 The hardness in water can be removed by using the weak acid cation (WAC) 

exchanger as shown in the equation 1-15. The traditional regeneration process can be 

achieved by using the inorganic acid solution such as 5% HCl. The advantage of using 

the WAC resin is that the resin has higher capacity than the SAC resin, and the resin has 

high affinity toward H
+
 ions. The regeneration can be achieved easily by using dilute 

acid. However, the WAC resins are not widely used for household applications because 

the processes need acid storage which raises concern about safety issues and handling 

such an aggressive chemical. In this study, the biodegradable organic acid such as diluted 

acetic acid or vinegar will be used for regeneration. Dilute acetic acid is commonly 

available, inexpensive, and the waste generated from such a process is a minimum due to 

the favorable thermodynamics and biodegradability. 
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1.3.4.3 Simultaneous Hardness and Ligands Removal using Strong Acid Cation 

Exchange Resin in Polyvalent (Al
3+

) Form 

 Traditional ion exchange hardness removal processes use a strong acid cation 

(SAC) exchanger in the sodium form. Calcium, magnesium, and other polyvalent cations 

corresponding to the hardness are exchanged on an equivalent basis with sodium in the 

resin phase as presented in the equation 1-14. Exhausted resins are typically regenerated 

with brine solution of 10-12% sodium chloride to achieve selectivity reversal in favor of 

sodium selectivity. This process is inefficient and the requirement of high concentrations 

of brine solution results in discharge of nearly 60-80% of the brine used. These 

traditional cation exchange water softeners still have a salt discharge problem due to 

unfavorable equilibrium i.e., 3-8 equivalents of Na
+
 are required to desorb one equivalent 

of hardness.  

 The novel salt-free water softening process replaces NaCl as the regenerant with a 

soluble salt of polyvalent cations such as AlCl3. The strong acid cation exchangers are 

used in a polyvalent form, such as Al
3+

 or others, instead of Na
+
. Since the resin bed is 

not in the Na
+
 form at the start of the service cycle, treated water has no sodium content 

compared to that for the conventional ion exchange softening process. Aluminum ions 

immediately precipitate upon exchange with hardness i.e., Ca
2+

, Mg
2+

 and are not present 

in the treated water. The regeneration can be carried out at low concentrations of the 

regenerant (as low as 0.5%) at near-stoichiometric efficiency. Along with hardness, the 

process also removes fluoride or other ligands such as phosphate and arsenic when the 

bed is initially in the Al
3+

 form or contains precipitated aluminum (hydr)oxide. 
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1.4 Premise of the Study 

The study on the development of heterogeneous polymeric ion exchangers aims to 

engineer the traditional homogeneous ion exchangers into novel, heterogeneous hybrid 

ion exchangers. These heterogeneous ion exchangers are necessary for specific 

environmental processes for which the traditional ion exchanges are ineffective. The 

scope of research is shown in figure 1.18. The overall focus of this research is primarily 

on the development of HAIX-Zr for arsenic and fluoride removal. The other findings 

such as zinc removal and the development of environmentally benign hardness processes 

are present in the study for validation of the new processes and may not be fully 

investigated in every aspect. 

1.4.1 Development of HIX-Zr for Selective Removal of Arsenic, Fluoride and Zinc 

 The goal of this study is to investigate enhanced selectivity for anionic ligands 

(i.e., arsenate and fluoride) and heavy metals (i.e. zinc) sorption on the hydrated Zr(IV) 

oxide (HZO) nanoparticles which are irreversibly dispersed into the polymeric ion 

exchanger. As mentioned previously, the traditional ion exchanger cannot selectively 

remove these trace contaminants in the presence of a high concentration of inevitably 

present background innocuous ions.  The study explores the use of HZO nanoparticles for 

selective adsorption of trace contaminants due to the Lewis acid-base or metal-ligand 

interaction. Unlike the previously used hydrated Fe(III) oxide (HFO), the HZO 

nanoparticles offer more chemical stability than HFO particles, which make HZO 

nanoparticles safe to dispose of into the landfill without toxic leaching.  
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 To develop the preparation techniques that use inexpensive startup materials. The 

resulting material should exhibit a high amount of metal oxide in the polymer ion 

exchanger supports, have small sized HZO particles, which are uniformly distributed in 

the material, and minimum loss of zirconium compounds during the regeneration. 

 To quantify the maximum sorption capacity of the material (isotherm) and investigate 

the effect of the feed pH and competing anions such as sulfate, silica, phosphate on the 

uptake capacity of the HAIX-Zr.  

 To investigate the performance of the hybrid nanosorbents for arsenic, fluoride, and 

zinc in terms of sorption/desorption in the column runs, removal capacity, and 

regeneration efficiency. Commercially available iron-based nanosorbents (LayneRT) and 

activated alumina (AA) will be used for comparison. 

 To study the sorption kinetics of hybrid sorbents, identify the controlling-kinetic 

mechanism of As(V) and F
-
 sorption on to HAIX-Zr ,and estimate the effective intra-

particle diffusivity in order to understand the sorption/desorption mechanism. 

1.4.2  Development of Salt-Free Water Softening Process  

The main goal of this salt-free water softening process is to validate the three new 

alternatives for hardness removal processes by using heterogeneous cation exchange 

resins. All three processes should generate a less aggressive waste stream from the 

regeneration process. Each process is be evaluated by the effectiveness of the softening 

process in terms of (1) hardness removal capacity and simplicity of operation, (2) 

regeneration efficiency (i.e., percent of hardness recovery and amount of regeneration 
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solution usage), and (3) the sustainability of the systems (i.e., ability to reuse in many 

cycles, toxic waste generation).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18 Scope of research on the topic of heterogeneous polymeric ion exchangers 

Development of Hybrid Polymeric/Inorganic Ion Exchangers 

 

Hybrid Ion-Exchanger Supported Hydrated Zr(IV) Oxide (HZO) 

Nanoparticles: “HIX-Zr” 

 Synthesis of HIX-Zr and Characterization (Chapter III)  

 Hybrid Anion Exchanger Supported HZO or HAIX-Zr 

o Arsenic Removal by HAIX-Zr (Chapter IV) 

o Fluoride Removal by HAIX-Zr (Chapter V) 

 Hybrid Cation Exchange Fibers Supported HZO or “HAIXF-

Zr” and CO2 Regeneration 

o Zinc Removal by HCIXF-Zr (Chapter VI) 

 

 

 

 

Salt-Free Water Softening Process Using Heterogeneous Cation 

Exchanger and Environmentally Benign Regeneration         

(Chapter VII)  

 Shallow Shell Technology (SST) Resin and Solid CO2 

Regeneration 

 Weak Acid Cation (WAC) Exchanger with Biodegradable 

Organic Acid Regeneration 

 Simultaneous Hardness and Fluoride Removal using 

Heterogeneous Strong Acid Cation (SAC) Exchanger in Al
3+

 

forms  

 

 

Introduction on Ion Exchanger (Chapter I) 

Materials and Experimental Procedures (Chapter II) 

 

 

 

Conclusion (Chapter VIII) 
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CHAPTER 2 

MATERIALS AND EXPERIMENTAL PROCEDURES 

2.1 Materials and Chemicals 

All chemicals used in this study are reagent grade purchased mainly from Fisher 

Scientific and Sigma Aldrich. Water used throughout the study is deionized (DI) water, 

which was purified by a two stage process (reverse osmosis system and mixed-bed of 

cation and anion exchanger cartridge). The DI water was used throughout the study for 

preparation of simulated influent water for arsenic, fluoride, zinc, and hardness (i.e. Ca
2+

) 

removal. Materials and chemicals used for both the hybrid polymeric/inorganic 

nanosorbent and the salt-free softening processes are listed in the following sections.  

2.1.1 Ion Exchange Resins and Fibers 

 The primary ion exchange resins were obtained mainly from Purolite (PA), Rohm 

and Hass (Dow chemical company), and Ion Exchange India.  

 The main resins used for making hybrid zirconium oxide based nanosorbents 

are Purolite A500P, A500, A830, A400, and INDION 830. These include the strong acid 

resin Purolite C-145 and polymer beads without functional groups, Amberlite XAD4. 

The salient properties are summarized in table 2.1.  

 Strong base cation exchange fibers (Fiban K1) obtained from the Institute of 

Physical Organic Chemistry of National Academy of Sciences of Belarus were used for 

preparing hybrid cation exchange fibers impregnated with hydrated Zr(IV) oxide 
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nanoparticles or referred as HCIXF-Zr. Table 2.2 is a list of properties of ion exchange 

fibers and resins used for making HCIXF-Zr and HCIX-Zr for transition metals (i.e. zinc) 

removal. 

 For development of the salt-free water softening process, several cation 

exchange resins have been used for validation of the concept. The shallow shell 

technology weak acid type cation exchange resin (SST 104) and traditional weak acid 

cation exchange resins Purolite C104 and C106 were used for comparison of the 

performance of hardness removal and regeneration efficiency by using acetic acid as the  

regeneration solution. The properties of the materials used for the salt-free water 

softening process are summarized in table 2.3. Purolite C145, macroporous strong acid 

cation exchange resin, is used for the simultaneous fluoride and hardness removal 

process. 

2.1.2 Zirconium Compounds and Other Chemicals 

Zirconium oxychloride (ZrOCl2.8H2O) and TiCl4 were purchased from Sigma 

Aldrich. Zirconium oxides (M 302), zirconium oxychloride 36% crystal were obtained 

from MEL chemical (Flemington, NJ). Zirconium oxychloride was also obtained as a test 

sample from Southern Ionic (West Point, MS). Other chemicals used to prepare feed 

solutions for experimental batch and column runs studies are reagent grade namely, 

Na2CO3, NaHCO3, CaCl22H2O, Mg(NO)36H2O, Na2SO4, ZnCl2, Na2HPO4, AlCl3.6H2O, 

Al2(SO4)316H2O, Na2SiO39H2O, Zn(SO4)7H2O purchased from Sigma Aldrich, Fisher 

Scientific, and other suppliers. Arsenate, As(V), was prepared from sodium arsenate, 

dibasic heptahydrate (Na2HAsO47H2O); arsenite or As(III) was prepared from sodium 

meta arsenite(NaAsO2). Fluoride solution was prepared from sodium fluoride (NaF).  
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              Table 2.1 Salient property of ion exchange resins used for synthesis of zirconium oxide based hybrid nanosorbents 

 

        

Ion exchange Resins Matrix Functional group Capacity 

Purolite A500P 

(Anion Exchanger) 

Macroporous Polystyrene Crosslinked 

with Divinylbenzene  

Strong Base Type I  

Quaternary Ammonium  

0.8 meq/ml 

(Cl
-
 from) 

Purolite A500 

(Anion Exchanger) 

Macroporous Polystyrene Crosslinked 

with Divinylbenzene 

Strong Base Type I  

Quaternary Ammonium 

1.15 meq/ml 

(Cl
-
 from) 

Purolite A830 

(Anion Exchanger) 

Macroporous Polyacrylic Crosslinked 

with Divinylbenzene 

Weak Base 

Complex Amine 

2.75 meq/ml 

(free base) 

DOWEX TAN-1 

(Anion Exchanger) 

Macroporous Polyacrylic Crosslinked 

with Divinylbenzene 

Strong Base Type I  

Quaternary Ammonium 

0.7 meq/ml 

(Cl
-
 form) 

Ion Exchange India 

Indion 830 (Anion Exchanger) 

Macroporous Polystyrene Crosslinked 

with divinylbenzene  

Strong Base Type I 

Quaternary Ammonium  

0.95 meq/ml 

(Cl
-
 from) 

Rohm and Hass 

Amberlite XAD4  

Macroreticular Crosslinked Aromatic 

Polymer 

n/a n/a 
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              Table 2.2 Property of polymeric ion exchange fibers used for HCIXF-Zr for removal of zinc and other transition metals 

Ion exchange Resins Matrix Functional group Capacity 

Fiban K1 

(Cation Exchange Fibers) 

Polypropylene fiber with graft copolymer 

of styrene and divinylbenzene 

Strong Acid 

Sulfonic acid 

3 meq/g 

(H
+
 from) 

Purolite C145 

(Cation Exchanger Resin ) 

Macroporous Polyacrylic Crosslinked 

with Divinylbenzene 

Strong Acid 

Sulfonic acid 

1.50 meq/ml or 3 

meq/g (Na
+
 form) 

 

              Table 2.3 Property of polymeric cation exchange resin and fibers used for salt-free water softening process 

Ion exchange Resins Matrix Functional group Capacity 

Purolite C104 Gel Polyacrylic Crosslinked with DVB Weak Acid, (Carboxylic) 3.8 meq/ml, (H
+
 from) 

Purolite SST104 Porous Crosslinked Polyacrylic  Weak Acid, (Carboxylic) 3.3 meq/ml, (H
+
 from) 

Purolite C145 

(Cation Exchanger) 

Macroporous Polyacrylic Crosslinked 

with Divinylbenzene 

Strong Acid 

Sulfonic acid 

1.50 meq/ml  

(Na
+
 form) 



 

51 
 

2.2 Analytical Methods 

2.2.1 Dissolve Metals and Metalloids 

 Dissolved metals in part per million ranges (ppm) (e.g., Na
+
, Ca

2+
, Mg

2+
, Zn

2+
) 

were analyzed by using a Perkin Elmer AAnalyst 200 Atomic Absorption 

Spectrophotometer (AAS) with flame atomizer using hollow cathode lamps (HCL) at the 

appropriate wavelength. For the metalloids, i.e. arsenic, a Perkin Elmer AAnalyst 600 

Graphite Furnace Atomic Absorption spectrophotometry (GFAA) with electrodeless 

discharge lamps (EDL) at wavelength of 193.7 nm was used to analyze arsenic at very 

low concentrations usually at less than 100 parts per billion (ppb) levels. Each sample 

was injected with a palladium/magnesium matrix modifier using auto sampler AS800. 

Note that a palladium matrix modifier helps to correct for general chemical interferences 

(47). The standard curve was prepared by using 5 standard arsenic solutions in the range 

0-100 ppb purchased from Perkin Elmer and the correlation coefficient (R
2
) should be not 

less than 0.995 and two replicates of reading each sample was set in the measuring 

protocol.  

 As(III) concentration was analyzed by using the method developed by Ficklin 

(48). First, the sample was acidified immediately with concentrated hydrochloric acid to a 

pH of approximately 4. The 5.0 ml of acidified sample was passed through the mini 

column (10 cm height and 7 mm in diameter) containing a strong-base anion exchange 

resin in the chloride form (Bio-Rad AG 1-X8). At acidic pH, the effluent from the mini-

column contains only As(III). The difference between the sample before and after passing 

through the column is As(V). 
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2.2.2 Anionic Species 

Anions (i.e. Cl
-
 and SO4

2-
) were analyzed using a Dionex Ion Chromatography 

(IC) model DX-120 IC with High Performance Ion Chromatography (HPIC) AS 14 

column, and a 4 mm separator column. The eluents contain a solution of 3.5 mM sodium 

carbonate and 1 mM sodium bicarbonate with a flow rate of 1.2 ml/min. The signal 

response and peak position were calculated using an Agilent 3395 integrator. A 

calibration curve was developed using 5 standards prepared from analytical grade 

standard from Fisher Scientific. 

2.2.3 Fluoride and Aluminum Analysis 

 Fluoride and aluminum concentrations were carried out by using a Hach UV-Vis 

spectrophotometer (model DR5000). Fluoride ion was analyzed by using SPADNS 2 

reagent at a range of 0.02-2 mg/L F
-
 . Aluminum at concentration ranges 0.002-0.25 

mg/L Al was analyzed using the Eriochrome Cyanine R reagent set by Hach. The results 

have to be corrected with fluoride concentration in the solution according to the manual. 

Both fluoride and aluminum analysis by using Hach spectrophotometer, which were 

developed from Standard Methods for Examination of Water and Wastewater (49). 
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2.2.4 Zirconium and Silica Analysis 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) from a 

Perkin Elmer model Optima 2000 DV was used for zirconium and silica analysis. Radial 

and axial plasma view modes were used for trace concentrations (less than 1 ppm) and 

higher concentrations, respectively. The plasma aerosol type was wet with a sample flow 

rate of 1.5 mL/min and flush time of 10 seconds. Calibration standards were prepared 

from zirconium standard solution (1 mg/ml of Zr in 5% HF) purchased from Acros 

organic. The acid blank 5% (V/V) nitric acid from Ricca chemical was used as a blank 

solution. A calibration curve was plotted using 5 standards covering the range of samples 

with correlation coefficient of determination (R
2
) no less than 0.999.  

2.2.5 X-Ray Diffraction (XRD) 

Crystalline materials in this study were identified using a desktop X-ray 

diffractometer (XRD) from Rigaku MiniFlex II. X-ray diffraction data are radiation 

counts reflected from different planes within the different mineral species. The intensity 

of each reflection is a function of the composition and crystallography of the mineral 

species. The samples were ground into powder and place in the sample holder.  

2.2.6 Scanning Electron Microscopy with Energy Dispersive X-ray (SEM/EDX)  

SEM and EDX at Lehigh University Laboratory: Scanning electron 

microscope (SEM) images were obtained using an HITACHI Model 4300 combined with 

energy dispersive X-ray spectrometry (EDX) analysis to identify elemental compositions 
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of different samples. A conductive coating of iridium was deposited on each sample by a 

sputter coater to reduce surface charging before SEM analysis. 

The SEM and TEM from Singapore Laboratory: For SEM, a JEOL JSM-

6360A equipped with EDX system JED-2300 was operated at voltages in the range of 

0.5-30 kV. The beads were embedded in a mixture of epoxy resin and hardener with a 

ratio of 10:1 to enhance the solidification process. The specimen disc was held parallel to 

the polishing surface to produce uniformly thin specimens. A conductive layer of 

platinum was deposited on the sample by a sputter coater to reduce surface charging 

during SEM analysis. A cross section of polymeric beads was prepared by embedding the 

beads into epoxy resin, which was then solidified by heating on a laboratory hot plate and 

subsequently ground carefully using a Gatan disc grinder in order to obtain the cross-

sectional view.  

For TEM, JEOL JEM-2010F equipped with an EDX system was setup at an 

acceleration voltage of 200 kV. A TEM image was captured instantaneously once 

selected area on sample has been identified to minimize the potential sample damage by 

the electron beam. The polymeric beads were carefully ground to a thickness suitable for 

observation under TEM. The samples were then dispersed in ethanol with ultra-

sonication for 10-20 min, and the droplet was a dropped on a copper grid coated with 

carbon film. 
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2.3 Experimental Procedures 

2.3.1 Batch Equilibrium Test and Sorption Isotherm 

 All batch tests were conducted in a five chamber gyratory shaker, which was 

designed and built by the Environmental Engineering group at Lehigh University as 

illustrated in figure 2.1. The rotary shaker containing five chambers with a fixed speed 

motor (30 rpm) is the main equipment used for many batch studies including the material 

capacity screening test, the isotherm study, the effect of competing ions, the effect of pH, 

leaching test, etc. 

 Batch Equilibrium Test: The performance of each synthesized hybrid 

nanosorbent was compared by the simple test called a batch equilibrium test. In order to 

compare the removal capacity (q) from different types of sorbents or from different 

preparation batches, the sorbent mass m (mg) was added into the contaminant solution 

volume V (L) with initial concentration C0 mg/L. Samples were shaken for three-five 

days in order to ensure equilibrium. The equilibrium capacity can be calculated from the 

mass balance equation (2-1). This technique is also applied for determination for the 

effect of pH and competing ions. 

          
                        

     
    (2-1) 

Sorption Isotherm: The sorption of arsenate and fluoride onto the different 

adsorbents can be modeled by assuming the equilibrium partitioning of contaminants 
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between the aqueous phase and solid (adsorbent) phase. The equilibrium capacity, q, can 

be obtained by using equation 2-1.  

 

Figure 2.1 Rotary shaker for material preparation and batch test 

 

2.3.2 Fixed-bed Column Runs 

 Fixed-bed column runs for all experiments were performed using an epoxy coated 

glass column (7 or 11 mm diameter) (Ace Glass), a constant flow pump (Fluid Metering) 

and a fraction collector (ELDEX). To avoid premature leakage due to the wall effects 

(50)  the ratio of column diameter and sorbent particles diameters was maintained at more 

than 20:1.  The influent was pumped through the column in a down-flow direction.  

Superficial liquid velocity (SLV) and empty bed contact time (EBCT) were recorded for 

each run. Figure 2.2 shows a schematic representation of the experimental set up along 

with a photograph of the actual setup. During fixed-bed column experiments with HAIX-

Zr, interruption tests were performed to identify the rate limiting step of the process. The 

run was deliberately stopped for 24 hours. When the flow rate was resumed, the effluent 
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samples were analyzed for pH and contaminant concentrations for comparison with the 

results immediately before the interruption.   

 Typically column studies are plotted in normalized fashion, C/C0 vs. bed volumes 

(BV). C of both C and C0 relates to concentration, C0 is equivalent to the initial 

concentration. Most graphs include the feed, experimental information, and salient 

hydrodynamic properties such as Superficial Liquid Velocity (SLV) and Empty Bed 

Contact Time (EBCT). 

 BV = Milliliters of influent solution passed through the column/ milliliters of solution 

displaced by sorbents material.  

 SLV (m/hr.) = (Flow rate (m
3
/hr))/(column diameter (m

2
)) 

 EBCT (hr.) = (SLV (m/hr)) / (length of sorbent (bed) within the column (m))  
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Figure 2.2 An illustration of the set up for the fixed bed column experiment 
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2.3.3 Kinetic Tests 

 The batch kinetic studies were carried out to determine the intra-particle diffusion 

rates (diffusivity coefficient). Figure 2.3 illustrates the schematic of the kinetic test setup 

along with the actual setup. This apparatus was originally developed by Kressman (51) 

and mentioned by Helfferich (5) for the measurement of ion-exchange rates. The kinetic 

experiments for arsenate and fluoride uptake by HAIX-Zr were conducted with a constant 

background sulfate, chloride and bicarbonate concentrations of 100 mg/L. The initial 

arsenate or As(V) and fluoride concentrations were 100 µg/L and 10 mg/L, respectively. 

The solution pH was 7.5 for arsenate and 5.5 for fluoride during the course of the 

kinetic tests. The hybrid materials (HAIX-Zr) were sieved to 500 µm using USA 

Standard Testing Sieves (Fisher Scientific Company). The sorbent was placed inside a 

polypropylene-membrane (fine mesh) cage. The stirrer was immersed and started in a 

solution of the substance of interest. The sorbent particles placed inside the apparatus 

were subjected to a rapid circulating flow of solution. The fresh solution was passed in 

from the bottom of the case, contacted with the sorbent, and forced out radially as 

explained in the drawing of the stirrer assembly. The vigorous agitation was maintained 

by a motor driven stirrer at 1,500 rpm. The diffusional resistances in the liquid film were 

absent under this condition. At different time intervals, a small volume of sample was 

collected from the solution and analyzed. The fraction of arsenate or fluoride (F) versus 

time was plotted and diffusivity coefficients ( effD ) were obtained by fitting with a 

mathematical model. The mathematical model and the experimental results are discussed 

in Chapter 4. 



 

60 
 

 

 

 

 

Figure 2.3 Schematic of the batch kinetic test apparatus and stirrer assembly 
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CHAPTER 3 

HAIX-Zr SYNTHESIS & CHRACTERIZATION 

 The goal is to develop arsenic and fluoride selective sorbents which are 

environmentally benign, high capacity, reusable, and dispose of safely into a landfill. The 

synthesis processes should be simple (i.e., be able to prepare close to the affected area), 

inexpensive, locally available, and generate as little waste as possible. The development 

of hybrid anion exchanger supported hydrated Zr(IV) oxide nanoparticles or HAIX-Zr 

are discussed with respect to the following aspects: 

1. Previous development of hybrid ion exchangers using hydrated Fe(III) oxide (HFO).  

2. Investigation of different preparation methods (batch vs. column method), type of 

parent ion exchangers, different formulas of startup zirconium solution, types of 

precipitation agents, preparation order, and various techniques.  

3. Results and discussion of arsenic and fluoride removal using (1) HAIX-Zr prepared 

from reagent grade ZrOCl2.8H2O, (2) HAIX-Ti prepared from reagent grade TiCl4, (3) 

HAIX-Zr from industrial grade inexpensive zirconium oxide (ZrO2) by batch and column 

methods. 

4. Determination of zirconium contents in the HAIX-Zr and characterization of the 

prepared hybrid sorbents by using SEM/EDX and HR-TEM. The details of the 

instruments are provided in the Chapter 2.  
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 The most suitable materials which were prepared from inexpensive industrial 

grade zirconium oxide by a batch method were further investigated for arsenic and 

fluoride removal. The results and discussion are mentioned in chapters 4 and 5. 

3.1 Previous Development of Hybrid Ion Exchanger (HIX)  

  

A: Arsenic removal using a polymeric/inorganic hybrid sorbent, published in Water 

Research Journal. (15) 

B: Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role 

of Donnan membrane effect, Published in Environmental Science& Technology Journal 

(29)   

 

Figure 3.1 Report numbers of citation indexed within the Web of Science (access on Jan 

2013) 

  

 The polymeric ion exchangers supported metal oxide nanoparticle (HIX) have 

been developed at Lehigh University and published in the scientific papers since 2003. 

The HIX can remove target transition metals and anionic ligands effectively. The HIX 

can be tailored to specifically remove either transition metals, anionic ligands, or both 

A B 
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types simultaneously by using the Donnan membrane effect from the parent ion 

exchangers. The HIX nanosorbents can also be efficient for regeneration and be reused 

for many cycles of sorption/desorption yet exhibit strong mechanical strength and 

attrition resistance. (15, 21, 29, 37, 52, 53)The report as shown in the figure 3.1 reflects 

citations to source items indexed within the Web of Science. 

 

3.1.1 Hybrid Cation Exchangers Support Fe(III) Oxide Nanoparticles: HCIX-Fe 

 These materials were developed in the Environmental Engineering Laboratory at 

Lehigh University by Demarco, Cumbal, Greenleaf, Leun with the supervision of 

professor SenGupta, and scientific papers have been published since 2003 (15, 29, 37). 

The preparation of the hybrid cation exchanger supported hydrated ferric oxide(HFO) 

nanoparticles or HCIX-Fe consisted of the following three steps as shown in figure 3.2: 

first, loading of Fe(III) onto the sulfonic acid sites of the cation exchanger by passing 4% 

FeCl3 solution at an approximate pH of 2.0; second, desorption of Fe(III) and 

simultaneous precipitation of iron(III) hydroxides within the gel phase of the exchanger 

through passage of a solution containing both NaCl and NaOH, each at 5% w/v 

concentration; and third, rinsing and washing with a 50/50 ethanol-water solution 

followed by a mild thermal treatment (50-60 °C) for 60 min.  Use of ethanol lowered the 

dielectric constant of water and supposedly enhanced the agglomeration of submicron 

particles through suppression of surface charges. 
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Figures 3.2 The major steps of the process for HCIX-Fe synthesis (15) 

 

 

 



 

65 
 

3.1.2 Hybrid Anion Exchanger Supported Fe(III) Oxide Nanoparticle : HAIX-Fe  

 Unlike cation exchangers, anion exchangers have fixed positively charged 

functional groups. Thus forming hydrated Fe(III) oxides within an anion exchange resin 

poses a major challenge due to positively charged quaternary ammonium functional 

groups.  The techniques for doping HFO nanoparticles onto the anion exchangers were 

developed and patented in 2007 (54). From the patent, the HFO particles can be dispersed 

in anion exchangers by a series of the following steps:  

 Permanganate anion (MnO4
-
) is loaded onto an anion exchange resin with 

quaternary ammonium functional groups (Purolite A500P). The loading of the resin with 

permanganate anion is carried out by passing potassium permanganate solution (500 

mg/L KMnO4) through the bed to achieve the following reaction:                                                                            

            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅         
                  

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
         (3-1) 

 

 The second step is simultaneous permanganate desorption, Fe(II) oxidation, and 

HFO formation within the anion exchanger. The permanganate loaded anion exchanger 

from the first step is contacted with 5% ferrous sulfate solution.  The MnO4
-
 is replaced 

by sulfate, MnO4
2-

 is reduced to MnO2 (s), the Fe
2+

 is oxidized to Fe
3+

, and finally, the 

Fe(OH)3(s) is precipitated within the anion exchange beads with the following reaction: 

MnO4
-
 desorption:  

              
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

    
     [         ]     

  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (3-2)  

 

Fe(II) oxidation and ferric hydroxide (Fe(OH)3) precipitation: 
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                           (3-3) 

                       (3-4) 

                                (3-5) 

Overall:       
                                         (3-6) 

 

 The third step is an acetone wash and drying.  The overall procedures are summarized 

and shown in the figure 3.3. 

 

 

Figure 3.3 Schematic diagrams illustrating first and second steps in the preparation of 

HAIX-Fe (54) 
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3.2 Synthesis of Hybrid Polymeric Ion Exchanger Supported Hydrated Zr(IV) 

Oxide (HZO) Nanoparticles 

 Unlike the HFO, the HZO nanoparticles offer several unique characteristics that 

make them safer to dispose of in landfills and they have higher selectivity toward fluoride 

than the iron based nanosorbents developed earlier in U.S. Pat. No. 7,7291,578 B2.(54) 

HZO particles are very stable over wide pH ranges in both oxidizing and reducing 

environments and therefore it becomes safe to dispose the used materials into landfills. 

Moreover, HZO can remove fluoride effectively while HFO based nanosorbents have 

very low affinity toward fluoride.  

 The general procedure for preparation of hybrid anion exchange resin 

impregnated with hydrated Zr(IV) oxide can be prepared by two different methods: batch 

and column methods. Note that the batch method is the first developed procedure to 

synthesize the hybrid materials because this method is simple and can be prepared even 

in remote locations. However, this method has a longer preparation time, consumes more 

chemicals, and generates more waste sludge than the column method. In general, batch 

preparation mode requires at least 2 repetitive cycles and usually takes nearly a week for 

preparation. The column method, on the other hand, was developed later, usually takes 

only 1 cycle and uses only 3-5 hours for preparation. Moreover, the chemical requirement 

and the waste generation are much less than the batch method.   

 The present study aims to develop methods to impregnate anion exchange resins 

with HZO nanoparticles. The synthesis methods for producing HAIX-Zr are modified 

from the previous method as described in section 3.1 and shown in figure 3.4. There are 
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multiple variables that affect the efficiency of the synthesized hybrid material. The 

following alternatives were tried and the resulting materials were validated for arsenic 

and fluoride removal efficiency by the batch tests as mentioned in the section 3.3-3.6: 

 Choice of various types of metals including the preparation of metal solutions: 

o 5-15% of high purity reagent grade of zirconium oxychloride (ZrOCl28H2O) 

from Sigma-Aldrich,  dissolved in either  DI water or in a mixed solution of DI and 

methanol at 50:50 ratio 

o 10% of reagent grade titanium tetrachloride (TiCl4) from Fisher Scientific, 

dissolved in either 10% of HCl solution or a mixed solution of 20% of HCl and methanol 

at 50:50 ratio 

o 15% of zirconium oxide (ZrO2) from India and MEL Chemicals (Flemington, 

NJ), dissolved in either 10% H2SO4 or a mixed solution of 20% H2SO4 and methanol  at 

50:50 ratio 

 Choice of polymeric ion exchangers:  

o Macroporous anion exchangers: Purolite A500P, Purolite A830, DOWEX 

TAN1, Indion 830 (Ion Exchange, India) 

o Gel-type anion exchangers: Purolite A400 

o Polymeric adsorbent without functional group: Amberlite XAD4 

o Polymeric cation exchanger resin and fibers: Purolite C145 and Fiban K1 

 Choice of precipitation reagents: NaOH 5-20% or 28% NH4OH 

 Order of contacting polymeric anion exchangers with the solution (zirconium & 

alkaline solutions): 
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o The anion exchangers in the Cl
-
 form are used to contact with zirconium 

solution and then contact with alkaline solution 

o The anion exchangers in the Cl
-
 form are converted into OH

-
 form and then 

contacted with zirconium solutions (do not need to contact with alkaline solution again) 

3.2.1 Batch Preparation Method 

 Method #1: As the first step, 50 mL of zirconium solution is loaded onto 25 

grams of anion exchange resin with quaternary ammonium functional groups in the 

chloride form (       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), where R and the overbar represent the polymer matrix of the 

anion exchanger and ion exchanger phase, respectively. The loading processes are carried 

out by shaking the mixed ion exchange resin and zirconium solution in the rotary shaker 

for 3 hours. The second step is impregnation of hydrated zirconium oxide (HZO) 

nanoparticles into the matrix of the resin. During this step, the decanted resin from the 

first step is brought into contact with 50 mL of alkaline solution and shaken for 1 hour. 

The third step is washing and drying. The resulting HZO loaded resin was washed with 

tap water and air dried at room temperature for 24 hours. These whole process was 

repeated for 3 cycles to achieve greater Zr(IV) loading.  

 Method #2: Unlike method #1, the startup anion exchange resin with quaternary 

ammonium functional groups in the chloride form (       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) is converted into the 

hydroxide form (       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) by mixing 25 grams of the anion exchange resin in the 

chloride form with the 5% NaOH solution for 1 hour, and then washed with DI water 

until the pH goes down to neutral pH. The anion exchanger in the hydroxide form was 

contacted with 50 mL of zirconium solution and shaken for 3 hours. During this step, 

HZO is precipitated onto the resin matrix. The resulting HZO loaded resin is washed with 
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tap water and air dried at room temperature for 24 hours. The whole process was repeated 

for 3 cycles to achieve greater Zr(IV) loading. 

3.2.2 Column Preparation Method 

 Method #1: 15 grams of anion exchange resin in the chloride form were packed 

into a glass column (11 mm diameter) and 30 mL of zirconium solution was pumped 

down flow through the resin bed with a very low flow rate (1 mL/min) for approximately 

1 hour. The zirconium solution was recycled within the container. Then all of the liquid 

in the column was vacuumed, and the new alkaline solution was pumped up-flow at the 

same volume and flow rate. After 1 hour, the resulting hybrid materials were washed in-

situ by rinsing with DI water for 15 bed volumes. The resin was removed from the 

column and air dried for 24 hours.  

 Method#2: The experimental setup for this method is the same as mentioned in 

method #1. The commercially available anion exchange resin in the chloride form was 

packed inside the column. The 5% of NaOH was used for converting the resin into the 

hydroxide form by passing 30 mL down-flow into the 15 grams of resin at a flow rate of 

1 mL/min. The solution inside the column was removed by vacuum followed by a short 

rinse with 10 BV of DI water. After removing all of the liquid inside the column, the 

zirconium solution was pumped in contact with the resin in the up-flow direction and all 

30 mL of zirconium were recycled within the column around 1 hour. The column was 

stopped and all of the liquid was drained out of the column, followed by rinsing with DI 

water for 15 bed volumes. The material was removed from the column and air-dried for 

24 hours. 
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Batch Preparation Method#1 Batch Preparation Method#2 

 

  

 

 

Figure 3.4 HIX-Zr synthesis by batch (top) and column methods (bottom) 

Waste solution 
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3.3 Arsenic and Fluoride Removal using HAIX-Zr Prepared from 

Reagent Grade ZrOCl2 8H2O by Batch Method #1 

 Zirconium oxychloride purchased from Sigma-Aldrich was the first zirconium 

salt for producing the hybrid zirconium based adsorbent. These materials were prepared 

by the batch method as mentioned in the section 3.2.1. The 5% of zirconium oxychloride 

solution was prepared by adding zirconium salt into a mixed solution of DI water and 

methanol at 50:50 ratios. The goal of this study was to evaluate several factors which 

affect the efficiency of the hybrid material for arsenic and fluoride removal. Three 

different polymeric sorbents were used in this experiment: gel type strong base anion 

exchanger (Purolite A400), macroporous strong base cation exchanger (Purolite A500P), 

and the polymeric sorbent without functional groups (Amberlite XAD4). The shaking 

times for both zirconium loading and hydrated zirconium oxide (HZO) precipitation steps 

were 6 hours. Two different precipitating agents were applied: 20% NaOH and 28% 

NH4OH. Other procedures are followed such as the batch method #1, as mentioned in the 

section 3.2.1. 

 The resulting materials are tested for arsenic and fluoride sorption capacity by the 

batch equilibrium test. 100 mg of hybrid adsorbents were added into 100 mL of test 

solutions which contain either arsenic 160 µg As(V)/L or fluoride 22 mg F
-
/L along with 

background ions: SO4
2-

, Cl
-
, HCO3

-
 at 100 mg/L. The commercially available iron based 

hybrid adsorbent “ArsenX” was used for comparison of arsenic removal while activated 

alumina (AA) was used for comparison of the fluoride removal. The results of arsenic 

and fluoride removal capacities were obtained from the mass balance equation: 



 

73 
 

        
                        

     
       (3-7) 

where q (mg/g) is the contaminant removal capacity, m (mg) is the mass of the sorbent, V 

(L) is the volume of test solution with initial concentration C0 (mg/L). Ce (mg/L) is the 

equilibrium concentration after shaking the samples for three-five days in order to ensure 

equilibrium.  

 

Figure 3.5 Batch equilibrium test for arsenic removal: CAs0= 158.8 ppb, background 

anion of SO4
2-

, HCO3
2-

, Cl
-
 = 100 mg/L, mass of resin 0.1 g, volume 100 mL, pH 7.0, 

shaking time 5 days    

 From figure 3.5, we found that zirconium oxychloride can be used as startup 

zirconium for hybrid nanosorbent preparation. Macroporous strong based anion 
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exchanger (Purolite A500P) and gel type I strong base anion exchanger (Purolite A400) 

can also give high arsenic removal capacity. In contrast, Amberlite XAD4 which is a 

polymeric adsorbent without functional groups gives the lowest arsenic removal capacity. 

Precipitation with sodium hydroxide seems to give higher capacity than ammonium 

hydroxide and the number of loading cycles can enhance the arsenic removal capacity.  

 

Figure 3.6 Batch equilibrium test for fluoride removal: CF0= 22 mg/L, background anion 

of SO4
2-

, HCO3
2-

, Cl
-
 = 100 mg/L, mass of resin 0.2 g, volume 100 mL, pH 5.0, shaking 

time 5 days    

 Figure3.6 presents fluoride removal capacity from different prepared hybrid 

nanosorbents. Precipitation with ammonium hydroxide solution is found to give a 

significantly higher fluoride capacity than using sodium hydroxide. Purolite A500P is 
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again found to be the most suitable support material compared to A400 and XAD4. The 

number of loading cycles is also a minor impact the removal capacity. 

 

3.4 Arsenic Removal using the HAIX-Ti Prepared from Titanium Tetra-

Chloride (TiCl4) by Batch Method#1 

 Titanium oxide particles are also known for their high affinity toward arsenic 

removal. In this study, titanium oxide based hybrid nanosorbents were  synthesized 

by using a reagent grade titanium tetrachloride (TiCl4) from Fisher Scientific as a startup 

reagent. The TiCl4 is an unusual metal halide which is highly volatile. When TiCl4 

contacts humid air, it will form a cloudy smoke of TiO2 and hydrogen chloride (HCl). In 

order to prepare the titanium solution, 10% (v/v) of TiCl4 solution was prepared by 

adding liquid TiCl4 into concentrated (30%) HCl acid. Then the titanium solution 

dissolved in concentrated HCl solution was mixed with methanol 50:50 ratios.  

 The five different types of materials were used for synthesis of hybrid materials: 

strong base macroporous anion exchanger, Purolite A500P (normal size), sieved (ø 500 

µm) Purolite A500P, DOWEX TAN1, gel type strong based anion exchangers (Purolite 

A400), and polymeric sorbent without functional group (Amberlite XAD4). The resin 

was mixed with the titanium solution and shaken for 6 hours, dried overnight, and then 

precipitated with 28% NH4OH solution by shaking for 6 hours.  The resulting hydrated 

titanium oxide (HTO) nanoparticles loaded resin was washed with tap water and air dried 

at room temperature for 24 hours. The whole process was repeated for 3 cycles to 

achieved greater Ti(IV) oxide loading.  
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 Figures 3.7 and 3.8 show the sorption arsenic removal capacity from equilibrium 

batch test experiments using different initial As(V) concentrations and experimental 

conditions. Titanium oxide based hybrid nanosorbents also give good results for arsenic 

removal.  From the results, A500P and A400 give a good result for arsenic removal while 

XAD4 has lower removing capacity. The number of loading cycles did not help to 

improve arsenic removal capacity. As compared with the zirconium based hybrid 

material, both titanium and zirconium can be used for removal of arsenic effectively. 

 

Figure 3.7 Batch equilibrium test for arsenic removal by using HAIX-Ti at initial arsenic 

concentration 225 ppb: CAs0= 225 ppb, background anion of SO4
2-

, HCO3
2-

, Cl
-
 = 100 

mg/L, mass of resin 0.2 g, volume 100 mL, pH 7.0 

 For the second experiment as shown in figure 3.8, we were interested to see the 

effect of particle size and try another resin called DOWEX TAN1 from DOW chemical. 
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DOWEX TAN-1 is a macroporous strong base anion exchange resins which is similar to 

the Purolite A500P. From the result, both DOWEX TAN1 and Purolite A500P can be 

effectively used as supports for producing hybrid nanosorbents. The particles size seems 

not to affect the removal capacity; however, it may help to improve the kinetics.  

 From this experiment, we found that titanium based hybrid nanosorbents can be 

used for arsenic removal. However, the cost and difficulty of handling titanium 

tetrachloride as startup titanium sources are limited for practical applications.  

 

Figure 3.8 Batch equilibrium test for arsenic removal by using HAIX-Ti at initial arsenic 

concentration 1000 ppb : CAs0= 1000 ppb, background anion of SO4
2-

, HCO3
2-

, Cl
-
 = 100 

mg/L, mass of resin 0.3 g, volume 200 mL, and pH 5.0 
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3.5 HAIX-Zr from Inexpensive Industrial Grade Zirconium Oxide 

(ZrO2) by Batch Method 

 For this study, various HAIX-Zr nanosorbents were prepared from zirconium 

oxide (ZrO2) obtained from MEL Chemicals (Flemington, NJ). Note that the cost of 

zirconium oxide as a startup material is much cheaper than the previous zirconium 

obtained from MEL Company, approximate $7 per lb., while the reagent grade zirconium 

oxychloride and titanium tetrachloride from Sigma-Aldrich cost approximately $100 per 

100 grams. The zirconium solution was prepared by dissolving zirconium oxide at 15% 

in a mixed solution of 20% H2SO4 solution and methanol at a 1:1 ratio.  

 Figure 3.9 shows the arsenic sorption capacity using both batch method # 1 

(materials A-E) and method #2 (material F) as mentioned in section 3.2.1. The batch test 

experiment uses initial arsenic concentrations of 1,000 µg/L, pH 7.0 along with many 

background ions following by NSF standard 53 for challenge water (detail can be found 

in Chapter 4, table 4.2). From the table below figure 3.9, we can see that material F 

exhibits high arsenic sorption capacity which was prepared by batch method # 2 in only 1 

cycle. This technique can significantly reduce preparation time and amount of waste 

generation. The used zirconium and alkaline solutions are clean and can be reused many 

times. Note that for the batch method #1, the alkaline waste tends to have a cloud of 

zirconium oxide precipitate, thus it is difficult to reuse. 
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Ion Exchange 

Support 
Metal Solution 

Precipitating 

agents 

Number 

of cycles 
HAIX-Zr 

A500P in Cl
-
 form 15% Zr (MEL) with MeOH 28% NH4OH 3 A 

" " 5% NaOH 3 B 

" 15% Zr (MEL) without MeOH 28% NH4OH 3 C 

" 15%Zr + 8% Fe with MeOH " 3 D 

" 8% Fe with MeOH " 3 E 

A500P in OH
- 
form 15% Zr (MEL) with MeOH - 1 F 

 

Figure 3.9 Batch equilibrium test for arsenic removal using HAIX-Zr prepared from 

batch method: CAs0=  1,000 ppb, background ions as appear in the challenge water with 

SiO2 10 mg/L, mass of resin 0.3 g, volume 1,000 mL, pH 7.0 
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3.6 HAIX-Zr Prepared from Zirconium Oxide by Column Method 

 From previous batch method #2 techniques (material F in the figure 3.9), we think 

that it might be very convenient and possible to obtain higher zirconium oxide loading if 

the material can be prepared using the column method. The column methods offer many 

advantages over the batch methods such as reducing rinsing time and volume of water, 

less chance to contact with the material and reagent directly, and not dealing with the 

material transfer which is suitable for large-scale production. For this study, material A 

was prepared by using column method # 1. Materials B and C were synthesized by using 

column method #2. Two different resins were converted into the OH
-
 form by passing a 

5% NaOH solution, followed by rinsing and passing the zirconium solution. Unlike 

material B, material C was repeated for the second cycle with the ferric chloride solution 

instead of zirconium oxide. Material D prepared by batch method #1, commercial 

activated alumina (AA), and parent Purolite A500P were used for comparison.  

 From figure 3.10, both batch and column methods can be used for preparation of 

high arsenic removal capacity adsorbents. Zirconium oxide and Indion 830 resin from 

India, which is similar to the zirconium from MEL Chemical and Purolite A500P can 

also be used and exhibit high arsenic sorption capacity the same as the material available 

in the United States. Depending on the situation, batch methods are suitable for using 

onsite preparation because of its simplicity. However, for manufacturing, the column 

methods are more efficient and have a cleaner process. Note that material D is further 

used for in depth performance testing for arsenic (chapter 4) and fluoride (chapter 5) 

removal.  
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Preparation Procedure/ 

Type of Resins 
Source of Zirconium 

Alkaline 

solution 

HAIX-

Zr 

Column A500P in Cl
- 
form ZrO2 from India w/ MeOH 28%NH4OH A 

Column 
Indion 830 in OH

-
 

form 
ZrO2 from India w/ MeOH - B 

Column A500P in OH
-
 form 

Zr (1
st
 cycle) then convert to OH- 

form and Fe(2
nd

 cycle) w/ MeOH 
- C 

Batch A500P in Cl
-
 form 

ZrO2 from MEL w/ MeOH  

(repeat 3 cycles) 
28%NH4OH D 

 

Figure 3.10 Batch equilibrium test for arsenic removal using HAIX-Zr prepared from 

column method : CAs0=  1,000 ppb, background ions as appear in the challenge water 

with SiO2 10 mg/L, mass of resin 0.1 g, volume 200 ml, pH 7.0 
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3.7 Determination of Zirconium Contents from the HAIX-Zr 

 The amount of zirconium in the hybrid nanosorbent can be obtained quantitatively 

by a gravitational method by double acid digestion and a semi-quantitative method by 

using Energy Dispersive X-ray Spectroscopy (EDX or EDS). For the double acid 

digestion method, the hybrid materials were digested with 50% H2SO4 for a week and the 

digested hybrid resins were again subjected to a new acid solution. Two fractions of acid 

contained zirconium were analyzed for zirconium content by ICP-OES as mentioned in 

chapter 2. Note that the polymeric ion exchanger supports are resistant to the acid, thus 

they do not breakdown under this condition. Under very acidic conditions zirconium 

oxide is dissolved from the hybrid material into the acid solution. The second digestion is 

a repetitive process to obtain higher zirconium dissolution from the material. The amount 

of zirconium (mg Zr/g adsorbent) for the first and second digestion was shown in figure 

3.11. The zirconium content from the three different materials are very close to 10% 

which agree to the EDX techniques as shown in the table 3.1. 

Table 3.1 Zirconium content from the double acid digestion method  

No Materials 
Conc. Zr 

(mg/L) 

mg Zr 

/g resin 

Total 

mg/g 

1 A500P-Zr from ZrO2 (MEI) , 1st leaching 1,049 104.9 
109.6 

 

                                                2st leaching 46.5 4.65 

2 A500P-Zr from ZrOCl2 8H2O,1st leaching 1,095 109.5 
113.7 

 

                                                2st leaching 42 4.2 

3 TAN1-Zr from ZrOCl2 8H2O,1st leaching 992 99.2 
103.3 

 

                                                2st leaching 41.4 4.1 
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Figure 3.11 Zirconium content in the HAIX-Zr by (A) double digestion with 50% H2SO4, 

HAIX-Zr 0.5 gram digested in 50% H2SO4  and (B) zirconium content (from Sample 

A500P-Zr from ZrO2 (MEL) obtained semi-quantitatively by SEM/EDX method, shown 

10% zirconium content within the material 
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3.8 Characterization of HAIX-Zr 

 For this section, there are five different hybrid nanosorbents namely, Purolite 

A500P-Zr, Purolite A400-Zr, Purolite A500P-Ti, Amberlite XAD4-Zr, and commercially 

available iron based hybrid nanosorbent, ArsenX. These adsorbents were characterized 

by using Scanning Electron Microscopy (SEM), High Resolution Transmission Electron 

Microscopy (HRTEM), and Energy Dispersive X-ray Spectroscopy (EDX). EDX is an 

analytical techniques used for elemental analysis. The impact of an electron beam on the 

sample produces X-rays that are characteristic of the elements present on the sample. For 

this study, EDX was used to determine the elemental composition of image area mainly 

ion exchange beads. The SEM technique can provide a topographical detail of the 

material such as macro pores. HRTEM is a technique used to identify crystallographic 

structure of the sample at an atomic scale.   

List of SEM, TEM, and EDX spectrum and elemental mapping of the hybrid 

nanosorbent prepared by batch method#1:  

 Macroporous anion exchanger impregnated with HZO nanoparticles or A500P-Zr 

 Gel strong based anion exchanger impregnated with HZO nanoparticles or A400-Zr 

 Macroporous anion exchanger impregnated with HTO nanoparticles or A500P-Ti 

 Polymeric adsorbent without functional group impregnated with HZO or XAD4-Zr 

 Commercially available iron based nanosorbents or ArsenX
np
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                                     Figure 3.12  SEM, TEM, and EDX spectrum and elemental mapping of Purolite A500P-Zr 
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           SEM of Purolite A400-Zr 
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                                      Figure 3.13 SEM, TEM, and EDX spectrum and elemental mapping of Purolite A400-Zr 
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            SEM of Purolite A500P-Ti 
 

 

   
 

TEM of  Purolite A500P-Ti 
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                                       Figure 3.14 SEM, TEM, and EDX spectrum and elemental mapping of Purolite A500P-Ti 
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               SEM of Amberlite XAD4-Zr 

   

                TEM of Amberlite XAD4-Zr 
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                  Figure 3.15 SEM, TEM, and EDX spectrum and elemental mapping of Amberlite XAD4-Zr 
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              SEM of commercial Iron-based sorbent (ArsenX-Fe) 

   

              TEM of commercial Iron-based sorbent (ArsenX-Fe) 
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              Figure 3.16 SEM, TEM, and EDX spectrum and elemental mapping of commercial Iron-based sorbent (ArsenX-Fe) 
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CHAPTER 4 

RESULTS AND DISCUSSION: ARSENIC REMOVAL BY HAIX-Zr 

  

 In this chapter, the best hybrid anion exchanger impregnated with hydrated Zr(IV) 

oxide (HZO) nanoparticles or HAIX-Zr as mentioned in the chapter 3 section 3.6, which 

was prepared from an inexpensive zirconium oxide by batch method #1 was used for 

further investigations for arsenic removal. The results and discussion of arsenic removal 

by the HAIX-Zr were investigated in the following aspects: 

1. Material characterization and evidence of HZO nanoparticles dispersed in the HAIX-

Zr. The zirconium content, size of nanoparticles, and the distribution of HZO throughout 

the resin phases were characterized using the combination of a gravitational method, 

SEM/ EDX, and HR-TEM. 

2. Sorption/desorption of trace As(V) and As(III) by using NSF Std. 53 Challenge Water 

as a test influent. The arsenic removal mechanisms, role of the Donnan membrane effect 

from the functional groups of the ion exchangers, regeneration mechanisms, and waste 

containment are discussed in this section. 

3. The various equilibrium sorption tests including sorption isotherms, effect of the 

influent pH to the sorption capacity, and effects of the main competing ions that change 

the sorption capacity of the HAIX-Zr namely, silica, phosphate, and sulfate. 

4. Modeling of the As(V)  sorption kinetics onto the HAIX-Zr. 
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4.1 Material Characterization and Evidences of HZO Nanoparticles 

 For this study, the hybrid materials were prepared by the batch method using 

zirconium oxide from MEL chemicals (Flemington, NJ) as the startup zirconium source. 

A macroporous strong-base anion exchanger (Purolite A500P) was used as the polymeric 

support. For comparison of the Donnan membrane effect resulting from the ion exchange 

support, the macroporous strong acid cation exchanger (Purolite C145) was also used for 

zirconium oxide impregnation. The salient properties of the parent resins are summarized 

in the table 4.1.  

Table 4.1 Property of polymeric ion exchangers  

Ion Exchangers Purolite A500P 

Anion Exchanger 

Purolite C145 

Cation Exchanger 

Structure 

  

Functional groups Type I quaternary ammonium Sulfonic acid 

Matrix Macroporous polystyrene cross 

linked with divinylbenzene 

Macroporous polystyrene cross 

linked with divinylbenzene 

Capacity (meq./ml) 0.8 1.5 

 

The details and development techniques are discussed in chapter 3. For this study, 

the hybrid material was prepared by batch method #1 as mentioned in section 3.2.1. 

Briefly, as the first step, the zirconium solution was prepared by adding 15% of 
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zirconium oxide into 20% of sulfuric acid solution and methanol at 50:50 ratios.  Then 

the zirconium solution was mixed with parent macroporous anion exchange resins with 

quaternary ammonium (R4N
+
) functional groups in the chloride form by shaking the resin 

and the zirconium solution in the rotary shaker for 3 hours. Second, the decanted resin 

from the first step was brought into contact with alkaline solution (28% NH4OH solution) 

for 1 hour. Anion exchanger beads from the second step were washed with tap water 

followed by an acetone wash, and air dried for 24 hours. These steps were repeated for 

two more cycles to achieve greater Zr(IV) loading. HZO agglomerates were irreversibly 

encapsulated within the spherical anion exchanger beads and which were found to have 

110-130 mg Zr/g. Total zirconium contents of the HAIX-Zr were determined by double 

72 hours acid digestion with 50% sulfuric acid. The zirconium content was determined 

using ICP-OES (Perkin Elmer 2000 DV). The zirconium content in the hybrid material 

prepared from zirconium oxide (MEL Chemical, NJ) is 11% (w/w) as also mentioned in 

chapter 3, sections 3.7. The mass of zirconium in the hybrid material was confirmed 

semi-quantitatively by SEM/EDX and shown in the figure 4.1D.  

Figure 4.1A-B shows a photo of HAIX-Zr beads with size approximately 300-

1,200 micrometers in diameter and with an enlarged view (40X). The SEM micrograph 

of HAIX-Zr bead as illustrated in figure 4.1C, which shows the macroporous structure of 

the parent macroporous anion exchanger resin (Purolite A500P). The Zr content in the 

HAIX-Zr was determined semi-quantitatively as 10% by mass using the energy-

dispersive X-ray (EDX) spectroscopy analysis as shown in figure 4.1D. The evidence of 
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hydrated Zr(IV) oxide nanoparticle deposited on the hybrid material is confirmed by 

using  a high resolution TEM as shown in the figure 4.2 

 

 

Figure 4.1 (A) HAIX-Zr beads with the size range of 0.4-1.2 mm in diameter (B) 

Photograph (40X) of enlarged view of the hybrid anion exchanger impregnated with 

hydrated Zr(IV) oxide nanoparticles (HAIX-Zr), (C) Scanning electron micrograph 

(SEM) of macro-porous type of HAIX-Zr (40,000X), (D) Energy dispersive X-ray 

spectroscopy (EDX) spectrum of the HAIX-Zr (10 % of elemental zirconium by mass 

basis)  
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Figure 4.2 High resolution transmission electron microscopy (HRTEM) photograph of 

HAIX-Zr  

 

Polymer phase 
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4.2 Fixed-Bed Column Runs using HAIX-Zr 

Fixed-bed column runs for sorption-desorption of  arsenate and arsenite were 

carried out using epoxy coated glass columns (Ace Glass) with 11 mm in diameter, a 

constant flow pump (Fluid Metering Inc.), and an Eldex fraction collector. The ratio of 

column diameter to the hybrid adsorbent bead diameter is more than 20:1; the previous 

work on chromate and phosphate removal with similar setups showed no premature 

leakage due to wall effects under identical conditions (50, 55). The empty bed contact 

time (EBCT) and the superficial liquid velocity (SLV) were recorded for each 

experimental column run. For testing arsenic removal, NSF Standard 53 Challenge Water 

was prepared which contained As(V) or As(III) 50 µg/L, pH 7.5, and other ions as shown 

the table 4.2.  

Table 4.2 Characteristic of NSF Std. 53 Challenge Water formula 

Species mg/l 

Na2CO3 106 

CaCl2 2H2O 147 

Mg(NO3)2 6H2O 18.3 

NaF 2.2 

Na2SO4 74 

P 0.12 

SiO2 10 

As(V) 50 ppb 
 

Cations mg/L meq/L   Anions mg/L meq/L 

Na
+
 71.2 3.1   CO3

2-
 60 2 

Ca
2+

 40 2   Cl
-
 71 2 

Mg
2+

 1.7 0.1   NO3
-
 8.9 0.14 

  total 5.2   F
-
 1 0.05 

     SO4
2-

 50 1 

        total 5.2 
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For As(III) in the feed, nitrogen gas was continuously sparged to guarantee that 

no As(III) was oxidized to As(V). Exhausted hybrid nanosorbents were regenerated using 

a mixed solution of 3% NaOH and 3% NaCl. Following regeneration, the bed was rinsed 

with CO2 sparged water solution (pH =3.2) for about 10 bed volumes to bring the hybrid 

sorbent to working condition.  

Figure 4.3-4.6 provide As(V) and As(III) effluent histories for four separate 

column runs under identical conditions using parent macroporous anion exchanger 

Purolite A500P in the chloride form, hybrid cation exchanger (Purolite C145) loaded 

HZO or HCIX-Zr, and hybrid anion exchanger (Purolite A500P) loaded with HZO or 

HAIX-Zr, respectively. For the HAIX-Zr, two different arsenic species were tested, 

arsenate (As(V)) and arsenite (As(III)). The abscissa represents the effluent arsenic 

concentration and treated bed volumes (mL water/mL sorbent). The influent composition 

and the hydrodynamic conditions, i.e. empty bed contact time (EBCT) and superficial 

liquid velocity (SLV) are also provided. NSF Standard 53 Challenge Water containing As 

(V) or As(III) 50 µg/L at pH 7.5 and other background ions was used as feed water for 

column experiments.  

4.2.1 Sorption of Trace As(V) under High Concentration of Competing Ions 

Figure 4.3 shows comparison of effluent histories of arsenate or As(V) during  

separate column runs between a strong base anion exchanger (A500P from Purolite) and 

the HAIX-Zr. HAIX-Zr can remove As(V) effectively with nearly 6,000 bed volumes 

before reaching the maximum contamination level (MCL) of arsenic at 10 ppb. In 

contrast, for Purolite A500P, arsenic breakthrough started at less than 300 bed volumes. It 
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can be concluded that the arsenic removal capacity of the anion exchanger is greatly 

enhanced by HZO nanoparticles impregnated within the material.  

 

Figure 4.3 Effluent histories of As(V) during column runs with HAIX-Zr and Purolite 

A500P 

The following observations are noteworthy: First, trace arsenate or As(V) were 

selectively removed by HAIX-Zr under the presence of high concentrations of competing 

anions such as sulfate, while the parent anion exchanger cannot remove much arsenate 

(arsenate breakthrough at only 300 bed volumes). Second, the effluent As(V) 

concentration from Purolite A500P was significantly greater than the influent 

concentration after breakthrough. This phenomenal is called “chromatographic elution” 

which implies that the anion exchanger exhibits greater selectivity toward sulfate over 
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As(V) oxyanions. The same observations were also seen in the literature (29). The 

selectivity for various anions toward anion exchangers are as follows and the column 

runs result was also mentioned in chapter 1 section 1.1.1: 

SO4
2-

 > HAsO4
2-

> H2AsO4
-
>Cl

-
> HCO3

-
 

Theoretically, As(V) can be removed by an anion exchanger. However, in real 

applications, there are many innocuous anions (i.e. SO4
2-

, HCO3
-
, Cl

-
) that appear at two 

or more order of magnitudes higher concentrations than arsenate. The arsenate removal 

capacity is significantly reduced in the presence of competing ions, especially sulfate 

ions. For arsenate contaminated waters with high concentrations of sulfate, the traditional 

anion exchanger is not an effective method.(16) 

4.2.2 Sorption of As(III)  

For arsenite or As(III) removal, figure 4.4 shows As(III) effluent history for an 

HAIX-Zr column run. During the column run experiment, nitrogen gas was continuously 

sparged in the influent container to prevent the oxidation of As(III) to As(V). The 

effluent samples were processed by adding acid solution and separate As(III) out of the 

solution by using anion exchange resins as mentioned in chapter 2, section 2.2.1. From 

the results in figure 4.4, several observations are summarized as follows: 

- Arsenite or As(III) was effectively removed by HAIX-Zr for close to 4,000 bed 

volumes before the effluent exceeded the MCL (10 ppb). Due to the pKa1 of As(III) 

oxyacid (HAsO2) of around 9.2 (16), the As(III) appears in the water as the non-ionized 
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from (HAsO2) thus non-ionized As(III) oxyacid cannot be removed by any type of 

Coulombic interactions.  

- Compared with As(V) removal from figure 4.3, the removing capacity of HAIX-

Zr for As(III) is lower than As(V). The As(V) breakthrough is at 6,000 bed volumes at 

the MCL 10 ppb while As(III) breakthrough was at 4,000 bed volumes.  

 

Figure 4.4 Effluent history of As(III) during a column run with HAIX-Zr 

 

4.2.3 Arsenic Sorption Behaviors with Hydrated Zirconium Oxide in the HAIX-Zr 

Under circum neutral pH of groundwater and natural water, arsenate or As(V) 

exists as mono (H2AsO4
-
) and divalent (HAsO4

2-
) anions in aqueous solution. At neutral 

pH, As(III) appears as non-ionized species, HAsO2 or H3AsO3. The arsenic chemistry is 

the following (16): 
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Arsenate or As(V) Species 

H3AsO4 ↔ H
+
 + H2AsO4

-
   pKa1 =2.2   (4-1) 

H2AsO4
- 
↔ H

+ 
+ HAsO4

2-
   pKa2 = 6.98   (4-2) 

HAsO4
2-

 ↔ H
+
 + AsO4

3-
    pKa3 = 11.6   (4-3) 

Arsenite or As(III) Species 

HAsO2 ↔ AsO2
-
    pKa1 = 9.2   (4-4) 

  

 As mentioned in chapter 1, section 1.2.3, hydrated zirconium oxide particles are 

environmentally benign, inexpensive, and exhibit selective sorption properties toward 

both As (III) and As(V) through the formation of innersphere complexes. HAsO4
2- 

is a 

bidentate ligand with two oxygen donor atoms while H2AsO4
- 

and HAsO2 are 

monodentate ligands, which have only one donor atom. Note that the commonly 

occurring competing ions such as sulfate and chloride can form only outer-sphere 

complex (46). Because HAsO4
2- 

is a bidentate ligand, the innersphere complex between 

zirconium oxide (Lewis acid) and HAsO4
2-

 (Lewis base) is stronger than the H2AsO4
- 
and 

HAsO2 that are only monodentate. From the result between As(V) and As(III) removal by 

HAIX-Zr at circum neutral pH in figures 4.3 and 4.4, the HAIX-Zr can remove As(V) 

better than the As(III) because As(V) can form a stronger complex with the HZO than the 

As(III). Moreover, As(V) is also bound to the zirconium oxide surface through the 

Coulombic interaction while As(III) binds with the zirconium oxide only through the 

Lewis Acid-Base (LAB) interaction. 
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 In general, mechanisms of arsenic sorption at the surface of zirconium oxide are 

contributed to Coulombic and Lewis Acid-Based (LAB) interactions. The point of zero 

charge of zirconium (hydr)oxide averages 6.5 (56). The hydrated zirconium oxides can be 

viewed as diprotic weak acids that can be deprotonated as follows: 

       
 ̅̅ ̅̅ ̅̅ ̅̅ ̅        ̅̅ ̅̅ ̅̅ ̅        pKa1   (4-5) 

     ̅̅ ̅̅ ̅̅ ̅         ̅̅ ̅̅ ̅̅ ̅                   pKa2   (4-6) 

 At a pH lower than the point of zero charge (PZC), the zirconium oxides are 

protonated (      
 ̅̅ ̅̅ ̅̅ ̅̅ ̅) to have positive charges and behave as a Lewis acid (electron pair 

acceptor), and also act as anion exchangers. As(V) can be sorbed onto the surface sites 

through ion exchange reactions and at the same time can bind through the Lewis Acid 

Base (LAB) interactions. The reactions are shown as: 

Coulombic interactions 

 (ZrOH2
+
)(Cl

-
) + H2AsO4

-
    ↔      (ZrOH2

+
)( H2AsO4

-
) + Cl

-
     (4-7)  

 2(ZrOH2
+
)(Cl

-
) + HAsO4

2-
   ↔     (ZrOH2

+
)2( HAsO4

2-
) + 2Cl

-
     (4-8) 

where the overbar represents the solid phase. At circum neutral pH, As(III) appears as 

non-ionized HAsO2 ,thus it does not participate with the zirconium oxides via Coulombic 

interactions.  

 Sorption of arsenic onto the zirconium oxide nanoparticles is not only based on 

electrostatic (Coulombic) interactions similar to the ion exchange process but also mainly 

due to the Lewis Acid-Base (LAB) interaction. Thermodynamically, the overall free 
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energy change for the reaction of arsenic sorption onto the zirconium oxide nanoparticles 

come from both Coulombic (i.e., ion exchange) and Lewis Acid-Base (LAB) interactions 

as follows (16): 

           
       

       
       (4-9) 

 or                                       (4-10) 

 or                         (4-11) 

where ΔG
0
 represents free energy changes at the standard state, R is the universal gas 

constant, T is the temperature in Kelvin and K is the equilibrium constant.  

 For the metal oxides such as zirconium, iron, aluminum, KLAB is very high for  

most of the anionic ligands (i.e., arsenate) due to their Lewis acid base characteristics. 

Therefore, the KOverall is very high. In contrast with other competing cations (e.g., Na
+
, 

K
+
, Ca

2+
, etc.) and anions (e.g. SO4

2-
, HCO3

-
, Cl

-
), the Lewis acid-base (LAB) is absent 

so the KOverall is equal to the KCou.  

Sorption with metal oxide (2): 

OH
-
 > H2AsO4

-
 > Si(OH)3O

-
 > F

-
 > HSeO3

-
 > SO4

2- 
> CrO4

2- 
>> HCO3

-
 > Cl

-
 > NO3

-
 >  

Removal by ion exchange (Coulombic): 

SO4
2-

 > HAsO4
2-

> H2AsO4
-
>Cl

-
> HCO3

-
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Lewis Acid-Based (LAB) interactions 

 LAB interactions play an important role for selective arsenic sorption onto the 

zirconium oxide nanoparticles. From figure 4.5, As(V) (both H2AsO4
-
  and HAsO4

2-
) are 

sorbed on the surface of zirconium oxide particles through the combination of Coulombic 

and LAB interactions. The Lewis acid sites of zirconium oxides accept a lone pair of 

electron from oxygen donor atoms of H2AsO4
-
 and HAsO4

2-
. For arsenite or As(III), the 

Lewis acid sites of zirconium oxides accept lone pairs of electron from arsenic donor 

atoms of arsenite (HAsO2). The sulfate and chloride bind with zirconium oxide weakly 

through outer sphere complexes. Thus, for this study arsenate (H2AsO4
-
 and HAsO4

2-
) 

with oxygen donor atoms and arsenite (HAsO2) with arsenic donor atoms are sorbed in 

preference to other commonly innocuous encounter anion namely, sulfate, chloride, and 

bicarbonate. 

 

Figure 4.5 A schematic diagram illustrating the binding of several of solutes onto 

hydrated zirconium oxides (HZO) at circum-neutral pH (adapt from (16)) 
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4.2.4 As(V) Removal from HAIX-Zr Vs. HCIX-Zr 

From figure 4.6, there are marked differences in the performance of two different 

sorbents; HCIX-Zr and HAIX-Zr. Note that despite the same HZO contents, 

approximately 10-13% by mass in both HAIX-Zr and HCIX-Zr, HCIX-Zr was essentially 

unable to remove As(V), which broke through almost immediately. In contrast, HAIX-Zr 

exhibits excellent arsenic removal capacity. Arsenic started to breakthrough at MCL (10 

ppb) after approximately 5,500 bed volumes.  

 

Figure 4.6 Effluent histories of As(V) during a column runs with HAIX-Zr and HCIX-Zr 

The following observations are noteworthy: for HAIX-Zr, the column run was 

deliberately stopped for 24 hours. The sharp decreases in effluent arsenic concentration 

occurred after the restart of the column run. The sharp drop in the effluent arsenic 
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concentration after restarting the column run suggested that the arsenic sorption onto the 

hybrid material is controlled by intraparticle diffusion within the material at this point in 

the run (50, 57). 

4.2.5 Donnan Membrane Effect 

The submicron size HZO nanoparticles are easy to prepare, inexpensive, 

innocuous, and have very selective sorption toward both transition metals and anionic 

ligands. To improve mechanical strength and removal capacity, HZO have been loaded 

into many supports, namely chelating resins (58-60), collagen fibers, activated carbon, 

chitosan (61-64), polymers without functional groups (23, 65, 66), etc.  Note that 

activated carbon, zeolite, alginate, cation exchangers, chelating resins, etc. also contain 

significant concentrations of negatively charge functional groups, namely, carboxylate 

and amino silicate. These substrates may be easily dispersed with HZO nanoparticles, but 

arsenic removal capacity will not be fully attained due to the Donnan exclusion effect. On 

the other hand, many reports confirmed that polymeric anion exchangers are an excellent 

substrate because it allows enhanced permeation of anions within the polymer phase due 

to its high concentration of fixed positively charges such as quaternary ammonium 

functional groups (R4N
+
) in Purolite A500P (21, 29).  

Figure 4.7 provides a schematic illustrating the Donnan membrane effect for 

enhancing permeation of target anionic ligand contaminants. The presence of a high 

concentration of non-diffusing  fixed positively charges in the polymer phase acts as a 

highly permeable interface for anionic species, thus influencing its sorption onto HZO 

particles embedded in the polymer phase. Because both Zr(IV) and quaternary 
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ammonium functional groups, R4N
+
, are positively charged, dispersing HZO 

nanoparticles within an anion exchanger faces a major scientific challenge.  

 

 

Figure 4.7 Donnan membrane effect exerted by parent anion exchange supported  

Several techniques for dispersing oxide nanoparticles into polymeric ion 

exchange supports including cation and anion resins have been discussed elsewhere (37, 

53) . Once the HZO are loaded into anion exchangers, the Donnan membrane effect 

caused by the polymeric anion exchanger support play an important role to remove target 

contaminants and enable tailoring of sorbents for intended applications. According to the 

information in the open literature, preparation and development of highly selective hybrid 

sorbent, HAIX-Zr, using HZO based on the Donnan membrane principle has not been 

reported to date.  
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4.2.6 Regeneration and Reuse of HAIX-Zr 

After the column run, the exhausted HAIX-Zr was regenerated using a 3% NaCl 

and 3% NaOH mixed solution at pH of 12 and with an EBCT of 6.0 minutes. In less than 

15 bed volumes, almost the entire amount of arsenate was desorbed from the HAIX-Zr. 

Over 90% of arsenic was desorbed within 15 bed volumes. Two successive As(V) 

sorption and regeneration runs are shown in figure 4.8 and clearly demonstrates that 

arsenate can be efficiently desorbed from HAIX-Zr effectively and the sorbent reused for 

multiple cycles without a significant loss in arsenic removal capacity. The spherical 

HAIX-Zr beads are robust and durable. There are no signs of particle breakdown into 

powder and XRD (XRD diffractograms were shown in chapter 5) show that the HZO are 

still amorphous after using three cycles of sorption/desorption.  
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Figure 4.8 Dissolved arsenic concentration profiles during desorption of HAIX-Zr using 

3% NaOH and 3% as the regenerate solution.  
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The sorption/desorption mechanisms are illustrated in the above equation (15). 

During regeneration, when the pH was increased, the HZO sorption sites were 

deprotonated (negatively charge), so all arsenic oxyacid and oxyanion were desorbed 

from the HAIX-Zr at 3 orders of magnitude higher than feed concentration. The Donnan 

co-ion exclusion effect is predominant under regeneration conditions resulting in efficient 

desorption processes. Subsequently, the HAIX-Zr was reconditioned with dilute acid or 

CO2 sparged water to adjust the pH from alkaline to nearly neutral, in less than 10 bed 

volumes. From this step, the surface charges of HZO in HAIX-Zr are protonated and 

ready for the next sorption cycle and no further pH adjustment was necessary during the 

service run.  

The regenerable nature of HAIX-Zr can reduce the volume of toxic-laden waste 

by 100 times as compare to single-use adsorbent media (67). Most of single used media 

are routinely disposed of in landfills or hazardous waste sites. The phase diagrams of the 
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predominant arsenic, iron, and zirconium species are represented in figure 4.9. Note that 

even at slight anoxic and acidic condition (pe=0, pH<7), Fe(OH)3(s) is 

thermodynamically unstable and soluble Fe
2+

 (aq) is predominates. Thus, the toxic metal 

or anionic toxic ligands sorbed onto Fe(III) oxide based adsorbents will gradually leach 

away under the reducing environment of a landfill. Al(III) based adsorbents (i.e., 

activated alumina (AA)), are thermodynamically stable under anoxic condition but As(V) 

species are not stable, and would be reduced to As(III) which is poorly adsorbable onto 

the AA (67). In contrast, HZO is chemically stable under wide pH and redox conditions. 

This unique characteristic of HZO makes HAIX-Zr it safe to dispose of the used material 

into the landfill.  

 

Figure 4.9 Composite phase diagrams of Fe-As and Zr-As 
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4.3 Equilibrium Batch Test with HAIX-Zr 

4.3.1 Sorption Isotherm of As(V) using HAIX-Zr 

Batch equilibrium adsorption isotherm experiments were conducted to obtain the 

adsorption isotherms. Each point of the As(V) sorption isotherm was found by varying 6 

initial arsenic concentrations. The samples were shaken for 5 days at room temperature to 

attain equilibrium. The supernatant was subsequently filtered through a 45 µm membrane 

filter. Arsenic concentration was measured using a graphite furnace atomic absorption 

spectrometer (Perkin Elmer model AAnalyst 600).  

Langmuir and Freundlich adsorption isotherms are commonly used for adsorption 

studies. For this experiment, the sorption behavior of As(V) is fitted with the Langmuir 

model. The general and linear form of Langmuir adsorption model is given as: 

General form     
    

     
                  (4-12) 

Linear form  
 

      
 

 

    
 

 

 
                (4-13) 

where qe and Ce represent the adsorption capacity (mg/g) and adsorbate concentration at 

equilibrium (mg/L), Q represents the maximum adsorption capacity (mg/g), and b (L/mg) 

is the Langmuir constant. From the equilibrium batch test, the arsenic sorption behaviors 

follow the Langmuir isotherm with maximum sorption capacity (Q) of 20 mg As(V)/g 

(pH 7.5). The sorption capacity of HAIX-Zr towards arsenic is three times higher than 

commercially available activated alumina (AA). 
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Figure 4.10 Arsenic sorption isotherm plot at pH 7.5 with background anions at 20 °C  
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4.3.2 Effect of pH for the Sorption of As(V) using HAIX-Zr 

 In this test, 50 milligrams of HAIX-Zr were added into four different solutions 

containing As(V) with other background ions at different pHs. The solutions were shaken 

in the gyratory shaker for 5 days to attain equilibrium. The equilibrium arsenic removal 

capacity can be obtained by mass balance. Figure 4.11 shows the effect of pH for arsenic 

removal by HAIX-Zr. The equilibrium arsenic concentration is provided in the figure. 

Figure 4.11 implies that the pH affects the sorption capacity. The arsenic removal 

capacity dropped as the pH increases.   

  

Figure 4.11 Effect of pH for arsenic removal using HAIX-Zr 
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than the point of zero charge, most of the zirconium oxide surface charges appear as 

negatively charges (▓ZrO
-
) resulting in repulsion between the negative charge of 

HAsO4
2-

 and ▓ZrO
-
. Moreover, at high pH the competition between hydroxyl ions (OH

-
) 

and HAsO4
2-

 becomes fierce, and the metal oxides have high affinity toward OH
-
 

resulting in decreasing of arsenic removal capacity as shown in figure 4.11.  

4.3.3 Influence of Competing Ions 

Dissolved anions such as phosphate, silicate, and sulfate have been reported to 

reduce the arsenic removal capacity.  From the batch experimental data shown in figures 

4.12-14, phosphate and silicate anions are strong competitors to the arsenic for HAIX-Zr 

sorption sites at high levels approximately greater than 30 ppm for SiO2 and 250 ppb for 

phosphate. However, the natural groundwater silica and phosphate concentration are 

found lower than the level that impact the performance of arsenic removal by HAIX-Zr. 

4.3.3.1 Effect of Silica  

 Silica is found in the natural surface and groundwater at the concentration range 

1-20 mg/L in surface water and 7-45 mg/L as SiO2 in groundwater (68). Dissolved silica 

in water is usually writen as SiO2. When SiO2 depolymerizes in water, silicic acids 

(Si(OH)4) are formed. Many models are used to describe the chemistry of silica in water, 

but the best formula used to describe silicic acid is Si(OH)4. In acidic and neutral pH, 

soluble silica is present mainly in nonionic silicic acid. Silica is highly soluble at high 

pH. The dissociation constants of silicic acids are as follows: 

  Si(OH)4 ↔ SiO(OH)3
-
 + H

+
   pKa1 = 9.9  (4-15) 
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  SiO(OH)3
-
 ↔ SiO2(OH)2

2-
 + H

+
  pKa1 = 11.8  (4-16) 

  SiO2(OH)2
2- 

↔ SiO3(OH)
3-

 + H
+
   pKa1 = 12  (4-17) 

  SiO3(OH)
3- 

 ↔ SiO4
4- 

+ H
+
    pKa1 = 12  (4-18)

 

Figure 4.12 Effect of silica to the arsenic removal using HAIX-Zr 

 Several studies reported that silica can interfere with arsenic uptake and results in 

decreasing of arsenic removal (68, 69). In this equilibrium batch study, different levels of 

silica was spiked into the test water along with arsenic at pH 7. The 40 milligrams of 

HAIX-Zr was added into 200 milliliters of test solution. The solution was shaken in the 

rotary shaker for 5 days to attain equilibrium. The arsenic removal capacity was 

calculated based on the mass blance. The results are shown in figure 4.12 and found that 

the arsenic removal capacity decreses significantly as the concentration of silica increases 

from 10 to 50 mg/L as SiO2.  
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4.3.3.2 Effect of Phosphates  

 Figure 4.13 shows the equilibrium batch test of arsenate removal capacity using 

HAIX-Zr under the presence of different phosphate concentrations.   Intial phosphate 

concentrations were varied at 200, 1000, and 2000 ppb. From figure 4.13, the arsenic 

removal capacity was significantly decreased from 4700 to 3500 µgAs(V)/g as the 

influent phosphate concentration increases from 200 to 2000 ppb. Undoubtably, arsenic 

and phophorus are chemically similar and both are in group 15 on the periodic table. The 

acid dissocation constants of othophosphoric acid (H3PO4) and arsenic acid (H3AsO4) are 

shown in table 4.3. 

 

Figure 4.13 Effect of phosphate to the arsenic removal using HAIX-Zr 
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compete for the sorption sites with the arsenate resulting in a significant drop in arsenate 

removal capacity as shown in figure 4.13. Note that phosphate can be removed by the 

same mechanism as arsenate through the combination of Columbic interactions and 

formation of an innersphere complex. Previous study confirmed that hybrid polymeric 

anion exchanger supported metal oxide nanoparticles can remove phosphate effectively 

(28).  Phosphate can be found mostly in the surface waters, and is rarely found in 

groundwater where the arsenic appears. In real applications, phosphate is not the main 

competing ion in removal of arsenic from groundwater. 

Table 4.3 Chemical similarity between oxyacid of As(V) and P(V) (16) 

Oxyacid pKa values 
Predominant 

Species at pH 5.5 

Predominant 

Species at pH 8.5 

As(V): H3AsO4 

pKa1 = 2.2 

pKa2 = 6.98 

pKa3 = 11.6 
 

monodentate ligand 

 

bidentate ligand 

P(V): H3PO4 

pKa1 = 2.12 

pKa2 = 7.21 

pKa3 = 12.7 
 

monodentate ligand 

 

bidentate ligand 
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4.3.3.3 Effect of Sulfate 

 The effect of sulfate to the arsenic removal capacity batch experiment was carried 

out the same way as the silica and phosphate as mentioned previously. From figure 1.14, 

arsenic removal is now affected by the level of sulfate in the water with the concentration 

range between 0-200 mg/L. The sulfate ions can form only weak outer-sphere complexes 

with the zirconium oxide particles, and are not competing with arsenic for the sorption 

sites. Moreover, since the HAIX-Zr is composed of hydrated zirconium oxide (HZO) 

nanoparticles dispersed in the parent macroporous strong base anion exchanger, the 

sulfate can also be removed by an ion exchange mechanism. 

 

Figure 4.14 Effect of sulfate to the arsenic removal using HAIX-Zr 
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4.4 Sorption Kinetics 

 Interruption tests were carried out during the fixed-bed HAIX-Zr column runs 

(run 1) as shown in figure 4.15 and are marked within circles. From figure 4.5, after 

5,000, 6,000, and 8,000 bed volumes, the influent feed was deliberately stopped for 24 

hours. When the flow was resumed, the effluent arsenic concentration decreased 

markedly and after 500 bed volumes, the effluent arsenic concentration reached the 

concentration prior to the interruption. This interruption test was mentioned by Helfferich 

as a technique for determination between particle and film diffusion control (5).  

 

Figure 4.15 Interruption test during the experimental column run on arsenic removal by 

HAIX-Zr 
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diffusion mass transfer, the concentration gradient in the HAIX-Zr serves as a driving 

force and governs the overall ion exchange kinetic rate. The concentration gradient 

decreases when the column has a progress. The feed interruption allows the sorbed 

arsenic concentration to spread out in the spherical sorbents resulting in a high 

concentration gradient when the column is restarted.  The arsenic uptake rate is then 

higher than the uptake rate before the interruption test. The details are also described in 

the literature (57, 70).  

4.4.1 Mathematical model 

The effective diffusivity can be obtained by mathematical modeling. The 

diffusion in a spherical ion exchanger beads can be described by the partial differential 

equation (71): 
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where q is the arsenic concentration in the ion exchange phase, effD is the intraparticle 

effective diffusivity, r is the radius of ion-exchanger beads, and t is time. Under the 

condition of the linear equilibrium relation (q=kC) and finite volume, the solution for 

equation 4-1 can be written as: 
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where n  is the non-zero root of   
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and   can be calculated from the relationship with the final fractional uptake;  
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where V is the volume of the batch reactor, and CAs,0 is the initial concentration of As(V) 

in the batch reactor. qAs,∞ can be obtained from mass balance equation 4-5 

                               (4-5) 

where m is the mass of sorbent used for the test and CAs,0 and CAs,∞ are concentrations 

of arsenic at t=0 and ∞ (equilibrium), respectively. 

 From the experimental data of the kinetic test, the graph of F versus time can be 

plotted as shown in figure 4.16. The fractional arsenic uptake (F) is dimensionless and is 

defined by the ratio of the arsenic uptake capacity at time t (qt) and the arsenic uptake 

capacity at equilibrium (q∞). By fitting computed values of F to the experimental data of 

F, we can find the best fit profiles. From the best fit profiles, we can finally identify 

effective diffusivity, effD . From the arsenate batch kinetic experiment using HAIX-Zr, 

the effective intraparticle diffusivity ( effD ) was computed and the result is 2.3 x 10
-11

 

cm
2
/sec. The resulting effD is comparable with other selective sorption process (15). 
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Figure 4.16 Fractional uptake rate (F) versus time (t) plots for HAIX-Zr during batch 

kinetic test of arsenic removal 
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CHAPTER 5 

RESULTS AND DISCUSSION: FLUORIDE REMOVAL BY HAIX-Zr 

 Zirconium oxide exhibits a high sorption selectivity toward fluoride ions while 

other known metal oxides such as Fe(III), Ti(IV), Al(III)  are poorly sorbed with fluoride 

ions . For this study, the HAIX-Zr, the same material for removal of arsenic, was used to 

investigate the fluoride sorption/desorption properties. Unlike arsenic which appears in 

groundwater at the parts per billion (ppb) level, fluoride is usually found in parts per 

million (ppm), more than a thousand times higher than arsenic, resulting in low 

throughput per volume of adsorbent being used. These studies cover the following 

aspects: 

- Comparison of various metal oxides sorbents (i.e., Al (III), Fe (III), and Zr (IV)) toward 

fluoride removal under identical conditions by column run experiments. 

- Confirmation of the Donnan membrane effect resulting from the fixed functional groups 

of the parent polymeric ion exchange resins to enhance or exclude fluoride ion transport 

into the hybrid sorbents. 

- Multiple fluoride sorption/desorption cycles by using HAIX-Zr.  

- Equilibrium isothermal test, effect of feed pH on the fluoride sorption capacity and the 

stability of hybrid sorbents (mechanical strength of sorbent and metal leaching under 

different pH). 

- Kinetic study of fluoride sorption by HAIX-Zr. 
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5.1 Fixed-Bed Column Runs Using HAIX-Zr  

5.1.1 Comparison of Fluoride Removal Using Different Metal Oxides Sorbents 

 

Figure 5.1 Effluent histories of fluoride during column run between HAIX-Zr, LayneRT, 

and AA 

 From the effluent histories, HAIX-Zr can remove fluoride selectively more than 

700 mL/g before the effluent  exceeds the WHO recommendation for fluoride (1.5 mg/L). 

Activated alumina (AA) can remove fluoride, but the removal capacity was significantly 

lower than the HAIX-Zr. In contrast, iron based nanosorbents have very low affinity 

toward fluoride ions resulting in nearly immediate breakthrough. Moreover, after two 

runs of fluoride sorption/desorption, most of the activated alumina (AA) was degraded 
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into very fine particles that blocked the water flow through the column as shown in figure 

5.9B.  

 Zirconium ions have a high charge to radius ratio characteristic of hard Lewis 

acid ions, so they can form very strong coordination complexes with hard Lewis bases 

such as fluoride ions according to the Hard and Soft Acids and Bases (HSAB) principles. 

Note that iron can be categorized as a transition metal which exhibits a weak interaction 

with fluoride. According the HSAB principles, hard acids prefer to bind with hard bases 

and soft acids prefer to bind with soft bases.(72, 73) Based on the classification, hard 

acids such as zirconium and aluminium are likely to bind with hard bases such as 

fluoride. Iron is categorized as a transition metal (borderline), thus it has less affinity 

toward fluoride ions. Fluoride ion forms one of the strongest zirconium complexes on the 

zirconium oxide surface (74). Many studies have also confirmed that zirconium oxide has 

a high affinity toward fluoride ions. Zirconium oxide is very chemically stable (as 

oxidation number +4) under wide pH and redox conditions.(22, 65, 66, 74, 75) 

5.1.2 Effect of Donnan Membrane Effect 

 Figure 5.2 illustrates two fluoride effluent histories during column runs using 

HAIX-Zr and HCIX-Zr. The HAIX-Zr can remove fluoride very well and fluoride started 

breakthrough after 1,800 mL/g at WHO fluoride recommended level at 1.5 mg/L. On the 

contrary, it can be seen that the polymeric cation exchanger supported zirconium oxide or 

HCIX-Zr exhibits low fluoride removal capacity. Fluoride was started to exit the column 

in less than 400 mL/g of HCIX-Zr. The details about the Donnan membrane effect used 

to explain this phenomenon was discussed in chapter 4.  
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Figure 5.2 Effluent histories of fluoride during column runs with HAIX-Zr and HCIX-Zr 
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 Figure 5.3 Fluoride effluent histories and regeneration for the first run using HAIX-Zr and activated alumina (AA)  
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                Figure 5.4 Fluoride effluent histories and regeneration for the second run using the same HAIX-Zr and AA
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 Effluent histories in figures 5.3-5.4 demonstrate that HAIX-Zr can remove 

fluoride selectively under the presence of 20 times higher concentrations of background 

anions, namely sulfate, chloride, and bicarbonate. In comparison with traditional 

activated alumina, HAIX-Zr exhibits more than twice the capacity (considered 

breakthrough at 1.5 mg/L).  

5.1.4 Mechanism of Fluoride Sorption onto the HZO Nanoparticles 

 It is well established that the surface charge of metal oxide of polyvalent metals 

such as Al(III) and Zr(IV) are pH dependent. Hydrated zirconium oxides or HZO 

particles exhibit amphoteric sorption properties around neutral pH.(36) Theoretically, 

HZO can selectively bind Lewis acids or transition metals (e.g. Zn
2+

, Cu
2+

 and Pb
2+

) as 

well as Lewis bases of anionic ligands (e.g. arsenate, phosphate, fluoride) through 

formation of inner-sphere complexes. The point of zero charge (PZC) of zirconium 

(hydr)oxide is 6.5 on average (56). 

Hydrofluoric acid (HF) can be viewed as a monoprotic acid which has a pKa of 

approximately 3.2, so at pH greater than 3.2, most of fluoride ions appear in the anionic 

form (F
- 
(aq)).  

 HF (aq)  ↔  H
+
(aq) + F

-
 (aq)    pKa1 = 3.2 

 From figure 5.4, fluoride can also be removed due to a combination of the 

Coulombic interaction and a ligand exchange reaction (inner sphere complex). At pH 

greater than the point of zero charge (PZC), the surface charges exhibit a negative charge 

which is why fluoride can be desorbed during regeneration cycles using alkaline solution. 
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5.1.5 Regeneration and Reuse 

 In order for the fixed-bed sorption process to be economically viable and 

sustainable, the adsorbents have to be amenable to efficient regeneration and reuse for 

multiple cycles. Due to the amphoteric properties of HZO depending on the solution pH, 

the HAIX-Zr can efficiently be regenerated with only 10 bed volumes of a mixed solution 

of 3% NaOH and NaCl (pH 12) and an EBCT of 6 minutes. In less than 10 bed volumes, 

almost the entire amount of fluoride was desorbed from HAIX-Zr with over 90% of 

fluoride recovery confirmed by mass balance. During the regeneration, the pH increased 

to 12, the HZO sorption sites were deprotonated (negatively charged) all the fluoride 

anions get rejected from HAIX-Zr into the regeneration stream within less than 10 bed 

volumes at very high concentration as can be seen in figures 5.3-5.4. The Donnan co-ion 

exclusion effect is predominant under regeneration conditions resulting in an efficient 

desorption process. Subsequently, the HAIX-Zr was reconditioned with CO2 sparged 

water to adjust the pH from alkaline to nearly neutral, in less than 10 bed volumes. From 

this step, the surface charges of the HZO are protonated and ready for next sorption 

cycles and no further pH adjustment was necessary during the service run. 

 The two successive runs shown in figures 5.3-5.4 clearly demonstrate that 

fluoride can be desorbed effectively with insignificant loss in fluoride removal capacity 

as shown in figures 5.3-5.4. The HAIX-Zr is robust and durable. There are no signs of 

particles breaking down into small particles or powder. Unlike HAIX-Zr, after 3 runs of 

fluoride sorption/desorption the activated alumina (AA) was degraded into small particles 

and create a head loss inside the column as shown in the figure 5.9B. The powder X-ray 
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diffractograms (XRD) show that zirconium inside the HAIX-Zr is in the amorphous form 

both before and after 3 sorption/desorption cycles, while the activated alumina exhibits 

crystalline structure both before and after 3 cycles. The amorphous structures usually 

have a higher surface area than crystalline structures so that the fluoride removal also 

improves in part for the HAIX-Zr because of amorphous structure. From figure 5.9, we 

can infer that the use of some chemical during the regeneration process such as NaOH 

and CO2 sparged water solution are not resulting in changing of the zirconium oxide 

structure from amorphous to crystalline which can reduce in surface area.  

 The regenerable nature of HAIX-Zr can reduce the volume of toxic-laden waste 

by 100 times as compare to single-used adsorbent media. (67) There are many single-use 

fluoride adsorbents that have been adopted in many fluoride affected areas because of the 

low cost. However, the inexpensive adsorbent tends to have low capacity, unreliable 

quality and produce a large quantity of toxic-laden waste resulting in high risk of 

recontamination to the surface water. The regenerable HAIX-Zr can produce fluoride-

free water with high capacity and reliable results. The regenerable property can reduce 

the cost for long-term operation and can reduce the risk of toxic leaching to the 

environment. 
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5.2 Equilibrium Isothermal Test  

 Langmuir and Freundlich adsorption isotherm are commonly used for the study of 

sorption behavior and quantify the maximum sorption capacity toward specific 

contaminants by the sorbent of interest. For the fluoride adsorption experiment, sorptions 

of fluoride using both HAIX-Zr and activated alumina follow the Langmuir isotherm 

model. The general and linear forms of Langmuir adsorption model are given as the 

following equation, respectively.(2, 4) 

   
    

     
    Eq. 1 

 

  
 

 

  

 

  
 

 

 
   Eq. 2 

where qe and Ce represent the adsorption capacity (mg F/g) and the fluoride concentration 

at equilibrium (mg F/L), Q represents the maximum adsorption capacity (mg F/g), and b 

(L/mg) is the Langmuir constant. The general Langmuir equation including experimental 

fluoride sorption data are plotted in figure 5.5.  From the equilibrium isotherm test, the 

maximum fluoride sorption capacity from HAIX-Zr and activated alumina (AA) are 35 

mg F/g and 10 mg F/g, respectively.
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Figure 5.5 Fluoride sorption isotherms with other background ions at room temperature 
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5.3 Effect of Feed pH and Stability of Hybrid Adsorbents 

 Fluoride sorption on the surface of oxides of Al(III) and Zr(IV) are pH dependent. 

Figure 5.6 shows the effect of pH of the feed solution on fluoride removal capacity.  It 

was observed that the fluoride removal capacity was decreased significantly above pH 

7.0. The acid dissociation constant of HF is approximately 3.2, thus in natural water 

fluoride presents as the anion (F
-
).  

 

Figure 5.6 Effect of pH for fluoride sorption for HAIX-Zr and AA 
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 From chapter 4, the point of zero charge (PZC) of zirconium oxide is around 6.5 

on average. At pH greater than neutral, most of the zirconium oxide surfaces are neutral 

(▓ZrOH) and negatively charged (▓ZrO
-
), thus the sorption of fluoride (F

-
) due to the 

Coulombic interaction is diminished. Moreover, at high pH, the surfaces of metal oxides 

exhibit high affinity toward hydroxyl anions (OH
-
). The competition between F

-
 and OH

-
 

is significant resulting in the reduced sorption capacity as illustrated in figure 5.6.(29) 

  

Figure 5.7 Concentration of aluminum and zirconium in treated water coming from 

dissolution of AA and HAIX-Zr at different influent pH  

There are many studies that use both aluminium and zirconium based adsorbents 

for fluoride removal. The zirconium oxide is chemically stable over wide pH and redox 

ranges and has a very low solubility product (76) while the aluminium are soluble both in 

acid and alkaline ranges. In most cases, aluminium ions tend to leach to the treated water 
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during regeneration with alkaline solution resulting in loss of capacity and mechanical 

strength of material. From figure 5.7, the metal aluminum and zirconium leaching from 

the sorbent into the water were monitored by adding the sorbents into different pH 

solutions. After shaking for 5 days, the concentrations of aluminum and zirconium were 

analyzed and plotted in figure 5.7. We found that zirconium concentrations in the water 

were very low while aluminum concentrations were very high at pH greater than 10. 

From many studies, Al(III) oxide based sorbents such as activated alumina (AA) have 

some disadvantages such as low capacity , the capacity is dropped significantly at neutral 

pH, and tend to degrade into small particles inside the fixed-bed column after several 

regenerations (16).  

5.4 Fluoride Sorption Kinetics 

 The details of the kinetic study were already discussed in chapter 4. Figure 5.8A 

shows the evidence of intraparticle control by interruption tests as highlighted in the 

circle. Figure 5.8B shows the kinetic plot of fractional fluoride uptake (F) versus time 

during the batch kinetic study of fluoride sorption by HAIX-Zr. The diffusivity from the 

model that fit well with the experimental data is 8 x 10
-11

 cm
2
/sec. Note that the 

diffusivity coefficient for arsenic removal by the same material (HAIX-Zr) is 2.3 x 10
-11

 

cm
2
/sec. The diffusivity coefficient for preferred ions (arsenate) will be lower than 

species that are less preferred (fluoride) by the sorbents. The details of the kinetic study 

are found in the literature.(57, 70) 
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Figure 5.8 (A) Interruption test during the experimental column runs on fluoride removal 

by HAIX-Zr, (B) Fractional uptake (F) versus time (t) plots for HAIX-Zr during batch 

kinetic test of fluoride removal   
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Figure 5.9 Comparison of XRD diffractograms between used HAIX-Zr and activated 

alumina (AA) after 3 cycles of sorption/desorption for fluoride removal column run 

experiment and mechanical strength of used (A) HAIX-Zr and (B) Activated Alumina  
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Figure 5.9 Comparison of XRD diffractograms between used HAIX-Zr and activated 

alumina (AA) after 3 cycles of sorption/desorption for fluoride removal column run 

experiment and mechanical strength of used (A) HAIX-Zr and (B) Activated Alumina  
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CHAPTER 6 

RESULTS AND DISCUSSION: ZINC REMOVAL BY HCIXF-Zr 

AND CO2 REGENERATION 

Toxic transition metals such as zinc, copper, lead, cadmium, etc. contaminants in 

water/ wastewater are among environmental concerns. Most transition metals are toxic 

and present as trace concentrations in the environment. The removals of these toxic 

substances to meet the stringent standards are very challenging. The general chemical 

precipitation technologies are suitable to treat high concentrations of toxic metals, and 

these techniques often cannot bring the toxic concentration down to meet the standard 

due to the solubility limit (4). Moreover, an additional problem related to handling the 

large quantities of waste sludge which is an environmental and economic issue. Selective 

removal of toxic metals using ion exchange technologies (i.e., chelating resins), or 

adsorption at the surface of polyvalent metal oxides (i.e. iron oxide, zirconium oxide) 

particles are more appropriate to remove such a trace concentration of these toxic metals 

(8). In this study, we are focusing on the use of metal oxide nanoparticles as a candidate 

to remove trace toxic contaminants in water. The special resins such as chelating resins 

are not discussed for this study. Note that the polyvalent metal oxide based sorbents are 

much cheaper than the chelating resins.  

 From a previous study, the hydrated iron oxide (HFO) nanoparticles were 

dispersed in the polymeric ion exchangers referred to as hybrid ion exchanger supported 

iron oxide or HIX-Fe (15, 29, 37, 52). Amphoteric sorption behaviors of metal oxide 
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nanoparticles can be maintained after dispersing metal oxide particles within the gel 

phases of ion exchangers. The hybrid nanosorbent can be tailored to be selective either 

toward transition-metal cations or anionic ligands while completely rejecting the other by 

selecting the appropriate type of polymeric ion exchangers. Such tunability of the hybrid 

material results from the Donnan effect exerted by the ion exchanger support (21).  

Instead of using the traditional cation spherical beads, ion exchange fibers (IX-F) 

were used as support materials where the hydrated zirconium oxide (HZO) nanoparticles 

were irreversibly dispersed into the polymer phase of cationic exchange fibers. Ion 

exchange fibers (IX-fibers) from the heart of the proposed processes; in essence, they 

offer unique opportunities to use and consume CO2 for efficient regeneration compared to 

other commercial sorbent materials available to date.  

The fibers are essentially long polypropylene cylinders with average diameter of 

approximately 25 µm. Figure 6.1A illustrates ion exchange fibers with strong-acid(-SO3
-
) 

functional groups (Fiban K1); figure 6.1B presents virgin fiber materials photographed at 

x10 magnification and figure 6.1C shows the scanning electron microphotograph (SEM) 

of a single fiber (x2,000). The sulfonic acid functional groups of the IX-fibers do not 

have specific affinity for toxic metals, but due to the Donnan effect, toxic metals are 

concentrated within IX-fibers (29). It should be noted that HZO nanoparticles are 

innocuous, inexpensive, and chemically more stable than the previously used HFO 

nanoparticles. The amorphous zirconium oxide exhibits very high sorption affinity for 

toxic metals as well as metalloids namely arsenic oxyanions and oxyacids as mentioned 

in chapters 4 and 5. Nano-scale HZO particles dispersed within the cation exchange 
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fibers offer selective sorption sites for toxic metals (M
2+

) through Lewis acid-base 

(metal-ligand) interactions where toxic metals (Lewis acid) accept lone pair of electrons 

from the oxygen donor atoms (Lewis base) of the HZO nanoparticles (36, 77).  

 

 

A. Fiban K 1 

 

Figure 6.1 (A)
 
strong acid ion exchange fibers with sulfonic acid functional group, (B) 

Virgin fiber materials photographed at x10 magnification. (C) SEM photograph of a 

single fiber (x2,000) (44) 
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6.1 Synthesis of Hybrid Cation Exchange Fibers impregnated with HZO 

nanoparticles or HCIXF-Zr 

 Cylindrical strong-acid cation exchange fibers (Fiban K-1) and strong acid cation 

exchange resin beads (Purolite C145) were obtained from the Institute of Physical 

Organic Chemistry of the National Academy of Science in Belarus, and Purolite (PA), 

respectively. Similar materials are also produced by other manufacturers. Table 6.1 

provides the salient information about the cation exchange fibers and resin beads used in 

the study. The method for impregnating host polymeric ion exchange materials with 

hydrated metal zirconium oxide nanoparticles was the same as the method for preparation 

of HAIX-Zr discussed in chapter 4. 

Table 6.1 Salient property of ion exchange materials  

Property Strong Acid Cation (SAC) Exchangers 

Material Purolite C145 Fiban K1 

Shape Spherical Cylindrical 

Size 500-1200 µm in diameter 10-50 µm cross section 

Capacity 3 meq/g dry 3 meq/g dry 

Functional groups R-SO3
-
H

+
 F-SO3

-
H

+
 

Chemical structure 

 

See figure 6.1A 
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6.2 Metals (Zinc) Removal during Fixed-bed Column Runs  

 Column runs were carried out using both hybrid cation exchange fibers (HCIXF-

Zr) and resins (HCIX-Zr) material loaded with the same HZO nanoparticles. For 

comparison, both materials were run with identical influent concentrations of 2 mg/L 

Zn
2+

 in the presence of 100 mg/L of Na
+
, Ca

2+
 , and HCO3

-
 at pH 7.5. Fixed-bed column 

runs with 1 g (around 3 cm
3
) of packed hybrid ion exchange fibers (HCIXF-Zr) were 

carried out using  pressure-resistant epoxy coated glass columns (11 mm in diameter and 

250 mm in length), constant-flow stainless steel pumps, and an Eldex fraction collector. 

Figure 6.2 provides the schematic of the laboratory apparatus used during fixed bed 

column run and CO2 regeneration cycles for both IX-fibers and resins.  

 Two major processes are depicted in figure 6.2 including metal removal (Zn
2+

)
 

using hybrid strong acid cation exchange fiber (HCIXF-Zr) loaded with hydrated Zr(IV) 

oxide (HZO) and the CO2 regeneration process using 1% of Ca
2+

 solution sparged with 

solid CO2 . The exhausted HCIXF-Zr column for metal (i.e. Zn
2+

) removal was 

regenerated by solid CO2 sparged in 1% of calcium chloride at pH 3.7. The pressurized 

regenerant solution could be sparged with carbon dioxide by adding dry ice until the 

pressure reaches 100 psi. The throttling valves were used to control the flow rate of 

regenerant solution while an Eldex fraction collector collected samples at predetermined 

time intervals.   
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Figure 6.2 A schematic diagram and the experimental apparatus used for both service 

cycles and regeneration cycles while using fiber and resin materials (46) 
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 During the service cycles as shown in Figure 6.3, HCIXF-Zr demonstrates a high 

selectivity for the target contaminant (i.e. Zn
2+

) in the presence of competing ions. The 

hybrid fibers perform comparably to their hybrid resin counterparts in terms of both 

efficiency and overall capacity. From Figure 6.3, it can be observed that both materials 

effectively removed trace amounts of zinc in the presence of high concentrations (100 

mg/L) of competing sodium and calcium cations. Sharper breakthroughs were seen for 

HCIXF-Zr materials with 10% breakthrough occurring at approximately 7,500 mL of 

volume throughput. The HCIX-Zr materials experienced 10 % breakthrough at less than 

5,000 mL. One significant difference is that the breakthrough curves exhibit fairly 

“sharp” profiles as opposed to the more gradual breakthrough seen with traditional ion 

exchange resins. These sharp breakthroughs are indicative of the difference in physical 

and kinetic properties of the resin and fiber materials.  Additional confirmation of 

these differing properties can be seen following the 24 hours interruption test as 

highlighted in Figure 6.3. Following a restart, monitoring of the effluent zinc 

concentration in the HCIX-Zr column showed a substantial decrease in the effluent zinc 

concentration. After the passage of several hundred bed volumes, the effluent 

concentration returns to pre-interruption levels. In contrast, very little change was 

observed in the HCIXF-Zr column during the interruption test. This phenomenon, as 

explained in previous studies, represents a predominance of intraparticle diffusional 

resistance within the resin beads (53, 78, 79). For the HCIXF-Zr, the drop of Zn
2+

 

concentration in the column was negligible, suggesting relatively insignificant 

intraparticle diffusional resistance within the fibers. 
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             Figure 6.3 The results of Zn
2+

 removal on fixed-bed column runs using four different ion exchange materials, namely,  

  hybrid  cation exchange fibers (HCIXF-Zr) , hybrid ion exchange resins (HCIX-Zr) loaded with Hydrated Zr (IV) oxide 

  (HZO), commercial cation exchange resin bead C145, and commercial cation exchange fiber K1
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6.3 Regeneration using Solid CO2 (Dry Ice) Sparged 1% Ca
2+

 Solution 

 Figure 6.4 shows the results of two regeneration histories using both HCIX-Zr 

and HCIXF-Zr under otherwise similar conditions. It can be seen that HCIX-F 

outperforms its resin counterpart and is fully regenerated (> 98 % zinc recovered) in 

fewer than 100 bed volumes. The HCIX-Zr was poorly regenerated with only 30% zinc 

recovery. Fast and favorable kinetics of IX-fibers have also been reported in several 

studies. (80) 

 

Figure 6.4 Comparison of zinc elution between HCIXF-Zr (Fiban K1) and HCIX-Zr 

(Purolite C145) loaded with HZO  

0

100

200

300

400

500

0 25 50 75 100

Z
n

2
+

 C
o
n

c.
 (

m
g
/L

) 

Fiban K1 loaded HZO

C145 resin loaded HZO

Bed Volumes 

Experimental Conditions 

SLV = 1 m/hr., EBCT = 2 min 

CO
2
 (100 psi) sparged 1 % Ca

2+ 

solution 

 % Zn
2+ 

Recovery 

- HCIXF-Zr = 98% 

- HCIX-Zr = 30% 

 

 



   

154 
 

6.4 Fiber Morphology and Regeneration  

 The most significant difference between the resin and fiber materials can be 

observed during the carbon dioxide regeneration process as demonstrated in figures 6.5 

and 6.6. In each instance, the fiber material is completely regenerated in less than 100 bed 

volumes while the resin material’s performance is substantially inferior. The underlying 

reasons for these phenomena are largely morphological in nature for fiber materials 

(HCIXF-Zr). Earlier studies have also provided optical verification of shrinking resin 

cores during acid regeneration (81). On the contrary, for IX-fibers, the functional groups 

essentially reside on the surface, and they are readily accessible. Thus, intra-particle 

diffusion is nearly absent as illustrated in figure 6.6. Additional studies have shown the 

diffusional path length to be significantly less for fiber materials versus their resin 

counterparts. Consequently, a weak acid CO2 solution works satisfactorily as a substitute 

for mineral acids, namely sulfuric and hydrochloric acid as regenerant. HZO surface 

binding sites are amphoteric; at an acidic pH, the binding sites are protonated and become 

positively charged. Consequently, positively charge Zn
2+

 gets rejected due to the Donnan 

co-ion exclusion effect and thus desorption is thermodynamically favorable as illustrated 

in Figure 6.5. 

Figure 6.5 Schematic illustration of sorption/desorption of toxic metal zinc on HZO
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  Figure 6.6 A schematic depicting the progress of regeneration for HCIXF-Zr materials, the progress of regeneration for 

  HCIXF-Zr materials 
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6.5 The Use and Sequestration of Carbon Dioxide 

 The use of carbon dioxide as an environmentally benign regenerant chemical has 

several notable advantages. First, the use of aggressive chemicals may be avoided 

entirely in the regeneration process. The waste regenerant streams do not contain any 

aggressive acid solution. Rain water, snowmelt or any source of water with low alkalinity 

can be used for CO2 dissolution. Second, because regeneration efficiency is dependent 

only on the partial pressure of carbon dioxide, a number of alternative carbon dioxide 

sources may exist. Previous studies have demonstrated the use of captured flue gas (PCO2 

= 0.19 atm) as a viable regenerant (44, 45, 82). The reuse of such waste streams would 

represent a very inexpensive process input as opposed to the purchase of chemical 

regenerant. Third, the carbon dioxide used for regeneration would be permanently 

sequestered as carbonate alkalinity. This represents a net avoidance of carbon dioxide 

emissions that would otherwise be generated by the flue gas source or a traditional ion 

exchange process. Along the lines of using alternative carbon dioxide sources, this 

research demonstrated the effective use of dry ice as a carbon dioxide source. Some 

progress has recently been made in producing solid carbonic acid and dry ice 

economically from carbon dioxide gas (83). Dry ice may present some operational 

advantages over using carbon dioxide gas in terms of both use and storage. The 

condensed form of carbon dioxide can also serve as an excellent regenerant for HCIXF-

Zr. 
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CHAPTER 7 

SALT FREE WATER SOFTENING PROCESSES 

The objective of this study is to validate novel salt free water softening processes 

using two types of heterogeneous cation exchangers along with regeneration techniques. 

First, the gel weak acid cation (WAC) exchangers preloaded in a sodium form were used 

for hardness removal. Both traditional WAC and Shallow Shell Technology (SST) resins 

were used to validate the efficiency of the regeneration processes with either CO2 sparged 

DI water in a pressurized chamber or a diluted biodegradable organic acid (i.e., 2% acetic 

acid). Second, the macroporous strong acid cation (SAC) exchanger is used in polyvalent 

forms (i.e., Al
3+ 

and Fe
3+

) instead of the traditional water softening exchange process that 

uses a strong acid cation (SAC) exchanger in the sodium form. Regeneration of the novel 

material uses only stoichiometric amounts of polyvalent cation salts so that no excess salt 

from the regeneration solution is discharged from the process. The results and discussion 

cover the following topics: 

1. Underlying principal of the proposed processes by using two different types of 

heterogeneous cation exchangers and regeneration techniques. 

2. Hardness removal by using weak acid cation exchangers for both traditional 

WAC and SST resins, and regeneration with solid CO2 (dry ice) or dilute 

biodegradable organic acid (2% acetic acid).  

3. Simultaneous removal of hardness and anionic ligands (i.e., fluoride) by using the 

SAC resin in the aluminum form. 
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7.1 Underlying Principal of The Proposed Processes 

The novel salt-free water softening processes (i.e., removal of Ca
2+

, Mg
2+

, Fe
2+

, 

etc.) are presented in this study using two different cation exchangers. First, weak acid 

cation (WAC) exchangers were used for removal of hardness and either solid CO2 (dry 

ice) sparged in water in a pressurized chamber or diluted biodegradable organic acid (i.e., 

2% of acetic acid) was used as a regenerant solution. The waste acetic acid is 

biodegradable, so it does not affect the environment after discharge into a natural 

waterway. Second, the macroporous strong acid cation (SAC) exchange resins preloaded 

in aluminum form and the use of stoichiometric amounts of Al(III) salts as the 

regeneration chemical. The waste is mainly from hardness (i.e., Ca
2+

 or Mg
2+

) removed 

during softening and anionic species from regeneration chemicals, e.g., chloride, with no 

excess salts from regeneration being discharged during the process. No aluminum or 

other polyvalent cations leach into the treated water due to the formation of polyvalent 

cation (hydr)oxide particles and the deposition of the particles into the matrix of the 

resins. The process can also remove trace anionic ligands (i.e., fluoride, phosphate, etc.) 

due to the formation of oxides of the polyvalent cation particles, i.e., Al(III) oxide, 

through Lewis acid-base interactions.  

7.1.1 Salt-Free Water Softeninging Process using WAC Resins 

 Hardness ions are removed by weak acid ion exchanger (WAC) in hydrogen or 

sodium form; 

  (     )   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅            (     )
 
    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅            (7-1)  
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  (     )  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅            (     )
 
    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅           (7-2) 

 Regeneration with solid CO2 (dry ice) sparged water in presurized chamber @120psi 

                               pKH = 1.41 @ 20°C  (7-3) 

                     
            pKa1 = 6.38@ 20°C  (7-4) 

 Regeneration by 2% acetic acid solution 

                             (aq)       pKa1 = 4.75  (7-5) 

 Regeneration of WAC resins using either CO2 or acetic acid solution 

  (     )
 
    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅            (     )  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅            (7-6)  

 The affinity sequence of WAC resins with carboxylic functional groups can be 

described as follows: H
+ 

>> Ca
2+ 

> Na
+
. For this reason, hydrogen ions as provided by the 

carbonate systems (eq 7-4) or the acetic acid dissociation (eq.7-5) can be effective 

regenerant for WAC resins. Note that from the previous study using ion exchange fibers 

which have much shorter diffusional path length than the tradition WAC resins were 

effective for CO2 regeneration. (44, 45, 82) The hydrogen concentration from the 

carbonate systems (eq.7-4) are much less than the inorganic acid that is used to for 

regenerate traditional WAC resins. Due to the unavailability of commercial ion 

exchanger fibers, the commercially available SST resins from Purolite which have an 

innert core and the functional groups residing primarily on the outer shell similar to the 

former ion exchanger fibers were chosen to validate the concept. SST resins are believed 
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to be able to regenerate by CO2 or dilute acetic acid because they have lower diffusional 

path lengths so that hydrogen ions can easily migrate into the pore and exchanged with 

the hardness. 

7.1.2 Salt Free Water Softening Process Using SAC Resins in Polyvalent Form 

The second salt free water softening processes use macroporous strong acid cation 

(M-SAC) exchange resins in the aluminum form. Note that gel type SAC can also be 

used. However, M-SAC exchangers give higher fluoride or other anionic ligands removal 

capacity than gel type SAC due to the high possibility of metal oxide deposition. A cation 

exchanger in polyvalent cation form, namely Al(III), Fe(III), Zr(IV) or Ti(IV) can also be 

used.  

First, the resins are changed into the aluminum form by passing stoichiometric 

amounts of aluminum salt, such as alum                    or aluminum chloride 

              solution as shown in equation (7-7), where the overbar indicates the resin 

phase.  

       
     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                 

       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅               (7-7) 

The hardness (i.e., Ca
2+

 or Mg
2+

) in the water is removed by ion exchange with 

the Al
3+

 in M-SAC as shown in equation (7-8), where M represents cation corresponding 

to hardness (e.g., Ca
2+

, Mg
2+

, Sr
2+

, Ba
2+

). 

 

        
       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                    

      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                        (7-8)

 Aluminum ions, released from the cation exchange functional groups undergo 
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hydrolysis reactions with water to form aluminum (hydr)oxide (Al(OH)3(s)) particles that 

precipitate within a macroporous cation exchanger through the following reaction: 

                                        (7-9) 

 From equation (7-9), protons are produced from the precipitation reaction, which 

can then react with alkalinity in water by equation (7-10) 

           
           

                                   (7-10) 

 Overall, the ion exchange of hardness and polyvalent cations (i.e., Al
3+

) removes 

total dissolved solid (TDS) from the solution as bicarbonate (HCO3
-
) and hardness (i.e., 

Ca
2+

 and Mg
2+

) via acid-base neutralization and ion exchange mechanism reactions, 

respectively. Thus, changes in effluent TDS and pH are indicators of ion exchange 

activity and predictors of when the resin becomes exhausted. The exhausted resins are 

regenerated by passing only stoichiometric amounts of aluminum or other polyvalent 

cation salts, such as alum                   or AlCl3 solution through the macroporous 

strong acid cation exchange resin to reverse the reaction in equation (7-8). The aluminum 

hydroxide (Al (OH) 3(s)) particles that were previously deposited are still retained in the 

resin phase without being disturbed by ion exchange or hardness removal. After the 

regeneration with AlCl3 solution, the resins are again in the aluminum form and ready for 

the next service cycle of hardness removal as shown in equation (7-11). The waste 

regenerant stream contains small quantities of only CaCl2 solution where calcium comes 

from hardness and chloride comes from the AlCl3 regeneration solution. Due to adding 
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stoichiometric amounts of regenerant, there is no excess salt from the regeneration 

solution. 

       
       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                      

       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                 (7-11) 

 In general, the novel water softening process requires only stoichiometric 

amounts of polyvalent cations, namely Al(III), Fe(III), etc., during the regeneration 

process, which then exchange on an equivalent basis with the hardness (i.e., Ca
2+

 or 

Mg
2+

). The process can be classified as a salt-free water softening process because the 

soft water effluent has lower sodium than traditional cation exchange and there are no 

NaCl being discharged in the waste regeneration stream. The waste regeneration stream 

contains low amounts of hardness (i.e., Ca
2+

 and Mg
2+

) from the influent and anions from 

the salt of the polyvalent cations used for regeneration. 

  During the water softening process, transition metals and anionic ligands can be 

removed from the water simultaneously through the Lewis acid-base interaction with 

concurrent hardness removal due to the presence of freshly precipitated polyvalent cation 

oxides on the matrix of the cation exchanger. Every cycle of cation exchanger 

regeneration with polyvalent cations provides a new source for freshly precipitated 

polyvalent cation oxides that can take part in Lewis acid-base interactions. 
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7.2 Water Softening using Weak Acid Cation (WAC) Exchange Resins 

7.2.1 Hardness Removal using Two WAC Exchangers at Influent Ca
2+

 400 mg/L 

 Figure 7.1 shows the results of two separate fixed-bed column runs using two 

different weak acid cation (WAC) exchangers, namely, shallow shell technology weak 

acid cation exchange resin with inert core (Purolite SST 104) and traditional weak acid 

cation exchange resin (Purolite C104). Besides the difference in physical configuration, 

the chemical properties are virtually identical for these two ion exchange materials. Note 

that in both cases, hardness was removed very efficiently for more than 55 bed volumes.  

 

Figure 7.1 The results of Ca
2+

 removal on fixed-bed column runs using two different 

WAC resins ( SST104 and C104) at influent Ca
2+

 400 mg/L. 
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7.2.2 Comparison of Solid CO2 Sparged Water and Acetic Acid Regeneration 

 Figure 7.2 shows the results of two hardness regeneration runs using two different 

regeneration schemes, namely CO2 sparged in DI water at 150 psi and 0.5 % acetic acid. 

It can be seen that the diluted acetic acid (0.5%) resulted in high calcium desorption with 

more than 85% of calcium recovery, while the solid CO2 sparged water was not effective 

for hardness regeneration with only 6-25 % of calcium recovery.  

 

Figure 7.2 Comparison of water softening regeneneration between the solid carbon 

dioxide sparged water @150 psi and dilute 0.5% acetic acid regeneration 
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 From the previous study (44, 45, 53, 82), CO2 can be successfullly used to 

regenerate hardness from ion exchange fibers due to the much shorter diffusion path lenth 

of the ion exchanger fibers compared to the traditional resin beads. For this experiment, 

we think that the reason may come from the insufficient hydrogen ions concentration 

provided by the carbonate systems (CO2 sparged water at 150 psi) as well as the diffusion 

path length of the SST resin is still much higher than the ion exchange fibers. Note that 

the general ion exchange resins including the SST resins have diameters of approximately 

500µm while the ion exchanger fibers have a cylindrical shape with diameter around 50 

µm. Although the SST resin has an inert core so that the diffusion path length is shorter 

than the traditional resin, the SST resin still has a much longer diffusion pathlength than 

the ion exchanger fibers. 

7.2.3 Hardness Removal using Two WAC Exchangers at Influent Ca
2+

 200 mg/L 

 Two weak acid cation (WAC) exchangers with carboxylic functional groups were 

used for removal of hardness and the feed calcium concentration was reduced from 400 

to 200 mg/L including other ions as shown in the figure 7.3. The calcium was removed 

from the feed influent effectively and calcium breakthrough from SST104 was a little 

earlier compared to the traditional C106.  As observed from the previous study, acetic 

acid can be used for hardness regeneration more effectively than the CO2 sparged DI 

water. For this experiment, 0.5% of acetic acid solution was used to regenerate both 

resins at stochimetric amounts (i.e., no excess acid required). The amount of acetic acid is 

calculated based on the capacity of the resin. 
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Figure 7.3 The results of Ca
2+

 removal on fixed bed column runs using two different 

WAC resins ( SST104 and C104) at influent Ca
2+

 200 mg/L.  

 

Figure 7.4  Diluted acetic acid regenereation (0.5% acetic acid) of traditional weak acid 

cation exchanger C104 and shallow shell technology (SST 104) 
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 Fom figure 7.4, two differrent regeneration curves are presented and high calcium 

recoveries (80-90%) are observed. Calcium can be recovered from the SST104 better the 

C106 even though the SST104 takes a longer time than the C106. The concentration of 

acetic acid may affect the regeneration efficiency. For the next experiment, the 

concentration of acetic acid was increased from 0.5% to 2.0%. 

7.2.4 Hardness Removal using Two WAC Exchangers at Influent Ca
2+

 150 mg/L 

 For this study, the influent calcium concentration was lower than the previous 

experiment and a higher concentration of acetic regenerant solution was used. Purolite 

SST104 and C106 were again used to validate the hardness removal and acetic acid 

regeneration. From the regeneration curve of the SST104 regeneration with 2% acetic 

acid, high calcium recovery from regeneration runs 2 and 3 can be achieved by reducing 

the flow rate that keeps the EBCT at 13.3 min. By increasing the acetic acid 

concentration from 0.5 to 2.0 %, high calcium recovery (87-100 %) can be achieved with 

less than 20 bed volumes as shown in the regenerations 2 and 3 from figure 7.6. For the 

traditional WAC resin (Purolite C106), high calcium recovery can be obtained by 2% 

acetic acid as shown in the figure 7.8. From the previous experiments in section 7.2.3, 

0.5% of acetic acid can not fully regenerate all of the calcium with 79% recovery as 

mentioned in figure 7.4. By using 2% acetic acid, very high calcium recovery from the 

regeneration process can be attained in both traditional spherical WAC resin beads 

(Purolite C106) and the Shallow Shell Technology (inert core) and WAC resin (Purolite 

SST104).  
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Figure 7.5 The results of Ca
2+

 removal on fixed bed column runs using WAC resins        

(SST104) at influent Ca
2+

 150 mg/L 

Figure 7.6  Diluted acetic acid regenereation (2% acetic acid) of the shallow shell 

technology (SST 104) 
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Figure 7.7 The results of Ca
2+

 removal on fixed bed column runs using WAC resins        

( C106) at influent Ca
2+

 150 mg/L 

 

Figure 7.8  Diluted acetic acid regenereation (2% acetic acid) of traditional weak acid 

cation exchanger C106  
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7.2.5 Hardness Removal at Ca
2+

 70 mg/L and 2% Acetic Acid 

 After gaining experience for hardness removal and regeneration, high calcium 

recovery from both ion exchangers can be achieved with less than 10 bed volumes. For 

this experiment, the influent calcium concentration was lowered to the 70 mg/L or 175 

mg/L as CaCO3, which is categorized as hard water usually found in natural water. Both 

Purolite C106 and SST104 resins can remove calcium very well with calcium 

breakthrough around 450 bed volumes as shown in figures 7.9 and 7.11. Upon 

exhaustion, the resins were regenerated by using 2% acetic acid as previously used in 

section 7.2.4. The high calcium recovery (89-98 %) can be obtained with only 10 bed 

volumes. From the previous regeneration in figures 7.6 and 7.8, high calcium recovery 

can be obtained but we need up to 20 bed volumes of regeneration solution. High 

regeneration efficiency and waste minimization can be possible. 
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Figure 7.9 The results of Ca
2+

 removal on fixed bed column runs using WAC resins  

SST104 at influent Ca
2+

 70 mg/L 

Figure 7.10  Diluted acetic acid regenereation (2% acetic acid) of shallow shell 

technology WAC resin (SST 104) 
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Figure 7.11 The results of Ca
2+

 removal on fixed bed column runs using WAC resins 

(C106) at influent Ca
2+

 70 mg/L

 

Figure 7.12  Diluted acetic acid regenereation (2% acetic acid) of traditional weak acid 

cation exchanger C106  
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7.3 Water Softening Using Strong Acid Cation Exchanger in Al
3+

 form 

7.3.1 Hardness Removal at Initial Ca
2+

 100 and 50 mg/L 

 Figures 7.13-7.14 provide calcium effluent histories with two different feed 

calcium concentrations (100 mg/L and 50 mg/L) using Purolite C-145 after being 

converted from sodium into the aluminum form. The feed water also contained: 5 mg/L 

fluoride; 250 and 125 mg/L bicarbonate, respectively; 20 mg/L silica oxide (SiO2); and 

pH 7.9 and 9.0 (no pH adjustment), respectively. The calcium from both column runs was 

removed effectively. 

 

Figure7.13 Effluent calcium history for hardness removal with high calcium in feed (100 

mg/L) during column runs using macroporous strong acid cation exchanger in Al
3+

 form. 
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Figure7.14 Effluent history for hardness removal with low calcium in the feed (50 mg/L) 

during column runs using macroporous strong acid cation exchanger in Al
3+

 form. 
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Figure7.15 Concentration profiles of aluminum in treated water during column runs 

using macroporous strong acid cation exchanger in Al
3+

 form. 
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aluminium hydroxide precipitation (eq. 7-9) react with the alkalinity in the water (eq. 7-

10) resulting in decreasing of alkalinity. This reaction occurred at the beginning of the 

run until reaching 300 bed volumes. Then, when all of the aluminum in the ion exchanger 

was exchanged with the hardness (i.e., Ca
2+

), there are no more protons generated from 

the aluminium hydroxide precipitation to react with the alkalinity in the water, resulting 

in increasing of conductivity after 300 bed volumes. The hardness removal ended at 

around 300 bed volumes as shown in figure 7.13. The hardness breakthrough can also be 

simply monitored by increasing in the conductivity of the effluent as shown in figure 

7.16. 

 

 Figure7.16 Breakthrough profile of treated water conductivity during column runs using 

macroporous strong acid cation exchanger in Al
3+

 form. 
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7.3.2 Fluoride Removal  

It is well-established that polyvalent metal oxides, namely Al(III), Fe(III) and 

Zr(IV), exhibit amphoteric sorption behaviors, i.e., they can selectively bind both Lewis 

acids or transition-metal cations (e.g., Zn
2+

, Pb
2+

, Cu
2+

, etc.) and Lewis bases or anionic 

ligands (e.g., arsenate, phosphate, fluoride, etc.) through the formation of inner-sphere 

complexes.(15, 29, 37) From the salt-free hardness removal process by using a 

macroporous cation exchanger in aluminum or other polyvalent cation forms, hydrated 

polyvalent metal oxide particles, namely Al(III) oxide and Fe(III) oxide are generated 

and deposited in the matrix of the resin without disturbing the ion exchange sites 

according to eq.(7-9).  

Figure7.17 Effluent history for fluoride removal during column runs using macroporous 

strong acid cation exchanger that started in Al
3+

 form 
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To validate trace anionic ligand removal, figure 7.17 shows the effluent history of 

fluoride removal simultaneously with calcium removal. Fluoride effluent increased above 

WHO recommendation levels (1.5 mg F/L) after nearly 400 bed volumes. The evidence 

of aluminum loading including fluoride adsorption in the cation exchanger (C145) is 

shown in figure 7.18. After hardness removal, the exhausted resin (Purolite C145) was 

used for elemental analysis using the combination of SEM and EDX techniques to see the 

distribution of aluminum and fluoride distribution inside the beads.  

  

  

  

Figure7.18 SEM-EDX elemental mapping of Purolite C145 at the end of Ca
2+

 removal  

Purolite C145-Al, Secondary Electron (SE) Mode Purolite C145-Al, Carbon (C) EDX mapping  

Purolite C145-Al, Aluminum (Al) EDX mapping  Purolite C145-Al, Fluoride (F) EDX mapping  
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CHAPTER 8 

CONCLUSIONS 

 In this study, two different hybrid polymeric/inorganic nanosorbents were 

developed primarily for: first, selective removal of trace heavy metals and anionic ligands 

(i.e., arsenic and fluoride); and second, removal of hardness from water (water softening) 

without using salt (NaCl or KCl) in the regeneration process. The goals of development 

for the two different processes are geared toward efficiency and sustainability. Zirconium 

oxides were chosen over the previous iron oxides because zirconium oxide exhibits 

higher chemical stability over wide ranges of pH and redox conditions than the iron 

oxides. For water softening, new heterogeneous cation exchangers with novel 

regeneration schemes were introduced to validate the hardness removal efficiency in 

terms of both sorption and regeneration. Since water softening processes have been 

applied worldwide, the reduction of salt discharge into natural waters can make a 

significant impact. The summary findings of two main studies are summarized in the 

following sections. 

8.1 The hybrid polymeric ion exchangers supported hydrated zirconium 

oxide (HZO) nanoparticles 

8.1.1 Synthesis and Characterization of Hybrid Sorbents 

 The amorphous HZO nanoparticles were uniformly distributed throughout the 

polymeric ion exchanger phases at an approximately 12% (w/w) with sizes well below 50 

nm as confirmed by SEM/EDX, HR-TEM, XRD, and acid double digestion methods. 
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 Inexpensive industrial grade zirconium oxide can be used as startup materials for 

preparation of HAIX-Zr. The hybrid sorbents synthesized from industrial grade 

zirconium oxide exhibit high sorption capacity as good as the materials prepared from 

reagent grade zirconium salt purchased from Sigma Aldrich. Zirconium is also an 

abundant and inexpensive material similar to iron based sorbents developed earlier. 

 In general, due to the abundance of zirconium in many countries such as China 

and India and commercially availability of parent anion exchange resins worldwide, the 

HAIX-Zr can be produced locally with a simple preparation method that can reduce the 

cost of shipping and promotes the local economy.  

 From the operational view point, due to their high mechanical strength, the 

HAIX-Zr can be used in fixed-bed column configurations without degrading into small 

particles that create a head loss in the column. Note that commercially available 

granulated type metal oxide sorbents such as granulated ferric oxide/hydroxide 

(GFO/GFH), activated alumina, titanium oxide, zirconium oxide and etc. tend to degrade 

into fine particles in the fixed-bed columns, and they are also inefficient to regenerate.  

 The submicron size HZO nanoparticles are easy to prepare and innocuous and 

have been used in many applications. However, according to the information in the open 

literature, preparation and development of highly selective hybrid sorbent, HAIX-Zr, 

using HZO based on the Donnan membrane principle has not been reported to date.  

 Due to high chemical stability of HZO nanoparticles, the HAIX-Zr can be 

disposed of safely in a landfill without risk of toxic leaching. Note that, the iron based 

sorbent can leach the toxic contaminants because of their instability under reducing 

conditions such as in a landfill. 
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 The polymeric anion exchange resins are the most suitable support HAIX-Zr 

synthesis because they allow enhanced transport of anions into the polymer phase due to 

their high concentration of fixed positive charges such as quaternary ammonium 

functional groups (R4N
+
) in the strong base anion exchangers. The Donnan membrane 

effect caused by the support polymeric anion exchangers plays an important role to 

remove target contaminants and enable tailoring of sorbents for intended applications.  

 With the same principle, preparation of HAIX-Zr by loading HZO particles into 

an anion exchanger is scientifically challenging due to the repulsion between zirconium 

ions and quaternary ammonium (R4N
+
) functional groups of anion exchangers. Previous 

techniques used anion exchangers in permanganate forms (MnO4
-
) followed by passing 

ferrous sulfate solution into the resin bed. The MnO4
-
 is replaced by sulfate, MnO4

2-
 is 

reduced to MnO2 (s), the Fe
2+

 is oxidized to Fe
3+

, and finally, the Fe(OH)3(s) is 

precipitated within the anion exchange beads. 

 In this study, all of the steps are simplified by loading metal (zirconium) solution 

directly into the resin simply by using zirconium solution dissolved in methanol followed 

by in-situ precipitation by alkali solution. Methanol solution can lower the dielectric 

constant. Therefore, less ionized zirconium ions can transport into the parent anion 

exchanger without being subjected to an electrical repulsion between zirconium ions and 

quaternary ammonium (R4N
+
) functional groups of the anion exchangers. 

 Two main preparation methods were developed in this study. The batch method is 

simple and can be prepared even in remote locations. However, this method takes longer 

preparation time, consumes more chemical, and generates more waste sludge than the 

column method. The column method usually takes only 1 cycle and uses only 3-5 hours 



   

182 
 

for preparation. Moreover, the chemical requirements and waste generation are much 

lower than the batch method. Depending on the situation, the batch method is suitable for 

using onsite preparation because of its simplicity. However, for manufacturing, the 

column method is more efficient and is a cleaner process. 

8.1.2 Development of Hybrid Anion Exchanger Supported HZO Nanoparticles 

(HAIX-Zr) for Removal of Trace Anionic Ligands (i.e., arsenic and fluoride) 

 From the equilibrium batch isothermal test, the arsenic and fluoride sorption 

behaviors follow the Langmuir isotherm with the maximum sorption capacity of 20 mg 

As(V)/g at pH 7.5 and 35 mg F/g at pH 5.5, respectively. The sorption capacity of the 

HAIX-Zr for both arsenic and fluoride is three times higher than the most commonly 

used activated alumina (AA).  

 For fluoride removal, HAIX-Zr can remove fluoride selectively. Activated 

alumina (AA) can remove fluoride, but the removal capacity was significantly lower than 

the HAIX-Zr. In contrast, iron based nanosorbents have very low affinity toward fluoride 

ions resulting in nearly immediate breakthrough.  

 According to the hard and soft acid and base (HSAB) principal, hard acids such as 

zirconium and aluminum are likely to bind with hard bases such as fluoride. Iron is 

categorized as a transition metal (borderline), thus it has less affinity toward fluoride 

ions. 

 After two runs of fluoride sorption/desorption, some of the activated alumina 

(AA) was degraded into very fine particles and blocked the water flow through the 

column. 
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 From the column run studies using NSF Challenge Water Standards 53, the 

HAIX-Zr selectively removed arsenic with high concentrations of competing ions. 

HAIX-Zr can remove As(V) effectively for nearly 6,000 bed volumes before reaching the 

maximum contamination level (MCL) of arsenic at 10 ppb. As(III) was also effectively 

removed by HAIX-Zr until around 4,000 bed volumes before the effluent exceed the 

MCL (10 ppb) 

 Due to the Donnan membrane effect, the cation exchanger supported zirconium 

oxide or HCIX-Zr exhibits low arsenic and fluoride removal capacity.  

 HAIX-Zr is amenable to efficient regeneration using 3% NaOH/ NaCl solution 15 

bed volumes without significant loss in capacity. More than 90% of arsenic and fluoride 

were recovered from the regeneration processes.  

 The spherical HAIX-Zr beads are robust and durable. There are no signs of 

particle breakdown into powder. XRD diffractograms confirm that the HZO particles are 

still amorphous after being used for many cycles of sorption/desorption. The regenerable 

nature of HAIX-Zr reduces the volume of disposable arsenic-laden waste 100-fold versus 

single-used granular metal oxide adsorbents (67). 

 Silica and phosphate at concentrations greater than 30 mg/L as SiO2 and 200 µg 

P/L result in reduction of arsenic sorption capacity. Sulfate ions have a minor effect 

toward arsenic sorption onto HZO nanoparticles especially in the dilute ranges. 

 A kinetic study on arsenate and fluoride adsorption onto the HAIX-Zr confirmed 

that intraparticle diffusion was the rate limiting step and the effective intraparticle 

diffusivity of arsenic and fluoride are 2.3 x 10
-11

 and 8 x10
-11

 cm
2
/sec, respectively. 
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 For fluoride removal technology, activated alumina (AA) has been widely used.  

However, due to the amphoteric properties of aluminum, significant aluminum ions leach 

out during regeneration with alkaline solution and during material conditioning with acid 

solution. For HAIX-Zr under identical conditions, insignificant amount of zirconium ions 

are found in the solution. 

8.1.3 Development of Hybrid Cation Exchange Fibers Supported HZO 

Nanoparticles (HCIXF-Zr) for Removal of Heavy Metals (i.e. Zinc) 

 Hybrid strong acid cation exchange resin beads and fibers loaded with hydrated 

zirconium oxide (HZO) nanoparticles were prepared and used for selective removal of 

toxic heavy metals such as zinc. Both hybrid cation exchange beads and fibers exhibit 

high selectivity toward transition metals (i.e. zinc) for more than 5,000 bed volumes in 

the presence of high concentration of competing cations such as calcium and sodium at 

neutral to alkaline pH.  

 Hydrated Zr(IV) oxide (HZO) nanoparticles can be dispersed in both cation and 

anion exchangers. The HZO particles can bind with both trace toxic heavy metals and 

anionic ligands such as arsenic and fluoride. Due to the Donnan membrane effect, the 

toxic heavy metals removal capacity can be greatly improved by  dispersing HZO onto 

the cation exchangers because the high concentration of sulfonic (SO3
-
) acid functional 

groups enhance transportation of heavy metals into the material and then bind with the 

HZO particles. 

 Unlike the hybrid cation exchange resin counterparts, the hybrid cation exchange 

fibers or HCIXF-Zr was able to regenerate with only solid CO2 (dry ice) sparged in 1% 
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calcium solution with high percentage of toxic metal recoveries (i.e., 98% of zinc) within 

75 bed volumes.  

 Ion exchange fiber based hybrid nanosorbents offer the unique capability to use 

and consume CO2 during the efficient regeneration, whereas commercial ion exchange 

resins impregnated with the same zirconium oxide nanoparticles are not amenable to 

regeneration with CO2.  

 A much shorter intraparticle diffusion path length in cylindrical ion exchange 

fibers (diameter 50µm) as compared to resin beads (diameter 500 µm) is the underlying 

reason for a highly efficient regeneration of the fibers.  

 The HZO surface binding sites are amphoteric; at an acidic pH, the binding sites 

are protonated and become positive charged. Consequently, positively charge Zn
2+

 gets 

rejected due to the Donnan co-ion exclusion effect and thus desorption is 

thermodynamically favorable.  

 

8.2 Salt-free water softening processes 

 Water softening processes using ion exchange technologies are widely used in 

both household and industrial scales. The traditional strong acid cation (SAC) exchanger 

in the sodium form is mostly used for softening of hard water. Due to the unfavorable 

equilibrium, high concentration of brine solution (10-12% NaCl) is required to regenerate 

the exhausted SAC resin to bring the resin into the sodium form again. At high 

concentration of salt is discharged into a natural body of water resulting in high total 

dissolved solid (TDS) especially in arid areas. The ecosystem is affected by the salt 
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discharge from the softener. Moreover, during the softening process, the sodium ions 

from the SAC exchanger are being exchanged stoichiometrically with the hardness (i.e., 

Ca
2+

, Mg
2+

, etc.) and released into treated water. High concentrations of sodium ions 

have an effect on people who have cardiovascular diseases such as hypertension.  

 In this study, salt free water softening processes were developed using two 

different cation exchange resins. The processes are not using salts (NaCl and KCl) so that 

no waste NaCl is generated from the process. Moreover, the treated water does not 

containing sodium ions. The summary findings of the two main processes are 

summarized in the following sections: 

 By using weak acid cation (WAC) exchange resins in the hydrogen form, we 

found that diluted 2% acetic acid can regenerate hardness (i.e., Ca
2+

) in the resins 

effectively with more than 95% of calcium recovery at only 10 bed volumes while solid 

CO2 (dry ice) sparged in water at high pressure (150 psi) was not effective with only 20% 

calcium recovery. Compared with the conventional WAC resin that use aggressive 

mineral acid (e.g., 5% HCl), diluted acetic acid can be considered to be a good option 

because it is non-aggressive, inexpensive, requires low volumes and is biodegradable.  

 Wide ranges of hardness (i.e., Ca
2+

) were tested in these experiments (400, 200, 

150, 70 mg/L as Ca
2+

) by using two different types of weak acid cation exchangers in the 

hydrogen form, shallow shell technology (Purolite SST104) and traditional spherical 

resin (Purolite C106). From the column run results, both resins can remove hardness 

effectively. The chemical composition and properties of two resins are virtually identical. 
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The SST104 contains an inert core (functional groups of the resin reside on the outer 

layer), while the C106 resin is homogeneous beads. 

 After both resins were exhausted with the calcium ions, 2% acetic acid can 

successfully regenerate both resins and the calcium ions were recovered at nearly 90% 

for every run.  

 The salt-free water softening by a strong acid cation (SAC) exchanger in the 

aluminum form can simultaneously remove hardness (i.e. Ca
2+

) and anionic ligands (i.e. 

fluoride). This process requires only stoichiometric amounts of regeneration salt. There is 

no excess regeneration salt except from the hardness being discharged into the regenerant 

solution. Moreover, since the resin did not start in the sodium form, there are no sodium 

ions to appear in the treated water.  

 Fluoride ions can be co-removed with hardness due to the generation of aluminum 

hydroxide particles precipitated inside the resin.  
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APPENDIX 

Community Based Fluoride Treatment Plant for 1,000 People 

1. Design parameters 

 Fluoride in the influent  = 5.0 mg/L  

 Volume of water = 5,000 L/d (assume 1,000 people and 5 L/person/day) 

 Regeneration frequency = 1 time/month 

 Sorbent = HAIX-Zr (density 1.84 L/Kg) 

2. Data from bench-scale column runs 

 Fluoride breakthrough at level of 1.5 mg F/L = 1.5 L water/g sorbent (as shown in 

figure A1 (page 190) and also shown in chapter 5, figures 5.3-5.4) 

 Regeneration solution (3% NaOH and 3% NaCl) required = 10 bed volumes 

including rinse water 

3. Design Calculations 

 Volume of water to be treated = (5,000 L/d) x (30 d/month) = 150,000 L/month 

 Amount of required sorbent = (150,000 L)/(1.5 L/g sorbent) =100,000 g =100 Kg 

 Volume of sorbent (HAIX-Zr) = (100 Kg) x (1.84 L/Kg) = 184 L 

 Design sorbent volume = 200 L 

 Assume all of the fluoride is removed from the water and is eluted from the 

HAIX-Zr during regeneration within 10 bed volumes 

o Mass of fluoride removed from the water each month                                             

= (5 mgF/L) x (g/1,000 mg) x (150,000 L/month) = 750 g  
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4. Waste management 

   For each regeneration cycle (every month), fluoride in the waste regenerant will 

be removed by precipitation with CaCl2 solution as CaF2 (Ksp = 3.45 x 10
-11

) (4). One 

mole of calcium is required to precipitate two moles of fluoride and the reaction as 

follows:                         Ca
2+

 (aq) + 2F
-
(aq) ↔ CaF2 (s) 

 Mass of fluoride in regeneration solution =750 g F x(mol/19 g)=39.5 mol fluoride 

 Amount of CaCl2 required = 39.5/2 = 19.75 mol or 2.2 Kg of CaCl2 (MW CaCl2 = 

111 g/mol). Note that, in reality, 50%  of more CaCl2 will be added to achieve 

complete precipitation. 

 Amount of solid waste (CaF2) generated each month = 19.75 mol x 78 g/mol = 

1540.5 g/month 

 After precipitation, the pH of wastewater is adjusted and pumped back to the 

precipitation tank therefore there is no waste solution discharged from the 

process. The flow scheme of fluoride treatment plant is illustrated in figure A2. 

5. Summary 

 The system can serve up to 1,000 people (assume 5 L/person/day) 

 The system can treat fluoride contaminated water around 150,000 L/month 

 Sorbent (HAIX-Zr) required 200 L (one time) 

 Regeneration solution (3% NaCl and NaOH) required 2 m
3
/month or  (1.2% of 

treated water) 

 Solid waste generated as CaF2 (s) approximately 1.54 kg/month or each person 

generate waste only 1.54 g/person/month 
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Figure A1. Fluoride effluent histories and regeneration profiles using HAIX-Zr and AA 

 

Figure A2. Flow scheme for fluoride treatment plant and on-site regeneration facility 
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