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ABSTRACT  
The goal of this dissertation is to advance the state-of-art of data-driven structural 

monitoring (Figure 0.1), which is a promising way to automate the maintenance process 

of civil structures, thus benefitting their life-cycle management in both the economy and 

performance aspect. The availability of affordable electronic data acquisition systems 

enabled continuous monitoring of structures, and effective data compression algorithms 

are needed for structural state characterization/damage detection from the collected 

signals. Ideally, the data processing algorithms would provide information for all four 

levels of damage detection proposed by Rytter (1994): 1) damage existence; 2) damage 

location; 3) damage severity; 4) remaining service life prediction.  

Damage detection in real-world structures is a complex problem because of the 

various possible forms of damage that can occur and the influences of 

operational/environmental variations on the observations/measurements made. The focus 

of this study will be the first three stages of damage detection using vibration 

measurements, which are commonly measured for structural health monitoring purposes. 

For damage existence identification time series analysis on single channel response will 

be used (Part I of this document), while higher-level damage detection is attempted by 

using multi-input-single-output subsystem modeling (Part II of this document). More 

detailed outlines of both subjects can be found in their respective introduction sections. 

The specific contributions of this study are in the following technical areas: 

exploring the capabilities of different SHM vibration sensors, proposing and testing new 

indicators/thresholds for damage identification, cross-comparing the proposed 

indicators/thresholds with existing ones through applications to various civil structures, 
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and developing theoretical models regarding the validity/sensitivity/robustness of several 

damage features. All these efforts are for the search and development of optimal damage 

detection method in a certain application. 

Farrar et al. (1999) proposed a statistical pattern recognition (SPR) paradigm for 

vibration-based structural health monitoring, which quite well generalized most damage 

detection procedures. The paradigm contains 4 steps: 1) Operational evaluation; 2) Data 

acquisition and cleansing; 3) Feature selection and data compression, and 4) Statistical 

model development. Research conducted for this dissertation centers on the last three 

stages of this paradigm, with most of the technical contributions in the last two 

categories.  

 

 

Figure 0.1 An illustration of data-driven monitoring. 
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Part I 

Chapter 1 Introduction 

1.1  OVERVIEW 
Structural vibration monitoring has received a lot of attention from the research 

community in the past few years because of public safety concerns that arise from 

infrastructures deterioration. The objective is to create automatic structural assessment 

techniques that can be realized through programmed vibration analysis. Till now many 

vibration-based damage identification techniques have been proposed, and a majority of 

existing literature concerning vibration analysis is focused on system identification/modal 

realization as the main solution to this problem.  

System identification (M. Chang and Pakzad, 2012; James III, Carrie, and Lauffer, 

1993; Juang and Pappa, 1985; Overschee and Moor, 1994; Prevosto, 1982) can be based 

on input-output or output-only (by assuming that the input has certain probabilistic 

characteristics); it can operate in either time domain or frequency domain. Some 

examples of system identification methods include subspace identification (Overschee 

and Moor, 1994), eigensystem realization algorithm (Juang and Pappa, 1985), and 

complex mode indicator function (Prevosto, 1982). A number of studies have been 

conducted on using the extracted modal properties (natural frequencies, damping ratios, 

mode shapes) for structural damage detection through model updating (Brownjohn, Xia, 

Hao, and Xia, 2001; Duan, Yan, Ou, and Spencer, 2007; Friswell and Mottershead, 1995; 

Mottershead and Friswell, 1993) or statistical process control (Doebling and Farrar, 1998; 

Pakzad, Dryden, and Fenves, 2009). The drawback of system identification, however, is 

that it is innately a global approach. It processes the responses at different locations 
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simultaneously, and its output, modal properties, is a global transformation of the 

structural characteristics. As a result, it is reported to be computationally intensive, and 

not always effective for local damage evaluation (P. Chang, Flatau, and Liu, 2003; 

Doebling, Farrar, and Prime, 1998). 

Univariate time series analysis (TSA) has been adopted for damage detection in 

many different contexts (Fassois and Sakellariou, 2007; Gul and Catbas, 2009; Haritos 

and Owen, 2004; Nair, Kiremidjian, and Law, 2006; Sohn and Farrar, 2001; Zhang, 

2007). Its major advantage over system identification is computational efficiency, as only 

the response at one sensing node is needed and thus the algorithms can be implemented 

in a decentralized manner. Common frequency domain TSA methods include Fast 

Fourier Transform (FFT) and Power spectral analysis (Porat, 1994), while time domain 

TSA methods often involves mathematical modeling of the signal so that damage 

indicators can be functions of either model coefficients or model residuals (Brockwell 

and Davis, 2002). One notable merit of time domain techniques is that damage features 

can be generated in large quantities, thus making statistical processing of features for a 

more reliable damage detection result feasible.  

1.2  RESEARCH OBJECTIVE 
Scalar TSA based damage features, like many other families of damage indices, are 

influenced not only by structural condition but also by non-relevant environmental 

factors. Due to its inherent information limitation (i.e. depending only on single channel 

response), fluctuation of feature values can become quite prominent if the data are 

collected in a varying environment, negatively affecting decision making accuracy. To 

alleviate this problem, several tasks are identified and investigated herein:  
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1. Reliable damage threshold construction (Chapter 3) 

2. New features with enhanced damage sensitivity/noise robustness (Chapter 4) 

3. Theoretical sensitivity analysis of the TSA features with respect to damage/noise 

(Chapter 6) 

To better appraising the damage detection potential of TSA features, they need to be 

compared to other types of damage indices. This topic is investigated in Chapter 5. 

In the following section, the results of my research on the univariate TSA based 

damage detection literature will be explained in further details per chapter.  

1.3  SUMMARY OF CONTENTS 
In Chapter 2, brief descriptions of the sensors used in the studies for Part I of this 

dissertation are given. Also included are reviews of several related existing damage 

detection techniques. For better clarification of the concepts, these techniques are applied 

to a 3D steel truss structure instrumented with wireless accelerometers. Static tests are 

conducted to validate the properties of the structure and then dynamic test is used for 

extracting of modal properties and model updating of the system. Finally a local damage 

is simulated on the structure by adding weight to the midspan, and statistical process 

control on autoregressive (Brockwell and Davis, 2002) residuals from impulse response 

measurements modeling are employed to detect the structural change.  

To truly automate the damage identification process, reliable damage threshold 

construction techniques are also need. In Chapter 3, two data-driven methods based on 

resampling and nearest neighbor rule are applied for threshold construction for damage 

features from autoregression (AR) analysis of vibration signals. Both threshold 
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calculation techniques are rooted in empirical feature probability estimation. The 

proposed thresholds are then tested on features extracted acceleration measurements 

collected from a 5 degree-of-freedom(DOF) test specimen. The resampling method is 

applied to Mahalanobis distance of AR model coefficients, while the nearest neighbor 

rule is used on a combination of coefficient distance feature and the residual 

autocorrelation feature. Both methods perform well in this case study. 

Statistical pattern recognition has recently emerged as a promising set of 

complementary methods to system identification for automatic structural damage 

assessment.  Its essence is to use well-known concepts in statistics for boundary 

definition of different pattern classes, such as those for damaged and undamaged 

structures. In Chapter 4, several statistical pattern recognition(Jain, Duin, and Mao, 

2000) algorithms using autoregressive models, including statistical control charts and 

hypothesis testing, are reviewed as potentially competitive damage detection techniques. 

To enhance the performance of statistical methods, new feature extraction techniques 

using model spectra and residual autocorrelation, together with resampling-based 

threshold construction methods, are proposed.  Subsequently, simulated acceleration data 

from a multi degree-of-freedom system is generated to test and compare the efficiency of 

the existing and proposed algorithms. Data from laboratory experiments conducted on a 

truss and a large-scale bridge slab model are then used to further validate the damage 

detection methods and demonstrate the superior performance of proposed algorithms. 

Cross-comparison of the performances of damage detection algorithms on different 

types of structures is an important way to assess their merits and demerits. Chapter 5 

contains additional cross-comparison examples on a laboratory specimen, which is a 
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scaled two-bay steel frame subjected to random excitation at its left end. Damage is 

introduced by replacing two members near the right joint with more flexible ones. Three 

damage detection algorithms are used: the influence coefficient method (Labuz, Chang, 

and Pakzad, 2010; Labuz, Pakzad, and Cheng, 2011; Nigro, Pakzad, and Dorvash, 2014) 

and two AR methods. The influence coefficient method for damage detection is based on 

correlation analysis between responses measured at two different locations, while the 

autoregressive (AR) modeling method evaluates the change in coefficients and residual 

characteristics of the AR model estimated from response from only one sensor node. The 

damage existence identification and localization capability of each damage indicator is 

evaluated based on their separate application results.    

While experiments and simulations are beneficial for performance evaluation of 

damage indices in a case-by-case manner, more rigorous derivations are needed for 

quantitative assessment on the effectiveness of these indices. One tool to help accomplish 

this objective is analytical sensitivity analysis, which has been successfully used to 

evaluate the influences of system operational parameters on observable characteristics in 

many fields of study. In Chapter 6, the sensitivity expressions of two damage features, 

namely the Mahalanobis distance of autoregressive coefficients and Cosh distance of 

autoregressive spectra, will be derived with respect to both structural damage and 

measurement noise level. The effectiveness of the proposed methods is illustrated in a 

numerical case study on a 10 DOF system, where their results are compared with those 

from direct simulation and theoretical calculation. During the sensitivity derivation 

process it is noticed that if autoregression is applied towards the auto-covariance function 

(ACovF) of the ambient vibration signal instead of the signal itself, then the coefficients 
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and residuals will not be affected by white noise. Thus also in Chapter 6,  three 

autoregressive damage features extracted directly from the ambient vibration data and 

from the vibration signal autocorrelation will be presented. Two of the features are 

distance functions of AR model parameters and the third feature is a function of AR 

residuals.  These features are then applied to acceleration measurements collected from a 

member of a truss bridge to detect a structural change, and their performances are 

compared and commented.  

For clearer presentation of the materials, Figure 1.1 includes the feature extraction 

and threshold determination methods used in the researches described in Part I. Basically, 

new damage features and threshold evaluation techniques are proposed and compared 

with the existing ones through theoretical analysis, case simulation and laboratory/field 

experiments.  
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Figure 1.1 A summary of the damage feature extraction and threshold 

construction strategies employed in Part I.  
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 Background Chapter 2
Data-driven structural health monitoring needs sensors for data acquisition and data-

processing algorithms for damage information extraction. In the following sections, 

descriptions of the structural sensing devices and existing damage detection algorithms 

related to this research will be given.   

2.1 SENSORS AND DATA ACQUISITION SYSTEMS FOR SHM 
APPLICATIONS: PART I 
Rapid development in digital data acquisition technologies has made continuous 

vibration monitoring of civil structures feasible (Lynch and Loh, 2006; Nagarajaiah et al., 

2008; Pakzad and Fenves, 2009; Pakzad, 2010), and it is hoped that from the 

measurements a reliable assessment of the structural condition can be made. This is the 

main idea behind the data-driven structural health monitoring, where a sensor network is 

designed and implemented for a given structure and automatic programs are devised for 

extraction of structural information from the data.  

Currently a variety of sensors is available for SHM applications. A few examples 

includes fiber optic systems, piezoelectric sensors, electromagnetic sensors, ultrasonic 

detectors, radar and millimeter wave technology, strain gauges, micro-electro-mechanical 

systems (MEMS), multifunctional materials and nanotechnology products for sensing  

and lasers. In the subsections below the sensors used in this study will be described. 

2.1.1 ‘Stacked’ wireless sensor 
The wireless sensor adopted in this research consists of three sensor boards stacked 

together from bottom to top (Figure 2.1): the battery board, the processing board (Imote2) 

and the sensing board (SHM-A). 
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The Crossbow battery board (IBB2400CA), which has slots for three AAA battery 

cells, is used here to power the sensing unit. A description of the features of this board 

can be found in (Crossbow Technology Inc., 2006). 

Imote2(Intel Corporation Research, 2005) contains Intel PXA271 CPU which has the 

ability of operation in low voltage (0.85V), low frequency (13MHz) mode. This feature 

provides very low power operation of the CPU. The processor’s frequency can also be 

scaled from 13MHz to 416 MHz with dynamic voltage scaling which enables optimizing 

the power consumption. This platform also includes 256kB SRAM, 32 MB SDRAM and 

32MB of FLASH memory which is distinguishable in compare with other smart sensor 

platforms. Besides, Imote2 integrates CC2420 IEEE 802.15.4 radio transceiver from 

Texas Instruments which supports a 250kb/s data rate with 16 channels in the 2.4GHz 

band. A 2.4GHz surface mount antenna is provided on the Imote2 platform. To enhance 

the communication reliability, an external antenna, Antenova Titanis 2.4 GHz Swivel 

SMA, is used in addition to Imote2’s onboard antenna. Table 2.1 presents the general 

specifications of the Imote2 platform. The Imote2 has many I/O options which make this 

platform flexible to operate with different sensor boards.  

Software platform, as well as hardware platform, influences the decentralized data-

processing capability of wireless sensor nodes. TinyOS (2005) operating system is the 

main framework for programming the Imote2. This operating system is an open source, 

component oriented software which supports a wide range of WSN’s applications. In 

addition, there is a need for some high-level components to cooperate with the framework 

and maintain the specific requirements of SHM. The Illinois Structural Health 

Monitoring Project (ISHMP)(2009) has developed a software package that works with 
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TinyOS for SHM applications. This is a package of applications satisfying the 

requirements for reliable monitoring of civil infrastructures. Remote Sensing application 

of ISHMP is used for data collection of this experiment. Two essential protocols in 

wireless data collection and transmission are time synchronization and reliable data 

transfer which both are employed in this program.  

The sensing interface of this sensor is SHM-A sensor boards, developed by Rice and 

Spencer, Jr. (2008) in Smart Structures Technology Laboratory at Illinois University. 

Components of this unit are selected specifically for SHM applications. LIS3L02AS4 

analog accelerometer manufactured by ST Microelectronics is used for SHM-A sensor 

board. LIS3L02AS4 is a low-cost, high sensitivity analog accelerometer with 50µg/√Hz 

Noise density which offers 3-axes of acceleration on one chip.  

Table 2.2 presents the specifications of this accelerometer. Low-pass filter, Gain 

difference amplifier and Quickfilter 16-bit ADC are other components integrated on the 

sensor board. The Quickfilter QF4A512 Programmble signal conditioner is the key 

component of SHM_A sensor board (Rice and Spencer, Jr., 2008). It utilizes 4-channels 

with 16-bit resolution ADC which provides a reasonable sensitivity for most of SHM 

purposes. Figure 2.1 shows a unit of sensor boards and Imote2.  

2.1.2 Conventional tethered sensors 
Apart from wireless sensors, conventional wired data acquisition systems are also 

adopted for data acquisition in the experiments. Though they are less economical and 

scalable than the wireless counterparts, they are based on a more mature technology and 

often demonstrate better accuracy. Two different uniaxial accelerometer types were used 

in this study. One type of accelerometer is manufactured by PCB Piezotronics, Inc. A 
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high resolution capacitive uniaxial accelerometer model is used, specifically model 

3701G3FA3G. This sensor has an acceleration range of ±3 g and a frequency response 

range of 0-100 Hz. More technical specifications of this sensor can be found in (PCB 

Piezotronics, 2009). 

Another type of accelerometer is supplied by Silicon Designs, Inc. The model 

number is 2210-002. It is again a uniaxial sensor with a measurement range of ±2 g and a 

frequency response range of 0-300 Hz. For other technical parameters such as sensitivity 

and noise level, please refer to (Silicon Designs Inc., 2013).   

Photographs of the two accelerometer types used for this research are shown in 

Figure 2.2 and Figure 2.3. Note that the measurement axis is normal to the top face of 

each sensor. 

2.1.3 Data Acquisition Devices 
Data acquired at wireless sensor nodes are first stored in the local memory of Imote2, 

and then transmitted back to the base station, which consists of an imote2 and an IIB2400 

interface board (Figure 2.4) connected to a laptop. The Cygwin software is used to 

manage the wireless sensor network: one Cygwin window for sending commands, one 

Cygwin window for retrieving data. For more details, please refer to (Illinois Structural 

Health Monitoring Project, 2011). 

For a test conducted on the 7 DOF mass-spring system, the data acquisition system 

was PDAQ Premium data acquisition system from DIGITEXX(2010) with 16 Channels 

for voltage input from different sensors types measuring acceleration, strain, wind 

speed/directi direction, temperature. This system integrates an analog filter with 24 bit 
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resolution. The software which retrieves and converts data is Digitexx. Figure 7.5 shows 

the data acquisition system.   

In all other experiments mentioned in this dissertation using wireless sensors, 

acceleration responses were collected from the wired sensors using the CR9000, a 

modular, multiprocessor data acquisition (DAQ) system and PC9000 support software by 

Campbell Scientific, Inc. (2005, 2009). Figure 3.10 shows the DAQ system. The CR9000 

has a 16-bit analog-to-digital converter and a peak sampling rate of 100 kHz. 

2.2 EXISTING DATA PROCESSING METHODS FOR SHM: PART I 
A lot of investigations have been carried out on the topic of structural state 

identification/damage detection from sensor data. Below several notable family of data 

processing algorithms for vibration measurements will be discussed. Note that most of 

these algorithms contain the steps of feature extraction and feature classification 

(corresponding to the last two stages of SPR damage detection paradigm presented at the 

end of the dissertation abstract). Some of the methods will be included for either 

comparison or validation purposes in the research presented in the following chapters.  

2.2.1 Modal realization and model updating 
Modal realization, in the SHM context, is often used interchangeably with the term 

‘system identification’ as both refer to extraction of structural modal properties, which 

are important for global monitoring of structures. FE model updating is an excellent tool 

for higher level damage detection and for better understanding of the structural behavior. 

In the remainder of this subsection, their methodology will be presented and illustrated.  
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2.2.1.1 Methodology review 
Some of the most widely used time domain difference models for structural system 

identification are autoregressive (AR), autoregressive moving average with exogenous 

input (ARMAX), and general state-space models. From a theoretical perspective, the 

difference models can be viewed as the discrete domain counterpart of the governing 

differential equations of dynamic systems. Also, there are a lot of system identification 

techniques using frequency domain representation of signals such as Fast Fourier 

Transform and spectrum estimate. Two of such examples are peak-picking (pp) and 

complex mode indicator function (CMIF) method (Peeters and Ventura, 2003). These 

algorithms are generally straightforward in methodology as structural frequency response 

has distinct peaks.  

If a finite element (FE) model of the structure being investigated is available, the 

extracted modal properties, or other observations on structural behavior, can be used as 

input for FE model updating. Some commonly used model updating techniques include 

trial-and-error, sensitivity matrix method(Mottershead and Friswell, 1993), Bayesian 

probabilistic method(Beck and Katafygiotis, 1998), response surface method(Ren and 

Chen, 2010) etc. Since generally there are more model parameters than independent 

observations of the structure, the choice of updating variables is important for every 

model updating technique. Till now, this task is often accomplished based on experience 

and engineering judgment. Generally model updating processes are computationally 

intensive, but it can be an effective means for structural condition evaluation if properly 

done. 
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2.2.1.2 Implementation example 
For better illustration of the concepts, an experimental example will be introduced 

here on modal properties extraction and model updating. Figure 2.7 shows the truss 

structure used in the experiment. To obtain an accurate value for the modulus of elasticity 

of the truss members, static tests are performed prior to dynamic tests (the step for modal 

properties extraction). Basically, deflections from the truss were compared with 

deflections of an analytical model constructed in SAP2000 under the same load for 10 

loading configurations (which was set to be 1244 kips).  

Modal properties extraction 
During the dynamic test, fourteen sensor nodes were attached to the joints of the 

truss to measure the dynamic response of the structure. An additional sensor is fixed on 

the ground as a reference node to represent the sensor and environmental noise 

characteristics. Each sensor provides two set of acceleration data in two directions. Using 

280 Hz sampling frequency, data from the reference node and one of the sensors attached 

to the truss are collected. Figure 2.8 shows the time-history and the power spectral 

density (PSD) of the output from these two sensors.  

A low-pass digital filter with 35 Hz cut-off frequency is applied to the raw data to 

remove high frequency responses, which are more affected by circuitry noise. The 

dynamic excitation is ambient and therefore stochastic identification method is used to 

derive the modal properties. Stability diagram is used to determine the optimal model 

order for the system identification algorithm. Figure 2.9 shows this diagram for a limited 

frequency band-width which contains the major modes of the structure. The convergence 

tolerance for both frequency and damping ratio is 5%. When the modal assurance 

16 
 



criterion (MAC)(M. Chang and Pakzad, 2012) is greater than 95%, the mode shapes are 

deemed to have converged.  

First three mode shapes of the structure are presented in Figure 2.10. It is observed 

that the first mode, which is significantly dominant, happens in the out-of-plane direction 

of the truss. This is also in agreement with the modal analysis of the analytical model.  

SAP2000 Model updating 
The aforementioned SAP2000 model is updated based on the extracted modal 

properties. The aim is to minimize the difference between frequencies of analytical and 

experimental models. Since the geometry and sectional properties of the structural 

members are known, connection stiffness is the major uncertain parameter which 

influences the dynamic behavior of the system. Thus the element end fixity, which is 

defined as a portion of the element’s stiffness ( /EI lα ), is chosen as the updating 

variable. Another consideration remains for the consistency of updated model with the 

result of static test (deformation). Therefore, an iteration process between the modal and 

static analysis of the model is performed. Figure 2.11 shows the comparison of first mode 

shape obtained from the system identification and the updated analytical model, which 

match very well.  

2.2.2 Scalar time-series analysis and statistical pattern classification 
Time series analysis (TSA) refers to the family of techniques to extract informative 

patterns from sequences of observations/measurements, and statistical pattern 

classification (SPC) denotes the process of decision making based on the patterns 

extracted. They are regarded as a more efficient alternative to modal extraction/model 

updating for damage detection. 
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2.2.2.1 Methodology overview 
TSA (Brockwell and Davis, 2009) for single channel acceleration measurements is 

one of the notable feature extraction techniques attempted in a number of vibration-based 

damage detection research articles (Atamturktur, Bornn, and Hemez, 2011; Gul and 

Catbas, 2009; Nair et al., 2006; Sohn and Farrar, 2001; Zhang, 2007), where algorithms 

such as scalar autoregressive (AR), autoregressive/autoregressive with exogenous input 

(AR-ARX), autoregressive with moving average (ARMA) modeling have been applied 

and functions of estimated model parameters used as damage features. Features, which 

are defined as functions of either the model residuals or the model coefficients, can often 

be generated in large quantities, thus facilitating statistical processing.  

Statistical pattern recognition techniques (Figure 2.12) have long been applied to 

speech recognition (Ho & Baird, 1997), identifying logical information from image 

documents (Jelinek, 1976; Schurmann et al., 1992), reading DNA sequences in 

bioinformatics (Liew, Yan, & Yang, 2005) and problems in many other domains that 

require artificial cognitive assistance. Its essence is to use well-known concepts in 

statistics for boundary definition of different pattern classes, such as those for damaged 

and undamaged structures. Their ability to process large volumes of information 

produced via continuous and/or multichannel sensing is very beneficial, and in addition, 

the classification techniques are adaptable to most fields of applied science as they are 

basically mathematical tools. Application examples of the SPC techniques on damage 

detection can be found in (de Lautour and Omenzetter, 2010; Fugate, Sohn, and Farrar, 

2001; Sakellariou and Fassois, 2006; Sohn, Farrar, Hunter, and Worden, 2001; Sohn, 

Worden, and Farrar, 2002), where hypothesis testing and clustering techniques are 

employed and satisfactory results are reported.  
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Several other studies further explored the effectiveness of TSA+SPC based damage 

detection schemes (Bodeux and Golinval, 2001; Fassois and Sakellariou, 2007; Lu and 

Gao, 2005; Noh, Nair, Kiremidjian, and Loh, 2009; Omenzetter and Brownjohn, 2006; 

Worden and Manson, 2007; Zheng and Mita, 2009) by making changes to data cleansing 

techniques, using various classification algorithms, and trying the methods on different 

types of simulated and real structures.  

2.2.2.2 Implementation example 
Here an application of the TSA+SPC to the same truss used in Section 2.2.1.2 above 

will be presented to illustrate the concept and the procedure. The example will use AR 

residuals for damage features and statistical process control (Stat-PC) for damage state 

identification. 

 Definition of AR model 
Given a time series ( )x t   (in this case acceleration measurements), an AR model 

with order p can be constructed as: 

( )
1

( ) ( )
p

j
j

x t x t j e tϕ
=

= − +∑                                                          (2.1) 

where  jϕ s are the model coefficients and ( )e t   is the model residual. Once established, 

the model can be used to predict other time-series, and residuals are obtained as the error 

between prediction and real signal at different time points. 

As long as the new measurements are similar to the baseline measurements to which 

this model is fitted, the prediction from the model should be close to new signal. 

However, if the incoming data is not acquired from the same structural condition under 
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which baseline measurements are collected, then the model will no longer be able to 

make precise prediction, and a substantial change in the distribution of residuals is 

expected. Based on this reason, analysis of residuals is a viable way to detect damage. 

Model Order Selection 
Akaike’s Information Criterion (AIC) (Brockwell and Davis, 2002) is employed to 

select the proper model order. Its aim is to obtain a balance between the complexity of 

the model and accuracy of the prediction. According to this theory, the best model should 

be the one that minimizes the AIC value, which is the sum of the prediction error and a 

penalty term that increases with the number of parameters in the model. 

Through AIC value comparison, the model order for this study is set at 28 lags. A 

series of trials also proved that higher order models do not yield a better performance. 

Experimental set-up 
Damage is simulated by adding two 45-lb weight discs at the mid-span on the lower 

cord of the truss. Free vibration tests are conducted for both damaged and undamaged 

states; for each case two sets of acceleration measurements are collected by the WSN. In 

each case, system vibration is introduced by pushing the structure from mid-span and 

then releasing it when the sensors start recording data. A low-pass Chebyshev filter with 

cutoff frequency of 40 Hz is applied to the data. The sampling rate after filtering is 80Hz, 

and every data set contains 4250 samples.  

Statistical Process Control  
Widely used in management of manufacture industries, Stat-PC’s underlying 

assumption is that when a system deviates from its original state, a change will occur in 
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the statistical characteristics of the features monitored/charted. Generally, a control chart 

features a center line and two control limit lines (upper and lower bound).  

Upper/Lower Control limits are drawn at points above/below which the likelihood 

for the features to occur is small. When the system is stable, the charted values should 

mostly remain inside the confidence region; otherwise, a significant amount of outliers 

will appear in the charts. 

Only the last 2200 points of each data set is used here since the patterns shown by 

the first half are much affected by the initial load condition, which varies between 

different tests. The AR model is constructed using the first data set from undamaged 

state, and the other 3 are fitted to this model. The residual series (2200-28=2172 points) 

for all these four cases are then computed and divided into subgroups of size four, and 

control charts are used to detect the change in means and variances of residuals within 

each subgroup.  

If the residuals are truly normally distributed random sequence, the subgroup mean 

should also have a normal distribution and the subgroup variance should have a chi-

square distribution with degree of freedom three (Fugate et al., 2001). Hence, the control 

limits are  /2 /pz s nα±   for the mean x   and  2
1 /2, 1 / ( 1)nS nαχ − − −  / 2

/2, 1 / ( 1)nS nαχ − −   

for standard deviation S , where  /ps S  is the pooled variance/mean variance of baseline 

subgroups,   is the significance level (0.05 in this case) and n  is the subgroup size (=4 

here). 
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The x  and S  control charts, shown in Figure 2.13 & Figure 2.14, are constructed 

from measurements at node 4. Investigation of all other nodes also yields similar results 

and thus is not presented here. It can be seen that the x-bar chart gives a better 

performance than S chart which is because of the fact that the system is still within the 

linear range, so the variance change in the residuals is not very significant. 
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Table 2.1     Specifications of Imote2 

Parameter Value 
Processor 

SRAM Memory 
SDRAM Memory 
FLASH Memory 

Power Consumption 
 

Radio Frequency 
Band 

Dimensions 

Intel PXA271 
256kB 
32MB 
32MB 

44mW at 13MHz 
570mW at 416 MHz 

2400.0 – 
2483.5MHz 

36mm×48mm×9mm 
 

 

Table 2.2     Specifications of LIS3L02AS4 Accelerometer 

Parameter Value 
Acceleration Range ±2g 

Avg. Noise Floor (X & 
Y) 

0.3mg 

Avg. Noise Floor (Z) 0.7mg 
Resolution 0.66 V/g 

Temperature Range -40 to 85ºC 
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Figure 2.1 ‘Stacked’ wireless sensor node 

 

 

Figure 2.2 PCB wired sensor (courtesy of Mr. Ian C. Hodgson)  
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Figure 2.3 Silicon Designs wired sensor, mounted on a steel tube 
(courtesy of Ms. Elizabeth L. Labuz) 

 

Figure 2.4 Base-station of wireless sensor network: an interface board is 
stacked on top of an Imote2 
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Figure 2.5 PDAQ Digetexx data acquisition system with the connecting 
wires (last plot) 

 

 

Figure 2.6 CR9000 data acquisition system: wire jack and user interface 
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Figure 2.7 3D steel truss of the experiment 

 

 

Figure 2.8 Comparison of the Outputs of Reference and Attached Nodes 
in Time and Frequency Domains 
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Figure 2.9 Stability Diagram for modal convergence and Power Spectral 
Density of the response 
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Figure 2.10 First 3 extracted mode shapes, frequencies and damping ratios 
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Figure 2.11 First mode shape: Experimental vs.  Analytical result 
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Figure 2.12 The general procedure of statistical pattern classification (Jain 
et al., 2000) 

 

 

Figure 2.13 x  control chart of the residuals 
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Figure 2.14 S  control chart of the residuals 
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 Data-driven methods for threshold determination in auto-Chapter 3
regression (AR) based damage detection 

3.1 PRELUDE  
As noted in the abstract, for years researchers have been working on automatic 

damage detection through SHM in the hope of reducing a structure’s maintenance cost by 

minimizing human involvement in the process. The guiding philosophy of monitoring-

based damage detection is to ‘let the data speak for itself’. Most data-based damage 

detection algorithms include five steps: 1) obtain data from baseline/healthy state 

structure; 2) extract a statistical quantity/damage index Q from the data via time series 

analysis; 3) obtain data from current/unknown state structure; 4) extract the Q quantity 

from the data using the same method; 5) compare Q from the unknown state with that 

from baseline state using statistical testing. If the difference is statistically significant (i.e. 

exceeds a preset threshold), the system is deemed damaged.  

The last step is important for automation of damage detection process because for 

almost all damage indices (modal properties, TSA features), their values will carry some 

fluctuations when extracted from datasets collected from the same structural state but 

different time intervals. Sometimes it is more because of the modeling error; sometimes 

environmental disturbances play a greater role. For reliable structural state identification, 

appropriate damage threshold construction schemes that take these variations into 

account are needed. 
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3.2 MOTIVATION AND ORGANIZATION 
Statistical hypothesis testing (Koch, 1999) is the recognized standard approach for 

threshold determination. It assumes that the features follow a certain probability 

distribution, and the threshold is set at a point beyond which the chance for a feature 

value to occur is small. This approach is theoretically optimal as long as the assumed 

feature distribution is valid. Hypothesis testing may do well for fault identification in 

machinery, as the excitation force is well known and the damage types are well-defined. 

For civil engineering applications, however, there are more uncertainties. When the 

probability distribution of damage features are too complex to be accurately represented 

by analytical distribution functions available, threshold constructed using hypothesis 

testing will yield poor results in damage identification and an alternative approach is 

needed. 

In this chapter a data driven threshold determination scheme using cross-validation 

and resampling techniques (Good, 2001) will be introduced and applied to the 

Mahalanobis distance (Mahalanobis, 1936) feature of AR coefficients described in 

Section 3.3.1. This feature is shown to have large variations, and its distribution is 

unknown. Yet the data-driven method still yields an effective threshold. Also the 

Mahalanobis distance feature is paired with the autocorrelation feature (Section 3.3.2) to 

improve the damage detection performance of time-series based methods. A nearest-

neighbor approach (Duda, Hart, and Stork, 2012) is used to set an effective significance 

threshold for the feature pair. 

The remaining content is organized into several sections:  
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• Section 3.3 presents the Mahalanobis distance of AR coefficients and Auto-

correlation function of AR residuals, which are damage features used for this 

study. 

• Section 3.4 introduces the proposed data-driven threshold construction 

techniques: cross-one validation and nearest-neighbor classification. 

• Section 3.5 contains the application results of the new threshold evaluation 

techniques to a 5-DOF Plexiglas-aluminum system. 

• Section 3.6 is the conclusion. 

3.3 DAMAGE DETECTION METHODS USING TIME SERIES ANALYSIS  
Autoregressive (AR) model is perhaps the most widely adopted time series analysis 

tool (Brockwell and Davis, 2002). The definition of a univariate AR model of order p  is 

given in Eq. (2.1). This model basically attempts to express the value of signal at time t  

as a linear combination of its previous values up to lag p . 

According to classical structural dynamics theory, the discretized structural response 

under random excitation can always be approximated by an AR process of large order. 

Damage features from AR modeling can be grossly divided into two categories; model 

coefficients based and model residual based. AR model coefficients can be estimated 

directly from the data using one of the standard algorithms, and the residual sequence can 

henceforth be obtained from Eq. (2.1). In the remainder of this section, two damage 

features, one from each category, will be presented.  

3.3.1 Mahalanobis distance of AR model coefficients 
It has been proved that if the signal is really an AR process, then any regular 

coefficients estimator{ }jϕ  from the signal is asymptotically unbiased and normally 
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distributed with covariance matrix 2 1
e pσ −Γ (Brockwell and Davis, 2009). Therefore, a 

metric that represents the deviation in the probability space of normal distribution seems 

a good choice of damage feature.   Mahalanobis distance is such a metric defined from 

the definition of multivariate normal distribution. The estimator of the Mahalanobis 

distance between a potential outlier vector  xξ  and baseline sample set can be obtained as 

 ( ) ( )1Σ .ˆD x x x xζ ξ ξ
−= − −                                         (3.1) 

where x  is the average of the baseline sample feature vectors, and Σ̂  the estimated 

covariance matrix. When applying this method: 1) the baseline signals are first 

segmented (often with large overlap) and for each segment an AR coefficient vector are 

estimated. 2) Signals from current structural state are processed likewise and for each 

coefficient vector obtained its Mahalanobis distance to the baseline coefficients set will 

be computed. 3) These Mahalanobis distance features are then compared with the 

Mahalanobis distances within baseline set. When the structural system is damaged, it is 

expected that the Mahalanobis distance feature for AR coefficients will increase 

significantly (Figure 3.1). 

3.3.2 Auto-correlation function (ACF) of AR model residuals  
It is clear from Eq. (2.1) that if the AR model used to filter the signal is the same as 

the model from which the signal is generated, the residual series should be a white noise. 

Otherwise, the residual series will carry certain identifiable patterns that can be captured 

by its autocorrelation function. ACF can be estimated from residual sequence as: 

 ( )
( ) ( )
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From the baseline signal a baseline AR model can be estimated, which will then be fitted 

to new signals from unknown structural state. If the structural condition is unchanged, the 

ACF will resemble a Dirichlet delta function. It can be shown that for large N  the 

sample autocorrelations of a white noise sequence at nonzero lags are approximately 

identically and independently distributed (0,1/ )N n  (Brockwell and Davis, 2009), hence 

the 95% confidence bounds can be drawn at 1.96 / n± , as 1.96 is the .025 quantile of 

the standard normal distribution. Accordingly, the system can be identified as damaged 

when the number of ACF function value outside the bounds become statistically 

significant (Figure 3.2).  

3.4 THRESHOLD CONSTRUCTION SCHEMES FOR DAMAGE 
FEATURES FROM TIME SERIES ANALYSIS 
A desirable threshold is one that strikes up a balance between false alarms and 

missed cases. Now in most engineering practices this value is determined in an ad hoc 

manner. Statistical hypothesis testing has been tried for automatic threshold construction, 

but its effectiveness is not guaranteed unless the actual feature distribution is the same as 

assumed. Here, two data-driven methods will be introduced for threshold construction.  

3.4.1  Threshold calculated from resampling:  the ‘cross-one-out’ method 
From Figure 3.1 it is clear that the Mahalanobis distance feature suffers from large 

fluctuations within the baseline sample set. Also, when the baseline samples are extracted 

from vibration signal segments with overlap, the sample set is in fact not a very good 

representation of the actual feature probability space. Therefore, hypothesis testing 

exploiting the multivariate normal distribution will tend to yield a conservative threshold. 
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The first problem is perhaps resulted from environmental variations and statistical 

modeling and estimation deficiencies and cannot be helped; one solution to the second 

problem is to use vibration signals without overlap for feature extraction. However, when 

the data available is limited, this method is not practicable. 

To address this problem here a ‘cross-one-out’ resampling technique is adopted. 

Figure 3.3 is a flow chart of this approach for the Mahalanobis distance feature. It can 

also be described in words as follows: First a segment is cut from the baseline signal at a 

random time point and reserved for testing, and sample segments of the same size are cut 

with a preset overlap from the remaining signal. The Mahalanobis distance between the 

AR model coefficients of left-out segment and those of the sample set is then computed 

and stored. This process is repeated for a large number of times and the value beyond 

which 5% of the tests occur is used as threshold in subsequent analysis. This is essentially 

an estimation of the feature distribution through recomputing the statistic for many a time 

by leaving out a certain portion of observation, and can be viewed as a combination of 

jackknife and cross-validation technique (Shao and Tu, 1995). 

Other methods have been proposed for threshold determination of Mahalabnobis 

distance feature; a Monte Carlo method has been used (Sohn et al., 2001) to produce the 

desired threshold by calculating the 5% quantile of empirical feature distribution of 

simulated coefficient vectors whose components are drawn independently from standard 

normal distribution. However, as noted in previous text, the AR coefficients are not 

mutually independent and may not have a unit variance. The assumption of this 

simulation is not well-grounded, thereby this approach is not used here though reported 

successful in a couple of literatures. 
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3.4.2  Empirical density estimation for multiple features; the nearest neighbor rule 
Threshold determination becomes complicated when there is more than one feature 

in the algorithm. Fortunately, the nearest neighbor rule (Figure 3.4) provides an intuitive 

way for empirical density estimation, from which damage threshold can be derived. 

Suppose a dataset { }ix  is generated from a certain probability distribution ( )p x , then 

an empirical estimate of the probability density at ix  can be obtained exploiting the 

condition below 

 ( )( ) 1/ min ,  ( ).ˆ n
i i jp x d x x i j∝ ≠                             (3.3) 

Here n  stands for the feature vector dimension, and ( , )i jx x  is the distance between point 

ix  and jx . It is clear that the larger the distance from a point to its nearest neighbor, the 

smaller is its probability to occur. 

A decision strategy for multiple features can hence be established as follows; for 

each feature vector from unknown state, search for its nearest neighbor in the baseline 

feature set and record the squared Euclidean distance. When the number of feature 

vectors above threshold exceeds a certain amount, the system is identified as damaged.  

Therefore, the only thing remains to be determined for applying this strategy is the 

threshold value and its corresponding significance level. In the application presented in 

Section 3.5, a 5% significance level threshold is used. The threshold value for the test 

(unknown state) sets is four times the distance value *D  that has 5% of within-baseline 

nearest neighbor distances above it. This decision is based on following considerations; 

assume that both baseline and test features follows a same unimodal distribution that 

decays exponentially with respect to the distance to feature mean, then around 2.5% of 
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the total features will be expected to have squared nearest neighbor distance beyond *2D  

given that the baseline and test set are of equal size. Since in the proposed decision 

strategy only baseline features are used for nearest neighbor search, this will increase the 

threshold to *4D  because only half of the samples remain. To simply data processing, 

here the threshold is tested against 5% of the test features instead of 2.5% of the total 

features. It is but a slight relaxation of conditions, as few of the baseline features will go 

beyond this critical value.   

3.5  APPLICATION OF THE PROPOSED THRESHOLD 
CONSTRUCTION SCHEMES 
The damage detection algorithms are applied to acceleration measurements collected 

from a 5 degree-of-freedom structure (Figure 3.5) subjected to base excitation. Wired 

accelerometers are mounted to the shaking table and each floor. Damage is simulated by 

adding weight to the 4th floor. For each structural scenario, two sets of acceleration 

signals are recorded from two random excitation experiments. The sampling frequency is 

100 Hz for all datasets.  

3.5.1 Validation of the cross-validation threshold construction scheme 
Figure 3.6 displays some of the results from Mahalanobis distance method. (a) is the 

result from 2nd floor response using threshold from proposed technique; (b) is the result 

from 4th floor response using threshold from proposed technique; (c) is the result from 4th 

floor response using threshold from hypothesis testing based on multivariate normal 

assumption. The significance level in all cases is 5%. 

The AR model order adopted is 5, and 350-point segments are cut from acceleration 

signals with 300 overlap. It is obvious from Figure 3.6 (a) and (b) that the change in 
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feature value becomes more prominent at sensing locations more close to structural 

damage. Also, a comparison between Figure 3.6 (b) and (c) shows that the threshold 

determination technique proposed here does yield a superior performance to that of 

frequentist hypothesis testing. In all the plots in Figure 3.6 logarithmic scale is used for 

the y axis in order to decrease the oscillation of feature values. 

Because in this case a controllable artificial excitation source is used in all the 

experiments, the overall statistical characteristic of Mahalanobis distance feature does not 

vary much over time. When this method is applied for damage detection from ambient 

vibration responses, this feature can have even more significant variantions. However, 

this resampling-based technique is still proved reliable in a couple of experiments on a 

space truss under ambient load, on the condition that there is enough data available.  

3.5.2 Validation of the nearest-neighbor threshold construction scheme 
Most of the current research on damage detection by time series analysis employs 

only a single feature, or a set of features from either residual analysis or model parameter 

analysis.  More damage sensitive methods can probably be established by taking features 

from both categories into consideration, as they in some sense reflect different aspects of 

the vibration signals. Thus here the two features mentioned in Section 3.3 will be 

combined for damage identification. 

To begin with, two feature pair sets of equal size are extracted from baseline and 

unknown signal, respectively. The extraction of Mahalanobis distance feature is still the 

same as before, i.e. for baseline signal feature values are generated using the ‘cross-one-

out’ method introduced in Section 3.4, and for unknown state signal they are obtained 

using the routinely procedure described in Section 3.3. Note here that the logarithm of the 
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distance is used to reduce the oscillation of feature values. Correspondingly, the residual 

sequence of each signal segment is obtained by filtering each data segment with the AR 

model estimated from the whole baseline signal. The autocorrelation feature value is then 

computed from the formula below; 

 
10

2
10

| ( ) |
i

Q iρ
=−

= ∑                                                       (3.4) 

Where ( )iρ  is the ACF of the residual sequence.  The segment size and overlap length 

adopted are still 350 and 300.  

Figure 3.7 contains two scatter plots of baseline and test feature clusters extracted 

from acceleration responses at 4th floor of the lab specimen aforementioned. Test features 

in the left plot come from healthy state, while those in the right one are from damaged 

state. It can be seen that when the structural condition remains same, the two clusters 

largely overlap each other; when damage has occurred, the test cluster will drift away 

from the baseline. 

The nearest neighbor scheme is applied here to determine the damage threshold, and 

the results are summarized in Table 3.1. The value before the slash is the number of 

outliers, and after the slash is the decision on structural state. The notation in statistical 

hypothesis testing is used; H0 denotes healthy state, while H1 denotes damaged state. 

Feature variables are all normalized beforehand with respect to the corresponding 

baseline standard deviation so that contribution of the two features to damage 

identification is equal. In each comparison the size of both baseline and test set is 166, 

and the threshold value for the number of outliers is accordingly set at 9. For each sensor 

location different AR model order is used to better fit the data.  The performance of this 
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algorithm is excellent in this case, with only one false alarm for the healthy state and 

perfect recognition for damaged case. It seems that the responses at 1st and 4th floor are 

most affected by the simulated damage. 

3.6  CONCLUSION  
For this case study presented here, thresholds based on data-driven techniques are 

proved successful. They tend to generate fewer false alarms than frequentist hypothesis 

testing, yet still correctly report damage for most tests. All of these techniques employ 

some sort of empirical density estimation. Although the procedure is somewhat 

computationally complex, it provides a relatively reliable way to construct thresholds for 

features with large variation or of unknown distribution and thus automate the process of 

damage detection.  

However, it must be stated that neither improved schemes for threshold construction, 

nor combination of features, can replace the quest for features that are more stable and 

damage-sensitive. Features are always the most important topic in damage detection. 

Adjusting threshold determination methods and combining features can help well-chosen 

features to perform better, but they cannot save a bad feature from yielding bad 

performance. Such features based on autoregression on single node response are innately 

‘fragile’ because the information is limited and can be affected by other factors.  When 

the loading condition or operation environment of the structure monitored is subjected to 

change, features based on longer data or data from several sensing locations will probably 

be more reliable.  
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Table 3.1     Damage identification result using nearest neighbor scheme. 

Sensor location 

Dataset num. 
1st floor 2nd floor 3rd floor 4th floor 5th floor 

1 (healthy state; baseline)      

2 (healthy state; validation) 7/H0 7/H0 7/H0 3/H0 14/H1 

3 (damaged state) 126/H1 78/H1 32/H1 161/H1 88/H1 

4 (damaged state) 112/H1 37/H1 27/H1 159/H1 30/H1 
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Figure 3.1 Mahalanobis distance of model coefficients. Segment size is 

350. The overlap between consecutive segments is 300. 

 

Figure 3.2 Residual autocorrelation as damage indicator; lots of outliers 

appear when model no longer fit the data well. The length of 

residual sequence is 520. 
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Figure 3.3 The ‘cross-one-out’ threshold evaluation method for 

Mahalanobis distance of model coefficients 

 

 

Figure 3.4 Illustration of the nearest neighbor rule 
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Figure 3.5 The Plexiglass 5-dof lab specimen 

 

 

Figure 3.6 Damage detection using the Mahalanobis distance of AR 

model coefficients 

0 100 200 300

10
0

10
2

sample num.

 

0 100 200 300

10
0

10
2

sample num.

 

0 100 200 300

10
0

10
2

sample num.

 

   

0 100 200 300

0

2 comparison between set 2 and set 1

sample num.

 

0 100 200 300

0

2 comparison between set 2 and set 3

sample num.

 

0 100 200 300

0

2 comparison between set 2 and set 4

sample num.

 

   

0 100 200 300

10
0

10
2

sample num.

m
ah

al
an

ob
is

 d
is

t.

0 100 200 300

10
0

10
2

sample num.

m
ah

al
an

ob
is

 d
is

t.

0 100 200 300

10
0

10
2

sample num.

m
ah

al
an

ob
is

 d
is

t.

   
(a)                                 (b)                             (c)

47 
 



 

Figure 3.7 Scatter plots of damage feature pairs 
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 New AR features with enhanced performances Chapter 4

4.1 PRELUDE 
As noted in the conclusion of the previous chapter, feature extraction plays a crucial 

role in the establishment of an effective damage detection scheme. Conventional damage 

feature extraction methods focus on direct estimation of structure’s global physical 

parameters such as modal properties, which often require a numerical model of the 

structure (Abdel Wahab, de Roeck, and Peeters, 1999; Bernal, 2002; Doebling et al., 

1998; Haritos and Owen, 2004). While these physical properties are easy concepts for 

interpretation, many of them are computationally intensive to estimate, and in some cases 

can fail to identify significant local damage even with a dense sensor network (Doebling 

et al., 1998). Recently, scalar TSA based damage features have received increasing 

attention as a more efficient alternative.  

AR/ARX/ARMA models are some of the most common TSA tools adopted in the 

current literature. These features can somewhat reflect structural physics, e.g. the 

parameters of an input-output based ARX model for the LTI (linear time-invariant) 

systems represent the structural impulse response at an arbitrary location. Therefore, to 

provide more effective insight into the condition of the structure, scalar AR/ARX/ARMA 

based damage indicators are preferable features compared with those purely statistical 

indices of structural vibration responses such as kurtosis (a statistics measuring the 

sharpness of sample distribution) and principal components (a linear combination of 

observations from multiple channels such that the results possess maximum variance, 

therefore conveying the most information). TSA Damage indices are defined as functions 
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of TSA model parameters, and the selection of these parameters and functions matters 

significantly with regard to the damage detection performance.  

4.2 MOTIVATION AND ORGANIZATION 
The existing AR/ARX/ARMA methods for damage detection are based on 

monitoring of model residual variances and model parameter vectors (using Mahalanobis 

distance, Euclidean distance etc.). Though theoretically justified, they only reflect 

possible changes in certain aspects of the model, and may not be the most effective ways 

to apply AR/ARX/ARMA based damage detection.   

In addition, their robustness to noise has been largely left unexamined. In this 

chapter a new AR model spectrum based damage feature and a new AR residual 

correlation based feature will be proposed along with a brief investigation into the 

damage sensitivity of AR model coefficients and residuals.  The performance of new 

algorithms will be compared to that of the existing methods through numerical and 

laboratory experiments. The cross validation technique introduced in the previous chapter 

is used here for threshold construction of the AR model parameter based features. 

The remainder of this chapter is organized into the following subsections.  

• In Section 4.3, the formulations of several available TSA features (either 

coefficients based or residual based) are presented. 

• In Section 4.4, the Ljung-Box statistic of AR residuals is proposed as a more 

sensitive damage feature than the AR residual variance, and the Cosh distance of 

AR model spectrum is introduced as a more stable damage index than the 

Mahalanobis distance of AR coefficients. 
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• In Section 4.5, two proposed damage features and two existing features are 

numerically validated on a 4-DOF system. 

• In Section 4.6, two proposed damage features and two existing features are 

experimentally validated on a truss specimen and a bridge specimen.  

• In Section 4.7, conclusions on the merits of AR damage features are made. 

4.3 SPR ALGORITHMS USING AR/ARX BASED FEATURES 
Many SPR algorithms only look at a certain aspect of AR/ARX models for input 

features. Two most commonly adopted features are model residuals and model 

coefficients. 

4.3.1 Model residuals as damage indicator 
Definition of AR model is already introduced in Section 2.2.2.2. An ARX model is 

similar to an AR model in structure, only there is an additional regression term on the 

right side of the equation for an external input: 

 ( ) ( )
1 0

( ) ( ) .                                                
a b

i j x
i j

x t x t i e t j tα β
= =

= − + − +∑ ∑  (4.1) 

In this definition ( )e t is used to denote the input, and ( )x t  is the model residual 

term. In application, damage indicators can be certain characteristics of the residuals 

obtained by fitting the model from baseline ( )x t  to a dataset ( )y t  collected from an 

unknown state. 

AR analysis: ( ) ( ) ( )
1

,
p

y xj
j

e t y t y t jϕ
=

= − −∑  

  ARX analysis: ( ) ( ) ( ) ( )
1 1

.                  
a b

y i j y
i j

t y t y t i e t jα β
= =

= − − − −∑ ∑ (4.2) 
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In (Sohn and Farrar, 2001), the ARX model residuals from strain gage data from a 

patrol boat are used to report damage. Note that since the input information is not 

available in this case, a two-stage analysis is adopted. First an ( )AR p  model is fitted to 

all signal segments to obtain the residuals and AR coefficients. Then the baseline data 

segment ( )x t  whose AR coefficients are closest to that of the unidentified data ( )y t  is 

selected, and an ARX ( , )a b  model is constructed from ( )x t  using its AR residuals as 

exogenous input. Hence, ARX residual sequences x  and y  can be obtained respectively 

from ( )x t  and ( )y t  using the baseline model.  The ratio y xσ( ) / σ( )   is defined as the 

damage-sensitive feature in this case. Here ( )σ ⋅  denotes the standard deviation of a 

sequence. An increase in the values of damage indicator is observed as the system 

became damaged.  

In another study (Sohn et al., 2001) on damage identification in a mass-spring-

damper system using acceleration response, similar methodology is used for feature 

extraction but a more statistically rigorous approach is employed for damage threshold 

construction. The selected damage index is 2 2( ) / ( )y xσ σ   , which should follow an F -

distribution under the Gaussian assumption of residuals. A modified hypothesis test is 

used to set the damage threshold.  

A successful application of AR residuals in detecting structural change in a 

progressively damaged concrete bridge column is reported in (Fugate et al., 2001). 

Acceleration measurements are collected from a single sensor mounted on the model. A 

healthy-state dataset is used to train a baseline AR model, which is fitted to both training 

and unknown state data to produce AR residual sequences. These sequences are divided 
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into subgroups of size 4, and within-subgroup mean (
_
x ) and standard deviation ( S ) are 

monitored using statistical process control chart. The upper/lower control limits of the 

charts are determined from baseline data residuals (Table 4.1); when the system is 

damaged, it is expected that a large portion of charted values will go beyond the limits. 

 

4.3.2 AR coefficients as damage indicators 
In the same paper (Sohn and Farrar, 2001) where AR-ARX residuals are used to 

capture damage, an outlier analysis is performed for the AR coefficients. The distance 

measure adopted for novelty evaluation is Mahalalobis distance, a metric that has been 

presented in Section 3.3.1. 

Mahalanobis distance is defined from the deviation statistics; a normal Gaussian 

statistical population in p − variants is usually described by a p − dimensional frequency 

distribution: 

 ( )
( )

( ) 1
1/2/2

1 1, , Σ exp ( ) .                                    
22 Σ

T

p
f x x xµ µ µ

π
− = − Σ − 

 
(4.3) 

Where x  is the p-dimensional Gaussian Random Vector, µ  is its expectation, and 

Σ is its covariance matrix. When data from a structural state that differs from the baseline 

is tested, Mahalanobis distance value for AR coefficients is expected to increase 

substantially.  Monte Carlo Simulation was employed for damage threshold construction: 

feature vectors with components drawn independently from a standard normal 

distribution are generated, and then their Mahalanobis distance values are computed and 

arranged in descending order. The threshold is set at the point beyond which 1%  or 5%  

values occur.  
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Mahalanobis distance is also adopted for damage detection in an experimental 

research described in (Gul and Catbas, 2009), where AR modeling is applied to the free 

decay response produced via random decrement technique, instead of the raw ambient 

response. 

4.4  PROPOSED DAMAGE DETECTION ALGORITHMS BASED ON 
TIME SERIES ANALYSIS  
 Though in several studies, AR models have been employed for feature extraction to 

detect structural damage, they mainly emphasized on development and validation of the 

SPR method and did not focus on examining their effectiveness for structural monitoring 

by sensitivity analysis. In this section the sensitivity of AR model properties as damage 

indicators will be inspected, and from the analysis result new autoregressive features 

based on model residuals and parameters are proposed. 

Damage detection is essentially an inverse problem that attempts to diagnose the 

system using the input (excitation) and output (structural response) records. Since in most 

practical situations input information is difficult to obtain, a convenient, yet in most cases 

justifiable assumption is made that the excitation is white noise. Theoretically, the 

structural vibration response under such loading can be treated as an ( , )ARMA p q  

process, with a corresponding z-transfer function (Oppenheim and Schafer, 2009) as 

shown in equation (6): 

 ( )
1 2

1 2
1 2

1 2

1
.                                               

1

q
p

p
p

z z z
X z

z z z
θ θ θ
α α α

− − −

− − −

− − −…−
=

− − …−
(4.4) 

In this equation, the auto regressive (AR) coefficients, { }iα , are determined by 

structural properties, and the moving average (MA) coefficients,  { }iθ  are affected by 

both the structural condition and excitation. The location of the zeros of the process, 
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determined by the MA coefficients, can be easily affected by even a slight measurement 

noise content that introduces a rippled noise floor to the signal spectrum. In Figure 4.1, 

the two ARMA models have the same AR coefficients but different MA coefficients. The 

blue and red lines are the Welch’s periodogram plots from data generated from the two 

models. The results are presented as an empirical proof that the zero positions (which is 

related to the MA coefficients) of a system cannot be reliably inferred from noise 

contaminated signals. As such, the ARMA models, despite their higher computational 

cost, do not always yield a performance superior to AR models in many applications. 

Therefore, using AR models is a preferable choice for constructing an efficient and 

effective damage detection algorithm that will work for online or distributed structural 

monitoring. In the remaining text of this chapter, the discussion will be limited to AR 

models. 

4.4.1 Damage detection using autocorrelation function (ACF) of the residuals  
From the definition of the AR model it is clear that if the autoregressive model used 

to filter an AR process is exactly the same as its underlying structure, then the produced 

model residuals should be the same as ( )x t  in Eq. (1). Otherwise, the residual sequence 

will resemble an ARMA process instead of being a white noise. 

Ljung & Box (1978) proposed a statistic to measure the difference between residual 

series and identically and independently distributed (i.i.d.) noise: 

 ( )
2

1

2  ,                                                                    
h

j

j

Q n n
n j
ρ

=

= +
−∑ (4.5) 

where n  is the sample size, h  is the number of lags, and jρ  is the autocorrelation at the 

thj  lag. Since this Q − statistic follows a 2χ  distribution under the normality assumption 
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of the input, a statistical test can be devised at significance level  α , by setting the 

rejection threshold at 2
1 ,hαχ − , which is the α − quantile of the 2χ  distribution with h  

degrees-of-freedom.  

This so-called Ljung-Box test is yet a novel statistical approach in the civil 

engineering domain. Nonetheless, it seems an attractive alternative for damage detection 

to residual-variance based methods, and will be applied in conjunction with AR modeling 

in Sections 4.5 and 4.6. In the rest of this subsection, an analytical result will be provided 

on the sensitivity of residual ACF to structural damage. Here, structural damage is 

represented as a change in AR coefficients (indirect structural parameters), rather than 

parameters with a clear physical meaning (mass, stiffness, etc.). 

Assume that the structural vibration response at a certain location can be described 

by a univariate ( )AR p  model: 

 ( ) ( ) ( ) ( ) ( )1 21 2 .                                 px t x t x t x t p e tα α α− − − − −…− − = (4.6) 

The corresponding z-transfer function is ( p  is always an even number, as the 

structural poles always appear in pairs as conjugates): 

 

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

1 2
1 2

1 * 1 1 * 1 1 * 1
1 1 2 2 /2 /2

1Φ  
1

1  ,            
1 1 1 1 1 1

p
p

p p

E z
z

X z z z z

a z a z a z a z a z a z

α α α− − −

− − − − − −

= =
− − …−

=
− − − − … − −

(4.7) 

which is an all-pole expression. It can be shown that the poles of a discretized MDOF 

structure are related to its eigenfrequencies ( iω ) and damping ratios ( iζ ) through the 

following expression (Nair et al., 2006): 

 
21*, ,     i:the mode order                                             i i s i i sT T

i ia a e ζ ω ω ζ− ± −= (4.8) 
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In Eq.(4.8), sT  is the data sampling frequency. Hence in the subsequent derivations, 

damage will be represented by a shift in the position of system poles. To simplify the 

discussion, suppose the model only differs from the data structure in the first pair of 

conjugate poles, 1a  and *
1a , by a value of 1Δa  and *

1Δa , where ( )* *
1 1Δ Δ . a a= The z-

transfer function of the residual sequence from the new structural state can be expressed 

as:  

 ( )
( ) ( )

( ) ( ) ( )
1 * * 1

1 1 1 1'
1 * 1

1 1

1 Δ 1 Δ
.                                      

1 1

a a z a a z
E z E z

a z a z

− −

− −

  − + − +   =
− −

(4.9) 

Eq. (4.9) can be written in the time domain as 

 ( ) ( ) ( ) ( ) ( ) ( )* ' * *
1 1 1 1 1 11 1 1 Δ 1 Δ ,a B a B e t a a B a a B e t − − = − + − +      

 ( ) ( ) ( ) ( ) ( ) ( )' * * *
1 1 1 1 1 1

0 0

1 Δ 1 Δ
mn

n m

e t a B a B a a B a a B e t
∞ ∞

= =

 = − + − +    ∑ ∑  

( ) ( ) ( ) ( ) ( ) ( )* *
1 1 1 1

0 0

                          Δ Δ
mn

n m

e t a B a B a B a B e t
∞ ∞

= =

 
= + − + − 

 
∑ ∑ . 

Here B  stands for the backshift operator, i.e. [ ] [ ]1Bp n p n= − . Considering changes in 

all pole pairs, 

 ( ) ( ) ( ) ( ) ( ) ( )' * *
1 1 1 1

1 0 0

Δ Δ ( ).                      
p mn

k n m

e t e t a B a B a B a B e t
∞ ∞

= = =

 
= + − + − 

 
∑ ∑ ∑ (4.10) 

This result is obtained under the assumption that the deviation of the model from its 

original state is very small.  

From Eq.(4.10) it is clear that as the model deviates from the baseline, the residuals 

will be the sum of a white noise sequence and a number of attenuated auto-regressive 

terms. As a result, an increase will be observed in its standard deviation, and its 
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autocorrelation function will start showing non-zero values at different time lags. A 

simple derivation leads to an expression for the ACF of ' ( )e t : 

 

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

'
2 *

1 1
1

* * * * *

2 2 2 2* * * *
1 0

Δ Δ 1

Δ Δ Δ Δ   Δ Δ   Δ Δ   } ,                     
1 1
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1 1
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ee
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t t t tp p
k l l k l l k l l k l l

k l k l k l k l k l

R t t a a t

a a a a a a a a a a a a
a a a a a a a a

σ δ δ
=

= =

= + − − −

 
 + + + +
 − − − − 

∑

∑∑
(4.11) 

where 2
eσ  is the noise variance. In Eq. (4.11) high order terms are not omitted because 

the poles of a physical structure are generally close to the unit circle, thus making the 

value of the denominators small. The damage detection methods that were examined in 

Section 4.3 are based on mean and standard deviation control charts on grouped residuals 

and F-test on residual variance. Eq. (4.11) suggests that more sensitive statistical features 

can be found by taking into consideration the change of the entire ACF, instead of 

focusing only on the change in residual standard deviation.  

4.4.2 Damage detection using AR model spectrum  
Corresponding spectrum plot can be constructed given an AR model (Figure 4.3): 

 ( ) ( )
( )

2 2

2 2

0

                                     p e e
AR pj j k

kk

S
e eω ω

σ σω
φ φ −

=

= =
∑

(4.12)  

Here 2
eσ  is not calculated and set to 1, since its value can be determined by excitation 

level.  

It is proposed here that Cosh spectral distance (Haritos and Owen, 2004; Wei and 

Gibson, 2000) based on AR spectrum estimates be used as a more stable damage index 

than Mahalanobis distance of AR coefficients:  
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In Eq. (4.13), ( )jS ω  is the Power Spectral Density to be examined, and ( )
_
 jS ω  is 

the average of the spectra estimates from baseline samples.  When the system is 

damaged, the Cosh distance value should increase. Since no theoretical probability 

distribution is available for this statistic, damage threshold will be determined using the 

cross validation technique (Section 3.4.1). 

Structural damage will influence the values of the AR coefficients obtained from 

autoregressive modeling on the vibration responses. A desirable feature is one that is 

sensitive to the damage, but not very sensitive to other non-relevant factors. A theoretical 

solution on the feature sensitivity would require not only a thorough inspection of the 

numerical estimation algorithm used, but also evaluation of finite sample number effect 

and complicated statistical distributions. Therefore, numerical simulations are adopted to 

investigate this subject. Each simulation consists of 50 runs, in which sample data are 

generated from an ARMA (10, 6) process with white noise added.  In Figure 4.2, the first 

row shows how the coefficient and spectrum estimates respond to the change in signal 

noise level, the second row shows how these estimates are affected by a slight variation 

in the positions of two zeros of the ARMA process (as reflected in the difference between 

the two thin blue lines), and the third row shows their responses to change in the values 

of two poles of the ARMA process. In all estimations the AR order is set at 16. 

As can be seen in the second and third row of Figure 4.2, the signs and values of AR 

coefficients are sensitive to the change in position of zeros and noise ratio, and especially 

to the latter; when the noise level is raised slightly, substantial variation happens in the 
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value of first six AR coefficients. The Mahalanobis distance measure mentioned before is 

implicitly based on the assumption that the estimated coefficients are Gaussian random 

vectors, which is only true asymptotically when the underlying process is strictly ( )AR p ; 

see (Sakellariou and Fassois, 2006) for details. When such variations are considered, the 

general ‘shape’ of the coefficient cluster may be easily affected and thus render this 

feature not robust with respect to variation due to environmental factors. 

Judging from the plots, the AR spectrum estimate seems a more reliable feature 

compared to the coefficients. This feature is not greatly affected by noise level change, 

and has the desired feature of being more sensitive to shift in poles than zeros 

(considering the logarithmic plot scale that magnifies the difference between small 

values). No explicit reasoning is available now to account for this phenomenon, but the 

interaction between polynomial coefficients and roots is complicated when the 

polynomial order is high; sometimes a slight change in one corresponds to great variation 

in the other.  

4.5 NUMERICAL IMPLEMENTATION OF THE STATISTICAL 
ALGORITHMS 
To examine the effectiveness of both the old and new algorithms, a four degree-of-

freedom mass-spring-damper system (Figure 4.4), subjected to white noise excitation is 

simulated using MATLAB. Two sets of acceleration measurements are collected at all 

nodes from the healthy structure. Then damage is simulated by reducing the stiffness of 

the spring between nodes 3 and 4 by 20% , and two additional sets of acceleration 

measurements are obtained from the damaged structure. Figure 4.5 and Figure 4.6 display 

the results from different statistical algorithms. In all these statistical tests, one dataset 

(dataset 2) from the undamaged condition is used to establish the baseline, and the other 
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(dataset 1) for false-positive testing. The other two sets from the damaged state are used 

to demonstrate each method’s damage detection performance. Each dataset consists of 

3000 points. The order of AR models is determined by using Akaike’s Information 

Criterion (AIC) (Brockwell and Davis, 2002). 

Damage is clearly indicated by both the 
_
x  control chart and Q − statistic trace plot 

(Figure 4.5). The AR model order used in control chart construction is 28, the subgroup 

size is 4. The maximum lag number for Q-statistic evaluation is 25. The significance 

level of the threshold is 5%. The classification result using S − control chart is not 

satisfactory, possibly due to the fact that the residuals are not completely uncorrelated. 

Q − statistic trace plots are the more sensitive features, where the values from the 

damaged state significantly increase as model order increases. Such large differences 

have compensated the imperfection of having the false positive trace lying above the 

threshold. Note that as the AR order increases, the model overfits dataset 2, thus making 

the difference in Q-statistic value obtained from dataset 1 and dataset 2 greater. Another 

interesting point observed is that as model order increases, the false positive trace 

becomes quite flat, while the two damaged state traces are fluctuating.  

In Figure 4.6, The AR model order employed is 28, and each dataset is segmented 

into a group of 350-point long pieces with 300-point overlap between successive parts. 

The significance level of the threshold is 5%. The number of FFT (fast Fourier 

Transform) points is 256. It can be seen that the Mahalanobis distance feature is not 

robust with respect to variation due to environmental factors, and cross-validation 

technique is employed for threshold construction in both Mahalanobis distance plot and 

the AR spectrum distance plot presented herein.  
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4.6 EXPERIMENTAL VALIDATION OF THE STATISTICAL 
ALGORITHMS 
For further verification of the statistical algorithms, they are also applied to 

acceleration data from two laboratory experiments. As in the numerical case, two 

acceleration datasets are obtained for either structural scenario.  

4.6.1 Case study 1: truss model subjected to ambient vibrations. 
Figure 4.7 shows a picture of the specimen tested, with 14  wireless sensors mounted 

on the connection nodes. The truss is 1 m wide, 0.707 m tall, and has in the longitudinal 

direction four spans (lower cord), each 1.414 m long. For additional information on the 

truss, please refer to Section 2.2. No additional excitation is applied except the ambient 

vibration, and two 20.4 kg  disks are added to the mid-span of the truss to approximate a 

loss of stiffness in the system. For the undamaged case, the fundamental frequency 

estimate of the truss is 2.33 Hz. For the damaged case, the first frequency is 2.05 Hz. 

The statistical control charts have already been applied to free vibration data 

collected from the truss in Section 2.2. However, as the AR models were initially 

proposed as a tool to study stationary time series, it makes more sense to apply them to 

ambient vibration responses. Due to the measurement noise disturbances in the high 

frequency content of the acceleration signals collected, the data is preprocessed using a 

low-pass filter before SPR evaluation. The results from Ljung-Box test, Mahalanobis 

distance and Cosh spectral distance evaluation are shown in Figure 4.8 and Figure 4.9. In 

all applications, the first two datasets are from healthy state, the rest from damaged state. 

The significance level of all thresholds is 5%. The maximum lag number for Q-statistic 

evaluation is 25. For evaluation of the Mahalanobis distance and Cosh spectral distance 

features, the AR model order selected to be 22, and each dataset is segmented into a 
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group of 300-point long pieces with 250-point overlap between successive parts. The 

significance level of the threshold is 5%. The number of FFT (fast Fourier Transform) 

points is 256. Statistical control chart failed to yield a satisfactory classification result in 

this case. Again, the theoretical threshold of the Q-statistic generates false alarms. 

4.6.2 Case study 2: bridge slab model subjected to white-noise excitation 
The test specimen is a two-span reinforced concrete bridge model tested at the 

University of Nevada, Reno (Figure 4.10). The three bents are each placed on separate 

shaking tables. Clear column heights of 1.83 m, 2.44 m, and 1.52 m were chosen for 

Bents 1, 2, and 3, and the diameter for each column is 0.31 m. The width and the total 

length of the slab were 2.5 m and 20.5 m. The design prototype was an idealized two-

span frame of a cast-in-place, post-tensioned reinforced concrete box girder bridge. As 

part of a larger NEES (Network for Earthquake Engineering Simulation) project 

(Johnson, Ranf, and Saiidi, 2008), the specimen was progressively damaged during 

various low-to-high amplitude level earthquake excitation tests, all of which were from 

the 90 degree and 180 degree components of the Century City Country Club North record 

from the 1994 Northridge, California earthquake. In the intervals between these tests, 

white noise excitation was applied to the structure. Minor cracks were first observed after 

the 13th earthquake test, and exposing of reinforcements occurred after 15th test, other 

details on the damage accumulation in bridge bents can be found in  

 Table 4.2. The data used here is the transverse acceleration measurements of the 

slab from white-noise tests collected from sensor AT3 (Figure 4.10). The names of the 

data files, as shown in Figure 4.11 to Figure 4.13, is a combination of the number of the 

earthquake tests before and after the white noise test, with common prefix ‘WN’. 
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Postfixes are employed to distinguish data from different tests under same structural 

condition. 

For all the results presented for this case study, the first three datasets are from the 

healthy state, the rest from the damaged state. Again, thresholds with a 5% significance 

level are used for all features. When evaluating the Mahalanobis distance and Cosh 

spectral distance, the AR model order used is 20, and each dataset is segmented into a 

group of 350-point long pieces with 300-point overlap between successive parts. The 

number of FFT (Fast Fourier Transform) points is 256. The AR model order used in 

control chart construction is 15, and the subgroup size is 10. It is observed that when the 

damage is small, features calculated from model coefficients are no less sensitive than 

those from residuals. But when the damage becomes severer, the value of latter increases 

much more rapidly than the former. This can be explained by the results presented in 

Section 4.4: the change in autocorrelation/variance is the sum of pole shifts and a number 

of second order terms with possibly small denominator values. The ‘second order effect’ 

will grow prominent when the damage becomes more substantial. The statistical control 

method performs quite well in this case, possibly because the excitation is a controlled 

white noise input. 

Also, it can be observed in all of the numerical and experimental applications the 

Cosh distance outperforms the Mahalanobis distance in that the former is relatively more 

robust to excitation condition variations.  The percentages of outliers/inliers of the 

application examples are provided in Table 4.3. Note that for all the figures the threshold 

is set at a 5% statistical significance level, which means damage is recognized when the 

outlier portion exceeds 5% of the total observations (or equivalently, when the inlier 
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portion falls below 95% of the total observations). It is clear that the Cosh spectral 

distance yields a more consistent performance for the baseline and false-positive testing 

datasets, while remains overall sensitive to structural damage.  

It is worth noting that as the system becomes non-linear, many feature values stop 

reflecting the damage extent, due to the invalidity of LTI (linear time invariant) 

assumption for the system.  

4.7 CONCLUSION  
In this chapter, two time series-based structural damage detection algorithms using 

statistical pattern recognition are proposed and investigated. One of them uses the Ljung-

Box statistic of AR model residual sequence as damage index; the other uses the Cosh 

spectral distance of the estimated AR model spectrum. Compared with existing 

algorithms based on AR model residual variance and coefficients distance, the Ljung-Box 

statistic provides a more accurate account of the structural damage by evaluating possible 

change in the entire ACF of residuals and Cosh spectral distance is less sensitive to 

changes in excitation sources as its value is largely determined by system poles, a 

property shared by most spectrum-based features. Subsequent applications to vibration 

data from simulation and lab experiments shows that the Ljung-Box statistic is indeed a 

more sensitive feature than residual variance in most cases, while Cosh spectral distance 

tends to be more stable than Mahalanobis distance of coefficients. 

  In all the applications presented, the theoretical threshold of Ljung-Box test is 

conservative (i.e. generates a large number of false positives). The available control chart 

method also suffers from similar threshold construction inaccuracies. This problem arises 

from the fact that the structural response is not precisely an AR process, and the residuals 
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obtained from the estimated model are not exactly white noise as assumed in the 

formulation of the Ljung-Box test. This discrepancy between the theoretical results and 

those from real data is inevitable because of statistical modeling errors. The data- driven 

resampling method proposed for threshold construction for Mahalanobis distance and 

Cosh spectral distance measure yields a better performance. Similar procedures may also 

be attempted for the residual based features in future research. 
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Table 4.1     Formulas for upper/lower bound calculation of the two control charts 

(Fugate et al., 2001). 

 Upper bound Lower bound Center line 

x  chart  /2 /pz s nα   /2 /pz s nα−   0  

S  chart _
2
1 /2, 1 / ( 1)nS nαχ − − −  2

/2, 1

_
/ ( 1)nS nαχ − −    ps  

** ps  is the square root of pooled variance of subgroups in the baseline residual set, and αz  represents the α 

quantile of the standard normal distribution. 

** 2
,p n χ  denotes the pth quantile of a Chi-square random variable with n degrees of freedom. 

 

 Table 4.2     Damage Progression Summary for Each Bent (Johnson et al., 2008) 

 
  Observed damage   

Test  Bent 1  Bent 2  Bent 3  

12 —  —  —  

13 CRACK (0.08)  —  —  

14 CRACK (0.08)  CRACK (0.08)  CRACK (0.08)  

15 CRACK (0.25), FL  CRACK (0.08)  CRACK (0.25),SPAL (100)  

16 CRACK (0.50),SPAL (125)  CRACK (0.17), FL  CRACK (0.33),SPAL (100), TranEXP  

17 CRACK (0.50),SPAL (150), 
TranEXP  

CRACK (0.25), FL  CRACK (0.50),SPAL (100), TranEXP  

18 CRACK (0.50),SPAL (150), 
TranEXP  

CRACK (0.50),SPAL (100)  CRACK (2.00),SPAL (140), TranEXP, 
LongEXP, InBUCK  

19 CRACK (0.75),SPAL (150), 
TranEXP  

CRACK (2.00),SPAL (115)  CRACK (2.00),SPAL (150), TranEXP, 
LongEXP,  

   BUCK, TranFRAC  

20 CRACK (0.75),SPAL (150),  CRACK (2.00),SPAL (125)  CRACK (2.00),SPAL (150), TranEXP, 
LongEXP,  

 TranEXP, LongEXP   BUCK, TranFRAC, LongFRAC  

21 CRACK (0.75),SPAL (150),  CRACK (2.00),SPAL (125)  CRACK (2.00),SPAL (150), TranEXP, 
LongEXP,  

 TranEXP, LongEXP   BUCK, TranFRAC, LongFRAC, CORE  

22 CRACK (0.75),SPAL (150),  CRACK (2.00),SPAL 
(200),  

CRACK (2.00),SPAL (150), TranEXP, 
LongEXP,  

 TranEXP, LongEXP, InBUCK  TranEXP, BUCK  BUCK, TranFRAC, LongFRAC, CORE  

 
Notes: BUCK—buckling of longitudinal reinforcement, CORE—complete core degradation, CRACK—crack width in mm, 
InBUCK—incipient buckling, 
LongEXP—the exposing of longitudinal reinforcement, LongFRAC—fracture of the longitudinal reinforcement, SPAL—spall 
height in mm, 
TranEXP—the exposing of transverse reinforcement, TranFRAC—fracture of the transverse reinforcement. 
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Table 4.3     Comparison of the performances of Mahalanobis distance and Cosh distance 
feature; misclassified cases are marked in bold 

  outlier percentage inlier percentage  
  dataset 1 dataset 2  dataset 

3 
dataset 
4 

  

Figure 6 Mahalanobi
s 

0.00% 9.26%  27.78% 29.63%   

 Cosh 3.70% 7.41%  27.78% 46.30%   
  dataset 1 dataset 2  dataset 

3 
dataset 
4 

  

Figure 8 Mahalanobi
s 

0.00% 0.00%  0.00% 0.00%   

 Cosh 0.00% 2.44%  0.00% 0.00%   
  WN0709

B 
WN0709
A 

WN1112
A 

WN141
5 

WN171
8 

WN181
9 

WN192
0 

Figure 
11 

Mahalanobi
s 

0.00% 38.71% 37.63% 0.00% 0.00% 0.00% 0.00% 

 Cosh 2.15% 12.90% 3.23% 22.58% 0.00% 0.00% 0.00% 
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Figure 4.1 Sample spectrum plots from 50 simulations of two ARMA 
processes: a) constructed from noise-free samples; b) 
constructed from samples with 6.5% noise added.  

 

Figure 4.2 The estimation interval of AR coefficient and envelope of 
spectrum estimates over 50 simulations. ‘snr’ is the 
abbreviation for signal-to-noise ratio. In all the spectrum plots, 
the thin blue line(s) represents the spectrum of underlying 
model(s).  
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Figure 4.3 Comparison between an AR signal power spectrum density 
and the estimated AR model spectrum (the smooth red line) 
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Figure 4.4 The simulated 4 DOF mass-spring-damper system  

 

 

Figure 4.5 Damage classification results in the numerical case, by (a)    
control chart and (b) Ljung-Box test statistic measure; all data 
are acquired from node 3.  

  

71 
 



 

Figure 4.6 Damage classification results in the numerical case, by (a) 
Mahalanobis distance and  (b) Cosh spectral distance measure.  
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Figure 4.7 The space truss model with its sensor numbering scheme  
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Figure 4.8 Damage classification results for the space truss by (a) 
Mahalanobis distance and (b) Cosh spectral distance measure; 
all data are acquired from truss node 4.  

 

 

Figure 4.9 Damage classification results for the space truss using Ljung-
Box test statistic measure; All data are acquired from truss 
node 4.  
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Figure 4.10 Implementation of accelerometers on the bridge slab model 
(Johnson et al., 2008)  
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Figure 4.11 Damage classification results for the bridge slab model by (a) 
Mahalanobis distance and (b) Cosh spectral distance measure; 
all data are acquired from node 3.  
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Figure 4.12 Damage classification results for the bridge slab model using 
Ljung-Box test statistic measure ; the maximum lag number 
for Q-statistic evaluation is 25.  
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Figure 4.13 Damage classification results for the bridge slab model, by (a)    
control chart and (b) S control chart measure; data set 
WN0709B is employed as baseline here. all data are acquired 
from node 3.  
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 Cross comparison of AR features with other damage Chapter 5
detection methods  

5.1 PRELUDE 
The aging and deterioration of civil structures are inevitable because of the natural 

and man-made hazards, and various damage forms (corrosion, fatigue, delamination etc.) 

has been found and defined for existing structures. Depending on the structural material, 

geometry, and operational condition, different structures will have different critical 

conditions and therefore different failure modes under excessive load, like the I-35W 

bridge in Minnesota and the Tacoma Narrows Bridge in Washington. As till now no 

theoretical/analytical methods can exactly model real-world structures and their 

interaction with the ambient environment, implementations of damage features on 

various types of real structures are important for their performance comparison. Cross-

comparison between the performances of different features is an important way to help 

select the most appropriate feature for a particular application. 

5.2 MOTIVATION AND ORGANIZATION 
In the previous chapters several AR based damage detection techniques, either pre-

existing or original, are presented and cross-compared. Here to better evaluate the 

potential of the family of AR features for damage identification, Mahalanobis distance of 

AR coefficients and Ljung-Box statistic of AR residuals are applied to identify damage in 

a scaled two-bay steel girder. The Influence Coefficients Method proposed by Labuz et 

al. (2010, 2011), which is a bi-channel time domain regression technique, is also applied 

to the same specimen. The threshold construction techniques for AR features are same as 
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adopted in Chapter 4, while change point analysis (CPA) is used for the influence 

coefficients.  

The organization of the remaining content of this chapter is as follows: 

• Section 5.3 reviews the influence coefficient based damage detection features. 

• Section 5.4 reviews the damage features from Mahalanobis distance of AR 

coefficients and Ljung-Box statistic of AR residuals. 

• Section 5.5 discusses the threshold construction process for the features. 

• Section 5.6 contains the application results of the included damage detection 

methods. 

• Section 5.7 presents the comments on the advantages of different damage 

detection methods used here. 

5.3 STATISTICAL METHOD 1: LINEAR REGRESSION BETWEEN 
RESPONSES FROM TWO SENSOR NODES 
If a linear structure is under static/quasi-static loading, then the structural response u  

at any two locations should be linearly correlated:  

 ( ) ( ) ( ),                                                           j k j i i k ij ku t u t tα= ⋅ +  (5.1) 

Here i  and  j  indicate the response location, and k  is a time label. The correlation 

coefficient is determined by both the force distribution and structural stiffness properties. 

In practice, most structures are subjected to dynamic loads. However, if only a small 

part of the structure (with large stiffness and insignificant mass) is monitored, then it can 

be assumed that the local behavior could be captured by a static model.  
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This pair-wise regression method has been applied to detect damage in a beam 

column specimen and a simulated model of the steel frame here (Labuz et al., 2010, 

2011). The feature extraction methodology can be summarized into the following steps; 

1) for each pair of iu  and ju , the correlation coefficients ,i jα  and ,j iα  and the 

corresponding residuals are evaluated using the least squares method (Figure 5.1); 2) to 

check the stability of estimation, two indices are calculated: accuracy factor EA  

, ,i j j iα α= ⋅  and normalized estimation error /
ijij ijαγ σ α= ; 3) correlation coefficients from 

those node pairs with EA  close to 1 and ijγ  close to zero are selected as damage 

indicators. 

This approach is straightforward in principle and efficient for computation. Also, the 

change in the values of regression coefficients can reflect to some extent the location of 

damage. However, when the dynamic response content becomes prominent (i.e. 

regression is performed for two far-apart nodes), the algorithm performance will degrade. 

5.4 STATISTICAL METHOD 2: AUTOREGRESSIVE MODELING OF 
RESPONSE AT ONE LOCATION 
Univariate autoregressive model (Brockwell and Davis, 2009) is among the most 

widely applied time series analysis tools. Its definition is presented as Eq. (2.1), which 

basically expresses the value of the signal at a certain time point as a linear combination 

of its previous values and a random error term.  AR coefficients can be estimated from 

collected signals using one of the standard algorithms such like Yule-Walker and Burg 

(Porat, 1994), and model residuals/errors ( )e t  can then be obtained as the difference 

between model prediction and the real signal.  Autoregressive damage detection 
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algorithms can be based on either model coefficients or residual characteristics. In the 

remainder of this section, one example from either category will be presented. 

5.4.1 The Mahalanobis distance of AR coefficients 
This feature has been introduced in Section 3.3.1. Mahalanobis distance is a metric 

that represents the coefficients’ deviation in the probability space of normal distribution, 

which is the asymptotic distribution of the estimated AR coefficient vector as signal 

length increases.  When the system is damaged, the values of Mahalanobis distance 

feature will increase. 

5.4.2 Ljung-Box statistic trace of AR model residuals  
This feature is presented in Section 4.4.1. If the structural condition has undergone 

changes, then the baseline model will no longer provide a good fit to the new signals 

collected. As the result, the residual series, instead of resembling a white noise, shall 

carry some identifiable patterns over time. 

The Ljung-Box statistic trace, as noted in previous applications, is a plot of the 

Ljung-Box statistic against the baseline AR model order (Figure 5.2). For undamaged 

state signal, a downward trend is expected in the plot. Thus if the trace is oscillating, 

stopping decreasing at short or going upward as the model order increase, the system is 

recognized as damaged. 

5.5 THRESHOLD CONSTRUCTION METHODS 
After feature selection, appropriate damage threshold construction schemes are 

needed to reach a decision on the current state of the structure being monitored. If the 

feature distribution can be assumed, then statistical hypothesis testing could be used for 

damage identification. However, in most cases the feature distribution is unknown and 
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cannot be approximated by an analytical function. As such, the damage threshold will be 

determined based on the data solely using one of the resampling techniques. 

5.5.1 Change point analysis using cumulative sum 
Change point analysis is used to find the point in a data sequence where the data 

characteristics change and the confidence level associated with this change point. It is an 

effective way of identifying thresholds and detecting subtle variations. A variety of 

approaches is available for performing change point analysis, such as cumulative sum, 

deviance reduction, and least squares. Here, the cumulative sum method (Taylor, 2000) 

will be adopted for damage threshold construction for the influence coefficients 

features. 

The cumulative sum { }iS  for a data sequence { }ix  is calculated as below: 

1) Subtract every value in this sequence by its mean x . 

2) Compute the cumulative sum at step  i by adding up the values occurred 

before and at i . (i.e. ( )i j
j i

S x x
≤

= −∑ ) 

Experienced individuals can identify the change point directly as the place where the 

trend of the cumulative sum plot changes. (Figure 5.3) But as our aim is automatic 

damage threshold construction, a bootstrap analysis is performed; the original signal 

sequence is randomly permuted for N  times and each time the maximum absolute value 

of the cumulative sum of the new sequence is recorded. The threshold for the maximum 

absolute cumulative sum of a data sequence of constant properties is then set at the point 
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above which Nα  values occurred. The significance level α  is set to 5% in all the 

applications in this chapter.  

5.5.2 Cross validation 
The theoretical distribution of Mahalanobis distance feature is hard to derive and 

the feature itself often exhibits large fluctuations even within the healthy state. Thus, a 

cross-validation approach introduced in Section 3.4.1 is used for its damage threshold 

construction. This method is shown to demonstrate more reliable performance to other 

threshold evaluation techniques such as hypothesis testing based on Gaussian assumption 

of model coefficients in Chapter 3. 

5.6 EXPERIMENTAL RESULTS 
The aforementioned influence coefficients and AR modeling method, together with 

their respective threshold evaluation approaches, are applied to detect damage in a scaled 

two-bay steel frame constructed from steel tubes. (Figure 5.4)  The structure, 

instrumented with 21 accelerometers, is excited from the left beam-column joint by an 

electro-dynamic shaker (Figure 5.5). To simulate a structural damage, the potion between 

sensor S16 and S18 and that between S19 and S21 are switched out by 20% less stiff 

tubes. For each structural scenario, five random vibration tests are performed and the 

acceleration responses collected are used as input to the algorithms. 

The first algorithm produces for each dataset 21 20 420× =  influence coefficients, 

each from a particular node combination. To facilitate the subsequent decision making 

process, only those coefficients with average evaluation accuracy factor EA >0.9 and 

normalized estimation error 0.003γ <  are examined. Out of the 24 coefficients selected, 

the cumulative-sum-based change point analysis successfully identified damage for 21 of 
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them over the 10 tests. It is observed, however, that the 3 coefficients that failed to report 

damage are all from regression between distant nodes, which are by nature not quite 

reliable.  

Figure 5.6 displays the estimation results from 4 influence coefficients, all indicating 

damage except for the one showed in the lower right corner. One interesting fact noticed 

is that though the nodes 5 and 6 are nowhere near damage, their corresponding influence 

coefficient value still increased abruptly as a result of structural change.  This is probably 

because these correlation coefficients reflect the ratio of structural vibration ‘shape 

function’ values evaluated at two different locations, and those combinations with most 

affected coefficients are determined by not only the damage location but also the 

structural layout. Yet still, generally there will be a higher chance of observing changes 

near the damage for a properly restrained regular structure. Also if an analytical model of 

the structure is available, the influence coefficients can be used as input to a model 

updating scheme to find out the damage location. 

The AR modeling based algorithms are also proved effective for damage detection in 

this case. While the influence coefficients capture the static behavior of the system, time 

series modeling deals with the structural dynamic effects. For has the system been all 

static, the response will only be a scaled white noise series with no distinguishable 

patterns for modeling. Figure 5.7 shows the results from AR coefficients based 

Mahalanobis distance method using data from sensor 2 and 17. To save space here, only 

two datasets per structural state are used. In both graphs dataset 3 is used as the baseline 

and 4 the false positive testing. Damage is clearly indicated in both plots, even though 

85 
 



one node is much farther from the damage location. It may thus be concluded that here 

the local damage does affect the global dynamic properties in a certain way. 

Figure 5.8 is the Ljung-Box/Q statistic traces for node 2 and 17. The two damaged 

state traces float high above those undamaged ones as expected. The threshold from 

hypothesis testing is conservative for data from both sensors, suggesting that the 

theoretical assumptions do not quite represent reality here. Also, damaged state Q 

statistics from measurements at node 17 is much larger than that from node 2. After 

examining Q traces from all 21 nodes, it is found that the traces from nodes on the right 

beam show greatest change, indicating the damage location. 

5.7 CONCLUSION 
This chapter focuses on validating the performance of two types of statistical damage 

detection algorithms through their application to detect damage in an artificially excited 

two-bay steel frame using acceleration measurements collected. These algorithms are 

advantageous in that the decision on the structural state is made using well-established 

statistical concepts instead of human expertise, thereby eliminating possible individual 

biases. Besides, since they are mostly data driven, very few assumptions are needed 

regarding the physical structure. 

The pair-wise regression and AR modeling method adopted here are complementary 

in the sense that while the former works on getting a static relation between signals from 

two different locations, the latter concerns itself with analyzing the dynamic pattern of 

the signal from a single sensor node. The damage features presented are influence 

coefficients from the 1st method, and Mahalanobis distance of model coefficients and 

Ljung-Box statistic of model residuals from the 2nd method. Their corresponding damage 

86 
 



threshold evaluation techniques are cumulative sum analysis, cross-one-out validation 

and hypothesis testing. It can be seen here that different types of features may need 

different ways to establish the damage threshold.  

Judging from the results obtained in the previous section, both algorithms have 

successfully detected the existence of artificially introduced damage. It shall be noted, 

however, that the change in the influence coefficient values are not the ideal damage 

location indicator hinted in some earlier works(Labuz et al., 2010, 2011); they only 

suggest a possibility which need to be verified through other means of observation. The 

Mahalanobis distance is no fit for damage location detection in this case:  at least as much 

change is observed from the features at node distant to damage as that from a nearby 

node. The Ljung-Box static from AR residuals seems to do better in this aspect, though 

no clear reasons can be provided for now. Also noticed is that the data-driven threshold 

evaluation methods based on resampling yield a superior performance to hypothesis 

testing, as they suffer less from statistical modeling errors. 

To summarize, the statistical algorithms have been altogether effective for 

identifying damage existence in the lab specimen and two of them have been able to 

suggest the possible damage locations. Each feature extraction scheme and the associated 

threshold construction technique operate as a whole to bring forward the final result. To 

further investigate the capabilities of the algorithms, however, more experiments on 

various types of structures are needed. 
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Figure 5.1 Regression for influence coefficients 
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Figure 5.2 Ljung-Box statistic for structural damage identification 

 

 

Figure 5.3 The cumulative sum plot from the implementation in Section 

5.6. 
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Figure 5.4 The two-bay steel frame 

 

 

Figure 5.5 A schematic plot of the girder mounted with accelerometers 
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Figure 5.6 Influence coefficients from different node pairs 
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Figure 5.7 Mahalanobis distance from signals collected at node 2 (left) 

and node 17(right) 

 

 

Figure 5.8 Ljung Box trace for damage detection 
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 Damage and noise sensitivity investigation of AR coefficient Chapter 6
based features  

6.1 PRELUDE 
Damage detection is a very crucial part in the regular assessment and maintenance 

routine for civil infrastructure. Data-driven structural health monitoring (SHM) has been 

recently studied as a more economical alternative than traditional visual inspection 

method because of the lowering prices of sensing systems, and is expected to produces 

more accurate and reliable decisions that are free of human judgment bias or expertise. 

Moreover, SHM has the capability to reveal problems undetectable via ‘naked-eye’ 

inspection such as internal fracture and delamination.  

Reliable damage detection requires reliable damage features. For vibration-based 

damage detection, features used include modal properties, scalar TSA features etc. 

Compared with modal properties, scalar TSA features are reported to be less complicated 

to compute and more sensitive to local damage in their respective applications. 

(Atamturktur et al., 2011; Zhang, 2007) provide comparisons on the effect of local 

damage on the modal frequencies/shapes and autoregressive features, and it is observed 

in both case studies that the latter shows a more noticeable change than the former. Also, 

AR-ARX method has demonstrated success in damage localization in (Zhang, 2007), and 

ARMA method has been used to indicate damage location and extent in (Nair et al., 

2006). The AR methods, however, is not quite sensitive to damage location (Gul and 

Catbas, 2009). It is noted that univariate time series analysis methods are output-only, 

and damage indices of this type are often functions of structural signal autocovariance 
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functions, which are in turn determined by the structural stiffness properties, the 

structural geometry and excitation patterns. When the location of damage does not 

correspond well with where the largest damage-induced change in signal 

autoccovariancce functions occurs, damage localization based on time series analysis is 

likely to be very difficult. Still, these damage features have advantages such as being 

simple in concept, convenient for statistical processing as they can be generated in large 

quantities, and suitable for decentralized structural monitoring applications.   

6.2 MOTIVATION AND ORGANIZATION 
While it is important to propose and test new features to improve the state-of-the-art 

of structural damage detection, examination of the effect of structural change and 

environmental and operational factors on existing features in an analytically rigorous 

manner is also crucial for optimal feature selection for different practices. Previously, 

research has been conducted on evaluating the adverse effect of measurement noise on 

the accuracy of estimated modal parameters (Dorvash and Pakzad, 2012). In this chapter, 

the sensitivity of two damage features based on AR modeling due to damage level and 

measurement noise is studied and an analysis methodology is proposed. The two methods 

are the Mahalanobis distance (Mahalanobis, 1936) of AR coefficients and the Cosh 

distance (Gray Jr and Markel, 1976) of AR model spectra between the baseline state and 

the current state.  

Sensitivity analysis reveals that ambient response based AR features are affected by 

measurement noise. To increase the noise robustness of feature values, AR modeling is 

applied to signal autocovariance function (ACovF) instead of the ambient signals itself. 

Theoretical justification is presented after the sensitivity derivation section. 
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The validity of sensitivity analysis methodology for Mahalanobis distance and Cosh 

distance features from ambient signals is supported by simulation results from a 10 DOF 

bridge model. Performances of the damage features from ambient acceleration series and 

those from ACovF of the series are compared through an application to vertical member 

of a steel truss bridge in western Pennsylvania. 

The remaining content of this chapter is organized as follows:  

• Section 6.3 gives an explanation of the theoretical relation between the structural 

acceleration response and the family of AR modeling, together with an 

examination of the properties of the scalar Yule-Walker AR coefficient 

estimators.  

• Section 6.4 contains stepwise derivations regarding the analysis for the sensitivity 

with respect to damage level and measurement noise for both features.  

• Section 6.5 introduces a way to reduce noise sensitivity by applying AR modeling 

to signal ACovF. 

• Section 6.6 applies the sensitivity analysis procedure to a 10-DOF simulated 

model and the results are compared with those from direct simulation and 

theoretical calculation.  

• Section 6.7 presents the comparison results between the damage detection 

performances of ambient signal based AR modeling and signal ACovF based AR 

modeling in a steel truss bridge.  

• Section 6.8 is the conclusion on the feature performances/sensitivities.   
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6.3 AUTOREGRESSIVE MODELING FOR STRUCTURAL VIBRATION 
MEASUREMENTS 
Sensor measurements do not reveal information concerning the structural state being 

monitored until they go through data-processing algorithms. Autoregressive (AR) 

modeling is one of the most effective time series analysis techniques, and has found 

applications in vibration monitoring of various types of structures (Nair et al., 2006; 

Worden, Manson, and Fieller, 2000; Zhang, 2007) that are instrumented with 

accelerometers. Here, different aspects of AR modeling are investigated in two 

subsections. Subsection 6.3.1 demonstrates the validity of AR modeling for structural 

vibration signals and presents a proof on a multi-input-multi-output (MIMO) ARX model 

between the excitation and acceleration response of a MDOF system. Since univariate 

AR estimators tend to behave differently from their multivariate counterparts because of 

the spatial correlation among structural responses, Subsection 6.3.2 investigates the 

characteristics of single-input-single-output (SISO) AR coefficient estimators from 

acceleration measurements to provide insight into the behavior of autoregressive features 

thus extracted.  

6.3.1 Civil structural systems and AR/ARX model 
An ARX model is a numerical tool that has been proved quite useful in describing 

causal systems subjected to series of external disturbances (Brockwell and Davis, 2002). 

In an effort to derive an explicit ARX model for a N  degrees-of-freedom system 

between its excitation source and acceleration measurements, the system impulse 

response should be obtained, discretized and transformed. To start, calculate the 

acceleration impulse response of the i th mode by twice differentiating the Duhamel’s 

integral of the displacement impulse response ( )ih t  (Chopra, 2006): 
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( )δ τ   here stands for the dirac delta function. The acceleration impulse response 

may be written as the sum of the second-order derivative of the displacement impulse 

response and an impulse term: 
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(6.2) 

where im , n iω , D  iω , and iζ  are the modal mass, natural frequency, damped frequency 

and damping ratio of the i th mode, respectively. The discretized version of Eq. (6.2) is  
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(6.3) 

where n  is the time label in the discrete domain and sT  is the sampling interval. Its 

corresponding z-transform can be obtained as: 
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(6.4) 
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Define the discretized modal input/output as  [ ]iq n  and [ ]ip n , their relation can be 

expressed using an ARX model, by taking the inverse z-transform and rearranging 

Eq.(6.4): 

[ ] [ ] [ ] [ ]

[ ]
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n s
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2 2
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s D
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+ + + + −  
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n s2

s
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i iT

i
i

p n
m T

ζ ω−

+ −

(6.5) 

For notation simplicity the coefficient expressions will be omitted for now and Eq. (6.5) 

is denoted as: 

 ( ) [ ] ( ) [ ] [ ] [ ] ,        : the backshift operator,     . .  1 .      i i i iA B q n C B p n B i e Bp n p n= = −

(6.6) 

For the MDOF model discussed here, the matrix form of representation can be 

employed: 

 ( ) [ ] ( ) [ ],                                                         B n B n=A q C p (6.7) 

where ( )BA  and ( )BC  are diagonal matrices consisting of ( )iA B  and ( )iC B  terms, 

respectively. [ ]nq  is the modal displacement vector and [ ]np  is the modal input vector. 

Their relationship with the nodal input vector [ ]nx  and nodal displacement vector [ ]ny

are as follows: 

 [ ] [ ] [ ] [ ]1

,  .                                            Tn n n n
−

= =y Φq x Φ p (6.8) 
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 Φ  here stands for the system eigenvector matrix. Therefore, the relation between the 

excitation and system acceleration response can be expressed as a multivariate ARX 

model: 

 ( ) [ ] ( ) [ ]'' ,B n B n=A y C x  

 ( ) ( ) ( ) ( )1'  , '  .                      TB B B B−= =A Φ A Φ C Φ C Φ (6.9) 

Note that ( ) ( ) 1 1' 0 0 − −= = =A ΦA Φ ΦΦ I . For signals generated from the multivariate 

ARX system under random excitation, each scalar signal can be viewed as a sum of 

seemingly uncorrelated ARMA processes and modeled with a scalar ARMA process 

(Teräsvirta, 1977).  

6.3.2 AR coefficient estimators for scalar acceleration signals 
ARMA processes can be approximated with an AR process with a large model order 

(Porat, 1994). One main advantage of the latter method is its computational efficiency. 

The definition of a univariate AR model of order  is given in Eq. (2.1). Because of its 

concise form, the AR model has been widely adopted for time series analysis for different 

purposes. One of the frequently used AR coefficients estimators is Yule-Walker estimator 

(Porat, 1994), which is obtained from solving the following equation: 
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where ( )R ⋅  is the auto-covariance function (ACovF) of the time series and { }ˆ jϕ  are the 

estimated AR coefficients. 

When an AR model (which is an all-pole system) is constructed from the structural 

acceleration signal, spurious poles will be introduced because the model cannot properly 

parameterize possible zeroes in the underlying generating function, leading to a large AR 

order for an accurate model:  

( )

1
1 1

111

1 11  ,  ( 1)   
11 n nnn

zz z
z zz

ββ β
β ββ

−
− −

− −− ++

−
− ≈ = <

+ +…+−
 

( )
( )

( )1 1 11
1 1

11 1

1
1  .  ( 1)                         

11

nn

n nn n

z z zz z
z zz

β β ββ β
β ββ

− − − ++
− −

− −− + +

− − −
− ≈ = >

+ +…+−
(6.11) 

In either case the pole positions should be inside the unit circle to ensure a stable system. 

Poles thus generated tend to be uniformly distributed around the unit circle. Figure 6.1 

shows the ACovF and the pole location plots in the z-plane of Yule-Walker estimators for 

structural displacement, velocity and acceleration signals.  Compared with the poles of 

models based on the displacement and velocity, the poles of models based on the 

acceleration have a more balanced distribution inside the unit circle even at low AR 

orders. This is because the ACovF of acceleration measurements has a large impulse term 

at zero lag, which has a uniform frequency domain response and is a characteristic of 

white noise. Since AR model is a ‘whitening’ filter by definition (Brockwell and Davis, 

2002), the poles from model estimated using such signal should have relatively evenly 

distributed poles around the origin to achieve a relatively ‘flat’ model spectrum. Also 
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note that as the model order increases, the pole positions move closer to the unit circle as 

the estimated system becomes less stable.  

A brief explanation on this phenomenon is presented here: in the case of Yule-

Walker estimation, the AR estimator of order 1p +  is related to estimator of order p  as: 

 1, 1 2, 1 1, 1 1, 2, , 1 , , 1,ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,0 , , , , 1 ,     ˆ ˆ ˆp p p p p p p p p p p p p pKϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ+ + + + +     … = … − … −     

(6.12) 

where ,ˆi pϕ  denotes the i th estimated coefficient for an AR model of order p , and 1pK +  

is the ( 1)p + th-order partial correlation coefficient (Porat, 1994) of the estimated signal. 

If the signal is strictly autoregressive up to lag p , then the expected value of 1pK +  is 

zero. However, because the ambient structural vibration signals are ARMA processes, 

this condition generally can only be satisfied in the asymptotic sense. As such, the AR 

coefficient vector will vary as a whole as the model order increases, and so does the 

corresponding model spectra estimates: 
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(6.13) 
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Here ,i pα  stands for the i th pole of the AR model of order p . Note that the nominal 

input power pd  decreases as model order increases, which lead to the shift of pole 

positions to the unit circle so that the output amplitude can still remain at the same level 

given a weaker input. It can be proved that the complex numbers 

( ) ( )11  1j j
pe eω ωα α− −− … −  and ( ) ( )1  j j

pe eω ωα α− −− … −  have the same magnitude, but 

different phases (Oppenheim and Schafer, 2009).  The expression for ( )1ˆ p
ARS ω+  is thus 

further simplified as, 
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(6.14) 

When 1pK +  is significantly small, the pole positions of the AR spectrum will not change 

much as the model order increases and the spectrum shape will converge.  

 

6.4 DAMAGE LEVEL AND MEASUREMENT NOISE SENSITIVITY FOR 
THE AR DAMAGE FEATURES 
Distance measures between characteristics of undamaged and damaged structure 

state are often adopted as damage features. Damage features examined in this chapter are 

the Mahalanobis distance of AR coefficients (Chapter 3) and the Cosh distance of AR 

model spectra (Chapter 4) extracted from structural acceleration measurements. For the 

flow of derivations, their definitions are re-presented here. Mahalanobis distance is a 
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metric to evaluate the deviation within vectorial Gaussian sample groups (Mahalanobis, 

1936): 

 ( ) ( )2 1 .                               ( ,   )    T T
u b u b b u bD −= − −φ φ φ φ Σ φ φ (6.15) 

where uφ  is the feature vector (in this case, the AR coefficients) from the unknown 

structural state and /  b bφ Σ  is the mean/covariance of feature vectors from baseline state. 

When the unknown vector uφ  is not generated from the baseline distribution, it is 

expected that the distance value will increase significantly.  

From each vector of AR coefficients, corresponding AR spectrum plot can be 

constructed: 

 ( ) ( )
( )

2 2

2 2

0

,                                              p e e
AR pj j k

kk

S
e eω ω

σ σω
ϕ −

=

= =
−∑φ

(6.16) 

where 0 1ϕ = − . For feature extraction purposes model residual variance 2
eσ  is not 

calculated and set to unity, since its value is determined by excitation level. Cosh spectral 

distance based on AR spectrum estimates can be used as a frequency domain alternative 

to Mahalanobis distance of AR coefficients:  

 ( ) ( )
( )

( )
( )1

 1,  2 .                                         
2  

N
j b j

b
j b j j

S S
C

N S S

ω ω

ω ω=

 
=  + − 

  
∑S S (6.17) 

where  bS  is the baseline spectrum, S  is the spectrum from the unknown state, and N  is 

the length of each spectrum vector. An illustration of the procedures through which the 

features are generated is also given in Figure 6.2. The features are related to the structural 

damage through the autocovariance function of acceleration signals, which is determined 
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by structural stiffness properties and excitation characteristics. The analytical relation 

between the features and structural damage/measurement noise is explored in the 

remainder of this section, where noise/damage sensitivity of both indices are derived in 4 

steps because the relation is not an evident one.  

6.4.1 Sensitivity of structural response ACovF to damage  
An AR model is an all-pole system. From Eq. (6.5) it is observed that the i th mode 

of a N -DOF system corresponds to a conjugate pair of system poles: 

 
21*, .i ni s i ni sT j T

i iz z e ζ ω ζ ω− ± −=                                                      (6.18) 

If it is assumed that the estimated AR model exactly captures all system poles, then an 

AR coefficient vector of size (2 1)N ×  can be computed by utilizing relations between 

polynomial coefficients and roots. However, simulation analysis reveals that there is a 

very large difference between the theoretical poles and those estimated from AR 

modeling (Figure 6.3). Also noted from Figure 6.3 is that AR spectrum does not converge 

to resemble the envelope of signal periodogram as the model order increases. Therefore, 

the damage sensitivity of system ACovF, from which the AR coefficient estimators are 

computed through Eq.(6.10), is investigated here as a first step towards obtaining 

accurate sensitivity estimates for both features.  

To start, take the Laplace transform of the displacement impulse response of the th 

system mode:  
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From the relationship between modal and nodal input/response in structural 

dynamics the impulse response matrix and the Laplace transfer function of the whole 

system can be obtained as: 

( ) ( ) 1T T 2( ) ˆˆ( ) ,   ( ) )( () ,i it diag h st s sdiag h s −= + += =H Φ Φ H Φ M C KΦ  

 ˆ ˆˆ( ) ( ), ( ) ( ) ( ).                                      t t s s s= ⊗   =u H p u H p (6.20) 

where M , C  and K  are the mass, damping and stiffness matrices of the system, and ⊗  

stands for the convolution operation. When the external excitation is a random process, 

the covariance of the response u  can be represented as (Porat, 1994): 

( ) ( ) ( )( ) [ ]( )[ ]( )( ) ( ).     T T
u pE t t E t tτ τ τ τ = + = ⊗ ⊗ + = ⊕ ⊗ R u u H p H p H R H (6.21) 

Here ⊕  represents the cross-correlation between two signals and ( )p τR  is the 

covariance matrix of input excitation. From the convolution theorem, the Fourier 

Transform of the response covariance matrix, also known as the response power spectral 

density, is related to the excitation power spectral density through Eq. (6.22): 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )** ˆ ˆˆ ˆ ˆ ˆ ˆ   .T T
u p i p idiag h diagi i i i hi i iω ω ω ω ω ω ω∴ = =R H R H Φ Φ R Φ Φ

(6.22) 

In the case of white noise excitation, the ACovF between displacement responses at 

node i  and node j  is obtained by taking the inverse Laplace Transform of Eq.(6.22), 

(same result can be achieved through performing time domain convolution/correlation in 

Eq.(6.21)) 
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where { , }( ) k l⋅ refers to the term in k th row and l th column of the subscripted matrix and 

r
iφ  is the i th component of mode shape r . This formulation is very similar to that given 

by (James III et al., 1993); only that an additional dimension of summation is introduced 

to account for possible spatial correlation among inputs at system DOFs. The ACovF of 

acceleration measurements can be obtained by taking the 4th derivative of Eq. (6.23) and 

adding an impulse term to the expression,  
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(6.24) 

Given the sensitivity of the modal properties to structural damage (derived in 

Subsection 6.4.2), sensitivity of the acceleration ACovF to structural damage can be 

readily obtained: 
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(6.25) 

The complete time domain sensitivity formula is too long, but sensitivities for the 

spectral density can be obtained as: 
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(6.26) 

Because Yule-Walker method is a time domain estimation method, the spectral 

density sensitivity will not be used for evaluation of the sensitivities of damage features. 

Still, this result is worth mentioning here as it provides a straightforward representation 

of the change in response ACovF as a function of the global stiffness variation. 

6.4.2 Sensitivity of system eigenvalues and eigenvectors with respect to changes in global 
stiffness matrix 
To calculate the sensitivity of the ACovF function to stiffness changes in the time 

domain, the sensitivity expressions for the natural frequencies and mode shapes to 

damage are needed. In this subsection the first-order sensitivities of modal properties 

with respect to a change in global stiffness matrix are presented. 

If a N -DOF structure is classically damped, natural vibration frequencies and mode 

shapes are obtained through eigenvalue analysis of the mass matrix M  and stiffness 

matrix K :  

 ( ) 20,  where   .                                                 i i i iλ φ λ ω− = =K M (6.27) 

Here λi  and iφ  terms are the system eigenvalues and eigenvectors. Natural modal 

frequencies iω  (angular) are the square roots of corresponding eigenvalues. To get the 

sensitivity of the modal properties to changes in stiffness matrix, first-order difference 

terms of both sides of Eq. (6.27) are calculated: 

 ( )Δ Δ Δ ( )Δ 0,i i i i i i iλ φ φ λ φ λ φ− = − + − =  K M K M K M  
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 ( )Δ Δ Δ ,                                             i i i i iλ φ λ φ φ− = −K M M K (6.28) 

Next all the eigenvectors are normalized with respect to the mass matrix and the 

change in eigenvectors are expressed as a weighted sum of the original normalized 

eigenvectors: 

 k
1

Δ , where 1.                                                       
N

T
i ik k k

k

dφ φ φ φ
=

=      =∑ M (6.29) 

Both sides of Eq. (6.28) are then premultiplied with  ( )T
r r iφ ≠  and the mass/stiffness 

orthogonality between different modes is utilized to get the respective weight for each 

eigenvector: 

 Δ Δ Δ , T T T
i r i r i r iλφ φ φ φ φ φ− = −M K K  
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T r i
ir r i r i ir
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d d φ φλ λ φ φ
λ λ

− = − =⇒ −
−
KK (6.30) 

When r i= , it can be proved that 0ird = . Therefore, the sensitivity of the i th 

eigenvector is orthogonal to itself and is computed as Eq.(6.31): 

( )Δ 1 Δ 0 Δ / 0,T T T T
i i i i rr i i i idφ φ φ φ φ φ φ φ= === ⇒ ⇒M M M M  

1

Δ  Δ .   
TN
r i

i r
r r i
r i

φ φφ φ
λ λ=

≠

∴ = −
−∑ K                                    (6.31) 

The sensitivity of the natural frequencies are obtained by premultiplying both sides 

of Eq. (6.28)with  T
iφ , 
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Sensitivity of the acceleration signal ACovF to stiffness change can be calculated by 

substituting Eq.(6.31) and Eq.(6.32) into Eq.(6.25). Thus to obtain the damage sensitivity 

of the features, only their sensitivity with respect to the acceleration ACovF is needed.   

6.4.3 Sensitivity of the AR coefficients/spectra to ACovF values 
From Eq.(6.10), the sensitivity of the Yule-Walker AR estimators with respect to the 

changes in ACovF can be derived as: 
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(6.33) 

where τe is a ( 1)p×   column vector with all elements equal to zero except for element τ , 

which equals to 1.  For the AR spectrum, the definition here states that it is: 
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(6.34) 

In this definition, 0ˆ 1ϕ = − . Its sensitivity to changes in coefficients can be computed as: 
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∑ ∑ (6.35) 

Thus by combining Eq. (6.33)  and Eq. (6.35), the sensitivity of the spectrum to 

ACovF changes is calculated. 
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6.4.4 Sensitivity of the AR coefficients/spectra to the increase in the noise level 
To compute the influence of noise on damage feature estimation, consider the signal 

covariance sequence of contaminated signals. When white noise of standard deviation σ  

is added to the signal, the expected signal ACovF sequence cR will be  

 ( ) ( ) ( ) ( ) ( )2 ,                                              c nR R R Rτ τ τ τ σ δ τ= + = + (6.36) 

where ( )nR τ  denotes the ACovF of white noise. Therefore, the sensitivity of the 

estimated coefficients to the variance of additive Gaussian noise will be  
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Sensitivity of the AR spectrum to the noise level can be derived through combining 

Eq.(6.37) and Eq.(6.35) in the previous subsection. It should be noted that the above 

formula only accounts for the extreme case (i.e. number of samples sN = ∞ ). For the 

finite sample scenario, the estimated noise correlation ˆ ( )nρ τ  is asymptotically normally 

distributed with variance 1n−  at nonzero lags (Brockwell and Davis, 2009). As such, 
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(6.38) 

The ACovF of the original signal is also affected by estimation errors and exhibits an 

asymptotic Gaussian distribution (Brockwell and Davis, 2009). To avoid including 
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unnecessary statistical complexities and focus on the direct influence of structural 

damage/measurement noise level on damage features here it is assumed that the ACovF 

estimators are exact (the asymptotic case). 

6.4.5 Sensitivity of the distance measures to changes in AR coefficients/spectra 
The theoretical feature values under the null hypothesis will be needed for evaluation 

of relative sensitivity. The AR coefficient estimators from a scalar series of length 'N  are 

asymptotically unbiased and follow a multivariate Gaussian distribution with covariance 

matrix 
2

1

'
e

N
σ −Γ ( 2 1(0) T

e Rσ −= − Γγ γ ) (Brockwell and Davis, 2009). Under this assumption, 

the Mahalanobis distance feature for the undamaged structural state has a chi-square 

distribution with p  degrees-of-freedom, and its statistical expectation is .p  The 

expression for the expected value of the squared Mahalanobis distance for the general 

case is presented in Eq.(6.39).  
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(6.39) 

The first and second order sensitivities of ( )2E D to signal covariance can then be 

computed. Note that for notation simplicity, θ  is used to express the ACovF value at an 

arbitrary lag. 
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The expressions for the first and second order sensitivity of uΣ with respect to signal 

ACovF are presented in Appendix A; the contribution of these terms to the feature value 

is relatively small compared to the mean shift in the application described in the 

following section.  

Under the Gaussian assumption, the AR spectral estimates also asymptotically 

follow a normal distribution; as 3 /p N  decreases, ( ) /b b
N S S S
p

−  converges to a 

normal distribution with asymptotic variance equals to 4 at DC and 2 otherwise (Berk, 

1974). Therefore the expected value for the Cosh distance of the baseline state can be 

written as the sum of moments of this Gaussian distribution:  
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The following is obtained after performing a geometric series expansion on 

( ) ( )( ) ( )/j b j b jS S Sω ω ω−  for the equation above: 
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Since the normal assumption is valid only in the asymptotic sense, and higher order 

statistical moments are less significant in value and affected more by the deviation from 

this assumption, only the first two terms ( 1, 2l = ) will be considered in applications in 

this chapter. 

The sensitivity expressions of Cosh distance are obtained in a similar manner as that 

for Mahalanobis distance,  
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The damage/noise sensitivities of both features are found as the product of the 

sensitivities of features to ACovF and the sensitivities of ACovF to structural 

damage/measurement noise.  
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6.5 AUTOREGRESSIVE MODELING BASED ON SIGNAL ACovF 
As indicated by the sensitivity analysis, the Mahalanobis distance and Cosh distance 

features based on ambient series modeling can be affected by noise level increase. This 

section explores the means to reduce model parameter based feature sensitivity.  

The univariate AR model predicts the current value of a signal as a weighted 

combination of its previous values up to model order p . When prediction errors (model 

residuals) are small, the process becomes approximately deterministic.  

Deterministic stable processes with a state-space representation are perfectly predictable 

from a finite number of past values (Porat, 1994). Here for structural vibration 

measurements from a single sensing location, their ACovF ( ) R t  after zero lag is essentially 

a sum of M  exponentially decaying sinusoids (Eq. (6.23) (6.24)),  

 ( )
1

sin( ),                                     m

M
t

m m m
m

R t A e tξ ω φ−

=

= −∑ (6.45) 

where mξ , mω  are  determined from system natural frequencies and damping ratios. It can 

be proved that ( )R t  can be modeled using an exact AR model (i.e. without the residual 

term), 

 ( ) ( ) ( )
2

21 2

1 1

( ),    1 2 cos .        m m

M M

k m
k m

R t c R t k c z e z e zξ ξω− −− −

= =

= − − = − +∑ ∏ (6.46) 

However, since in real applications there is always estimation and numerical errors, the 

residual term is retained to account for these effects. Thus the AR model for signal ACovF 

takes the same form as that for stationary time series. Forward covariance method (a variant 

of least squares) will be used for AR estimation from ACovF, and since the zero lag value of 

signal ACovF is not used, AR features thus produced will be less likely affected by noise 

contamination. 
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In Section 6.7, the Mahalanobis distance and the Cosh distance features based on 

ambient signals and signal ACovF are applied to detect structural change in a steel truss 

structure. Besides, Ljung-Box statistic of residual series from the two types of AR modeling 

is also presented alongside.  

6.6 SIMULATION EXAMPLE: SENSITIVITY ANALYSIS FOR A 10-DOF 
STRUCTURE 
To verify the sensitivity analysis scheme presented in the previous section, it is 

applied to a 10-DOF model with linear topology and simply supported at both ends 

(Figure 6.4). The mass of each node is 2 tons, the length of each element is 25 m and the 

section stiffness ( EI ) is 5 22.5 10  kN m× ⋅ . Damage is defined as a stiffness reduction in 

the inter-node elements, and a procedure to transform the local section stiffness change (

ΔEI ) to global stiffness change ( ΔK ) is developed in Appendix B.  

Spatially and chronologically uncorrelated random excitation is applied at each node 

of the system. Acceleration signals are simulated from the system using Newmark’s 

method, and both feature values are extracted from the signals during multiple runs of 

simulation. Each simulation returns a group of Cosh distance values and a group of 

Mahalanobis distance values, and feature mean and confidence interval can be henceforth 

obtained. Pooling results from all runs of simulation the average and confidence interval 

of means from respective feature groups can be calculated. These simulation results 

regarding effects of local damage/measurement noise on feature values are compared 

with theoretical analysis results and sensitivity analysis results. Here theoretical results 

refer to that computed directly from the theoretical ACovF (Eq. (6.24) and (6.36)) for 

each damage/measurement noise case, and sensitivity results are those obtained from 
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concatenating sensitivity expressions derived step-by-step in Section 6.4. For all 

simulations and computations, the AR model order is set at 20. During each run of 

simulation, 88 signal segments, each containing 5400 data points sampled at a frequency 

of 50 Hz, are used to calculate the Mahalanobis distance and Cosh distance features. Two 

figures are created to contrast the results, which are from calculations performed for 

acceleration signals from node 4. For all the plots within each figure, star-marked solid 

line with 95% confidence intervals, dashed line and thick solid line represent the results 

from simulation, sensitivity analysis and theoretical analysis, respectively. 

Figure 6.5 shows the trends of Mahalanobis distance and Cosh distance as the noise 

level increases. Signals with 2% noise level are used as baseline and another case with 

2% noise level is included for false positive testing (Gul and Catbas, 2009; Sohn and 

Farrar, 2001). Because simulations that involve random vibration generation come with 

uncertainty (i.e. yield different results on each run), it is beneficial to include results from 

another set of signals collected under the same noise/structural state to demonstrate the 

variation, which provides a reference on the amount of variation that can be confidently 

identified by the features. Noise level in this application is defined as the ratio between 

the standard deviation of measurement noise and that of the actual signal. In SHM 

practice both the noise and signal strength vary depending on the application; noise 

amplitude can be from tens to thousands µg and the sampled ambient vibration signal 

amplitude can be in the order of few to hundreds mg (Dorvash and Pakzad, 2012; Pakzad, 

Kim, Fenves, and Glaser, 2005; Wang, Lynch, and Law, 2007). Thus, the noise level 

values investigated here (2%-30%) fall in the range of expected noise levels. The 3 lines 

in the plots have relatively close values in comparison to the large confidence interval 

116 
 



from one simulation, with the average relative deviation from the theoretical to sensitivity 

analysis results with respect to the confidence interval length at 1.31%  and 0.68% for the 

Mahalanobis and Cosh distance features, respectively, and that from simulation mean to 

sensitivity analysis results at 4.02% and 14.22% . There is a noticeable difference 

between the simulation and theoretical analysis because the derivations are based on the 

asymptotic theory, which is but an approximation for large-sample-base estimation. The 

confidence bounds generated through simulation for both features indicate positive skew 

in distribution, a fact compatible with the assumptions on their respective asymptotic 

distribution. The simulation mean for the Cosh distance is 8% higher than the computed 

theoretical value, but their increasing tendency are almost parallel. The baseline value 

estimation for Mahalanobis distance is more precise than Cosh distance because the value 

for latter is from a truncated series (Eq. (44)), and the sensitivity measure predicts the 

varying trend of Mahalanobis distance less exactly than  that of Cosh distance because 

computation of the former uses the covariance matrix obtained from asymptotic theory, 

which adds in error. Sensitivity analysis values for both features start quite close to the 

theoretical results when deviation from the original/baseline state is small, yet their 

difference grows larger as the deviation increases because of higher-order effects that are 

neglected in the linearization step of sensitivity analysis. The average Cosh distance 

values from 50 simulations have a much reduced, yet still largely uniform, confidence 

interval (from ±50% around the mean to ±10% around the mean) over different cases, 

while the confidence interval for average Mahalanobis distance values is expanding along 

x axis. The sensitivity analysis in this case study underestimates the feature value for 

significant changes in structural state/signal noise level.  Note here the distribution 
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variance terms ( 1 u
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dtrace
dθ

− 
 
 

ΣΣ and 
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1
2
u

b
dtrace
dθ

− 
 
 

ΣΣ ) are not considered as the 

computation is complex and their relative influence is small.   

In applications the two damage features studied are often employed in a statistical 

control style (Gul and Catbas, 2009; Sohn and Farrar, 2001). In other words, the features 

will be extracted in large quantities and the system is identified as changed when the 

number of feature values exceed a pre-set threshold becomes significant (i.e. more than a 

certain proportion of the total number of feature samples). Table 6.1 shows the number of 

outliers from simulation together with those predicted from theoretical and sensitivity 

analysis as the noise level increases. Here for each feature the threshold is set at 5% 

significant level and determined empirically from the baseline feature population. 

Because the theoretical/sensitivity derivations involve only the mean shift of features, an 

assumption is made that the higher moments of the feature distributions do not change 

much over the different states. As such, outliers numbers can be predicted by adding the 

mean deviations from theoretical/sensitivity analysis to the original baseline feature 

values and then examining the number of outliers in the newly obtained feature group. 

Results from the table indicate that for the Cosh distance feature the 

theoretical/sensitivity approaches predict the outlier percentage change trend with good 

accuracy; the simulation results are fluctuating around the predictions. For the 

Mahalanobis distance feature the simulations produce higher outlier percentages than the 

other two options, because the dispersion of this feature noticeably increased as noise 

level rises (Figure 6.5). The sensitivity method gives a more conservative estimate on 

outlier percentage increases as noise level rises than the theoretical method for both 
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damage features. Also, the outlier counts for the damage features do not vary 

significantly till noise level reaches 22%-26%. 

Figure 6.6 presents their trends as a stiffness reduction between node 4 and 5 grows. 

The stiffness loss is expressed as a percentage of the original element stiffness, and 

measurements are assumed to contain 2% noise. The parabolic trends and relative 

positions of the lines are similar to those shown in Figure 6.5. This observation is not 

very surprising as both noise and structural damage affect the feature values through the 

acceleration signal ACovF. For both feature values, the 16% stiffness reduction produces 

about the same amount of mean shift as that done by an increase in noise level from 2% 

to a value between 26% and 30%. Since here the structure and a single type of damage 

are specified and excitation/noise characteristics are not varying, the feature values can 

directly reflect structural stiffness loss. In the general case, this is not feasible because the 

information based on which the features are extracted are limited (i.e., single channel 

acceleration). 

Table 6.2 contains the outlier ratios as obtained from the three approaches. The 

number of outliers in each feature from theory/sensitivity analysis follows a similar 

procedure as that used in Table 6.1, where the baseline feature samples are involved in 

the computation. While the theoretical/sensitivity analysis predictions for Cosh distance 

agree with the simulation, those predictions for Mahalanobis distance are often well 

below the significance value since the feature dispersion increases as damage grows more 

severely (Figure 6.6). Again, the sensitivity method as a whole underestimates the outlier 

percentages at high damage levels because of the model error introduced by linearization, 

indicating that it produces a lower bound. Here the Mahalanobis distance responds to 

119 
 



damage at an earlier level (i.e., 8% stiffness reduction corresponds to a 10% outlier 

percentage from the simulation), while the Cosh distance only yields a significant change 

at a later stage (i.e., 12% stiffness reduction corresponds to a 10% outlier percentage).  

Please note that all sensitivity expressions here are derived for the general case, 

except than the sensitivity of the local section stiffness change ( ΔEI ) to global stiffness 

change ( ΔK ), which is developed for this particular simulated structure. Results at other 

nodes also show agreement among curves from the three methods and due to space 

limitations are not presented here. Another observation worth mentioning for this case 

study is that as the measurement location moves away from the damage location, the 

change in damage feature values becomes less significant. In fact, the damage features 

are hardly reporting any noticeable changes at the first and last node.  

6.7 EXPERIMENTAL VALIDATION OF AR FEATURES FROM 
ABMIENT SIGNALS AND SIGNAL ACovF  
The features described in the previous section are applied to identify structural 

change for a vertical truss member in a steel truss bridge over the Allegheny River in 

western Pennsylvania. The bridge structure is a continuous deck truss with spans of 420 

feet, 540 feet, and 420 feet, as shown in Figure 6.7. The truss is 40 feet in depth and is 

haunched to 84 feet at the two intermediate piers.  

During an inspection in June 2010, it was found that vertical members at Panel 

Points (PP) 20’ and 22 (Figure 6.7) on the north side of truss had excessive wind-induced 

vibration. The two members were then retrofitted by bolting a steel wide-flange member 

to each of them over their full height.  
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In a subsequent field test, transverse acceleration measurements are collected for 

Verticals 22 and 22’. These two members were identical before the retrofit of PP22. Each 

member is instrumented with eight accelerometers; four at the mid-span cross section and 

four at ¾ height. The damage indices will be applied to acceleration measurements from 

the two members in order to identify their difference. Since the indices are all extracted 

using single channel AR modeling, signals used here will be only from accelerometer 4, a 

sensor located on the inner flange tip of the middle section. 

Sampling frequency for all acceleration measurements is 1000 Hz. Two datasets of 

200,000 samples are collected for each member. Dataset 1, which is from the retrofitted 

PP22, will be used as baseline for all applications of damage detection presented in the 

following subsections.   

6.7.1 Performance of AR features estimated from ambient acceleration data 
The AR modeling is performed directly on ambient acceleration using Yule-Walker 

method, and AR order is set to 24 for all estimation processes. Each dataset is divided 

into segments of size 1,000 samples with no overlap, and from each segment a coefficient 

vector is obtained. As such, from each set of measurements a total of 200 features can be 

obtained. Figure 6.8 shows the damage identification (in this case, characterizing the 

difference between the two vertical members) results from application of Mahalanobis 

distance and Cosh distance features. In the plot titles, Dataset 1 and Dataset 2 are from 

the retrofitted PP22, while Dataset 3 and Dataset 4 are from the as-built PP22’. Damage 

thresholds for all plots correspond to a 5% significance level, and values beyond the 

thresholds are marked in the plots as crosses. For Dataset 2 more false alarms are 

observed for the Mahalanobis distance than the Cosh distance (26 vs. 12), and in turn the 
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former has less missed cases than the latter (i.e. points below the threshold) for Dataset 3 

and Dataset 4. Thus, the feature based on AR spectra is more robust to environmental 

variations. For this case both features successfully identified the structural change in the 

form of a significant number of outliers. 

The results of damage identification using the Q -statistic are contained in Figure 6.9. 

The baseline AR coefficients are estimated using one segment from Dataset 1 and used in 

computation of all residual series from both retrofitted and as-built state. The lag 

parameter, h , is set to 60. It can be observed that this feature is not prone to false 

positives, as the number of outliers for both Dataset 1 and Dataset 2 is no greater than 10. 

As expected, when the structural state changes, much more outliers appear in the Q -

statistic chart.  

6.7.2 Performance of AR features estimated from ACovF of acceleration measurements 
The three features are also extracted using AR estimation from signal ACovF. The 

signal segmentation scheme, AR model order and threshold significance level adopted 

are the same as in the previous subsection. From each signal segment of length 1,000, an 

unbiased ACovF estimator of length 500 is obtained starting from lag 1 and up to lag 

500. From each ACovF estimator an AR coefficient vector is computed. Although ideally 

only 2×24=48 (twice the AR order) ACovF samples are needed for determination of the 

AR coefficients, all 500 samples are used to account for ACovF estimation error and to 

get enough residual values for computation of the Q -statistic, which is a function of the 

ACovF of residuals. 

Figure 6.10 includes the Mahalanobis distance and Cosh distance features from 

ACovFs of acceleration measurements. When compared with Figure 6.8, it can be seen 
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that the Cosh distance feature in this case generates slightly fewer false alarms (10 for 

dataset 2), yet retains the sensitivity to structural change. The Mahalanobis distance also 

yields more stable values for Dataset 2 (a total of 17 outliers), though the number of 

outliers reported for Dataset 3 and Dataset 4 is reduced. Again, both features have 

captured the structure change unambiguously.  

Figure 6.11 is the Q -statistic control chart from AR estimation based on signal ACovF. 

The behavior of this feature here is similar to the case of direct AR modeling on vibration 

data (i.e. Figure 6.9), except that a larger magnitude of feature values for both retrofitted 

state (baseline) and as-built state is observed. This is most likely because when the AR 

coefficients no longer ’match’ the current process the residual of sinusoids exhibit strong 

cyclic patterns, which will make the Q -statistic value increase since the statistic is 

defined as a measure between a series and white noise.  

6.8 CONCLUSION 
This research proposes a sensitivity analysis approach to investigate the effect of 

measurement noise and structural damage on two existing damage features, Mahalanobis 

distance of AR coefficients and Cosh distance of AR model spectra. It is found that both 

features values increase parabolically with respect to increases in local damage extent and 

measurement noise level. The approach is used to predict the feature values from a 

numerical 10-DOF bridge model in several damage/noise level cases, and the outcome is 

in good agreement with that from simulated acceleration signals and theoretical 

calculations. This observation supports the validity of the proposed approach, which is a 

more efficient way to examine the behavior (sensitivity and robustness) of damage 

features than repeating the simulation process for a number of times. The reason for that 
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is because simulation requires generation of structural vibration signals and extraction of 

feature values for each noise/damage state, but the sensitivity values, once computed, can 

be applied to multiple states.  

Since the approach introduced here involves using a structural FE model, modeling 

error can affect the procedure from two aspects: the baseline state signal estimation, 

which affects the noise and damage sensitivity estimation, and the relation between the 

structural measurements and local damage, which affects the damage sensitivity. For the 

first part of the problem, civil structures under ambient vibration are generally only well 

excited in a few low frequency modes. If the FE model can be tuned such that its modes 

match those measured from the real structure at the original state, then the structural 

baseline state response ACovFs can be estimated from the FE model with good accuracy. 

For the second part, there is no definite solution. However, ranges in which FE 

parameters vary can be assumed, and damage sensitivity expressions for certain 

parameter sets within the range can be computed to obtain the lower/upper bounds of 

damage feature sensitivity.  

It is noted that the Mahalanobis distance and Cosh distance features respond not only 

to structural damage but also to increase in the noise level.  This fact implies that both 

features are not completely robust to variations unrelated to structure change. This is 

partially due to the fact that these damage identification algorithms use only the response 

from a single channel, which is generated as a result of interaction between several 

components (structure, environment, and excitation). However, as shown in the 

simulation example above, it takes a significant increase in the noise level to produce a 

feature value change that matches that from a moderate reduction of stiffness for both AR 
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features. Thus, these damage indices are effective in monitoring a structure with 

reasonably stable operating conditions.  

The variation of environmental conditions (temperature, humidity, etc.) often affects 

the damage features through their influence on the structural material properties (and 

hence the stiffness properties). The traffic variation will change the excitation amplitude, 

spatial pattern and frequency contents. AR based features will be robust to the excitation 

amplitude but affected by the other two excitation factors. These non-structural 

influences are not examined in an analytical manner unless the functional relationship 

between the environmental conditions and structural stiffness is known and the form of 

excitation variation is defined. The sensitivity terms can be derived by taking the 

derivative of signal ACovF with respect to these sources of influence.  Further research is 

needed to address these issues. 

A contrast between features from AR estimation directly on stationary time series 

and that estimated using the signal ACovF reveals that the noise robustness of 

Mahalanobis distance and Cosh distance features improved (though not to a great extent) 

for the latter modeling method. This is expected because ACovF computation is an 

averaging process and therefore should filter out some of the environmental uncertainties. 

Another more theoretical rationale, as presented in Section 6.5, is that the AR coefficients 

of ACovF of vibration signals of a multi-degree-of-freedom structure are functions of 

natural frequencies and damping properties only, which implies that the features will not 

be affected by changes in modal shapes (a sacrifice on the part of damage sensitivity) and 

also a number of non-structural-factors such as white measurement noise and excitation 

pattern variation. The results from Ljung-Box statistic using the two modeling methods 
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are similar. Yet it should be noted that the tests on this bridge are performed for a 

relatively short time span; the merits of the ACovF based modeling might become more  

clear for long-term monitoring of real-world structures subjected to a variety of 

operational conditions.  
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Table 6.1     Outlier percentages from simulation, theory, and sensitivity analysis as 
noise level increases 

Feature 
Type 

Outlier 
Percentage 

Noise levels 
0.02 0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3 

C * 
simulation 0.05 0.05 0.05 0.07 0.08 0.06 0.04 0.11 0.12 
theoretical 0.05 0.05 0.06 0.06 0.06 0.06 0.08 0.08 0.1 
sensitivity 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.09 

2D * 
simulation 0.05 0.05 0.05 0.06 0.07 0.08 0.09 0.13 0.21 
theoretical 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.08 0.1 
sensitivity 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.09 

*: C -- Cosh distance; 2D -- Mahalanobis distance 
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Table 6.2     Outlier percentages from simulation, theory, and sensitivity analysis as 
damage level increases 

Feature 
Type 

Outlier 
Percentage 

Damage levels  
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 

C  
simulation 0.05 0.06 0.05 0.06 0.08 0.07 0.1 0.11 0.16 
theoretical 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.13 0.13 
sensitivity 0.05 0.06 0.07 0.07 0.09 0.09 0.11 0.12 0.13 

2D  
simulation 0.05 0.06 0.05 0.09 0.1 0.14 0.18 0.23 0.31 
theoretical 0.05 0.06 0.06 0.06 0.06 0.06 0.08 0.1 0.14 
sensitivity 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.1 
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Figure 6.1 Pole positions of AR model estimated from structural 

displacement (a), velocity (b), and acceleration (c) signals. 

The first column of the subplots shows the ACovF values, 

while the rest displays the pole positions of different models in 

the z-plane.   
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Figure 6.2 Illustration of the relation between structural 

damage/measurement noise and AR-based damage features 
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Figure 6.3 The contrast of the theoretical pole positions from digital 

signal processing theory and those from estimated AR models 

(left plot) and the comparison of the signal periodogram and 

the AR model spectra of different orders (right plot) 
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Figure 6.4 The simulated 10 DOF model 
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Figure 6.5 Plots of the Mahalanobis distance and Cosh distance damage 

feature values as noise level increases. Plots (a) and (b) show 

simulation results from one experiment, (c) and (d) show the 

average simulation results from 50 runs (confidence intervals 

are constructed based on average values).  
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Figure 6.6 Plots of the damage feature values obtained as the stiffness of 

the element between 4 and 5 decreases. Plots (a) and (b) show 

simulation results from one experiment, (c) and (d) show the 

average simulation results from 50 runs. 
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Figure 6.7 Side view of the truss bridge looking north (courtesy of Mr. 

Ian C. Hodgson) 

 

 

Figure 6.8 Mahalanobis distance and Cosh distance plots from AR 

estimation using ambient acceleration 
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Figure 6.9 Ljung-Box statistic plot from AR estimation using ambient 

acceleration 

 

 

Figure 6.10 Mahalanobis distance and Cosh distance plots from AR 

estimation using signal ACovF 
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Figure 6.11 Ljung- Box statistic plots from AR estimation using signal 

ACovF 
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Part II 
 

 Introduction Chapter 7

7.1 OVERVIEW 
In Part I, univariate TSA on vibration measurements have been successfully adopted 

for damage identification purposes in different applications. This method bears certain 

similarities to traditional system identification as both are concerned with numerical 

modeling, yet the former is more flexible because it uses various damage features that do 

not necessarily have an explicit physical meaning. Damage features can be functions of 

either model parameters or model coefficients, and well-known statistical concepts are 

applied to set the critical damage threshold for the features extracted. Since the method 

only utilizes responses from a single sensor node at each time, it is relatively sensitive to 

local damage. But for the same reason, the results produced become less reliable when 

the environmental condition is not stationary. Moreover, the damage location in general 

cannot be inferred from the value of the damage indices, confining the application of this 

method to preliminary damage detection. 

In general, structural modal properties exhibit better stability than single channel 

TSA features. But as noted in Part I, modal realization/system identification methods can 

be computationally expensive to implement for large systems with a high number of 

sensing locations. Also, the estimated modal properties do not directly yield light on 

possible damage location and extent (P. Chang et al., 2003; Doebling et al., 1998). 

Though there are several methods that employ the modal properties for estimation of the 

stiffness matrix as the pseudo-inverse of the structural dynamic flexibility matrix 
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(Doebling, 1995; Salawu and Williams, 1993), these estimators are often not accurate 

enough as high order modes of civil structures, which contribute significantly to the 

structural stiffness matrix since they are associated with large system eigenvalues, are 

often outside the measured bandwidth. In (Bernal, 2002) a damage detection strategy 

using measured flexibility matrix is introduced, but its implementation requires an 

analytical model of the structure to be known beforehand. Thus for a general 

understanding of the structural vibration characteristics on a macro scale system 

identification techniques are useful, but for local structural damage identification more 

efficient methods are needed (Doebling et al., 1998).  

Thus, in response to the robustness problem of scalar TSA damage features and the 

efficiency problem of modal property features, features from multi-input-single-output 

modeling based on sensor clusters have been investigated in several independent 

researches as a viable alternative for damage localization. Examples of such sub-

structural analysis techniques include Chebyshev series expansion(Hernandez-Garcia, 

Masri, Ghanem, Figueiredo, and Farrar, 2010a, 2010b), iterative optimization(Hou, 

Jankowski, and Ou, 2011) and ARX modeling (Kuwabara, Yoshitomi, and Takewaki, 

2013; Xing and Mita, 2012). This family of methods employs a smaller number of 

sensing channels than global system identification, and is more stable than single channel 

approaches as it utilizes responses along the substructural boundaries as the input to the 

subsystem.  

7.2 RESEARCH OBJECTIVES 
Many of the current substructural analysis methods are ‘black-box’ approaches that 

rely solely on numerical data-mining models, do not take into account the structural 
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topology, and produce outputs that do not have explicit physical interpretation. For those 

techniques that do consider the physical implications of substructural modeling 

parameters, often they are designed only for ideal structures such as shear frames. To 

expand the application scope and improve the efficiency/effectiveness of substructural 

approaches, the following tasks are identified and addressed herein: 

1. Efficient heuristic MISO damage features formulation and validation (Chapter 8) 

2. New substructural modeling techniques based on standard linear regression in 

time and frequency domain for stiffness estimation and damage detection in frame 

structures with relatively rigid floor/beam systems (Chapter 10) 

3. Generalized time/frequency domain regression techniques using beam 

substructural elements for damage localization in more complex structures. 

(Chapter 11) 

7.3 SUMMARY OF CONTENTS 
Chapter 8 presents a summary of the strain gages used specifically for research 

presented in Part II (multivariate information fusion using substructural modeling), a 

literature review on the current substructural modeling techniques such as ARX 

modeling, neural networks etc. for high-level damage detection, and an illustrative 

example about the application of ARX modeling to a 3D steel truss. The truss structure is 

an elongated version of the truss described in Part I, with improved support conditions. 

For damage localization, ARX modeling operates on several adjacent sensing channels in 

a space truss structure. The damage features are extracted as variance ratios and Ljung-

Box statistics of the residuals obtained via fitting the baseline model to data from the 
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current structure. It is shown that the damage indices extracted from the damaged 

substructure exhibit the most obvious change. 

Chapter 9 includes some heuristic substructural modeling approaches. As the 

adjective indicates, these methods are based not on derivations but rather 

experience/intuition. One attempt for multivariate damage localization is the estimated 

mutual information statistic between data from adjacent sensing channels. The damage 

identification/localization results in the 3D truss obtained from this approach and the 

ARX modeling (Chapter 8) are then compared to those from univariate AR modeling to 

evaluate their relative pros and cons. Also presented in this Chapter are three 

substructural damage detection algorithms based on time domain memoryless regression. 

One of them is the Influence Coefficient method already described in Section 5.3, 

Chapter 5, and the rest two are enhanced version of the first one with more complex 

modeling schemes. They are then applied for damage identification in a two-span steel 

girder in the lab. They have different modeling complexities, and thus have different 

performance levels.  Damage identification/localization/severity evaluation results 

obtained from these algorithms are compared and contrasted. 

Current methods for obtaining insight into structural properties from vibration signals 

often either require responses from a large group of representative DOFs of the structure 

to produce accurate and consistent results (e.g. modal realization) or do not explicitly 

reflect possible structural damage locations and extent (e.g. ‘black-box’ substructural 

approaches). In Chapter 10, two novel regression-based techniques that use local 

acceleration responses of a frame structure to estimate its local stiffness are proposed. 

One employs displacement simulation methods; the other is based on spectral estimates. 
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Both methods are proven effective in their application to data collected from two 

laboratory specimens that are subjected to white noise excitation. 

To apply the regression-based substructural approach to structures with more 

complex geometry, they should be generalized to substructures of different forms. In 

Chapter 11, multiple substructural damage identification models based on regression 

between internal responses and boundary responses of individual beam element in either 

plane or three-dimensional space are derived. Three damage indices are defined from 

regression model characteristics, and two change point analysis methods are adopted to 

capture changes in damage index sequences which are extracted from structural 

monitoring datasets from healthy and unknown states. Possible damage locations are 

identified as where the most significant changes in damage indices occur, and a voting 

scheme is used to synthesize results from different algorithms. This damage detection 

approach is straightforward and efficient, with the regression coefficients directly related 

to structural stiffness properties. Numerical and experimental application results show 

that the method successfully identifies and locates structural change for most of the cases.  

  

142 
 



 

 Background Chapter 8
The goal of SHM is to detect structural anomaly at an early stage so that proper 

repairs and retrofits can be implemented for normal operation of the structure (Farrar and 

Worden, 2007). The family of substructural damage detection approaches attempts to 

reach a balance between algorithm damage sensitivity and performance stability. Its 

computational complexity falls in between that of global modal realization and of single-

channel TSA. However, because higher-level damage detection (damage localization and 

extent quantification) is involved, more detailed considerations will be needed for data 

acquisition and/or numerical model development. In the following text, brief accounts on 

the sensors used and existing substructural methods will be given. 

8.1 SENSORS FOR SHM APPLICATIONS: PART II 
Apart from the accelerometers mentioned in Section 2.1, strain gages are also 

employed in Part II to provide a different perspective on structural behavior. Two types 

of linear-pattern strain gages produced by Measurements Group Inc. are used in 

experimental investigations in later chapters (Vishay Precision Group, 2010a, 2010b). 

The strain gages used on the frame in the laboratory are quarter-inch long model 

CEA-09-250UW-120. Before the gage is applied, the steel surface is rubbed and cleaned 

to ensure good contact between the gage and the frame. The gage is then glued to the 

surface and two wires are soldered on to the gage. A protective layer is then applied to 

cover the gage. The gage resistance is 120 ohms.  
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All strain gages installed on the steel truss bridge in western Pennsylvania were 0.25 

inch gage length model LWK-06-W250B-350 (see Figure 3.1). These gages are uniaxial 

weldable resistance-type strain gages. Weldable-type strain gages were selected due to 

the ease of installation in a variety of weather conditions. The “welds” are point or spot 

resistance welds about the size of a pin prick. The probe is powered by a battery and only 

touches the foil on which the strain gage is pre-mounted by the manufacturer. This fuses 

the foil to the steel surface. It takes forty or more of these small “welds” to attach the 

gage to the steel surface. There are no arc strikes or heat affected zones that are 

discernible. There is no preheat or any other preparation involved other than the 

preparation of the local metal surface by grinding and then cleaning before the gage is 

attached to the member with the welding unit. There has never been an instance of 

adverse behavior associated with the use of weldable strain gages including their 

installation on extremely brittle material such as A615 Gr75 steel reinforcing bars. These 

strain gages were used in a quarter-bridge configuration. The gage resistance was 350 

ohms and a bridge excitation voltage of 10 volts was used. 

Pictures of the two strain gage models are presented as Figure 8.1 and Figure 8.2. 

The wired strain gages can share data acquisition systems with wired sensors.  

8.2 EXISTING DATA PROCESSING METHODS FOR SHM: PART II 
Here the discussions will revolve around substructural modeling for damage 

detection. 

8.2.1 Substructural approaches for damage detection 
Substructural approaches have been studied for damage identification from various 

aspects.  Some researches centers on the evaluation of conditions for substrucural 

144 
 



identification, some form the relation between substructural properties and global system 

characteristics, and others concentrate on the performance evaluation of certain 

substructural methods through numerical/experimental applications. The remainder of 

this section focuses on the literature review and application of this family of approaches.  

8.2.1.1 Methodology review 
Substructural identification bears similarities with the standard system identification; 

only in the former case the boundary conditions/interactions need special conditions as 

they are often time-variant. Xie et al. (2010) presented a set of conditions under which a 

substructure is identifiable using measured excitation and response signals. Van den Hof 

et al. (1992) give a set of relaxed conditions for identifiability of closed loop systems. If 

the global system physics can be accurately inferred, they can be used to derive 

substructural parameters: Park, Reich, & Alvin (1998) presented a method to extracted 

subsystem flexibility matrices from global flexibility matrix. Different application 

examples of substructural approaches for damage detection can be found: In Yan et al. 

(2011) artificial neural network training is used to detect substructural damage within 

mass-spring and multi-story systems. Gul and Catbas (2010) applied autoregressive with 

exogenous input (ARX) modeling to measurements collected from clusters of sensors for 

damage localization in a numerical mass-spring system and a steel grid set up in a 

laboratory.  To sum up, substructural approaches have received the attention of many 

researchers because of their potential for dencentralized damage localization. 

8.2.1.2 Implementation example 
As an illustration example of the substructural damage localization philosophy, in 

this subsection sensor-cluster based ARX modeling will be applied to a truss structure 

similar to that introduced in Section 2.2.1.2. 
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Definition of ARX model 
The single-input-single-output (SISO) ARX model (L. Ljung, 1987) is defined as 

follows (note that this definition is different from that for AR-ARX analysis as in Eq. 

(4.2)):  

).()()()(
11

tejtuitxtx x

b

j
j

a

i
i +−+−= ∑∑

==

βα
                                                      (8.1) 

where ( )x t and ( )u t are the output and input signal, respectively. The parameter set ( , )a b  

defines the order of the ARX model. Notice that this is also a linear regression model that 

associates the current response of a signal with its previous values and an exogenous 

input. If there are several exogenous inputs (multi-input-single-output case), each input 

will have its corresponding coefficient vector { }jβ . 

Here when this model is applied for damage identification, the output signal will be 

from a certain sensor node (possibly at a potential damage location) and the input signals 

will be from its neighboring nodes. Here the damage indicators will be computed from 

residuals analysis, with the general procedure almost the same as that for univariate AR 

modeling. Model parameter based analysis will not be attempted here because it will 

require estimation of the multivariate model for many times, thereby resulting in high 

computational cost. 

Modal order selection here can again use AIC/BIC(Brockwell and Davis, 2002)or 

other fitness indices, only that here optimal model order search would be bi-directional 

instead of unidirectional because there are two parameters ( a  and b ) to be determined. 
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Experimental set-up 
The algorithm described above is applied to acceleration measurements collected 

from a space truss in the lab (Figure 8.3). It consists of same members as the truss 

presented in Chapter 2 and Chapter 4, only it is two bars longer and has modified 

supports. The truss has its four corners fixed to sturdy I-beam sections, and 10 wireless 

sensors are mounted on the truss nodes in the midspan. Artificial damage is introduced by 

removing one interior diagonal member between sensor node 1 and 8. For each structural 

state(undamaged/damaged), two sets of data are collected at a sampling frequency of 280 

Hz. As an effort to reduce the noise content, a low-pass filter is applied to all the data, 

which are subsequently downsampled to 70 Hz. The compressed data is then used as 

input to the damage detection algorithms, and dataset 1 is the selected baseline signal for 

all the implementations. 

Damage detection results from ARX modeling 
Here the acceleration measurements in the vertical direction from sensor node 3 and 

8 are used as output in the ARX model, and measurements from their respective 

neighboring nodes will be used as the model input. Table 8.1 summarizes the normalized 

residual standard deviations and the log Ljung-Box statistic (Eq.(4.5)) of residuals 

computed from signals 1-4. In the first column of the table, the number before the slash 

represents the output sensor node, where those after the slash are the input nodes. And for 

the subscripts of these numbers, x stands for measurements in the vertical direction, and 

y the horizontal translational direction. Damage localization can be achieved by 

comparing results from models constructed with different output nodes (e.g. node 3 vs. 

8), and/or models with different combinations of exogenous inputs; a more significant 

increase in feature values can be observed for models using the sensor 8 as the output 
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node, and for the models that include all neighboring node responses as inputs. Note that 

the artificial damage occurs between sensor 1 and 8. Because here only 10 truss nodes are 

instrumented with accelerometers, results from other nodes cannot be presented as the 

responses of several of their neighbor nodes are unknown.  
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Table 8.1     Results from the MISI ARX method. The standard deviations are all 

normalized with respect to the baseline. 

  dataset 1 dataset 2 dataset 3 dataset 4 

3x/1x,2x,4x,5x,10x,y 
normalized eσ  1.000 0.962 1.576 1.460 
log Ljung-Box statistic 5.504 6.070 8.706 7.999 

8x/1x,6x,7x,9x,10x,y 
normalized eσ  1.000 0.990 2.127 1.905 
log Ljung-Box statistic 5.107 5.873 9.596 9.696 

3x/1x,2x,4x,5x 
normalized eσ  1.000 0.937 1.257 1.254 
log Ljung-Box statistic 5.618 6.155 8.153 7.665 

8x/6x,7x,9x,10x,y 
normalized eσ  1.000 0.993 1.479 1.264 
log Ljung-Box statistic 5.210 6.148 9.563 8.602 
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Figure 8.1 strain gage model CEA-09-250UW-120, instrumented on the 

2-bay frame 
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Figure 8.2 Strain gage model LWK-06-W250B-350, instrumented on the 

truss bridge vertical (courtesy of Mr. Ian C. Hodgson)  

 

 

 

Figure 8.3 The space truss model with the sensor node numbers shown in 

the lower right corner 
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 Heuristic multivariate approaches for high-level damage Chapter 9
detection 

9.1 PRELUDE 
As noted in previous chapters, Substructural approaches attempts to combine the 

merits of univarite TSA and system identification, while trying to outperform both of 

them in the aspect of damage localization/extent quantification. Substructuring concept 

has already been used in Finite Element Methods to facilitate modeling for complex 

structures through condensing out the internal DOFs. It has recently been applied for 

damage localization by virtue of the need to quantify the interface reactions between the 

local system and the rest of the structure. Substructuring methods typically use responses 

from adjacent nodes to form an input-output damage identification model. In general, 

input-output methods are more reliable and accurate than output-only methods. Hence 

this family of approaches should be more robust to excitation variation than the ‘single 

node’ approaches, and still remain computationally efficient as they concerns mainly 

small-scale multivariate analysis. 

For the consideration of high-level damage detection, the magnitudes of damage 

indices produced at different locations should reflect the amount of damage occurred that 

this locations. Ideally, the indices should carry some explicit interpretations pertaining to 

the structural physics. But to achieve this end, both methodological theoretical analysis of 

the structural behavior and the signal characteristics and detailed experimental calibration 

will be needed. Thus, it is advisable to examine a few multivariate numerical/heuristic 

modeling techniques to quickly evaluate the damage detection potential of substructural 

approaches before going into more complicated studies.  
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9.2 MOTIVATION AND ORGANIZATION 
Heuristic approaches are not based on rigorous derivations; rather, they are brought 

forward by observation or experience. Intuitively, when damage occurs at some point in a 

structure, the correlation of signals collected at the two sides of the damage will reduce. 

Thus, the mutual information (Cover and Thomas, 2006) between two sensing channels is 

used for damage detection here. This statistic is expected to decrease in occurrence of 

damage between the locations of the two sensing channels. 

The influence coefficients (IC) method, as mentioned in chapter 5, provides a viable 

way to identify change in relatively stiff structures/substructures but is not necessarily a 

good damage indicator.  Here, multivariate regression coefficients between substructural 

intermediate response and substructural boundary responses are proposed:  one is the 

improved influence coefficients (IIC), which are obtained by regressing a node’s 

acceleration responses on those from all its adjacent nodes; the other is influence 

coefficients using hybrid vibration responses(ICHVR) that are from regression models 

that incorporate in the regressor matrix not only acceleration responses at neighbor nodes, 

but also strain data from close-by nodes. Compared with the original ICs, they are from 

more refined substructural models, and are expected to yield better damage localization 

performance. 

The mutual information statistic, along with some of the univariate TSA damage 

indices, is applied to the same truss structure described in Section 8.2.1.2. The specimen 

is relatively flexible, and therefore is a good testbed for dynamic modeling algorithms. 

The damage detection performances of this method and ARX modeling are then 

compared with those of univariate TSA approaches. The IC, IIC and ICHVR are applied 
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to the frame structure first introduced in Section 5.6, which is a quite stiff structure. Their 

damage localization performances are then cross-compared.  

The rest of this chapter will be organized as follows:  

• Section 9.3 is a brief review of the univariate AR modeling method for damage 

identification. 

• Section 9.4 presents the multivariate AR modeling method and the mutual 

information method. 

• Section 9.5 gives a detailed description of the formulation of modified influence 

coefficients. 

• Section 9.6 contains the application of the established and new temporal 

substructural modeling methods to acceleration measurements collected from the 

space truss structure (Figure 8.3) under ambient loading. 

• Section 9.7 includes the experimental validation results of all three algorithms on 

the 2-bay truss structure (Figure 5.4). 

• Section 9.8 concludes on the performances of different algorithms through cross-

comparison for each case study. 

9.3 UNIVARIATE AR TIME SERIES ANALYSIS FOR DAMAGE 
IDENTIFICATION: A REVIEW 
Autoregressive models have long been successfully applied to model, validate and 

predict signals from various types of sources. The definition of a univariate AR model is 

introduced as Eq. (2.1) in Section 2.2.2.2 . 

Univariate AR model parameters can be very efficiently estimated from a signal 

using one of the standard algorithms. According to the specific feature extraction process, 
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the damage features from AR model can be classified into two categories: model 

coefficients based and model residual based.  In the remainder of this section, examples 

from both categories will be presented. For the first category, Mahalanobis distance of 

AR coefficients (Section 3.3.1) and Cosh distance of AR model spectrum (Section 4.4.2, 

Figure 4.3) will be used. And for the second category, the residual autocorrelation 

function (ACF, Section 3.3.2) will be adopted. When the system is damaged, the 

amplitudes of these features would increase.  

9.4 DAMAGE IDENTIFICATION/LOCALIZATION USING MULTI-
CHANNEL RESPONSES 
Time series analysis on measurements from a single sensor node provides an 

efficient way for damage detection. However, applications have shown that their 

effectiveness as damage location indicator depends on the specific structural type. Also, 

due to the information limitation, this family of methods tends to suffer from false alarms 

when the environmental conditions are varying. Here in this section, the mutual 

information feature constructed from measurements from two adjacent sensors will be 

introduced in hope of improving algorithm stability and damage localization capability. 

9.4.1 Mutual information between signals collected from adjacent nodes 
Mutual information (Cover and Thomas, 2006) is a statistic defined to measure the 

mutual dependence/similarity between random variables (Figure 9.1). It is first proposed 

in communication theory to quantify the capacity of data transmission channels. Given 

the probability distributions of two random variables X and Y, their mutual information 

can be computed as: 

( , )= ( , ) log .
( ) ( )X Y

p x yI(X;Y) p x y dxdy
p x p y∫ ∫                                                         (9.1) 
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( , )p ⋅ ⋅ and ( )p ⋅ here denote the joint and marginal probability distribution. It is clear that 

the value of this metric is always non-negative, and equal to zero only when X  and Y  

are statistically independent. The definition can also be easily extended to the case where 

X  and Y  are random vectors. 

If both X and Y are assumed to follow a Gaussian distribution, then the mutual 

information statistic can be obtained directly from their second-order statistical moments: 

1 | { } || { } |( ; ) log .
2 | { , } |

K X K YI X Y
K X Y

=                                                  (9.2)                            

where { }K X stands for the variable covariance matrix and | ⋅ |  is the matrix determinant. 

Mutual information can be more efficiently estimated from this formula than from the 

previous one, as it requires only the variance of the variables, instead of the complete 

distribution. 

In the implementation section, mutual information between responses from two 

adjacent sensors will be employed as damage index. If damage (stiffness reduction) 

occurs between these two nodes, then it is expected that their mutual information value 

will decrease significantly. Since structural responses at any measured location are 

always correlated over time, they cannot be treated as single random variable. Rather, a 

time window of length L  will be applied to each response signal and the estimated 

mutual information 1 2
ˆ( ( ); ( ))I x t x t between two signals 1( )x t  and 2( )x t  becomes: 

1 2 1 1 1 2 2 2
ˆ( ( ); ( )) ( ( ), ( 1),..., ( 1); ( ), ( 1),..., ( 1))I x t x t I x t x t x t L x t x t x t L= + + − + + −            (9.3) 
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Here the parameter L  needs to be chosen with care so that the autocorrelation of signals 

after thL  lag will be close to zero.  

9.5 LINEAR REGRESSION COEFFICIENTS AS DAMAGE INDICES 
In this section time-domain linear regression based algorithms for damage 

identification are presented. These methods are computationally efficient and easy to 

implement, and thus effective for fast damage prognosis and on-line decision making 

regarding the current structural state. Three approaches will be included the remainder of 

this section; they follow the same principles, only with different modeling complexities. 

9.5.1 The Influence Coefficients (IC)  
If a linear structure is subjected to a static/quasi-static load, then the ratio between 

responses at any two arbitrary locations should be a constant as long as the structural 

condition and load pattern stay the same. Therefore, the linear regression coefficient ,j iα  

between responses collected at two nodes i  and j  can be used as a viable damage index 

(Labuz et al., 2010, 2011). A detailed description of the feature extraction and 

examination process can be found in Section 5.3. 

When the load is actually dynamic, this method can still be applied to a local area of 

the structure, where the stiffness is large and the mass is comparatively small. In the 

subsequent section, this method will be applied to acceleration signals from a steel girder 

subjected to a white noise excitation. 

9.5.2 The Improved Influence Coefficients (IIC)  
It can be seen that influence coefficients are estimated from a very simple model.  If 

the goal is just to detect the existence of major damage, they may suit the purpose. But if 

higher level damage detection (e.g. damage localization; damage severity assessment) is 
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needed, then the regression model needs to be refined to capture the local vibration 

behavior. 

An improved influence coefficient approach is proposed here by incorporating, for 

responses from a given sensor node, all its neighboring nodes’ responses. The 

mathematical expression for this algorithm can be expressed as follows: 

 ( ) ( ),
1

( )
n

j k j i i k k
i

u t u t tα ε
=

= +∑                             (9.4) 

Here iu  stands for the vibration responses collected from a certain adjacent node of 

sensor j , and n  is the total number of adjacent nodes of j . This algorithm is more 

complicated than the IC approach not only in the sense of an increased number of 

parameters, but also in that it actually takes into account the structural geometry and 

sensor network topology. 

9.5.3 Influence Coefficients from Hybrid Vibration Responses (ICHVR) 
If the end displacements and rotations of a Finite Element Model for a beam element 

are known, then the deformation at any point along the element can be computed using a 

set of interpolation functions. In practice, it is difficult to measure dynamic joint 

rotations; however, strains, which reflect end moments, can be measured through strain 

gages. With the end displacements and moments known, the complete behavior of a 

beam is known. 

The regression model can be further modified to include the strain data from 

neighboring nodes: 
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j k j i i k j l l k k
i l

u t u t t tα β φ ε
= =

= + +∑ ∑                      (9.5) 

where lφ s are the strain measurements from adjacent nodes of node j , and ,j lβ  is the 

corresponding regression coefficients. This technique is the most complex of the three, 

and is expected to yield the most accurate performance on damage identification and 

prognosis. 

Damage thresholds for the above three indices need to be created to determine if the 

variation in the estimated influence factors from an unknown structural state is significant 

enough to categorize it as damaged. It is also important to note at what confidence this 

level of damage has been identified, and also if multiple damage location have been 

detected. In order to make conclusions about these inquiries, a change point analysis 

(Taylor, 2000) that utilizes a combination of the cumulative sum method and 

bootstrapping (Good, 2001) is used here. A complete description of the procedure is 

given in Section 5.5.1. Only influence factor sequences with the maximum absolute 

cumulative sum maxS  outside a 95% confidence level (Koch, 1999) were considered as 

from the damaged state.  

9.6 EXPERIMENTAL VALIDATION OF THE TEMPORAL MODELING 
ALGORITHMS 
The statistical algorithms described in Section 9.3 and 9.4 are applied to acceleration 

measurements collected from a space truss in the lab. Details on the experimental setup 

and signal collection can be found in Section 8.2.1.2. Dataset 1 is the selected baseline 

signal for all statistical damage detection implementations here. 
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9.6.1 Damage identification results from univariate AR coefficients based method 
Figure 9.2 shows the model coefficient based Mahalanobis distance features and 

model spectrum based Cosh spectral distance features extracted from different datasets. 

The first two datasets are from the healthy state of the structure, and the last two datasets 

are from the damaged state. In application of both methods, the signals are divided into 

many short segments with large overlap among them so as to produce enough AR 

coefficient vectors from them for structural state evaluation. It can be seen from the plots 

that after the damage, a lot of outliers will appear. Also, the Mahalanobis distance 

method is not as stable as the Cosh spectral distance, i.e. more false alarms are observed 

in plots of the former.  This is because spectral distance generally assigns more weight to 

the position of system poles than that of system zeros, and thus is less susceptible to noise 

disruptions. Both damage indices are ineffective damage location indicators in this case, 

as the magnitude of change in feature values as a result of damage is more or less the 

same for the two sensing locations, despite one is much closer to the damage than the 

other. 

9.6.2  Damage identification results from univariate AR residuals based method 
As stated in Section 2, damage detection can also be based on the autocovariance/ 

autocorrelation function of the residuals. Figure 9.3 contains the ACF plots of the 

residuals obtained from applying the AR modeling to measurements at sensor 4 and 8. 

After the structure is damaged, the absolute values of the ACF at non-zero time lags 

increase significantly. Accordingly, an increase in Ljung-Box statistic of the residual 

series will also be observed. Due to space limitations, however, its results are not 

presented here. 
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9.6.3 Damage identification results from mutual information method 
The damage index based on mutual information, like the ARX based indices (Section 

8.2.1.2), also succeeds to identify the damage existence and location. Figure 9.4 is a 

series of plots containing the estimated mutual information obtained from vertical 

acceleration measurements from pairs of adjacent nodes. Five estimates are computed 

from each dataset. In each of these plots, the features are normalized with the mean from 

the baseline sample group to facilitate cross-comparison.  It can be observed that the 

damage features based on the node pairs located in the vicinity of damage exhibited the 

most significant change in their values. In addition, the estimates based on nodes that do 

not lie in the same vertical pane are more sensitive to damage than the rest, indicating 

that the damage occurs at the interior connections.  

9.7 EXPERIMENTAL VALIDATION OF THE MEMORYLESSS 
REGRESSION ALGORITHMS 
To test the accuracy of the three algorithms, three different damage scenarios were 

set up on a two-bay steel frame constructed from steel tubes first used in Chapter 5 

(Figure 5.4). The frame is instrumented with 21 accelerometers and 9 strain gages. The 

first damage state is simulated by replacing the right beam end portion with a section of 

reduced stiffness, and 14 datasets were collected. The second damage mode consists of 

replacing the right bay, middle portion with a reduced stiffness member, with 20 datasets 

collected, and finally the third damage scenario consists of replacing the left bay, middle 

link with a reduced stiffness member, with an additional 20 datasets collected (Figure 

9.5). For each case, half of the datasets are from the damaged case, and half are from the 

undamaged case. 
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Figure 9.6 shows the histograms of the change point locations. The most notable 

observation is that as the model complexity increases, the change point location 

indication becomes more exact. It can be seen that, for the first damage scenario, the IC 

method failed to identify the damage existence while the rest two succeeded. Also, for 

other damage cases, the histograms obtained from the IIC and ICHVR methods all have a 

sharper peak at the correct change point location than the established IC method.  

Figure 9.7 are the damage localization results from different algorithms/scenarios. It 

can be observed that as the model complexity increases, the damage localization becomes 

more accurate.  For all three damage scenarios, the IC method does not report change for 

the locations at/next to the damage, IIC method yield a more satisfactory performance, 

and the ICHVR identifies structural change at most places that are in the vicinity of 

actual damage. This further solidifies the point that the more complex the algorithm, the 

more accurately damage location is indicated. In addition, the sensors which reported 

only one regression parameter, has a higher likely hood of a false alarm. For more 

accurate results it is recommended to use regression models that report damage for 

multiple parameters.   

Figure 9.8 contains plots of influence coefficients obtained from the node 

combinations at the damage location for the different damage scenarios. It is clear that as 

the model complexity increases, from algorithm 1 to algorithm 3, the difference between 

the undamaged data sets’ average influence coefficients and damaged data sets’ average 

influence coefficients becomes greater. Thus in this case study, adopting more complex 

and comprehensive models did help to better characterize the difference between the 

damaged and undamaged state, which is important for local/minor damage detection.  
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9.8 CONCLUSION 
In this chapter, temporal and memoryless/instant-time substructural modeling 

approaches are devised and applied to separate specimens for their validation. Below are 

the conclusions drawn on the effectiveness of each family of methods. 

9.8.1 Evaluation of the temporal substructural methods 
A damage detection method using mutual information statistic on responses from 

two adjacent nodes is described and applied to acceleration measurements on a space 

truss model here. Its performance, together with the performance of MISO ARX 

modeling approach (Section 8.2.1.2), is then compared with those of the established 

damage identification techniques based on AR modeling of responses from a single 

sensing channel here. It is observed that the multivariate time series analysis produces 

viable damage indices and in the meanwhile is able to predict damage location with 

greater accuracy. 

Univariate AR modeling algorithms has certain advantages when applied for damage 

identification; they are computationally efficient, suitable for on-sensor-board data 

processing, and sensitive to small scale damages. Their application to detect damage 

existence in the truss model is altogether successful. However, they are not always 

effective at damage localization. Moreover, since this family of algorithms monitors only 

the statistical properties of the measurements at a single sensor node, it is susceptible to 

changes in operation conditions that do not concern the structure itself. Such innate false-

positive characteristic of these algorithms will make them unreliable for practice. 

The MISO ARX modeling algorithm is slightly more sophisticated than the 

univariate AR method, as more parameters need to be estimated in the former case. But 
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then, the damage localization capability of the algorithm is visibly improved by adding 

the neighbor nodes responses as external outputs in the model. Recognizing the increased 

computational cost, the mutual information damage index is introduced and applied to the 

specimen. This method is of a simpler formulation than the ARX algorithm, yet 

nonetheless achieves the aim of damage detection/localization as shown in Section 9.6.  

In summation, the multivariate time series analysis approach is proposed here as an 

intermediate approach that seeks to combine the merits of traditional system 

identification and univariate time series modeling. By including several responses from 

adjacent nodes, model parameter estimation becomes less affected by excitation 

variation; yet the model is still constructed on measurements from only a part of the 

structure, thus retaining the sensitivity to local damage and algorithm computation 

efficiency. The experimental application used here has confirmed the effectiveness of 

proposed algorithms, and they will be further examined through implementation on 

different types of structures in the future. 

9.8.2 Evaluation of the instant-time substructural methods 
Three regression-based damage detection algorithms are presented and applied for 

damage diagnosis in a scaled two-bay steel frame specimen. The first algorithm, the 

influence coefficients method, is an established node-pair-wise regression technique that 

has been shown to be effective in several previous researches. The improved influence 

coefficients method regresses responses from one node on those from all its adjacent 

nodes.  The influence coefficients using hybrid vibration responses further refines the 

model by including strain data from neighboring nodes as regressors. It is demonstrate in 
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their application results that as the algorithm modeling complexity increases, so does 

their performance on damage identification and localization. 

The research presented here addresses partly to the problem of optimal data 

collection and information compression and extraction in structural health monitoring 

applications. The quality of results on structural state diagnosis is directly related to the 

quantity of useful data and the truthfulness of the analysis model adopted. And when it 

comes to local damage identification, generally substructural analysis methods will be 

needed. 

In finite element modeling, if there is a truss element in a structure, then to see if the 

element properties have changed, all that is needed is the displacements at the bar ends 

and the axial force. If further damage localization is desired, displacements at the 

midpoint of the member can be measured and used for analysis. The result will be exact 

as long as the data is accurate and the modeling assumption is correct, regardless of what 

the behavior of the rest of the structure is. If the data is contaminated by noise or if the 

real member is actually a beam element, then the result will become less reliable. 

This simple example illustrates the general difficulties encountered when vibration-

based damage identification is attempted: incomplete/ambiguous information and 

modeling error. For example, if the response at every location and the input at every 

location, and the basic constitutive relationship is known for a given structure, then 

damage identification is a simple task. But when only vibration responses from a limited 

number of sensors are available, damage identification, especially high level damage 

identification, becomes difficult.  The performance of damage detection algorithms is 

largely dependent on the extent of the environmental and operational conditions, and the 
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validity of the assumptions. Still, the quest for automatic structural diagnosis system 

continues, and with the improvements of sensor technology and computing facilities, this 

goal is becoming more obtainable.  
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Figure 9.1 (Cover and Thomas, 2006) An illustration of the definition of 

mutual information as the sum of the separate entropies of two 

random variables X and Y subtracted by their joint entropy 

H(X,Y). Entropy is essentially a measure of uncertainty for 

random variables. 
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Figure 9.2 Damage identification results using AR coefficients based 

method. (a) and (c) are the Mahalanobis distance and Cosh 

spectral distance features obtained from measurements at 

sensor 4, while (b) and (d) are those from sensor 8. 
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Figure 9.3 Damage identification results using AR residual based 

method. (a) contains the residual autocorrelation function plots 

obtained from measurements at sensor 4, with subplot 1-4 

corresponding to dataset 1-4.  (b) contains plots obtained from 

sensor 8 using the same procedure. Dataset 1 is used as the 

baseline here. 
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Figure 9.4 Damage identification results from mutual information 

method. The blue squares are features from the undamaged 

state, and the red circles are from damaged state. 

 

Figure 9.5 Two Bay Steel Frame Drawing with Strain Gauge and 

Accelerometer Locations 
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Figure 9.6 Histograms for the change point locations. Each sample 

corresponds to a particular dataset. For each algorithm 

implementation, there are a number of regression coefficients 

sequences that report damage. Each histogram basically 

pooled all these change point locations together.  
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Figure 9.7 Examination of the damage localization capability of different 

algorithms 
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Figure 9.8 Plots of the influence coefficient values at the damage location 

for different algorithms/damage scenarios. Each sample 

corresponds to a particular dataset. The circles are influence 

coefficient values from undamaged state, the crosses are from 

the damaged state. 
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 Substructural approaches for stiffness estimation/damage Chapter 10
detection in shear frames 

10.1 PRELUDE 
In sensing-based SHM, the structural properties are estimated from measurements 

(vibration etc.). This is an ‘inverse problem’, where conclusion on the underlying signal 

generator characteristics is drawn from observed data. As observed in previous chapter, 

for structural condition evaluation purposes it is preferred to have structural state/damage 

indices directly related to structural physics/local damage extent.  

System identification techniques produce global modal properties, and tend to get 

computationally intensive as problem size increases (P. Chang et al., 2003; Dharap, Koh, 

and Nagarajaiah, 2006; Doebling et al., 1998; Rahai, Bakhtiari-Nejad, and Esfandiari, 

2007; Saito, Mase, and Morita, 2005). Scalar TSA based statistical damage detection has 

been investigated in several recent studies (de Lautour and Omenzetter, 2010; Nair et al., 

2006; Sohn et al., 2001). This type of methods provides more sensitive measures to local 

damage, yet the features often do not carry explicit physical meaning, and could be 

varying significantly when the excitation conditions are subjected to change.  

Substructural approaches are generally small-to-medium scale multivariate 

approaches based on measurements from sensor clusters. If the algorithm formulation is 

done properly, it can produce local structural condition indicators. Moreover, the 

computation can be accomplished in a distributed manner. Following are a few examples 

for linear-topology structures to date: Hernandez-Garcia et al. (2010a, 2010b) proposed a 

structural decomposition approach that employs Chebyshev series expansion to model the 

mass-normalized interstory restoration force signal and then extract the structural 
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property information; In Yan et al. (2011) artificial neural network training is used to 

model the dynamics of substructures within mass-spring and multi-story systems, and 

standard F-test on model fit ratio is used to decide whether damage occurred for a 

substructure or not; Takewaki and Nakamura (2005) concluded that the DC component of 

a frequency domain function of system vibration responses is directly related to the 

system mass and stiffness and used it for damage identification in the top story of a frame 

model; in (Kuwabara et al., 2013; Xing and Mita, 2012) ARX modeling are adopted for 

the substructure system and functions of the extracted parameters are used for damage 

detection. Substructural physics and global structural mechanical properties are also 

interrelated: Barroso and Rodriguez (2004) introduce a transformational relationship 

between estimated modal properties and the mass-normalized interstory stiffness for 

multi-story structures.   

10.2 MOTIVATION AND ORGANIZATION  
While above presented substructural approaches have been successful in their 

respective simulation/ experimental applications, there is still room to improve in terms 

of computational efficiency and data interpretation. The contribution of the research 

included in this chapter is in formulation, efficiency evaluation and verification of two 

structural stiffness estimation algorithms that are based on linear regression methods.  

The algorithms are competent in the sense that they employ standard linear regression 

techniques and are easy to program and implement. They aim to detect stiffness loss in 

shear frame structures, which are widely used in civil design and construction practices. 

For all the shear frames discussed in this chapter, only the horizontal translational 

degrees-of-freedoms at each node are considered in the model. In this case, the linear 
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structural topology makes vibration-based structural diagnosis a well-defined problem 

(interstory stiffness loss). A major advantage of both algorithms proposed is that they are 

designed to operate using regression approaches on local structural acceleration 

responses, which is beneficial for real practice as the modeling process is 

computationally efficient and acceleration measurements are easy to obtain.  

In the first algorithm, Time Domain Regression Method (TDRM), the acceleration at 

a node is regressed on simulated displacement responses from neighboring nodes. In the 

second algorithm, Frequency Domain Regression Method (FDRM), the autocorrelation 

spectrum from single node response is regressed on cross-correlation spectra with the 

neighboring node signals. Enhanced formulations of proposed algorithms are also 

introduced so than they can be used for evaluation of regular frames with joint rotational 

responses. Compared with established sub-structural analysis techniques that involve 

lengthier modeling and computation such as Chebyshev series expansion (Hernandez-

Garcia et al., 2010a, 2010b), iterative optimization(Hou et al., 2011) and ARX modeling 

(Kuwabara et al., 2013; Xing and Mita, 2012), the regression coefficients provide a direct 

estimate of the local stiffness, and can be readily used as damage indicators. The case 

studies presented in later sections show that the algorithms yield excellent performance in 

identifying damage location and extent.  

It is worth noting that for many traditional model updating methods (Brownjohn et 

al., 2001; Duan et al., 2007; Friswell and Mottershead, 1995; Mottershead and Friswell, 

1993), the parameters of the initial numerical model are also updated to make the model’s 

characteristics (e.g.  modal properties, etc.) or response  (e.g. deformation, etc.) match 

those measured from the real structure in the least squares sense. This family of methods 
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can perform effectively for damage identification when the numerical model is a suitable 

representation of the real system, but can produce erratic results when the numerical 

model is not well-defined (e.g. misrepresentation of boundary conditions or wrong choice 

of parameters). Compared to many model updating techniques, one of the significant 

advantages of the methods proposed in this paper is that an analytical finite element 

model describing the initial state of the structure itself is not needed; instead, regression 

is performed directly based on local vibration responses to obtain an estimation of the 

local structural property (stiffness). 

The rest of the chapter is organized as follows:  

• Section 10.3 gives a brief account of the dynamics theory, and then for the shear 

frame structure the linear relation between a single node acceleration response 

and its neighboring node displacement responses is presented.  

• Section 10.4 introduces the time domain approach (TDRM) for stiffness 

estimation using reconstructed displacement response.  

• Section 10.5 describes the frequency domain approach (FDRM) to evaluate 

system stiffness from signal periodograms.   

• Section 10.6 offers an enhanced algorithm formulation of TDRM/FDRM, since 

for many structures the rotational responses at frame joints are not zero.  

• Section 10.7 contains numerical validation results of both algorithms using a 

5DOF system.  

• Section 10.8 includes experimental validation results of both algorithms using two 

laboratory specimens. 
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• Section 10.9 is the conclusion on the effectiveness of the proposed substructural 

approaches.  

10.3 GENERAL DYNAMIC SYSTEM SOLUTION AND LOCAL 
VIBRATION ANALYSIS OF A SHEAR FRAME  
The response of a MDOF structure subjected to external excitation ( )tp  can be 

obtained by solving the second-order differential equation system: 

 ( ).                                                     t+ + =mu cu ku p  (10.1) 

In Eq.(10.1), u  is the displacement response vector, and m , c , k  are mass, 

damping, and stiffness matrices, respectively. This vibration analysis can be applied to 

continuous structures by choosing a finite set of representative DOFs, which is a valid 

approximation as long as there are enough parameters/DOFs in the model.  

In this chapter local vibration measurements will be used to detect stiffness loss in a 

simulated shear frame model (Figure 10.1). In particular, linear regression models are 

formed using responses from local clusters of sensor nodes and the regression 

coefficients are used as damage features. Theoretical proofs are presented on the direct 

proportional relation between regression coefficients and structural stiffness, and thus the 

proposed features are more explicit when compared with damage detection techniques 

that employ multivariate time series analysis and other forms of complex modeling. The 

methods are further verified with simulation examples and experiments. 

For the case of shear structures both m  and k  are ‘banded matrices’ and an 

associated term ‘bandwidth’ can be defined as the width of the diagonal band with 

nonzero entries in such a matrix. Under the assumption of classical Rayleigh damping (

    µ λ= +c m k , where μ and λ are constants), matrix c  has bandwidth 3 as in this case m  

178 
 



has bandwidth 1 and k  has bandwidth 3. Therefore, the following equation holds for the 

response measurements of a shear frame model at floor i-1, i, and i+1: 

 ( ) ( ), 1 1 , 1 1 1 1 1 1 .             i i i i i i i i i i i i i i i i im u k u u k u u c u c u c u p− − + + − − + += − + − − − − +    (10.2) 

Here damping ( 1ic − , ic , 1ic + ) is not assumed to be related to relative displacements/ 

velocities because part of the effect also comes from the system’s interaction with the 

surrounding environment, which depends on the absolute displacements/velocities. Thus 

given the mass of the middle node im , its acceleration iu , the displacement and velocity 

response at the three nodes, 1 1 1 1, , , , ,i i i i i iu u u u u u− + − +   , and the excitation acting on the middle 

node, ip , the local stiffness and damping parameters can be obtained through a linear 

least squares regression: 

3 i ,im= −Y u p  

( ) ( )1 1 1 1  , , , ,  ,   i i i i i i i− + − += − −  X u u u u u u u    
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Where Y  is the regressand, X  are the regressors, β̂  is the estimated regression 

coefficients (the circumflex accent symbol means the empirical/estimated value) and e  is 

the estimation error. This definition of regression model components will also be applied 

in subsequent model descriptions in Sections 10.4 and 10.5. In order to verify the 

performance of this method, this regression scheme is applied to random vibration 

responses collected from the simulated 5-DOF shear frame model (Figure 10.1). Table 
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10.1 and Figure 10.2 show the results from this implementation. Note that when this 

regression is performed for the first story, the dynamic response of the lower story 

(ground) is zero; and for the top story the upper story ( 1i + ) contribution does not exist. 

The regression error is non-zero because instead of classical Rayleigh damping, modal 

damping (5% for each mode) is used. Still, the regression yields a good estimate for the 

stiffness. All the data used in this example are noise-free; when measurement noise is 

added to the data, the accuracy of the regression results is severely affected because the 

noise content of the vibration measurements actually gets amplified through the 

regression process.  In the next two sections, this formulation will be further exploited to 

form the acceleration-output-only algorithms for local stiffness evaluation. These 

algorithms are shown to be relatively robust to noises. 

10.4 TDRM: STIFFNESS ESTIMATION USING RECONSTRUCTED 
DISPLACEMENT RESPONSE FROM ACCELERATION 
MEASUREMENTS  
In recent years, accelerometers have been most widely applied for general structural 

heath monitoring purposes. Therefore, the algorithm introduced here is designed to 

operate using only the acceleration response. 

When a structure is operating in ambient environment, the commonly adopted 

assumption is that the excitation is white noise. In such case, the term ( )p t  in Eq. (10.1) 

becomes the random error term in the regression model and can be removed from the 

regressor matrix  X . On the other hand, the displacement responses will be reconstructed 

from acceleration using the regularized inverse central difference method proposed by 

Lee et al. (Lee, Hong, and Park, 2010). Their solution is based on minimizing the 

following function ( ) Π u :  
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In Eq. (10.4), u  is the reconstructed displacement, a  is the acceleration signal within a 

rectangular time window of length (2 1)k +  (denoted using the macron accent symbol), 

Δt  is the sampling interval, and λ  is often referred to as regularization factor. The two 

coefficient matrices cL  and aL  are of dimensions (2 1)  (2 3)k k+ × +  and 

(2 1)  (2 1)k k+ × + , respectively. To improve the accuracy of this method, the 

displacement is reconstructed for a time window at a time and then the window is shifted 

forward one time step ( Δt ) and the displacement is reconstructed again. For each 

reconstruction, only the value from the time window center is retained for solution.  

For the simulated 5-DOF shear frame model used in section 10.3 (Figure 10.1), local 

stiffness can now be estimated by regressing the middle node acceleration on the 

reconstructed displacement responses. The regular least squared scheme produces erratic 

results because of the large variation of the excitation force signal. An alternative method 
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with a derivation analogous to the Yule-Walker equation (Brockwell and Davis, 2009) is 

used for the regression. To start, multiply both sides of Eq. (10.2) with ( )iu t τ− : 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, 1 1 , 1 1

1 1 1 1
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(10.5) 

Taking the expectation [ ]E ⋅  on both sides, and assuming that input excitation at node 

i  is white noise:  

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, 1 1 , 1 1

1 1 1 1

  

[ ] [ ] [ ] ,

i i i i i i i i i i i i i

i i i i i i i i i i i

m E u t u t k E u t u t u t k E u t u t u t

c E u t u t c E u t u t c E u t u t E p t u t

τ τ τ

τ τ τ τ

− − + +

− − + +

   − = − − + − −      
− − − − − − + −  

   

      

 

 ( ) ( ) ( )0  0 ,i iE p t u t τ τ− = >  
  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1 1

1 1

, 1 , 1

1 1

  

                  .                                           
i i i i i i i i i

i i i i i i

i u i i u u u u i i u u u u

i u u i u u i u u

m R k R R k R R

c R c R c R

τ τ τ τ τ

τ τ τ
− +

− −

− +

− +

   = − + −   
− − −

    

     

(10.6) 

( )R ⋅  are the auto/cross correlation functions of the acceleration responses. When there is 

only one subscript, it stands for autocorrelation of that signal; when two subscripts are 

used, it stands for the cross-correlation between those signals. This convention regarding 

the subscripts is also used for ( )L ⋅  (one-sided Laplace Transform) and ( )S ⋅  (power 

spectral density), which are employed in the subsequent section.  Since the civil 

structures are generally lightly damped systems (damping ratio< 5%), the velocity 

responses are also omitted from the regression model for an approximate solution on the 

structural stiffness. (Please refer to Section 10.7 for a numerical simulation example that 

shows for a lightly damped system, the method yields very consistent structural stiffness 
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estimates when the signal noise level is low.) Thus Eq. (10.6) is further simplified by 

neglecting the damping terms and using the reconstructed displacements,  

( ) { } ( ) { } ( ) { } ( ) { } ( )
1 1

, 1 , 1/ / .    
i i i i i i i i i

u i i i i i iu u u u u u u u
R k m R R k m R Rτ τ τ τ τ

− +
− +

   = − + − ∫∫ ∫∫     ∫∫ ∫∫ 

       

(10.7) 

Here {}⋅∫∫  stands for the displacement reconstructed from the series within the bracket. 

To perform this regression on discrete signals: 

 ( ) ,  1, ,   
iu j j Nτ= = …Y R


  

{ } ( ) { } ( ) { } ( ) { } ( )
1 1

 , 
i i i i i i i i

j j j ju u u u u u u u
τ τ τ τ

− +∫∫ ∫∫ ∫∫ ∫
 = − −  ∫ 

X R R R R
       

 

 ( )
T1

, 1 , 1
ˆˆ ' ' / /                            ˆ .i i i i i im k mk−

− +
 = =  β X X X Y (10.8) 

In Eq. (10.8), N  is the total number of sample points in time domain. This method 

yields more accurate stiffness estimates than the regular linear regression, as the variance 

of regression model error is much reduced. It is similar to the Natural Excitation 

Technique (NExT) (James III et al., 1993) in system identification, which uses the cross 

correlation matrix of system response under white noise excitation as a free-decay 

response. Note that TDRM does not carry over the complete methodologies of Yule-

Walker method and NExT, which are separately used for AR model estimation and 

modal realization. Rather, it is based on the same underlying idea as that of the Yule-

Walker equation and NExT; to remove random input excitation values from 

consideration by multiplying both sides of the system dynamics equation with system 

response at previous time points. 
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10.5 FDRM: STIFFNESS ESTIMATION USING ACCELERATION 
RESPONSE SPECTRA ESTIMATES  
The interstory stiffness can also be estimated from the frequency domain 

representation of the acceleration signals.  In this section we begin with taking the one-

sided Laplace transform of Eq. (10.6): 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1 1

1 1
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(10.9) 

Where ( )L ⋅  stands for the unilateral Laplace transform of the corresponding 

correlation function ( )R ⋅ (i.e. 
0

( ) ( ) sL s R e dττ τ
+∞

−= ∫ ). It can be shown that given responses 

from node i and j,  
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Hence, an equation that contains only spectral density functions of acceleration 

responses 1iu − , iu  and 1iu + can be formed by substituting Eq. (10.10) into Eq. (10.9) and 

replacing  s with iω  (thus going from the Laplace s-domain to the frequency domain): 
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(10.11) 

( )S ⋅  denotes unilateral auto/cross power spectral density, which is defined as the 

unilateral Fourier Transform of the signal cross-correlation function ( )R ⋅  (i.e. 

0

( ) ( ) iS R e dωτω τ τ
+∞

−= ∫ ). This replacement of s  with iω   is performed for data processing 

purposes as spectral density functions can be estimated from collected signals. Consider 

only the real part of Eq. (10.11) and rearrange the terms: 

( ){ } ( ){ } ( ){ } ( ) ( ){ }

( ) ( ){ } ( ){ }
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(10.12) 

Under appropriate conditions (i.e. ( ) ( ) ( )0  0i iE p t u t τ τ− = <    relatively 

insignificant in value), two-sided spectra can be used instead of one-sided spectra to 

facilitate computation by using the periodogram. 
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(10.13) 

Here C  stands for the constant term in the regression model. Given the middle node 

mass im , the stiffness and damping coefficients (i.e. , 1i ik − , , 1i ik + , 1ic − , 1ic + ) can be 

estimated through regression using Eq. (10.13). To perform this regression on discrete 

signals: 
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β X X X Y (10.14) 

In Eq. (14), N  is the total number of sample points in frequency domain. An 

obvious advantage of this method is that it turns the vibration initial conditions into 

regression constants, thus eliminating the displacement reconstruction step, and all the 

associated computational cost and estimation errors.   

 

10.6 ENHANCED ALGORITHM FORMULATION FOR REGULAR 
FRAMES  
A shear frame is a simplified model that serves as an approximation for certain types 

of real structures.  Rotational response, though insignificant in many cases, always exists. 

This section focuses on the effect of nodal rotation on the stiffness estimators from 

TDRM and FDRM.  
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When a frame structure has flexible beams, the responses of each story depend on 

the responses at non-neighbor nodes as well, since the structural stiffness matrix 

bandwidth increases. As the beams become more flexible, this dependence becomes 

greater. For illustration, Figure 10.3 shows four stiffness matrices of five-story frames 

with different beam stiffness. As the ratio of beam-to-column stiffness gets smaller, the 

elements distant from the main diagonal of this matrix become larger. 

In such cases, the application of previous methodology no longer produces accurate 

estimators. However, its performance can be improved by introducing a modified 

regression model. The derivation starts with the classical equation of motion for dynamic 

systems: 
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Assuming that the correlation coefficients outside 1 half-bandwidth (which counts 

the number of diagonals on either side of the main diagonal) in the c and k matrices are 
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relatively insignificant compared to the rest, the i th row of the system of equations 

above can be extracted as 

 ( , 1) 1 ( , ) ( , 1) 1 ( , 1) 1 ( , ) ( , 1) 1 ,i i i i i i i i i i i i i i i i i i i i im u c u c u c u k u k u k u p− − + + − − + ++ + + + + + =     

Comparing it with Eq. (10.2) in Section 10.3 and applying a similar derivation 

methodology that leads to Eq. (10.8) and (10.13), the following expressions can be 

obtained for the enhanced TDRM/FDRM formulation: 
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(10.16) 

Corresponding discrete regression models can be constructed from Eq. (10.15) and 

(10.16) and then applied for structural stiffness estimation and condition evaluation. 

When structures of more complex geometry are monitored, a more general 

substructuring approach can be used: 

( , ) ( , ) .                                                        i b i bmf r r g r r p= + (10.17) 

where ir , br denotes the vibration response measurements (acceleration, strain etc.) at 

inner and boundary nodes of the substructural system, respectively. f  denotes the 

average acceleration function of the substructure, g  stands for the restoration forces from 

the rest of the system acting through substructural boundaries, and p is the amount of 

load directly applied to the substructural system. When the substructure remains in the 

linear range, f  and g are linear functions, and the methodologies used in the 
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formulations of TDRM/FDRM can still be applied through performing regression on 

auto/cross correlation/spectra functions of ir  and br  obtained under random external 

excitation p . The effectiveness of this modeling will be closely related to the accuracy of 

representation of substructural boundary dynamics through measurements at the 

boundary nodes. This is an entirely separate topic and will be further expanded in the 

next chapter. 

10.7 NUMERICAL VALIDATION 
TDRM and FDRM are applied to the simulated responses from the 5 DOF system 

described in section 2 (Figure 10.1) and another frame with non-rigid beam links (Figure 

10.4) for their performance assessment. Random excitation is applied at each floor level 

of both systems. In all of the regression processes, it is assumed that all the nodal masses 

are known. While this assumption may restrict the application of the methods, there are a 

lot of cases that an estimate of the structural mass could be available using the 

construction drawings and site visits. In addition, for the damage detection applications 

and in the cases where properties of the stiffness can be estimated using as-built 

drawings, the masses can be updated using modal identification of the 

undamaged/baseline structures. In other cases where no information on the mass is 

available, the stiffness-to-mass ratio can still be obtained for damage detection and 

structural evaluation. In fact, for damage detection algorithms based entirely on structural 

vibration, it is generally not feasible to uncouple the effect from change in mass with that 

from change in stiffness. The limitation of the method is if no information about either 

mass or stiffness is available. 
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Results from application of the two regression techniques to the shear frame and the 

regular frame are presented in the following two subsections. 

 

10.7.1 Performance evaluation of the proposed algorithms for the shear frame 
The results from TDRM are summarized in Table 10.2. The algorithm is found to 

yield reasonable estimates of interstory stiffness as long as the noise level is relatively 

low (e.g. less than 10%). It underestimates the stiffness in most cases, though, because 

the damping effect is neglected in the regression model. As the acceleration measurement 

noise level increases, the displacement reconstruction accuracy decreases (Figure 10.5) 

and the estimation error becomes larger. In this simulation, the acceleration responses 

from the 1st-3rd floors have large high frequency contents, which negatively affect the 

displacement reconstruction accuracy as the method is designed for low-frequency 

signals (Lee et al., 2010). This is the reason that the regression results associated more 

with responses from these three nodes tend to have a larger bias.  

In this example, TDRM has a tendency to underestimate the stiffness of the upper 

floors more than that of the lower floors. This is because the omitted viscous damping 

terms, which depend on the velocities of the stories incorporated in the model, have a 

stronger correlation with the upper story vibration than the lower story vibration (as a 

result of the shear frame structure topology and the loading condition; it is always easier 

to excite a location on a ‘stick-type’ structure from above than from below, and in this 

experiment the excitation amplitudes used for the top floors are greater.). Thus there is a 

10-15% difference in the estimates of 34k  from nodal responses 2-4 and nodal responses 

3-5. It can also be observed that the difference between the two estimated values of 12k  is 
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decreasing when the noise level increases because the result from the second regression 

(123) deviates from the real value faster than that from the first regression (012), as the 

second model incorporates responses from three nodes, while the first model incorporates 

only those from two. 

Given information in Table 10.1, which indicates that the regression model yields 

accurate performance with accurate excitation, displacement, velocity, and acceleration 

measurements of the substructural systems, incorporating velocity information in TDRM 

will help estimation. Table 10.3 shows that when velocity data is incorporated in the 

TDRM model, the accuracy of the estimation as a whole increases but there is a tendency 

to overestimate. The reason for that is because the acceleration measurement is better 

correlated with the actual velocity than the reconstructed displacement, thus as the model 

overestimates damping, it also overestimates stiffness. 

The implementation of FDRM on the simulated 5 DOF system reveals that the 

method works best when the number of Fast Fourier Transform points (Welch, 1967) is 

approximately the same as the length of the vibration signal sequence. Here all of the 

auto/cross power spectral densities are evaluated from the vibration responses using 

periodograms. Only half of the responses over the entire frequency range are used for 

regression, as the rest are comparatively insignificant in value. The sampling frequency 

for the vibration responses is 200Hz, and the length of every signal is 16,000 samples 

(80s). For FDRM in the numerical case, the number of FFT points for the Welch 

periodogram construction is 142 . 
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Table 10.4 contains results from applying FDRM to simulated system responses of 

different signal qualities. It is seen that this method outperforms TDRM; it produces more 

accurate stiffness estimates, and is less affected by measurement noise. Figure 10.6 

shows that the frequency domain regression model did capture most of the variations in 

the dependent variable. 

 

10.7.2 Performance evaluation of the proposed algorithms for the regular frame 
Table 10.5 summarizes the results of FDRM from responses of simulated 5-story 

frames with different beam-to-column stiffness ratios (Figure 10.4). The length of the 

beams for the frame is 6 m, while the column height is 3 m everywhere except for the top 

floor (2.5 m). The signal-to-noise ratio (dB) for the measurements is 5.  For this case, the 

bias is computed with respect to 312 /cEI L ,.  When 12b

c

EI
EI

> , the estimation bias is 

within 10%, and the system can be very well approximated by a shear frame. TDRM is 

also used; however, because of its innate tendency to underestimate structural stiffness, it 

yields more biased results. The estimation error of stiffness of middle stories amount to 

20% even when the signal-to-noise ratio is 50 and 16b

c

EI
EI

> . The results are thus not 

presented here due to space limitations. 

The enhanced formulations of TDRM/FDRM are also applied to the data from this 

frame and their results are presented in Table 10.6 and Table 10.7. Both tables show that 

the estimation of ( , )i ik  is the most accurate of all, which is because given the neighboring 

nodes responses, the response at the middle node is least affected by responses of far-
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away nodes. For the time domain method the estimation bias/standard deviation of the 

(4,4)k  is greater than (5,4)k , which is because the reconstructed displacements of 

acceleration measurements from the first 3 stories are noisy. The estimated values of ( , )i ik  

can be used as indicators of structural damage; Table 10.8 presents the change in FDRM 

stiffness estimates of a frame with initial  2b

c

EI
EI

=  due to a 10% stiffness reduction in the 

first floor columns.. The signal-to-noise ratio is set to 5 for measurements used in FDRM, 

and 20 for those used in TDRM. Performance of the latter method degrades significantly 

for signals with larger noise levels.  

Results presented in this section demonstrate that FDRM can still be used for direct 

structural stiffness estimation and damage identification/localization even when nodal 

rotational responses exist. However, the accuracy of the stiffness estimates from FDRM 

decrease as the modeling error increases, and for reliable structural stiffness estimation/ 

damage identification it is best to pool independent stiffness estimator samples together 

for an average (like what is done for Table 10.8). 

10.8 EXPERIMENTAL VALIDATION 
In many real world applications, the aim of structural property estimation/evaluation 

is to identify possible damage within the structure, which is in the form of a stiffness 

change. In this section TDRM and FDRM are applied to acceleration responses from two 

laboratory specimens that are subjected to random excitations for damage identification 

purposes. Such comparison between damage and undamaged state is necessary for 

evaluation of the effectiveness and accuracy of the proposed algorithms, as in both case 

studies the actual stiffness of the specimens are not known a priori. The first specimen is 
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a 5-DOF aluminum-plexiglas model (Figure 10.7), and damage is simulated by adding 

mass to the 4th floor. The second specimen is a 7-DOF steel mass spring system (Figure 

10.8), and damage is introduced through replacing the spring between the 2nd and 3rd 

masses with a more flexible one. Some basic properties of both specimens are presented 

in Table 10.9. The damage indices used are the nominal system stiffness estimators 

produced by the two algorithms. The results from both applications are presented in the 

form of figures for the ease of comparison and contrast. 

10.8.1 Case study 1: a 5-DOF aluminum-plexiglas structure 
As shown in Figure 10.7, an accelerometer is mounted to the shaking table and each 

floor of the test specimen. The total mass of each floor (together with the sensor, clamp 

etc.) is measured at 1.09 kg (2.4 lbm). Damage is simulated by clamping three additional 

steel plates to the 4th floor; though the elastic stiffness is not affected, the geometric 

stiffness for stories below the 4th floor will change because of the P-delta effect incurred 

by the additional mass. For each structural scenario, 5 sets of acceleration measurements 

are collected when random excitation is applied at the base of the specimen. The 

sampling frequency for all datasets is 100 Hz, and each set contains 8,600 samples.  

Figure 10.9 and Figure 10.10 present the stiffness estimation results from the 

proposed algorithms. The circles in the figures indicate stiffness values estimated from 

undamaged state signals and the crosses are those from damaged state. The dashed line 

and solid line are their respective averages. Floor No. ‘0’ is used to denote the shaking 

table surface here. In the title of each plot, the subscripts of k  indicate the location of this 

inter-story connection in the lumped mass structure, and the numbers after the dashed line 

are the response combination used for each regression. For example, 23 / 123k  refers to 
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the stiffness estimate for the plexiglass plates between floor 2 and 3 based on responses 

from floors 1,2 and 3. Three estimates of system stiffness are made from each dataset by 

applying a rectangular time window to the signal at different time points. As expected, 

the mean of the estimated stiffness values for stories below the 4th floor dropped as a 

result of damage, as shown in both figures.  

 Figure 10.10 shows that FDRM produces very consistent stiffness estimators and 

hence clearly reports the system stiffness loss from the P-delta effect brought by the 

additional mass. However, the estimates from TDRM vary significantly even when the 

structural state is not changed (Figure 10.9). This is happening because TDRM as a time-

domain method relies on accurate displacement-reconstruction estimates, but as a result 

of the nonlinear behavior and large damping effect associated with the plexiglas, the time 

domain regression modeling (without considering damping) is not accurate enough. Thus 

it is concluded that for stiffness estimation in nonlinear systems, FDRM is a more 

suitable choice.  

10.8.2 Case study 2: a 7-DOF steel mass-spring system 
To investigate the performance of the algorithms without concerns for material 

nonlinearity, TDRM and FDRM are also applied for damage identification in a steel 

mass-spring system (Figure 10.8). The ends of each spring are attached into two pieces of 

steel brackets, which are in turn bolted to the masses. The effective mass at each node 

(steel block together with sensor etc.) is 2.587 lbm.   An electro-magnetic shaker with 

31.14N (7 lbs) harmonic peak force capacity is connected to the first steel block to 

provide random excitation for the system. Damage is introduced into the specimen by 

replacing the original spring between the 2nd and 3rd masses with a more flexible one. 

Five sets of acceleration responses, each containing 40,000 samples, are collected at each 
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structural state. All data is sampled at 200Hz frequency. It can be seen from Table 10.9 

that damage cannot be directly located through modal frequency identification. 

The stiffness estimation results are shown in Figure 10.11 and Figure 10.12. The 

numbering of the steel blocks is from left to right. As in the previous case study, the 

subscripts of k  in the title of each plot indicate the location of this spring connection in 

the lumped mass structure, and the numbers after the dashed line are the response 

combination used for each regression. For example, 23 / 123k  refers to the stiffness 

estimate for the spring between masses 2 and 3 based on responses from masses 1, 2 and 

3. Nine estimates of system stiffness are made from each dataset by applying a 

rectangular window to the signal at different time points. The dashed line and solid line 

are their respective averages.  Enhanced TDRM/FDRM is also applied; however, as the 

problem here is caused mainly by translational motion of the mass blocks, they do not 

show a superior performance than the originally proposed regression schemes. 

Figure 10.12 shows that FDRM successfully identifies a substantial stiffness 

reduction between masses 2 and 3 in both regression cases 1-2-3 and 2-3-4. Figure 10.11 

indicates that TDRM also detects the stiffness loss between masses 2 and 3 in case 1-2-3, 

but fails in case 2-3-4. Still, both methods in this case have identified the damage location 

as the spring connection that has the largest stiffness loss after damage.   

It is noted from Figure 10.11 and Figure 10.12 that in the application of both 

algorithms in this experiment, the stiffness values of some connection springs estimated 

using signals from different mass combinations are different (e.g. 56 / 456k  and 56 / 567k

). In some cases(e.g. 45k )  a relatively large variance of the stiffness estimators is 

observed for both algorithms (TDRM yields larger variation in stiffness estimates still). 

196 
 



These cases happen because of the out-of-plane motion of the masses caused by the 

manufacturing error; as observed in Figure 10.13, the two end brackets of each spring are 

not made exactly parallel during the manufacturing process, and hence some of the mass 

blocks are in a slightly skewed position and will jiggle and waggle a bit when the system 

is excited. Another interesting fact is that the stiffness estimators for some undamaged 

connections (e.g. the spring connection between masses 4 and 5) also undergo a slight 

change after damage occurred. This is because when switching the spring connection the 

system geometry is slightly changed – the skew angles of some mass blocks change. This 

changes the transverse vibration of the masses when subjected to shaker excitation, which 

increases the overall noise of the system.  

The two experiments presented in this section demonstrate that FDRM yields more 

accurate and stable stiffness estimates than TDRM. Though the performances of the two 

algorithms are affected by the fact that the systems are not perfect linear elastic MDOF 

systems, their stiffness estimators are generally effective in identifying the extent and 

location of damage. The methods can also be applied to identify multiple concurrent 

damage locations; however, construction of the damage threshold should be determined 

according to the specific structural geometry and the associated modeling error. 

10.9 CONCLUSION 
This research investigated stiffness estimation/damage detection in a shear frame 

structure. Two methods are proposed to detect the interstory stiffness loss from 

acceleration measurements: regression using reconstructed displacements (TDRM) and 

regression using the signal auto/cross correlation spectra (FDRM). Both are applied to 
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responses from two simulated models for stiffness estimation and two lab specimens for 

damage detection, and their results are presented and their performances compared. 

Both algorithms are shown to be effective for the applications. However, it is 

observed that FDRM is superior in almost every aspect: it is more accurate, more robust 

to noise, and less computationally intensive.  This is because with the initial conditions 

unknown, displacement reconstruction from acceleration is an ill-posed problem 

(Hansen, 1998). To achieve a unique solution, additional regularization conditions are 

needed. Besides, the accuracy of such methods will decrease significantly even when the 

measurements are only slightly corrupted by noise. FDRM circumvented this problem as 

the initial conditions become constants in the regression model. 

When joint rotations exist, the performance of these algorithms degrades. However, 

the stiffness estimators can still be used as viable damage indexes. In principle the 

proposed methods can be applied to more complicated structures, as the idea behind them 

is to use responses from adjacent nodes as inputs for the center node, and to infer the 

displacement/velocity responses from acceleration signals. In case of applications where 

the nodal rotations cannot be omitted from consideration, measurements on rotational 

effects (e.g. strain, or relative element or story rotation) should be acquired and 

incorporated into modeling to achieve a good performance. 

In summary, the main objective of this research is to demonstrate the potential of 

using acceleration signals for structural damage detection purposes through examples of 

linear regression modeling for MDOF systems with a linear topology. These partial 

models based on local responses are more efficient and more sensitive alternatives for 

damage detection than modal analysis, which often requires output from a large array of 
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sensors to produce accurate results. Instead of treating all the responses as outputs from 

an unknown linear system, models presented here use responses at one location as output 

and those from adjacent locations as input. This is the essence of this approach; however, 

to make it more generally applicable several additional issues such as joint rotation and 

adaptation to complicated geometry will need to be addressed.  
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Table 10.1     Regression results from Eq. (1) using simulated data. The unit for stiffness 

is kN/m. 

Node combination* 012 123 234 345 45 
Connection location**          

Est. stiffness 839.9 3359.6 3359.7 2519.8 2520.1 1260.1 1260.0 1400.0 1400.1 
Actual stiffness 840 3360 3360 2520 2520 1260 1260 1400 1400 

 

* e.g. 123 means the regression is based on responses from nodes 1-3. Node ‘0’ 
means ground. 

**e.g.  means the stiffness of the story between the ground and the first floor 

 

  

01k 12k 12k 23k 23k 34k 34k 45k 45k

01k
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Table 10.2     Regression results from TDRM: for each case 50 independent and identical 

simulations are run. The unit for stiffness is kN/m. 

Node combination 012 123 234 345 45 
Connection location          

 Stiffness estimates from noise free signals 

Est. mean ( ) 764.0 2885.6 3017.4 2183.6 2247.8 1096.5 1259.7 1304.3 1409.9 
Normalized std. 

( ) 1.9% 0.5% 1.9% 1.7% 1.1% 1.7% 1.7% 0.7% 0.7% 

Normalized bias 

( ) 
-9.0% -14.1% -10.2% -13.3% -10.8% -13.0% 0.0% -6.8% 0.7% 

 Stiffness estimates from signals with a 5% noise level 

Est. mean ( ) 757.2 2879.2 2966.3 2147.1 2239.1 1088.0 1257.0 1300.5 1404.4 
Normalized std. 

( ) 3.4% 1.1% 4.2% 3.7% 2.7% 4.0% 3.8% 1.6% 1.7% 

Normalized bias 

( ) 
-9.9% -14.3% -11.7% -14.8% -11.1% -13.7% -0.2% -7.1% 0.3% 

 Stiffness estimates from signals with a 10% noise level 

Est. mean ( ) 724.2 2733.2 2734.0 2014.7 2149.8 1053.1 1246.7 1287.0 1389.2 
Normalized std. 

( ) 7.5% 2.9% 9.0% 8.7% 5.3% 8.5% 6.6% 3.2% 2.8% 

Normalized bias 

( ) 
-13.8% -18.7% -18.6% -20.1% -14.7% -16.4% -1.1% -8.1% -0.8% 
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Table 10.3     Comparison of performances of models with/without velocity data; results 

are obtained as average from 50 simulations with 5% additive Gaussian noise 

Node combination* 012 123 234 345 45 

Connection 
location**          

TDRM results 783.3 2850.0 3008.3 2164.1 2184.6 1141.6 1286.6 1291.0 1409.0 

TDRM with velocity 
data 

895.4 3645.9 3510.8 2593. 4 2644.4 1314.3 1296.8 1411.1 1450.0 

Actual stiffness 840 3360 3360 2520 2520 1260 1260 1400 1400 

 

  

01k 12k 12k 23k 23k 34k 34k 45k 45k
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Table 10.4     FDRM results: for each case 50 independent and identical simulations are 

run. The unit for stiffness is kN/m. 

Node combination 012 123 234 345 45 
Connection location          

 Stiffness estimates from noise free signals 

Est. mean ( ) 822.9 3317.9 3257.9 2475.2 2476.6 1201.4 1261.8 1381.0 1411.4 
Normalized std. 

( ) 2.5% 0.5% 2.0% 2.9% 1.1% 1.9% 2.5% 1.1% 0.2% 

Normalized bias 

 ( ) 
-2.0% -1.3% -3.0% -1.8% -1.7% -4.7% 0.1% -1.4% 0.8% 

 Stiffness estimates from signals with a 10% noise level 

Est. mean ( ) 838.4 3310.1 3236.4 2478.9 2485.6 1196.6 1250.6 1386.6 1411.3 
Normalized std. 

( ) 4.6% 0.9% 4.0% 5.6% 2.1% 3.5% 4.7% 1.9% 0.3% 

Normalized bias 

 ( ) 
-0.2% -1.5% -3.7% -1.6% -1.4% -5.0% -0.7% -1.0% 0.8% 

 Stiffness estimates from signals with a 20% noise level 

Est. mean ( ) 841.1 3315.0 3264.8 2434.8 2491.9 1199.9 1269.2 1378.2 1410.3 
Normalized std. 

( ) 6.5% 1.3% 4.8% 7.1% 2.7% 4.5% 6.8% 2.9% 0.6% 

Normalized bias 

 ( ) 
0.1% -1.3% -2.8% -3.4% -1.1% -4.8% 0.7% -1.6% 0.7% 

 Stiffness estimates from signals with a 30% noise level 

Est. mean ( ) 847.2 3301.7 3192.5 2399.3 2505.8 1190.2 1247.7 1391.0 1405.0 
Normalized std. 

( ) 14.2% 2.7% 10.1% 13.8% 6.0% 10.5% 12.7% 5.4% 1.2% 

Normalized bias 

 ( ) 
0.9% -1.7% -5.0% -4.8% -0.6% -5.5% -1.0% -0.6% 0.4% 
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Table 10.5     Stiffness estimation results for frames with flexible beams using FDRM; 

for each case 50 independent and identical simulations are run. The unit for stiffness is 

kN/m. 

Node combination 012 123 234 345 45 
Connection location          

 Stiffness estimates when  

Est. mean ( ) 1214.8 1457.4 1206.6 1045.2 932.0 1381.9 1184.5 1446.9 1344.5 
Normalized std. 

( ) 9.0% 6.0% 9.3% 2.2% 7.2% 6.9% 12.0% 1.4% 1.0% 

Normalized bias 

 ( ) 
-24.1% 9.3% -9.5% -21.6% -30.1% 3.6% -11.2% -30.2% -35.2% 

 Stiffness estimates when  

Est. mean ( ) 1393.9 1372.3 1206.3 1140.1 1059.0 1360.5 1193.3 1683.8 1609.6 
Normalized std. 

( ) 5.4% 4.3% 9.2% 2.2% 3.7% 6.0% 14.1% 0.8% 0.7% 

Normalized bias 

 ( ) 
-14.8% 2.8% -10.5% -16.9% -25.9% 2.0% -11.7% -23.1% -28.8% 

 Stiffness estimates when  

Est. mean ( ) 1494.9 1337.0 1218.8 1242.7 1177.2 1327.3 1259.9 1838.1 1806.6 
Normalized std. 

( ) 3.3% 3.1% 5.1% 2.4% 2.9% 6.4% 10.7% 0.9% 0.9% 

Normalized bias 

 ( ) 
-7.0% 0.3% -9.4% -7.3% -13.3% -0.5% -5.8% -12.8% -14.8% 

 Stiffness estimates when  

Est. mean ( ) 1538.1 1326.7 1281.2 1255.3 1200.2 1383.8 1354.5 1913.5 1873.3 
Normalized std. 

( ) 2.4% 1.8% 4.7% 1.4% 3.3% 5.3% 10.7% 0.6% 1.0% 

Normalized bias 

 ( ) 
-3.9% -0.5% -3.9% -5.9% -10.0% 3.8% 1.6% -7.7% -9.7% 
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Table 10.6     Stiffness estimation results using enhanced TDRM scheme; for each case 50 independent and identical simulations are 

run. The unit for stiffness is kN/m. 

Stiffness estimates when  Stiffness estimates when  Stiffness estimates when  

i** 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

-- -1122.5 -926.5 -764.6 -1295.1 -- -1102.0 -1045.4 -808.3 -1537.9 -- -1010.9 -1115.0 -801.9 -1735.3 

2459.7 1982.1 1888.7 2151.0 1267.6 2531.6 2174.7 2102.5 2445.9 1531.0 2634.6 2226.8 2309.2 2614.6 1737.2 

-1057.9 -968.0 -985.0 -1357.0 -- -1083.9 -1080.2 -1068.9 -1580.6 -- -1141.0 -1127.4 -1176.0 -1729.1 -- 

Normalized bias of the estimates when 
 

Normalized bias of the estimates when 
 

Normalized bias of the estimates when 
 

i** 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

 -- -17.75% -29.61% -43.58% -18.12% -- -18.58% -21.21% -40.42% -13.47% -- -24.84% -16.24% -40.61% -9.06% 

 -9.42% -13.53% -16.61% -21.82% -8.15% -9.60% -10.68% -13.01% -18.86% -6.53% -7.83% -12.15% -8.51% -18.01% -4.72% 

 -22.49% -26.45% -27.32% -14.21% -- -19.91% -18.58% -21.21% -11.06% -- -15.16% -15.31% -12.90% -9.38% -- 
Normalized standard deviation of the estimates 

when  
Normalized standard deviation of the estimates 

when  
Normalized standard deviation of the estimates 

when  

i** 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

-- 27.77% 7.19% 42.49% 3.32% -- 24.25% 6.65% 55.43% 1.47% -- 28.08% 5.41% 49.26% 1.83% 

 7.19% 9.89% 9.39% 14.02% 3.12% 4.88% 6.67% 11.18% 17.38% 1.41% 2.52% 7.84% 5.74% 13.97% 1.61% 

 11.22% 9.94% 14.48% 3.65% -- 9.04% 6.00% 19.49% 4.75% -- 7.58% 4.42% 10.06% 3.89% -- 

**: the number of the middle node in the regression model 

/ 2b cEI EI = / 4b cEI EI = / 8b cEI EI =

( 1, )ˆ i ik −

( , )ˆ i ik

( 1, )ˆ i ik +

/ 2b cEI EI = / 4b cEI EI = / 8b cEI EI =

( 1, ) ( 1, )
ˆ / 1i i i ik k− − −

( , ) ( , )
ˆ 1/i i i ikk −

( 1, ) ( 1, )
ˆ / 1i i i ikk + + −

/ 2b cEI EI = / 4b cEI EI = / 8b cEI EI =

( ) ( 1, )( 1, )
ˆst / ˆd i ii ik k −−

( ) ( , )( , )
ˆ ˆstd / | |i ii ik k

( ) ( 1, )( 1, )
ˆst / ˆd i ii ik k ++
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Table 10.7     Stiffness estimation results using enhanced FDRM scheme; for each case 50 independent and identical simulations are 

run. The unit for stiffness is kN/m. 

Stiffness estimates when  Stiffness estimates when  Stiffness estimates when  

i** 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

-- -1457.4 -1149.7 -1382.5 -1477.4 -- -1382.0 -1229.3 -1372.8 -1697.8 -- -1344.0 -1270.1 -1348.6 -1849.8 

2666.9 2265.4 2240.8 2686.0 1308.3 2761.5 2411.4 2420.8 2916.6 1584.8 2814.9 2501.6 2524.8 3094.7 1789.9 

-1441. 8 -1127.3 -1289.6 -1368.2 -- -1372.5 -1141.8 -1260.6 -1630.7 -- -1353.7 -1168.5 -1262.0 -1813.5 -- 

Normalized bias of the estimates when 
 

Normalized bias of the estimates when 
 

Normalized bias of the estimates when 
 

i** 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

 -- 6.79% -12.64% 2.01% -6.60% -- 2.11% -7.35% 1.19% -4.47% -- -0.07% -4.59% -0.12% -3.06% 

 -1.79% -1.17% -1.07% -2.38% -5.20% -1.39% -0.96% 0.16% -3.24% -3.25% -1.52% -1.31% 0.03% -2.95% -1.83% 

 5.64% -14.35% -4.85% -13.50% -- 1.41% -13.94% -7.08% -8.24% -- 0.65% -12.23% -6.53% -4.96% -- 
Normalized standard deviation of the estimates 

 when  
Normalized standard deviation of the estimates  

when  
Normalized standard deviation of the estimates  

when  

i** 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

-- 16.07% 7.32% 14.94% 4.27% -- 8.83% 5.55% 10.14% 4.03% -- 7.07% 3.97% 8.13% 3.05% 

 4.37% 6.38% 7.40% 5.84% 3.27% 2.63% 3.87% 6.02% 7.37% 1.85% 2.62% 3.72% 4.17% 5.40% 1.71% 

 14.84% 15.37% 11.66% 3.14% -- 9.31% 11.69% 16.38% 2.12% -- 9.83% 6.76% 11.99% 1.90% -- 

**: the number of the middle node in the regression model 

/ 2b cEI EI = / 4b cEI EI = / 8b cEI EI =

( 1, )ˆ i ik −

( , )ˆ i ik

( 1, )ˆ i ik +

/ 2b cEI EI = / 4b cEI EI = / 8b cEI EI =

( 1, ) ( 1, )
ˆ / 1i i i ik k− − −

( , ) ( , )
ˆ 1/i i i ikk −

( 1, ) ( 1, )
ˆ / 1i i i ikk + + −

/ 2b cEI EI = / 4b cEI EI = / 8b cEI EI =

( ) ( 1, )( 1, )
ˆst / ˆd i ii ik k −−

( ) ( , )( , )
ˆ ˆstd / | |i ii ik k

( ) ( 1, )( 1, )
ˆst / ˆd i ii ik k ++
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Table 10.8     Changes in the estimated stiffness matrix from FDRM after damage 

occurs. The unit for stiffness is kN/m.  This is the average of results from 10 simulations. 

Row No. 
Column No. 1 2 3 4 5 

1 184.8 -22.3 0.0 0.0 0.0 
2 -26.5 25.6 -8.4 0.0 0.0 
3 0.0 -46.7 29.5 54.9 0.0 
4 0.0 0.0 -43.7 55.3 4.5 
5 0.0 0.0 0.0 -25.7 -13.8 

207 



 

Table 10.9     Basic properties of Laboratory specimens used 

 5 DOF multi-story model 7 DOF mass-spring system 
Material aluminum-plexiglas Steel 
Overall Dimension*(Unit: cm) H:78.11 W:10.16 L:19.37 H:127 W:35.56 L:78.74  
Mass block size* (Unit: cm) TH:1.91 W:10.16 L:19.37 TH: 2.54 H:5.08 W: 8.89  
Effective nodal mass (Unit: kg) 1.09 1.17 
Modal frequencies**(Unit: Hz)  0.65(0.5), 2.30(2.00), 

3.70(3.35), 4.90(4.45) and 
6.20(5.35)  

4.12(4.32), 9.23 (9.01), and 
13.82 (13.60)  

* H—height, W – width, L—length, TH—thickness  

** terms outside / inside the brackets are the frequencies from healthy/damaged 
state; for the 7 DOF system only 3 lowest modal frequencies are listed because the 
rest cannot be consistently identified 
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Figure 10.1 A simulated 5 DOF shear frame with its story mass and 

interstory stiffness values 

  

209 
 



 

 

Figure 10.2 A contrast of the amplitude of the excitation and the 

regression error from regressing the response from the 3rd 

node on those from 2nd and 4th nodes. 
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Figure 10.3 Contrast of the stiffness matrices of frames with different 

beam-to-column sectional stiffness ratios ( /b cEI EI ) (a) 

/b cEI EI =∞ ; (b) /b cEI EI =12 ; (c) /b cEI EI = 4 ; (d) 

/b cEI EI = 2  . 
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Figure 10.4 A frame with flexible beams 
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Figure 10.5 Comparison between the reconstructed displacement (blue 

solid line) and the real displacement (red dashed line) for 

different acceleration measurement noise levels 
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Figure 10.6 The error from FDRM model is insignificant compared to the 

regressand spectrum. The acceleration measurements used are 

from node 2-4. 
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Figure 10.7 The 5 DOF plexiglass-aluminum model 
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Figure 10.8  The 7-DOF steel mass-spring model 
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Figure 10.9  Stiffness estimation results for the 5 DOF model using TDRM 
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Figure 10.10  Stiffness estimation results for the 5 DOF model using FDRM 
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Figure 10.11  Stiffness estimation results for the 7 DOF model using TDRM 

-5
0
5

10

k12/123

es
t. 

st
iff

ne
ss

un
its

 (k
N

/m
)

-5
0
5

10

k23/123

-5
0
5

10

k23/234

-5
0
5

10

k34/234

es
t. 

st
iff

ne
ss

un
its

 (k
N

/m
)

-5
0
5

10

k34/345

-5
0
5

10

k45/345

-5
0
5

10

k45/456

es
t. 

st
iff

ne
ss

un
its

 (k
N

/m
)

-5
0
5

10

k56/456

-5
0
5

10

k56/567

0 50 100
-5
0
5

10

sample number

k67/567

es
t. 

st
iff

ne
ss

un
its

 (k
N

/m
)

0 50 100
-5
0
5

10

sample number

k67/678

0 50 100
-5
0
5

10

sample number

k78/678

219 
 



 

 

Figure 10.12  Stiffness estimation results for the 7 DOF model using FDRM 
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Figure 10.13  Skewed position of the masses as a result of unparallel spring 

ends. 

 

  

221 
 



 

 

 Substructural approach for damage detection in flexible Chapter 11
members 

11.1 PRELUDE  
To form an on-line automatic structural assessment procedure that requires little 

involvement of technicians/experts (thereby reducing the cost and bias in the decision 

making process), damage features that indicate damage location/extent and damage 

thresholds that carry the smallest risk of misclassification are needed.  

 As noted in above chapters, system identification/modal realization is the classical 

method used for structural health monitoring purposes(Hassiotis and Jeong, 1995; 

Pothisiri and Hjelmstad, 2003; Salawu, 1997). While these damage features are 

theoretically well-grounded, it may take a lot of time and resources for some algorithms 

to achieve good results, and more importantly, these features are sometimes found to be 

not responsive to local damage (Doebling et al., 1998). In an effort to overcome these 

problems, damage detection techniques that adopt statistical analysis on structural 

responses (Sohn and Farrar, 2001; Zhang, 2007) have been proposed and found to be 

sensitive to damage, but also to the excitation condition change as a result of the inherent 

information limitation for this family of methods. 

In order to strike a balance between a method’s damage sensitivity and performance 

robustness, Substructural approaches that treat the entire structural system as an assembly 

of substructures and model each substructure independently have been developed and 

tested (Gul and Catbas, 2010; Hernandez-Garcia et al., 2010a; Yan et al., 2011). This 

family of algorithms often uses the response from within the substructure for output and 
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responses at substructural boundaries for input, and therefore damage features based on 

the estimated substructural model parameters and model residuals should be conveying 

information strongly related to physical behavior of the substructures. Gul and Catbas 

(2010) applied autoregressive with exogenous input (ARX) modeling to measurements 

collected from clusters of sensors for damage localization in a numerical mass-spring 

system and a steel grid set up in a laboratory. Their analysis results show that while the 

test produces false alarms (i.e. detects changes in intact substructures), the damage 

locations are correctly identified as where the largest fit ratio changes occur. Hou et al. 

(2011) used the experimental responses to form the impulse response matrix and identify 

damage through computing the residual strains/ deformations. In addition, Weng et al. 

(2011) have employed substructure system identification results for model updating.  

Compared with the approaches mentioned in the previous paragraph, substructural 

methods are generally better at damage location detection, less affected by operational 

condition variations than scalar signal analysis, and less computationally demanding than 

many global system identification approaches.   

11.2 MOTIVATION AND ORGANIZATION 
Among the above listed studies on substructural damage identification, several 

employ black-box models such as numerical ARX model and neural network that cannot 

be directly related to structural physics. For those literatures listed in previous chapter 

that explicitly address the damage-induced structural stiffness loss, the algorithms are 

devised mainly for structures with linear topology (i.e. mass-spring and shear building 

systems).  In order to assess the local stiffness variation for structures with more complex 

geometry, the TDRM/FDRM proposed in Chapter 11 is extended to substructural beam 
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element models in plane and space. Two types of element models are developed, one of 

which considers only the static effects, and the other takes into account the dynamic 

effects through assuming an intermediate concentrated mass. The regression expression 

for each model can be formed in either time or frequency domain. Damage features based 

on these regression models are then integrated with change point analysis (CPA) 

(Brodsky and Darkhovsky, 1993; Nigro et al., 2014) methods and voting schemes for 

structural damage assessment. The effectiveness of the proposed methodology is 

validated through numerical and experimental implementations. 

The remaining content is organized in 6 sections.  

• Section 11.3 contains the discussion on the substructural model in general and 

the development of substructural beam models for both the 2D and 3D cases.  

• Section 11.4 formulates the regression procedure for the substructural models 

and three damage features.  

• Section 11.5 details a voting-based information fusion process to combine the 

damage detection results from different models/damage features/CPA 

techniques.  

• Section 11.6 uses data from a simulated frame and a simulated truss to 

demonstrate the proposed 2D and 3D modeling methods, respectively.  

• Section 11.7 presents implementation results on a laboratory frame and a real-

world truss bridge for the algorithms, and their damage identification and 

localization performances are compared and contrasted.  

• Section 11.8 draws conclusions on the merits and demerits of the methods.   
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11.3 SUBSTRUCTURAL MODEL DEVELOPMENT BASED ON FINITE 
ELEMENT CONCEPT 
To apply the linear regression techniques for damage identification, we need to 

clarify an input-output linear model for the structure that is to be assessed. Since the goal 

of this research is to characterize local damage, structures will be divided into 

substructures and each substructure will be analyzed and modeled independently.  

The behavior of a substructure is controlled by two types of influences: those acting 

directly on the substructure itself and those acting on its ‘boundary’. The relation between 

these inputs and the substructure response reflects certain physical properties of the 

substructure. When the structural responses collected are structural vibration (the most 

commonly monitored signal in SHM applications), the relevant structural physical 

properties are the material constitutive relations. 

The displacement response at an internal node of a substructure can be expressed as 

the following function (Figure 11.1): 

 i i( , , )h S p=r x                                                                          (11.1) 

where S is the boundary force, p is the excitation acting on the substructure, and ix is the 

coordinate vector of the internal node. ( )h ⋅  is determined from both the substructural 

constitutive relations and the geometry, while S  is  a function of the boundary 

displacement response ( br ) and its higher order derivatives with respect to the system 

coordinates ( ( )
b

nr ): 

 ( )
b b( , )nS g=  r r                                                                           (11.2) 

225 
 



 

Exact characterization of a substructural system requires continuous measurement of 

system behavior along the boundaries, which is unfeasible in practice since most of the 

existing sensing systems are discrete and sparse. Therefore, it is assumed that the 

boundary responses have a finite number of degree-of-freedoms (DOF) and can be safely 

inferred from measurements collected at a few locations along the boundary. Also, 

knowledge of the excitation on the substructure is necessary for model identification. 

This force generally cannot be measured directly; however, there are cases where it can 

be either eliminated from consideration or expressed using other measurable quantities. 

For example, if the excitation is white noise, its effect can be canceled out by taking the 

autocovariance function of the responses as the system free vibration response (James III 

et al., 1993). If the excitation is the inertial force of the substructural mass, then it is a 

function of substructural system mass and acceleration (i.e. b i( , , )p p m= r r  ).   

When the structure is linear and substitution principle can be applied, Eq. (11.3) 

becomes:  

( )
i i i b b i i

( )
b b i

( )
b b i b i i

( , ) ( , ) ( ( , ), ) ( , )

( ( , ), ) (Static case with no directly applied excitation)
( ( , ), ) ( ( , , ), ) (Dynamic case with no directly applied e

n

n

n

h S h p h g h p

h g
h g h p m

= + =  +

   
    =

 +   

r x x r r x x

r r x
r r x r r x  xcitation),





(11.3) 

Here velocity measurements are not considered as damping is assumed negligible, and br

/ ( )
b

nr  terms are, as noted before, referring to the data collected at a few sensing locations. 

With both internal and boundary responses of the substructure sampled, a model 

reflecting the underlying structural physics can be identified using one of the existing 

numerical system identification techniques. The accuracy of the results will depend on 
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how closely the measurements represent the boundary interactions and the inertial forces 

in the dynamic case. The whole idea bears some similarity to the substructuring method 

adopted in finite element modeling (FEM); only the latter aims at solving for structural 

response by assembling substructural stiffness matrices into one global stiffness matrix 

and forming equilibrium equations, while the former estimates the structural stiffness 

properties from known structural response and operates separately on individual 

substructures.  

The remainder of this section will be devoted to construction of linear substructural 

models for beam element, one of the most studied finite element types in the literature. In 

the first subsection, static and dynamic models for beam elements in planar space are 

presented and associated input-output relations are defined. The relations are then 

generalized for modeling of beam members in three-dimensional Euclidean space in the 

second subsection. 

11.3.1 Substructural models for beam in plane 
For modeling of in-plane elements with no axial elongation, translation 

perpendicular to the member axis is the only DOF along the member. Measurements 

needed at beam ends are the translation and rotational movements.  

11.3.1.1 Static beam model in plane 
For a continuous Euler-Bernoulli beam model with section stiffness ( )EI x  when 

subjected to no intermediate load (Figure 11.2(a)), the displacement ( )u x  will satisfy the 

4th order differential equation: 

 
( ) ( )( )2 2

4 0                             
d EI x d u x

dx
=                                     (11.4) 
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Constants for the homogenous solution can be determined using the displacement 

and slope angles at both beam ends. When the beam remains linear in terms of the stress-

strain relationship, conditions of slope can be replaced with conditions of strain (at the 

upper/lower surface): 

 ( ) ( )1 , , ,                 C A A B Bu x f u uε ε=                                                (11.5) 

where 1( )f ⋅  denotes a certain functional relation. This expression is useful in cases that 

the strain instead of slope is measured. When ( )EI x satisfies certain conditions so that 

the solution of Eq. (11.4) is linear with respect to its homogeneous constants, 1 f  

becomes a linear function.  

In vibration monitoring applications that measure the system’s acceleration instead 

of displacements, this model can still be applied by taking the 2nd derivative of Eq. (11.5) 

with respect to time if the system stiffness-to-mass ratio is large: 

 ( ) ( ) ( )1 1, , , , , ,                           C C A A B B A A B Ba u x f u u f a aε ε ε ε= = =        (11.6)           

where Aa , Ba  and Ca are the acceleration signals measured at different positions 

indicated by the subscripts. This relation can also be formulated in the frequency domain 

by taking the one-sided Fourier Transform of Eq.(11.6): 

( ) ( ) ( )  ( ) ( )  ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

  

1 1

2 2
1

2 2
1 1

, , ,   , , ,

, 0 0 , , 0 0

,

ˆ

 

ˆ ˆ ˆ

ˆ ˆˆ

, ,

ˆ

ˆ .ˆˆ ˆ

f linear

A BC A A B B A B

A A A A B B B B

A A B B

a i f a a f a i i a i i

f a i i i t t a i i i t t

f a i i a i i Cst

ω ε ε ω ε ω ω ε ω

ω ω ε ω ωε ε ω ω ε ω ωε ε

ω ω ε ω ω ω ε ω

= ⇒

= − − = − = − − = − =

= − − +

   

 

(11.7) 

Only the real part of the frequency domain representation will be retained for 

regression as it contains more power than the imaginary part. For all the derivations 
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herein subscripted Cst  is a regression constant. When 1( )f ⋅  is a linear function, the 

physical interpretation of the coefficients of the function variables is shown in Figure 

11.2(b). In the plot it is assumed that a strain gage is applied to the top surface of the 

beam element. Here '
Ah  and '

Bh  are used to denote the vertical distances from the section 

centroid at A and B to their respective strain gage locations. The coefficients are 

numbered in the order in which their corresponding variables appear inside the function 

bracket of Eq. (11.7). Basically, each interpretation is obtained as the translational 

displacement at C from setting the corresponding boundary condition to unity and all the 

rest conditions to zero. This knowledge will be useful in understanding of the 

substructural behavior, and in light of possible structural damage, identification of the 

damage location and extent. It can be seen that the coefficients of the acceleration terms (

1β  and 3β ) will not be affected by substructural stiffness loss unless a hinge formed 

somewhere along the beam. However, since this static model is rarely an exact 

description of real beam members, these coefficients are still retained for structural state 

evaluation. 

11.3.1.2 Beam model in plane, with a lumped mass 
The model introduced in the previous subsection addresses only static/quasi-static 

applications. Here a model that incorporates a part of dynamic effects is constructed by 

adding a lumped mass on the beam (Figure 11.3(a)). Again assuming linear material 

constitutive relation and applying the generalized force concept: 

( ) ( ), , , ,                 A A C B Bu x f u mu uε ε=                                                  (11.8) 
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When f  is a linear function (the conditions for this to hold are still the same as in 

part (11.3.2.1)), Eq. (11.8) can be reformulated as:  

 ( )2 , , , ,                         C C A A C B Ba u f u u uε ε= =                                         (11.9)                                        

2f  is another linear function with different coefficients. Its corresponding frequency 

domain representation is  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

  

2 2

2 2 2

2

2
2

ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

, , , ,   , , , ,

0 0 0 0
, , , 

0 0
                  ,  

/ , 

ˆ

ˆ
ˆ

ˆˆ

f linear

C A A C B B A A C B B

A A A C C C
A

B B B
B

A

a i f u u u f u i i u i u i i

a i i u t u t a i i u t u t
f i

a i i u t u t
i

f a i

ω ε ε ω ε ω ω ω ε ω

ω ω ω ω
ε ω

ω ω

ω ω
ε ω

ω

ω ω

= ⇒

+ = + = + = + =
=

− −

+ = + = 
      − 

= −





 



( ) ( )( ( ) ( ))2 2
2, / ,  / , .              ˆ  ˆˆA BC Bi a i a i i Cstε ω ω ω ω ω ε ω− − +

   

(11.10)                                          

In a manner similar to that of Figure 11.2(b), Figure 11.3(b) illustrates the physical 

meaning associated with each variable coefficient. Note that here each coefficient is 

represented with a force instead of a displacement, and when the assumed mass value at 

C is not unity, all of the force values are divided by the actual mass value to get the linear 

coefficients ({ }kβ ). In the definition of this model, coefficients of all variables are 

affected by beam stiffness variations. The exact relation can be found using standard 

structural analysis techniques (e.g. virtual work, etc.).  

11.3.2 Substructural models for beam in three dimensional (3D) space 
Substructural modeling for beams in three-dimensional space is innately a more 

complex problem, especially when torsional deformation is taken into consideration. 

Otherwise, it can be done by analyzing the bending about strong/weak axis as a planar 
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bending problem so that model definitions from the previous subsection can be applied. 

In this subsection, relations between the internal responses and boundary responses of an 

arbitrary 3D beam (Figure 11.4) will be derived. 

11.3.2.1 Static beam model in 3D space 
The homogeneous governing differential equations for the translation (at the 

centroid) and rotation (with respect to the shear center) of a linear beam in 3D space are 

examined (without considering second-order effects) in (Seaburg and Carter, 1997):  

 
( ) ( )( )2 2

4 0yd EI z d u z
dz

= , 

 
( ) ( )( )2 2

4 0xd EI z d v z
dz

= , 

 
( ) ( )( ) ( ) ( )( )3

2 4 0T d EI z d zd GK z d z
dz dz

ω φφ
− = .                   (11.11) 

where  u , v  and φ  are x-direction translation, y-direction translation and torsion angle at 

the section centroid. xEI  and yEI  are the section bending stiffness about the x and y 

axes, respectively. TGK  is the St. Venant torsional stiffness and EIω  is the warping 

torsional stiffness. Since these three differential equations are all fourth-order, six 

boundary conditions are needed at each end of the beam for a unique solution. Three such 

conditions can be obtained by measuring the translation and axial rotational responses at 

the beam ends. Because direct measurement of internal forces or derivatives of 

translation/axial rotation is not feasible, strains measured at three distinct points along the 

section circumference can be used in their stead. Justification for this comes from the fact 

that when the system is linear, these strain data are the linearly transformed versions of 
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three components of normal stress: warping normal stress ( Wσ ), bending normal stress 

about x  axis ( bxσ ) and bending normal stress about y  axis (  byσ ), which are in turn 

proportional to second-order derivatives of the rotation and translation along the beam 

length (i.e. ''φ , ''u , ''v ). 

With the necessary boundary conditions identified, static substructural model can be 

defined according to Eq. (11.12): 

( ) ( ) ( ) 3, , ( ) ( , , , )
T

A B A Bz u z v z z fφ= =  r r r ε ε                                            (11.12) 

where ,A Bε ε  are vectors consisting of strain measured at three different locations along 

the perimeter of Sections A and B, respectively (Figure 11.4). The torsional component 

accounts for all the coupling between the translational movements in the x  and y  

directions, and thus translational acceleration responses collected from an intermediate 

location on the beam surface can be expressed using the following functions: 

 ( ) ( )1 4 4 1 1 2 2' , , , , , , , , , , ,C A B A B A B A B A B A Bfu fu u u u u uφ φ= =ε ε ε ε  

 

         

 ( ) ( )1 5 5 1 1 3 3, , , , , , ,' , , , ,C A B A B A B A B A B A Bv f v v f v v v vφ φ= =ε ε ε ε 

            

 [ ] [ ]1 2 3 1 2 3, , ,  , , .T T
A A A A B B B Bε ε ε ε ε ε= =ε ε                        (11.13) 

In the above two expressions, uppercase letters in the subscripts are the section labels 

and the numbers following these letters denote a point along the section (Figure 11.4). 

Assuming 4f  and 5f  are linear in coefficients, the corresponding frequency domain 

representations of the expressions are:  
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 ( )    ( )

 ( )  ( )  ( )  ( )( )

 

1 1 1 2 24 1 1 2 2 4

2 2
1 1 2 24 4

, , , , ,  ( ), ( ), ( ), ( ), ( ), ( )  

, , ,

ˆ

, , ,

f linear

C A B A B A BA B A B A B

A B A B A B

f f i i i i iu u u u u u u u u

u

i

f ui ti i iu u Cs

ω ω ω ω ω ω

ω ω ω ω ω ω

= ⇒

= − − +

ε ε ε ε

ε ε

 

        

  

 

 

 



( ) ( )
( ) ( ) ( ) ( )( )

 

1 2 2 3 35 2 2 3 3 5

2 2
2 2 3 35 5

, , , , ,  ( ), ( ), ( ), ( ), ( ), ( )  

, , , .

ˆ

, ,  

f linear

C A B A B A BA B A B A B

A B A B BA

v f v v v v f v i v i v i v i i i

f v i v i v i v i Cst

ω ω ω ω ω ω

ω ω ω ω ω ω

= ⇒

= − − +

ε ε ε ε

ε ε

          

      

 

  

  









(11.14) 

 There is a physical interpretation associated with each coefficient of these variables 

as well, only in this case their relation to structural stiffness quantities is more 

complicated and it is especially difficult to directly present the physical equivalents of the 

coefficients of strain terms. Figure 11.5(a) contains schematic illustration on the physical 

equivalent of coefficients associated with acceleration regressors when the complete 

strain measurements are available. For clarity purposes only a surface is drawn instead of 

a 3D beam. 

11.3.2.2 Lumped mass beam model in 3D space 
The process of developing a lumped mass beam model in 3D space is similar to that 

in 2D space. The assumption made here is that total inertia effect of the substructure 

could be accounted for by using the accelerations measured at an intermediate point on 

the beam. The functions are thus derived as: 

( ) ( )1 6 1 6 1 1 2 2 1' , , , , , , , , , , , , ,C A B C A B A B A B A B C A Bu f u u u f u u u u uφ φ= =ε ε ε ε  

 ( ) ( )1 7 1 7 1 1 3 3 1' , , , , , , , , , , , , .C A B C A B A B A B A B C A Bv f v v v f v v v v vφ φ= =ε ε ε ε        (11.15) 

And their frequency domain counterparts are: 
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 ( ) ( ) ( )
 ( )  ( )  ( )  ( )(  ( ) )

  

1 6 1 1 2 2 1 6 1 1 2 2 1

2 2 2 2 2
1 1 2 2 16 6

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,  , , , , , ,

 / , / , / , / , / , ,ˆ ˆ ,

f linear

C A B A B C A B A B A B C A B

A B A B C A B

i f u u u u u f u u u u u

f i i i i i Cst

u

u u u u u

ω

ω ω ω ω ω ω ω ω ω ω

= ⇒

= − − − − − +

ε ε ε ε

ε ε



    

( ) ( ) ( )
( )  ( )( ( ) ( ) ( ) )

  

1 7 1 1 3 3 1 7 1 1 3 3 1

2 2 2 2 2
1 1 3 3 17 7

ˆ ˆ ˆ ˆ ˆ, , , , , ,  , , , , , ,

 / , / , / , / , /

ˆ ˆ ˆ

, , ˆ .ˆ

f linear

C A B A B C A B A B A B C A B

A B A B C A B

i f v v v v v f v v v v v

f i i i i i

v

v u tv Cv v s

ω

ω ω ω ω ω ω ω ω ω ω

= ⇒

= − − − − − +

ε ε ε ε

ε ε





   

    

           (11.16) 

Figs. 4(b) and (c) contain schematic plots showing the physical meaning of 

coefficients related to acceleration variables. The lumped mass model is a simplified 

approximation of the real behavior. But to make this approximation more accurate, the 

model needs to incorporate more variables and may then suffer from 

overparameterization. This problem will become evident when the whole structure is not 

very well excited. (i.e. the response only contains a few dynamic modes) 

When the substructure is subjected to the ambient/white noise load, the models 

described in this section will be applicable by using the correlation of the signals with the 

regressand signal as a free-decay response. The corresponding frequency domain relation 

will then be defined for the auto/cross power spectral densities, instead of the Fourier 

transform.  

11.4 DAMAGE FEATURE EXTRACTION FROM SUBSTRUCTURAL 
REGRESSION MODEL FORMULATIONS  
The general MISO (multi-input-single-output) linear regression problem can be 

formulated as: 

 = +Y Xβ                                                                                  (11.17) 

In Eq.(11.17), Y  is the 1n ×  regressand vector, X  is the n m×  regressor matrix, β  is 

the 1m ×  regression coefficients vector, and   is the 1n ×  residual series. In the size 
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definitions n stands for the number of observations, and m refers to the number of input 

series. Thus given the input and output observations, the coefficients and the residuals 

can be estimated through applying standard curve fitting algorithms (often using least 

squares or maximum likelihood).   

The substructural models presented in the previous section can be used to form 

regression models as outlined in  Table 11.1. Note that for all of the regression schemes, 

only acceleration and strain signals are employed as they are the most commonly 

measured vibrational responses. In the table, subscript  j=1,…,N  is a range variable 

which represents the collection of sample points in time/frequency domain depending on 

the situation.  b b1 b2 b[ , ,..., ]da a a=a  and b1 b2 b '[ , ,..., ]b dε ε ε=ε are vectors of boundary 

acceleration and strain measured at a series of discrete locations, with d and 'd  being the 

total number of acceleration and strain sensing points, respectively. 2Δ {}⋅  represents the 

central difference of a signal, {}⋅∬  denotes the reconstructed displacement from the 

acceleration signal inside the brackets by applying the CFIR filter described in (Hong, 

Kim, and Lee, 2010), and the macro accent {}⋅  means the detrended signal. The purpose 

for detrending is to eliminate from the regression models the regression constant, which 

is associated with the system static deformations in the time domain signal, and the 

vibration initial conditions in the one-sided frequency spectrum. In the applications 

herein, two-sided spectrum is adopted instead of one-sided spectrum because it is easier 

to estimate the former from data. The estimated regression coefficients (

( ) 1T Tˆ −
=β XX X Y  from the least squares method), the ratio of the variance of regression 

residuals from baseline model to that of the signal ( 1 ( ) / ( )BLRF var var= Y , 

235 
 



 

ˆ BL BL= −Y Xβ ), and the ratio of the residual variance from baseline model to that from 

current state model ( 2 ( ) / ( )BL CSRF var var=  , ˆ ,BL BL= −Y Xβ ˆ CS CS= −Y Xβ ) will be 

used as damage features.   

11.5 STATISTICAL INFORMATION SYNTHESIS FOR RELIABLE 
DAMAGE PROGNOSIS  
In the previous section, four substructural models and three damage indices are 

presented. Two change point analysis (CPA) methods, one based on maximum 

cumulative sum and one based on minimum deviance (Brodsky and Darkhovsky, 1993; 

Nigro et al., 2014), will be used to identify the point at which a statistically significant 

change occur in damage feature sequences extracted from chronologically arranged 

datasets representing structural baseline state and unknown state. Thereby, 4×3×2=24 

combinations for damage detection and localization can be formed by performing all 

possible arrangements for these three components. In applications, it is found that the 

algorithms rarely yield unanimous results, which is caused by different levels of 

sensitivity to measurement and modeling inaccuracies and possible over-

parameterization. In light of these limitations, a triple-layer voting scheme will be used to 

pool the damage identification/localization results from all algorithms for an accurate 

decision on the current structural state.  

Majority voting (Jain et al., 2000) is used for damage existence recognition. The 

median of all captured change points (implying the time when damage occurred) is 

selected as the nominal change point in accordance with the median voter theorem, which 

states that a majority voting system will select the outcome most supported by the median 

voter and has been widely applied in public decision making research (Congleton, 2004).  
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Voting strategy for damage location is a more complex problem and requires more 

preliminary preparation. Possible damage locations are found as positions of those 

substructures with most significant changes in damage features produced via different 

algorithms. To quantify the significance of variations from CPA, Two indicators are 

introduced as in Figure 11.6; the normalized damage indication variable (NDIV) and the 

normalized mean shift (NMS).  

Note that because the exact change point location is not known a-priori, nominal 

change point from the second stage of voting is used instead. NDIV indicators from 

algorithms with different CPA methods but the same other components will be summed 

up since NMS is not affected by CPA methods and there is no reason to give one 

indicator more weight than the other in the voting process. Again in the spirit of equal 

weight voting, NDIV and NMS values from the same substructural models and either of 

the residual-based features are added up, so that coefficients-based and residual-based 

features will exert the same amount of influence in the final decision. These measures are 

taken because voting works best for independent observations but these pooled terms 

tend to be highly correlated.   

The two significance metrics together with the two categories of feature extraction 

methods and four substructural models, give 16 ways to predict possible damage 

location(s) which will serve as candidates for the third round of voting. Tie-breaking 

procedures can be devised for multiple damage locations suggested by coefficients from 

different substructures by examining the significance of change for other coefficients in 

their respective substructures. For residual-based features, the weight will be divided 

evenly among locations that tie for the most significant change (i.e., ½ weight if there are 
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two candidates and 1/3 if there are three, etc.). There is also a subtle difference in the 

handling of locations indicated via coefficients between the 2D and 3D substructural 

approach: for the former the voting weight is evenly split between locations of regressand 

node and regressor node(s) (i.e. ¼ weight for each regressor node if there are two, and ½ 

if there is only one regressor), while for the latter only the regressand node location is 

considered because of the more complex boundary conditions and dynamics.   

To better illustrate the procedure, Figure 11.7 includes a flow chart on the process of 

damage detection and characterization using voting. The three stages of voting are clearly 

marked with a blue background.  

11.6 NUMERICAL VALIDATION OF THE DAMAGE DETECTION 
ALGORITHMS 
In this section the proposed damage detection methodology will be applied to a 

planar frame structure and a space truss model created in commercial finite element 

modeling software packages for evaluation of its effectiveness. The first simulated 

structure shall be used to examine substructural models based on in-plane beam elements, 

and the second one will be employed to evaluate the substructural models based on space 

beam elements.  

11.6.1 Case 1: two-bay planar frame simulated in SAP 2000 
A small-scale two-span steel bridge girder simulated in SAP2000 is used here for 

verification of the proposed damage detection methodology. The girder was modeled as a 

two-dimensional frame with uneven spans as shown in Figure 11.8. The uneven spans 

allow for more variety in the results and damage scenarios. The frame model is 

constructed to resemble a real girder built in the testing lab, which will also be used to 
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evaluate the performance of the algorithms in the following experimental validation 

section. The reason to choose the simulated model here is to obtain data at various 

sensing locations, as not so many strain gages are available on the real specimen. The 

model has 23 total nodes, which coincide with the accelerometer/strain gage locations.  

For vibration data collection, a white noise excitation was applied in the horizontal 

direction to produce responses at each node. Measurement noise was accounted for by 

adding 5% random noise to the response. Four damage scenarios are simulated in 

succession by switching out a 20.32 cm portion at distinct sensor location 6, 15, 17 and 

20, respectively. Except that the switched out portion is replaced with another tube with 

only 50% of the original section stiffness, the rest of the structure maintains the same 

stiffness properties as the undamaged. For testing of each structural state 

(undamaged/damaged), acceleration and strain signals are simulated at 500 Hz sampling 

frequency. 

Damage identification--change point histograms 

The algorithms have correctly reported existence of damage for all four damage 

scenarios. For each damage scenario, the algorithms outlined in Section 11.3-11.5 are 

applied to all the beam substructures that can be formed based the sensing locations. If 

one end of the beam element is connected to a support, then only strain and acceleration 

measurements from the other end is utilized to construct the regressor matrix. When 

applying frequency domain techniques, only samples larger than the median response are 

used for noise-robust performance. For each type of damage index, the values extracted 

from 10 sets of signals collected from damaged state are compared with those from 10 

sets of baseline signals. Thus the ideal case is that all damage indices that reports damage 
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though CPA shows a change point at 10. However, in the results acquired from applying 

the damage localization algorithm to the data, the histogram of change points(Figure 

11.9) have a wide spread, and the correct change point location needs be recognized 

through taking the median. The errors are caused by both by model error and noise from 

sensing measurements. A way to counter the interference of large noise variance is to 

collect more vibration signals so as to have more estimated damage feature samples for 

the CPA.  

 

Damage localization – identification of the location where the most significant change 
occurs 

Table 11.2 summarizes the damage localization results for all 4 different damage 

states for the ease of comparison and contrast. Basically, the sensor (or sensor pair) 

location that corresponds to the largest change in damage location indicator values are 

identified as the damage location. None of the methods proposed has a 100% correct 

performance as the simulated structure is different from the models presented. It can be 

seen that overall the residual-based methods perform better than the coefficient based 

damage methods in damage localization, and that the dynamic models outperform the 

static models for longer/suppler beam substructural models because the inertia force is 

accounted for, but underperform for shorter/stiffer beam models because their dynamic 

behavior is not significant. Therefore it is concluded that there is a trade-off between 

model accuracy and over-parameterization when designing damage detection algorithms. 

Also, it is noticed that the results would also improve for damaged locations closer to the 

excitation source (such as location 6) for the larger signal-to-noise ratios. 
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In accordance to the procedure outlined in Section 11.5, a direct voting scheme 

among the results from different type of methods is used to decide on the most probable 

location of damage. When there are two regressor nodes in the results from coefficient-

based methods, assign 0.5 and 0.25 weight to each regressand and each regressor node; 

otherwise, assign both the regressor and regressand node 0.5 weight. The votes are then 

pooled together to select three locations with the top scores. Number 3 is used as 

theoretically this is the maximum number of substructural models that will be affected by 

a potential damage. The results are shown in Figure 11.10. 

Damage characterization through examining the coefficients change 

Figure 11.11 shows the plots of coefficients from substructural modeling at the most 

probable damage locations (for the 4 scenarios) from the voting scheme. One of the four 

available models is chosen depending on which one produces indices with maximum 

NMS. Grey background in a subplot indicates that a change has been identified using 

CPA algorithms, and each bracketed arrow at the end of a subplot title represents the 

mean shift direction after damage. The blue and red dashed line show the mean values for 

the first and last 10 datasets, respectively. As in Table 11.2, coefficients are represented 

using hyphenated regressand and regressor locactions.  The regressor from acceleration is 

denoted by the sensing location, while the regressor from strain data is denoted by the 

sensing location appended with an ‘s’. Figure 11.3(b) and Figure 11.4(b) in Section 11.3 

can be referred to for the physical implications of these coefficients. For the first damage 

scenario, the absolute values of the coefficients that experienced a statistically significant 

change (i.e. 6-6 and 6-3) increases, suggesting that the regression model is affected more 

by the mass reduction from the damage than the resulted stiffness reduction. For the 

241 
 



 

second scenario the damage-reporting coefficient values dropped after damage, implying 

that here stiffness reduction outweighs the dynamic mass reduction in this case. Note that 

the coefficients using measurements at sensing node 15 (the true damage location) 

underwent more significant change. For the third scenario, the regression coefficient 

between acceleration measurements at node 16 and 15 increased significantly, hinting a 

modeling error as in the static model this coefficient is determined by substructural 

geometry. This could be because this relatively long beam substructure has significant 

dynamic response. Still, the coefficient between acceleration at node 16 and strain 

measurements at node 17 reduces as a result of damage, indicating stiffness loss. For the 

fourth damage scenario, the regression model assumes that one side of the beam is fixed 

(cantilever type). As such, a drop in the value of coefficient 21-20 points to a sectional 

stiffness reduction. 

In the following validation examples the results will all be presented in the same 

order of damage identification-localization-characterization, though the subheadings will 

be omitted to preserve the flow of the text.  

11.6.2 Case 2: steel truss structure simulated in ABAQUS 
To evaluate the effectiveness of proposed space beam substructural models, a truss 

structure is simulated in ABAQUS using its space beam elements (Figure 11.12(a)). 

Damage is introduced in one of its vertical members by assigning a smaller section to a 

portion of the component between sections 5 and 6 (Figure 11.12(b)). The replacement 

section has a 16.7% narrower flange width and 25% thinner web thickness. Concentrated 

random translational force in both directions and torsional moment excitation are applied 

at 1/6 height, mid-height and 5/6 height of the member, respectively. For each structural 
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scenario, five datasets are simulated at a sampling rate of 1000 Hz from seven sections as 

illustrated. Each dataset lasts 19 seconds. The sensing plan for each section is given in 

Figure 11.12(c). Since ABAQUS does not directly provide strain/translation information 

for specific points on a beam element section, sectional moments (i.e. bending moments 

around the two axes and torsion moment) are employed to calculate the strain, and 

section rotational and centroidal translational accelerations are used to compute the 

acceleration measurements at the sensing points. 5% white noise is added to the signals to 

simulate measurement noise. 

The change point histogram is shown in Figure 11.13. The median of all the detected 

change points matches the true change point value. Table 11.3 contains the damage 

locations identified from the algorithms; notice here that tie-breaking did not completely 

eliminate multiple choices for the NDIV- coefficient method. The numbering of sensing 

locations in the table is a combination of section labels and sensing point labels on each 

section (Figure 11.12(b) & (c)). The algorithms here very accurately predict the damage 

location. Also included is a ranking of the most possible damage locations from the 

voting scheme. It should be noted that only those locations with more than one vote are 

listed. All of the ranked damage locations are around the real damaged portion.  

Figure 11.14 displays plots of coefficients from regression models with maximum 

NMS at two ranked damage locations 54 and 61. Only those coefficients associated with 

acceleration regressors are included. In the title for each plot, the number before the 

hyphen is the regressand while that after the hyphen is the regressor. The bracketed arrow 

points the mean shift direction after change point. The shaded backgrounds indicate a 

statistically significant change for the coefficient sequences, and the blue/red lines 
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represent the average values of coefficients before/after the change point. For 

substructural modeling results at node 54, coefficient 54-54 has a decrease in its absolute 

value as a result of structural change, suggesting that the effect of mass loss on this model 

outweighs the effect from stiffness loss. The absolute values of coefficients 54-43 and 54-

44 increase after damage, implying strengthened correlation between responses at Section 

Location 4 and Location 5. The values of coefficient 54-64 drop below zero, which is 

because the substructural model is not an exact representation of the simulation and also 

because the model, which uses 10 regressors, can be overparameterized if the structure is 

not well excited over a wide range of modes. For substructural model with sensing point 

61 as the regressand node, the regression coefficient of responses from node 61 on those 

from 72 (61-72) is always zero because responses at 71 and 72 are negatively correlated 

as Section Location 7 only has torsional responses. Among the two sets of identified 

coefficients, coefficient 61-71 shows an increasing trend in its absolute value while 61-52 

shows a decrease. This indicates that the responses at node 61 become more dependent 

on responses from 71 and less on those from 52 after the structural change. Thus overall 

behavior of the coefficient sets that have been identified by CPA evinces a loss of 

correlation between responses at Section Location 6 and Section Location 7 in both 

translational directions, implying that stiffness reduction for the portion between Section 

Location 6 and Location 7 around both the strong and weak axis.  

11.7 EXPERIMENTAL VALIDATION OF THE DAMAGE DETECTION 
ALGORITHMS 
To further test the accuracy of the algorithms, they are applied to detect and locate 

damage in a real two-bay frame specimen in the laboratory and structural change in a 

steel truss bridge using vibration measurements collected from these structures. The two-
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bay frame is used to authenticate the algorithms based on in-plane substructural beam 

element. The truss bridge members have vibration in the three-dimensional space, and 

thus serve as a testbed for the algorithms based on substructural beam model in 3D space.  

11.7.1 Case 1: the planar steel frame specimen tested in the laboratory 
Three different damage scenarios were set up on the two-bay frame laboratory 

specimen constructed from steel tubes used in Chapter 5 (Figure 5.4). A description of 

the structure and the sensing scheme can be found in Section 9.7. The sensing and 

damage schemes are illustrated in Figure 9.5.  

Since here only a limited number of sensing locations has strain gages, results on 

damage identification/localization using the proposed algorithms are only obtained for 

the beam substructures with strain gages at their ends. It can be seen from Figure 11.15 

that the identified change points for three damage scenarios all have a relatively dispersed 

distribution. This is especially evident for the 3rd damage scenario case, where there are 

fewer available datasets. Still, the median change point values coincide with the real 

change points.    

Damage locations predicted by algorithms based on different models and/or different 

damage indices are listed in Table 11.4. It is noticed that while for the 3rd damage state 

the damage location is very clearly indicated by almost all algorithms, for the other two 

damage states the algorithms are suggesting quite a few distinct locations (with the 

correct damage location among them), thus making direct determination of damage 

location difficult. This is because the replacement of the switch-out portions to simulate 

damage tends to affect the whole frame (the frame needs to be effectively disassembled 

and assembled again).To select the most probable damage locations, the voting scheme is 
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applied to pick the top three sites with the highest votes (Figure 11.16). Three sites are 

chosen because theoretically that is the largest number of locations that can be affected 

by a single damage. The results agree well with the actual damage locations, with the 

latter identified as either the first or second choice from voting in each damage scenario. 

Therefore, it is concluded that regression models based on beam elements are effective in 

damage localization applications for the steel frame structure.  

Model coefficients that reported the most significant change at the suggested damage 

locations from the voting scheme are plotted in Figure 11.17. The usage of grey 

background, dashed line, and parenthetical arrows is the same as in Figure 11.14, and the 

suffix ‘s’ represents coefficients associated with strain. For the first damage case, the 

regression coefficients between acceleration channels demonstrate significant change, 

which is resulted from ignoring system mass and nonlinearity brought by bolt 

connections. On the other hand, absolute values of the coefficients of both strain 

regressors shift towards zero after damage, signaling a stiffness reduction that can be 

attributed to a connection loosening. Analysis of coefficients from beam element 

modeling about location 6 also reveals a similar trend. Note here the coefficients 

pertaining to strain have small magnitudes because the data is recorded in micro-strain. 

For the second damage scenario, the coefficient 15-16s showed a significant decrease, 

suggesting that a stiffness reduction occurred between location 15 and 16. For the third 

damage scenario, again the coefficients from acceleration regressors are reporting 

changes due to model inexactness. The coefficient 17-18s has a significant drop in its 

values for the last 6 datasets, indicating section stiffness loss. 
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11.7.2 Case 2: members of a steel truss bridge under ambient conditions 
The damage detection algorithms based on substructural modeling for beam in 3D 

space are applied to identify structural change for a vertical truss member in a steel truss 

bridge over the Allegheny River in western Pennsylvania. The bridge structure is a 

continuous deck truss with spans of 420 feet, 540 feet, and 420 feet, as shown in Figure 

6.7. The truss is 40 feet in depth and is haunched to 84 feet at the two intermediate piers.  

During an inspection in June 2010, it was found that vertical members at Panel 

Points (PP) 20’ and 22 (Figure 6.7) on the north side of truss had excessive wind-induced 

vibration. The two members were then retrofitted by bolting a steel wide-flange member 

to the web of each of them over their full height.  

In a subsequent field test, ambient vibration measurements are collected for vertical 

PPs 22 and 22’. These two members were identical before the retrofit of PP22. Each 

member is instrumented with four accelerometers at the mid-span cross section and 

another four at ¾ height cross section (Figure 11.18(a) & (b)). Besides, at each end of 

each member two accelerometers and one strain gage is mounted (Figure 11.18(c) & (d)). 

Five datasets are collected at a frequency of 1000 Hz for 100 seconds respectively from 

the retrofitted member PP22 and the unretrofitted PP22’. The damage indices will be 

applied to these measurements in order to identify the difference between these two 

members.  

A preliminary examination of collected data reveals that accelerometers mounted at 

the top of vertical PP22 are dysfunctional, and thus these two channels cannot be 

incorporated in the substructural models. Therefore, it is assumed that the translations 

occurring at the top of the PPs are of relatively small amplitude and can be omitted from 
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consideration without causing much error. This assumption is supported by comparing 

the Power Spectral Density (PSD) plots of acceleration measurements from the middle of 

PP22 and the top of PP 22’; acceleration from the latter location carries more high 

frequency contents and a lot less low frequency contents, and because dynamic 

displacements are primarily resulted from lower frequency vibrations, the level of 

displacement amplitude at the top of PP22’ should be much lower than that in the middle 

of PP22. Since the bridge is symmetric on the whole, the displacements of the top of the 

two members will have similar amplitude. As such, it can be inferred that the dynamic 

displacements at the top of PP22’ is insignificant compared to local vibrational 

displacements of the vertical member. Similar examination is performed for acceleration 

measurements collected at the bottom of the verticals and same conclusion is made.   

In this experiment only two strain gages are instrumented at the mid-section and one 

at the top/bottom of the members. These are not theoretically sufficient for beam element 

modeling in 3D space, which requires three distinct channels of strain measurements at 

each end of the element. Assuming the gusset plate completely restrains rotation around 

the weak axis, additional independent boundary conditions are still needed for a solution 

to the substructural problem. But as no more data is available from the tests on this 

bridge, regression models will be constructed from the available data in this case. Table 

11.5 presents a list of the regressand-regressor pairs used for substructural modeling 

based damage detection in this case. Two substructures are formed from measurements 

made at four levels of the vertical member and four input-output formulations are 

established for each substructure. There are several points meriting clarification regarding 

determination of regressor and regression channels shown in the table: 1) Because strain 
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measurements are not available at the lower interface of the upper substructure (the ¾ 

height cross section), strain measurements within the substructure (i.e. at the mid span of 

vertical member) is used. This substitution is plausible as construction of linear 

regression model for substructures implicitly assumes that responses at any point within 

the substructure is a linear combination of certain boundary responses, and thereby the 

boundary responses can be replaced by the same number of non-correlated responses 

within the substructure. A drawback of this approach is that physical interpretations of 

the regression coefficients become more obscure. 2) Since the strain at location SG2 

cannot be induced by bending around the weak axis and torsion of an I-section, here the 

difference of measurements at SG1 and SG2 are used as a regressor for models associated 

with transverse vibration to avoid redundancy in parameterization. 3) For the lower 

substructure the translational measurements at bottom can either be included or excluded 

in the regression models for structural change identification. Here both options are 

explored and their results will be presented and contrasted in the rest of this section.  

Histograms of the identified change points from damage detection algorithms are 

displayed in Figure 11.19. Regardless of whether the lower cord acceleration is included 

or not, the graph peaks at six, which is the correct change point as the first five datasets 

used are from retrofitted member and the rest are from the unretrofitted one.  In order to 

obtain further details on this structural change, the physical locations that report the 

largest change in different damage indices, together with their voting results, are 

summarized in Table 11.6. Here all the locations are presented as there are only two 

overlapping substructures and one damage location can very well affect all nodes. The 

locations obtained from the models including and neglecting lower cord acceleration are 
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similar, though in the former case the changes in the lower substructure (represented by 

location 5-8) are more prominent, a result of more accurate modeling. For both types of 

modeling, regression based on longitudinal vibration tends to report more significant 

change than that based on transverse vibration, indicating that section stiffness properties 

about the weak axis are affected relatively more than that about the strong axis. Figure 

11.20 shows the coefficients from regression models with maximum NMS at the top two 

ranking damage locations (namely, location 5 and 8). As in the ABAQUS example, only 

the coefficients corresponding to acceleration measurements are plotted. It can be seen 

that for modeling of the longitudinal vibration, the absolute values of coefficients 5-5 and 

5-11 decreases, signifying substructural stiffness loss about the weak axis. For modeling 

of the transverse vibration, the negative correlation between acceleration from node A3 

and A8 increases after the structural change, suggesting that the substructural torsion 

behavior is affected more than flexural behavior about the strong axis. The other two 

coefficients, 8-4 and 8-12 did not report a statistically significant variation, because the 

data insufficiency here has caused the modeling error to increase.  

11.8 CONCLUSION 
For damage detection purposes, two types of substructural beam elements are 

investigated both in plane and in three-dimensional space. One element ignores the 

substructural dynamic behavior; the other takes it into account via a concentrated mass at 

the intermediate sensing location. Based on each element definition regression models 

using strain and acceleration measurements can be constructed in either time or frequency 

domain, and regression coefficients and two functions of model residuals are adopted as 

damage indices. A heuristic voting scheme is devised to combine the damage existence 
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and location identification results from the 24 algorithms obtained by coupling the four 

substructural models, three damage indices and two change point analysis methods 

together. This substructural methodology is applied to detect and localize damage in a 

laboratory 2-bay planar frame structure for validation of the in-plane beam model, and 

also structural change in vertical members of a simulated space truss and a steel truss 

bridge for validation of the space beam model. On the whole, results from the 

applications here support the effectiveness of the proposed damage detection and 

localization scheme.  

It is observed that different algorithms tend to yield different damage identification 

and localization results, and the performance of each algorithm varies by application. For 

example, the static model outperforms the dynamic model when the in-plane beam 

segment is shorter, while the reverse is true as the segment becomes more slender. This is 

because different models implemented in different settings have modeling errors to 

various degrees. Since beam elements in actual structures have continuous mass and 

those in FEM software can have more complex lumped mass pattern than those from 

substructural modeling, the beam elements proposed here are only approximations of the 

experimental and simulational beam components. Material and system nonlinearities in 

real structures could also contribute to the observed discrepancies. Other sources of 

modeling error include neglect of damping effects and, for space beam elements, the 

omission of torsional inertia in the model. These simplifications are done to avoid model 

overparameterization, and to limit the regressors, where possible, to substructural 

boundary measurements so that the regression coefficients would reflect the structural 

condition between the interior node and boundary. The information synthesis procedure 
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has helped to ‘average’ out the model errors from distinct algorithms and achieve an 

accurate decision in most of the applications. 

On a cross-comparison note, the coefficient estimates in the applications here 

generally demonstrate larger variations than those in Chapter 10, where regression is 

carried out for consecutive three stories within a shear frame structure. This is probably 

because substructural beam elements are less well-excited than mass-spring subsystems, 

yet can have more parameters to estimate if the elements are in 3D space. Also noticed is 

that the residual-based methods are often more sensitive than their coefficients-based 

counterparts in the experimental implementations. This observation is in line with the fact 

that the change in residuals properties is related to changes in all regression coefficients. 

On the other hand, when the excitation conditions are varying, the residual-related 

features will have a larger chance to be affected. These observations evince the 

importance of signal-to-noise ratio in structural damage detection applications. 

The substructural concept can be applied to form elements of different geometry; the 

key issue is the identification of boundary reactions, the external input and the 

environmental factors. Measurements that best represent these influences should be made 

with an adequate signal-to-noise ratio, and appropriate substructural models can then be 

constructed by expressing the substructural intermediate responses as functions of these 

measurements. Functions of the model parameters and residuals will then be used as 

substructural state indices. This method could prove useful for monitoring of certain 

important parts of a large scale structure, where sensors of different nature can be 

implemented to obtain high information density in that particular region. For other parts 
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of the structure with less sensing density, existing macro-scale system identification and 

monitoring schemes can still be applied.  
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 Table 11.1 The linear regression models derived from substructural beam models 

Model type Choice of regressors/regressand 
1. Static beam 
model (Time 

domain) 
( ) ( ) ( ){ }2,  ,Δ ,  C j b j b jt t t = =  Y a X a ε  

2. Static beam 
model (Frequency 

domain) 
( ){ } ( ) ( ){ }ˆ/ , / ,  ,ˆ ˆ  jC b bj j jj jRe i Re i iω ω ω ω ω ω = = − Y a X a ε  

3. Beam model 
with lumped mass 

(Time domain) 
( ) ( ) ( ) ( ), , , ,  C j b j b j C jt t t t = =  Y a X a ε a∬ ∬  

4. Beam model 
with lumped mass 

(Frequency 
domain) 

( ){ } ( ) ( ) ( )ˆ ˆˆ , , ,  .  ˆ
b Cj j

C bj j j j
j j

i i
Re i Re i

ω ω
ω ω ω ω

ω ω

   = =   − −    

a a
Y a X ε  

 

 

 

Table 11.2     Damage locations as determined from multiple algorithms for the frame 

simulation 

 Model 1 Model 
2 

Model 
3 

Model 
4 

Model 
1 

Model 
2 

Model 
3 Model 4 

 Damage scenario 1 (at location 6 ) Damage scenario 2 (at location 15) 
NDIV from regression 

coefficients* 6-7 6-7 3-6-7 3-6-7 3-2 7-8 12-15 17-16 

NMS from regression 
coefficients* 3-6 6-7 3-6-7 3-6-7 3-2 7-8 12-15 5-5 

NDIV from RF1and RF2 7 6 6 6/11 16 12 12 15 
NMS from RF1and RF2 7 6 6 6 16 12 12/15 17 

 Damage scenario 3 (at location 17 ) Damage scenario 4 (at location 20 ) 
NDIV from regression 

coefficients* 
16-17-

18 16-17 6-7 12-15 21-20 21-20 14-13 10-11-
12 

NMS from regression 
coefficients* 16-17 16-17 16-17 15-16 21-20 21-20 12-11 11-10 

NDIV from RF1and RF2 16/17 16/17 21 15/16 21 2 21 21 
NMS from RF1and RF2 16 16 21 15 21 21/12 21 21 

*  when two numbers are hyphenated, the first number denotes the regressand node; 

when three numbers are hyphenated, the middle number denotes the regressand node. 
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Table 11.3     Damage locations in the middle vertical of the simulated truss as suggested 

by proposed algorithms 

Sensing locations 
associated with 

largest change in a 
damage index 

Model 1 Model 2 Model 3 Model 4 

NDIV from 
regression 

coefficients 
63/64 31/54 54 53 

NMS from regression 
coefficients 63 64 54 61 

NDIV from RF1and 
RF2 23/24/61/62 22/31/32/41/ 

42/51/52/61/63 
31/32/34/41/42/51/ 

52/53/54/61/62/63/64 
32/41/42/51/ 
61/62/63/64 

NMS from RF1and 
RF2 62 52 51 51 

Damage locations 
ranked by the voting 

scheme 

 

#1 #2 #3 #4 #5 #6 #7 #8 

Sensor number 54 51* 63 64 61 62 52 53 
* Italic font is used to highlight locations associated with longitudinal vibration 
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Table 11.4     Damage locations as determined from multiple algorithms for the frame 

experiment 

 Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 
 Damage scenario 1 (at location 6 ) Damage scenario 2 (at location 15) 

NDIV from regression 
coefficients* 16-17-18 16-17-18 8-9 19-20-21 19-20-21 17-16 7-8-9 16-17-18 

NMS from regression 
coefficients* 6-7 8-7 8-9 20-21 20-21 17-16 8-7 8-9 

NDIV from RF1and RF2 8/20 8/17/20 6/8/17/20 6/17/20 15 17 15 6/15/17 
NMS from RF1and RF2 8 8 6 6 20 17 15 15 

 Damage scenario 3 (at location 17 ) 
* when two numbers are hyphenated, 
the 1st number denotes the 
regressand node; when three 
numbers are hyphenated, the 2nd 
number denotes the regressand node. 

NDIV from regression 
coefficients* 17-18 17-18 16-17-18 17-18 

NMS from regression 
coefficients* 17-18 17-18 17-18 17-18 

NDIV from RF1and RF2 20 17 17 17 
NMS from RF1and RF2 20 17 17 17 
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Table 11.5     Regression models formed for 3D beam substructures found in PP22/PP22’  

Substructure location 
Translation 
direction Regressor signal* 

Regressand 
signal* 

Between the top gusset 
and ¾ height cross section 

Longitudinal A5, A6, (SG1-SG2), 
SG3 

A1 
A 2 

Transverse 
A7, A8, SG1, SG2, 

SG3 
A 3 
A 4 

Between mid-height cross 
section and the bottom 

gusset 

Longitudinal 
A1, A2, (SG1-SG2), 

SG4, A11**  
A 5 
A 6 

Transverse 
A3, A4, SG1, SG2, 

SG4, A12** 
A 7 
A 8 

*: For signal names, the letter ‘A’ preceding a number denotes acceleration, and the 

letters ‘SG’ denotes strain measurements. 

**: Optional 
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Table 11.6     Structural change characterization results for truss bridge member 

PP22/PP22’ 

Sensing locations* associated 
with 

largest change in a damage 
index 

Including translations at A11, A12 

 

Excluding translations at A11, A12 

Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 1 Model 2 Model 3 Model 4 

NDIV from regression 
coefficients 

1 8 8 5 1 8 8 5 

NMS from regression 
coefficients 

1 8 6 2 1 8 2 2 

NDIV from RF1and RF2 1/4-8 5 2/3/6 5 1/4-8 5 2-6 5 
NMS from RF1and RF2 6 5 2 5 6 5 2 5 

Damage locations* ranked by 
the voting scheme 

 
#1 #2 #3 #4 #5 #6 #7 #8 

Including translations at A11, 
A12 

5** 8 6 2 1 3 4 7 

Excluding translations at A11, 
A12 

5 8 2 1 6 4 3 7 

* The numbering of these locations coincides with the numbering of accelerometers 

in Figure 11.18  

** Italic font is used to highlight locations associated with longitudinal vibration 
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Figure 11.1 Illustration of the substructural concept. Annotations explain 

the type of measurements made at the sensing locations (total 

number: M+1). 
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Figure 11.2 (a) the deflected shape and free body diagram of the static 

beam element model,  (b) coefficients of each variable when 

the static model function is linear. 

  

                                     (a)                                                                         (b) 

  

260 
 



 

 

Figure 11.3 (a) the deflected shape and free body diagram of the lumped 

mass beam model, (b) coefficients of each variable when the 

lumped mass model function is linear (assuming unit mass at 

C). 

  

                                (a)                                                                      (b) 
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Figure 11.4 Space beam substructure with arbitrary section shape along 

the length. The arrows at the front are internal force resultants, 

while those at the rear show the coordinates and the associated 

deformation variables. 
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Figure 11.5 Physical interpretations of regression coefficient between (a) 

 and  in the static model; (b)  and  in the 

dynamic model; (c)  and  in the dynamic model 

(Assuming unit mass at C1 for dynamic model)  

1  Cu 2Bu 1  Cu 1Cu

1  Cu 2Bu
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Figure 11.6 Illustration on calculation of the two significance of change 

indicators (a)NDIV and (b)NMS; in (b) std(∙) stands for the 

standard deviation of the bracketed sequence.  
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Figure 11.7 Information synthesis from different algorithms based on 

voting concept. 

  

Calculate the NDIV and 
NMS indicators.  

Pool all the detected change 
points and take the median as the 

actual change point. 

Over half of the 
algorithms 

report change 
for the system? 

Yes 

No 

Apply the 24 algorithms to all beam substructures in the system under evaluation 

 

Sum the NDIV values from the 
two CPA methods; 

Add up the indicator values for 
RF1 and RF2. 

Find the locations associated with the 
maximum value in each group. 

Tie breaking and plurality voting 

The most probable 
damage locations 

16 groups of damage 
indicators 

Damage identification 

Damage location determination 

No damage 

END 
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Figure 11.8        The sensing scheme for the two-bay frame model 
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Figure 11.9 Change point histograms for the four damage scenarios of the 

simulated truss; red bar shows the change point median 

 

Figure 11.10 Contrast of simulated damage locations on the simulated 

frame and suggested locations from the voting scheme  
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Figure 11.11 Plots of selected model coefficients extracted from the 20 

datasets in the frame simulation. 1st row is from Model 4, 

Damage state 1; 2nd row is from Model 3, Damage state 2; 

3rd row is from Model 1, Damage state 3, 4th row is from 

Model 1, Damage state 4. Any row without x tick marks has 

same x tick labels the row below (or the closest row with x 

ticks). 
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Figure 11.12 (a) Snapshot of the truss in ABAQUS; the damaged portion of 

the middle vertical member is highlighted in red. (b) Sections 

being monitored along the vertical; (c) acceleration sensor 

labels per each section 

  

 

                                                          (a)                                                                       (b)             (c)   
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Figure 11.13 Change point histograms for the truss simulation example. 
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Figure 11.14 Acceleration-related coefficients of the regression models. (a) 

is from Model 3 with regressand node 54 and (b) is from 

Model 4 with regressand node 61.  
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Figure 11.15 Histograms of change point locations for the three damage 

scenarios created in the frame experiment; the median change 

point for each case is indicated as the red thin bar. 
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Figure 11.16 Contrast of real damage locations on the frame and suggested 

locations from the voting scheme in the experiment 
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Figure 11.17 Plots of selected model coefficients extracted from datasets 

from the frame experiment. (a) is from Model 2, Damage state 

1; (b) is from Model 3, Damage state 2; (c) is from Model 2, 

Damage state 3.  
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Figure 11.18 Installation of accelerometers(A) and strain gages (SG) at (a) 

the middle height; (b) the ¾ height; (c) the bottom gusset 

connection; (d) the top gusset connection. 
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Figure 11.19  Histograms of change points (a) from models excluding the 

lower cord translations,  (b) from models including those 

translations.  The median change point for each case is 

indicated as the red thin bar. 
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Figure 11.20 Acceleration-related coefficients of the regression models for 

the longitudinal and transverse vibration. (a) is from Model 3 

with location 5 as the regressand node, (b) is from Model 1 

with location 8 as the regressand node. 
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 Summary and Conclusions Chapter 12

12.1 BACKGROUND AT A GLANCE 
There are many types of sensors available for SHM; and similarly many types of 

algorithms are devised for data processing. Apart from system identification, scalar time 

series analysis and multivariate substructural modeling that were discussed herein, other 

time-frequency domain techniques such as wavelet decomposition for transient response 

analysis (Okafor and Dutta, 2000), frequency response function evaluation (Maia, Silva, 

Almas, and Sampaio, 2003) are also being actively investigated by researchers.  

The choice of data analysis method depends largely on the monitoring context. 

Modeling procedures for mechanical vibration measurements is certainly different than 

those for acoustic waves. And for vibration analysis, depending on whether the structural 

system is under ambient load or under known artificial excitation, whether the 

environment is stable or varying, the accordingly devised algorithms will have different 

complexities. 

Here since damage detection is performed using acceleration/strain measurements 

from structures subjected to ambient/random (sometimes impulse) excitation, time series 

analysis and statistical regression approaches on stationary signals are the chief research 

interest of this dissertation.  

12.2 SUMMARY OF PAST RESEARCH DIRECTIONS AND 
JUSTIFICATIONS 
As reiterated in the previous chapters, effective damage detection relies on damage 

features that are sensitive to damage while robust to environmental/operational change 

278 
 



 

and damage feature thresholds that minimizes both Type I (false alarm) and Type II 

(missed case) errors. At the meantime it is important to have damage indices that reflect 

structural damage location and extent. Part I and II of this dissertation addresses these 

two tasks, respectively. In Part I, scalar time series analysis methods (Brockwell and 

Davis, 2002, 2009) is the focus of studies. This family of methods makes use of 

parametric/ non-parametric estimation techniques to examine certain aspects of collected 

signal. The features produced by them are very suitable for statistical processing as they 

are often in large quantities. Also, many of these methods rely only on signal from a 

single sensor node, and thus are computationally efficient.  However, it is found during 

several investigations that these features based on modeling on a single node response 

can demonstrate large fluctuations in cases where operational conditions is subjected to 

change, e.g., the input is ambient instead of artificial. This feature ‘fragility’ may be 

resulted from information limitation, as only single node output is used. Therefore, 

careful consideration should be given to feature damage threshold construction, and 

investigations are needed for accurate evaluation of their damage sensitivity/noise 

robustness. 

To devise vibration-based features that are more robust to changes of irrelevant 

factors, it is necessary to incorporate response from several nodes to form a substructural 

model. As noted in Part II, such models often uses the response from within the 

substructure for output and responses at substructural boundaries for input, and therefore 

damage features based on the estimated substructural model parameters and model 

residuals should convey information strongly related to physical behavior of the 

substructures. The substructural algorithms can be regarded as inverse Finite Element 
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Modeling approaches, because here substructural properties are inferred from 

substructural nodal responses instead of the other way around. Since this family of 

approaches is input-output based, it enjoys better stability than the output-only scalar 

TSA techniques and still computationally advantageous compared to global scale 

modeling and updating methods. 

12.3 SUMMARY OF FINDINGS 
Part I details my research on univariate TSA approach (mainly autoregressive 

(AR) modeling) for damage existence identification.  

Damage thresholds 

Ideally, damage features should be devised so that it is highly sensitive only to 

changes in structural properties but unaffected by other environmental and operational 

factors. However, in practices it is often difficult to eliminate the influences of the latter 

from the data extraction results. As such, special attention needs to be paid to the damage 

threshold construction for the indicators. For this purpose I introduce thresholds created 

from resampling methods such as bootstrapping and cross-one-validation (Chapter 3). 

These thresholds generally deliver good performances on balancing the false-positive 

(identifying non-relevant change) and false-negative (neglecting structural damage) risks.  

Damage features 

My contribution is mainly on improving and quantifying the damage sensitivity and 

robustness of the AR indicators/features: Ljung-Box statistic, a metric that evaluates the 

change in the autocorrelation function of the model residuals, is proposed as a more 

responsive feature than residual standard deviation ratio; a distance measure (namely, 
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Cosh distance) between AR model spectra is used to yield more stable performance than 

the Mahalanobis distance feature between AR model coefficients (Section 4.4, Chapter 

4). The performance of the proposed features have been validated through application to 

wired/wireless sensor measurements from a variety of structures including a simulated 

mass spring system, a steel truss, a two-bay frame specimen and reinforced concrete 

bridge slab (Section 4.5-4.6, Chapter 4). And they are also compared to other existing 

features such as influence coefficients (Chapter 5).  

Theoretical sensitivity evaluation of damage featues 

In an effort to provide more theoretical support for the AR-based damage detection 

methodology, I have developed a proof on the vectorial autoregressive nature of 

responses from MDOF system nodes under random excitation and the autoregressive 

property of single channel response (Section 6.3.1, Chapter 6).  Analytical sensitivity 

expressions for the Cosh distance and Mahalanobis distance feature to damage/ 

measurement noise are also derived(Section 6.4, Chapter 6), results from a simulated 

beam structure shows agreement between the sensitivity analysis results and those from 

simulation (Section 6.6, Chapter 6). AR modeling on signal auto-covariance function is 

also examined theoretically(Section 6.5, Chapter 6) and experimentally (Section 6.7, 

Chapter 6) on a steel bridge, and it is found that compared to features from ambient series 

modeling, features from this approach are more robust to noise, but in the meantime also 

lose some damage sensitivity. 
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Part II describes my effort on improving multivariate substructural approaches, 

which utilize responses from several adjacent locations to form input/output algorithms 

for higher-level damage detection (damage location/extent determination). 

Heuristic methods – damage indices have no explicit physical meaning 

Heuristic methods here refer to the approaches that do not stem from strict 

theoretical derivation, and thereby do not produce parameters with an explicit relation to 

the structural properties. Within this category there are two types of measures that I have 

contributed: the mutual information statistic, and the direct multivariate regression.  

Mutual information statistic is based on the temporal correlation between data from 

two adjacent sensing channels(Section 9.4, Chapter 9). The damage 

identification/localization results(Section 9.6, Chapter 9) in a 3D steel truss obtained 

from this method and the available ARX modeling technique (Section 8.2.1.2, Chapter 8) 

are then compared to those from univariate AR modeling, and it is observed that the 

multivariate time series analysis produces viable damage indices and in the meanwhile is 

able to predict damage location with greater accuracy.  

In Section 9.5, Chapter 9, Coefficients from multivariate linear regression (IIC) 

between the acceleration collected at one location and those at adjacent nodes are also 

used as damage indicators. This regression model is further refined by incorporating 

strain measurements at the adjacent locations to produce coefficients denoted as ICHVR. 

Damage recognition and localization performances of these two types of coefficients are 

compared with the pair-wise regression coefficients(IC) through applying the algorithms 

to a two-span steel girder in the lab (Section 9.7, Chapter 9). It is found that for this case 
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study the model performance levels are positively correlated with their respective 

complexities. In other words, ICHVR yields the best overall results while the IC tends to 

be less sensitive and accurate in damage reporting. The example suggests that damage 

identification can be improved to an extent by tuning the model to include more 

independent information sources. 

Proven approaches– damage indices have explicit physical meaning 

Heuristic approaches have the merit of being straightforward to implement and 

intuitive to understand, but their results do not have explicit physical interpretations, and 

they are not supported by rigorous derivations. Thus, two novel regression-based 

techniques that use local acceleration responses of a shear frame structure to estimate its 

local stiffness are proposed by me in Section 10.4-10.5, Chapter 10. The substructure 

here is defined as a single story (denoted as ‘middle story’) along with all its adjacent 

stories. The basic idea is that the acceleration at middle story is proportional to the 

restoration forces generated by the connections from this story to neighboring stories, 

which are in turn functions of their interstory drifts and velocities. In the case of linear 

structures, the regression functions are linear and the coefficients associated the interstory 

drifts are the ratios of interstory stiffness values to middle story mass. One time domain 

method (TDRM) regress the story acceleration on to interstory displacements 

reconstructed from acceleration signals; the other re-interpret this relation in the 

frequency domain (FDRM) to get a more neat and efficient regression formula. Both 

methods are proved effective in their application to acceleration data from a simulated 

5DOF system for stiffness estimation (Section 10.7, Chapter 10), and to acceleration 

from a five degree-of-freedom aluminum-plexiglas model and a steel mass-spring system 

283 
 



 

that are subjected to white noise excitation(Section 10.8, Chapter 10). FDRM shows a 

more reliable performance since it considers the effect of damping in its formulation, and 

also because it does not involves displacement reconstruction, which is an ill-posed 

problem as vibration initial conditions are not available. FDRM can also be used for 

stiffness estimation for regular frame structures (Section Section 10.6 and 10.7.2, Chapter 

10) given that the beam-to-column stiffness ratio exceeds a certain limit (12 for the 

regular FDRM, and 4 for the modified FDRM). 

To extend the TDRM/FDRM approaches to applications on structures with more 

complex geometry, Euler-Bernoulli beam elements are adopted as another form of 

substructure in Chapter 11. The beam elements in plane and three-dimensional (3D) 

space are examined, and the regression can be again formulated in either the time or 

frequency domain between responses from within the substructure and responses at both 

ends of the element. For in-plane members strain needs to be measured only at one point 

along the section of each element end to account for in-plane rotation, while for 3D space 

members strain measurements are needed at three distinct points for each section to 

characterize the biaxial bending and torsional effects. Also, for 3D space members the 

biaxial transverse acceleration measurements are required (Section 11.3, Chapter 11). 

Regression coefficients here are functions of element section stiffness and have their 

physical interpretations. Three damage indices are defined from the regression model 

characteristics, and two change point analysis methods are adopted to capture the changes 

occur in damage index sequences extracted from structural monitoring datasets from 

healthy state and current state. Damage location is identified as where the most 

significant change in damage indices occurs, and a voting scheme is used to synthesize 
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the results from different algorithms introduced.  Algorithms thus formulated are applied 

to detect and locate damage in the aforementioned 2-bay steel frame specimen and the 

vertical member of a steel truss bridge in western Pennsylvania (Section 11.7, Chapter 

11). The results are satisfactory in that damage location and nature is properly recognized 

for most of the damage scenarios. 

Generalized substructural modeling 

For effective substructural modeling it is important to clarify an independent input-

output linear model for each substructure within a structural system. The behavior of a 

substructure is controlled by two types of influences: those acting within the substructure 

itself and those acting on its ‘boundary’. The two sources must achieve equilibrium to 

hold a substructure in place, and the relation between these forces and the substructure 

response reflects certain physical properties of the substructure. When the structural 

responses collected are structural vibration (the most commonly monitored signals in 

SHM applications), the structural physical properties that affect the responses are the 

material constitutive relations (Hook’s Law etc.). As such, structural stiffness properties 

can be inferred from the substructural model characteristics estimated from monitoring 

data. 

12.4 ORIGINAL CONTRIBUTIONS: A BRIEF DESCRIPTION 
My contributions, as indicated by the structure of this thesis, can be classified into 

two categories: 1) development and validation of damage existence detection methods 

using univariate time series analysis; 2) formulation and verification of higher-level 

damage detection methods using regression analysis on signal transforms. 
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My work in the first category concerns both the damage feature extraction and 

damage threshold construction. For the first part I devised damage features using Cosh 

distance of autoregressive (AR) spectra and Ljung-Box statistic of AR residuals, and 

compared them with existing AR model coefficients and residual based damage detection 

approaches through various implementations. The Cosh distance feature is proposed in 

hope of better noise robustness, while the Ljung-Box statistic feature is brought forward 

with an expectation of higher damage sensitivity. Results of the applications validated the 

results to certain extents. Also, theoretical damage/noise sensitivity of the AR 

coefficients based features are derived and presented. For damage threshold construction, 

data-driven approaches are proposed in place of the theoretical hypothesis testing to 

reduce statistical modeling errors that will occur when the actual feature distribution 

deviates from the assumed one. 

My research in the second category involves mainly the damage feature extraction. 

Multivariate analysis (i.e. analysis on measurements from multiple sensors) is used here, 

and damage indices are expected to yield light not only on structural damage existence 

but also on damage location and extent. Heuristic damage indicators, including adjacent 

channel mutual information and multivariate regression coefficients (modified influence 

coefficients), are first proposed and tested to evaluate the potential of this family of 

methods. After that, substructure models based on shear frame and beam substructures 

are derived in an analytically rigorous manner and evaluated through numerical and real-

world applications. The corresponding threshold construction methodology used here is 

cumulative sum and variance reduction based change point analysis, and application 
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results show that the proposed methods are capable of damage localization and extent 

quantification. 

To sum up, my contributions have been in developing and testing different damage 

detection techniques and apply them to different kinds of civil structures. The method 

formulations are based on either theoretical derivations or experiential judgments, and 

they are validated using applications and/or analytical sensitivity analysis. Generally, the 

optimal damage detection method varies by application, and as such it is important to 

propose different features and study their pros and cons so that features best suits the 

purpose will be selected for a certain sensing and structural setting. The content of this 

dissertation serves to advance the research on adaptive damage detection. 

12.5 GENERAL CONCLUSIONS, FUTURE WORK 
Data-driven SHM can bring in massive amount of data through continuous system 

monitoring. The aim of all SHM data compression strategies is to gaze through the 

uncertainties and disturbances contained with the measurements to discover information 

pertaining to the current structural condition and other operational parameters of interest. 

Within the area of damage identification, I have worked on exploring the capabilities of 

different SHM vibration sensors, proposing and testing new features/thresholds for 

damage identification, cross-comparing the proposed features/thresholds with existing 

ones through applications to various types of civil structures, and developing theoretical 

models regarding the validity/sensitivity/robustness of several damage features. These 

aspects are interrelated as in improvement in one will benefit others. In the end, they all 

contribute to the search and development for optimal damage detection method for a 

certain application. 
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Vibration-based system monitoring is relatively economical and convenient, but its 

success is not always guaranteed because environmental conditions can vary and 

potential damage form is largely unknown. Sometimes its local damage detection 

performance can be poor because of the low signal-to-noise ratio. As such, in future work 

sensors of various types should be examined and combined to make best possible use of 

their advantages. Specifically, digital image correlation systems have found use in 

detecting surface cracks, while ultrasonic testing methods are effective at evaluating 

unobvious damage such as delamination and internal fracture. Accelerometer sensor 

networks are often employed for modal realization, while fiber and nanotube based 

sensors can be applied for strain/pressure sensing and internal force estimation. Because 

each sensor has its own distinct characteristics, there is huge potential in increasing 

structural state identification accuracy by synthesizing information from multiple types of 

sensors, just like a more vivid and truthful representation of an object can be given by 

combining pictures taken at different angles. This topic has been briefly touched in 

substructural modeling of beam elements (Chapter 11), where both strain and 

acceleration signals are used for high-level damage detection. To improve monitoring 

quality of real structures, excitation records (wind, traffic etc.) environmental conditions 

should be incorporated where available. On the other hand, active sensing methods 

should come into play when passive sensing based algorithms are unable to identify the 

current structural state. My interest is in devising and optimizing combination models for 

these measurement types. The guiding philosophy is to proportion the amount of useful 

information sensed according to the relative importance of structural components; 

Correlation among separate kinds of measurements and their relation to the structural 
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condition needs to be clarified and analyzed for different applications, and laboratory and 

field experiments can help examine, improve and validate the models so that the 

theoretical model can serve as a valid approximation of the real situation. The models can 

then also be used to provide lower/upper bounds on the identification accuracy. I would 

like to first apply these concepts to the monitoring and analysis to steel structures, not 

only because they are the objects of many of my past research projects, but also because 

their material constitutive relation can be more accurately defined than those of concrete 

and composite structures, thus promising less modeling error regarding the relation 

between external influences and structural response.  
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Appendix A 

Calculation of the first and second order derivative of the covariance matrix of AR 

coefficient vectors with respect to the ACovF 

The first-order derivative of the covariance matrix of the unknown state AR 

coefficients is first expressed as a function of the derivatives of the AR residual variance 

eσ and that of the inverse of the ACovF Toeplitz matrix Γ : 
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Likewise the second-order derivative of uΣ can be obtained as a function of the 

first/second order derivatives of eσ and 1−Γ : 
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The second-order derivatives of eσ  and 1−Γ are computed by taking the derivatives 

of Eq. (A.2) and Eq. (A.3). Note that application of these formulas requires substituting 

in values of first-order derivative of 1−Γ : 
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Appendix B 

Sensitivity of the global stiffness matrix of the simply supported bridge system with 

respect to changes in the element sectional stiffness 

To form the global stiffness matrix, the FEM nodes should be identified, and the 11 

element stiffness matrices be assembled by placing the terms associated with the same 

nodal DOF together and summing them. Here beam elements with no axial elongation are 

employed.  

Thus for the 10 DOF case the global stiffness matrix is first formed as a 24×24 

matrix (Figure B1), corresponding to the 12 nodes of the system (including the boundary 

nodes). Static condensation is performed on 24K  to eliminate the massless rotational 

DOFs to get the final stiffness matrix fK . Define ξ  and η to be sets of certain indices of 

the rows and columns of the matrix 24K , the notation ( )24 ,K ξ η stands for the submatrix 

that consists of the terms in rows ξ  and columns η . Since the translational displacements 

at beam ends are zero, the 1st and 23rd row and column of 24K  will be left out of 

consideration: 

 1
0 00 0  ,                                                     (B.1)f mm m m

−= −K K K K K  

 ( ) ( ) ( ) ( )24 0 24 00 24 0 0 24, ; , ; , ;  , .  m m m m
T

m = = == =K K i i K K i j K K j j K K K j i  

 3, 5, odd number collection 2, 4, even number colle  (B.2)ction=   …, 21 ( ), =   …, 24 ( ).i j   

 To calculate the derivative of 24K  with respect to element sectional stiffness ( )iEI  (

i  is the label of the element ), take the derivative of element stiffness matrix ( )e iK over 
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( )iEI and use a congruent transformation to map the local coordinates to the global 

coordinates: 
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The sensitivities of mmK , 0mK , 0mK  and 00K  can be obtained by substitute Eq. (B.3) 

into Eq. (B.2): 
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Finally, the sensitivity of the condensed global stiffness matrix fK to stiffness 

reduction for element i  is computed by differentiating both sides of Eq. (B.1) with 

respect to ( )i
EI  and substituting Eq. (B.4-B.6) into that expression: 
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Figure B1. The global stiffness matrix K24 
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