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ABSTRACT 

Existing civil and marine structures and infrastructures have to maintain their 

serviceability and safety under the effects induced by “normal events” and to 

withstand the effects of “extreme events”. Although the quantification of the 

performance of a structural system is usually conducted considering only structural 

aspects, in this study consequences arising from the occurrence of potential disruption 

of service due to failure/malfunction of structural components are also considered, 

leading to risk assessment. 

Uncertainties are unavoidable in planning, design, and maintenance of structural 

systems. Advanced probabilistic methods, such as Monte Carlo simulations based on 

Latin Hypercube sampling, finite element and response surfaces analyses are used in 

this study in order to account for uncertainties and their propagation over time. 

The main focus of this study is to develop a risk-based approach for the life-cycle 

assessment and management of civil and marine structures with emphasis on single 

highway bridges, groups of bridges, and ship structures. Risk is assessed for highway 

bridges under the effects of multiple hazards, including traffic, environmental attacks, 

scour, and earthquakes, whereas the effects of traffic and earthquake are accounted for 

groups of bridges. Other performance indicators, including reliability, redundancy, and 

resilience to disasters, are also investigated. For ship structures, a novel approach is 

developed for the evaluation of time-variant reliability, redundancy, and risk 
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accounting for different limit states of the ship hull, potential effects induced by 

corrosion, and considering different ship operational conditions over time. 

Risk is assessed based on reliability analysis by accounting several limit states and 

quantifying the associated potential monetary losses for a spectrum of consequences, 

including operating costs and accident costs. 

A novel approach for near real-time multi-criteria optimal ship routing, integrating 

risk and structural health monitoring data is developed considering different damage 

scenarios and generic operational conditions. 

The developed approaches are applied to several structures, including a highway 

bridge crossing the Wisconsin River in Wausau, WI, a highway bridge carrying a 

segment of the northbound I-15 crossing the Temescal Wash located close to the city 

of Corona, CA, a group of existing bridges located north of the San Diego 

metropolitan area, and a NAVY’s Joint High-Speed Sealift. 
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CHAPTER 1 

INTRODUCTION 

Background, Objectives and Contributions 

1.1  OVERVIEW 

During the last century remarkable progress in design and construction of new 

structures and infrastructures has been achieved. As a consequence, structures have 

been built in a more economical and challenging way than ever before but, 

unfortunately, most of these new structures have a much shorter expected lifetime than 

those previously built. For instance, antique structures such as Egyptian temples and 

Roman aqueducts, among others, have been withstanding the effects of aging and 

extreme events, thus surviving over centuries. 

Civil infrastructure and marine structural systems are exposed to the effects of the 

environment and therefore they may be subjected to the decay of their structural 

performances. Although aging phenomena and degradation processes generally reduce 

structural safety. Natural hazards and man-made disasters may induce progressive and 

sudden deterioration of the performance of structures. 

For the case of highway bridges, environmental processes along with other natural 

and man-made hazards are responsible for the occurrence of partial and total collapses. 

However, in most cases, bridges may slowly deteriorate while in service and their 
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performance may potentially down-cross critical thresholds. Therefore, in order to 

evaluate the status of existing highway bridges, every year the Federal Highway 

Administration (FHWA) provides data summarizing the condition of the bridges for 

each State and the whole United States (FHWA 2011a) through the National Bridge 

Inventory (NBI) database. For instance, Table 1.1 summarizes the condition of bridges 

in the states of New Jersey, New York, Pennsylvania and the whole United States. 

Generally, every two years the condition of several bridge components is assessed 

trough an evaluation process that involves condition and appraisal rating. Condition 

rating quantifies the degree of deterioration or damage of bridge components, whereas 

appraisal rating estimates relevant features for their effect on the safety and 

serviceability of the bridge and its approaches (FHWA 2011b). Bridges are defined 

structurally deficient (SD) when their condition rating and appraisal rating are 4 or less 

and 2 or less, respectively, for the relevant bridge item categories, including deck, 

superstructure, substructure, and waterway adequacy (FHWA 2011b). Bridges are 

defined functionally obsolete (FO) when appraisal rating of other item categories, 

including deck geometry, underclearances, and approach roadway alignment, among 

others, is 3 or less (FHWA 2011b). Based on FHWA (2011a), Figure 1.1 shows the 

condition of the bridges in terms of percentage with respect to the total number of 

bridges for the states of (a) New Jersey, (b) New York, (c) Pennsylvania, and (d) for 

the whole United States. It can be noted that for New Jersey and New York the 

percentage of functionally obsolete bridges is significantly above the whole US 

average, whereas for Pennsylvania the percentage of both structural deficient and 

functional obsolete bridges is above the whole US average. 
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Other developed countries share a similar situation. For instance, in Italy the 

problem of bridge safety is becoming very important. The majority of Italian highways 

have been built in the period of the maximum economic expansion during the 1960s 

and 1970s (Das and Pardi 2001). Therefore, most of these bridges are more than 40 

years old. Figure 1.2 shows the bridges per year of construction and material type 

(reinforced concrete in situ, post-tensioned, pretensioned, steel-composite, and others) 

managed by ‘Autostrade per l’Italia’, the Italian major highway company. 

Civil structures are not the only ones subjected to these degradation processes. 

Generally, all types of fixed and movable structures exposed to environmental hazards 

experience progressive or sudden drops in their structural performance over time. For 

instance, also marine structures such as ship structures are subjected to several hazards 

that determine potential loss of safety, such as the weather condition, grounding, 

fire/explosion, collision, hull damage, machinery (Wang et al. 2009, IUMI 2012). 

Based on the data provided by the International Union of Marine Insurance (IUMI) 

(2012), Figure 1.3 shows the world fleet statistics for vessels with cargo carrying 

capacity greater than 500 GT (gross tonnage). Figure 1.3(a) reports the number of 

incidents to vessels that suffered total loss, serious loss, and their grand total within 

the period 1995–2011, where incidents are categorized based on specific parameters 

(e.g. number of death and value of damage to property). Although the total number of 

incidents increased, the number of vessels that suffered total loss tends to slightly 

decrease over time due to improved management. For the case of total loss, Figure 

1.3(b) shows the frequencies associated with the different loss causes within the period 

1997–2011. It is clear that weather condition has the greatest impact. The weather 
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conditions and hull damage are responsible for more than 40% of the total number of 

incidents. These two causes are investigated in this study. 

Therefore, it is obvious that existing structural systems including single and groups 

of structures need to be preserved against excessive degradation of their performance 

over time. In this context, although different structures share different issues, their 

proper management is crucial in order to avoid critical situations that may result in the 

loss of serviceability, or even worse, failure/collapse of the whole structure. The 

decrease in structural performance is generally due to both progressive deterioration 

processes (e.g. the effects of corrosion on structural members and fatigue phenomena) 

and the effects of extreme events (e.g. earthquakes, floods, strong winds, fire, and 

explosions). The main goal of managing authorities and organizations is trying to 

maintain these structures in good condition, by providing a sufficient degree of 

reliability with an efficient planning of maintenance, rehabilitation, and retrofit 

actions. 

According to Frangopol (2011), the proper management of structures includes the 

following four stages: 

1. Quantification of structural performance that can be conducted by developing 

deterministic or probabilistic approaches. The probabilistic approach is to be 

preferred because it includes the uncertainty deriving from the intrinsic nature of 

the involved phenomena and from the quality of the used prediction models. 

2. Prediction of structural performance by accounting for the potential deterioration 

effects and/or considering specific events, that can belong to both “normal” and 

“extreme” situations. 
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3. Development of optimal strategies through decision making, based on potential 

investigated outcomes that guarantee that the structure will survive and will be 

serviceable under certain limits over time. 

4. Update the decision making process by integrating the initial prediction with site 

data through inspections, and/or by using structural health monitoring (SHM) 

systems able to collect useful observations of selected parameters. 

Time-variant structural performance indicators, including reliability, redundancy, 

condition index, robustness, have been used as the main indicators for decision makers 

(Frangopol 2011). However, only in the recent years, the assessment of structural 

safety with respect to common failure modes has been associated with the 

quantification of the relevant generated consequences. Potential failures or 

malfunctions of structural elements, or even of whole systems, may cause a large 

spectrum of consequences that are different in type and magnitude. The proper 

quantification of their associated economic impact elevates the safety problem to a 

new level, leading to risk analysis (CIB 2001, Ellingwood 2001, Ellingwood 2005, 

JCSS 2008). Based on this, the management approach evolves into a risk-informed 

decision making process. 

The assessment and prediction of structural performance is a process fraught with 

uncertainties associated with structural geometry, material properties, loading effects, 

and damage processes. Uncertainties are always present; some of them can be reduced 

by improving the knowledge or the quality of the prediction model (epistemic 

uncertainties), others cannot be reduced because of the intrinsic nature of the 

randomness (aleatory uncertainties) (Ang and de Leon 2005). The treatment of such 
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uncertainties in modeling/predicting the time-dependent performance of single 

bridges, bridge networks, and ship structures requires the use of probabilistic and 

statistical techniques. 

Life-cycle assessment (LCA) of structures includes the investigation and the 

evaluation of the impacts that external factors can produce during the structure overall 

life span. LCA is performed by evaluating key performance indicators, considering 

design specifications and integrating further information when available. The 

evaluation of the costs associated with operation activities and maintenance actions 

needed for the rehabilitation of deficient members/systems represent part of the life-

cycle cost (LCC). Nowadays, the optimal allocation of funds for the assessment of 

maintenance, retrofit, and recovery plans is becoming an aspect of crucial relevance. 

The current socio-political situation requires that optimal decisions must be made in 

order to follow a cost-saving-oriented economic policy. When limited funds are 

allocated, this analysis also implies an investigation considering the consequence of 

delaying the application of maintenance/recovery actions. Despite some life-cycle 

management frameworks available in the literature, methods that incorporate risk are 

very sparse and far from being fully exploited. Therefore, the development of a 

general risk-informed management framework is required. Moreover, depending on 

the type of considered hazard, investigating resilience to disaster, which is easily 

coupled with risk assessment, can improve the decision making process. 

The role of inspection and monitoring campaigns is crucial. In fact, through the 

collection of new data, a better knowledge of the condition of structures can be 

provided. Structural management teams have the opportunity to take advantage of this 
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new information by integrating the collected data into the prediction models in order 

to better assess the condition and the remaining lifetime of structural systems. 

1.2  LIFE-CYCLE MANAGEMENT CONCEPTS OF BRIDGES 

AND SHIP STRUCTURES 

Nowadays, life-cycle management of single bridges, groups of bridges within 

transportation networks, and ship structures has become an issue of critical relevance 

worldwide. Proper structural management is required in order to maintain structural 

performance above acceptable levels. Decision frameworks are necessary in order to 

capture the economic impact generated by potential structural failures or malfunctions. 

Proper management strategies must be planned in order to reduce structural 

vulnerability and mitigate negative effects. 

Although useful information is obtained by assessing structural performance such 

as reliability, redundancy, robustness, and condition index, among others, the 

assessment of structural safety with respect to common failure modes can also be 

associated with the quantification of the relevant generated consequences. Therefore, 

risk assessment is necessary for the proper management of structural systems. The 

occurrence and the effects due to different types of events induced by multiple hazards 

can be included into risk analysis (Adey, Hajdin and Brühwiler 2003, Akiyama, 

Frangopol and Matsuzaki 2011, Skjong and Bitner-Gregersen 2002). 
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1.2.1  BRIDGE STRUCTURES 

In life-cycle analysis of highway bridges, performance indicators, such as reliability, 

redundancy, and condition have been widely accepted and used. Frangopol, Kallen 

and van Noortwijk (2004) introduced the combined use of reliability index with 

condition index, while Decò and Frangopol (2010) reported on the correlation between 

these indices. The assessment and prediction of structural reliability and redundancy 

are risk-related topics that have been extensively studied over the last decades using 

time-invariant (Frangopol and Curley 1987, Frangopol and Nakib 1991, Ghosn, Moses 

and Frangopol 2010) and time-variant (Okasha and Frangopol 2010a) approaches. 

However, in many studies, the evaluation of the structural performance and the 

decision making process do not consider social issues emerging from the local 

economy of the region in which the structure is located. As indicated by Ellingwood 

(2005) and Frangopol (2011), the inclusion of risk into the management of structures 

and infrastructures should be seen as crucial for the development of the so-called 

“risk-informed decision making process”. Therefore, risk can be treated as a 

performance indicator being part of a generic framework. In order to maximize its 

contribution as a useful performance indicator, it is convenient to combine risk with 

other structural performance indicators to finally provide the decision maker with an 

enhanced decision space. Qualitative risk assessment, including single or multiple 

hazards, is a topic previously investigated (Blockley 1999, Bea 2001, Adey, Hajdin 

and Brühwiler 2003). However, only few studies provide indications on the 

quantitative assessment of risk, usually focusing on a single hazard and without 
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considering the risk time-dependency (Stein et al. 1999, Ang and de Leon 2005, 

Ellingwood and Wen 2005). Therefore, research effort is needed for the development 

of a comprehensive and flexible approach for risk assessment that accounts for time-

dependency considering multiple hazards. This is the first objective of this study. 

Risk assessment for single bridges has been mostly studied with respect to single 

hazard and sporadically for multiple hazards. Stein et al. (1999) developed a practical 

approach to estimate risk due to the effects induced by scour (single hazard), whereas 

Adey, Hajdin and Brühwiler (2003) investigated the potential consequences due to 

traffic hazard and scour in order to schedule optimal interventions over time (multiple 

hazards). On the other hand, risk assessment of groups of bridges needs to be further 

developed. Recently, different aspects concerning performance of transportation 

networks have been extensively investigated (Golroo, Mohaymany. and Mesbah 2010, 

Frangopol 2011, Frangopol and Bocchini 2012, Bocchini and Frangopol 2011a). For 

instance, life-cycle analyses of a bridge network located within the Denver 

metropolitan area have been performed, mostly focusing on the assessment of network 

performance and on the optimization of maintenance interventions (Liu and Frangopol 

2005, Liu and Frangopol 2006, Frangopol and Liu 2007, Bocchini and Frangopol 

2013). A predominant part of the research activity focused on the performance of 

transportation networks subjected to seismic ground motion considering bridge spatial 

distribution. Risk has often been included in such analyses (Chang, Shinozuka and 

Moore 2000, Jones, Middelmann and Corby 2005, Padgett, DesRoches and Nilsson 

2010). Although these studies fully cover seismic-related aspects, most of the analyses 

focus on risk induced only by a single hazard. So far, few studies focused on the 
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inclusion of traffic hazards as part of the identified predominant hazards for risk 

assessment. Furthermore, except for a few studies (such as Adey, Hajdin and 

Brühwiler 2003), the research lacks in assessing time-dependent risk of bridges. The 

time-dependency of risk of groups of bridges subjected to multiple hazards requires to 

be investigated and is the second objectives of this study. 

Another important aspect to be considered for bridge management is resilience to 

disaster that is worth exploring when bridges are located within hazard-prone regions, 

in which sudden important events may occur. The concept of resilient structural 

systems, which is very closely related to risk, is recently catching the attention of 

practitioners and the scientific community (Bruneau et al. 2003, Chang and Shinozuka 

2004, Rose 2004, Miles and Chang 2006, Cimellaro, Reinhorn and Bruneau 2010, 

Bocchini and Frangopol 2012a, Bocchini and Frangopol 2012b). When extreme events 

occur, such as strong earthquakes, transportation infrastructures require to be protected 

against sudden unserviceability. An extended time of interrupted service of 

transportation facilities and networks may lead to large impact in terms of economic 

losses. If structures and, more generally, communities are resilient, the consequences 

of catastrophic events may be mitigated. The proper quantification of resilience of 

transportation networks is one of the key aspects for the development of 

management/retrofit strategies and for reaching the desired level of network 

serviceability in a reasonable time after the strike of an earthquake. In the past, some 

progress has been achieved by the introduction of analytical deterministic definitions 

of resilience (Bruneau et al. 2003, Frangopol and Bocchini 2011, Bocchini and 

Frangopol 2012a, Bocchini and Frangopol 2012b), many of them focusing on post-
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event recovery analysis. Further developments (Bruneau and Reinhorn 2007, Xu et al. 

2007 Cimellaro, Reinhorn and Bruneau 2010, Chang et al. 2012) opened the path for 

the probabilistic treatment of resilience. Recently, deterministic evaluation of 

resilience has been provided for complex bridge networks (Bocchini and Frangopol 

2012b). However, a probabilistic approach for the prediction of seismic resilience of 

single and groups of bridges is missing. Therefore, a contribution to the development 

of a probabilistic approach to bridge resilience is necessary. This is the third objective 

of this study. The performance of the transportation entire network, necessary for the 

evaluation of resilience, can be obtained by considering the performance of each 

single bridge and accounting for the interconnections among the investigated routes 

(Bocchini and Frangopol 2011a). 

1.2.2  SHIP STRUCTURES 

The assessment of performance indicators that characterize structural safety (such as 

reliability and redundancy) is crucial (Frangopol et al. 2011a, Frangopol et al. 2011b, 

Frangopol et al. 2012), especially if adverse sea conditions are expected to be 

encountered. Preventing the safety of ship structures under operation from down-cross 

predefined thresholds leads to avoid potential failures that may cause economic losses 

and loss of lives. 

The assessment of the ultimate flexural capacity of the hull midship section, 

usually considered as the most critical one, has been the subject of numerous studies 

dealing also with the progressive collapse mechanisms of plates and stiffeners (Paik 

and Frieze 2001, Paik et al. 2002). Moreover, in the last decades, several methods for 
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the evaluation of reliability associated with the ultimate flexural capacity of ship 

structures (Mansour and Hovem 1994, Mansour 1997, Paik, Kim and Lee 1998, Paik 

et al. 1998, Guedes Soares and Garbatov 1999, Ayyub, Assakkaf and Atua 2000, 

Guedes Soares and Teixeira 2000, Akpan et al. 2002, Lua and Hess 2003, Hørte, 

Wang and White 2007) and fatigue failure criteria (Hu, Cui and Pedersen 2004, Kim 

and Frangopol 2011, Kwon and Frangopol 2012, Kwon, Frangopol and Kim 2013) 

have been developed with the purpose of assessing the safety level or to estimate the 

residual life of ships. Reliability has also been evaluated with respect to specific ship 

limit states for the case of sudden damage such as grounding or collision (Hussein and 

Guedes Soares 2009, Luís, Teixeira and Guedes Soares 2009). Moreover, ship 

reliability has been investigated also with respect to the flexural capacity associated 

with the failure of the first element (stiffened plate) within a ship cross-section (Lua 

and Hess 2006). However, research in the field of redundancy of ship structures has 

not advanced significantly. Therefore, in this study a computational efficient approach 

will be developed for this purpose. This is the fourth objective of this study. 

Ship safety may be evaluated by considering reliability analysis that does not 

account for any type of consequences. However, the inclusion of economic losses due 

to potential structural failures or malfunctions plays a central role in the decision 

analysis leading to risk assessment. Risk analysis of ship structures has been 

conducted in the past focusing on both qualitative (Akpan et al. 2002, Ayyub et al. 

2002) and quantitative (Skjong 2002, Skjong and Bitner-Gregersen 2002) assessments, 

including the effects of different types of events. Moreover, important guidelines 

regarding formal safety assessment for estimating risk under shipping activities (IMO 
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1997) and regarding the development of ship construction standards based on risk 

assessment (IMO 2006) have been recently developed. However, a comprehensive 

approach for the time-dependent risk assessment of ship structures is not found in the 

current literature. This is the fifth objective of this study. 

Routing of ships is an important and interesting part of ship management that 

involves decision making under uncertainty and includes the assessment of 

performance indicators affecting the selection of an optimal route. Routing 

optimization strategies have been developed mainly accounting for minimization of 

ship movements (i.e. maximum traveling comfort), minimization of fuel consumption 

(depending on wave resistance), and other operating costs (e.g. shipowners' costs, and 

cargo costs) (Journée and Meijers 1980, Brown, Graves and Ronen 1987, Fagerholt, 

Laporte and Norstad 2010, Papatzanakis, Papanikolaou and Liu 2012). The 

minimization of the estimated time of arrival of a ship trip has also been recently 

investigated (Hinnenthal 2008, Dolinskaya et al. 2009). However a risk-based 

approach that specifically includes structural performance, the quantification of 

potential losses, weather prediction aspects, and integrating SHM data is missing. The 

integration of SHM data into risk assessment and the development of an approach for 

optimal ship routing based on risk are the last two objectives of this study. 

1.3  OBJECTIVES 

The following are the main objectives of this study: 



16 

 

1. Develop an approach for the quantification of risk of single bridges by considering 

multi-hazard, and including the effects induced by aging processes and extreme 

events. 

2. Extend the approach developed for a single bridge to a group of bridges. 

3. Contribute to the development of a probabilistic approach for the prediction of 

seismic resilience of highway bridges based on an extension of an existing 

deterministic model. 

4. Assess time-variant redundancy of ship structures using a computational efficient 

approach. 

5. Develop a comprehensive computational platform for the assessment of time-

variant risk of aging ship structures under different operational conditions. 

6. Develop a closed-form approach for integrating SHM data into risk assessment of 

ship structures in order to obtain updated risk profiles. 

7. Propose an approach for optimal ship routing based on risk and considering 

different damage scenarios and operational conditions. 

1.4  SUMMARY OF THE APPROACH 

In this study, the application of life-cycle concepts and decision making under 

uncertainty, including optimization techniques, are applied to (a) single bridges and 

bridge groups, and (b) ship structures. 

The purpose of this research is to develop a rational framework as a support tool 

for decision makers to manage aging structural and infrastructural systems, including 

single bridges, bridge groups and ship structures. Figure 1.4 shows the proposed 



17 

 

framework, which incorporates probabilistic, statistical, and decision making tools 

used for the management of structures under uncertainty. Four blocks, denoted (1), 

(2), (3), and (4), representing the main phases and objectives of this study, and the 

type of investigated applications (civil and marine structures), are shown in Figure 1.4. 

Block (1) performs the assessment and prediction of life-cycle system performance 

including structural and social indicators. The structural indicators are those 

accounting for the assessment of component/system load effects and strength, whereas 

the social indicators are those that additionally account for the potential consequences 

caused by structural unserviceability and failure (risk) and for the effort to recover 

from damage and activity disruptions caused by an extreme event (resilience). The 

evaluation of strength and load effects of structural components and systems requires 

the use of advanced tools, such as nonlinear incremental finite element analysis 

simulation based on Latin-Hypercube sampling, second order response surfaces, and 

second order reliability analysis. The prediction over time of these performance 

indicators is achieved by including the effects of processes that may decrease the 

performance, such as aging and corrosion phenomena, and/or the effects induced by 

selected scenarios. Uncertainties associated with structural geometry, material 

properties, and loading effects are considered in this block. 

Block (2) in Figure 1.4 performs risk assessment with respect to selected or 

random events for characterizing the effects of different types of hazards. The main 

aspects to be considered and modeled are the quantification of the effects induced by 

the selected hazards, the assessment of the induced structural vulnerability based on 

reliability analysis, and the evaluation of a spectrum of caused consequences. 
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Additional uncertainties associated with the quantification of direct and indirect losses 

are accounted for. 

Block (3) introduces the risk-informed management of structures under uncertainty 

based on the use of decision techniques, such as event tree and multi-criteria 

optimization. The considered criteria upon which decisions can be made are the levels 

of structural safety and risk, direct investments based on the quantified level of 

structural damage, and the limitation of the caused indirect consequences. Depending 

on the considered structure and on the investigated hazard, different management 

activities are developed in this study. Decision making associated with the recovery of 

single bridges and bridge groups from the effects of extreme seismic events, and risk-

informed optimal ship routing considering different damage scenarios and operational 

conditions are investigated. 

Finally, block (4) introduces the option of including further data collected by 

making use of SHM in order to improve the assessment and prediction of the 

structural performance. By using Bayesian statistics, the initially assessed 

performance, herein called prior information, can be updated, thus obtaining a more 

accurate (posterior) performance by including the collected SHM data. The integration 

of SHM concepts and technologies into structural management allows the 

improvement of performance prediction by reducing the uncertainties. 

Figure 1.5 describes in detail how risk (presented in block (2) of Figure 1.4) is 

assessed for bridges and ship structures. Although these two types of structures are 

highly different, for risk assessment they share common aspects, as shown in Figure 

1.5. The first step towards risk assessment is the identification of the most critical 
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hazards (Figure 1.5-Step (a)) that affect the component/structure under analysis, 

depending on the level of modeling detail that a specific risk assessment requires. 

Each hazard is modeled by investigating the effects generated by relevant events. The 

second step is the evaluation of structural vulnerability of specific 

components/structures with respect to selected failure modes (Figure 1.5-Step (b)). 

The proper selection of limit states that account for the evaluation of different failure 

probabilities is a key aspect for risk assessment. Structural vulnerability is estimated 

by performing reliability analysis based on the statistical properties of load effects and 

strength (or displacement and deformations, among others). The third and final step 

towards the assessment of risk is the quantification of the consequences associated 

with the occurrence of specific levels of damage/serviceability (Figure 1.5-Step (c)). 

Risk assessment usually requires the evaluation of direct and indirect consequences 

(losses) caused by potential structural damage (or partial and full unserviceability), or 

even structural failure (or full unserviceability). 

Practically, the entire research of this study is developed by using self-developed, 

commercial and freeware programs, including (a) MATLAB (The MathWorks 2011) 

codes for managing the necessary calculation, connecting other software, and 

extrapolating and presenting the results, (b) Finite Element (FE) software for the 

modeling of structural strength, such as SAP2000 (CSI 2009) and ABAQUS (Dassault 

Systèmes Simulia 2011), (c) the reliability programs RELSYS (Estes and Frangopol 

1998) and CALREL (Liu, Lin and Der Kiureghian 1989), (d) the program PDSTRIP 

(2006) performing computing seakeeping analysis, and (e) the surface modeling 

software FREE!ship (2006). 
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1.5  OUTLINE 

This study is composed of two parts. Part I involves single bridges and bridge groups, 

whereas Part II deals with ship structures. Part I develops a risk-informed life-cycle 

management approach for single bridges and bridge groups. Although risk assessment 

is the backbone of the proposed decision approach for both bridges and ship 

structures, for the case of single bridges and bridge groups (Part I) resilience to 

disasters is also accounted for. Part II proposes a framework that includes an 

optimality-based approach for the management of aging ship structures considering 

reliability, redundancy, and risk of ships under different operational conditions, and 

integrating SHM. For each topic treated within each chapter, a case study is 

investigated in order to show the applicability of the proposed approach. 

The remainder of the thesis is organized as follows: 

Part I – Life-Cycle Management of Single Bridges and Bridge Groups based on 

Risk 

� Chapter 2 presents a comprehensive overview on risk assessment and proposes a 

framework for the quantification of the time-dependent risk of highway bridges, 

estimating the effects of multiple common hazards, such as abnormal traffic loads, 

environmental attacks, scour, and earthquakes. Time-dependent failure 

probabilities, hazard functions, and probability density functions (PDF) of the 

time-to-failure are also obtained for each hazard. Direct and indirect consequences 

are quantified in terms of monetary losses. 
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� Chapter 3 develops a rational framework for the quantitative assessment of life-

cycle risk of bridges within a transportation network. Bridge vulnerability is 

evaluated with respect to seismic and abnormal traffic hazards. The effects 

induced by seismic hazard are investigated by means of fragility analysis. Random 

earthquakes are generated using Latin Hypercube sampling technique, and 

probabilities of exceeding specific structural damage states are computed for each 

specific seismic scenario. Traffic hazard is assessed considering Weibull 

distributed time-to-failure of the bridge superstructure. 

� Chapter 4 extend the deterministic model, proposed by several researchers in the 

field of resilience of structures, to a probabilistic approach for the pre-event 

assessment of seismic resilience of bridges, including uncertainties associated with 

expected damage, restoration process, and rebuilding/rehabilitation costs. 

Depending on the level of regional seismic hazard, the level of performance that 

decision makers plan to achieve, the allowable economic impact, and the available 

budget for post-event rehabilitation activities, a wide spectrum of scenarios are 

investigated. 

Part II – Optimality-Based Approach for the Management of Aging Ship 

Structures considering Reliability, Redundancy, and Risk of Ships under 

Different Operational Conditions and Integrating Structural Health Monitoring 

� Chapter 5 proposes a framework for the assessment of structural safety of ship 

hulls under different operational conditions by evaluating performance indicators 

such as reliability and redundancy. Reliability and redundancy are based upon the 



22 

 

evaluation of the flexural capacities associated with the ultimate hull failure and 

the failure of the first stiffened panel within a selected cross-section. Furthermore, 

aging effects due to corrosion phenomena are investigated. Polar representations of 

reliability and redundancy are obtained for different encountered sea states, ship 

speeds and headings, covering a large spectrum of operational conditions. 

Uncertainties associated with structural geometry, material properties, and loading 

are accounted for. 

� Chapter 6 develops a risk-informed decision tool for optimal routing of ships 

considering different damage scenarios and operational conditions. The strength of 

the hull is investigated by modeling the midship section with finite elements, and 

by analyzing different damage levels depending on the propagation of 

plastification throughout the section. Vertical and horizontal flexural interaction is 

investigated. Uncertainties associated with geometry and material properties are 

accounted for by means of the implementation of the response surface method. 

Risk is assessed by including the direct losses associated with five investigated 

damage states. The effects of corrosion on aged ships are included in the proposed 

approach. The optimal routing of ships is obtained by minimizing both the 

estimated time of arrival and the expected direct risk, which are clearly conflicting 

objectives. 

� Chapter 7 proposes a novel approach for near real-time multi-criteria optimal ship 

routing integrating risk and SHM. The inclusion of collected SHM data into the 

developed decision support tool provides useful information to be used during the 

real-time decision process. Wave-induced effects represent the prior information to 
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be updated by using the Bayesian statistics. A closed-form solution and a 

simulation-based technique are proposed for Bayesian updating. Also, weather 

forecasts, associated with different time frames, are included within the developed 

framework. The optimal routing of ships is found by solving a three-objective 

optimization problem, required to minimize the estimated time of arrival, mean 

total risk, and fuel cost, given the assumed sea weather maps and the origin and 

destination points. 

� Chapter 8 provides the conclusions from this study and the recommendations for 

future work. 

� Appendix 1 provides a review of performance indicators, probabilistic methods, 

and optimization techniques used in this study. 

� Appendix 2 contains the developed computational framework for the assessment 

of structural performance and management of aging ship structures used in 

Chapters 5, 6, and 7. 

� Appendix 3 contains the list of the notations used in this study. 

1.6  CONTRIBUTIONS 

The main contribution of this study is the development of a quantitative general 

approach that explicitly incorporates risk, by combing the structural and social aspects 

of the performance, into a management framework for structures and infrastructures 

with emphasis on highway bridges and ship structures, including: 
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� Development of a framework for the assessment of risk for single bridges 

subjected to multiple hazards, including traffic loads, environmental attacks, scour, 

and earthquakes. 

� Extension of the framework for single bridges to bridge groups and spatially 

distributed bridges. 

� Contributions to the development of a probabilistic approach for the quantification 

of resilience to disaster of single bridges and bridge groups based on the extension 

of an existing deterministic model. 

� Development of an efficient approach for the evaluation of time-variant reliability 

and redundancy indices of aging ship structures subjected to different operational 

conditions. 

� Development of a novel management framework for the near real-time multi-

criteria optimal ship routing integrating risk, weather prediction, and SHM data by 

means of Bayesian updating. 

� Development of a comprehensive computational platform for the evaluation of 

time-dependent reliability, redundancy, and risk of aging ship structures 

integrating finite element - response surfaces analyses, hydrodynamic response 

analysis, effects of aging phenomenon, SHM data, and optimality-based ship 

routing as management tool. 
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Figure 1.1 Percentage of bridges classified as structurally deficient, functionally 
obsolete, and not deficient with respect to the total number of bridges 
for the states of (a) New Jersey, (b) New York, (c) Pennsylvania and 
(d) for the whole United States (data from FHWA 2011a). 
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Figure 1.2 Bridges per year of construction and material type (reinforced concrete 
in situ, post-tensioned, pretensioned, steel-composite, and others) 
managed by ‘Autostrade per l’Italia’, the Italian major highway 
company (data from Das and Pardi 2001). 
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Figure 1.3 World fleet statistics for vessels with cargo carrying capacity greater 
than 500 GT in terms of (a) number of incidents to vessels that suffered 
total loss, serious loss, and their grand total within the period 1995–
2011 and (b) percentages associated with different total loss causes 
within the period 1997–2011 (data from IUMI 2012). 
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Figure 1.4 Proposed life-cycle management framework which incorporates 
probabilistic, statistical, and decision making tools included into four 
blocks representing the main phases and objectives of this study. This 
framework is applied to civil and marine structures. 
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Figure 1.5 Framework showing the main steps towards risk assessment and the 
comparison between the main aspects involved in the risk assessment 
of bridges and ships. 
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PART I 

 

 

LIFE-CYCLE MANAGEMENT OF SINGLE BRIDGES 

AND BRIDGE GROUPS BASED ON RISK 
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CHAPTER 2 

RISK ASSESSMENT OF HIGHWAY BRIDGES UNDER 

MULTIPLE HAZARDS 

2.1  INTRODUCTION 

The deterioration of structural performance, the load increase, and the possible 

occurrence of extreme events could generate major safety concerns for existing 

structures and infrastructures. Effective maintenance of structural systems is crucial in 

preventing excessive deterioration of their performance over time. Maintenance and 

repair actions are intended to enhance the capability of these systems to withstand the 

effects of potential hazards during their designed life spans. In this context, life-cycle 

assessment of structural systems, combined with quantitative risk assessment, is the 

basis for the development of a rational management tool that can help in preventing or 

minimizing possible malfunctions of structural systems. 

Uncertainties affect the design, construction, assessment, maintenance, and 

management of structures and infrastructures. Quantitative risk assessment of 

structural systems is also highly affected by uncertainties: structural performance 

evaluation, analysis of the probability of occurrence of different types of hazards, and 

evaluation of the associated consequences due to the inadequacy of the structural 

system. In this chapter, both epistemic and aleatory uncertainties are accounted for. 
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A key point is the communication of risk between the parts involved in the 

decision process and the society (Ellingwood 2001). For instance, a decision maker 

with perfect knowledge of the actual risk associated with a structure makes the right 

decisions with a high level of confidence. Miscommunications among decision 

makers, stakeholders, authorities, and users can occur. In these cases, the decision 

makers may adopt solutions leading to increasing the indirect risk and resulting in a 

higher exposure for the entire society (CIB 2001, JCSS 2008). Structural system 

redundancy as defined in Frangopol and Nakib (1991) is associated to risk assessment; 

a high level of redundancy may contribute to the mitigation of the effects produced by 

hazard-induced events. In fact, if an extreme event produces a critical damage, a high 

level of structural system redundancy will be crucial in limiting the potential increase 

of risk due to miscommunication among the parts. 

The aim of this study, which is based on Decò and Frangopol (2011), is to provide 

a general, rational, and flexible framework, able to evaluate the quantitative time-

dependent risk of highway bridges in a multi-hazard environment. The proposed risk 

approach can be used to rank the structures under investigation and prioritize 

interventions. The introduced framework accounts for direct and indirect 

consequences leading to the evaluation of direct and indirect risk, respectively. The 

annual failure probabilities associated with common hazards (traffic loads, 

environmental attacks, scour, and earthquakes) are evaluated making use of: (a) 

existing databases including the National Bridge Inventory (NBI) database (FHWA 

2009) and U.S. Geological Survey (USGS) water data (USGS 2010); (b) on-line tool 

(2009 Earthquake Probability Mapping) provided by USGS (2009); and (c) computer 
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programs such as RELSYS (Estes and Frangopol 1998), HAZUS (FEMA 2009a), 

SAP2000 (CSI 2009), and MATLAB (The MathWorks 2011). Furthermore, the 

profiles of the failure probability, hazard rate, and probability density functions 

(PDFs) of the time-to-failure for different types of hazard are developed, analyzed, 

and compared. The evaluation of the monetary consequences due to the occurrence of 

failure takes into account rebuilding costs, running costs, and time loss costs based on 

the data contained in AASHTO (2003). 

This chapter develops a comprehensive framework for the quantification of the 

time-dependent risk of single highway bridges. Section 2.2 introduces the models for 

the evaluation of the probability of failure, associated reliability index, time-dependent 

reliability, hazard function, survivor function, and redundancy index. Section 2.3 

discusses the developed framework for risk assessment of bridges subjected to the 

effects induced by traffic, scour, and earthquakes. Moreover, concepts related to risk 

communication and consequence analysis are also introduced in this section. In 

Section 2.4, the proposed approach is applied to an existing highway bridge crossing 

the Wisconsin River in Wausau, WI, USA. Finally, Section 2.5 provides the 

conclusions of this chapter, which is based on a published paper (Decò and Frangopol 

2011). 

2.2  STRUCTURAL PERFORMANCE 

Based on the concepts reviewed in Appendix A the following subsections develop the 

models for several performance indicators that are specifically used in this chapter. 
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2.2.1  PROBABILITY OF FAILURE AND RELIABILITY INDEX  

Reliability is defined as the ability of a component or system to perform and maintain 

its intended performance. In structural engineering, the performance of a component is 

usually related to its capacity to withstand the applied loads. 

The instantaneous indication of the performance governing the problem of supply 

and demand considering multiple failure modes (i = 1,2,…,N) is defined by 

introducing the instantaneous performance functions gi(t) with respect to time t as 

follows 

� � � � � �tStCtg iii ��  (2.1) 

where Ci(t) and Si(t) are the instantaneous capacity and load effect associated with 

failure mode i, respectively. The system probability of failure Pf,sys, accounting for the 

occurrence of all potential failure modes, is given by (Ang and Tang 1984) 

� �� ��� mjmjsysf dxdxdxxxxfP ......,...,,...,... 11, X  (2.2) 

where fX(x) is the joint PDF of the vector X = {X1,…,Xj,…,Xm} containing the random 

variables Xj. The reliability index βsys associated with the system probability of failure 

is assumed to be 

� �sysfsys P ,
1 1��� ��  (2.3) 

where Φ-1(·) is the inverse standard normal cumulative distribution function (CDF). 
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2.2.2  TIME-DEPENDENT RELIABILITY, HAZARD FUNCTION, 

AND SURVIVOR FUNCTION 

When considering the instantaneous (point-in-time) probability of failure to describe 

the performance of a structure, the analysis is quite limited. The observation that the 

structure has survived until the time of assessment is an important information about 

its actual capacity and reliability. In other words, by using this information, the 

analysis will account for the lifetime of the structure by updating its point-in-time 

reliability. This updating process is used in the development of lifetime functions and 

is accomplished by considering time-dependent reliability estimates. Considering a 

discrete time interval of one year, the time-dependent failure probability TDPf(t) is 

� � � �	 

� �

� ��
�
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�
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j
jfiff PPtTDP

1 1
1,, 1  (2.4) 

where Pf is the annual failure probability and i and j are indices representing the time 

(years). The time-dependent failure probability (cumulative with time) is also defined 

as the CDF of the time-to-failure. Once the associated PDF of the time-to-failure fttf(t) 

is obtained, the hazard function h(t) can be expressed as (Leemis 1995) 

� � � �
� �tTDP

tf
th

f

ttf

�
�

1
 (2.5) 

In order to obtain a closed-form performance profile, the time-dependent 

probability (CDF of the time-to-failure) may be fitted by using the CDF of the Weibull 

distribution F* (which is commonly used in survival analysis), defined as (Leemis 

1995) 
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� � � � 01 ��� �� tetF t ��  (2.6) 

where κ is the shape parameter and λ is the scale parameter. By using the method of 

the least squares, the fitting process determines the parameters (κ, λ) of the vector that 

minimizes the function (Bucher 2009) 

� � � �� �	 ���
k

kksysf tFtTDPs 2
, ,, ��  (2.7) 

The PDF of the fitted Weibull distribution (also PDF of the time-to-failure) is (Leemis 

1995) 

� � � �� � � � 01 �� ��� tettf t ������  (2.8) 

2.2.3  STRUCTURAL REDUNDANCY INDEX 

Redundancy is a useful performance indicator that provides warning associated with 

local damage, partial failure, or total collapse. If a structural system is redundant, its 

capacity to withstand the applied load is enough even when one of its components 

fails. A redundant structural system will collapse only if the failure pattern propagates 

throughout multiple components. 

Among several definitions of redundancy (Appendix A), the definition proposed in 

Frangopol and Okasha (2008) is adopted in this chapter 

� � � � � �
� �tP

tPtP
tRI
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,, �
�  (2.9) 
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where Pf,sys(t) and Py,sys(t) are the annual failure probabilities associated with the 

system failure and the exceedance of the yielding limit state (first yielding), 

respectively. 

2.3  RISK ASSESSMENT 

The management of structures of great importance requires the evaluation of total risk 

associated with identified hazards in order to account for the consequences of a 

potential structural failure or malfunction (damage state). It is now recognized that the 

inclusion of risk as an additional indicator improves the quality of the decision making 

process (Frangopol and Liu 2007). Unfortunately, the evaluation of risk is a process 

fraught with uncertainties. Risk was only qualitatively defined in most of the previous 

studies. These uncertainties are treated with special attention in order to evaluate risk 

with a higher confidence level. According to Ang and de Leon (2005), uncertainties 

are divided in two types: epistemic, which can generally be reduced by improving our 

knowledge or through the enhancement of the prediction models, and aleatory, which 

cannot be reduced because of their intrinsic randomness. The proposed framework for 

the quantitative risk assessment includes both types of uncertainties. 

Risk assessment consists of two main steps: identification and evaluation. This 

chapter focuses on the identification of common hazards affecting highway bridges 

and on the quantitative evaluation of the associated risk. Figure 2.1 shows the 

developed general framework. 

There are many possible types of hazards and they can generally be classified as 

follows: 
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1. Natural hazards: induced by natural processes. In the case of bridge risk 

assessment, examples of such natural hazards are floods, earthquakes, landslides, 

strong winds (hurricanes, tornadoes), tsunamis, and environmental attacks. 

2. Man-made hazards: induced by humans. Bridges can be affected by either 

abnormal traffic conditions (overloading), accidents, human negligence (for 

instance inadequate inspection), fires, explosions, and terrorist attacks. 

In this chapter, the quantitative assessment of bridge-related risk is performed based 

on hazards due to traffic loads, environmental attacks, scour, and earthquakes (Stage 0 

in Figure 2.1). Following the identification stage, the proposed framework for the 

evaluation of the time-dependent total risk requires further steps (Stages 1–6 in Figure 

2.1) as follows: 

Stage 1: Evaluation of the annual probabilities of occurrence of selected hazard-

induced events. 

Stage 2: Evaluation of the annual probabilities of occurrence of different limit 

states including first yield and failure. 

Stage 3: Evaluation of the annual redundancy index (Equation (2.9)), which may 

affect risk assessment. 

Stage 4: Probabilistic evaluation of the annual direct and indirect consequences 

taking into consideration traffic conditions and economic aspects related 

to the location of the structure. 

Stage 5  Evaluation of time-dependent failure probabilities (Equation (2.4)), 

hazard functions (Equation (2.5)), and fitted PDFs of the time-to-failure 

(Equation (2.8)) for each considered hazard. 
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Stage 6: Probabilistic assessment of time-dependent total risk due to identified 

hazards. 

Although the planning of maintenance strategies is not the purpose of this chapter, 

it is essential to recall that the prioritization of maintenance actions for preventing 

failures and mitigating their consequences can be developed based on the quantitative 

analysis of risk. Accordingly, the following actions have to be performed: 

1. Risk-based ranking of bridges provides a prioritization strategy that may be 

implemented. 

2. Based on the PDFs of the time-to-failure associated with each hazard, the 

identification of the most critical hazard affecting the structures under 

consideration may help reducing their vulnerability by planning an appropriate 

mitigation strategy. 

As reviewed in Appendix A, risk R is defined by CIB (2001) as 

� � � �� �� �� mjmjmj dxdxdxxxxfxxxR ......,...,,...,,...,,...,... 111 X�  (2.10) 

where δ represents the consequences and fX(x) is the joint PDF containing the random 

variables X = {X1,…,Xj,…,Xm}. The quantification of the consequences is provided by 

a monetary value. The solution of the above-multiple integral is not obvious and in 

most cases it cannot be solved numerically. Using the assumption that the hazards are 

mutually exclusive and collectively exhaustive, a simpler equation for the evaluation 

of the instantaneous total risk R is (Ellingwood 2001) 

� � � �	
�

���
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i
iic HPHFPCR

1
|  (2.11) 
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in which P[Hi] is the probability of occurrence of an event due to hazard Hi, P[F|Hi] is 

its associated conditional failure probability, Cc represents the monetary value 

associated with the consequences of failure, and n is the number of the considered 

hazards. 

Risk assessment includes the evaluation of direct and indirect consequences of 

damage/failure. Direct consequences are the ones associated with damage or failure 

itself (Baker, Schubert and Faber 2008), while the indirect consequences are those 

related to system failure or malfunctions that induce external monetary losses. Hence, 

the instantaneous total risk R becomes 

IDD RRR ��  (2.12) 

in which RD and RID are the instantaneous direct and indirect risks, respectively. 

2.3.1  ANNUAL FAILURE PROBABILITIES  

When estimating the probability of damage occurrence and/or failure of components 

or structures, a specific procedure must be undertaken. Accordingly, the required 

degree of accuracy depends on the level of completeness of the analysis and the 

importance of the considered hazard. Hazards are assumed to be mutually exclusive, 

thus different types of hazard-induced events can be analyzed separately. 

2.3.1.1 Live loads 

The structural performance associated with a specific limit state varies with respect to 

time due to the increasing live load effects (caused, e.g., by the growing demand of 

increasing traffic volume) and the progressive deterioration of the mechanical 
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properties (caused, e.g., by corrosion). The investigated flexural failure modes are 

those related to the bridge superstructure members (deck and girders). AASHTO 

(2007) specifications are adopted for the estimation of the load effects and capacities 

at each critical section. If a multi-span continuous steel girder bridge is considered, the 

limit state equations for the flexure of bridge deck and girders are 

� � � �� � 0,,, ��� tMMNtMN iLLiDLSinFC  (2.13) 

� � � �� � 0,,,, ���� tMDMNtMN ijLLjfmijDLSijuFC �  (2.14) 

� � � �� � 0,,,, ���� tMDMNtMN ijLLjfmijDLSijyFC �  (2.15) 

where NFC and NS are the epistemic uncertainty coefficients associated with the 

flexural moment capacities and applied moments, respectively, Mn is the flexural 

moment capacity of the reinforced concrete (RC) deck and Mu and My are the ultimate 

and yielding girder moment capacities, respectively, MDL and MLL are the dead and 

live load applied moments, respectively, α is the dynamic allowance, Dfm is the 

distribution factor for moments, i and j are the identification numbers of each critical 

section and girder, respectively, and t is the time. For the girders, the critical sections 

are located at the intermediate supports and at mid-spans, while for the deck, they are 

located where positive and negative transversal moments are maxima. Assuming one 

year interval for the evaluation of load effects and capacities over time, the 

abovementioned limit state equations provide annual failure probability associated 

with the failure of deck and girders (Equations (2.13) and (2.14), respectively), and 

yielding (Equation (2.15)). 
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The increase over time of the live load moments is predicted considering traffic 

data, such as the average daily truck traffic (ADTT), and by applying the statistics of 

extremes (Akgül 2002). Furthermore, the deterioration of the flexural capacities over 

time is induced by corrosion. The corrosion process is caused by salted water exposure 

and atmospheric aggression in the case of girders (it is assumed that corrosion attacks 

the top and the sides of the bottom flanges and each side of the webs), and it is 

induced by chloride penetration in the case of RC deck (this generates section loss of 

steel reinforcement). The assumed corrosion models applied to steel girders (Equation 

(2.16)) and RC deck (Equation (17)) are based on studies provided by Albrecht and 

Naeemi (1984) and Thoft-Christensen (1998), respectively. The loss functions are 

defined as follows 

� � B
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where t is time (years), Cp(t) is the corrosion penetration (μm), A (μm) and B represent 

parameters based on the environment aggressivity, As(t) is the time-variant top 

transversal tensile steel reinforcement area (mm2), nb is the number of top transversal 

steel bars, D0 is the initial top reinforcement diameter (mm), icorr is the corrosion 

parameter (mA/cm2), Ccorr is a corrosion coefficient, and Ti is the corrosion initiation 

time (years) evaluated according to Estes (1997). 
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The inclusion of random variables describing geometrical and material properties, 

and load effects (e.g., yielding stress, width and thickness of webs and flanges, elastic 

modulus of steel and concrete, dead and live load moments) leads to the probabilistic 

evaluation of the above-mentioned flexural moment capacities and acting bending 

moments. 

Finally, the annual system failure probability of a continuous multi-span steel 

girder bridge (modeled as a series-parallel system) is investigated considering the most 

significant failure mechanisms. The occurrence of a specific collapse mechanism (i.e., 

plastic hinges in multiple locations) is modeled considering that the performance 

functions associated with the specified critical sections are in parallel, and the 

occurrence of overall system plastic collapse is modeled considering the possible 

collapse mechanisms in series. The sectional capacities and load effects are simulated 

by using a Latin Hypercube sampling (McKay, Conover and. Beckman 1979) 

(reviewed in Appendix A), and the annual system probability of collapse and first 

yielding are computed by using the reliability program RELSYS (Estes and Frangopol 

1998). 

2.3.1.2 Scour 

The typical effect produced by flood-induced events on bridges crossing water streams 

is the scour of piers and/or abutments. According to Kattell and Eriksson (1998), scour 

is defined as the erosion or removal of streambed or bank material from bridge 

foundations due to flowing water. Scour has also been identified as the most common 

cause of highway bridge failures in the United States (Kattell and Eriksson 1998). 
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In this study, the risk associated with the scour of highway bridge foundations is 

evaluated using the method proposed by Stein et al. (1999). The method consists in 

characterizing the actual hydrological properties of the water stream at the bridge 

location, the dimensionless depth describing the height of the water flow, the typology 

and topology of the bridge, its waterway adequacy, its scour vulnerability, its 

substructure condition, and the channel protection. This methodology requires the 

collection of some bridge data obtained by the NBI (FHWA 2009). Based on Stein et 

al. (1999), the calculation of the annual failure probability is performed by the 

following steps: 

1. Record the necessary NBI items (FHWA 2009) and refer to FHWA (1995) for 

their interpretation. 

2. Evaluate the flood discharge associated with the considered river and location at 

the selected recurrence interval Q100, by using the USGS regression equations 

(USGS 2003 for the case study). 

3. Assess the annual probabilities of the river being in specific dimensionless depth 

ranges by using the available data related to the water stream and provided by 

USGS (2010). The dimensionless depths associated with specific discharges are 

(Stein et al. 1999) as follows 
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where D and Q are the depth and the discharge, respectively, and f refers to the full 

flow. 
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4. Determine the scour vulnerability (NBI item 113 of FHWA 2009). If not already 

assessed, consider the substructure condition and the channel protection (NBI 

items 60 and 61 of FHWA 2009). 

5. Evaluate the annual failure probability Pf,SC, given the scour vulnerability and the 

dimensionless depth by applying the following equation (based on Stein et al. 

1999): 

� � � �DDandSVPDDandSVFPP
DD

SCf 	 �� |,  (2.19) 

where F is the failure, SV is the scour vulnerability, and DD represents the 

dimensionless depth ranges of the stream. 

Furthermore, depending on the number of annual records available in the NBI 

database, the probability of failure can be computed for a given time period and a 

trend can be estimated in order to predict future values (e.g., over a lifetime of 80 

years). 

2.3.1.3 Earthquakes 

A crucial exposure is represented by the seismic hazard, which is obviously a major 

concern for those regions that often have to allocate resources to face the 

consequences of earthquakes of great magnitude. However, especially when risk is 

assessed, another matter of concern arises for those regions that have low probability 

of occurrence of strong earthquakes, but have to deal with abnormal consequences so 

called low-probability/high-consequence events (Ellingwood and Wen 2005). 
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A methodology that, after identifying a limited set of deterministic earthquake 

scenarios, assesses their associated hazard-consistent probabilities was developed in 

order to evaluate the seismic hazard of a region (Chang, Shinozuka and Moore 2000). 

Wang (2007) investigated the regional seismicity by making use of the Earthquake 

Probability Mapping provided by USGS. In order to provide a general flexible 

approach, updated seismicity maps (USGS 2009) are used as a valuable tool able to 

estimate the probability of occurrence of an earthquake in the contiguous United 

States given the geographical location, the area under investigation, the desired time 

interval, and the magnitude. These maps are derived from seismic hazard curves 

calculated on a grid of sites across the United States and describing the frequency of 

exceeding a set of ground motions. One of the main advantages of the 2009 

Earthquake Probability Mapping (USGS 2009) is its flexibility and its user friendly 

interface. Through this tool and by setting one year interval, the annual probability of 

occurrence of the i-th seismic scenario P(SSi) associated with the i-th earthquake is 

given as follows 

� � � �iiiiii MandTSXYHQPSSP ,,,| "�  (2.20) 

where HQ is a seismic event, XY refers to the latitude and longitude of the epicenter, ρ 

is the radius of the considered region area, TS is the considered time span (one year), 

and M is the earthquake magnitude. 

Given the occurrence of an earthquake scenario, the risk assessment requires the 

evaluation of the conditional failure probability (vulnerability) of a structure. This 

issue has been extensively studied in the past (Ellingwood and Wen 2005). The failure 



48 

 

probability can be evaluated by means of fragility analysis. The program HAZUS 

(FEMA 2009a) is used for this purpose. HAZUS is a GIS-based software tool in use in 

the United States. The analysis consists of defining earthquake scenarios by setting 

their magnitudes and locations. The results obtained are based on the development of 

curves describing the probability of exceeding a specific damage state (none, slight, 

moderate, extensive, and complete) after defining a specific seismic scenario. For 

highway bridges, according to FEMA (2009b) and Mander (1999), these fragility 

curves are expressed by a log-normal cumulative distribution probability function as 

follows 
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where P[DS|PSAi] is the probability of occurrence of a specific damage state DS given 

that PSAi is the spectral acceleration amplitude for a period of 1 sec associated with 

the i-th seismic scenario, βc is the normalized composite log-normal standard 

deviation, ADS is the median spectral acceleration associated with the occurrence of the 

damage state DS, and Φ is the standard normal CDF. Moreover, based on Ghosh and 

Padgett (2010), the effect of corrosion (exposure to chlorides from deicing salts) on 

the substructure may affect the seismic response of a bridge. Accordingly, the bridge 

fragility (see Equation (2.21)) varies with time as follows 
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where t is the time. 
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Unfortunately, general approaches considering multiple categories of bridges 

based on different typologies and geometries (such as the categories included in 

HAZUS) and subjected to the effect of pier corrosion are still missing. 

Finally, the annual probability of structural failure PCD,i(t) (which is defined as the 

probability of complete damage) is 

� � � �� � � � � �iiiiiCD SSPSSPSAPtPSACDPtP ��� ||,  (2.23) 

where P[CD|PSAi] is the probability of having structural failure (complete damage) 

given a specific PSAi, and P[PSAi|SSi] is the probability of having a specific PSAi 

given the occurrence of seismic scenario SSi. Given a specific seismic scenario, 

HAZUS evaluates the probability of having structural damage by means of a set of 

attenuation functions accounting for the bridge typology and its minimum distance 

between the earthquake rupture and the bridge. 

The identification of seismic scenarios to be considered depends on the desired 

accuracy level for the analysis. However, for those areas in which it is widely known 

that the risk level is low, the benefit from more detailed analysis is negligible (Seville 

and Metcalfe 2005). 

2.3.2  RISK COMMUNICATION AND STRUCTURAL 

REDUNDANCY 

Quantitative risk assessment requires a further estimation of potential risks arising 

from malfunctions in communication among different risk managing parts (CIB 2001). 

In fact, when it is recognized that, due to one hazard-induced event, a malfunction or 
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even the partial failure of a structure occurs, the communication of the updated risk 

becomes a crucial aspect to be considered in order to guarantee the protection and the 

safety of the public. 

It is widely known that the main goal of having a high level of redundancy in a 

structural system yields a greater chance to provide warning of failure before collapse. 

Therefore, the implementation of redundancy into risk assessment is fully justified. 

According to AASHTO (2007), multiple-load path and continuous structures should 

be used unless there are compelling reasons not to use them. Moreover, AASHTO 

(2007) recognized the importance of redundancy (referring to Frangopol and Nakib 

1991) by implementing a load modifier coefficient ηR which is intended to change the 

intensity of the load effects for each specific limit state. 

If a structure is under partial failure or malfunction, the redundancy level of the 

structural system becomes crucial in reducing the risk associated with a potential 

sudden collapse. In fact, the optimal communication of the actual risk may prevent the 

increase of potential consequences (e.g., losses of lives and additional structural 

damage). For this reason, the risk modifier coefficient RMC(t) is introduced in order to 

relate a high level of redundancy in a structure with a limitation of risk arising from 

potential miscommunication among the parts managing and/or using the structure. 

Table 2.1 shows the values of such coefficients associated with different ranges of 

annual reliability and redundancy indices. It is assumed that the maximum decrement 

of risk (20%) is reached only if the system is highly redundant (RI > 1250) and its 

reliability index is at least 3.5. Conversely, the maximum increment of risk (20%) is 

only reached when the level of redundancy is very low (RI ≤ 10). The associated 
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ranges for the annual reliability and redundancy indices are defined based on 

engineering judgment and safety considerations. However, if further studies are 

developed and validated (for instance, by means of collecting field data, which are 

usually unavailable for long-term predictions), these values could be calibrated and 

implemented in the proposed approach. 

The definition expressed by Equation (2.9) is the one used for the annual 

redundancy associated with the assessment of risk due to live loads. Moreover, 

according to Stein et al. (1999), a risk adjustment factor is introduced when assessing 

risk due to scour. This coefficient quantifies the effect of redundancy in case of scour 

with respect to the typology of the superstructure (simple span or continuous girder) 

and foundation. 

2.3.3  EVALUATION OF THE CONSEQUENCES 

The consequences associated with the failure or malfunction of a bridge can be 

dramatically high. The rebuilding of a structure is, in general, very expensive, but the 

loss of functionality that can affect the surrounding area in terms of damage to the 

quality of the environment and economic losses, among others, may yield much higher 

costs. 

If the consequences are evaluated in terms of monetary values, the forecast of 

future risk must consider the dependency of future monetary losses on the present 

value of consequences. Starting from the year of construction, the value of 

consequences for each specific year t can be calculated as follows 
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� � � �trPVtFV �� 1  (2.24) 

where FV(t) is the future monetary value referred to year t, PV is the present monetary 

value, and r represents the annual discount rate of money. The discount rate is 

assumed to be a random variable. Using Equation (2.24), the obtained values of the 

consequences are associated with the specific year for which risk needs to be 

evaluated. 

Among other factors (some of them not easily quantifiable), and based on Stein et 

al. (1999), the most common costs associated with a bridge failure for a specific year t 

are: 

1. Rebuilding costs CReb(t): related to the cost of the bridge per square meter of deck 

surface 

� � � �tRebReb rWLctC �� 1  (2.25) 

where cReb is the rebuilding cost per square meter (USD/m2), W is the bridge width 

(m), and L represents the bridge length (m). 

2. Running costs CRun(t): based on the length of the detour that users are forced to 

follow in the case of bridge closure. A general approach considering different 

types of vehicles is (Stein et al. 1999) 

� � � � � �tltruckRuncarRunRun rdtADTcTctC �#
$

%
&
'

(
��

�


�
�
� �� 1

100100
1 ,,  (2.26) 

in which cRun,car and cRun,truck are the average costs for running cars and trucks per 

kilometer (USD/km), respectively, Dl is the net length of the detour (km), A(t) is 
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the average daily traffic (ADT) referred to year t, d is the duration of the detour 

(days), and T represents the ADTT (%). The duration of the detour is estimated 

upon considering that in regions where the implication of economic loss is high the 

repair time is shorter. The time needed to restore the bridge functionality is 

assumed to be: 36 months for ADT ≤ 100; 24 months for 100 < ADT ≤ 500; 18 

months for 500 < ADT ≤ 1,000; 12 months for 1,000 < ADT ≤ 5,000; and 6 

months for ADT > 5,000. Given that the ADT is increasing over time, costs are 

expected to grow over time. 

3. Time loss costs CTL(t): associated with time loss for users and goods traveling 

through the detour (based on Stein et al. 1999) 
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where cAW is the average wage per hour (USD/h), cATC is the average total 

compensation per hour (USD/h), cgoods is the time value of the goods transported in 

a cargo (USD/h), OCar and OTruck are the average vehicle occupancies for cars and 

trucks, respectively, and Sp represents the average detour speed (km/h). AASHTO 

(2003) provides a detailed estimation of the value of time loss associated with cars 

and trucks. 

The accounted direct consequences are given by the rebuilding costs, while 

indirect consequences include the running costs and the time loss costs. Other types of 

indirect consequences, such as loss of jobs or money loss in local economy, may be 

quantified and accounted for in risk assessment. However, in this chapter, only the 
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consequences listed above are included and general guidelines applicable to more 

complex scenarios are provided. In order to perform a probabilistic evaluation, 

economic consequences are treated as random variables. 

2.3.4  TIME-DEPENDENT TOTAL RISK 

The proposed definition of time-dependent total risk is based on time-dependent 

probability profiles for multi-hazard analysis and includes the effects of structural 

redundancy considering epistemic and aleatory uncertainties. 

Usual practice, adopted for the assessment of total risk induced by multi-hazard 

effects (Seville and Metcalfe 2005, among others), considers the summation of the 

individual risks associated with different exposures. Therefore, the time-dependent 

total direct RD(t) and indirect RID(t) risks for a specific year t are 
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where NC is the epistemic uncertainty coefficient referring to the consequences, CD 

and CID are the monetary values associated with direct and indirect consequences 

(USD), respectively, RMC is the risk modifier coefficient, which is given by Table 2.1 

when considering live loads, and by the risk adjustment factor (Stein et al. 1999) for 

scour, fttf represents the PDF of the time-dependent failure probabilities, i is the 

potential hazard type, and j is the time (years). 
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Finally, the time-dependent total risk R(t) for a specific year t is given by 

� � � � � �tRtRtR IDD ��  (2.30) 

The influence of indirect risk on total risk provides indications on the socio-economic 

importance of the bridge under investigation. In order to investigate such importance, 

the normalized indirect risk index (NRID(t)) is introduced as follows (see Baker et al. 

2008) 

� � � �
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tRtNR
IDD

ID
ID �

�  (2.31) 

A high value of NRID(t) means that a potential bridge closure can cause high indirect 

consequences, even higher than direct ones. 

Once vulnerabilities, redundancy indices, and consequences are evaluated, a 

simulation based on a Latin Hypercube (McKay, Conover and Beckman 1979) 

sampling is executed by the software MATLAB (The MathWorks 2011). This 

simulation also accounts for the calculation of the consequences in order to obtain the 

profiles of the time-dependent total risk (Equation (2.30)) and of the normalized 

indirect risk index (Equation (2.31)). 

2.4  CASE STUDY: AN EXISTING HIGHWAY BRIDGE  

The proposed framework for the assessment of risk is applied to an existing highway 

bridge located near Wausau (Wisconsin, USA), crossing the Wisconsin River and 

carrying the northbound of US-51 and I-39. This bridge is a five-span continuous steel 

girder with RC deck (Figure 2.2(a,b)). It is symmetrical about the third mid-span and 
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has a total length of 195 m, the maximum span is 42.66 m and the distance between 

the girders is 2.74 m. The girders are composite with the deck and have compact 

sections (the dimensions of the critical cross-sections are shown in Figure 2.2(c)). The 

description and the monitoring data of this bridge are provided in Mahmoud, Connor 

and Bowman (2005). 

Time-dependent direct, indirect, and total risks are computed including aleatory 

and epistemic uncertainties in a multi-hazard context. The highway bridge under 

investigation is assumed to be subjected to hazards associated with live loads, 

environmental attacks, scour, and earthquakes. All the profiles are obtained assuming 

that retrofit or maintenance actions have never been taken during the considered time 

horizon of 80 years. 

The software MATLAB (The MathWorks 2011) provides the backbone of the 

computational platform and it is used for the required simulations for evaluating the 

time-dependent total risk. The computational platform includes three other programs: 

SAP2000 (CSI 2009), RELSYS (Estes and Frangopol 1998), and HAZUS (FEMA 

2009a). 

2.4.1  ANNUAL FAILURE PROBABILITY EVALUATION  

2.4.1.1 Live loads 

For the considered highway bridge, which is subjected to live loads and corrosion, the 

proposed procedure for the evaluation of the annual failure probabilities associated 

with the system failure and the exceedance of the yielding limit state (first yielding) in 

the superstructure as part of risk assessment, as shown in Figure 2.3(a). 
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Hazard given by live loads combined with the presence of corrosion affecting the 

deck steel reinforcement and the steel girders is modeled and investigated. Typical 

girder cross-sections are of three types: S 1-1 at mid-span of first and fifth spans; S 2-2 

at supports; and S 3-3 at mid-span of second, third, and fourth spans, as shown in 

Figure 2.2(b,c). The flexural failure mode for each critical cross-section of the steel 

girders is investigated by making use of limit state functions of Equations (2.14) and 

(2.15). Similarly, the flexural failure mode of the deck for negative bending moment 

(which is the most critical failure mode) is investigated by Equation (2.13). 

The probabilistic evaluation of the capacities (ultimate Mu,ij and yielding moment 

My,ij) of the three cross-section types has been performed for internal and external 

girders. The involved random variables are listed in Table 2.1. A finite element 

analysis has been carried out by using the program SAP2000 (CSI 2009) in order to 

obtain the envelop of the bending moments affecting internal and external continuous 

steel girders and by following the guidelines provided by AASHTO (2007). The 

dependency of loads and capacities on time is provided by the application of the 

corrosion and the live load model (Type I largest extreme value probability 

distribution). For each year of the assumed bridge lifetime (80 years), mean values and 

standard deviations of capacities and acting bending moments (due to dead and live 

loads), and their correlations at each critical cross-section are obtained by fitting (with 

a log-normal PDF) the simulated Latin Hypercube sampling (50,000 trials). Besides, 

given the above and including the epistemic uncertainties, the annual system reliability 

can be evaluated assuming that the collapse of any girder is reached only when any of 

the failure mechanisms (i.e., failure of any span) of Figure 2.4(a) occurs. The collapse 
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of a girder is provided by the series-parallel system (System I) shown in Figure 2.4 (b) 

considering different limit state equations for each plastic hinge and their correlations. 

Meanwhile, the collapse of the bridge superstructure is assumed to occur when any 

two adjacent girders collapse or when the deck fails (System II in Figure 2.4(c)). 

Furthermore, the probability of exceeding the yielding limit state (first yielding) in the 

system is modeled as a series system in which the limit states of all the 36 critical 

cross-sections of the four girders are considered as a series system. The model used for 

redundancy is based on failure of any two adjacent girders (System III of Figure 

2.4(d)). These annual system probabilities (failure and occurrence of first yielding) are 

evaluated by the reliability program RELSYS (Estes and Frangopol 1998). Figure 2.5 

shows the profiles of annual reliability associated with bridge superstructure failure 

βf,sys (see Figure 2.5 (a)); four-girder system failure βf,4g, exceedance of the yielding 

limit state (first yielding) βy,4g, and deck failure βdeck (see Figure 2.5(b)); and the 

profiles of annual failure probability associated with bridge failure Pf,sys (see Figure 

2.5(c)); four-girder system failure Pf,4g, deck failure Pdeck, and exceedance of the 

yielding limit state (first yielding) Py,4g (see Figure 2.5(d)). Figure 2.5(a,c) shows the 

separate effects on reliability and probability profiles obtained by considering only the 

variation of live loads (βf,sys)LL, (Pf,sys)LL (variation over time of the live loads plus dead 

loads) and the effect of corrosion on reliability and probability profiles associated with 

the initial value of the live loads (βf,sys)CORR, (Pf,sys)CORR. Point A (Year 50) represents 

the time after which the effects due only to corrosion become more significant than 

those due only to the variation of live loads over time. This is explained by the fact 
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that corrosion effects are delayed until the time of corrosion initiation of the deck (see 

Equation (2.17)). 

2.4.1.2 Scour 

Flood-induced events may affect the highway bridge under investigation by means of 

scour of the piers and severely affect the integrity of the structure. The general 

approach used for the assessment of risk due to scour is shown in Figure 2.3(b). 

The first step is to download the NBA text file (FHWA 2009) and identify the 

necessary information for the considered bridge. Such information is obtained by 

reading and decoding the NBI items (26, 27, 42, 43, 49, 52, 71, and 113) according to 

FHWA (1995). Table 2.3 summarizes the selected NBI items to be used for this 

assessment and their explanations. The second step is the characterization of the 

crossed river based on the USGS (2003), which reports the characteristics of the 

streams of Wisconsin. By selecting the Wisconsin River at the station of Rothschild 

(which is the closest site to the bridge), the discharge at the selected flood frequency 

Q100 (58,400 ft3/sec) is evaluated by using the USGS regression equations (USGS 

2003). The third step consists of the evaluation of the probabilities of the river being in 

specific dimensionless depth ranges. USGS (2010) provides the necessary water data 

such as the daily mean and median discharge (evaluated over the period 1944–2008) 

of the Wisconsin River at the station of Rothschild, which are 3,490 ft3/sec and 2,818 

ft3/sec, respectively. Assuming that Q100 is equal to the discharge at full flow, the 

dimensionless depths are associated with the dimensionless discharges by using 

Equation (2.18). Furthermore, assuming that the river discharge is log-normally 
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distributed, the annual probabilities of the river being in specific dimensionless depth 

ranges are obtained by the evaluation of specific percentiles for each dimensionless 

depth range (see Table 2.4). The fourth step consists in the evaluation of the scour 

vulnerability of the bridge for specific dimensionless depths (P[SV and DD] of 

Equation (2.19)). NBI item 113 indicates category 5 (FHWA 1995), therefore ‘bridge 

foundations are determined to be stable for calculated scour conditions; scour within 

limits of footing or piles.’ The annual failure probabilities (P[F|SV and DD] of 

Equation (2.19)) associated with scour vulnerability and dimensionless depth ranges 

are empirically provided by Stein et al. (1999) and shown in Table 2.4. Finally, the 

fifth step is the evaluation of the annual failure probability Pf,SC of the bridge, given 

the scour vulnerability for each dimensionless depth range by using Equation (2.19). 

As FHWA (2009) provides bridge data for all the years since 1992, in order to 

estimate the annual failure probabilities for an overall period of 80 years (the assumed 

lifetime of the bridge), predictions on the failure probabilities associated with years 

before 1992 and after 2009 are required. Hence, Table 2.4 shows also the assumed 

annual failure probabilities associated with the dimensionless depth ranges in the case 

of having scour vulnerability of category 6 (for time interval 1961–1991) and 4 (for 

time interval between 2010 and the end of the lifetime). 

Such annual failure probabilities are considered as log-normally distributed 

random variables with an assumed coefficient of variation equal to 20% in order to 

account for epistemic uncertainties. Figure 2.6(a) shows the profiles of the annual 

failure probability (mean μ(Pf,SC) and mean plus one standard deviation 

μ(Pf,SC)+σ(Pf,SC)). It can be noted that the annual failure probability is known for the 
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interval time between 1992 and 2009; for years before 1992 and after 2009 the profiles 

are predicted. 

2.4.1.3 Earthquakes 

The effects due to earthquakes combined with the presence of corrosion affecting the 

substructure are investigated by means of the combined use of the 2009 Earthquake 

Probability Mapping (USGS 2009) and the software HAZUS (FEMA 2009a). The 

flowchart of the developed method is shown in Figure 2.3(c). 

In order to characterize the seismic vulnerability of the region in which the bridge 

is located, a discretization of such region in sub-regions is introduced. The proposed 

approach quantifies the seismic vulnerability of the bridge by investigating the effects 

of a limited set of scenarios for each defined sub-region. The bridge seismic 

vulnerability is then obtained by evaluating the mean and standard deviation of the 

effects induced by each scenario (associated with each sub-region) on the bridge. As 

shown in Figure 2.7, a grid defined by 49 points discretizes the region in square sub-

regions of 900 km2. The highway bridge is located at the center of this grid. By 

making use of the 2009 Earthquake Probability Mapping (USGS 2009), for each 

circular area (which has a radius of 17 km) associated with each point of the grid, the 

annual probability of occurrence of a seismic scenario (P(SSi) of Equation (2.20)) is 

evaluated for each of the considered magnitudes (discrete magnitudes 6, 6.5, and 7 

have been selected for this analysis). According to the US seismicity map for the state 

of Wisconsin, the occurrence probabilities of the selected seismic scenarios are 

extremely low. Next, for each point and for a specific year, different runs of HAZUS 
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associated with magnitudes 6, 6.5, and 7 are performed, and the results recorded. 

Afterwards, by using Eq (2.23), the annual probabilities of having complete damage 

are evaluated considering all the scenarios for each sub-region. Finally, by calculating 

the mean and standard deviation of the annual probability of having complete damage, 

the seismic vulnerability of the highway bridge for a specific year is obtained. 

Given that this region has a homogeneous seismicity hazard, the above-introduced 

method guarantees acceptable approximate results. If the distance between different 

points of the grid was smaller, the results would become more accurate. However, in 

case of regions in which one or more important faults determine discontinuity on the 

maps, the applied method can provide acceptable results only if the number of 

simulated earthquakes increases significantly. 

As reported by Ghosh and Padgett (2010), due to corrosion of the steel 

reinforcement of the piers and of the anchor bolts fixing the bearings, the mechanical 

properties of the substructure deteriorate over time. According to Ghosh and Padgett 

(2010), it is possible to account for such variation making use of fragility curves, by 

changing the mean and the dispersion of the system fragility parameters for the four 

damage states considered and for different points in time. Therefore, the default 

fragility curve parameters implemented in the program HAZUS are adjusted in order 

to perform different analyses over time. HAZUS default fragility parameters are used 

while assessing the bridge vulnerability at Year 0. When assessing vulnerability for 

years 20, 40, and 80, HAZUS default fragility parameters are scaled based on the 

variations found by Ghosh and Padgett (2010). 
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By fitting the evaluated mean values and standard deviations of the annual 

probabilities (at years 0, 20, 40, 60, and 80) with a third order polynomial equation, 

the associated prediction profiles can be obtained. Figure 2.6(b) shows the profiles of 

the mean μ(PCD) and the mean plus one standard deviation μ(PCD)+σ(PCD) of the 

probability of having complete damage. 

2.4.2  REDUNDANCY, HAZARD FUNCTION AND TIME -

DEPENDENT PROBABILITIES 

The hazard function profiles (Equation (2.5)) and the annual redundancy index RI 

profiles associated with the flexural capacity (Equation (2.9)) of the superstructure are 

computed (Figure 2.8(a,b), respectively) based on the annual bridge vulnerability. It 

can be noticed that the hazard function of scour is always greater than that associated 

with live loads. The hazard function associated with earthquakes is almost constant 

with respect to time and much lower than those associated with the other two hazards. 

As shown in Figure 2.8(b), the redundancy profile associated with flexural failure 

mode (due to live load effects) is decreasing over time. 

The profiles of the time-dependent failure probability associated with hazard 

induced by live loads TDPf,sys (Figure 2.9(a)), scour TDPf,SC (Figure 2.9(b)), and 

earthquakes TDPCD (Figure 2.9(c)) are obtained by applying Equation (2.4). 

Accordingly, it is shown that the most critical effects are associated with scour. 

By using the least squares method (Equation (2.7)), each time-dependent 

probability profile (cumulative) may be fitted with the CDF of the Weibull function. 

This procedure is justified by the fact that the obtained sum of squared residuals is 
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very low (i.e., less than 10−3), thus the fitting process is acceptable. Figure 2.9(d) 

shows the PDFs of the Weibull functions associated with each type of hazard. It can 

be noticed that these PDFs provide an estimation of the time-to-failure probability 

associated with each type of hazard. Moreover, Figure 2.9(d) shows that, without the 

implementation of the consequences, the most critical hazard is scour, because it 

reveals that the mode of the time-to-failure of the bridge is at year 38, which is less 

than those of the other two considered hazards. 

2.4.3  EVALUATION OF CONSEQUENCES 

Direct and indirect consequences due to a potential structural failure are evaluated 

according to Equations (2.25), (2.26), and (2.27). The inclusion of the ADT changing 

with time as indicated by Mahmoud, Connor and Bowman (2005) and of the annual 

discount rate lead to the evaluation of consequences that vary over time. A stochastic 

assessment of such consequences is conducted based on the assumed random 

parameters shown in Table 2.5. The costs in Table 2.5 refer to the year 2010, which 

corresponds to the 49th year of life of the bridge. The cost, for the years preceding 

2010 are provided by Equation (2.24) by setting a negative time interval t, while the 

cost values for the years following 2010 are obtained by considering the future cost, 

using a positive time interval t in Equation (2.24). 

2.4.4  EVALUATION OF TIME-DEPENDENT TOTAL RISK 

Once time-dependent profiles, redundancy profiles, and direct and indirect 

consequences are computed, the time-dependent total risk can finally be assessed 
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(Equation 30). In order to account for the randomness associated with consequences 

and structural vulnerability, a final simulation is required to evaluate consequences 

and risk for each type of hazard and then the time-dependent total risk is provided. 

Latin Hypercube (McKay, Conover and Beckman 1979) sampling is selected to 

simulate 50,000 trials. Although a higher number of trials leads to a more accurate 

estimate, it has been observed that 50,000 trials converge to an acceptable result. The 

profiles of the mean value (μ) and the mean value plus one standard deviation (μ + σ) 

are obtained for direct and indirect time-dependent risks associated with live loads 

RD,LL, RI,LL (Figure 2.10(a)), scour RD,SC, RI,SC (Figure 2.10(b)), and earthquakes RD,EQ, 

RI,EQ (Figure 2.10(c)). The time-dependent profile for total risk R, and total risks due 

to live loads RT,LL, scour RT,SC, and earthquakes RT,EQ are shown in Figure 2.10(d). 

Moreover, from Figure 2.10(a,b,c), it can be noted that after about 12 years indirect 

total time-dependent risk becomes greater than the direct one for each considered 

hazard. This is the consequence of greater indirect costs associated with the increase 

of ADT over time. The time-dependent total risk is in the order of USD millions. It 

can be noted that according to the high level of scour bridge vulnerability, risk due to 

scour always exceeds the risk associated with live loads and corrosion. Obviously, for 

the Wisconsin region, the seismic risk is negligible. As shown in Figure 2.11(a), it can 

be noticed that the standard deviation of the time-dependent total risk grows over time 

due to the increase of uncertainties associated with the prediction of future risk. 

Finally, Figure 2.11(b) shows the profiles of the mean (μ) and mean plus (μ + σ) and 

minus (μ – σ) one standard deviation of the normalized indirect risk index. As 

indicated, this index increases over time mainly due to increase of the ADT that 
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induces a potential greater impact of the indirect losses with respect to the direct ones. 

It also can be noted that the dispersion of the obtained samples (at years 20, 40, 60, 

and 80) reduces over time, due to the fact that the mean value of the NRID is reaching 

values approaching unity. The plateau between years 13 and 22 is due to the variation 

of the duration of the detour depending on the ADT for the evaluation of running costs 

(Equation (2.26)) and time loss costs (Equation (2.27)). 

2.5  CONCLUSIONS 

Risk, redundancy, and reliability are excellent performance indicators to be included 

in decision-making platforms. 

In this chapter, which is based on Decò and Frangopol (2011), a flexible 

computational approach for assessing the time-dependent total risk as an indicator of 

the life-cycle performance and as an estimation of the consequences of potential 

failures has been presented. The computation is managed by using the software 

MATLAB, which collects the results obtained by other programs (such as RELSYS, 

HAZUS, and SAP2000), online tools, and databases (such as, the 2009 Earthquake 

Probability Mapping, NBI database, and the USGS water data). The effects, in terms 

of failure probabilities and occurrence of consequences of most common hazards (live 

loads, environmental attacks, scour, and earthquakes) have been investigated. 

Furthermore, structural redundancy, which can mitigate undesirable effects due to a 

malfunctioning risk communication process, has been modeled and implemented by 

introducing a risk modifier coefficient. A high level of system redundancy 

corresponds to high possibilities of providing warnings of partial or complete failure. 
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Accordingly, the proposed risk modifier coefficient will reduce and increase risk for 

redundant and non-redundant structures, respectively. 

The following conclusions can be drawn: 

1. Using the proposed methodology, the time-dependent total risk of a bridge under 

multiple hazards, such as, live loads, corrosion, scour, and earthquakes can be 

reasonably predicted. 

2. The interpretation of the results given by the PDFs of the time-to-failure associated 

with each considered hazard represents a valuable tool for the identification of the 

most dangerous hazards affecting the bridge under investigation. In the specific 

case study considered, the hazard associated with scour is the most critical (Figure 

2.9(d)). 

3. While assessing risk, the level of detail in modeling the effects of a potential 

hazard must fit the importance of such hazard with respect to total risk. A highly 

detailed model is needed only for those hazards with significant contributions to 

the total risk. For instance, in the investigated case study, it has numerically been 

proven that risk due to earthquakes is negligible (Figure 2.10(d)), therefore for this 

bridge a low level of detail in modeling the earthquake effects is fully justified. 

4. Bridge risk assessment is a process that carries significant epistemic and aleatory 

uncertainties generated by multiple sources such as the assessment of the bridge 

vulnerability and the consequences associated with bridge failure or malfunction. 

The treatment of such uncertainties in modeling the bridge performance over time 

requires exceptional care. Figure 2.11(a) shows that the dispersion of the time-
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dependent total risk increases over time. This is mainly due to the presence of 

uncertainties that increase over time. 

5. The investigation on the normalized indirect risk index provides useful 

information about the importance of the considered bridge. The effect of a 

potential failure may have great impact on the economy of the surrounding areas, 

causing indirect losses to be much greater than the direct ones over time (as shown 

in Figure 2.11(b)). 

The implementation of risk profiles into a life-cycle framework for the optimal 

maintenance planning is a topic of major interest. Furthermore, decision makers must 

base their judgments according to the level of risk, and rank different structures for the 

optimal allocation of funds. Lastly, the implementation of the proposed framework for 

quantitative risk assessment may also be used for studies on transportation networks. 
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Table 2.1 Risk modifier coefficient given the annual system reliability and 
redundancy indices. 

Annual redundancy 
index 

Annual system reliability index 
<2.0 2.0 to 3.5 3.5 to 4.5 4.5 to 6.0 > 6.0 

< 10 1.2 1.2 1.2 1.2 1.2 
10 to 50 1.1 1.1 1.1 1.1 1.1 
50 to 250 1.0 1.0 1.0 1.0 1.0 

250 to 1250 1.0 1.0 0.9 0.9 0.9 
> 1,250 1.0 1.0 0.8 0.8 0.8 
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Table 2.2 Parameters of the assumed random variables associated with 
geometrical and material properties, loads, and corrosion effects for the 
considered bridge superstructure. 

Random variables Mean COV Distribution 
type Ref. 

Bottom flange yielding stress 345 MPa 0.12 LN COV based on Estes (1997) 
Concrete compressive strength 27.6 MPa 0.18 LN COV based on Estes (1997) 
Concrete deck thickness 191 mm 0.0405 LN COV based on Estes (1997) 
Concrete elastic modulus 26435 MPa 0.05 LN COV assumed 
Corrosion initiation time (for 
top steel reinforcement) 19.07 years 0.273 LN Estes (1997) 

Deck dead load moment varies (Nm) 0.1 LN COV based on Estes (1997) 
Epistemic uncertainty 
coefficient for load  1 0.11 LN Ang and de Leon (2005) 

Epistemic uncertainty 
coefficient for resistance  1 0.06 LN Ang and de Leon (2005) 

Girder load moment varies (Nm) 0.08 LN COV based on Estes (1997) 
Live load moment varies (Nm) varies Type I Largest Akgül (2002) 
Longitudinal bar diameter 15.88 mm 0.015 LN COV based on Estes (1997) 
Railing load moment varies (Nm) 0.1 LN COV based on Estes (1997) 
Steel bar corrosion coefficient 0.0203 0.03 LN Thoft-Christensen (1998) 
Steel bar yielding stress 414 MPa 0.11 LN COV based on Estes (1997) 
Steel elastic modulus 210000 MPa 0.05 LN COV assumed 
Steel girder corrosion 
coefficient A 80.2 µm 0.42 LN Albrecht and Naeemi (1984) 

Steel girder corrosion 
coefficient B 0.593 0.405 LN Albrecht and Naeemi (1984) 

Steel plate thickness varies (mm) 0.015 LN COV assumed 
Steel plate width varies (mm) 0.015 LN COV assumed 
Top flange yielding stress 345 MPa 0.12 LN COV based on Estes (1997) 
Transversal bar diameter 19.05 mm2 0.015 LN COV based on Estes (1997) 
Wearing surface load moment varies (Nm) 0.25 LN COV based on Estes (1997) 
Web yielding stress 345 MPa 0.12 LN COV based on Estes (1997) 

 Min. Max.   

Steel bar corrosion parameter 2 mA/cm2 3 mA/cm2 Uniform Thoft-Christensen (1998) 

Note: LN = log-normal distribution; COV = coefficient of variation. 
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Table 2.3 NBI items used for the assessment of scour effects at year 2009 
(FHWA 2009). 

NBI 
Item No. Description Value Meaning given by FHWA (1995) 

26 Functional classification of 
inventory route 11 Principal Arterial - Other Freeways or 

Expressways 
27 Year built 1961  

42A Type of Service on bridge 1 Highway 

42B Type of Service under 
bridge 5 Waterway 

43A Kind of Material/Design 4 Steel continuous 

43B Type of 
Design/Construction 02 Stringer/Multi-beam or Girder 

49 Structure length (m) 196  

52 Deck width, out-to-out (m) 10.7  

71 Waterway adequacy 8 
Bridge deck above roadway 
approaches. Slight chance of 
overtopping roadway approaches. 

113 Scour critical bridges 5 
Bridge foundations determined to be 
stable for calculated scour conditions; 
scour within limits of footing or piles. 
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Table 2.4 Annual probabilities of the river being in specific dimensionless depth 
ranges and annual failure probabilities associated with the 
dimensionless depth ranges (based on Stein et al. 1999). 

Annual probabilities 
Dimensionless depth ranges 

0 to 0.25 0.25 to 0.50 0.50 to 0.75 0.75 to 1.00 >1.00 
Annual probabilities of the 
river being in specific 
dimensionless depth ranges 

0.86457 0.13531 0.000122 6.47E-07 7.16E-09 

Annual failure probabilities 
(scour vulnerability = 4) 0.06 0.1 0.15 0.26 0.41 

Annual failure probabilities 
(scour vulnerability = 5) 0.01 0.04 0.08 0.16 0.27 

Annual failure probabilities 
(scour vulnerability = 6) 0.002 0.01 0.03 0.08 0.16 
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Table 2.5 Statistical parameters of the assumed random variables used for the 
evaluation of the consequences (all the COV are assumed). The costs 
refer to their values at year 2010, which corresponds to the 49th year 
after construction (1961). 

Random variables Mean COV Distribution 
type References 

ADT 732 - 33411 0.20 LN Mahmoud, Connor and 
Bowman (2005) 

ADTT/ADT ratio 0.12 0.20 LN Mahmoud, Connor and 
Bowman (2005) 

Average compensation  
(truck drivers) 26.97 USD/hour 0.15 LN AASHTO (2003) 

Average detour speed 50 km/hour 0.15 LN Assumed 
Average vehicle 
occupancies for cars 1.5 0.15 LN Assumed 

Average vehicle 
occupancies for trucks 1.05 0.15 LN Assumed 

Average wage (car drivers) 22.82 USD/hour 0.15 LN AASHTO (2003) 
Discount rate 3% 0.15 LN Assumed 
Epistemic uncertainty 
coefficient for 
consequences 

1 0.15 LN Assumed 

Length of detour 2.9 km NA NA Based on the 
transportation network 

Rebuilding costs 894 USD/m2 0.20 LN Stein et al. (1999) 
Running costs for cars 0.08 USD/km 0.20 LN Assumed 
Running costs for trucks 0.375 USD/km 0.20 LN Assumed 
Time value of a cargo 4 USD/hour 0.20 LN Assumed 

Note: LN = log-normal distribution; COV = coefficient of variation; NA = not available. 
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Figure 2.1 General framework for the quantitative assessment of bridge-related 
risk in a multi-hazard context. 
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Figure 2.2 Highway bridge: (a) deck and girders, (b) longitudinal cross-section, 
and (c) three critical cross-sections of the girders with dimensions in 
mm. 
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Figure 2.3 General framework for risk assessment of highway bridges subjected to 
hazard induced by (a) live loads and environmental attack, (b) scour 
and environmental attack, and (c) earthquakes and environmental 
attack. 
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Figure 2.4 (a) Critical failure mechanisms of a single girder, (b) series-parallel 
system model collapse of a single girder (System I), (c) series-parallel 
system used for bridge superstructure collapse (System II), and (d) 
series-parallel system used for the evaluation of bridge redundancy 
(System III). 
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Figure 2.5 Profiles of annual reliability associated with bridge superstructure 
failure βf,sys (a); four-girder system failure βf,4g, exceedance of the 
yielding limit state (first yielding) βy,4g, and deck failure βdeck (b); and 
the profiles of annual failure probability associated with bridge failure 
Pf,sys (c); four-girder system failure Pf,4g, deck failure Pdeck, and 
exceedance of the yielding limit state (first yielding) Py,4g (d). Point A 
refers to year 50, where the effects on reliability and failure probability 
profiles induced only by corrosion (βf,sys)CORR, (Pf,sys)CORR become more 
severe than the ones due only to the variation of live loads (βf, sys)LL, (Pf, 

sys)LL over time. 
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Figure 2.6 Profiles of mean and mean plus one standard deviation of (a) the annual 
failure probability due to scour, and (b) the annual occurrence 
probabilities of complete damage due to earthquakes. Scour annual 
failure probabilities are known for the time interval between 1992 and 
2009. The probability profiles associated with complete damage due to 
earthquakes are evaluated for years 0, 20, 40, 60, and 80. The 
intermediate values are given by a third-order fitting polynomial 
equation. 
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Figure 2.7 Grid for the considered earthquake scenarios (magnitudes 6, 6.5, and 
7). 
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Figure 2.8 (a) Hazard functions associated with the live loads, scour, and 
earthquakes, and (b) redundancy index profile of the bridge 
superstructure associated with the effect induced by live loads. 
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Figure 2.9 Profiles of annual and time-dependent failure probabilities associated 
with hazards due to (a) live loads Pf,sys, TDPf,sys, (b) scour Pf,SC, TDPf,SC, 
and (c) earthquakes PCD, TDPCD. (d) PDFs (Weibull functions) of the 
time-to-failure associated with each hazard. 
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Figure 2.10 Profiles of mean (μ) and mean plus one standard deviation (μ + σ) of 
direct and indirect risks associated with hazards due to (a) live loads 
RD,LL, RI,LL, (b) scour RD,SC, RI,SC, and (c) earthquakes RD,EQ, RI,EQ, and 
(d) profiles of mean time-dependent total risk R, and mean total risks 
for live loads RT,LL, scour RT,SC, and earthquakes RT,EQ. 
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Figure 2.11 Profiles of (a) mean (μ) and mean plus (μ + σ) and minus (μ − σ) one 
standard deviation of the total time-dependent risk, and (b) normalized 
indirect risk index (NRID). 
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CHAPTER 3 

LIFE-CYCLE RISK ASSESSMENT OF SPATIALLY 

DISTRIBUTED AGING BRIDGES UNDER SEISMIC AND 

TRAFFIC HAZARDS 

3.1  INTRODUCTION 

Life-cycle management of single structures or groups of structures has become an 

issue of great relevance for many countries, including the United States. Maintenance 

and retrofit are crucial in preventing excessive deterioration of structural performance 

over time. Efficient and optimal maintenance strategies must be included in a general 

framework able to capture the social effects produced by the gained benefit. In this 

context, life-cycle risk assessment provides a tool that directly relates the effects of 

potential hazards with the associated consequences. During their designed lifetime, 

structures and infrastructures are intended to withstand the effects produced by a 

spectrum of hazards that could generate major safety and serviceability concerns. 

Transportation networks rely on the serviceability of their single bridges in order to 

allow users to reach their destinations in a reasonable time. 

The aim of this chapter, which is based on Decò and Frangopol (2012) and Decò 

and Frangopol (2013a), is to provide a probabilistic approach for the assessment of 

lifecycle risk of a group of aging bridges within a transportation network. Both 



86 

 

structural vulnerability and potential consequences induced by hazards are time-

dependent. Bridge vulnerabilities are evaluated with respect to hazards induced by 

earthquakes and abnormal traffic. Based on the original approach proposed by Cornell 

(1968) and on the method used by Jones, Middelmann and Corby (2005), the adopted 

probabilistic seismic hazard analysis is based upon the generation of random 

earthquakes spatially distributed over a region and having a random magnitude that 

follows a truncated-exponential relationship. Then, according to Basöz and Mander 

(1999) and including aging considerations, time-dependent fragility analysis provides 

the probability of exceeding specific damage states (slight, moderate, extensive, and 

complete) over time. Time-dependent vulnerability due to traffic, mainly affecting the 

bridge superstructure, is modeled assuming for each bridge a Weibull distribution of 

the time-to-failure (Maunsell Ltd.1999). Risk is assessed for different levels of bridge 

serviceability and, therefore, different consequences are associated with each 

serviceability level. Direct and indirect consequence analyses include the probabilistic 

evaluation of the monetary values associated with rebuilding costs, rehabilitation 

costs, material damage costs, operating costs, time-loss costs, loss of human life costs, 

and injury costs. Both epistemic and aleatory uncertainties are considered. The profiles 

of time-dependent direct, indirect, and total risk are developed for each bridge within 

the network. A simplified method is used to compute the risk associated with a small 

transportation network. 

This chapter develops a rational framework for the quantitative assessment of life-

cycle risk of spatially distributed aging bridges under seismic and traffic hazards. 

Section 3.2 develops the approach for the evaluation of the bridge vulnerability due to 
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seismic and traffic hazards. Section 3.3 performs the comprehensive consequence 

analysis. Section 3.4 assesses life-cycle risk of groups of bridges based on the level of 

serviceability of single bridges within a transportation network. In Section 3.5, a group 

of existing bridges located north of the San Diego metropolitan area is investigated by 

applying the proposed approach. Finally, Section 3.6 provides the conclusions of this 

chapter that is based on a published paper (Decò and Frangopol 2012, Decò and 

Frangopol 2013a). 

3.2  BRIDGE VULNERABILITY UNDER MULTIPLE HAZARDS  

The estimation of time-dependent bridge vulnerability is affected by the level of detail 

required by the type of analysis. When dealing with analyses at the network scale, 

simplifications must be introduced, and, consequently, the accuracy of the analysis is 

affected by approximations (Frangopol and Bocchini 2012). 

Seismic and traffic hazards affect the whole bridge structure. However, different 

bridge components are more likely to fail due to different effects that can be caused by 

specific hazards. For instance, vertical loads (due to traffic hazard) mainly affect the 

bridge superstructure that mostly involves flexural failure mode (Akgül 2002), while 

seismic fragility of the bridge is largely dependent on bridge substructure components 

(columns, abutments, and bearings, according to Padgett and DesRoches (2007) and 

Ghosh and Padgett (2010)). Therefore, load effects can be analyzed separately for 

bridge superstructure and substructure, respectively. Moreover, load effects induced 

by seismic and traffic hazards are considered to be statistically independent since their 

occurrences are independent. 
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3.2.1  SEISMIC VULNERABILITY 

During the last decade, seismic vulnerability of bridges was a topic extensively studied 

(Basöz and Mander 1999, Nielson and DesRoches 2007). Fragility analysis of bridges 

is conducted based on a simulated set of ground motions caused by earthquakes 

having random magnitudes and random spatial epicenter coordinates over a region 

(Chang, Shinozuka and Moore 2000, Sánchez-Silva and Rackwitz 2004, Jones, 

Middelmann and Corby 2005). 

3.2.1.1 Probabilistic ground motion 

In this study, the assessment of risk relies on simulations of seismic events striking 

within a considered region. The following steps summarize the adopted procedure to 

simulate the seismic scenarios: 

� Definition of a set of random seismic events: a specific number of random 

earthquake events EQ, is generated within the region under investigation. 

� Assignment of a random Richter magnitude M: according to Cosentino, Ficara and 

Luzio (1977), depending on the defined seismic region, and during a given time 

period, the frequency-magnitude relationship can be modeled by adopting a 

truncated exponential probability density function (PDF) defined as 
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where M0 is the threshold magnitude value, Mp is the maximum regional finite 

magnitude value, and β is a distribution parameter. 
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� Assignment of a random location and temporal occurrence for each seismic event: 

event coordinates (latitude Lat and longitude Long) are randomly generated within 

the considered area. The epicenter coordinates (x and y) of the i-th random 

earthquake, over the considered square seismic region, are assumed to be random 

variables triangularly distributed. Moreover, the temporal occurrence of the 

seismic events is assumed to be uniform distributed over the considered life span. 

� Definition of the characteristics of each generated seismic event: information 

regarding earthquake characteristics must be assigned, including rupture geometry 

parameters (depth, width, and dip angle). Furthermore, earthquake depth is 

randomly generated following a triangular distribution. The rupture length Rl and 

width Rw of each seismic event depends on the random magnitude (Wells and 

Coppersmith 1994) 

� � MbaR lll �log  (3.2) 

� � MbaR www �log  (3.3) 

where al, aw, bl, and bw are coefficients depending on the earthquake characteristics 

(their values are given in Wells and Coppersmith 1994). Furthermore, the 

orientation angle of the rupture trace is also considered random for each generated 

event. 

Based on historical data, correlation among epicenter coordinates, depths, and 

magnitudes is obtained and implemented while generating the random events. 
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3.2.1.2 Bridge fragility analysis 

The distance between the rupture traces of the i-th earthquake and the locations of the 

j-th distributed bridge influences the level of expected structural damage. The 

attenuation relationship proposed by Campbell and Bozorgnia (2007) is implemented 

while modeling the effect of seismic hazard. The median ground motion model is 

described by 

j
sed

j
sitehngflt

j
dismag

j ffffffY �����ˆln  (3.4) 

where InŶ is the natural logarithm of the median value of the peak ground acceleration 

(PGA) or of the response spectra accelerations (PSA) for several oscillator periods, fmag 

is the magnitude term, fdis is the distance term, fflt is the style-of-faulting term, fhng is 

the hanging-wall term, fsite is the shallow site response term, and fsed is the deep site 

response term. Epistemic uncertainties are accounted for by (Campbell and Bozorgnia 

2007) 

YYY jj
unc

ˆlnˆlnln ��  (3.5) 

where lnYunc is the predicted value of InŶ accounting for epistemic uncertainties and 

ΔlnŶ is the incremental value of the median ground motion due to epistemic 

uncertainties. All the terms introduced (in Equations (3.4) and (3.5)) and their relevant 

evaluations are discussed in detail in Campbell and Bozorgnia (2007). 

According to Mander (1999), by means of fragility analysis, four curves describing 

the probability of exceeding specific damage states (slight, moderate, extensive, and 
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complete) can be developed for each seismic scenario and for each considered bridge. 

Fragility curves are defined by log-normal cumulative probability functions 

� �
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where P[DS|PSA] is the probability of exceedance of a specific damage state DS given 

a specific PSA (period of 1 sec), βc is the normalized composite log-normal standard 

deviation, ADS is the median spectral acceleration associated with the occurrence of the 

damage state DS, and Φ is the standard normal cumulative distribution function. The 

approach necessitates bridge data (bridge class, number of spans, skew angle, site 

class, and year of construction), which can be obtained from the National Bridge 

Inventory (NBI) (FHWA 2010). 

3.2.1.3 Fragility time-dependency 

The effect of corrosion on the substructure due to exposure to chloride ions may 

influence the seismic response of a bridge (Ghosh and Padgett 2010). Life-cycle 

analysis must account for the potential increase of seismic effects on aged structures. 

In this context, the bridge fragility depends on the time t at which the simulated 

earthquake strikes. Thus, Equation (3.6) changes as 
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where ADS(t) represents the time-dependency of the fragility parameters. General 

methods accounting for the deterioration process of seismic-sensitive components for 
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different bridges and deterioration typologies are usually missing in the existing 

literature. Although this is a formidable task, if further studies are developed and 

validated (for instance, by means of collecting field data, which are usually 

unavailable for long-term predictions), the proposed general framework would be able 

to accommodate such considerations. In the proposed approach, the time-dependent 

median spectral acceleration ADS(t) associated with the occurrence of a specific 

damage state of the j-th bridge is assumed to vary in time by following a linear 

degradation 

� � � � � �!"�" tAtA j
DS

j
DS 10  (3.8) 

where ADS[0] is the original fragility parameter (Basöz and Mander 1999), t is the 

time, and γ is the aging coefficient. Indications concerning possible values of the aging 

coefficient can be derived from Ghosh and Padgett (2010), where a reduction of about 

30%–40% of the initial fragility parameter was reported in 100 years. The use of a 

linear degradation law captures the total reduction of the fragility parameters over the 

bridge’s lifetime. However, the adopted degradation law may lead to some 

approximations that are usually unavoidable for analyses of groups of bridges at the 

network scale, mainly due to the lack of detail and/or insufficient data (Frangopol and 

Bocchini 2012). 

3.2.2  TRAFFIC-INDUCED VULNERABILITY 

In the past, lifetime functions have been developed for bridge life-cycle-related topics 

(Maunsell Ltd. 1999). For the bridge superstructure, the effects caused by corrosion 
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processes or general aging phenomena can be accounted for by means of lifetime 

functions (van Noortwijk and Klatter 2004, Yang, Frangopol and Neves 2004). 

Accordingly, time-dependent bridge performance with respect to vertical load may be 

modeled by considering the time-to-failure of the superstructure as a random variable 

(see Chapter 2). Weibull distribution can be used for the assessment of single bridge 

superstructures due to the effects of traffic and aging. The PDF and the associated 

cumulative distribution function (CDF) of the time-to-failure of the superstructure (fttf 

and Fttf, respectively) for the j-th bridge are modeled by a Weibull distribution as 

follows (Leemis 1995) 

� � � �� � � � 01
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where κ and λ are the shape and scale parameter, respectively, that can be found by 

statistical inference of observations as shown in previous studies (van Noortwijk and 

Klatter 2004), or by analyzing bridge failure modes considering the failure of one or 

more components as described in Yang, Frangopol and Neves (2004). 

The annual failure rate of the superstructure due to traffic hazard, which coincides 

with its annual failure probability PT,f, given that the structure has survived until time t 

and given that the time interval is one year, is obtained by (see Chapter 2) 
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3.3  CONSEQUENCE ANALYSIS 

This section presents the consequence analysis of specific risks that are associated 

with seismic and traffic hazards. The quantification of risk requires the evaluation of 

bridge vulnerability for each identified hazard and the assessment of the negative 

consequences. Moreover, while performing life-cycle analyses, time is a variable of 

extreme importance to be incorporated. In fact, some types of consequences may vary 

with time, such as those associated with the average daily traffic (ADT) of a carried 

route. In this chapter, consequence analysis uses an economic approach in order to 

associate regional economic impacts with a monetary value expressed in United States 

dollars (USD). 

Direct consequences include rebuilding costs, rehabilitation costs, and material 

damage costs, whereas indirect consequences include operating costs, time-loss costs, 

and accident costs (loss of human lives and injuries). Material damage costs and 

accident costs depend on the number of accidents associated with bridge failure. 

When consequences are estimated in terms of monetary values, the prediction of 

future risk must account for the difference between present and future values of 

monetary losses. Thus, future consequences in terms of monetary values are given by 

� � � �trPVtFV � 1  (3.12) 

where FV(t) is the future monetary value with respect to year t, PV is the present 

monetary value, and r represents the annual discount rate of money. 

Time-dependent direct CD(t) and indirect CI(t) consequences associated with a 

bridge damage/failure for a specific year t are defined in Table 3.1, where EReb, EReh, 



95 

 

EMD, EOp, ETL, ELHL, and EInj are the factors accounting for epistemic uncertainties 

associated with rebuilding costs, rehabilitation costs, material damaged in a vehicular 

accident, operating costs, time-loss costs, loss of human lives, and injury costs, 

respectively, cReb is the rebuilding cost per square meter (USD⁄m2), c0 are costs that do 

not depend on the level of damage (USD), cS,car is the car salvage value (USD), cS,truck 

is the truck salvage value (USD), cS,cargo is the value of the cargo (USD), cOp,car and 

cOp,truck are the operating costs of cars and trucks per kilometer (USD/km), 

respectively, cW is the wage per hour (USD/h), cTC is the total compensation per hour 

(USD/h), cInv is the inventory cost (USD/h), cVSL is the value of a statistical life (VSL) 

(USD), cInj is the cost associated with injuries (USD), W and L are the bridge width 

(m) and length (m), respectively, δ is a coefficient accounting for the level of damage 

depending on bridge residual serviceability, A(t) is the ADT referred to year t, τ 

represents the average daily truck traffic as percentage of ADT, S(t) is the traveling 

speed (km/h), Dl is the bypass detour length (km), d is the duration of the detour 

(days), OCar and OTruck are the vehicle occupancies for cars and trucks, respectively, 

Tm(t) is the marginal travel time (h) required to cover the traveled route or the detour 

depending on bridge serviceability and traffic speed, and αLHL and αInj are the 

percentages of expected human losses and injuries, respectively. 

In summary, rebuilding costs are based on the cost per square meter of deck 

surface (based on Stein et al. 1999), while rehabilitation costs depend on the level of 

damage affecting the bridge. It has been assumed that rehabilitation costs should not 

exceed 60% of the construction costs, otherwise the bridge would be replaced (based 

on Sánchez-Silva and Rackwitz 2004). Material damage costs are associated with 
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material losses in terms of the residual values of cars and trucks involved in potential 

accidents when a sudden failure occurs. Operating costs are generated when users 

travel through a bypass detour that is longer than the original route while time-loss 

costs are associated with the marginal time loss for users and goods while traveling 

through a partially serviceable bridge or through the bypass detour (based on Stein et 

al. 1999). Costs due to the loss of human lives and injuries are associated with the 

number of expected fatalities and injuries due to a potential sudden failure, 

respectively. 

The time needed for the restoration of bridge serviceability is assumed as: 36 

months for ADT ≤ 100; 24 months for 100 < ADT ≤ 500; 18 months for 500 < ADT ≤ 

1,000; 12 months for 1,000 < ADT ≤ 5,000; and 6 months for ADT > 5,000 (Stein et 

al. 1999). Regarding the costs due to the loss of human life, the VSL includes out-of-

pocket costs, lost work and housework-related costs, human capital costs, and the 

expenses people are willing to face to prevent injury, according to Caltrans (2009) and 

USDOT (2011). Meanwhile, as per Spicer and Miller (2010), costs associated with 

injuries are a fraction of VSL depending on the injury severity, based on the concept 

of Quality Adjusted Life Years (QALYs). Most of the parameters included in the 

evaluation of costs are affected by uncertainties, hence they are treated as random 

variables. 

The estimation of the traffic volume of a route containing a bridge is provided by 

the ADT information of the bridge, which can be obtained from the National Bridge 

Inventory (NBI) data file (FHWA 2010). The ADT value varies over time. The 

magnitude of this variation can be assessed by investigating NBI data files referring to 



97 

 

different years. The proposed model for the prediction of ADT, associated with the  

j-th bridge, is assumed based on a linear estimator function and on a time interval of 

10 years as follows 
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where A[k] is the ADT value referred to year k, ρ is the percentage of traffic increment 

between two available ADTs spaced 10 years apart, and t is the time (years). If ADT is 

expected to decrease over time, ρ is negative. 

The speed S(t) required to cover a certain route distance depends on the route 

capacity and traffic conditions. According to Martin and McGuskin (1998), for each 

considered route or detour associated with the j-th bridge, such speed is defined as 
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where S0 is the free-flow traffic speed, F(t) is the total traffic flow, FC is the bridge 

traffic flow capacity (usually considered to be 2,000 and 1,000 vehicles per hour per 

lane for highways and minor arterials, respectively), and nl is the number of lanes 

carried by the bridge. The total traffic flow can be obtained by the ADT associated 

with each bridge. Based on TRB (2000) and Caltrans (2009), the relationship between 

traffic flow and ADT accounting for peak and off-peak hours is defined as 
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where K1 and K2 are the percentages of traffic associated with the portion of ADT 

during the peak and off-peaks hours, respectively, and D is the directional factor. 

Accordingly, the consequence analysis is performed for these two time periods 

considering every single day. 

3.4  LIFE-CYCLE RISK ASSESSMENT 

The identification of the most dangerous hazards depends on the level of detail that a 

specific risk assessment requires. The required scale of specific approaches determines 

the level of the analysis. Moreover, the identification of critical scenarios to be 

considered depends on the desired accuracy level. In this chapter, the effects of 

hazards induced by earthquakes and traffic are investigated for a group of bridges 

belonging to a transportation network. Since structural vulnerabilities and 

consequences are time-dependent, lifetime considerations are necessary. 

3.4.1  SERVICEABILITY 

Risk assessment is based on the level of serviceability of the single bridges within a 

transportation network. Bridge serviceability can be defined as the ability to provide 

adequate service to users. Although risk is affected when failure occurs, other 

circumstances may put the bridge at risk. For instance, the closure of one traffic lane 

causes indirect consequences in terms of traffic delay. The vehicular traffic capacity 

and the speed required to cover the link associated with the j-th bridge are affected by 
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the level of serviceability of the bridge. Different service levels have already been 

investigated in previous studies (Adey, Hajdin and Brühwiler 2003, Bocchini and 

Frangopol 2011a). Accordingly, a bridge may be subjected to interventions in order to 

improve its performance with respect to the considered hazard-induced effects. 

Serviceability may vary over time depending on the performance level and damage 

level experienced by the bridge during its lifetime. In this chapter, the bridge 

serviceability is classified into four main service states: 

1. Fully serviceable (S1): the bridge is open and fully available to users. 

2. Partially serviceable (S2): the bridge is only partially available to users due to 

minor rehabilitation work. Some of the lanes are closed to traffic and these 

conditions potentially increase delay for travelers. 

3. Closed (S3): the bridge is closed due to major rehabilitation work. This restriction 

causes travelers to drive through a bypass detour, thus generating loss of time and 

longer travel distance. 

4. Collapsed (S4): the bridge needs to be rebuilt. The vehicular traffic must follow 

the bypass detour. 

It is assumed that a fully serviceable bridge does not generate any kind of negative 

consequences, and users traveling on the associated link reach their destination 

without being affected by any loss of time. 

3.4.2  RISK DEFINITION 

Depending on the level of performance, the bridge serviceability will be associated 

with probabilities of being in one of the four service states (S1 to S4) defined 
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previously. For both seismic and traffic hazards, the probabilities of being in a specific 

service state for the j-th bridge at time t are summarized in Table 3.2, where PE,S1(t) 

and PT,S1(t), PE,S2(t) and PT,S2(t), PE,S3(t) and PT,S3(t), and PE,S4(t) and PT,S4(t) are the 

probabilities of the bridge being in service state S1, S2, S3, and S4, respectively, due to 

seismic (subscript E) and traffic (subscript T) hazards; P[ND](t), P[SL](t), P[MOD](t), 

P[EXT](t), and P[COM](t) are the probabilities of having no damage ND, slight 

damage SD, moderate MOD, extensive damage EXT, and complete damage COM, 

respectively, P[S1|Surv](t), P[S2|Surv](t), and P[S3|Surv](t) are the probability of 

being in service states S1, S2, and S3, respectively, given that the bridge does not fail, 

PT,f(t) is the probability of failure, and t is the time. For a bridge, the events of being in 

specific service states are mutually exclusive events within the single hazard. 

The event tree of Figure 3.1 shows how serviceability states, traffic capacity, 

bridge vulnerability, and consequences are considered. The values of the conditional 

probabilities P[S1|Surv](t), P[S2|Surv](t), and P[S3|Surv](t) of Equations (3.28–2.30) 

in Table 3.2, are based on the percentage of time for which a bridge experiences full 

service, partial service, or closure, respectively. Such values can be obtained by 

considering the yearly duration of maintenance works (such as preventive or essential 

maintenance). 

Finally, based on the general definition of risk reviewed in Appendix A and 

recalling that service state S1 does not cause any consequences, the proposed life-

cycle risk definitions for seismic and traffic hazards are, respectively, as follows 
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where CD,Si(t) and CI,Si(t) are the time-dependent direct and indirect consequences, 

respectively, given a specific serviceable state Si. 

In a bridge, although a specific service state due to seismic hazard and a specific 

service state due to traffic hazard are statistically independent events, their potential 

conjunct occurrence cannot be excluded, even though it is unlikely to happen. If this 

occurs, the consequences are determined by those associated with the worse service 

state. Therefore, the life-cycle total risk RTot(t) for the j-th bridge is 
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where CTot,Si(t), CTot,Sk(t), and CTot,Sn(t) are the time-dependent total consequences for 

each service state Si, Sk, and Sn, respectively. The introduced formula accounts for the 

cases in which the bridge is affected by a specific service state due to a single hazard 

or to the conjunction of both. 

3.4.3  BRIDGE NETWORK 

The approach for the evaluation of risk of a complex transportation network requires 

the study of traffic flow distribution within it. For instance, graph theory may be used 

to assign an origin-destination matrix for each vertex included in the model, and 

bidirectional links connecting the vertex represent the traffic flow directions (Gibbons 
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1985). Although such a method is powerful, the assumption that all the travelers 

remain within the considered network may lead to approximations. Bocchini and 

Frangopol (2011a) enhanced graph theory applied to transportation networks, 

including the effect on traffic flows through the quantification of the level of damage 

of the bridges carrying the links. 

For some small networks, a good approximation for the evaluation of network risk 

consists in considering the actual traffic flow traveling on each bridge, which can be 

obtained by Equation (3.23). In this way, and according to Cesare et al. (1993), life-

cycle total risk for the network RNet may be evaluated as the sum of the risks generated 

by all the single bridges as 
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where B is the total number of bridges within the network. Equation (3.35) can 

provide indications on the risk associated with some small transportation networks, 

whereas for complex ones, the use of more sophisticated methods is required, 

including those presented for network reliability assessment (Liu and Frangopol 2005, 

Liu and Frangopol 2006). 

Figure 3.2 shows the developed flowchart for the assessment of the life-cycle 

network risk. 
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3.5  CASE STUDY: GROUP OF EXISTING BRIDGES  

The proposed approach is applied to a group of existing bridges in order to investigate 

the life-cycle risk caused by seismic and traffic hazards. Figure 3.3 shows the 

schematic layout of the considered group of highway and secondary bridges within a 

specific network. A segment of the northbound of Interstate 15 belonging to the city of 

Escondido, California (north of the San Diego metropolitan area), and a segment of 

the northbound of the Centre City Parkway form the considered one-way network. 

There are two origin points, A1 and A2, and one destination point, E. The intersection 

of the two routes is in point C. Five bridges denoted as 1, 2, 3, 4, and 5 are included in 

this analysis. 

A Monte Carlo simulation is the core of the developed program performed by the 

software MATLAB (The MathWorks 2011). Based on simulated samples generated 

by the Latin Hypercube technique (McKay, Conover and Beckman 1979) (reviewed in 

Appendix A), histograms, expected values, and specific percentiles of life-cycle risk 

are evaluated for a group of bridges. According to McKay, Conover and Beckman 

(1979) the generation of random numbers by using the Latin Hypercube technique is a 

valid alternative to crude Monte Carlo simulation, providing a better represented 

sample space with a limited number of samples. 

3.5.1  BRIDGE VULNERABILITIES 

Time-dependent structural performances by means of structural vulnerability are 

evaluated for seismic and traffic-induced hazards. Over time, structural vulnerability 
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increases due to aging considerations. All the obtained profiles span over 70 years, 

starting from 1978 (year in which the last bridge of the network has been built 

according to the collected NBI data (FHWA 2010)). 

The effect of seismic hazard is modeled herein by means of fragility analysis 

(Basöz and Mander 1999). The ground motion at each bridge location is simulated 

starting from 20,000 earthquakes randomly generated over a square area having a 

width of 100 km. From a parallel analysis performed by using 10,000 samples it was 

found that the difference in terms of mean total network risk is about 1%; therefore, it 

was deduced that 20,000 samples satisfy an acceptable level of convergence. The 

center of gravity of this region has the following coordinates: Lat. = 33.16° and  

Long = −117.10°. As shown in Figure 3.4, the epicenter coordinates (x and y) of the 

random seismic events are triangularly distributed between −50 km and 50 km with 

mode of 50 km, for the x-axis, and −50 km and 50 km with mode of 42 km for the y-

axis, respectively (see Figure 3.4). The magnitude of the random seismic events is 

provided by a sample obtained from a truncated exponential PDF (β in Equation (3.1) 

has been set to be equal to 1.1). The depth of the seismic source is triangularly 

distributed between 1 km and 30 km with mode of 8 km. The parameter β and the 

parameters of the triangular distributions (x-y axes and depth) are obtained by using 

the method of moments (Ang and Tang 2007) based on the analysis of the historic 

earthquakes database for the region under investigation (USGS 2011). The minimum 

and maximum magnitudes (Richter scale) considered are set as 4 and 8, respectively. 

Strike-slip earthquakes are randomly generated causing rupture lengths and widths 

evaluated according to Equations (3.2) and (3.3), respectively. Considering the 
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predominant direction (southeast to northwest) of the faults in the area, the orientation 

of the rupture traces are uniformly distributed with angles between 90° and 180°. For 

instance, Figure 3.4 shows the graphical representation of rupture traces over the 

considered region for 50 samples. The rupture traces are represented by solid lines in 

the plane x-y (inspired by Jones, Middelmann and Corby 2005). Epicenters and 

extreme points of the traces are shown as well. The projection of the shortest distance 

between a bridge and the random rupture trace is evaluated depending on rupture 

location and orientation. 

Each bridge is affected by ground motion depending on many factors accounted in 

the attenuation functions proposed by Campbell and Bozorgnia (2007). Once a set of 

PSA values is evaluated for the j-th bridge and for the i-th sample, time-dependent 

fragility analysis can be performed and exceedance probabilities of various damage 

states are calculated. The initial values of the fragility parameters are those calibrated 

by Basöz and Mander (1999). Further needed information and parameters concerning 

the bridges are found in the NBI database (FHWA 2010). By using Equation (3.8), the 

dependency of the median spectral acceleration ADS(t) associated with the occurrence 

of a specific damage state is evaluated by introducing the aging coefficient γ. The 

value of γ is set in order to obtain an assumed reduction of about 25% of the fragility 

parameter after 70 years (consistent with the results reported in Ghosh and Padgett 

2010). The result of this seismic analysis is a set of time-dependent probabilities of the 

bridges being in specific damage states: no damage P[ND](t), slight damage P[SL](t), 

moderate damage P[MOD](t), extensive damage P[EXT](t), and complete damage 

P[COM](t). 
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The vulnerability due to traffic hazard is evaluated by assuming that the PDF of 

the time-to-failure follows a Weibull distribution with parameters κ and λ. For this 

network analysis, κ and λ are assumed to be equal to 3 and 0.01 for bridges 1 and 2, 

respectively, and 5 and 0.01 for bridges 3, 4 and 5, respectively. These values are 

consistent with those reported in previous studies (van Noortwijk and Klatter 2004, 

Yang, Frangopol and Neves 2004). The time-dependent probability of failure of the 

superstructure is obtained by applying Equation (3.11). 

3.5.2  EVALUATION OF THE CONSEQUENCES 

The time-dependent monetary values associated with direct and indirect consequences 

are evaluated at this stage. Total costs depend on the knowledge of unitary costs (such 

as cost per square meter, cost per hour, etc.). Direct costs are those associated with 

structural and material losses (Equations (3.13–3.15) of Table 3.1). Rehabilitation 

costs are also defined as direct because they correspond to the amount of money that is 

needed towards the renewal of damaged structures. Indirect costs are associated with 

the loss of time, the marginal traveled distance, and with the losses due to the number 

of potential fatalities and injuries (Equations (3.16–3.19) of Table 3.1). The cost, for 

the years preceding 2011, are provided by Equation (3.12) by setting a negative time 

interval t, while the cost values for the years following 2011 are obtained by 

considering the future cost, using a positive time interval t in Equation (3.12). 

Some of the costs depend on the ADT of the road carried by the considered 

bridges. The prediction of the ADT may be provided by Equation (3.20), which 

considers their increment or decrement percentage within a time interval of 10 years 
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by means of ρ (Equation (3.21)). The speed of the traffic flow (Equation (3.22)) 

depends on the practical capacity of the route and on the total traffic flow over time 

(Equation (3.23)). According to Caltrans (2009), the peak period lasts five hours per 

day and the percent coefficients K1 and K2 of Equation (3.23) are equal to 8.48% and 

3.03%, respectively. Upon these considerations, the traveling speed and the marginal 

travel time within the network are accordingly affected depending also on the route the 

users are using (normal route or bypass detour). 

All the assumed values of the included basic statistical descriptors and their 

distribution types are summarized in Table 3.3. According to Ang (2010), a practical 

evaluation of epistemic uncertainty may usually rely on intuitive/engineering 

judgments, which lead to a specific reasonable range of possibilities, with an 

associated plausible distribution. 

Latin Hypercube (McKay, Conover and Beckman 1979) sampling is used with 

20,000 trials for the basic random variables, allowing the probabilistic calculation of 

the consequences, and for the simulation of the ground motion. 

3.5.3  LIFE-CYCLE RISK 

Seismic and traffic vulnerabilities determine the service states of each bridge (S1 to 

S4). Although losses are generated when a structural failure occurs (S4), service states 

S2 and S3 may also cause both direct and indirect consequences. 

By applying Equations (3.24–3.35), life-cycle risks can be calculated. Given that a 

bridge survives, conditional probabilities of being in service states S1, S2, and S3 for 

traffic hazard are assumed to be 0.94, 0.05, and 0.01, respectively. Such values are 
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based upon considerations on the annual percentage of time for which a bridge is open 

or subjected to rehabilitation actions requiring its closure or partial closure. Figure 3.5 

shows risk referred to the year 2011 induced by seismic (a,b,c,d,e) and traffic hazards 

(f,g,h,i,j) for each considered bridge of the transportation network in Figure 3.3. It can 

be noted that risk of bridges 1 and 2 is relatively smaller than risk for the other three 

bridges carrying the northbound of I-15. The results shown in Figure 3.5 can provide 

the sensitivity analysis of risk associated with different routes within the network. The 

predicted histograms of life-cycle risks referred to the year 2048 and, based on the 

simulated earthquakes and consequences, are shown in Figure 3.6. According to the 

proposed framework, it can be noticed that the expected predicted risk at year 2048 

can be three times higher than the risk associated with the year 2011. Moreover, 

although ADT is predicted to slightly increase over time and considering the future 

value of money (Equation (3.12)), seismic risk significantly increases over time for 

each considered bridge (Figure 3.5 and Figure 3.6). It was found that seismic risk is 

very sensitive to the decay of the fragility parameters; therefore seismic life-cycle 

analyses must address these aspects. From a parallel analysis, it is found that, based on 

a maximum reduction over time of the fragility parameters of about 25%, time-

dependent risk is about 44% higher than risk obtained with time-independent fragility 

parameters. Both Figure 3.5 and Figure 3.6 help analyze different routes for the small 

network studied in this chapter, but for complex networks, a comprehensive method 

that includes traffic redistribution must be considered in order to account for the 

increasing number of alternative routes. 
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Figure 3.7(a,b) shows the profiles of the mean value of direct and indirect life-

cycle risks, respectively, for the five bridges of the network. As shown, direct risks are 

consistent with bridge dimensions and types, indicating that bridge 1 is the smallest 

among the others, while indirect risk is found greater for those bridges carrying more 

traffic (i.e., 3, 4, and 5), causing more disruption in case of closures or failures. Figure 

3.7(c,d) reports on the mean and dispersion of risk showing the profiles (mean and 

90% and 95% percentiles) associated with direct and indirect risks for bridge 5 of 

Figure 3.3. Based on the proposed model, it can be concluded that total life-cycle risk 

is very sensitive to the indirect consequences that are significantly larger than the 

direct ones. Accordingly, higher dispersion has been found for indirect risk, which 

involves a great number of random variables adding further uncertainty. The 

contribution of the single types of consequences to total risk for the entire network is 

illustrated in Figure 3.8. Mean value profiles of all the types of direct (Figure 3.8(a)) 

and indirect (Figure 3.8(b)) risks are computed. The most significant loss contributions 

are found in rehabilitation costs and time-loss costs. Therefore, the parameters 

involved in the analysis of the costs associated with the loss of time require special 

attention for their estimation. A relevant outcome to be noticed is that, according to 

the proposed model, expected rehabilitation costs are greater than expected rebuilding 

costs depending on bridges and network service states (Figure 3.8(a)). 

Finally, the profiles of the life-cycle network risk are obtained. In Figure 3.9(a), 

the risk contribution of each bridge with respect to the network risk is reported. Figure 

3.9(b) shows the profiles of the mean value and 90% and 95% percentiles of the total 

life-cycle risk associated with the whole bridge network. Percentiles give an indication 
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of the dispersion of the obtained data and can set the basis for the calibration of life-

cycle risk-informed management of bridges within a transportation network. 

3.6  CONCLUSIONS 

Recently, life-cycle management of structures and infrastructures addressed issues 

related to risk-informed decision analysis. In this context, decisions may be based on 

the quantification of monetary values of most of the consequences caused by potential 

structural failures or malfunctions. 

This chapter, which is based on Decò and Frangopol (2012) and Decò and 

Frangopol (2013a), presented some important issues emerging from the life-cycle risk 

assessment of spatially distributed aging bridges within a transportation network. A 

detailed consequence analysis has been performed in order to evaluate the effects 

associated with different bridge service states (serviceability). Two of the most 

common hazards are considered in this chapter. The time-dependent effects of traffic 

hazard, including aging phenomena and seismic hazard, for an earthquake-prone 

region have been investigated. 

The following conclusions are obtained: 

1. When life-cycle risk is assessed under multiple hazards, the predominant hazard 

must be adequately modeled in order to achieve reliable estimates of total risk. The 

current case study helps to understand that, for the considered region, it is crucial 

to model the seismic hazard (earthquake scenarios) with a powerful tool such as 

the probabilistic ground motion and associated fragility analysis. In fact, for the 
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studied network, it was found that the only inclusion of risk induced by traffic 

hazard provides an incomplete analysis that may lead to a wrong decision process. 

2. As expected, the risk induced by seismic hazard increases over time due to 

structural aging consideration. However, a maximum reduction over time of the 

fragility parameters of about 25% leads to a much higher increase in risk (about 

44% higher than risk obtained with time-independent fragility parameters). 

Additional risk increment is due to the predicted increase of ADTs over time. 

3. The failure of any of the three bridges belonging to the I-15 (i.e., bridges 3, 4, and 

5 in Figure 3.3) generates dramatically high consequences. Within the network, 

risk for the bridges belonging to Centre City Parkway (i.e., bridges 1 and 2 in 

Figure 3.3) is almost negligible. 

4. It can be noted that the dispersion of seismic risk increases over time depending on 

the uncertainty affecting the prediction. Histograms and percentiles give an 

indication of such dispersion in the obtained risk profiles. The inclusion of 

epistemic uncertainties enhances the probabilistic model but adds further 

dispersion to the initial sample. 

5. According to the proposed framework, it is found that expected rehabilitation costs 

are greater than expected rebuilding costs. Whilst this is true in this case, this 

observation may change depending on the extent of damage, on the method of 

computation, and on the funding model. 

The implementation of risk profiles into a life-cycle framework helps the 

development of risk-informed optimal maintenance planning. The provided approach 

is useful for the evaluation of risk associated with single bridges within small 
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networks that may be ranked. Based on this, appropriate maintenance prioritization 

plans could be adopted. However, for complex networks, methods that include traffic 

redistribution must be considered. 
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Table 3.1 Summary of the considered direct and indirect consequences. 

Consequence type Eq. no. 
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* Based on Stein et al. (1999) 
† Based on Sánchez-Silva and Rackwitz (2004) 
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Table 3.2 Probabilities for a bridge of being in specific damage states in case of 
seismic (subscript E) and traffic (subscript T) hazards. 

Hazard type Service state Probability Eq. no. 

Seismic 

S1 � � � �� �tNDPtP jj
S1E ,  (3.24) 

S2 � � � �� �tSLPtP jj
SE 2,  (3.25) 

S3 � � � �� � � �� �tEXTPtMODPtP jjj
S3E �,  (3.26) 

S4 � � � �� �tCOMPtP jj
E,S4   (3.27) 

Traffic 

S1 � � � �� � � �� �tPtSurvS1PtP j
fT

jjj
S1T ,, 1| �"  (3.28) 

S2 � � � �� � � �� �tPtSurvS2PtP j
fT

jjj
S2T ,, 1| �"  (3.29) 

S3 � � � �� � � �� �tPtSurvS3PtP j
fT

jjj
S3T ,, 1| �"  (3.30) 

S4 � � � �tPtP j
fT

j
T,S4 ,  (3.31) 
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Table 3.3 Statistical descriptors and deterministic parameters used for the 
evaluation of the consequences. The costs refer to their values at year 
2011, which corresponds to year 33 of the profiles. 

Random variables Mean COV Distribution 
type References 

ADT Varies DNA DNA FHWA (2010) 
ADTT/ADT ratio Varies DNA DNA FHWA (2010) 
Compensation for truck drivers 
(USD/h) 29.28 0.31 LN AASHTO (2003) 

Detour speed (km/h) 30 0.15 LN Assumed 
Vehicle occupancies for cars 1.50 0.15 LN AASHTO (2003) 
Vehicle occupancies for trucks 1.05 0.15 LN AASHTO (2003) 
Wage for car drivers (USD/h) 23.36 0.28 LN AASHTO (2003) 
Epistemic uncertainty factor for 
injury costs 1 0.30 LN Assumed 

Epistemic uncertainty factor for 
loss of human life costs 1 0.30 LN Assumed 

Epistemic uncertainty factor for 
material damage costs 1 0.20 LN Assumed 

Epistemic uncertainty factor for 
material damage costs 1 0.20 LN Assumed 

Epistemic uncertainty factor for 
rebuilding costs 1 0.20 LN Assumed 

Epistemic uncertainty factor for 
rehabilitation costs 1 0.20 LN Assumed 

Epistemic uncertainty factor for 
operating costs 1 0.20 LN Assumed 

Epistemic uncertainty factor for 
time loss costs 1 0.20 LN Assumed 

Fixed rehabilitation costs (USD) 50,000 0.20 LN Assumed 
Length of detour (km) Varies DNA DNA FHWA (2010) 
Value of a statistical life (USD) 6,200,000  0.45 LN USDOT (2011) 
Operating costs for cars 
(USD/km) 0.40  0.19 LN AASHTO (2003) 

Operating costs for trucks 
(USD/km) 0.56 0.19 LN AASHTO (2003) 

Inventory costs (USD/h) 3.81  0.20 LN AASHTO (2003) 

 Min. Max.   

Annual discount rate (%) 2 3 Uniform Assumed 
Injury costs (USD) 651,000 6,200,000 Uniform USDOT (2011) 
Rebuilding costs (USD/m2) 993 - 1,324 1,655 - 2,207 Uniform DOTCA (2010) 

Note: LN = log-normal distribution; COV = coefficient of variation; DNA = does not apply. 
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Figure 3.1 Event tree summarizing bridge serviceability under seismic and traffic 
hazards. Different consequences (Equations (3.13–3.19) of Table 3.1) 
are associated with the serviceability states (S1 to S4). 
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Figure 3.2 Flowchart for the computation of the life-cycle risk for a network under 
seismic and traffic hazards.  
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Figure 3.3 Schematic layout of the transportation network. 
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Figure 3.4 Graphical representation of random epicenters, rupture traces, and 
bridge network over the considered region. The triangular distributions 
of the x-y axes and the representation of the projection of the shortest 
distance between a bridge and the rupture trace for different rupture 
locations and orientations are also reported. 
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Figure 3.5 Histograms of the current total risk (direct and indirect) due to 
(a,b,c,d,e) seismic hazard and (f,g,h,i,j) traffic-induced hazard for each 
bridge within the network at the year 2011. 
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Figure 3.6 Histograms of the predicted total risk (direct and indirect) due to 
(a,b,c,d,e) seismic hazard and (f,g,h,i,j) traffic-induced hazard for each 
bridge within the network at the year 2048. 

  

Total Seismic Risk (USD millions)

Sa
m

pl
es

Sa
m

pl
es

Sa
m

pl
es

Total Traffic Risk (USD millions)

(b)

(c)

(d)

(e)

(f)

(g)

(j)

(h)

Traffic Hazard
Bridge 1

Year 2048
20,000 Samples

Traffic Hazard
Bridge 2

Year 2048
20,000 Samples

Traffic Hazard
Bridge 3

Year 2048
20,000 Samples

Traffic Hazard
Bridge 5

Year 2048
20,000 Samples

Sa
m

pl
es

400

800

1200

14800

15200

0

0

Traffic Hazard
Bridge 4

Year 2048
20,000 Samples

0 2 4 6 8 10(i)

0 40 60 80 100 120 140

400

800

1200

14800

15200

Sa
m

pl
es

0
0 20 40 60 80 100 120 140

Seismic Hazard
Bridge 5

Year 2048
20,000 Samples

Seismic Hazard
Bridge 4

Year 2048
20,000 Samples

Seismic Hazard
Bridge 2

Year 2048
20,000 Samples

Seismic Hazard
Bridge 1

Year 2048
20,000 Samples

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1000
2000
3000
4000
5000
6000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1000
2000
3000
4000
5000
6000

1000

2000

3000

4000

0
0 2 4 6 8 10

1000

2000

3000

4000

0
0 2 4 6 8 10

1000

2000

3000

4000

Year 2048
20,000 Samples

Seismic Hazard
Bridge 3

0 2 4 6 8 10 12 14 16
0

400

800

1200

14400

14800

0 2 4 6 8 10 12 14 16
0

400

800

1200

14800

15200

0

400

800

1200

16000

16400

0 20 40 60 80 100 120 140

20

(a)



122 

 

 

Figure 3.7 Profiles of the mean values of (a) direct and (b) indirect life-cycle risks 
of each bridge within the transportation network due to seismic and 
traffic hazards. Profiles of the mean values and 90% and 95% 
percentiles of (c) direct and (d) indirect life-cycle risks for the selected 
bridge 5 of Figure 3.3 due to seismic and traffic hazards. 
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Figure 3.8 Profiles of the mean values of life-cycle network risks associated with 
(a) direct consequences: rebuilding costs, rehabilitation costs, and 
material damage costs; and (b) indirect consequences: operating costs, 
time-loss costs, loss of human life costs, and injury costs. 

  

(a)

D
ire

ct
 L

ife
-c

yc
le

 R
is

ks
 (U

SD
 m

ill
io

ns
)

Time (years)

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

(b)

In
di

re
ct

 L
ife

-c
yc

le
 R

is
ks

 (U
SD

 m
ill

io
ns

)

Mean risk due to 
operating costs

Mean risk due to time loss20,000 Samples

Seismic Indirect Risk
+

Traffic Indirect Risk

Indirect Network Risk

Mean risk due to 
rehabilitation costs

Mean risk due to 
rebuilding costs

Mean risk due to 
material damage costs

Seismic Direct Risk
+

Traffic Direct Risk

Direct Network Risk

20,000 Samples

0.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2

4

6

8

10

12

14

16

18

20

Mean risk due
to injuries

Mean risk due
to fatalities



124 

 

 

Figure 3.9 (a) Profile of total life-cycle network risk including the risk 
contribution of each bridge within the network. (b) Profiles of the mean 
value and 90% and 95% percentiles of total life-cycle network risk. 
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CHAPTER 4 

PROBABILISTIC APPROACH FOR THE EVALUATION 

OF SEISMIC RESILIENCE OF SINGLE BRIDGES AND 

BRIDGE HIGHWAY SEGMENTS 

4.1  INTRODUCTION 

In studies dealing with seismic hazard, resilience can be considered as a performance 

indicator that quantifies the residual functionality along with the effort of the society 

in responding to a seismic event. In the last decade, some progress has been achieved 

by the introduction of analytical deterministic definitions of resilience (Bruneau et al. 

2003, Frangopol and Bocchini 2011, Bocchini and Frangopol 2011b), many of them 

focusing on post-event recovery analysis. Further developments (Bruneau and 

Reinhorn 2007, Xu et al. 2007, Cimellaro, Reinhorn and Bruneau 2010, Zobel 2011) 

opened the path for the probabilistic treatment of resilience, in order to develop 

models oriented to its prediction (pre-event assessment). 

The scope of this chapter, which is based on Decò, Bocchini and Frangopol (2013) 

and Decò, Frangopol, and Bocchini (2013), is to provide a new methodology to 

evaluate the probabilistic seismic resilience (PSR) of bridges, assess the impact in 

terms of direct and indirect costs, and provide indications to decision makers regarding 

potential restoration strategies. The inclusion of uncertainty extends resilience 
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quantification towards a fully probabilistic approach that can be embedded in a 

comprehensive structure/infrastructure management tool, based on expected and 

characteristic values. The estimation of the residual functionality after an exceptional 

event (called “robustness”, according to Cimellaro, Reinhorn and Bruneau 2010) is a 

process affected by a large amount of uncertainty, and the subsequent response phase 

adds further uncertainty to the prediction of resilience. The probabilistic quantification 

of the seismic-induced damage on bridges is performed by means of fragility analysis. 

Based on the assessed damage level (probability of the bridge being in a particular 

damage state), a recovery function is proposed. Bridge functionality is directly 

influenced by restoration activities. Different damage-functionality relationships are 

adopted based on the data provided by Shinozuka et al. (2005) and the expert opinions 

collected by ATC-13 (ATC 1985). A six-parameter sinusoidal-based recovery model 

proposed by Bocchini, Decò and Frangopol (2012) is used in this study. 

In this chapter, consequence analysis is performed in a probabilistic context with 

respect to direct and indirect costs. Direct costs are those associated with rebuilding-

rehabilitation expenses and directly correlated to the level of bridge damage. Indirect 

costs account for the losses caused by marginal travel distance and for marginal travel 

time when a bridge is partially or fully closed. Traffic flows along the highway 

segment containing the bridge (called “link”) and along the shortest detour route are 

assessed on the basis of the average daily traffic (ADT) obtained by the NBI database 

(FHWA 2010). 

The final outcome of an exceptional event in terms of consequences is strongly 

affected also by the different choices of the decision makers. For this reason, multiple 
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potential strategies adopted by the decision makers are investigated. In order to satisfy 

potential financial constraints, decision makers need to be informed about available 

possibilities associated with different bridge damage levels and recovery processes. 

The assessment of resilience of a single bridge does not fully exploit the concept 

of community resilience associated with a regional area. Therefore, a framework that 

extends the same concepts used for a single bridge to highway segments is also 

presented in this chapter. The performance of the bridge highway segments can be 

obtained by considering the performance of each single bridge and accounting for the 

interconnections among the investigated routes. Network performance indicators such 

as Total Travel Time (TTT) and Total Travel Distance (TTD) are considered for the 

assessment of network resilience (Bocchini and Frangopol 2012a, Bocchini and 

Frangopol 2012b). Only direct costs deriving from rehabilitation/reconstruction of 

damaged bridges are evaluated for the investigated bridge highway segments. 

Different types of analyses are performed based upon different scenarios accounting 

for specific earthquake intensities and recovery strategies. 

This chapter develops a probabilistic approach for the prediction of seismic 

resilience of single highway bridges and bridge highway segments. Section 4.2 

introduces the used models for resilience and rapidity. Section 4.3 develops the 

probabilistic recovery model and the considered restoration strategies used to predict 

resilience for single highway bridges. Section 4.4 describes probabilistic network 

recovery model developed for bridge highway segments. In Section 4.5, a 

comprehensive cost analysis is performed including direct and indirect losses. In 

Sections 4.6 and 4.7, apply the developed approach to an existing highway bridge 
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located carrying a segment of the northbound I-15 crossing the Temescal Wash, 

located between the cities of Corona and Murrieta in California and to four different 

configurations of unidirectional bridge highway segments. Finally, Section 4.8 

provides the conclusions of this chapter that is based on a published paper (Decò, 

Bocchini and Frangopol 2013) and on two conference papers (Bocchini, Decò 

Frangopol 2012, Decò, Frangopol, and Bocchini 2013). 

4.2  RESILIENCE 

Various definitions of resilience can be found in several disciplinary fields (Chang and 

Shinozuka 2004, Rose 2004, Park, Nojima and Reed 2006, Xu et al. 2007). According 

to Bruneau et al. (2003), seismic resilience is “the ability of social units (e.g., 

organizations, communities) to mitigate hazards, contain the effects of disasters when 

they occur, and carry out recovery activities in ways that minimize social disruption 

and mitigate the effects of future earthquakes”. This definition is general and can also 

be extended to different types of hazard and various structural and infrastructural 

systems. 

However, the qualitative definitions of resilience have not converged yet to a 

single generally accepted definition because resilience covers social and technical 

aspects too broadly. Therefore, the quantification of resilience R can lead to several 

slightly different analytical definitions (Bruneau et al. 2003, Bocchini and Frangopol 

2011b, Cimellaro, Reinhorn and Bruneau 2010). Based on general definition 

(Cimellaro, Reinhorn and Bruneau 2010), the definition proposed by Frangopol and 

Bocchini (2011) is adopted 
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where Q(t) is the time-dependent functionality, t is the time, t0 is the time at which the 

seismic event occurs, and th is the investigated time horizon (see Figure 1 in Bocchini, 

Decò and Frangopol 2012). The functionality of a structure or infrastructure can 

generally be defined as its ability to provide adequate service to the users. 

Functionality is usually expressed as a percentage of the service associated with the 

intact structure (which is set to be 100%), thus it is dimensionless. Therefore, 

resilience as defined by Equation (4.1) is dimensionless as well. 

The effort of a community to recover from damage and activity disruptions caused 

by an extreme event can also be evaluated by means of “rapidity” that is defined as 

(Cimellaro, Reinhorn and Bruneau 2010) 
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where tr is the time at which the recovery process ends. 

The main uncertainties affecting resilience are those introduced by Figure 1 in 

Decò, Bocchini and Frangopol (2013). 
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4.3  PROBABILISTIC RECOVERY MODEL FOR SINGLE 

BRIDGES 

The assessment of PSR and of the economic loss induced by potential traffic 

disruption is based upon the knowledge of the relationship between bridge damage 

level and associated loss of functionality. Although recent studies have tried to provide 

general approaches for the determination of such relationship (e.g. Padgett and 

DesRoches 2007), the decision to totally or partially close a bridge is usually made by 

inspectors and officials who analyze case by case after a seismic event strikes. 

Therefore, the a-priori determination of bridge functionality, which is most likely to 

depend on human judgment, can be done only under some assumptions. 

Empirical approaches, such as the one proposed by Stein et al. (1999), can 

estimate the recovery of functionality based on the importance of the route carried by 

the bridge under investigation. Analytical methods have been proposed, such as the 

one developed by Mackie and Stojadinović (2006), in which the functionality is 

measured in terms of the traffic load-carrying capacity. Additionally, expert opinions 

were collected by surveys for the establishment of recovery curves for given specific 

damage states (ATC 1985, Padgett and DesRoches 2007). In this study a six-

parameter sinusoidal-based function proposed by Bocchini, Decò and Frangopol 

(2012) is used to model the time-dependent functionality. 
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4.3.1  RECOVERY PATTERN 

The functionality recovery is a process fraught with uncertainty. The most 

representative sources of un-certainty are accounted for by the adopted recovery 

model for single bridges (Bocchini, Decò and Frangopol 2012). This model is based 

on the use of a six-parameter curve that describes the evolution of functionality over 

time (see Figure 4.1(a)). Briefly, the recovery pattern is governed by six selected 

parameters that include (see Figure 4.1(a)): (a) residual functionality Qr; (b) idle time 

δi; (c) recovery duration δr; (d) target functionality Qt; (e) parameter s; and (f) 

parameter A. The relationship between the bridge damage level, obtained by fragility 

analysis, and the residual functionality level is set according to the ACT-13 project 

(ATC 1985) and HAZUS (FEMA 2009), whereas the other parameters are based on 

the study conducted by Shinozuka et al. (2005) and engineering judgments. The shape 

of the recovery pattern is governed by parameters s and A shown in see Figure 4.1(a). 

For the pre-event assessment of resilience, these introduced parameters are treated as 

random variables, making the recovery process a random function with a parametric 

representation. Figure 4.1(b) qualitatively shows the recovery patterns associated with 

the four damage levels. 

4.3.2  RESTORATION STRATEGY 

As already mentioned, the final seismic resilience and economic losses will depend 

also on the recovery strategy adopted by decision makers and the priority given to the 

restoration of the investigated bridge. These decisions are extremely difficult to 
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predict, and they are strongly affected by the regional impact of a seismic event 

(Bocchini and Frangopol 2012b), which is not the focus of this study. Therefore, the 

proposed technique investigates the resilience associated with different potential 

recovery strategies. In particular, it is assumed that the rehabilitations-constructions 

can be performed with three different velocities: fast, average, and slow pace (denoted 

F, A, and S, respectively). Since these velocities affect duration and costs of the 

recovery phase, different velocity coefficients for duration Vt and costs Vc are 

introduced. Hence, the updated recovery duration δr’ = δr(1+Vt) depends on the effort 

in the intervention, where Vt is positive and negative for slow and fast recovery, 

respectively, whereas the velocity coefficient for costs Vc has opposite signs. These 

coefficients can be evaluated by analyzing historical records of bridge rehabilitation 

and reconstruction regarding early completion bonuses or late completion penalties 

(e.g. Engius 2002 among others). From the review of this document and similar ones, 

it is found that the Vt is usually about ±20%, while the Vc is about ±15%. 

Therefore, considering the above mentioned velocity coefficients and including the 

option that does not consider any intervention (called “DN” in Figure 4.2), the 

investigated individual recovery patterns are represented by the 20 outcomes (Nout = 

20), as reported in the decision tree of Figure 4.2. Accordingly, the fragility analysis 

provides the first five outcomes (chance node A), then depending on the damage level, 

different decisions regarding the recovery velocity can be made (decision nodes B, C, 

D, E, F, and G). 

A wide spectrum of recovery strategies is investigated depending on the effort of 

the recovery process (with velocities F, A, and S) and on the bridge damage level. 
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Restoration strategies are represented by combinations of the possible outcomes of 

Figure 4.2 considering a selection of one recovery patterns for each damage level. The 

outcomes included within a single considered strategy are collectively exhaustive and 

the sum of their associated probabilities leads to one. For instance, in the case study, 

among all the possible mutually exclusive combinations, 24 restoration strategies (Nres 

= 24) are investigated, as summarized in Table 4.1. Strategy no. 1 provides that all the 

recovery activities are performed at the maximum velocity (i.e. selecting outcomes 2, 

6, 10, 14 of Figure 4.2 for slight, moderate, extensive, and complete damage, 

respectively), thus disregarding potential budget constraints and achieving full 

recovery in the shortest time after the event occurrence. On the other hand, decision 

makers can decide to fit potential budget constraints by selecting strategy no. 18, 

which provides fast recovery for slight and moderate damage (outcome 2 and 6 of 

Figure 4.2, respectively), while no action are taken for the cases of extensive and 

complete damage (outcome 13 and 20 of Figure 4.2, respectively), in order to recover 

in the shortest time for small earthquakes and do not consider recovery in case of large 

damage (extensive and complete). 

For each considered strategy, the PSR, rapidity, and direct and indirect costs are 

computed by performing a Monte Carlo simulation based on Latin Hypercube 

sampling (McKay, Conover and Beckman 1979). This provides a better representation 

of the sample space, compared to crude Monte Carlo simulation. Figure 4.3 shows the 

flowchart of the proposed procedure. 
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4.4  PROBABILISTIC NETWORK RECOVERY MODEL  

The functionality of a single bridge is defined as the ability to provide service to users, 

and is quantified by the ratio of traffic capacity when the bridge is damaged to the 

traffic capacity when the bridge is intact (set as 100%). On the other hand, segment 

functionality can depend on many factors, including the layout of the segment, and the 

vehicular traffic capacities and demands of each route within the segment. Therefore, 

the evaluation of network resilience is based upon the above mentioned segment 

characteristics and quantified as (Bocchini and Frangopol 2012a) 
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where Г(t) is the time-dependent segment performance, Г0 and Г100 are the segment 

performances in the cases in which all the bridges are out of service and in service, 

respectively, TTT(t) and TTD(t) are the time-dependent total travel time and total 

travel distance of the users within the network, respectively, γT and γD are the relative 

weights of importance associated with the travel time and distance, respectively (both 

assumed 0.5 for the case study 2). Network analysis is conducted according to Decò, 

Frangopol and Bocchini (2013). 
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4.4.1  COMPUTATIONAL APPROACH 

Monte Carlo simulation based on Latin Hypercube sampling (McKay, Conover and 

Beckman 1979) is performed for the probabilistic pre-event assessment of resilience 

and associated direct losses. Latin Hypercube (see Appendix A) provides a better 

representation of the sample space, compared to the crude Monte Carlo simulation. 

Samples are generated based on the statistical descriptors of the included random 

variables. The considered random variables associated with the cost analysis are 

assumed to be statistically independent, whereas the random variables of the recovery 

process of each bridge are assumed to be correlated depending on multiple factors, 

including the construction material of the bridges, their lengths, the relative distance 

between bridges, and the importance of the carried link within the segment. Due to the 

lack of statistical information and the unavailability of data regarding the interactions 

of the recovery process of damaged bridges, in order to perform a fully statistical 

analysis of damaged highway segments, the correlation coefficients among the 

residual functionality Qr and parameters governing the bridge recovery process δi and 

δr of two bridges b1 and b2 (b1 ≠ b2) are assumed as 
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where typ is the bridge type (e.g. concrete or steel beams), L is the bridge length, dis is 

the relative distance between two bridges, imp is the importance of the carried link 

within the segment (e.g. primary and secondary roads), ρQr, ρδi, and ρδr are the 

correlation coefficients of the residual functionality, idle time, and recovery duration, 

respectively, γtyp, γL, γdis, and γimp are the relative weights of importance associated 

with the above listed factors (assumed equal to each other within the same equation), 

and ctyp, cL, cdis, and cimp are the correlation coefficients assumed according to 

� � � � � �
�
�
�

�
�

�
otherwisec

btypbtypifc
bbc

c

c
typ 1

, 21
21  (4.8) 

� � � � � �
�
�
�

�
		

�
otherwisec

bLbLifc
bbc

c

c
L 1

2.12.11
, 21

21  (4.9) 

� � � �
�
�
�

�
	

�
otherwisec

milesbbdisifc
bbc

c

c
dis 1

5,
, 21

21  (4.10) 

� � � � � �
�
�
�

�
�

�
otherwisec

bimpbimpifc
bbc

c

c
imp 1

, 21
21  (4.11) 

where cc is the assumed correlation coefficient (0.8 for the case study 2). 

For the case of segment analysis, when performing the main Monte Carlo 

simulation, also the bridge damage level is treated as a random variable and its 

samples are obtained based on a multinomial distribution having probability mass 

function as 
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where x = (x1,…,xk) identifies one out of k possible outcomes with fixed probabilities 

p = (p1,...,pk). In order to identify the outcome, one entry of vector x is equal to 1 and 

the others are 0; k = 5, and the probabilities are defined as p = (pND, pSD, pMD, pED, 

pCD), where the subscripts represent no damage, slight, moderate, extensive, and 

complete damages, respectively. Then, according to Section 4.3, bridge functionality 

is simulated for each bridge. 

4.5  COST ANALYSIS 

The losses induced by an earthquake are usually quantified by their associated 

monetary values. This chapter accounts for direct and indirect costs. Direct costs 

include all the rehabilitation-reconstruction costs, while operating costs and time loss 

costs belong to the indirect cost category. For bridge highway segments, only direct 

costs are considered. In this chapter the discount rate of money is neglected, given that 

resilience is evaluated over a short period of time (i.e. usually one to two years after 

the occurrence of an extreme event). 

4.5.1  DIRECT COSTS 

Direct costs include those associated with the rehabilitation-reconstruction of the 

bridge, removal of debris, and the construction of a temporary bypass. A simplified 

method for their estimation is adopted, as customary. Rehabilitation-reconstruction 

costs are assumed to be proportional to the bridge replacement values. The 

proportionality factor is called “damage ratio” and it can be related to the bridge 

damage level (Shinozuka et al. 2005, FEMA 2009b). Similarly, the cost of the 
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construction of a temporary bypass is assumed to be a ratio of the bridge replacement 

value and the costs of debris removal are proportional to the bridge deck area. Direct 

costs for single bridges associated with the i-th restoration strategy are evaluated as 

follows (based on Stein et al. 1999 and Shinozuka et al. 2005) 
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where W and L are the bridge width (m) and length (m), respectively, index j runs over 

the outcomes, creb is the rebuilding cost per square meter (USD/m2), dr,j is the damage 

ratio immediately after the occurrence of the earthquake (i.e. the proportionality factor 

between bridge repair costs and the bridge replacement value), Vc,ij is the velocity 

coefficient for costs, crem is the debris removal cost per square meter (USD/m2), br is 

the bypass cost ratio (i.e. the proportionality factor between the cost for the 

construction of a temporary bypass and the bridge replacement value), and αj, βj, and γj 

are coefficients such that αj = 1 if outcome j includes rehabilitation/reconstruction (i.e. 

outcomes included in set AA={2,3,4,6,7,8,10,11,12,14,15,16,17,18,19} according to 

Figure 4.2), βj = 1 if outcome j includes debris removal (i.e. outcomes included in set 

B={14,15,16,17,18,19} according to Figure 4.2), γj = 1 if outcome j includes the 

construction of a temporary bypass (i.e. outcomes included in set C={14,15,16} 

according to Figure 4.2), and αj = 0, βj = 0 and γj = 0 otherwise. Each j-th outcome is 

associated with an initial damage state with probability PDS,j and its inclusion into the 

i-th strategy is determined by coefficient δij leading to Pij = δijPDS,j. If outcome j is 
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included by strategy i, then δij = 1, otherwise δij = 0. For instance, Figure 4.2 shows 

that for strategy 1 (i.e. i = 1) the coefficients are δ1 1 = δ1 2 = δ1 6 = δ1 10 = δ1 14 = 1 and 

δ1 3 = δ1 4 = δ1 5 = δ1 7 = δ1 8 = δ1 9 = δ1 11 = δ1 12 = δ1 13 = δ1 15 = δ1 16 = δ1 17 = δ1 18 = δ1 19 

= δ1 20 = 0. In this study, according to Figure 4.2, the cases in which no damage occurs 

and no actions are taken (i.e. outcomes 1, 5, 9, 13, and 20 of Figure 4.2) do not 

generate any direct costs. Since uncertainty highly affects the estimation of costs, 

unitary costs creb and crem, damage ratio dr,j, and bypass cost ratio br are treated as 

random variables in the case study. 

For bridge highway segments, the considered economic analysis includes the costs 

associated with rehabilitation/reconstruction activities, removal of debris, and the 

potential construction of a temporary bypass (Decò, Frangopol and Bocchini 2013). 

They are represented by the three addends of Equation (4.14). The estimation of the 

total cumulative costs Cb for each bridge of the segment is as follows 
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where the included variables are the same of those in Equations (4.13) referring to 

bridge b of the segment. Since costs are affected by uncertainty, unitary costs creb,b and 

crem,b, and the bypass cost ratio br,b are treated as random variables; the damage ratio 

dr,b is random as well. 
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For a given network recovery scenario s, the total direct cost for the bridge 

highway segment Cnet,s is obtained by summing the costs generated by each single 

bridge Cb as follows 
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where B is the total number of considered bridges. 

4.5.2  TRAFFIC FLOW ANALYSIS IN THE CASE OF SINGLE 

BRIDGES 

The bridge functionality is directly related to the number of operable lanes within each 

traffic direction, and according to the level of induced damage, the bridge can be fully 

serviceable (Q(t) = 100%), partially serviceable (0% < Q(t) < 100%), or temporary 

closed (Q(t) = 0%). The traffic flow will accordingly redistribute between the route 

segment containing the bridge, called “link” in the reminder, and the detour. 

The traffic flow carried by a route can be evaluated on the bases of the ADT 

traveling on the link. In the United States, the ADT for every bridge is provided by the 

National Bridge Inventory (NBI) database (FHWA 2010). Based on TRB (2000) and 

accounting for peak and off-peak hours (Caltrans 2009), the total traffic flow Ft 

(vehicles/h/lane) on a given link direction is given by 
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where K1 and K2 are the percentages of traffic associated with the portion of ADT 

during the peak and off-peaks hours, respectively, D is the directional factor, and At is 

the ADT. 

Depending on the capacity and traffic, the traffic speed on the link or on the detour 

is provided by (Bureau of Public Roads 1964) 
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where S0 is the free-flow traffic speed (km/h), FC is the traffic flow capacity (number 

of vehicles/h), and nl is the number of lanes. 

Since a comprehensive traffic analysis is out of the scope for the analysis of single 

bridges, a simplified method for the traffic redistribution between link and detour is 

adopted herein. The traffic flows carried by the link and the detour are considered in 

equilibrium before the strike of an earthquake. It is assumed that their ADTs depend 

only on the respective traffic flow capacities, called FC,l (vehicles/h/lane) and FC,d 

(vehicles/h/lane) for the link and detour, respectively. Since the ADT of the link and 

the capacities FC,l and FC,d are known, the total ADT associated with both link and 

detour can be obtained as 
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where Al and Atot are the link and the total ADTs, respectively, and nl,l and nl,d are the 

number of lanes of the link and detour, respectively. In a similar way, the ADT of the 

detour Ad can be obtained 
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When an earthquake strikes and the rehabilitation phase begins, the bridge 

functionality Qij(t), associated with the i-th strategy (see Table 4.1) and the j-th 

outcome (see Figure 4.2), varies over the restoration time, affecting the traffic flow of 

the link and of the detour. Simplified expressions for the estimation of their associated 

ADTs are 
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where A’l,ij(t) and A’d,ij(t) are the time-dependent post-event ADTs of link and detour, 

respectively. Therefore, the time-dependent traffic speed accounting for peak and off-

peaks hours (Equation (4.16)) can be assessed for both link and detour (Equation 

(4.17)). 

4.5.3  INDIRECT COSTS 

Indirect costs are mainly caused by traffic disruption. Marginal operational costs occur 

when users travel through detours, which are usually longer than the original route. 
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The proposed general formulation accounts for cars and trucks, and for traffic at peak 

and off-peaks hours (based on Stein et al. 1999): 
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where cop,car and cop,truck are the operating costs of cars and trucks per kilometer 

(USD/km), respectively, τ represents the average daily truck traffic (ADTT) as 

percentage of ADT, Dl is the additional travel distance (km), A’d,ij(t) is the time-

dependent ADT of the detour after the seismic event, Ad is the ADT of the detour 

before the seismic event, t0 is the time at which the seismic event occurs, th is the 

investigated time horizon, t is time, and dt is the variable of integration (time). 

After the seismic event, if traffic disruption occurs, users are forced to travel 

through the link and detour at a lower speed than usual, thus marginal travel time 

generates monetary losses. Time loss costs associated with the i-th strategy are (based 

on Stein et al. 1999): 
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where cw is the wage per hour (USD/h), ctc is the total compensation per hour 

(USD/h), cinv is the inventory cost (USD/h), Ocar and Otruck are the vehicle occupancies 

for cars and trucks, respectively, Ll is the link length (km), S’l,ij(t) and S’d,ij(t) are the 

time-dependent traffic traveling speeds (km/h) of link and detour after the seismic 
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event, respectively, and Sl and Sd are the traffic speeds (km/h) of link and detour 

before the seismic event, respectively. 

In most practical cases, the majority of the involved parameters, cop,car, cop,truck, cw, 

ctc, cinv, Sl, and Sd are affected by uncertainties; therefore, the proposed technique treats 

them as random variables. 

4.6  CASE STUDY 1: SINGLE HIGHWAY BRIDGES 

The proposed approach is applied to an existing bridge (structure no. 560680R 

according to FHWA 2010) carrying a three-lane segment of the northbound I-15 

highway crossing the Temescal Wash, located between the cities of Corona and 

Murrieta in California. The investigated structure is a continuous concrete bridge. 

The historical epicenter of the May 15, 1910 earthquake, having latitude 33º 42’, 

longitude -117º 24’, and depth of 10 km, is situated at a distance of about 4 km from 

the bridge. The impact on the highway bridge of an earthquake with this epicenter and 

magnitude 8 (Richter scale) is assessed. Bridge vulnerability is obtained by means of a 

fragility analysis performed using the software HAZUS (FEMA 2009a). 

By setting 1/10 of a month as computational time interval and considering 14 

months as time horizon th (with t0 = 0 being the moment when the event strikes), the 

mean profiles of the bridge functionality over time associated with different 

restoration strategies (Table 4.1) are obtained by performing Monte Carlo simulation. 

By using Latin Hypercube, sets of 50,000 samples are generated for each outcome of 

Figure 4.2, for a total of 1,000,000 samples. Then, the results of each set of samples 

(50,000) are weighted by the probability of their associated j-th outcomes Pij for each 
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selected i-th strategy. The software MATLAB (The MathWorks 2011) is used to run 

the simulation based on a parallel processing code which requires about 10 minutes for 

1,000,000 samples on a DELL Precision T7400 workstation with two quad core Intel 

Xeon processors with 8 GB of RAM. 

The time-dependent bridge functionality (recovery model) is modeled by using the 

six-parameter function (Bocchini, Decò and Frangopol 2012). This approach is based 

on the assessment of the parameters involved in the recovery process. Although this is 

not an easy task, the types of distribution and their associated statistical descriptors are 

proposed based on literature surveys and engineering judgment. Table 4.2 summarizes 

the values of the random variables and parameters assumed for the adopted six-

parameter recovery function, and the associated bibliographic references. The 

involved random variables are assumed to be statistically independent. For slight, 

moderate, and extensive damage, different triangular distributions for the residual 

functionality Qr are provided (see Figure 4.1(a)), while for the case of complete 

damage, residual functionality is null. The modes of the triangular distributions 

coincide with the values provided by ATC-13 (1985) and FEMA (2009b). Since 

conducting estimates on the bridge importance is outside the scope of this chapter, the 

values of the idle time interval δi have been assumed uniformly distributed (see Figure 

4.1(a)) between one and two months for all the recovery patterns of Figure 4.1(b). The 

assumed values for the recovery duration δr follow a triangular distribution (see Figure 

4.1(a)) and are estimated in accordance with those provided by Shinozuka et al. (2005) 

for each damage state. Although the proposed model can treat the target functionality 

Qt as random variable, in this case study, it has been assumed that the recovery 
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patterns completely restore the bridge functionality (100%). Finally, parameters A and 

s are functions of the random post-event damage, determined by engineering judgment 

in order to obtain the recovery pattern of Figure 4.1(b). 

Strategy 6 (see Table 4.1) prescribes an average recovery velocity for any initial 

damage, without the construction of the bypass and is selected as example to illustrate 

the results. Figure 4.4(a) shows five random sample recovery patterns for each of the 

random post-event damage levels for the selected strategy 6. As shown in Figure 

4.4(a), and in accordance with Figure 4.1(b), five groups of curves associated with the 

five bridge damage levels may be identified for strategy 6. The complete simulation of 

these recovery patterns (1,000,000 samples) leads to the mean recovery pattern shown 

in Figure 4.4(b). Indication on the dispersion of the functionality pattern is also shown 

in Figure 4.4(b), which provides the frequency of the functionality when the 

earthquake strikes, and four and eight months after, for strategy 6. Additionally, the 

frequency of the full recovery time is shown (vertical bars). It can be noticed that, due 

to the results of the fragility analysis, functionality is quite dispersed. This is caused 

by the fact that HAZUS considers two distinct failure modes (ground shaking and 

ground failure) that provide dispersed probabilities of the bridge being in specific 

damage states. Figure 4.4(c) shows the mean recovery patterns of ten representative 

strategies (1, 4, 5, 6, 7, 8, 12, 14, 19, and 23 of Table 4.1). The fastest expected full 

recovery is about eight months (strategies 1 and 14), whereas the slowest expected full 

recovery is achieved only about 13 months after the earthquake occurrence (strategies 

7 and 23). Moreover, during the investigated time frame, it can be noticed that strategy 

19 only recovers about 40% of the expected value of functionality, while according to 
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its definition (Table 4.1), strategy 4 does not account for any rehabilitations, hence the 

residual functionality does not increase over time. Figure 4.4(c) shows also that in this 

case the expected residual functionality of the bridge is about 30%. 

PSR and rapidity are then assessed based on the simulated functionality profiles by 

applying Equations (4.1) and (4.2), respectively. Figure 4.5 shows the frequency 

histogram of (a) resilience and (b) rapidity for strategy 6. The two frequency 

histograms are clearly subdivided into two parts. One part is represented by the bars 

located at values 1 and 0 for resilience and rapidity, respectively, which represent no 

damage, while the remaining bars are associated with the occurrence of any damage 

level. For the representative strategy 6, the expected resilience and rapidity are μR = 

0.687 and μr = 6.050º, respectively. 

Mean values and standard deviations of resilience and rapidity are shown for all 

the 24 considered strategies in Figure 4.6(a) and Figure 4.6(b), respectively. Bars 

represent intervals equivalent to ± one standard deviation. It can be noticed that 

strategy 4 (which according to Table 4.1 considers no actions) provides the lowest 

level of resilience and rapidity, and together with strategies 18, 19, and 20, is affected 

by the largest standard deviations depending exclusively on the dispersion obtained by 

the fragility analysis. Smaller standard deviations are found when functionality is 

approaching full recovery (100%). Hence, strategies with higher expected resilience 

and rapidity (such as strategies 1 and 14, which require greater social effort) have 

relatively small standard deviations (the coefficient of variation is around 15%). The 

impact of the earthquake in terms of expected direct costs and external consequences 

(time loss and additional operating costs) is shown in Figure 4.6(c). Costs are 
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evaluated based on the deterministic and random variables summarized in Table 4.3 

and Table 4.4. Figure 4.6(c) shows the importance of large investments in trying to 

reduce indirect losses. Accordingly, strategies 1 and 14 limit indirect costs, while 

strategies 4, 18, 19, and 20 do the opposite. Minimum expected indirect costs (about 7 

USD millions) are obtained only if about 4 USD millions are invested (strategy 1). 

Finally, as observed in Figure 4.6(c), the construction of a temporary bypass (e.g. 

strategies 1, 2, and 3) heavily decreases the impact on indirect costs against an 

investment that is almost twice with respect to the same strategy without the bypass 

(e.g. strategies 5, 6, and 7). 

Indications regarding the available options for post-event response can be based on 

the results reported in Figure 4.7, where the expected direct costs are shown along 

with expected resilience and full recovery time for each strategy. Figure 4.7(a) shows 

decreasing expected resilience and associated direct costs provided for the 24 

strategies, while Figure 4.7(b) shows decreasing direct investments against resilience. 

Moreover, as illustrated in Figure 4.7(c), the expected full recovery time is also 

computed for those strategies that imply recovery from each damage state (i.e. 

strategies 4, 8, 9, 10, 11, 12, 13, 18, 19, and 20 are excluded because they include the 

outcomes “DN” of Figure 4.2). Depending on the priorities of decision makers, such 

as full and fast restoration disregarding budget limitations versus available options 

subjected to budget constraints, different restoration strategies can be used for the 

assessment of expected resilience. For instance, if a fast recovery that reduces external 

costs is the priority, strategy 1 is likely to be selected (see Figure 4.6(c) and Figure 

4.7(a)), while if the available budget is limited for instance, to 2.5 USD millions 
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(Figure 4.7(b,c)), the available options remain strategies 4, 5, 6, 7, 11, 12, 13, 16, 17, 

18, 19, 20, 23, and 24. Strategy 5, being the one with largest mean resilience and 

shortest mean full recovery time among the remaining available options, is the most 

likely to be selected. It can be further noticed that resilience does not increase 

considerably when a much greater investment is provided, while the reduction of 

indirect costs is more significant. The construction of a temporary bypass determines a 

large reduction of external costs; instead, only slight resilience is gained by adopting 

these strategies, as shown in Figure 4.7. 

4.6.1  SENSITIVITY ANALYSES 

Three sensitivity analyses are also provided. The first sensitivity analysis deals with 

two different cases. In the first case, it is assumed that the recovery duration δr is 

based on the values provided by Shinozuka et al. (2005) (previously analyzed), 

whereas for the second case, the recovery duration δr is based on the values adopted 

by HAZUS (FEMA 2009b) and summarized in Table 4.5. Figure 4.8(a) shows the 

functionality over time of the same representative strategies investigated in Figure 

4.4(a). It can be observed that the obtained profiles significantly differ from the 

previous ones (first case). This demonstrates that the choice of appropriate values for 

the recovery duration δr is of critical importance. Additional effort is needed in order 

to obtain estimators that better fit the real rehabilitation process. Figure 4.8(b) reports 

on the differences in terms of resilience. It can be observed that the second case 

provides lower resilience and overall larger standard deviation than the first case. 
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The second sensitivity analysis is performed considering that the earthquake 

magnitude varies from 6.0 to 8.4 (with steps of 0.2), maintaining the same epicenter. 

Figure 4.9(a) shows how the profiles of the expected functionality are affected by 

events with increasing magnitude. Expected resilience and direct costs evaluated for 

different earthquake magnitudes are shown in Figure 4.9(b) for strategy 6. When the 

magnitude increases, the decrease of resilience is relatively low, while the needed 

investment exponentially raises, approaching a plateau of about 2.2 USD millions for 

earthquakes greater than magnitude 8. 

The third and last sensitivity analysis investigates the computational accuracy in 

terms of mean resilience associated with the selection of different sampling size for 

the Monte Carlo simulation of strategy 6 (100, 500, 1,000, 5,000, 10,000, 50,000, 

100,000, 500,000, and 1,000,000 samples). 100 independent computations have been 

performed for each of the considered sample sizes (Figure 4.10). The estimation of the 

mean resilience in the case of 1,000,000 samples is affected by a negligible error. The 

100,000 samples case already shows good agreements to the trend line. 

4.7  CASE STUDY 2: BRIDGE HIGHWAY SEGMENTS 

Four highway segment layouts are analyzed in this paper (Figure 4.11) in order to 

investigate how network functionality and resilience are affected by different highway 

segment configurations. Three different bridges denoted B1, B2, and B3, are shown in 

the layouts of Figure 4.11, including a series system with identical bridges B1 (layout 

1), and series (layout 2), series/parallel (layout 3), and parallel (layout 4) systems with 

different bridges B1, B2, and B3. 



151 

 

It is assumed that layouts 1, 2, and 3, containing at least one edge in series, are 

subjected to 5,000 car-equivalent vehicles per hour traveling from node O to node D, 

whereas for layout 4, 15,000 car-equivalent vehicles per hour are considered. The 

reason for this distinction is that the resulting segment traffic volume for all the 

layouts is approximately kept constant and balanced with each route traffic capacities. 

The distance O-D equal to 10 miles (16.1 km) is covered in 10 minutes at free flow, 

whereas the practical capacities of the intact links are 4,000 cars/h. 

For the single bridges within the layouts, only three recovery strategies are 

analyzed, including: a) fast recovery with the construction of a temporary bypass 

bridge that carries a portion of the original traffic flow in case of complete damage; b) 

slow recovery without the construction of any bypass bridge; and c) no intervention. 

Whereas, for each segment layouts, four recovery scenarios s are investigated, 

depending on the combination between the adopted recovery strategies for each single 

bridge within the highway segment. Accordingly, the four network recovery scenarios 

are: 1) B1, B2, and B3 recover at fast pace (strategy a); 2) B1, B2, and B3 recover at slow 

pace (strategy b); 3) equal to scenario 1 but for B2 no actions are taken (strategy c); 

and 4) equal to scenario 2 but for B2 no actions are taken (strategy c). The used 

recovery parameters are based on Table 4.2 and Table 4.4. In Table 4.6 the remaining 

input data are specified. The program MATLAB (The Mathworks 2011) has been used 

to perform the necessary calculations. By conducting the Monte Carlo simulation 

(50,000 samples) and considering an investigated time horizon of 12 months, the mean 

functionality profiles for each bridge are as shown in Figure 4.12. As expected, the 

largest functionality is obtained when considering the recovery strategy a, whereas 
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strategy c does not improve the residual bridge functionality. It can be also noted that 

the three bridges have different residual functionality and that strategy b differently 

affects the three bridges, especially in the initial part of the recovery process. 

Moreover, the correlations between the residual functionality Qr and the 

parameters governing the bridge recovery process δi and δr of different bridges are 

accounted for according to Equations (4.5)–(4.11). 

Figure 4.13 shows the mean functionality profiles for each one of the four 

investigated layouts, whereas Figure 4.14 shows the frequency histograms of 

resilience associated with scenarios 1 and 3 for the layouts 2 and 3. It can be noticed 

that the expected functionality is fully restored for scenarios 1 and 2, which include 

recovery actions for all the bridges. Therefore, the associated expected resilience is 

higher for scenarios 1 and 3, if compared to the others (2 and 4) for all the considered 

layouts. Among the layouts with the same assumed volume of car-equivalent vehicles 

per hour (layouts 1, 2, and 3), layout 3 performs better than those in series (layouts 1 

and 2) when considering scenarios 3 and 4. This is clearly shown in Figure 4.13, in 

terms of segment functionality, and in Figure 4.14, in terms of resilience. Although a 

direct comparison between layout 2 (series configuration) and 4 (parallel 

configuration) is not possible because of the different car-equivalent vehicles per hour, 

it can be noted that if this input is kept proportional with the sum of the capacities of 

different layouts, the differences in terms of network functionality are small. Finally, 

Figure 4.15 shows the mean profiles of the direct costs for B1, B2, B3, and those 

associated with layouts 2, 3, and 4. Since bridge B2 is the largest among the others and 
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it suffered considerable damage (Table 4.6), its direct cost is higher compared with 

that of the other bridges. 

4.8  CONCLUSIONS 

From this chapter, which is based on Decò, Bocchini and Frangopol (2013) and 

Decò, Frangopol, and Bocchini (2013), the following conclusions are obtained: 

1. The assessment of seismic resilience can be conducted in a probabilistic way by 

including uncertainty affecting both bridge vulnerability and recovery phase. The 

fragility analysis provides very disperse results for the post-event damage state. 

Therefore, resilience and rapidity are affected by large uncertainty. 

2. The combined information given by resilience and direct and indirect costs allows 

to investigate the benefits of different restoration strategies. It is found that the 

average functionality recovery heavily depends on the gain obtained by the 

rehabilitations associated with extensive and complete damages. 

3. For both single bridges and highway segments, in the case of complete damage, 

the construction of a temporary bypass helps mitigating the impact on indirect 

costs. However the gain of resilience is not as high as expected. 

4. The results provided in the sensitivity analysis of the first case study show that the 

appropriate selection of the parameter distributions is critically important for 

conducting a reliable assessment. 

5. For bridge highway segments, the number of random variables considered for each 

bridge is large; therefore when the number of bridges increases, different methods 

other than the adopted Monte Carlo simulation may be considered.  
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Table 4.1 Definition of the restoration strategies for single bridges indicating the 
recovery velocity from specific damage levels. 

Restoration 
strategy no. 

Recovery velocity from damage 
level Restoration 

strategy no. 
(cont.) 

Recovery velocity from damage 
level 

SD MD ED CD SD MD ED CD 

1 F F F F(wb) 13 DN DN S S(w/ob) 

2 A A A A(wb) 14 S S F F(wb) 

3 S S S S(wb) 15 S S A A(wb) 

4 DN DN DN DN 16 S S F F(w/ob) 

5 F F F F(w/ob) 17 S S A A(w/ob) 

6 A A A A(w/ob) 18 F F DN DN 

7 S S S S(w/ob) 19 A A DN DN 

8 DN DN F F(wb) 20 S S DN DN 

9 DN DN A A(wb) 21 F F S S(wb) 

10 DN DN S S(wb) 22 A A S S(wb) 

11 DN DN F F(w/ob) 23 F F S S(w/ob) 

12 DN DN A A(w/ob) 24 A A S S(w/ob) 

Note:  SD = slight damage, MD = moderate damage, ED = extensive damage, CD = complete 
damage, F = fast recovery, A = average recovery, S = slow recovery, DN = do nothing, 
wb = with bypass, w/ob = without bypass 
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Table 4.3 Values of the statistical descriptors of the triangularly distributed 
damage ratio dr (based on FEMA 2009b). 

Type of recovery 
Damage ratio dr 

dr,min dr,mode dr,max 

No damage 0 (deterministic) 

Slight damage 0.01 0.03 0.03 

Moderate damage 0.02 0.08 0.15 

Extensive damage 0.10 0.25 0.40 

Complete damage - 
Rebuilding with bypass 0.30 1.00 1.00 

Complete damage - 
Rebuilding without bypass 0.30 1.00 1.00 
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Table 4.4 Statistical descriptors and deterministic parameters used for the cost 
analysis. Costs refer to their values at year 2011. 

Deterministic parameter Value Reference 

ADT 39,500 FHWA (2010) 
ADTT/ADT ratio 13% FHWA (2010) 
Bridge length (m) 115.5 FHWA (2010) 
Bridge width (m) 21 FHWA (2010) 
Detour additional travel distance (km) 2 FHWA (2010) 
Detour number of lanes 1 Google Inc. (2011) 
Detour traffic flow capacity (vehicle/hour/lane) 1,000 Assumed 
Directional factor 0.5 Assumed 
Length of the link (km) 5.95 Google Inc. (2011) 
Link traffic flow capacity (vehicle/hour/lane) 2,000 Assumed 
Link number of lanes 3 Google Inc. (2011) 
Parameter K1 0.085 Caltrans (2009) 
Parameter K2 0.030 Caltrans (2009) 
Vehicle occupancies for cars 1.50 AASHTO (2003) 
Vehicle occupancies for trucks 1.05 AASHTO (2003) 

Random variable Mean COV Distribution 
type Reference 

Compensation for truck drivers (USD/hour) 29.87 0.31 * LN AASHTO (2003) 
Detour speed (km/hour) 50 0.20 * LN Assumed 
Inventory costs (USD/hour) 3.81  0.20 * LN AASHTO (2003) 
Operating costs for cars (USD/km) 0.40  0.19 * LN AASHTO (2003) 
Operating costs for trucks (USD/km) 0.57 0.19 * LN AASHTO (2003) 
Wage for car drivers (USD/hour) 11.91 0.28 * LN AASHTO (2003) 

Random variable Min. Max. Distribution 
type Reference 

Link speed (km/hour) 90 120 * Uniform Assumed 
Debris removal cost (USD/m2) 224 560 Uniform DOT-FL (2009) 
Rebuilding costs (USD/m2) 1,318 3,294 Uniform Caltrans (2010) 

Random variable Min. Mode Max. Distribution type 

Bypass cost ratio 0.3 0.5 0.7 * Triangular 
* Assumed 
Note: LN = log-normal distribution, COV = coefficient of variation 
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Table 4.5 Values of the statistical descriptors of the triangularly distributed 
recovery duration δr (based on FEMA 2009b). 

Type of recovery 
Recovery duration δr 

(months) 

δr,min δr,mode δr,max 

No damage does not apply 

Slight damage 0.033 0.067 0.100 

Moderate damage 0.167 0.250 0.333 

Extensive damage 3 4 5 

Complete damage - 
Rebuilding with bypass 8 12 14 

Complete damage - 
Rebuilding without bypass 8 12 14 
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Figure 4.1 Qualitative representation of (a) the adopted six-parameter bridge 
recovery function including the distribution types of specific random 
variables, and of (b) the recovery patterns associated with different 
types of damage and recovery options. 
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Figure 4.2 Decision tree indicating the 20 considered outcomes that include the 
velocity of the recovery actions and the options without repair. Note: 
DN = do nothing, F = fast recovery, A = average recovery, S = slow 
recovery. 
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Figure 4.3 Flowchart of the proposed procedure for the evaluation of probabilistic 
seismic resilience (PSR), rapidity, and socio-economic impact. 
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Figure 4.4 (a) Random sample recovery patterns for strategy 6. (b) Expected 
functionality of strategy 6 and graphical representation of the frequency 
histogram of functionality when the earthquake strikes, 4 and 8 months 
after, and frequency histogram of the full recovery time. (c) Expected 
functionality profiles associated with the representative strategies 1, 4, 
5, 6, 7, 8, 12, 14, 19, and 23 of Table 4.1.  
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Figure 4.5 Frequency histograms of the obtained (a) resilience and (b) rapidity for 
strategy 6. μ and σ are the mean and standard deviation, respectively. 
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Figure 4.6 Bars reporting on the mean and standard deviation of (a) resilience and 
(b) rapidity for all the 24 considered strategies. The intervals refer to ± 
one standard deviation. (c) Histogram of the expected direct and 
indirect costs for each strategy. 
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Figure 4.7 Histograms of expected resilience versus expected direct costs in the 
cases where strategies are sorted by (a) decreasing resilience and (b) 
decreasing direct costs, and (c) expected full recovery time versus 
decreasing expected direct costs. Note: symbol × is used for those 
strategies where the expected full recovery time cannot be evaluated. 
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Figure 4.8 (a) Expected functionality profiles associated with the representative 
strategies 1, 4, 5, 6, 7, 8, 12, 14, 19, and 23 of Table 4.1. (b) 
Comparison between resilience obtained for case 1 (data from Table 
4.3) and case 2 (data from Table 4.5). 
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Figure 4.9 (a) Expected functionality profiles associated with strategy 6 varying 
the seismic event magnitude. (b) Trend of expected resilience and 
direct costs when the earthquake magnitude varies between 6.0 and 8.4. 
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Figure 4.10 Mean value of resilience for each of the 100 independent computations 
in the case of varying the sample size between 100 and 1,000,000 
samples. Trend of the mean and mean plus and minus one standard 
deviation are obtained. The computation time refers to a single 
independent computation with different number of samples. 
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Figure 4.11 Highway segment layouts considered in the numerical example, 
including series system with identical bridges (layout 1), and series 
(layout 2), series/parallel (layout 3), and parallel (layout 4) systems 
with different bridges. 
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Figure 4.12 Mean functionality associated with the three considered recovery 
strategies for each bridge (B1, B2, and B3) within the four assumed 
layouts in Figure 4.11. 
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Figure 4.13 Mean segment functionality profiles associated with (a) layout 1, (b) 
layout 2, (c) layout 3, and (d) layout 4 in Figure 4.11, showing each 
considered four network recovery scenarios. 
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Figure 4.14 Frequency histograms of resilience associated with scenarios 1 and 3 
for (a) layout 2 and (b) layout 3 in Figure 4.11. 
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Figure 4.15 Profiles of the mean direct costs associated with each considered 
recovery strategy (single bridges) and recovery scenarios (network) for 
single (a) bridge B1, (b) bridge B2, and (c) bridge B3, and (d) layouts 2, 
3 and 4 in Figure 4.11. 

 

(a)

Bridge B1

0 2 4 6 8 10 120

1

2

3

4

M
ea

n 
di

re
ct

 c
um

ul
at

iv
e 

co
st

 (U
SD

 m
ill

io
ns

)

Strategy a

Strategy b

(b)

Bridge B2

0 2 4 6 8 10 12

M
ea

n 
di

re
ct

 c
um

ul
at

iv
e 

co
st

 (U
SD

 m
ill

io
ns

)

Strategy a

Strategy c

0

5

10

15

Strategy b

(c)

Bridge B3

0 2 4 6 8 10 12

M
ea

n 
di

re
ct

 c
um

ul
at

iv
e 

co
st

 (U
SD

 m
ill

io
ns

) Strategy a

Strategy b

(d)

Layouts 2, 3, and 4

0 2 4 6 8 10 12
M

ea
n 

di
re

ct
 c

um
ul

at
iv

e 
co

st
 (U

SD
 m

ill
io

ns
) Scenario 1

Scenario 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

5

10

15

20

25

Scenario 3
Scenario 4Strategy c

Strategy c

Time from earthquake t (months) Time from earthquake t (months)

Time from earthquake t (months) Time from earthquake t (months)



175 

 

PART II 

 

 

OPTIMALITY-BASED APPROACH FOR THE 

MANAGEMENT OF AGING SHIP STRUCTURES 

CONSIDERING RELIABILITY, REDUNDANCY, AND 

RISK OF SHIPS UNDER DIFFERENT OPERATIONAL 

CONDITIONS AND INTEGRATING STRUCTURAL 

HEALTH MONITORING 
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CHAPTER 5 

RELIABILITY AND REDUNDANCY ASSESSMENT OF 

SHIPS UNDER DIFFERENT OPERATIONAL 

CONDITIONS 

5.1  INTRODUCTION 

The proper knowledge of ship structural vulnerability under specific operational 

conditions is the key to maintain an adequate safety level. Due to time and distance 

constraints, sometimes vessels are forced to plan routes that put their structure at risk, 

possibly experiencing dramatic drops of their operational safety. In fact, ship 

structures are subjected to the effects of the environment in which they operate. 

Depending on the encountered sea conditions, the load effects on the hull may vary 

over a journey potentially inducing extreme danger. 

Several studies focused on the assessment of ship reliability associated with 

ultimate flexural capacity (Mansour and Hovem 1994, Mansour 1997, Ayyub, 

Assakkaf and Atua 2000, Luís, Teixeira and Guedes Soares 2009) and fatigue failure 

mode (Kim and Frangopol 2011 and Kwon, Frangopol and Kim 2011). Furthermore, 

the variation over time of reliability, also associated with ultimate flexural capacity, 

has been extensively investigated (Paik, Kim and Lee 1998, Guedes Soares and 

Garbatov 1999, Paik and Frieze 2001, Akpan et al. 2002). Ship reliability has been 
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investigated also with respect to flexural capacity associated with the failure of the 

first element (stiffened plate) within a ship cross-section (Lua and Hess 2003, Lua and 

Hess 2006). Although the maximum vertical bending moments (sagging and hogging) 

generally occur amidship, in order to properly assess the overall ship safety, a system 

composed by multiple cross-sections is investigated herein. 

Even if few comprehensive studies have been conducted for the evaluation of 

structural performance and mostly focusing on performance-based design other than 

safety estimates (Glen, Paterson and Luznik 1999, Dinovitzer 2003), literature lacks in 

studies that assess structural reliability and redundancy of ships under different 

operational conditions, including aging consideration. This chapter, which is based on 

Decò, Frangopol and Okasha (2011), Decò, Frangopol and Okasha (2012), Decò, 

Frangopol and Zhu (2012), provides a comprehensive study reporting on ship 

reliability and redundancy for a wide spectrum of operational options. Accounting for 

corrosion effects and depending on different sea states, vessel speeds and headings 

(i.e., angle between the ship direction and wave moving direction), polar plots 

indicating ship reliability and redundancy are obtained in order to quantify safety for 

each encountered operational and environmental condition. 

Due to the presence of uncertainties, dimensions, material properties, corrosion 

effects, applied loads, and model-related parameters are treated as random variables. 

According to Ayyub et al. (1998), common practice is the use of strip theory that 

provides ship structural responses due to waves by superposing the effects of different 

waves (Korvin-Kroukowski and Jacobs 1957). FREE!ship (2006), an open source 

surface-modeling program based on subdivision surfaces, is used to model the ship 
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body and estimate the hydrostatic parameters. Load statistical descriptors due to wave 

effects are evaluated upon the inclusion of an assumed sea spectrum by using a 

developed MATLAB (The MathWorks 2011) code linked with PDSTRIP (2006), 

which is a program performing strip analysis. Ship reliability is computed using a 

hybrid Latin Hypercube (McKay, Conover and Beckman 1979) scheme based on 

SORM technique. 

This chapter develops an approach for the evaluation of time-dependent reliability 

and redundancy of ship structures under different operational conditions. Section 5.2 

describes the adopted model for the probabilistic evaluation of the load effects induced 

by still water and waves. Section 5.3 develops the model for the evaluation of the 

time-dependent flexural capacity that includes the effects of corrosion. Section 5.4 

quantitative evaluates the time-dependent reliability and redundancy under different 

ship operational conditions. In Section 5.5, the proposed approach is applied to the 

Joint High Speed Sealift (JHSS) reported by Devine (2009). Finally, Section 5.6 

provides the conclusions of this chapter that is based on several published papers 

(Decò, Frangopol and Okasha 2011, Decò, Frangopol and Okasha 2012, Decò, 

Frangopol and Zhu 2012). 

5.2  LOADING MODEL 

The effects induced by the sea on the hull are due to still water and induced by waves. 

Safety evaluation of ship structures operating in different sea and cargo conditions 

requires a probabilistic estimation of the load effects due to still water and waves 

(Guedes Soares 1992). Since design considerations are not the goal of this chapter, 
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“long-term” statistics are not accounted for. This study provides indications on the 

assessment of structural safety of ships undergoing different operational conditions 

without making any assumption on the possible ship routes, therefore “short-term” 

(i.e., mission oriented) loads are quantities of interest. The estimation of the load 

effects is summarized in the Module (1) of Appendix B. 

As recognized by previous studies (Guedes Soares and Teixeira 2000), the primary 

load effects within the hull are sagging and hogging vertical bending moments 

(VBM), that induce compression in the stiffened panels composing the deck and the 

keel, respectively. The main contributions to the overall VBMs are due to still water 

and encountered waves. In order to assess the reliability of a whole ship structure (that 

can be seen as a stiffened box girder), load effects at different locations along the ship 

length (e.g. amidship and quarter points) should be examined. Hence, system 

reliability analysis is based on those analyzed cross-sections. 

5.2.1  STILL WATER BENDING MOMENT 

The adopted probabilistic model for the evaluation of the VBM due to still water relies 

on the method proposed by Hussein and Guedes Soares (2009). Since detailed 

information regarding the location and magnitude of the loads within the vessel is 

generally not available or seldom recorded, the methodology is based on conservative 

rule values, such as those provided in IACS (2008). Accordingly, the VBMs Msw,sag,CS 

and Msw,hog,CS (sagging and hogging, respectively) for a specific ship cross-section CS 

are (IACS 2008) 
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� �7.005185.0 2
,,, �� bwvCSswCSsagsw CblCfM  for sagging (5.1) 

� �bwvCSswCShogsw CblCfM 9.197.1101.0 2
,,, ��  for hogging (5.2) 

where fsw,CS is the factor accounting for the variation of VBMs along the vessel length 

(with 1.0 at midship), Cb is the ship block coefficient, l is the ship length (m), b is the 

ship breadth (m), and Cwv is a wave coefficient calculated as follows (IACS 2008) 
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When information regarding the configuration of the cargo is not sufficient to 

develop an accurate analysis, according to Hussein and Guedes Soares (2009), the 

maximum still water bending moments can be taken as 90% of those obtained by 

common rules (e.g. IACS 2008). Hussein and Guedes Soares (2009) proposed the use 

of a normal distribution with mean and standard deviation to be taken as 70% and 20% 

of the maximum still water bending moment, respectively. 

5.2.2  WAVE-INDUCED BENDING MOMENT 

The interaction between sea waves and ship structures is summarized in this section. 

The system composed by ship and waves generates responses in terms of ship motion, 

pressure distribution, body forces and moments. The structural response can be 

evaluated by means of linear response theory, which is commonly recognized as an 
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efficient usual practice (Ayyub et al. 1998). The main idea is the linear superposition 

of single waves (given a frequency and a unitary amplitude) in order to obtain a wave 

spectrum that conveniently covers a large number of wave configurations. The main 

advantage in using linear theory is that the response to natural sea conditions is 

evaluated by superimposing the responses obtained by the generated regular waves. 

However, linear theory becomes inaccurate when dealing with wave heights that are 

greater than wave lengths (Hughes 1983). 

Since, in general, the vertical flexural failure mode is the most critical structural 

concern (Guedes Soares and Teixeira 2000), this chapter focuses on the evaluation of 

VBM of ships subjected to different operational conditions by applying the linear 

method. Estimates of VBM must be provided for each investigated ship operational 

condition, represented by a group of input parameters such as sea states, ship speeds 

and headings. Figure 5.1 shows the flowchart describing the general approach that can 

be followed in order to obtain a comprehensive set of structural responses by using 

linear theory. 

5.2.2.1 Regular wave response 

The structural responses for regular waves become crucial when assessing the ship 

response due to natural sea given by linear superposition. Responses for single waves 

are based on hydrodynamic analyses of the ship in case of having steady conditions 

(steady harmonic variation of the loads on the structure), disregarding the transient 

effects (Faltinsen 1990). Forces and moments on ships induced by waves mostly rely 

on hydrodynamic rather than structural analysis. Generally, hydrodynamic analyses 
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are complex tasks that involve the use of computer-based tools, and abundantly lay 

outside the common role of ship structural engineers (Hughes 1983). A relatively 

simple technique to perform hydrodynamic analysis of operating vessels is based on 

strip theory or strip method (Korvin-Kroukowski and Jacobs 1957). With respect to 

other techniques, simplifications are introduced by the strip theory, in which the ship 

hull is divided into prismatic segments (strips). Hydrodynamic forces induced by 

harmonic waves are evaluated within the individual segments, disregarding any 

interaction between adjacent ones. Then, shear and bending moment within the entire 

hull are evaluated by integrating the obtained hydrodynamic forces along the segments 

(Hughes 1983). This method relies on a two-dimensional flow theory, therefore 

interaction between segments is neglected. 

According to Faltinsen (1990), when the structure is excited by regular waves, 

hydrodynamic forces vary harmonically with the same frequency of the wave loads. 

Hydrodynamic forces and moments can be subdivided into two types: 

1. Forces and moments acting when the ship structure is restraint against oscillating 

(Froude-Kriloff and diffraction forces and moments). 

2. Forces and moments acting when the ship structure is forced to oscillate according 

to the excitation frequency (hydrodynamic loads include added mass, damping, 

and restoration). 

Generally, Froude-Kriloff forces are those induced by the undisturbed pressure 

distribution of the waves, reduced by the hydrostatic pressure acting over the wetted 

surface. Froude-Kriloff forces FFK,i are evaluated by integrating the obtained pressure 

p over the section contour (Faltinsen 1990) 
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where ni are the unit vectors normal to the body surface according to the assumed 

coordinate system (n1, n2, and n3, respectively), S is the wetted surface, and s is the 

variable of integration. Actually, the presence of the ship body generates changes in 

the pressure field (disturbed waves). Such pressure changes are accounted for by the 

diffraction forces FD,i defined as (Faltinsen 1990) 

332211, aAaAaAF iiiiD ���  (5.5) 

in which Ai1, Ai2, and Ai3 are the added mass coefficients (inertia added due to an 

accelerating body that moves part of the volume of the surrounding fluid) with respect 

to the assumed coordinate axis, respectively; and a1, a2, and a3 are the acceleration 

components of the undisturbed wave field with respect to the assumed coordinate axis, 

respectively. 

Beyond Froude-Kriloff and diffraction forces (based on a non-moving body), other 

forces directly related to the motion of the vessel (considered as a rigid body) have to 

be evaluated. Added mass, damping, restoration forces and moments can be obtained 

upon evaluating the motions by solving the equations of rigid body motions (Faltinsen 

1990) 
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where Mjk are the components of the mass matrix, Ajk, Bjk, and Cjk are the added mass, 

damping, and restoring coefficients, respectively; k��� , k�� , and k�  are the acceleration, 
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velocity, and displacement of the rigid body, respectively; Fj are the complex 

amplitudes of the exciting forces and moments, i is the complex unit, ωe is the circular 

encounter frequency that depends on the circular frequency ω, and on the ship speed 

U, and heading angle H, as discussed in the following section, t is the time, and j and k 

are the degrees of freedom. The first term (accounting for the acceleration of the body) 

in the sum of Equation (5.6) is responsible for the added mass forces and moments, 

while the second term (referring to the velocity of the body) represents the damping 

forces and moments, finally the third term (associated with the displacement of the 

body) is related to the restoration forces and moments. In the context of the strip 

method, the above introduced forces are evaluated by modified equations 

accommodating for the two-dimensional flow theory (PDSTRIP 2006). 

Although several commercial software performing linear analysis are available, 

freeware software developed by field specialists or academic institutions is also 

accessible. For instance, the freeware program PDSTRIP (2006) developed in 

FORTRAN language has been proved to be a useful tool computing the seakeeping of 

ships and other floating bodies according to the strip method (Bertram, Söding and 

Graf 2006, Palladino et al. 2006). 

5.2.2.2 Vertical bending moment response amplitude operator 

One of the key points while using linear theory for the determination of hull loads is 

obtaining the Response Amplitude Operator (RAO) from ship hydrodynamic analysis. 

In this chapter, VBM RAOs are of interest. While dealing with time-varying 

processes, their representation in terms of spectral density function can be a great 
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advantage, especially for the response analysis of linear systems. In this case, if both 

the input X(t) and output Y(t) of the system are expressed by spectral density functions, 

their relation is associated with the transfer function Φ(ω) as follows (Hughes 1983) 

� � � � � ���� XY SS 2��  (5.7) 

where SY(ω) and SX(ω) are the spectral density functions of the output and input, 

respectively; and ω is the circular frequency (rad/s). 

In marine engineering, RAOs are represented by curves describing the structural 

response in the frequency-domain. Within the linear methods (e.g. strip method), 

RAOs are defined as the ratio between the amplitude of the harmonic function of the 

response and the amplitude of the wave elevation (Drummen, Wu and Moan 2009). 

This means that RAOs are the ship responses obtained by imposing unitary amplitude 

to the exciting regular waves (ABS 2010). A practical way to find the RAOs is the 

analysis of structural responses due to different waves (with unitary amplitude) by 

varying their lengths. 

The assessment of the loads for operational conditions requires the evaluation of 

the encountered frequency in order to account for different ship speeds and headings. 

Accordingly, RAOs have to be evaluated for the same operational conditions and for 

each considered ship cross-section CS. Consequently, the encountered wave frequency 

ωe,U,H is defined as follows (ABS 2010) 
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in which g is the gravitational acceleration (m/s2), U is the forward ship speed (m/s), 

and H is the heading angle considering 0º, 90º, 180º for following, beam, and head 

seas, respectively. 

5.2.2.3 Natural sea conditions 

The ocean surface is extremely irregular and the prediction of wave configurations is a 

complex issue. In this context, statistical tools can provide the basis for a probabilistic 

study of the structural response for ships in natural sea (irregular sea). The 

mathematical representation of the sea surface becomes feasible and relatively simple 

when the problem is solved linearly. Practically, this allows to evaluate the ship 

structural response for each individual regular wave, and thus to obtain statistical 

estimates by superposing the results of a large number of waves. Since the 

instantaneous value of the ocean elevation follows a Gaussian distribution, and in 

accordance with Faltinsen (1990), the probability density function (PDF) of the peak 

values of the wave elevation Aw is assumed to be described by the Rayleigh 

distribution, defined as 
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where m0 is the zero-th moment of the wave spectrum SW (i.e., the area under the 

spectrum), expressed as (Hughes 1983) 
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The use of the Rayleigh distribution may introduce bias results that are too high in 

case of severe sea state (Bai 2003). 

Various sea spectra are adopted in numerous studies, depending on ocean/sea 

characteristics (Michel 1999). The spectrum for fully developed sea, suggested by the 

International Ship and Offshore Structures Congress (ISSC) and representing a 

modified version of the Pierson-Moskowitz sea spectrum, is selected (Faltinsen 1990) 

� �
�
�
�

�

�
�
�

 

�
�

�
�
��

�
�

�
�
��

�� 4
1

5
11

2
31

, 2
44.0exp

22
11.0

!
�

!
�

!
�

TTTH
S SSW  (5.11) 

where SW,SS(ω) is the sea spectrum for a given sea state SS, T1 is the wave mean period 

(s), and H1/3 is the significant wave height corresponding to the mean of the one third 

highest waves (m). The sea state scale for wind sea plays a fundamental role for the 

evaluation of the load magnitude. The values of the wave mean period and significant 

height depend upon the intensity of the sea states. 

For long crested sea and for low frequency waves, the correlation coefficients 

between two loads components denoted i and j are given by (Mansour and 

Thayamballi 1994) 
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where Φi(ω) is the transfer function of load component i, Φj*(ω) is the complex 

conjugate of the transfer function of load component j, SW(ω) is the sea spectrum, σi 

and σj are the individual standard deviations, and Re denotes the real part of the 

complex quantity within parenthesis. 
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Once RAO curves for wave-induced VBM Mw,CS,SS,U,H are obtained for each 

considered operational condition and each section, the response spectrum 

SM,CS,SS,U,H(ωe) can be obtained as (Hughes 1983) 

� � � � � �HUeSSWHUeHUeHUSSCSM SS ,,,
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,,,,,,,, ��� ��  (5.13) 

For a linear system, once the response spectra for the VBMs are evaluated, the 

associated PDF of the Rayleigh distributions of the investigated structural response 

considering several operational conditions is provided (Hughes 1983) 
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Thus, the relevant descriptor of the probability distribution of the VBM (mode α) is 

� � HUSSCSHUSSCSw mM ,,,,0,,,, �$  (5.15) 

The mean μr and standard deviation σr are (Papoulis 1984) 
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5.3  RESISTANCE MODEL 

The evaluation of the probabilistic hull strength, in terms of flexural capacity 

associated with the occurrence of first failure within a given ship cross-section and 

ultimate flexural capacity, can be performed by a classical incremental curvature 
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method such as that provided by IACS (2008), or by the simple progressive collapse 

method provided by Hughes (1983). These techniques are computationally 

demanding, especially when a great number of samples is simulated. 

The first failure is represented by the occurrence of failure of a stiffened panel 

within a selected cross-section, induced by the combination of in-plane compression 

and bending moment. According to Hughes (1983), the failure of a stiffened panel is 

due to the buckling or yielding of the plating and/or the attached stiffener. This 

approach based on Decò, Frangopol and Okasha. (2011) is extensively used in order to 

efficiently evaluate the strength associated with the first failure of a stiffened panel 

within a selected cross-section (flexural capacity herein called first failure moment). In 

summary, the first failure moment is calculated by using a simplified progressive 

collapse method (Hughes 1983). Although this approach is designed for the evaluation 

of the ultimate capacity, it can also be used for the analysis of the failures preceding 

the ultimate failure. The proposed procedure stops when the first failure is encountered 

within the analyzed ship cross-section. 

The ultimate flexural capacity is defined as the peak value of the moment-

curvature curve for a given ship cross-section. In order to significantly reduce the 

computational time, Okasha and Frangopol (2010b) developed a new optimization-

based method providing as accurate results as those of the incremental curvature. 

Briefly, Okasha and Frangopol (2010b) discovered that, by optimizing the moment-

curvature, treated as a non-linear implicit function, it is possible to find the value of 

the curvature κ associated with the maximum corresponding flexural capacity Mc(κ). 

By the use of an optimization algorithm, the searching process is performed in a few 
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steps leading to obtain the ultimate failure moment for a given ship cross-section. In 

this method, since only few values of the curvature are processed, the computational 

time is dramatically reduced. 

The two above mentioned techniques rely on the assumption that the structure is 

composed by hard corners (plating areas adjacent to intersecting plates) and stiffened 

plates (structural systems that include portions of the plating and stiffener) in 

accordance with IACS (2008). Furthermore, buckling effects of stiffened plates (such 

as panel/stiffener buckling and tripping) are accounted for, and the effects of initial 

imperfections and residual stresses are considered by introducing reduction factors 

applied to the effective width of the plating (Ӧzgüc, Das and Barltrop 2006). Due to 

the presence of uncertainties associated with geometrical and material properties (such 

as plating thickness, elastic modulus, plating yielding stress, and stiffener yielding 

stress), a probabilistic analysis must be conducted. These two procedures can be 

accommodated in a simulation technique based on Latin Hypercube sampling 

(McKay, Conover and Beckman 1979) (reviewed in Appendix A) in a time-effective 

way. The obtained moment capacities associated with first and ultimate failures are 

fitted by lognormal distributions, from which their statistical descriptors are derived. 

The assessment of the flexural capacity of the hull is included in the Module (2) of 

Appendix B. 

5.3.1  CORROSION EFFECTS 

Over time, the loss of thickness of plates and stiffeners due to corrosion effects leads 

to reduction of both first and ultimate failure moments. The thickness loss within a 
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cross-section is assumed to follow the law proposed by Paik, Kim and Lee (1998) and 

recalled by Akpan et al. (2002) 

� � � � 2
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where r(t) is the thickness loss (mm), t is the time (year), t0 is the corrosion initiation 

time depending on coating life (year), C1 is the annual corrosion rate (mm/year), and 

C2 is a constant set to unity. Both the annual corrosion rate and the corrosion initiation 

time are considered as random variables. 

The general methodology adopted in this study for the probabilistic estimation of 

the resistance of a hull (first and ultimate bending moments) is summarized in the 

flowchart of Figure 5.2. 

5.4  RELIABILITY AND REDUNDANCY INDICES  

The quantitative evaluation of the safety of the hull is based on reliability and 

redundancy indicators. The level of safety depends on both the strength of the hull and 

ship operational conditions. Although ship reliability is generally assessed only 

amidship (Guedes Soares and Teixeira 2000), several cross-sections are investigated in 

order to enhance the assessment of hull safety by using a system-oriented procedure. 

The procedure for the assessment of reliability and redundancy is summarized in the 

Module (3) of Appendix B. 

Ship reliability analysis can be performed based upon the knowledge of the 

probability distributions of loads and resistances for each cross-section (following the 

methods previously explained) and including model (i.e., epistemic) uncertainties. The 
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failure probabilities and the corresponding reliability indices, with respect to flexural 

capacities associated with a specific cross-section CS, are based on the following limit 

state equations (Paik and Frieze 2001) 

� � � � 0,,,,,,,,,,,, ���� HUSSCSwwCSsagswswCSsagRHUSSCSsagUF MxMxtUFMxtG  (5.19) 
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� � � � 0,,,,,,,,,,,, ���� HUSSCSwwCSsagswswCSsagRHUSSCSsagFF MxMxtFFMxtG  (5.21) 
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where the subscripts UF, FF, sag, hog, CS, SS, U, and H refer to ultimate failure, first 

failure, sagging, hogging, ship cross-section, sea state condition, ship speed, and ship 

heading, respectively; GUF,sag,CS,SS,U,H(t), GUF,hog,CS,SS,U,H(t), GFF,sag,CS,SS,U,H(t), and 

GFF,hog,CS,SS,U,H(t) are the time-dependent performance functions; UFMsag,CS(t) and 

UFMhog,CS(t) are time-dependent ultimate failure bending moments, FFMsag,CS(t) and 

FFMhog,CS(t) are time-dependent first failure bending moments; Msw,sag,CS and Msw,hog,CS 

are the still water bending moments, Mw,CS,SS,U,H is the wave-induced bending moment 

given by linear theory; xR, xsw, and xw are the model uncertainties associated with the 

resistance determination, still water bending moment prediction, and wave-induced 

bending moment prediction, respectively. Moreover, the reliability of the series system 

composed by the investigated cross-sections is performed. 

The assessment of the time-variant redundancy index is necessary in order to study 

the behavior of structures prone to sudden failure. A redundant system is a system able 

to redistribute the loads throughout multiple components even though one or more 
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components fail (Frangopol 2011). The redundancy of ship structures can be based on 

the following reliability-based time-variant redundancy definitions 
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where Pf,UF(t) and Pf,FF(t) are the failure probabilities associated with the ultimate 

failure of a cross-section and the failure of the first stiffened plate within a cross-

section, respectively; and βUF(t) and βFF(t) are the corresponding reliability indices. 

The relationship between the reliability index β and the failure probability Pf is 

� �fP��� � 11&  (5.25) 

where Φ-1 is the inverse standard normal distribution function. 

5.5  CASE STUDY 

Reliability and redundancy indicators under different operational conditions are 

assessed for the Joint High-Speed Sealift (JHSS) discussed in Devine (2009). The 

following geometrical properties are considered for the JHSS: length l = 290 m, 

breadth b = 32 m, height h = 22.3 m, and block coefficient Cb = 0.4835. Figure 5.3(a) 

shows the 3-D geometrical model obtained by using the software FREE!ship (2006). 

Three representative transversal ship cross-sections, denoted CS1 (fore quarter point 

72.5 m aft FP), CS2 (midship 145 m aft FP), and CS3 (aft quarter point 217.5 m aft 

FP) have been investigated (see Figure 3(b,c,d)). The dimensions of the components 
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are provided by Devine (2009). Due to speed requirements, the design of the JHSS 

was focused on minimizing structural weight, leading to very thin plates (Devine 

2009). 

Polar representations enable to directly visualize the effects on ship structural 

performance by varying the heading angle of the ship with respect to the wave 

direction given specific sea state and ship speed. Figure 5.4 qualitatively shows the 

layout of the adopted polar representation. Any load and performance profile obtained 

for angles between 0º (following sea) and 180º (head sea) is symmetric with respect to 

those with angles between 180º and 360º. 90º and 270º indicate beam sea. Thus, the 

figure showing the structural performance is divided into two parts; the right and left 

parts show the performance for sagging and hogging, respectively. Further profiles can 

be drawn in the polar plots reporting the cases in which some operational conditions 

are changed (i.e., sea state or ship speed) or when different ship cross-sections, limit 

states, or even ship aging effects are investigated. Given that for linear theory wave-

induced loads effects are the same for sagging and hogging, their polar representation 

spans between 0º and 180º. Polar plots including the load effects in terms of VBM, 

reliability and redundancy indices of the ship for each of three representative 

transversal ship cross-sections in Figure 5.3(a) are obtained and discussed. 

5.5.1  LOAD EFFECTS 

Since the loading manual of the JHSS is not available, and given that the loads can 

vary between missions, the load effects induced by still water in terms of VBM are 

evaluated based on the conservative rule values provided in IACS (2008) and given by 
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applying Equations (5.1) and (5.22) for sagging and hogging, respectively. According 

to the method proposed by Hussein and Guedes Soares (2009), the VBMs for each 

investigated cross-section are assumed to be normally distributed with statistical 

descriptors reported in Table 5.1. Being the scope of this chapter the development of a 

general procedure for the assessment of ship reliability and redundancy with respect to 

VBM, among other methods, strip theory is adopted for this case study. 

RAO curves and load descriptors (based on Rayleigh distribution) are evaluated 

with respect to the VBM for each of the three ship cross-sections (in Figure 5.3) and 

for each operational condition. Since the JHSS is a fast naval vessel, and assuming 

that the maximum forward speed can reach up to 20 m/s (38.9 knots), the following 

five speeds are considered: 0 m/s (0 knots), 5 m/s (9.7 knots), 10 m/s (19.4 knots), 15 

m/s (29.2 knots), and 20 m/s (38.9 knots). Ship structural performances are evaluated 

for different ship headings. Angles between 0º (following sea) and 180º (head sea) by 

multiples of 20º are accounted for. 

Wind sea accounting for sea states 4, 5, 6, and 7, described by statistical properties 

according to Table 5.2, is included in the analysis. The used wave spectrum is 

calculated according to Equation (5.11) and its representation is provided in Figure 

5.5. Based on considerations on operational profiles (Ayyub et al. 1998), few ship 

speed/sea state combinations believed to be very unlikely are disregarded. Hence, 

when the ship encounters sea state 7 (which is a very low probability event), its 

maximum allowed speed is assumed to be 10 m/s. For all the other cases, any 

combination between speed and sea state is allowed. 
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As shown in Figure 5.3(a), the body of the JHSS has been modeled by the 

freeware software FREE!ship (2006). Based on this model, hydrostatic properties are 

assessed. The evaluated ship displacement of 30,350 Mton is a value compatible with 

that provided by Devine (2009) for normal operational conditions, proving that the 

accuracy of the model is acceptable. Offset points describing 19 cross-sections spaced 

14.5m are obtained by using the exporting tool of FREE!ship. Hull wetted areas 

associated with these cross-sections were also evaluated. 

Cross-section geometries are managed by a developed MATLAB (The 

MathWorks 2011) code that converts the exported file to a suitable format for the 

software PDSTRIP (2006) in order to perform linear response analysis under regular 

waves (strip theory). VBMs for the three ship cross-sections are obtained with respect 

to different waves having unitary amplitude and length between 24 m and 1300 m (95 

values irregularly spaced). A large number of wave lengths is necessary in order to 

achieve enough values to build the RAO curves with sufficient accuracy. Moreover, 

the input file of PDSTRIP allows accounting for different ship speeds and headings. 

After handling the output file with another developed MATLAB code, the results 

obtained are expressed in terms of VBM RAOs considering variations of ship speed 

and heading. For instance, Figure 5.6(a) shows the VBM RAOs associated with ship 

speed 0 m/s and by varying the heading angles from 0º to 80º for the midship cross-

section. It can be noted that the variation of ship heading induces a kind of translation 

of the structural response, primarily shifted on higher frequencies due to the changed 

wave encountered frequency (Equation (5.8)). In Figure 5.6(b), the heading angle H is 

assumed constant (i.e., H = 180º), while the ship speed varies between 0 and 20 m/s 
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for the midship cross-section. Again, it can be noticed that RAOs shift to higher 

frequencies when the speed increases in head sea. 

Once RAOs have been obtained, by selecting a sea spectrum (given by Equation 

(5.11) after inputting specific significant wave height and average wave period) and by 

applying Equation (5.13), the response spectra can be assessed. Figure 5.6(c) shows 

the response spectra for VBM when the JHSS is subjected to the same conditions as 

those associated with Figure 5.6(a) and sea state 5 is selected. It can be seen that the 

responses are greater when the ship is traveling with heading equal to 60º. This can be 

explained analyzing the relevant wave spectrum and noting that responses associated 

with encountered frequencies lower than 0.7 (rad/s) are not significantly affected. 

Similarly, Figure 5.6(d) depicts the responses by varying the ship speed according to 

Figure 5.6(b). Responses associated with higher speeds are heavily affected by sea 

state 5. 

According to Rayleigh distribution, for each considered operational condition it is 

possible to evaluate the mode, mean, and standard deviation of the response 

distribution given by Equations (5.15), (5.16), and (5.17), respectively. According to 

Equation (5.10), the values of the loads are proportional to the areas subtended by the 

response spectrum curves. Figure 5.7(a) shows the polar representation of the vertical 

bending moment (VBM) for the three ship cross-sections (CS1, CS2, and CS3) in the 

case of sea state 6 and speed of 5 m/s. Obviously, the highest load effects are found for 

the cross-section amidship (CS2) and lower load values for the other two cross-

sections at quarter points. Figure 5.7(b) gives indications about the dispersion of the 

VBM for the cross-section amidship by showing the profiles of the mean μ and mean 
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plus and minus one standard deviation σ, (μ+σ and μ-σ, respectively) in case of sea 

state 6 and no speed (U = 0 m/s). VBM responses associated with beam sea (90º and 

270º) become insignificant. 

Figure 5.7(c) shows the effects on the mean VBM for CS2 due to the variation of 

speed under sea state 5. As the speed increases, VBM mostly increase for head sea, 

while they are irrelevant during following sea conditions (i.e., RAOs are mostly 

concentrated in frequency regions far from the wave spectrum for sea state 5). Some 

of the points within Figure 5.7(c) are directly obtained from Figure 5.6(c,d) and are 

proportional to the areas subtended by the relevant response spectrum curves; the 

remaining points are evaluated in the same way. In particular, it can be noted that the 

sharp curve associated with heading angles of 60º and 300º (i.e., the load is the same 

on the two sides of the ship) with null ship speed (point A) and sea state 5 is 

associated with the greater response obtained by the relevant curve of Figure 5.6(c). 

Further VBM values for null ship speed, sea state 5, and corresponding to heading 

angles of 0º, 20º, 40º, and 80º can be directly associated with the curves presented in 

Figure 5.6(c). 

Moreover, points B, C, and D in Figure 5.6(d) are derived from the areas 

subtended by the curves associated with ship speeds 0, 10, and 20 m/s, respectively; 

and for sea state 5 of CS2. The increasing of the subtended area determines greater 

mean VBMs. Figure 5.7(d) reports on the variation of the mean VBM for three sea 

states (SS 5, SS 6, and SS 7). Setting a speed U of 5m/s, the mean VBM for CS2 

increases with the severity of the sea state. Moreover, sea state 7 provides relatively 

high mean VBMs in case of following sea because the propagation of the wave profile 
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(wave speed) is faster than the travelling vessel (high wave speed due to long waves). 

Hence, the waves overtake the ship and generate load effects on the hull based on the 

encountered frequency. In order to better represent some small values shown in the 

polar plots of Figure 5.7(a,d), Cartesian plots are shown in Figure 5.7(e,f). 

Although the use of a linear approach provides conservative approximated results 

(Ayyub et al. 1998), improved results can be obtained by applying methods that 

accounts for non-linearity in the wave-induced loading as well as vibration effects 

such as springing and whipping loads, usually associated with high frequency 

excitations. These effects are here neglected, being their evaluation outside the scope 

of this case study. Due to linear theory, the resulting bending moments are the same 

for both sagging and hogging (Hughes 1983, Lua and Hess 2006) and the results 

shown in the polar plots can be affected by inaccuracy, especially when the responses 

are concentrated in very low or very high encountered frequencies. Profiles are also 

affected by the error made while discretizing the input data, sometimes leading to 

sharp angles. 

5.5.2  ASSESSMENT OF FLEXURAL CAPACITY 

The assessment of flexural capacity probability distributions is based upon the 

knowledge of material properties: mean value of the steel elastic modulus E = 210,000 

MPa and mean value of the plating and stiffener yielding stresses of high strength steel 

σYp = σYs = 351.6 MPa (Devine 2009). The included random variables E, σYp, σYs, and 

the plating thickness tp are assumed to be log-normally distributed with coefficients of 

variation taken as 0.03, 0.1, 0.1, and 0.05, respectively (Paik and Frieze 2001). The 
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mean values of tp can be obtained from Figure 5.3(b,c,d). Residual stress value has 

been assumed to be equal to 5% of the plating yielding stress. According to Akpan et 

al. (2002), the annual corrosion rate C1 is treated as a log-normally distributed random 

variable. It was found by Okasha, Frangopol and Decò (2010) that the use of very high 

values of corrosion penetration (as suggested by Akpan et al. 2002) together with the 

very thin plate used in the cross-section of this JHSS, leads to very conservative 

estimates, and the obtained corrosion loss after only few years becomes greater than 

some of the generated plate thickness samples. Therefore, according to Okasha, 

Frangopol and Decò (2010), Table 3 presents proportional fractions of those values in 

Akpan et al. (2002). However, for this type of fast and light weight vessels, more 

accurate corrosion models are needed for time-variant reliability assessment. 

The simulation of the hull flexural strength, with respect to first and ultimate 

failure for each considered ship cross-section and based on 5,000 generated Latin-

Hypercube samples, is performed over time. The generated frequencies of flexural 

capacities (for both sagging and hogging) are fitted by a log-normal distribution in 

order to obtain the relevant statistical descriptors (mean and standard deviation) for 

each simulated year (two year increments). The targeted ship service life is assumed to 

be 30 years. 

Figure 5.8 illustrates the time-variant flexural capacities for ship (a,b) cross-

section 1, (c,d) cross-section 2, and (e,f) cross-section 3, respectively. Profiles of mean 

μ and mean plus and minus one standard deviation (μ+σ and μ-σ, respectively) of the 

first and ultimate failure moments for sagging (a,c,e), and for hogging (b,d,f) are 

shown. Flexural capacities decrease over time according to the applied corrosion rate. 
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5.5.3  SHIP RELIABILITY AND REDUNDANCY 

Once statistical descriptors of load effects and capacities are obtained, reliability can 

be performed based on flexural failure mode described by Equations (5.19) to (5.22). 

The reliability index is obtained for both sagging and hogging and for each 

investigated ship cross-section, sea state, ship speed, and heading. Moreover, 

accounting for the decay of flexural capacities over time, reliability at different years 

can be obtained. The reliability of the series system composed by the three cross-

sections shown in Figure 5.3 is also investigated. The time-variant reliability is 

performed by the program RELSYS (Estes and Frangopol 1998), that computes 

reliability according to First-Order Reliability Method (FORM). Once the simulation 

phase is complete, the correlation among the capacities of different cross-sections is 

directly evaluated from the obtained samples, whereas the correlation among the load 

effects along the ship is calculated by using Equation (5.12). These correlations are 

accounted for while performing reliability analysis of the series system. 

Similarly to the obtained results for the VBMs, Figure 5.9 shows the polar 

representation of the reliability index associated with the load effects due to still water 

and waves with respect to ultimate failure for sagging (right part) and hogging (left 

part). Figure 5.9(a) reports on the reliability index of the three ship cross-sections in 

the case of having sea state 6 and speed 5 m/s for the intact structure (year 0). The 

shape of the obtained profiles is based on the resulting wave-induced loads. 

Accordingly, higher reliability values are found for following sea and beam sea. 

Consequently, the reliability associated with the series system (accounting for cross-
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sections CS1, CS2, and CS3) is below but quite close to the minimum reliability 

among the three cross-sections. The system reliability is mostly affected by the 

reliability of CS1 for following sea and by CS2 for head sea. 

Figure 5.9(b) compares the reliability of an intact structure (year 0) with the one of 

an aged structure (year 30) for CS2 under sea state 6 and no speed. It is found that the 

profile for the aged case is a scaled offset of the profile for the intact case. It can be 

noticed that the aged state further limits the ship operability options. Figure 5.9(c) 

shows the variation of reliability for CS2 under sea state 5 by varying the speeds and 

with respect to the intact structure. As the speed increases, the reliability for head sea 

decreases. Figure 5.9(d) reports on the variation of reliability due to different 

encountered sea states. Sea state 7 provides very low reliability indicating very poor 

operability conditions for each considered heading (probability of failure is 

approximately 50%). Furthermore, it can be noticed that for the same operational 

conditions, reliability for sagging is greater than reliability with respect to hogging 

conditions. In order to better represent some results reported in Figure 5.9(a,d), 

Cartesian plots are provided in Figure 5.9(e,f). 

The time-variant redundancy indices are calculated according to Equations (5.23) 

and (5.24), and based upon the assessment of the failure probabilities associated with 

first and ultimate flexural failures. By investigating the same operational conditions as 

those used in the reliability case, a similar polar representation for redundancy 

(sagging and hogging) is shown in Figure 5.10. These plots follow the other two 

developed polar representations (Figure 5.7 and Figure 5.9) considering the same 

operational conditions as those used in Figure 5.7 and Figure 5.9. It can be noticed 
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from Figure 5.10(a) that redundancy in sagging for CS3 is much higher than the one in 

hogging, due to the geometry of this cross-section. In fact, the upper part of the cross-

section is interrupted and most of the inertia is concentrated at the bottom part of the 

cross-section leading to worse performance in hogging. Generally, redundancy of CS2 

is greater than that of CS1 for both sagging and hogging as reported in Figure 5.10(a). 

According to Figure 5.10(b), the redundancy profile of an aged structure (year 30) is a 

scaled offset of the profile for the intact case (year 0). Furthermore, it is found that 

redundancy decreases to critical values when the ship speed increases from 0 to 20 

m/s, especially for head sea (see Figure 5.10(c)). Redundancy dramatically decreases 

also when the sea state becomes more severe (from sea state 5 to 7) as shown in Figure 

5.10(d). According to Figure 5.11, very similar results are obtained by adopting the 

definition of redundancy provided in Equation (5.24). 

During ship lifetime and depending on specific operational conditions, structural 

safety may drop dramatically. The inclusion of constant thresholds (i.e., circular in 

polar coordinates) for the reliability index helps maintain adequate safety. When the 

performance decreases below a set warning level, the operational condition is poor and 

decisions on varying speed and direction must be made in order to restore the ship 

performance to an acceptable level. 

5.6  CONCLUSIONS 

Ship lifetime safety can be estimated upon assessing ship structural performance for a 

large spectrum of operational conditions. Maintaining a specific speed and heading 

angle for different sea states may lead to dangerous structural performance, putting at 
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risk the integrity of the whole ship and crew lives. This chapter presents an efficient 

approach for the evaluation of ship reliability and redundancy including the effects of 

corrosion. This approach allows to investigate aging vessels accounting for the 

deterioration of their performance over time due to corrosion effects. The strip method 

is used for the assessment of the VBM RAOs for three ship cross-sections. Linear 

theory provides conservative results especially for severe sea states, however, other 

methods can be accommodate in the proposed approach. The probabilistic analysis of 

structural responses for natural sea is conducted by investigating specific sea states. 

Moreover, reliability and redundancy indices are assessed for similar operational 

conditions. 

The following conclusions are obtained: 

1. The proposed polar representation for reliability and redundancy improves the 

interpretation of the structural safety level under specific operational conditions, 

helping the ship operator make appropriate decisions. 

2. Aging considerations are included into reliability and redundancy analyses 

showing how performance is affected by corrosion. The same operation could lead 

to greater consequences if conducted with an aged ship. However, it has been 

found that the impact of corrosion effects (ship aging) on reliability and 

redundancy is in general limited compared with the effects of specific critical 

operations. 

3. In the case of hogging, it has been found that the cross-sections CS1 and CS2 have 

lower redundancy than that of amidship (i.e., cross-section CS2). However, 



205 

 

reliability indices of the three ship cross-sections are quite similar, indicating that 

the design is adequate for the hull cross-sections. 

4. It can be noted that some operational conditions lead to significant drop of 

redundancy. When the structural performance reaches a set threshold (warning 

situation), operational conditions must be modified according to the residual 

structural safety by reducing the forward speed, or by changing the heading angle 

in order to improve the structural performance. 

5. Generally, when speed increases, sea state becomes more severe, and when under 

head sea (heading 180º), the structural performance reduces significantly. An 

extreme combination of these three factors may lead to catastrophic consequences. 

For instance, it has been found that if the JHSS travels in sea state 7 at a relatively 

low speed (5 m/s) the associated probability of failure can be very high, with 

redundancy critically approaching zero. 

6. The proposed framework could be enhanced by including structural health 

monitoring (SHM) technologies able to provide further information regarding “real 

time” stresses in the hull. The proposed study can accommodate SHM by means of 

updating the prior information with new obtained datasets. 

Polar plot representations open new research scenarios. This potential can also be 

fully exploited while dealing with planning the optimum ship route within a trip. 

Although time and distance are of primary importance, the level of structural safety is 

also crucial, especially when a vessel is facing critical operational conditions. The 

optimization of reliability and redundancy combined with route direction and ship 

speed leads to a new challenge for structural and marine engineers.  
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Table 5.1 Statistical descriptors of the distributions of still water bending 
moments for the three cross-sections in Figure 5.3. 

Load type Mean (Nm) Standard 
deviation (Nm) 

Sagging still water bending moment (cross-
sections 1 and 3) 7.246×108 2.070×108 

Sagging still water bending moment (cross-
section 2) 1.115×109 3.185×108 

Hogging still water bending moment (cross-
sections 1 and 3) 1.305×109 3.729×108 

Hogging still water bending moment (cross-
section 2) 2.008×109 5.736×108 
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Table 5.2 Statistical descriptors of the Pierson-Moskowitz sea spectrum (obtained 
from Resolute Weather 2011). 

Sea state Significant wave 
height (m) 

Average wave period 
(s) 

Average wave length 
(m) 

4 1.83 5.0 24.08 

5 2.44 5.5 32.00 

6 4.27 7.5 56.09 

7 7.62 10.0 100.13 
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Table 5.3 Statistical descriptors of the annual corrosion rate C1 for different 
locations within the hull. 

Location Mean 
(mm/year) 

Standard deviation 
(mm/year) 

Deck plating 0.008125 0.000406 

Deck stiffener web 0.008125 0.000406 

Side shell plating 0.003750 0.000188 

Side stiffener web 0.003750 0.000188 

Bottom shell plating 0.021250 0.001063 

Bottom stiffener web 0.008125 0.000406 
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Figure 5.1 Flowchart of the procedure for the probabilistic evaluation of the ship 
load due to waves for generic operational conditions. 
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Figure 5.2 Flowchart of the procedure for the probabilistic evaluation of the ship 
flexural capacities associated with first and ultimate failures. 
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Figure 5.3 (a) Geometrical model of the analyzed JHSS developed by the software 
FREE!ship (2006). Geometry of (b) cross-section 1 (CS1), (c) cross-
section 2 (CS2), and (d) cross-section 3 (CS3). 
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Figure 5.4 Qualitative polar representation of ship structural performance for 
sagging and hogging conditions given specific sea state, ship speed, 
ship cross-section, and ship age. 
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Figure 5.5 Wave spectra for sea states 4, 5, 6, and 7 according to Equation (5.11) 
and Table 5.2. 
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Figure 5.6 VBM RAOs of CS2 (a) for different heading angles H (0º, 20º, 40º, and 
80º) when the ship speed U is 0 m/s, and (b) different ship speeds (0, 
10, and 20m/s) when the heading angle is 180º. Response spectra at 
CS2 obtained by selecting sea state 5 and by varying (c) ship heading 
angle and (d) ship speed. 
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Figure 5.7 Polar representation of the VBM. (a) Profiles of mean VBM for 
different cross-sections, (b) profiles of mean and mean plus and minus 
one standard deviation of the VBM, (c) profiles of mean VBM for CS2 
and sea state 5 by varying ship speed, and (d) profiles of mean VBM 
for CS2 and ship speed of 5 m/s by varying sea state. Plots of mean 
VBM (e) for different cross-sections and (f) for CS2 by varying sea 
state. 
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Figure 5.8 Profiles of first (FFM) and ultimate (UFM) failure moments for (a,c,e) 
sagging, and (b,d,f) hogging. Profile of mean μ and mean plus and 
minus one standard deviation, (μ+σ and μ-σ, respectively) for (a,b) CS1, 
(c,d) CS2, and (e,f) CS3. 
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Figure 5.9 Polar representation of reliability associated with the ultimate failure 
for sagging and hogging. (a) Profiles of reliability for different cross-
sections, (b) profiles of reliability for the intact structure (year 0) and 
aged structure (year 30), (c) profiles of reliability for CS2 and sea state 
5 by varying ship speed, and (d) profiles of reliability for CS2 and ship 
speed of 5 m/s by varying sea state. Plots of reliability index (e) for 
different cross-sections and overall system and (f) for CS2 varying sea 
state. 
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Figure 5.10 Polar representation of the redundancy index RI1 given by Equation 
(5.23) associated with ultimate failure for sagging and hogging. (a) 
Profiles of the redundancy index for different cross-sections, (b) 
profiles of the redundancy index for the intact structure (year 0) and 
aged structure (year 30), (c) profiles of the redundancy index for CS2 
and sea state 5 by varying ship speed, (d) and profiles of the 
redundancy index for CS2 and ship speed of 5 m/s by varying sea state. 
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Figure 5.11 Polar representation of the redundancy index RI2 given by Equation 
(5.24) associated with ultimate failure for sagging and hogging. (a) 
Profiles of the redundancy index for different cross-sections, (b) 
profiles of the redundancy index for the intact structure (year 0) and 
aged structure (year 30), (c) profiles of the redundancy index for CS2 
and sea state 5 by varying ship speed, (d) and profiles of the 
redundancy index for CS2 and ship speed of 5 m/s by varying sea state. 
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CHAPTER 6 

RISK-INFORMED OPTIMAL ROUTING OF SHIPS 

CONSIDERING DIFFERENT DAMAGE SCENARIOS 

AND OPERATIONAL CONDITIONS 

6.1  INTRODUCTION 

The worldwide maritime transportation of goods and services rely on the proper ship 

routing. Decisions regarding the ship route are made according to the encountered sea 

conditions and ship strength capability, and are usually subjected to time constraint. 

The proper ship route planning relies on decision making tools that estimate the 

optimum ship direction and speed based on cost minimization and best estimated time 

of arrival (ETA). Sometimes, ships are forced to travel along routes that put their 

structure at risk, potentially facing drastic drops of their operational safety. Therefore, 

it is crucial to include in the optimal routing the analysis of structural performance 

indicators such as reliability and risk, which account for the consequences of potential 

failures or malfunctions. It is also important to provide decision tools that prevent ship 

structures from down-crossing safety thresholds (Frangopol et al. 2012), which may 

cause important economic losses and loss of lives among the crew and/or passengers. 

In this chapter, which is mostly based on Decò and Frangopol (2013b), a finite 

element simulation is performed in order to estimate the interaction between the 
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combined actions of vertical and horizontal bending moments of the hull midship 

section. A technique based on response surfaces (Bucher and Bourgund 1990) using 

the design of experiments concept is adopted for the probabilistic evaluation of ships 

flexural strength. The probabilistic load effects are obtained for different ship 

operational conditions by using linear strip theory; then, reliability analysis is 

conducted for each considered limit state. On the basis of “fragility analysis”, usually 

used for the evaluation of damage of building and bridges subjected to seismic hazard 

(Shinozuka et al. 2000), intermediate states considering different damage limits, 

including yield limit state and specific hull plastification thresholds, are investigated in 

addition than considering only the ultimate limit state. Therefore, reliability analyses 

are performed when the first yielding occurs and when different limit states are 

reached as plastification propagates throughout the hull midship section and different 

ship operational conditions are considered. 

This chapter focuses on the risk assessment of hull girders with respect to flexural 

failure modes induced by different sea conditions. Within the proposed approach, risk 

assessment is enhanced by analyzing intermediate states, thus providing the 

opportunity of assessing risk considering the appropriate direct consequences induced 

by potential structural failures or malfunctions. Polar plots are used to represent load 

effects, reliability, and risk profiles accounting for different ship reliability levels and 

operational conditions. 

The aim of this chapter is to develop a framework for the risk-informed ship 

routing minimizing ETA and the expected direct risk, which is associated with the 

probability of occurrence of different levels of damage within the hull. The optimal 
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solutions are represented in the form of a Pareto-optimal set that minimizes the two 

conflicting objectives. An analysis considering the intact and corroded aged ships is 

also performed when optimizing the ship route. 

Uncertainties associated with plate thicknesses, material properties and load 

effects are modeled and included in the proposed framework. JHSS flexural strength is 

evaluated using finite element method (FEM), modeling a portion of the hull that 

includes the midship section by using the software ABAQUS (Dassault Systèmes 

Simulia 2011). The seakeeping analysis of this ship is performed by using the software 

PDSTRIP (2006) that is based on strip theory (Korvin-Kroukowski and Jacobs 1957). 

Other computer programs used include FREE!ship (2006) for the evaluation of 

hydrodynamic parameters, RELSYS (Estes and Frangopol 1998) for reliability 

analysis, and MATLAB (The MathWorks 2011) for the optimization using the 

Genetic Algorithm (GA) and the handling and organization of the input and output 

files. 

This chapter develops an approach for the risk-informed optimal routing of ships 

considering different damage scenarios and operational conditions. Section 6.2 

describes the developed approach for the assessment of risk. Section 6.3 develops the 

model for the probabilistic evaluation of the vertical and horizontal flexural capacities, 

including the effects of corrosion. Section 6.4 summarizes the adopted model for the 

probabilistic evaluation of the load effects induced by still water and waves. Section 

6.5 introduces the approach developed for risk-informed optimal routing of ships. As 

reported in Section 6.6, the implementation of the proposed risk-informed approach is 

applied to the Joint High Speed Sealift (JHSS), traveling between two points for an 
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assumed sea weather map. Finally, Section 6.7 provides the conclusions of this chapter 

that is based on a published paper (Decò, Frangopol and Zhu 2012) and on a paper 

submitted for possible publication (Decò and Frangopol 2013b). 

6.2  RISK FRAMEWORK 

The evaluation of the consequences due to potential failures or malfunctions plays a 

fundamental role in decision analysis. The use of reliability leads to decisions that do 

not account for any type of consequences. Therefore, every decision should actually 

be based on risk, which associates the probability of occurrence of specific events with 

the generated consequences, usually expressed as expected losses. The inclusion of 

risk, seen as a further performance indicator, can enhance structural safety analysis in 

order to provide the decision makers with a wide spectrum of options, also accounting 

for the economic aspect. Risk of marine structures has been qualitatively assessed with 

respect to manifold failure modes (Akpan et al. 2002, Ayyub et al. 2002), whereas 

other studies have quantified risk due to different hazards (Skjong 2002, Skjong and 

Bitner-Gregersen 2002). 

Among different types of hazards, such as fire, collision, grounding (Skjong and 

Bitner-Gregersen 2002), in this chapter, the vulnerability of ship hulls is evaluated 

with respect to the flexural failure mode under normal as well as under extreme sea 

conditions and considering different ship operational conditions. The general 

procedure for the assessment of reliability and risk is summarized in the Module (3) of 

Appendix B. Due to the fact that yielding or slight damage may be present within the 

structures of operating ships, different limit states LSi accounting for the occurrence of 
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yielding and propagation of plastification throughout the hull are investigated. The 

following states Si are emphasized: 

� State S1: the ship hull is within the elastic range and buckling has not occurred in 

the plates or in the stiffened panels. 

� State S2: the ship hull is right over the elastic behavior, experiencing local 

buckling of the extreme stiffeners with respect to the neutral axis, which induces 

local plastification. In order to allow small regions of the hull extremities to 

plastify, it is assumed that the plastified area is located within the extreme plates 

and up to 20% of the largest distance to the neutral axis. Buckling of the 

compressed extreme stiffeners occurs. 

� State S3: the plastification propagates throughout the section reaching values 

between 20% and 50% of the largest distance to the neutral axis. Buckling effects 

are extended through a large portion of the stiffened panels. The hull deforms 

significantly and ship service is at risk. 

� State S4: the plastification propagates throughout the section (greater than 50% of 

the largest distance to the neutral axis) until the ultimate flexural capacity is 

reached. Ship serviceability is compromised and the collapse is imminent due to 

large deformations. 

� State S5: ship collapse occurs. 

The above mentioned five states (S1 to S5) are evaluated by investigating four 

different limit states: yielding (LS1), plastification propagation up to 20% (LS2) and 

50% (LS3) of the largest distance to the neutral axis, respectively, and ultimate 
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capacity (LS4). The reaching of a specific limit state is in general due to the combined 

effects of vertical and horizontal bending moments. Therefore, based on the studies of 

Paik, Thayamballi and Che (1996), Gordo and Guedes Soares (1996), and Gordo and 

Guedes Soares (1997), for each limit state the associated hull strength is given by the 

following equation providing limit state contours 
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where δ is a parameter, Mv and Mh are the vertical and horizontal bending moments, 

respectively, due to sea load effects, Mv,LSi and Mh,LSi are the vertical and horizontal 

flexural capacities associated with a specific limit state LSi, respectively, and c1,LSi and 

c2,LSi are parameters. Mv and Mv,LSi can be taken as either sagging or hogging, 

depending on the load combination under analysis. 

Time processes may decrease the mechanical properties of the hull, and corrosion 

effects may generate loss of thickness throughout the hull section. This causes the 

deterioration of the section modulus, thus reducing the section flexural capacity. 

Therefore, considering the effects of corrosion on ship structures, Equation (6.1) can 

be rewritten as 
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where t is time. 
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6.2.1  RELIABILITY ANALYSIS 

Other than considering different ship operational conditions, reliability analysis is also 

conducted with respect to different limit states LSi previously introduced. Ship 

reliability analysis can be performed based upon the knowledge of the probability 

distributions of the flexural strengths and the statistical descriptors of the load effects, 

later discussed. Based on Equation (6.2), the time-dependent failure probabilities and 

the corresponding reliability indices are based on the time-dependent performance 

function GLSi,SE,U,H(t), associated with a LSi and for different operational conditions. 

This function is (Guedes Soares and Teixeira 2000, Paik and Frieze 2001) 
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 (6.3) 

where the subscripts Hs, U, and H refer to significant wave height, ship speed, and 

ship heading angle, respectively, δ is a parameter theoretically set to one, xR, xsw, and 

xw are parameters accounting for the model uncertainties associated with the resistance 

determination, still water bending moment prediction, and wave-induced bending 

moment prediction, respectively, kW is the correlation factor for the wave-induced 

bending moment set to one (Mansour et al. 1984), kD is the correlation factor between 

wave-induced and dynamic bending moments (Mansour et al. 1984), Msw is the still 

water bending moment, Mwv,Hs,U,H and Mwh,Hs,U,H are the vertical and horizontal wave-
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induced bending moments given by linear theory, respectively, MWH is the whipping 

bending moment, Mv,LSi and Mh,LSi are the vertical and horizontal flexural capacities, 

and c1,LSi and c2,LSi are parameters referring to the selected LSi. Depending on the load 

effects under analysis, the terms Msw, Mwv,Hs,U,H, Mv,LSi, c1,LSi, and c2,LSi assume 

different values for sagging and hogging. 

The evaluation of the probability of failure associated with the ultimate capacity 

(LS4) and the probabilities of exceedance of three different limit states (LS1, LS2, and 

LS3) are necessary in order to relate the right level of consequences. These time-

dependent probabilities PLSi,Hs,U,H(t) are generally calculated as follows 

�  � � � � 
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where f(t,X) is the joint PDF of the considered random variables X = x1, x2,…,xk at a 

given time t. Given that usually this integral cannot be solved analytically, these 

probabilities can be evaluated using approximate methods such as the first-order 

reliability method (FORM), among others. The relationship between the time-

dependent reliability index βLSi,Se,U,H(t) and probability PLSi,Hs,U,H(t) for a given LSi and 

for different ship operational conditions is 

�  � � tPt HUHsLSiHUHsLSi ,,,
1

,,, 1��� ��  (6.5) 

where Φ-1 is the inverse standard normal distribution function. 

In order to find the time-dependent probabilities PSi,Hs,U,H(t) of the hull being in the 

previously defined states S1 to S5, which are based on the exceedance probabilities 

PLSi,Hs,U,H(t) for the limit states LS1 to LS4, a procedure similar to the fragility analysis 
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(Shinozuka et al. 2000), is used herein. The difference is that variables such as sea 

elevation and ship speed and heading angle are those that affect the loads on the hull. 

Since the five introduced states consider progressive plastification of the hull (S1 to 

S5), the probabilities of the hull being in specific states P[Si|Hs,U,H](t) are 
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In other words, these probabilities are conditioned by the occurrence of specific sets of 

Hs, U, and H that are statistically independent from each other, leading to the 

evaluation of the conditional probabilities 

�  � �� tHUHsSiPtP HUHsSi ,,|,,, �  (6.7) 

Moreover, the occurrences of the ship being in the above defined five states are 

mutually exclusive and collectively exhaustive events. 

6.2.2  CONSEQUENCE ANALYSIS 

This section presents the consequence analysis including specific costs associated with 

the potential failure of a ship hull or the exceedance of specific limit states such as 

those associated with the propagation of plastification. Direct consequences are the 

losses due to the damage or the failure itself, whereas indirect consequences are those 

related to system failure or malfunctions that induce external monetary losses. The 

main indirect losses/costs for marine structures can be summarized as those due to 

(IMO 1997, Ayyub et al. 2002, Skjong 2002): injuries and fatalities to passengers and 
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crew, damage to ship equipment, transported goods, and port facilities, and 

commercial and environmental impacts, among others. 

The focus of this chapter is risk-informed routing of ships based on the 

quantification of the hull structural safety (i.e. in terms of risk); therefore direct 

consequences, including construction and rehabilitation costs, are emphasized among 

other types of potential consequences and operational costs. This chapter provides a 

direct link between the structural performance in terms of hull flexural strength and 

the economic direct impact, however indirect consequences can be accommodated in 

the proposed framework. Consequence analysis uses an economic approach and a 

monetary value expressed in United States Dollar (USD). The considered direct costs 

are: 

� Construction costs CCon: weight-based costs of construction. These costs are 

evaluated by using the equations proposed by Miroyannis (2006) based on 

empirical Cost Estimation Relationships (CERs). This method is in agreement 

with the NAVY standards, being the NAVY’s cost estimates mostly based on 

weights only. Accordingly, considering the Ship Work Breakdown System 

(SWBS), ship costs are subdivided in categories, such as structure, propulsion, and 

electrical, among others. The estimated costs (USD) are obtained considering ship 

preliminary design and the structural SWBS category denominated “100”. These 

costs are given by (Miroyannis 2006) 

���������� ���� �� DollarsMaterial
800

ManhoursLabor

177 100
862.0

100 WGTWGTCFCCon �����  (6.8) 
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where 

SFSTFCF ��  (6.9) 

3792.047.32 ��� DISPLSF  (6.10) 

in which CF is the complexity factor, WGT100 is the weight of the SWBS 100 

(long tons), STF is the ship type factor, SF is the size factor, and DISPL is the ship 

full load displacement (long tons). 

� Rehabilitation costs CReh,Si: considered as fractions of the ship construction costs 

based on the estimated level of damage. These costs are evaluated as 

ConSirSiReh CdC ,, �  (6.11) 

where dr,Si is the damage ratio (i.e. the proportionality factor between ship repair 

costs and the ship construction costs). The criterion adopted for the quantification 

of the damage is based on the percentage of plastification within the considered 

hull section. Therefore, the damage ratios associated with each specific state Si are 

evaluated in accordance with each of the specified hull states, discussed in Section 

6.2. Accordingly, state S1 does not generate any consequences, since by definition 

the hull section is within the elastic range and buckling has not occurred, whereas 

the other states cause direct consequences proportional to the damaged area. In the 

cases of the ship being in states S2 to S4, CCon is assumed to refer to the portion of 

the hull surrounding the damaged midship section damage, while for the state S5, 

CCon is assumed to account for the structure of the entire ship hull. 
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According to Ayyub et al. (2002), these economic quantities must be quantified 

numerically for the purpose of risk assessment; however, the assigned numerical 

values do not have to be exact, and may be calculated by using a combination of 

expert opinion, engineering judgment, classification society requirements, and 

historical data. 

6.2.3  RISK ASSESSMENT 

Risk is defined as the combination of occurrences and consequences of events 

generated by specific hazards. According to the definition reviewed in Appendix A, 

risk R(t) referred to a specific time t can be expressed as (CIB 2001) 

�  �  � � ��� dxtfttR XX ,,... �  (6.12) 

where δ(t,X) represents the consequences and f(t,X) is the joint PDF of the considered 

random variables X = x1, x2,…,xl. The solution of Equation (6.12) is not obvious; 

therefore, risk is evaluated by considering an approach that accounts for the discrete 

states associated with the different hull damages described previously. Since the five 

states are mutually exclusive and collectively exhaustive, and based on the 

probabilities of Equation (6.6), time-dependent total risk R,Hs,U,H(t) for a given set of 

Hs, U, and H can be obtained as 
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where CSi are the total consequences associated with specific states Si. Specifically, 

based on the direct costs evaluated by Equations (6.8) and (6.11), the time-dependent 

direct risk RD,Hs,H(t) can be obtained as 

�  �  � tPCtPCtR HUHsSCon
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Ss
HUHsSiSiRehHUHsD ,,,5
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 (6.14) 

6.3  PROBABILISTIC HULL STRENGTH 

The flexural strength of hulls may be evaluated by using different approaches, 

incremental methods (e.g. Smith 1977, IACS 2008), or the optimization-based method 

proposed by Okasha and Frangopol (2010b). Although these methods have provided 

good estimates, a FEM-simulation is performed instead in order to investigate in detail 

the propagation of plastification throughout a given ship section. The framework for 

the evaluation of the hull flexural capacity is presented in the Module (2) of Appendix 

B. 

6.3.1  FINITE ELEMENT MODELING 

The recent development of computer technology and commercial FEM-software has 

allowed researchers to make use of FEM-modeling for the purpose of performing 

reliability analysis of civil and marine structures (Zheng and Das 2000, Ghosn, Moses 

and Frangopol 2010). On the other hand, ship designers can also take advantage of this 

technique allowing them to enhance design to detail levels that were never reached in 

the past. The proper ship FEM-modeling guidelines can be found in relevant 

recommendations (Basu, Kirkhope and Srinivasan 1996, CCS 2005). Moreover, 
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according to Wang and Wiernicki (2004), the key aspects of FEM-modeling are: 

structural idealization, inclusion of geometric and material non-linearity, consideration 

of specific loads and boundary conditions, and analysis of different failure or 

acceptance criteria. 

The most general case, in which the hull is subjected to both vertical and 

horizontal bending moments, is investigated. FEM-modeling is used to obtain vertical 

and horizontal moment-curvature relationships in order to investigate structural 

performance, and provide indications about ship reliability, as later discussed in the 

case study. In order to achieve this goal, a detailed non-linear response analysis of the 

hull, accounting for both geometric and material non-linearity, is performed. The 

FEM-simulations provide the vertical and horizontal flexural capacities associated 

with the limit states defined in Section 6.2. The parameters c1,LSi and c2,LSi of Equation 

(6.3) can be evaluated by using the method of the least squares, i.e. fitting the output 

obtained by incremental analyses (FEM-simulations), which includes different ratios 

between vertical and horizontal bending moments. 

6.3.2  RESPONSE SURFACE METHOD 

While the use of conventional non-linear FEM is possible for deterministic analysis, 

this technique is computationally demanding, especially for stochastic analyses of the 

ship’s strength, involving a potentially high number of simulations (e.g. for reliability 

analysis). Therefore, in order to account for uncertainties and significantly reduce the 

computational costs to an acceptable level, FEM is used in combination with the 

Response Surface Method (RSM) (Bucher and Bourgund 1990, Zheng and Das 2000, 
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Ghosn, Moses and Frangopol 2010). The RSM consists in the execution of 

deterministic FEM-analyses at specific values of the considered random variables. The 

obtained results, representing the responses, are collected and summarized into a 

RSM-equation originated by regression analysis. For instance, if a second-order 

interpolating polynomial is selected, the fitting RSM-equation leads to 
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where RS is the response, α0, αi, αij, and αii are the polynomial coefficients to be 

determined, i and j are indices referring to the selected random variables xi and xj, 

respectively, and l is the total number of random variables. Once all the responses are 

collected from the FEM-simulations, the coefficients α in Equation (6.15) can be 

estimated by the method of the least squares. Since the RSM is part of the proposed 

probabilistic approach, the capacities Mv,LSi and Mh,LSi, which are the evaluated 

responses, are obtained in the form of Equation (6.15). Therefore, the considered basic 

random variables associated with the hull strength model (e.g. geometrical and 

material properties) can be included in Equation (6.15). The statistical descriptors of 

the responses can be obtained by simulations. 

Each FEM-simulation includes a set of perturbed values for each considered 

random variable, according to a predefined scheme. Among others, the Circumscribed 

Central Composite (CCC) design is a popular template that satisfies the minimum 

required values for a full quadratic model (Myers and Montgomery 2002); therefore, 

CCC is used in this chapter. 
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6.3.3  EFFECT INDUCED BY CORROSION 

The main effect induced by corrosion over time is the loss of thickness of plates and 

stiffeners. The thickness loss is evaluated in according to Akpan et al. (2002), as 

described in Section 5.3.1. 

6.4  STOCHASTIC LOAD EFFECTS 

The assessment of the safety of ship structures requires the stochastic evaluation of the 

effects induced by the loads acting on the hull, that are mainly generated by still water 

and waves. As indicated in previous studies (Gordo and Guedes Soares 1997, Guedes 

Soares and Teixeira 2000), the primary load effects on the hull are sagging and 

hogging vertical bending moments (VBMs) and horizontal bending moment (HBM), 

which induce compression and/or tension in the stiffened panels composing the whole 

hull. Since mission-oriented reliability and risk analyses are performed, and design 

considerations are not included, only short-term statistics of loads are of interest. The 

procedure for the estimation of the load effects is summarized in the Module (1) of 

Appendix B. 

The stillwater VBM is induced based on the difference between the weight and the 

buoyancy distributions along the hull. Depending on the distribution and magnitude of 

the cargo within the ship, the VBM varies for different journeys. The probabilistic 

approach proposed by Hussein and Guedes Soares (2009) for the evaluation of this 

load may be adopted. This approach provides a simplified probabilistic estimation of 
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the stillwater VBM, which is useful when information regarding the cargo is lacking. 

This method has been described in Section 5.2.1. 

The load effects generated by the interaction between the waves and the hull are 

measured in terms of ship motion, pressure distribution, and body forces and 

moments. The magnitude of these effects depends on many factors, including ship 

geometry, encountered sea state, and ship speed and heading. In order to evaluate the 

ship structural response with respect to generic environmental and operational 

conditions, linear response theory, which is recognized to be common practice (Ayyub 

et al. 1998). In particular, VBM and HBM are the quantities of interest. A useful tool 

that makes use of linear theory for the evaluation of these responses is the strip method 

(Korvin-Kroukowski and Jacobs 1957). Strip theory integrates the hydrodynamic 

forces (Froude-Krilov part and diffraction part) induced by harmonic waves over the 

ship wetted surface, that is discretized into prismatic segments (strips). Therefore, the 

shear and bending moment can be evaluated at each considered location along the 

overall length. However, linear theory can provide approximate results when dealing 

with wave heights that are greater than wave lengths (Hughes 1983). Although more 

sophisticated methods exist, such as non-linear analysis and complete three-

dimensional theories, among others, given that performing a very accurate seakeeping 

analysis is out of the scope of this chapter, the approximations introduced by strip 

theory are deemed acceptable. The load effects are evaluated following the method 

used in Section 5.2.2. 
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VBM and HBM for a given hull section are correlated quantities. For low 

frequency waves this correlation coefficient is provided by Mansour and Thayamballi 

(1994) 
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where ΦVBM(ω) is the transfer function of VBM, Φ*HBM(ω) is the complex conjugate 

of the transfer function of HBM, SW(ω) is the sea spectrum, σVBM and σHBM are the 

individual standard deviations of VBM and HBM, respectively, and Re denotes the 

real part of the complex quantity within parentheses. 

For short-term statistics and assuming that the instantaneous value of the ocean 

elevation follows a Gaussian distribution (Faltinsen 1990), the probability density 

function (PDF) of the peak responses considering several operational conditions 

(significant wave height Hs and ship speed U and heading H) follows the Rayleigh 

distribution (Hughes 1983) 
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where Mw,Hs,U,H is the wave-induced bending moment response (VBM or HBM) and 

m0,Hs,U,H is the zero-th moment of the associated response spectrum. The relevant 

statistical descriptors are obtained accordingly. Additional explanations on the used 

procedure for the evaluation of the statistics of ship flexural responses (in accordance 

with Hughes 1983, Faltinsen 1990) is discussed in Chapter 5. 
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6.4.1  DYNAMIC LOAD EFFECTS 

The dynamic bending moment on fine bow ships induced by whipping can be 

evaluated by using the equation proposed by Sikora and Brady (1989) 

�
�
�

�'
��

�
62

622

105for4.5
105for0022.0

bLBPbLBP
bLBPbLBP

MWH  (6.18) 

where MWH is the peak-to-peak whipping bending moment (ft-ton), LBP is the length 

between the perpendiculars of the ship (ft), and b is the ship breadth (ft). These load 

effects can therefore be accommodated in the adopted framework for the evaluation of 

ship responses. 

6.5  RISK-INFORMED ROUTE OPTIMIZATION 

In order to fully exploit the introduced framework to assess risk due to expected 

losses, among other potential applications, the risk-informed route optimization based 

on mission-oriented reliability (i.e. accounting for short period load effects) is 

introduced in this section. The framework for the risk-informed route optimization is 

presented in the Module (4) of Appendix B. 

Although criteria, such as minimization of ship movements, minimization of fuel 

consumption, and other operating costs, cover a wide set of different optimization 

problems (Journée and Meijers 1980, Brown, Graves and Ronen 1987, Hinnenthal 

2008, Dolinskaya et al. 2009, Fagerholt, Laporte and Norstad 2010, Papatzanakis, 

Papanikolaou and Liu 2012), ship safety criterion has been touched only partially. The 

aim of this chapter is to cover an analysis that explicitly includes ship structural 
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reliability and expected risk associated with potential structural failure or deficiencies. 

The inclusion of costs elevates this problem to an upper level allowing conscious 

decision making to be risk-informed, thus accounting for the negative consequences. 

Once risk has been evaluated for a given set of operational conditions, the optimal 

route of a ship under various weather conditions can be obtained. Assuming that a 

weather forecast is given for a specific sea region (described by an x-y Cartesian 

coordinate system) and that a ship has to travel between the points O (origin) and D 

(destination) within this region, the above mentioned optimization problem can be 

solved by discretizing the travel in N segments, that are described by initial and end 

points in the x and y coordinates. For each initial point of each N-th segment, a ship 

speed U has to be provided. Assuming that the x-axis is discretized in a fixed number 

N of intervals, the optimal route is determined by the evaluation of the N-1 y 

coordinates required to describe the N route segments. Based on the general 

formulation of a multi-objective optimization problem (reviewed in Appendix A), the 

optimization problem for optimal ship routing can be formally stated as follows: 

Given: sea weather map that includes sea elevation in terms of significant 

wave height, wave direction, and allowable risk with respect to 

different operational conditions at a specific ship age t 

find: a set of ship speeds Ui and coordinates yi 

NiUi ,...,2,1�(  (6.19) 

1,...,2,1 ��( Niyi  (6.20) 

to minimize: the estimated time of arrival ETA and the risk R 
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) *RETA,min  (6.21) 

subjected to the constraints: 

NiUUU i ,...,2,1maxmin �(��  (6.22) 

1,...,2,1maxmin ��(�� Niyyy i  (6.23) 

where N is the number of the travel discretization based on the map dimensions with 

respect to the x-axis, Umin and Umax are the minimum and maximum allowable ship 

speed, respectively, and ymin and ymax are the bounds of the map in the y-axis direction. 

A potential sea weather map, describing the routing optimization is reported in the 

figures describing the optimization process of the case study later introduced. This 

risk-based biobjective optimization approach can be extended to a higher order 

objective optimization, including additional objectives and constraints (Frangopol 

2011) that are relevant for the selection of the optimal routes. 

Since this optimization problem is not described by a closed form solution, the use 

of a heuristic optimization tool such as the GA (Goldberg 1989) is preferable with 

respect to classical gradient-based methods. Therefore, the optimization process is 

carried out by multiobjective GA provided by the software MATLAB (The 

MathWorks 2011), which uses a modified version of the NSGA-II algorithm (Deb 

2001). The Pareto-optimal set represents the optimal routes guaranteeing that the 

obtained solutions lead to an optimal result for both objective functions. Therefore, 

any point belonging to this set can be chosen by the decision makers depending on the 

acceptable level of risk and on the allowable time to complete the travel. 
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Another important aspect, addressed in the case study, is to investigate the 

optimal routing of aged ships, i.e. accounting for the loss of strength of the hull due to 

corrosion effects. This analysis can be performed by repeating the same optimization 

problem in order to show how decisions may vary when a ship with greater structural 

vulnerability is considered. 

6.6  CASE STUDY 

The proposed framework is applied to the Joint High-Speed Sealift (JHSS) discussed 

in Devine (2009) having the following properties: length between the perpendiculars 

LBP = 290 m, breadth b = 32 m, height h = 22.3 m, block coefficient Cb = 0.4835, and 

full load displacement DISPL = 34,779.1 Mtons. Figure 6.1(a) shows the drawing 

developed with the software FREE!ship (2006). The strength of the midship section 

(145 m aft FP) reported in Figure 6.1(b) is investigated in this chapter. Figure 6.1(c) 

shows the three-dimensional FEM-model of a part of the ship that includes the 

midship section built in ABAQUS (Dassault Systèmes Simulia 2011). The focus of 

this chapter is the risk-informed routing of ships based on the quantification of the hull 

structural safety in terms of risk, and since the JHSS is at the preliminary stage of 

design and testing and detailed data regarding fuel consumption and wave resistance 

are not available, only direct losses are considered among other types of potential 

consequences and operational costs. Table 6.1 summarizes all the statistical 

descriptors of the random variables and the deterministic parameters necessary for the 

analysis. 
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6.6.1  ASSESSMENT OF FLEXURAL STRENGTH  

The objective is to build a model that is representative of the flexural behavior of the 

midship section of the JHSS hull. Special attention is given to modeling in order to 

implement the response surface method and performing all the required FEM-

simulations. The hull is modeled in order to ensure that the area of interest is not 

affected by any stress concentration or in general by effects that do not represent the 

actual structural behavior. For this reason, the area of interest is inserted within two 

regions modeled with a fictitious stiff material in order to eliminate these unwanted 

effects (Figure 6.1(c)). Moreover, the boundary conditions are moved away from the 

central area of interest and are applied to the two stiffed regions. Boundary conditions 

are applied at point A preventing x, y, and z translations and the rotation around the z-

axis at one end of the truncated hull, and at point B preventing x and y translations 

(Figure 6.1(c)). The nodes at which the boundary conditions are applied are rigidly 

connected to the nodes belonging to the fictitious xy planes in order to obtain plane 

section movements at the extremities. The elements of this FEM-model are 4-node 

doubly curved thick shell with reduced integration, S4R (Dassault Systèmes Simulia 

2011). A total of 18,216 shell elements and 19,528 nodes are generated for the model. 

Both material and geometric non-linearities are considered. The behavior of the steel 

is assumed elastic-perfectly plastic. Material and geometric properties are treated as 

random variables. The statistical descriptors of the steel elastic modulus Es, steel 

yielding stress σYs, and thickness multiplier cth are summarized in Table 6.1. The 

randomness of the thicknesses within the section is assured by multiplying the 
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deterministic values provided by Devine (2009) with a single random thickness 

multiplier cth. Different sets of FEM- incremental analyses by using a DELL Precision 

T7400 workstation are performed. Each FEM-simulation uses the parallel processing 

capabilities of the workstation and ABAQUS requiring less than 30 minutes to achieve 

convergence and reaching the section ultimate capacity. Two types of analysis are 

conducted. 

The first type of analysis is represented by a set of FEM-simulations performed by 

inputting the mean values of the random variables in order to obtain mean moment-

curvature relationships for vertical (hogging and sagging) and horizontal bending 

(Figure 6.2). Based on the obtained results, specific horizontal and vertical capacities 

are associated with each of the four limit states LSi previously introduced. For the 

hogging case, these capacities are represented by points A, B, C, and D of Figure 6.2, 

which discretize the moment-curvature relationships into the five states Si, previously 

introduced. Figure 6.3 shows the printouts of the results obtained with ABAQUS in 

terms of Von Mises mean stress contours in the case of hogging curvature. The images 

show the midship section stresses for limit states LS1 (Figure 6.3(a)), LS2 (Figure 

6.3(b)), LS3 (Figure 6.3(c)), and LS4 (Figure 6.3(d)) which are associated to the 

flexural capacities corresponding to points A, B, C, and D of Figure 6.2. Figure 6.3 

does not show the two stiff parts surrounding the midship portion because they only 

transfer stresses to the included flexible part and rigidly rotate around the active 

rotation axes. Moreover, as shown in Figure 6.4, incremental analyses considering 

different ratios between vertical and horizontal bending moments have been 

performed in order to obtain the contours associated with the four considered limit 
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states, which account for combined flexure effects. Each obtained pair of capacities is 

reported by circles in Figure 6.4. The flexural capacities indicated by points A, B, C, 

and D correspond to those of Figure 6.3. Finally, the parameters c1,LSi and c2,LSi of 

Equation (6.1) can be determined by regression analysis and using 0.973 as mean 

value of the parameter δ (Paik, Thayamballi and Che 1996). 

The second type of analysis performed with the developed FEM-model includes 

the implementation of the RSM. The input and the output files of ABAQUS are 

managed by a developed MATLAB code in order to compute automatically all the 

required FEM-simulations. The randomness of the flexural capacity is given by the 

implementation of the three mentioned random variables (i.e. Es, σYs, and cth). CCC 

design is used to generate 15 design points, being 15 the minimum number of point 

needed to fit a second order response surface. The points belonging to the cube of the 

CCC design are obtained by perturbing the random variables by one standard 

deviation around their means, one at a time (Ghosn, Moses and Frangopol 2010). 

According to CCC, the remaining design points belonging to the circumscribed sphere 

are perturbed proportionally to a value greater than one standard deviation, depending 

on the number of considered random variables. FEM-simulations are performed for 

each design point. The accuracy of the used approach has been verified by performing 

additional FE simulations, selecting the cube design points with perturbations of 0.5 

(case 1), 1 (case 2), and 2 (case 3) standard deviations, and design points belonging to 

the circumscribed sphere with perturbations in accordance with CCC method for the 

ultimate VBM associated with hogging. An additional analysis (case 4) includes all 

the previous points of cases 1, 2, and 3. By performing a Monte Carlo simulation 
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(10,000 samples) the PDFs reported in Figure 6.5 are obtained. It can be noticed that 

only case 1 provides slightly different results with respect to the other cases, and the 

approximation in terms of mean value is lower than 1%, whereas in terms of standard 

deviation it is about 9%. This justifies the assumption of perturbation of one standard 

deviation for those design points belonging to the cube. 

Then, by performing regression analysis, the polynomial coefficients α0, αi, αij, and 

αii of Equation (6.15) can be estimated. Sets of different polynomial coefficients α0, αi, 

αij, and αii of Equation (6.15) are evaluated for each analysis case by combining the 

following: vertical (sagging and hogging) and horizontal flexures, each limit state LSi, 

and different ship ages (i.e. accounting for the effects induced by corrosion at time t in 

years), such as t = 0 years, t = 10 years, t = 20 years, and t = 30 years. In order to 

account for the effects induced by corrosion, RSM-FE analyses are repeated at 10 year 

increments until the assumed ship service life of 30 years is reached by changing the 

ABAQUS inputs associated with the thicknesses of plates and stiffeners. are those 

specified in Table 6.1, depending on the position of the stiffened plates within the hull. 

6.6.2  LOAD EFFECTS 

Since data regarding the loading of this ship are not available, the load effects induced 

by still water for both hogging and sagging are evaluated in accordance with Hussein 

and Guedes Soares (2009). The calculated statistical descriptors of the VBMs for 

hogging are reported in Table 6.1. 

On the other hand, the wave-induced load effects are evaluated based on with 

linear strip theory (Korvin-Kroukowski and Jacobs 1957). Although the use of a linear 
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approach could lead to overestimating the actual loads, its use is common practice 

(Ayyub, Assakkaf and Atua 2000). However, load effects calculated with more 

accurate non-linear methods can be accommodated in the proposed framework. By 

using the freeware program PDSTRIP (2006) developed in FORTRAN language, and 

by managing its input and output files by using the software MATLAB (The 

MathWorks 2011), RAO curves are determined for the hull midship section, for both 

VBM and HBM, with respect to all the considered combinations of ship speeds and 

heading angles. It is assumed that the ship speeds range from 0 m/s to 20 m/s (about 

40 knots) by intervals of 2 m/s, whereas the heading angles range from 0º to 360º by 

intervals of 2º. This dense discretization is necessary in order to later perform 

optimization of ship routing. The structural responses in term of VBM and HBM for 

natural sea are evaluated based on the obtained RAOs and by selecting different sea 

spectra associated with specific significant wave heights Hs (representing different sea 

states). Several responses due to different sea states are investigated in this chapter. 

Table 6.2 summarizes all the parameters of the Pierson-Moskowitz Sea Spectrum 

(Resolute Weather 2011) used in this analysis. Based on the Rayleigh distribution of 

Equation (6.17), the statistical descriptors of all the obtained responses can be 

evaluated. Due to the use of linear theory, the responses are the same for both sagging 

and hogging (Hughes 1983). Since polar representations enable to directly visualize 

the effects on ship structural performance by varying operational condition 

parameters, the load effects in terms of mode of VMB and HBM are visualized by 

varying the heading H and for different fixed ship speeds U and significant wave 

heights Hs. The load profiles refer to angles ranging between 0º (following sea FS) 
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and 180º (head sea HS). Since the load profiles are symmetric with respect to these 

angles and between 180º and 360º, the polar plots are divided into two sides reporting 

on both VBM (right side) and HBM (left side). 90º indicate beam sea BS. Figure 

6.6(a) shows the polar representation of the modes of VBM and HBM for sea state 5 

(Hs = 2.74 m) and considering different ship speeds (0 m/s, 10 m/s, and 20 m/s). As 

the ship speed increases, VBM and HBM are in general increasing for head sea, 

whereas for following sea, higher responses are found for lower speeds. Both VBM 

and HBM are low for beam sea. It can be noticed that the maximum values of the 

HBM is about one third of the VBMs, and occur at different angles (180º for VBM 

and about 110º for HBM). Figure 6.6(b) reports on the variation of the modes of VBM 

and HBM at a fixed ship speed of 10 m/s and for sea states 4, 5, and 6 (SE = 1.83 m, 

SE = 2.74 m, and Hs = 4.88 m). The modes of both VBM and HBM increase when the 

sea state becomes more severe for every heading angle. Again, the responses are low 

for beam sea and generally for following sea. In order to better represent some small 

values shown in the polar plots of Figure 6.6(a,b), the associated Cartesian plots are 

shown in Figure 6.6(c,d). A detailed explanation on the assessment of these load 

effects by using this approach can be found in Chapter 5. The dynamic load effects are 

also included in this analysis by means of whipping bending moment evaluated in 

accordance with Equation (6.18). 

6.6.3  RISK ASSESSMENT 

In order to perform risk assessment, the probabilities associated with reaching the 

defined four limit states (LS1 to LS4) of Equation (6.3) are evaluated. The used 
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parameters are listed in Table 6.1. The software RELSYS (Estes and Frangopol 1998) 

is used to perform reliability analysis. Using polar representation, Figure 6.7(a) shows 

the reliability indices associated with the four limit states for intact ship (t = 0 years) 

and for aged ship (t = 30 years), which are represented at the right and left sides, 

respectively, for sea state 5 (Hs = 2.74 m) and ship speed of 10 m/s. Obviously, the 

reliability associated with the first yielding (LS1) is lower than the reliability with 

respect to the ship ultimate capacity (LS4) for all the considered operational 

conditions. Figure 6.7(b) reports on the reliability associated with LS4 for intact (right 

side, t = 0) and aged (left side, t = 0) ship at a fixed speed of 10 m/s and for sea states 

4, 5, and 6. Since it is found that the effects induced by hogging are more severe than 

those induced by sagging, only hogging is considered. The Cartesian plots associated 

with the polar representations of Figure 6.7(a,b) are shown in Figure 6.7(c,d), 

respectively. 

Once the probabilities defined in Equation (6.4) are evaluated, the probabilities of 

intact ship being in states S1 to S5 are obtained by using Equation (6.6). These sets of 

probabilities are represented in Figure 6.8 which shows their variation with respect to 

ship speed given Hs = 2.74 m and H = 180º (Figure 6.8(a)), and fixing ship speed to 

10 m/s and H = 180º (Figure 6.8(b)). Figure 6.8 reports on the so-called “fragility 

analysis”, usually developed for seismic loss analysis performed on buildings and 

bridges. The increment of PLSi is much more sensitive to the increase of sea elevation 

than to the increase of ship speed. 

The direct costs are evaluated according to Equations (6.8)–(6.11) using the 

following ship parameters: WGT100 is based on the normalized weights (SWBS 100) 
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of 463.20 kN/m, 256.03 kN/m, and 290.07 kN/m for hull normalized portions of 0.4 

(around midship), 0.3 (fore quarter point), and 0.3 (aft quarter point), respectively 

(Devine 2009) and assuming ship type factor and damage ratios associated with the 

states S1, S2, S3, S4, and S5 in accordance with Table 6.1. Rehabilitation costs CReh,Si 

(see Equation (6.11)), used for the evaluation of direct risk associated with the states 

S1 to S4, are evaluated based on construction costs CCon referring to an assumed 

plastification propagation of 40% of the length of the hull around its midship section, 

whereas CCon associated with the states S5 (failure) refers to the entire ship. 

Finally, risk is assessed for each state Si and for all the considered operational 

conditions. Figure 6.9(a) shows the direct risk profiles given ship speed of 10 m/s and 

Hs = 2.74 m. It can be noticed that the obtained risk profiles cross each other 

depending on both the probabilities PSi and the evaluated magnitude of direct costs. 

Direct risk for S1 is null, given that the relevant damage ratio is assumed equal to 0 

and, therefore it is not reported in Figure 6.9(a). The profile of the total direct risk 

provided by Equation (6.14) is shown in Figure 6.9(b). 

6.6.4  ROUTE OPTIMIZATION 

In order to provide an application on risk-informed optimal routing of ships, 

assumptions have to be made, such as the origin and destination of the route, and the 

sea weather map for the studied area. Figure 6.10 shows the assumed sea weather map, 

including a qualitative path, where the x- and y-axis ranges are assumed to be 1000 

km, and O ≡ (1000 km, 200 km) and D ≡ (0 km, 400 km) indicate the points of origin 

and destination, respectively. In the map, the shadings show the intensity of the sea 
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expressed in terms of significant wave height, and ranging from 1.07 and 6.10, 

equivalent to lower sea state 3 and upper sea state 6, respectively, and the arrows 

report on the direction of propagation of the waves, given the weather system. Two 

areas of disturbance represented by two potential storms are included in the graphical 

representation. The map covers a short distance, therefore the weather forecast is 

assumed to be accurate and not affected by uncertainty. According to the optimization 

problem previously formulated (see Equations (6.19)–(6.23)), the x-axis has been 

divided in 15 segments (N = 15), representing the discretization of a potential journey. 

Based on this discretization, optimal sets composed by 15 ship speeds Ui and 14 

coordinates yi are evaluated (see Equations (6.19) and (6.20)). These design variables 

are subjected to the constraints of Equations (6.22) and (6.23), assuming that the 

relevant ranges are 4 m/s ≤ Ui ≤ 20 m/s and 0 km ≤ yi ≤ 1000 km. 

Based on these assumptions, for each step of the optimization, direct risk and 

reliability can be obtained for each discretization point, given specific sea elevation, 

ship speed, and heading angle. Multidimensional matrices with a dense discretization 

containing the above mentioned information have been prepared before starting the 

optimization process, in order to quickly achieve the Pareto front. Intermediate values 

required by the optimization algorithm are found by linear interpolation. The 

developed code works with integer design variables. The population size used is 500 

and the number of generations is 100. Since the solution connecting the points O and 

D with the ship traveling at the maximum speed (20 m/s) is known to be optimal 

(based on geometry), a proper set of Ui and yi is forced inside the initial population, in 

order to achieve a faster convergence to the Pareto front. To solve this optimization 
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problem, 80% of new generation individuals are obtained by the “two point” crossover 

function, and for the residual 20% the “Gaussian” mutation function is applied. In this 

way, the optimization process takes about 30 minutes. Further details on this GA 

algorithm can be found in the MATLAB user manual (The MathWorks 2011). 

Figure 6.11 shows the Pareto-optimal set for the case of intact ship (t = 0 years). 

The two objectives are the estimated time of arrival ETA (h) and the normalized direct 

risk RD (USD/km) over the length of the shortest followed path. These are conflicting 

objectives, because depending on the given weather map, the fastest and shortest 

solution (point A of the Pareto front) is associated with a high level of risk. Decision 

makers can adjust path and speed depending on the allowable risk. Three Pareto 

solutions are selected among the others and are denominated A, B, and C. (Figure 

6.11). Figure 6.12(a) shows the paths associated with the three selected solutions. It is 

noticed that all the three paths share some common segments, especially while 

traveling in the central part of the journey. These solutions are associated with the 

values of the objectives as provided in Figure 6.11. Path C covers the longest distance, 

avoiding the represented storm 1 heading south, whereas path B heads north. The 

shortest path A directly crosses the storm. Figure 6.12(b,c,d) show the ship speed (first 

group of design variables as for Equation (6.19)), the reliability index associated with 

ultimate failure, and the normalized direct risk (second objective in Equation (6.21)), 

respectively, for each of the 15 segments dividing the map. The paths A and B are 

covered at the maximum speed of 20 m/s along the entire trip, leading to an important 

reduction of ETA to the detriment of mission reliability (Figure 6.12(c)), which 

reduces significantly whenever severe sea state is encountered. The ETA of path C is 
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larger due to the overall reduced traveling speed (Figure 6.12(b)) and to the longer 

traveled distance. Although only three solutions are shown for sake of clarity, other 

Pareto solutions are available to decision makers. 

Figure 6.13 shows the comparison for the intact ship case and the aged ship case (t 

= 30 years). In Figure 6.13(a), two Pareto fronts are shown. By setting the same ETA, 

the aged ship experiences higher risk than the intact ship. Besides, at a fixed level of 

risk, the ETA is lower in the case of intact ship. Figure 6.13(b,c) shows on the mission 

reliability associated with the ultimate failure and the normalized direct risk, 

respectively, for the two selected solutions A and A’ highlighted in Figure 6.13(a). It 

is clear that for the case of the aged ship, reliability is lower (approaching critical 

values for stormy conditions) and mission risk is almost 50% higher than that of the 

intact case. 

6.7  CONCLUSIONS 

This chapter, which is mostly based on Decò and Frangopol (2013b), uses risk as a 

performance indicator accounting for the consequences induced by different limit 

states, with the purpose of evaluating the optimal routing of ships. Direct risk 

assessment of ships can be performed with respect to discrete hull damage states and 

for a large spectrum of operational conditions. Mission parameters such as ship speed 

and heading angle, structural safety, ETA, and traveled distance are properly assessed 

for the case of the Joint High-Speed Sealift, hypothetically traveling between two 

points for an assumed sea weather map. Optimization has been conducted for both the 
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case in which the ship is intact and when the effects due to corrosion induce 

deterioration of the structural performance leading to higher direct risk. 

The following conclusions are obtained: 

1. It has been shown that the Response Surface Method can be efficiently applied for 

the estimation of the probabilistic flexural strength of ship structures in association 

with Finite Element modeling. 

2. Direct risk of ships can be assessed considering different ship limit states and with 

respect to several operational conditions. It is found that direct risk profiles 

associated with specific states can cross each other depending on the magnitudes 

of the probabilities of the hull being in specific states and direct costs. Overall, 

greater direct risk is associated with head sea. 

3. The inclusion of negative consequences in decision analysis is of paramount 

importance. Different travel paths can be followed by ships, thus minimizing the 

effects of such consequences. A future challenge is represented by the 

development of rules and specifications that address this aspect in order to 

adequately warn decision makers on ship reliability. 

4. The results obtained from the optimization show that several solutions can be 

adopted depending on the acceptable risk and on the allowable ETA. All the 

solutions, except for the shortest and fastest one, provide directions that avoid the 

assumed storm in order to reduce direct risk. 

5. Ship aging considerations are included into reliability analysis, risk analysis, and 

routing optimization, proving that decisions made in the case of managing aged 

ships lead to higher risk and can be different than those made for intact ships. 
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Different Pareto-optimal sets are obtained for two cases, highlighting the 

importance of this aspect in the decision making process. 

Although it is known that other factors, such as traveling comfort and fuel 

consumption may play a role within this optimization problem, the importance of risk-

informed decision making is highlighted in this chapter. The inclusion of other factors 

may be a future development of the proposed approach discussed herein. 
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Table 6.1 Statistical descriptors of the random variables and deterministic 
parameters used for the analysis. 

Random variable Mean COV Distribution 
type Reference 

Parameter xR 1.0 0.10 Normal Paik and Frieze (2001) 
Parameter xsw 1.0 0.05 Normal Paik and Frieze (2001) 
Parameter xw 0.9 0.15 Normal Paik and Frieze (2001) 

Parameter δ 0.973 0.10 Normal Paik, Thayamballi and 
Che (1996) 

Steel elastic modulus Es (MPa) 210,000 0.03 Log-normal Paik and Frieze (2001) 
Steel yielding stress σYs (MPa) 351.6 0.10 Normal Paik and Frieze (2001) 
Stillwater VBM for hogging (Nm) 2.008×109 0.29 Normal Evaluated 
Thickness multiplier cth 1.0 0.05 Normal Paik and Frieze (2001) 
Wave-induced HBM Mwh,Hs,U,H (Nm) Varies Varies Rayleigh Evaluated 
Wave-induced VBM Mwv,Hs,U,H (Nm) Varies Varies Rayleigh Evaluated 

Deterministic parameter Value Reference 

Annual corrosion rate C1 for bottom 
shell plating (mm/year) 0.30 Akpan et al. (2002) 

Annual corrosion rate C1 for bottom 
stiffener web (mm/year) 0.10 Akpan et al. (2002) 

Annual corrosion rate C1 for deck 
plating (mm/year) 0.10 Akpan et al. (2002) 

Annual corrosion rate C1 for deck 
stiffener web (mm/year) 0.10 Akpan et al. (2002) 

Annual corrosion rate C1 for side shell 
plating (mm/year) 0.03 Akpan et al. (2002) 

Annual corrosion rate C1 for side 
stiffener web (mm/year) 0.03 Akpan et al. (2002) 

Coefficients [c1,LS1, c2,LS1] for hogging [1.00, 1.00] Evaluated 
Coefficients [c1,LS2, c2,LS2] for hogging [175, 1.31] Evaluated 
Coefficients [c1,LS3, c2,LS3] for hogging [1.63, 1.23] Evaluated 
Coefficients [c1,LS4, c2,LS4] for hogging [2.14, 1.02] Evaluated 
Constant C2 1 Akpan et al. (2002) 
Correlation factor kD for hogging 0.685 Mansour et al. (1984) 
Correlation factor kW 1 Mansour et al. (1984) 
Corrosion initiation time t0 (years) 5 Akpan et al. (2002) 
Damage ratios dr,Si for [S1, S2, S3, S4, 
S5] [0, 0.10, 0.35, 0.75, 1] Assumed 

Ship type factor STF 7 Miroyannis (2006) 
Whipping bending moment MWH (Nm) 1.573×108 Evaluated 
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Table 6.2 Considered probabilistic descriptors of the Pierson-Moskowitz sea 
spectrum (Resolute Weather 2011). 

Sea state Significant wave 
height (m) 

Average wave period 
(s) 

1 0.30 2.0 

2 0.46 2.5 

2.5 0.76 3.0 

3 1.07 3.5 

3.5 1.37 4.0 

4 1.83 5.0 

4 2.29 5.5 

5 2.74 6.0 

5 3.66 7.0 

6 4.88 8.0 

6 6.10 9.0 

7 9.14 11.0 

7 12.19 12.5 

8 15.24 14.0 

8 18.29 15.0 

9 24.38 17.5 
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Figure 6.1 (a) Model of the analyzed JHSS built by the software FREE!ship 
(2006), (b) geometry of the midship section (145 m aft FP), and (c) 
FEM-model of the part of the hull that includes the midship section 
built with ABAQUS (Dassault Systèmes Simulia 2011). 
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Figure 6.2 Mean moment-curvature relationships for vertical (hogging and 
sagging) and horizontal flexures. Points A, B, C, and D indicate the 
capacities associated with the discretization of the limit states LSi. 
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Figure 6.3 Von Mises mean stress contours of the hull midship section for the four 
considered limit states LSi. 
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Figure 6.4 Mean contours accounting for the combined effects of vertical (hogging 
and sagging) and horizontal bending moments, and associated to 
different limit states LSi. 
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Figure 6.5 PDFs of the ultimate flexural capacity associated with hogging for the 
analysis cases 1, 2, 3, and 4. 
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Figure 6.6 (a) Polar profiles of the modes of VBM (right side) and HBM (left side) 
for Hs = 2.74 m by varying ship speed, and (b) polar profiles of the 
modes of VBM (right side) and HBM (left side) for ship speed of 10 
m/s by varying significant wave height. Associated Cartesian plots of 
the modes of VBM and HBM (c) varying ship speed and (d) sea 
elevation. 
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Figure 6.7 Polar profiles of the reliability indices for intact (right side, t = 0 years) 
and aged (left side, t = 30 years) ship with respect to (a) four limit 
states given Hs = 2.74 m and ship speed of 10 m/s, and (b) ultimate 
capacity (LS4) for ship speed of 10 m/s by varying significant wave 
height. Associated Cartesian plots of the reliability indices for intact 
and aged ship with respect to (c) four limit states and (d) ultimate 
capacity varying sea elevation. 
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Figure 6.8 Profiles of the probabilities of exceeding the limit states LSi for intact 
ship when (a) ship speed is varying given Hs = 2.74 m and H = 180º, 
and (b) significant wave height is varying given ship speed of 10 m/s 
and H = 180º. 
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Figure 6.9 Polar profiles of the direct risk for intact (right side, t = 0 years) and 
aged (left side, t = 30 years) ship with respect to (a) four states given 
Hs = 2.74 m and ship speed of 10 m/s and (b) ultimate capacity (LS4) 
for ship speed of 10 m/s by varying significant wave height. 
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Figure 6.10 Assumed discretized sea weather map of the considered squared area 
with edges of 1000 km, in which the colors report on the significant 
wave height, and the thin arrows show the direction of propagation of 
the waves. The thick arrows represent a potential path connecting the 
origin point O and the destination point D. 
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Figure 6.11 Pareto front of the optimization problem obtained by minimizing both 
estimated time of arrival and normalized direct risk. Three 
representative solutions denominated A, B, and C are selected in order 
to evaluate the relevant mission parameters. 

  

N
or

m
al

iz
ed

 d
ire

ct
 ri

sk
  (

U
SD

/k
m

)

Estimated time of arrival (h)

0

50

100

150

200

A ≡ (14.16, 163.98)

B ≡ (17.68, 47.33)

C ≡ (20.51, 25.78)

0 10 20 30 40 50 60 70 80

Pareto front



268 

 

 

Figure 6.12 (a) Paths of the three selected solutions A, B, and C represented in the 
assumed sea weather map (Figure 6.10). Profiles of (a) ship speed, (b) 
mission reliability index associated with ultimate failure, and (c) 
normalized direct risk for each of the three solutions.  
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Figure 6.13 Comparison between the case with intact ship (t = 0 years) and the case 
with aged ship (t = 30 years) in terms of (a) Pareto front, (b) mission 
reliability associated with ultimate failure, and (c) normalized direct 
risk for the two selected solutions A and A’. 
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CHAPTER 7 

NEAR REAL-TIME MULTI-CRITERIA OPTIMAL SHIP 

ROUTING INTEGRATING RISK AND STRUCTURAL 

HEALTH MONITORING 

7.1  INTRODUCTION 

The optimal planning of ship routes is a topic that is always current within the research 

activity, especially nowadays, due to the continuous increase in fuel price. Although 

operational costs are rising, special attention is also given to the ship structural safety, 

therefore accounting for the safety of the passengers, crew members, and transported 

goods, and for the reliability of the provided services. Moreover, both commercial 

vessels and naval ships must reach their destinations within their allotted time frames. 

Hence, decision makers are mainly required to reduce fuel cost, maximize ship safety, 

and minimize the mission/delivery time schedule. In order to achieve these goals, 

trade-offs among these conflicting objectives must be taken. In this context, besides 

the initial planned route and initial ship structural performance assessment, the 

availability of further information during the ship trip becomes a key aspect to 

consider. For instance, information form structural health monitoring (SHM) systems 

can improve the evaluation of the structural performance while the ship is traveling. 

Besides, the continuous weather prediction would make the adjustment of the planned 
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route possible. This further collected information brings the initial planning process to 

near real-time decision process, necessary in order to better achieve all the above 

mentioned objectives. 

The explicit novelty of this chapter, which is mostly based on Decò and Frangopol 

(2013c), is the development of a near real-time approach for decision making, in 

which the initial prediction obtained in Chapter 6 is updated based on the available 

new information. Bayesian statistics has been used for this purpose. Both a closed-

form solution and a simulation-based technique are used in this chapter based on the 

assumption that the peak responses follow the Rayleigh distribution (Faltinsen 1990). 

SHM is considered a very powerful tool to be used for the collection of accurate 

information about the actual loads that the ships are encountering during their 

operations. The SHM data used in this chapter are obtained from a scaled model of the 

JHSS tested in the summer of 2007 in the Naval Surface Warfare Center, Carderock 

Division - Maneuvering and Sea Keeping (NSWC CD - MASK) basin. The 

observations in terms of vertical and horizontal bending moments (VBM and HBM, 

respectively) are then scaled up to the ship full dimensions by using the Froude-

scaling factor of 47.2533 (Devine 2009). 

Lastly, the risk-informed optimal routing is considered. Another novelty 

introduced in this chapter is the integration of the information obtained by SHM and 

weather prediction into the optimization problem with objectives being the 

minimization of the estimated time of arrival (ETA), minimization of mean total risk, 

and minimization of the fuel cost. The cases, in which the use of the original and 

updated (by using SHM data) performance prediction are considered, are investigated 
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in order to provide insights in whether to use SHM under specific ship operational 

conditions. The optimal solutions are grouped into Pareto-optimal sets that balance the 

conflicting objectives. 

This chapter develops an approach for the near real-time multi-criteria optimal 

ship routing integrating risk and structural health monitoring. Section 7.2 describes the 

developed approach for the quantification of reliability, cost, and risk. Section 7.3 

discusses the concepts developed for integrating SHM data and weather prediction 

into the near real-time performance assessment. Section 7.4 introduces the developed 

approach for the multi-criteria optimal routing of ships based on time, risk, and fuel 

cost. As reported in Section 7.5, the implementation of the proposed risk-informed 

approach is applied to the Joint High Speed Sealift (JHSS), traveling between two 

points for an assumed sea weather map. Finally, Section 7.6 provides the conclusions 

of this chapter that is based on a published paper (Decò, Frangopol and Zhu 2012) and 

on a paper submitted for possible publication (Decò and Frangopol 2013b, Decò and 

Frangopol 2013c). 

7.2  RELIABILITY, COST, AND RISK 

Risk can be seen as a performance indicator that includes both the assessment of 

structural vulnerability and the quantification of consequences induced by potential 

structural malfunction/failure. Management tools and decision making processes are 

risk-informed when the quantification of the consequences is part of the developed 

decision framework. Ships are subjected to numerous types of hazard that may directly 

or indirectly affect their safety and serviceability. For instance, these hazards could be 
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(Ayyub et al. 2002, Skjong & Bitner-Gregersen 2002) fire, explosion, environmental 

attack, collision, iceberg impact, grounding, loss of hull integrity, propulsion and 

steering failures, extreme wave loads, flooding, and capsizing. The above mentioned 

hazards cause events that can be categorized as “normal” and “extreme” situations, 

depending on their intensity and frequency of occurrence. 

In this chapter, ship vulnerability is assessed with respect to wave-induced loads 

under normal ship operational conditions and severe encountered sea, in accordance 

with the method proposed in Chapter 6. The main effects induced on the ship hull are 

vertical and horizontal bending moments (VBM and HBM, respectively) (Paik, 

Thayamballi and Che 1996, Gordo and Guedes Soares 1997). In order to perform risk 

assessment, it is worth investigating different effects on the ship hull by considering 

multiple and progressive levels of danger (as developed in Chapter 6). Accordingly, 

the hull strength is discretized into five states (S1 to S5), accounting for different 

levels of section plastification characterized by four limit states LSi as follows: 

� Limit state LS1: some stiffened plates at the hull extremities reach the yielding 

stress, therefore they are likely to plastify. 

� Limit state LS2: it is assumed that the plastification propagates to nearby 

components up to 20% of the largest distance between the neutral axis and the 

extreme plates that may experience local buckling. 

� Limit state LS3: it is assumed that the plastification propagates through the hull 

section, reaching 50% of the largest distance to the neutral. 
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� Limit state LS4: the plastification propagates throughout the whole section, and the 

hull ultimate flexural capacity is reached. 

In this chapter, FE method is integrated with response surface analysis in order to 

reduce the computational time to feasible levels while still being able to account for 

uncertainties (Bucher and Bourgund 1990). According to Gordo and Guedes Soares 

(1997), the interaction domains associated with the plastification propagation, 

accounting for the combined effects of VBM and HBM, are obtained by FE 

simulations. The effects of corrosion, which is a time process, are included in the 

methodology according to the approach proposed by (Akpan et al. 2002). The 

framework for the evaluation of the hull flexural capacity is presented in the Module 

(2) of Appendix B. 

The load effects are evaluated in accordance to the method used in Chapter 5. 

Therefore, for the evaluation of the load effects associated with stillwater VBM, the 

approach proposed by Hussein and Guedes Soares (2009) is used. For the evaluation 

of the wave-induced VBM and HBM, short term statistics are considered. Based on 

linear theory, the hull responses induced by waves are evaluated by the strip method 

(Korvin-Kroukowski and Jacobs 1957). Therefore, according to Hughes (1983), the 

probability density function (PDF) of the peak responses associated with different 

operational conditions follows the Rayleigh as expressed in Equation (6.17) of 

Chapter 6. Moreover, the further contribution due to the dynamic bending moment 

MWH is evaluated according to Sikora and Brady (1989) (Equation (6.18) of Chapter 

6). The procedure for the estimation of the load effects is summarized in the Module 

(1) of Appendix B. 
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Once the hull strength and the acting load effects are carried out, the probability of 

a ship hull to exceed the limit states LSi are evaluated based on a performance function 

GLSi,SE,U,H(t) that accounts for damage/failure domains, as proposed in Equation (6.3) 

of Chapter 6. 

There are many types of costs/losses that are involved in ship management. Two 

types of costs are considered herein, i.e. monetary consequences in terms of losses and 

operational costs. Both types of costs are included in the proposed approach for ship 

optimal routing. Monetary consequences induced by potential structural failure or 

malfunction of marine structures include direct and indirect losses. Direct 

consequences are directly related to the extension of structural damage, while indirect 

consequences may include (IMO 1997, Ayyub et al. 2002, Skjong 2002) damage to 

equipment, goods, and port facilities, commercial and environmental impacts, 

marginal operational costs, fatalities and injuries of crew and passengers, among 

others. 

Direct costs include construction costs CCon (Miroyannis 2006), based on empirical 

cost estimation relationships, and rehabilitation costs CReh,Si. These costs, that include 

material and labor, are computed as follows 

100
862.0

100
3792.0 80019.5747 WGTWGTDISPSTFCCon ������ �  (7.1) 

ConSirSiReh CdC ,, �  (7.2) 

where WGT100 is the weight of the “Ship Work Breakdown System (SWBS) - category 

100” (long tons), STF is the ship type factor, DISP is the ship full load displacement 

(long tons), and dr,Si is the damage ratio. 
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Among indirect ones, the costs associated with loss of human lives and injuries are 

accounted for within the proposed approach. F-N curves are a common tool for the 

evaluation of the frequency of fatal accidents and the number of involved fatalities. 

Skjong (2002) developed F-N curves for different types of ships including several 

kinds of accidents, but without investigating the cause of the fatalities. The only 

considered cause for fatalities and injuries is the structural damage/failure of the ship 

hull. Therefore, due to the unavailability of data accounting for different structural 

performance levels (different levels of risk) and necessary to build ad hoc F-N curves, 

the losses due to fatalities Cfat,Si and injuries Cinj,Si associated with each state Si are 

simply assumed as 

OcfC VSLSiSifat �,  (7.3) 

SifatinjSiinj CrC ,, �  (7.4) 

where fSi is the percentage of fatalities, cVSL is the value of a statistical life (VSL) 

(USD), O is the ship occupancy (number of people on board), and rinj is the ratio of 

costs due to injuries and fatalities. 

Operational costs are those strictly related to ship management, including (Journée 

and Meijers 1980, Deschamps and Greenwell 2009) fuel costs, crew costs, port and 

handling costs, insurance, maintenance and repairs, among others. 

Among other costs, for the purpose of optimal ship routing, fuel costs are 

considered in this chapter. Fuel costs depend upon the fuel consumption associated 

with the different ship operations. The evaluation of the wave resistance and hull 

friction is necessary for the rigorous assessment of the power of the engine/propulsion 
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system, and consequently of the ship fuel consumption. However, since the evaluation 

of the wave resistances and hull frictions is outside the scope of this study, a simpler 

method can be used for the evaluation of the fuel cost rate Cfuel,Hs,U ($/h), based upon 

the following empirical function (e. g. Rudko 2003) 

� �HskUkDkkcC fuelUHsfuel 4
3

321,, ����  (7.5) 

where cfuel is the fuel cost per liter ($/l), and k1, k2, k3, and k4 are coefficients that may 

be obtained by interpolating test results. On the other hand, based on the estimation of 

the fuel consumption rate for a given sea state, a simple approach may be used 

assuming that ship displacement is constant during a trip. Given the actual ship speed 

U, the design speed U’, the design fuel consumption rate r’fuel,Hs (Mt/h) for a specific 

sea state (expressed by Hs), and cfuel ($/Mt), the updated fuel cost rate Cfuel,hs,U ($/h) 

can be approximately evaluated as follows (Wijnolst and Wergeland 1996) 

3

,,, 	


�

�

�

�
��

U
UrcC HsfuelfuelUHsfuel  (7.6) 

Rigorous quantitative risk assessment requires the estimation of the specific ship 

operational profiles that indicate the occurrence probability of encountering 

determinate sea states across a geographic region under different operational 

parameters, such as speed and heading angle P[Hs,U,H] (Glen, Paterson and Luznik 

1999). Therefore, a general definition for the total time-dependent risk R,Hs,U,H(t) may 

be given by 

� � � � � �� � � �HUHsPtHUHsSiPCCtR
S

SSi
SiIDSiDHUHs ,,,,|

5

1
,,,, ���� �

�

 (7.7) 
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where CD,si and CID,si are the total direct and indirect costs, respectively, and 

P[Si|Hs,U,H](t) is the time-dependent probability for the ship hull of being in state Si 

(S1 to S5), given specific encountered significant wave height Hs, ship speed U, and 

heading angle H, is provided in Equation (6.6) of Chapter 6. Although Equation (7.7) 

formally addresses risk assessment, route optimization is conditioned to the actual and 

forecasted weather that the ship will encounter during its journey, therefore leading to 

� � � � � �� ��
�

���
5

1
,,,, ,,|

S

Ss
sIDsDHUHs tHUHsSiPCCtR  (7.8) 

The general procedure for the assessment of reliability and risk is summarized in the 

Module (3) of Appendix B. 

7.3  NEAR REAL-TIME PERFORMANCE AND WEATHER 

FORECAST 

The main scope of this chapter is to provide a flexible approach for the progressive 

updating of ship performance, depending on the availability of new collected 

information (in terms of SHM data) and weather forecast. Ship routing prediction will 

be based on the near real-time information that becomes available while the ship is 

traveling. Two main topics are presented in this section. The first topic regards the use 

of monitoring data for the assessment of structural performance, whereas the second 

topic treats the integration of different weather forecasts into the optimal routing 

approach. 



279 

 

7.3.1  STRUCTURAL HEALTH MONITORING 

The first aspect to be considered in order to make near real-time decision is the 

availability of further data, additional to those used for the initial assessment, which 

allows the decision to be more accurate within tight time steps. The principal quantity 

of interest to be updated is represented by the VBM induced by waves Mwv,Hs,U,H, 

which is treated as a random variable with the PDF given in Equation (6.17) of 

Chapter 6. 

The SHM data used in this chapter were obtained by Dr. Devine and his co-

workers during different testing sessions of a Froude-scaled test model of a NAVY’s 

Joint High-Speed Sealift (JHSS) at the Naval Surface Warfare Center, Carderock 

Division - Maneuvering and Sea Keeping (NSWCCD - MSK) basin, and provided us 

(Devine 2009). Thus, the collected SHM data in terms of VBM are scaled up by using 

the proper Froude-scaling factor in order to account for the load effects associated 

with the full-scale ship. The recorded raw signal, obtained by merging different test 

runs includes the effects of both low- and high-frequency responses, that are 

associated with the most regular part of the wave excitation and the effects of hull 

vibrations in terms of slam-induced hull whipping, respectively (Devine 2009). 

Depending on the availability of SHM data for different ship operational conditions, 

reliability analysis will include those available runs associated with a specific 

combination of Hs, U, and H, therefore the updated limit state equation is 
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where Mlow,Hs,U,H and Mhigh,Hs,U,H are the updated low-frequency and the obtained high-

frequency VBM, respectively. Similarly, also the HBM can be updated based upon the 

availability of SHM data. 

In order to separately investigate the effects of low- and high-frequency VBM, the 

raw signal needs to be filtered and analyzed independently. Butterworth filter is used 

for this purpose. The right cutoff frequency is properly chosen by analyzing the raw 

signal within the frequency-domain obtained with the Fourier transform of the raw 

signal. Accordingly, the Fourier transform P(ω) of the excitation function p(t), which 

is represented in this study by the collected raw signal, is given by (Chopra 2006) 

� � � ��
�

��

�� dtetpP ti��  (7.10) 

where ω is the frequency, i is the complex unit, and t is the time. The chosen cutoff 

frequency subdivides the frequency-domain into two disjointed parts containing the 

two frequency peaks related to low- and high-frequency. Additionally, the noise 

associated with very high frequency is removed from the raw signal. 
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The filtered signal oscillates from negative to positive values, representing sagging 

and hogging VBM, respectively (Devine 2009). At this stage, according to Kay 

(1993), the signal must be mathematically characterized by developing a mathematical 

estimation of the data (i.e. PDF), and by assessing the relevant statistical descriptors. 

In order to do so, the peaks of the signal are extracted, and their values are stored. An 

algorithm has been used for this purpose, implemented with the software MATLAB 

(The MathWorks 2011). It is found that the best fit for the filtered low-frequency 

VBM is provided by using the Rayleigh distribution (i.e. Equation (6.17) of Chapter 

6). This is in accordance with the theory behind short statistics prediction (Faltinsen 

1990). Whereas, for high frequency peaks, the exponential distribution provides better 

goodness of fit. Therefore, these high-frequency peaks are distributed as follows 

� � 0, ,,,,,
,,

,,,

,,

,,,

��

�
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HUHs

HUHshigh
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�

�

 (7.11) 

where λHs,U,H is the mean of a specific monitored combination of Hs, U, and H. 

7.3.2  BAYESIAN UPDATING 

The performance assessment based only on the SHM data, and disregarding the 

original information, can be restrictive, and may provide bias results. In this context, 

the Bayesian approach makes it possible to use the additional monitoring information 

in conjunction with the already available initial information (Kay 1993). The basic 

theory behind Bayesian updating procedure is reviewed in Section A.2.3 of Appendix 
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A, in according to Ang and Tang (2007). Both closed-form solution and simulation-

based method are used herein. 

7.3.2.1 Closed-Form Solution 

In this chapter an analytical solution to the updating problem is developed. It is always 

easier to provide closed-form solution to the Bayes’ problem when prior and posterior 

distributions are conjugated, i.e. belong to the same family (Anscombe 1961). In this 

analysis, short term statistics has been used, thus the distribution of the prior 

information follows the Rayleigh distribution of Equation (6.17) of Chapter 6, with 

mode α given by 

HUHsm ,,,0��  (7.12) 

Since the wave peaks follow the Rayleigh distribution (Faltinsen 1990), it is 

reasonable to assume that the mode α is a random variable itself, following the 

Rayleigh distribution. This new distribution represents the prior distribution f’(θ) of 

the parameter θ, defined as follows 

� � 0,2

2

2
2 ���

�
��

�
�� �

�

ef  (7.13) 

It can be noticed that the mode α is the hyperparameter of the prior distribution f’(θ). 

According to Equation (A.40) of Appendix A and recalling that the wave peaks follow 

the Rayleigh distribution, the likelihood function of the observations x1, x2,…xj,…, xn 

given the parameter θ is 
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Hence, the posterior distribution f’’(θ) of the parameter θ, evaluated according to 

Equation (A.41) of Appendix A is given by 
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where the normalizing constant kn is obtained by solving Equation (A.42) of Appendix 

A, but integrated within the interval [0, +], because both f’(θ) and L(θ) are defined 

for θ  [0, +]. Thus, kn, handled with the software Mathematica (Wolfram Research 

2010), becomes 
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where besselk[•] is the modified Bessel function of the second kind. After some math 

passages, developed with Mathematica (Wolfram Research 2010) and not reported 

here, the expected value of parameter θ is obtained by Equation (A.43) of Appendix A 

and provided as follows 
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Finally, by substituting this value into Equation (6.17) of Chapter 6, the updated 

VBM, which represent the underlying random variable X, is given by 

� � � �
� �

� � 0,ˆ
ˆ ,,,
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�
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�  (7.18) 

For large sets of observation, in order to avoid numerical problems (e.g. the likelihood 

function L(θ)), it is convenient to use an appropriate set of units and consider to use a 

logarithmic form. Also, it may be recommended to use simulation-based algorithms. 

7.3.2.2 Simulation-Based Techniques 

Usually, the main computational challenge is the evaluation of the constant kn 

(Equation (A.42) of Appendix A). Therefore, especially when prior and posterior are 

not conjugated, it is convenient to proceed by using numerical techniques, such as 

those based on simulations. In in order to validate the developed closed-form solution 

previously discussed, a simulation-based approach is used. The slicer sampling (Neal 

2003) is used in this study; its clear advantage is that the constant kn is not required to 

build the posterior PDF. The slice sampling algorithm is reviewed in Section A.2.2 of 

Appendix A. 

When the collected SHM data become very large, numerical problems can derive 

from the evaluation of L(θ), which requires multiplying all the fX(xj|θ) (PDF of the 

random variable X evaluated with the SHM data value xj) functions for all the SHM 

observation (Equation (A.40) of Appendix A). Therefore, when hundreds of 

measurements are collected, it is unfeasible to accomplish Bayesian analysis at once. 
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However, a key aspect of Bayesian updating is that it can be performed by sequential 

analyses (Gelman et al. 2003). Thus, by arranging the collected data into different 

groups of observations, the obtained posterior of each group becomes the prior of the 

subsequent analysis. The consecutive collection of SHM data brings the updating 

process towards real-time performance assessment. Hence, a permanent monitoring 

system installed on a ship may potentially provide updated structural performance by 

integrating the new information from SHM through Bayesian sequential analyses. 

7.3.3  WEATHER FORECAST 

There are many services/agencies that provide weather forecast for traveling ships 

worldwide. The usual manner of providing weather-related information is in forms of 

weather sea maps indicating the expected significant wave height, wind and wave 

direction, obtained and predicted from buoys and satellite readings (Bidlot, Janssen 

and Abdalla 2006, NOAA 2013, ECMWF 2013). This information is processed over 

specific regions. The accuracy of weather predictions depends on the forecast interval. 

Usually, forecasts are provided with time intervals as follows: 0 h (i.e. actual weather), 

1 h, 3 h, 6 h, 12 h, 24 h, 48h, and 72 h. The ways to provide weather forecasts are 

mainly two, deterministic and probabilistic (Bidlot, Janssen and Abdalla 2006). 

Deterministic forecast represents the development of a specific sea that is the most 

likely to occur, but without giving any information about its probability of occurrence. 

Whereas, probabilistic forecast provides ensembles of sea maps obtained by 

superposition of small perturbations to the operational analysis before launching the 

forecast calculation (Hinnenthal 2008). Therefore, based on the latter, the probability 
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of encountering a specific significant wave height is provided. Since the ship routing 

is based on hypothetical sea maps that cover a short distance, being outside the scope 

of this study, the probabilistic aspect of the forecasts is not considered; therefore, in 

the proposed application, the weather forecast is assumed to be sufficiently accurate 

and deterministic. 

7.4  MULTI-CRITERIA OPTIMAL ROUTING BASED ON TIME, 

RISK, AND FUEL COST 

Risk-based optimization of ship routes is worth exploring in order to quantify the level 

of potential losses (based on structural performance) that are associated with different 

ship routes depending on the encountered sea conditions. Ship routing may include as 

objectives: ship movements, operational costs (e.g. fuel consumption), estimated time 

of arrival (ETA), reliability, probability of failure/serviceability, and risk, among 

others. These single optimality criteria can also be combined, leading to multi-

objective optimization. For instance, ETA and ship movements, or fuel consumption 

and ship movements may be minimized. In such way the optimal solutions would 

belong to a Pareto-optimal set. Any point within this set can be chosen by decision 

makers, depending on fixed thresholds, such as available budget, acceptable level of 

reliability, probability of failure, risk, and allowable time to complete a trip, among 

others. 

In the past, the quantification of safety within optimal routing has not been often 

addressed. In this chapter, the minimization of ETA, risk, and fuel cost is explicitly 

investigated, considering ship safety and including SHM monitoring in terms of 
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updated reliability and risk profiles. Based on this optimization problem, a wide 

spectrum of optimal routes is provided to decision makers in the form of Pareto-

optimal set. For the optimal routing, it is assumed that the ship starts the trip from a 

point O (origin) and arrives at a point D (destination), within a given sea region. Based 

on the approach proposed in Chapter 6, the travel is discretized into N segments with 

extremities having coordinates x and y. A uniform discretization of the x-axis in N 

segments is assumed, leaving design values between the map limits for the y-axis. 

Therefore, the first group of design variables is represented by the N-1 y coordinates 

required to describe the N route segments. Moreover, time is a further variable of the 

optimization problem; hence the N ship speeds U represent the second group of design 

variables. As explained previously, different sea forecasts through different sea maps 

are provided and accounted for within the proposed optimal approach. Therefore, 

depending on the time elapsed from the origin of the trip, the proper forecast map is 

selected. Linear interpolation is used in order to account for intermediate time between 

different weather maps. 

In this chapter, four separate optimization problems, denoted OP-A, OP-B, OP-C 

and OP-D, are solved in order to exploit the proposed risk-informed method for ship 

routing. The framework for the risk-informed route optimization is presented in the 

Module (4) of Appendix B. OP-A and OP-B are bi-objective optimization problems, 

whereas OP-C and OP-D are three-objective optimization problems. Based on the 

general formulation of a multi-objective optimization problem (reviewed in Appendix 

A), optimization problems OP-A, OP-B, OP-C and OP-D are defined as 

� OP-A is formulated as follows: 
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Given: sea weather maps that include the actual state and prediction of 

significant wave height and wave direction, and total risk 

RHs,U,H(t) with respect to different combinations of Hs, U, and H 

at a specific ship age t 

find: a set of yk and Uk 

1,...,2,1 ��# Nkyk  (7.19a) 

NkUk ,...,2,1�#  (7.19b) 

to minimize: the estimated time of arrival ETA and the mean total risk Rmean(t) 

� �$ %tRmean,ETAmin  (7.20) 

subjected to the constraints: 

1,...,2,1maxmin ��#&& Nkyyy k  (7.21a) 

NkUUU k ,...,2,1maxmin �#&&  (7.21b) 

where ymin and ymax are the bounds of y coordinate within the map, Umin and 

Umax are the minimum and maximum allowable ship speed, respectively, and 

the objective mean total risk Rmean(t) is given by 

� �
� �

N

tR
tR

N

k
HUHsk

mean

�
�� 1

,,,

 (7.22) 

in which Rk,Hs,U,H(t) is the total risk associated with the k-th route segment. 

� OP-B is described as follows: 
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Given: sea weather maps and RHs,U,H(t) 

find: a set of yk and Uk 

1,...,2,1 ��# Nkyk  (7.23a) 

NkUk ,...,2,1�#  (7.23b) 

to minimize: ETA and Rmean(t) 

� �$ %tRmean,ETAmin  (7.24) 

subjected to the constraints: 

1,...,2,1maxmin ��#&& Nkyyy k  (7.25a) 

NkUUU k ,...,2,1maxmin �#&&  (7.25b) 

� � � �HUHsNktHUHsLSk ,,and,...,2,1threshold,,,4, #�#� ''  (7.25c) 

� � � �HUHsNkRtR HUHsk ,,and,...,2,1threshold,,, #�#&  (7.25d) 

where βk,LS4,Hs,U,H(t) is the reliability index of LS4 associated with the k-th route 

segment, and βthreshold and Rthreshold are the assumed minimum and maximum 

thresholds of the reliability index and total risk, respectively. 

� OP-C is formulated as follows: 

Given: sea weather maps, RHs,U,H(t), and the fuel cost rate Cfuel,Hs,U 

find: a set of yk and Uk 

1,...,2,1 ��# Nkyk  (7.26a) 

NkUk ,...,2,1�#  (7.26b) 
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to minimize: ETA, Rmean(t), and total fuel costs Ctot,fuel 

� �$ %fueltotmean CtR ,,,ETAmin  (7.27) 

subjected to the constraints: 

1,...,2,1maxmin ��#&& Nkyyy k  (7.28a) 

NkUUU k ,...,2,1maxmin �#&&  (7.28b) 

where the objective total fuel costs Ctot,fuel is given by 

�
�

�
N

k
UHsfuelkfueltot CTC

1
,,,  (7.29) 

in which Tk is the time necessary for the ship to cover the k-th route segment. 

� Finally, OP-D is formulated as follows: 

Given: sea weather maps, RHs,U,H(t), and Cfuel,Hs,U 

find: a set of yk and Uk 

1,...,2,1 ��# Nkyk  (7.30a) 

NkUk ,...,2,1�#  (7.30b) 

to minimize: ETA, Rmean(t), and Ctot,fuel 

� �$ %fueltotmean CtR ,,,ETAmin  (7.31) 

subjected to the constraints: 

1,...,2,1maxmin ��#&& Nkyyy k  (7.32a) 

NkUUU k ,...,2,1maxmin �#&&  (7.32b) 
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� � � �HUHsNktHUHsLSk ,,and,...,2,1threshold,,,4, #�#� ''  (7.32c) 

� � � �HUHsNkRtR HUHsk ,,and,...,2,1threshold,,, #�#&  (7.32d) 

The four optimization problems are solved by using Genetic algorithm (GA) 

(Goldberg 1989, Deb 2001), which is a heuristic optimization tool that is useful when 

closed form solutions are not available. 

7.5  CASE STUDY 

Based on the data provided by Devine (2009), the developed framework is applied to 

the Joint High-Speed Sealift (JHSS). Figure 6.1 of Chapter 6 shows the models of the 

JHSS. As explained in Chapter 6, through the response surfaces method, the 

considered random variables are implemented into the strength model in order to 

evaluate the statistical descriptors of vertical and horizontal flexural capacities of the 

midship section. Also the load effects are evaluated in accordance to Chapter 6. 

7.5.1  RELIABILITY, COST, AND RISK 

Reliability analysis is performed for each considered combination of Hs, U, and H and 

for each defined limit state (LS1 to LS4), according to Equation (6.3) of Chapter 6. 

The software RELSYS (Estes and Frangopol 1998) is used for this purpose. The 

descriptors of the parameters xR, xsw, and xw are considered normally distributed with 

mean values of 1.0, 1.0, and 0.9, and COVs equal to 0.10, 0.05, and 0.15, respectively 

(Paik and Frieze 2001), whereas kW is set to unity, kD is equal to 0.69 for hogging 

(Mansour et al. 1984), and δ is taken as a normally distributed random variable with 
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mean of 9.73 and COV of 10% (Paik, Thayamballi and Che 1996). Then, the 

probabilities of the hull being in states S1 to S5 are obtained by using Equation (6.6) of 

Chapter 6. These probabilities are necessary to compute the total risk through 

Equation (7.8). State S1 does not generate any consequences. Direct consequences 

caused by states S2 to S4 are evaluated by considering the portion of hull surrounding 

the midship section as 40% of the length of the hull, whereas for state S5 the loss of 

the whole ship hull is considered. Table 7.1 summarizes all the parameters involved in 

the costs, evaluated according to Equations (7.1)–(7.4) and (7.6). It is assumed that 

fuel consumption varies depending on the encountered sea state SS, with a variation of 

±10% for each SS greater (+) or lower (-) than the reference SS4, at which, a fuel 

consumption r’fuel of 10 t/h has been assumed for a speed of 20 m/s. The costs due to 

fatalities rely on the estimation of the number of casualties among the crew. An 

accurate estimation of the percentage of fatalities fSi is out of the scope of this study 

and is usually carried out by the Health, Safety, and Environment HSE department in 

phase of design/assessment, therefore this number is assumed herein. The occupancy 

of the ship may vary depending on the ship mission. An estimation of the exact 

number of the crew members is difficult to provide, therefore it is assumed. Moreover, 

an annual discount rate of money of 3% has been considered in order to obtain the 

present value of the used unitary costs. Finally, risk is assessed for each considered 

combination of operational conditions (Hs, U, and H). 
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7.5.2  SHM AND UPDATING 

A segmented seakeeping model of the JHSS was built and tested in the Naval Surface 

Warfare Center basin in the summer of 2007 in order to obtain the main ship responses 

(Devine 2009), including VBM and HBM. The model was Froude-scaled down with a 

scale factor γ of 47.2533. Accordingly, the associated full-scale VBM and HBM, 

which are the quantities of interest in this chapter to perform reliability analysis, are 

obtained by multiplying the recorded model-scale VBM and HBM by 1.025×γ 4 

(accounting for sea water and scale factor) (Devine 2009). Based on the available data, 

VBM and HBM data at midship are used for the updating process. The available 

signals include 21 runs at speed 35 Knots and heading 0° for sea state 7 (SS7) (denoted 

signal 1), and 12 runs at speed 15 Knots and heading 0° for sea state 8 (SS8) (denoted 

signal 2). Data were recorded by using a sampling rate of 200 Hz (for primary hull 

response), collecting a total of 73,800 observations for signal 1 and 117,000 

observations for signal 2. Since the JHSS is at a preliminary stage of design and 

testing, only these SHM data are available for their implementation within the 

proposed approach. 

Since the raw signals include both low- and high-frequency responses, they are 

filtered by using the Butterworth filter with cutoff frequency of 0.5 Hz for the VBM 

and 0.4 Hz for the HBM. These cutoff frequencies were estimated by analyzing the 

Fourier transform of the raw signals (Equation (7.10)). Figure 7.1 shows (a) signal 1 

and (b) signal 2 represented in the frequency-domain. It can be noticed that the signals 

can be split into two regions containing the low and high peak frequencies. Similar 
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results are obtained for the HBM. Moreover, a cleaner signal has been obtained by 

cutting off the noise for frequencies greater than 5 Hz, that are insignificant for the 

analysis. An example of the filtering process is reported in Figure 7.2 where the raw 

signals and the filtered low- and high-frequency responses for (a) signal 1 and (b) 

signal 2 are shown in terms of VBM associated with model- and full-scale ships. The 

oscillation of the signal around the 0 value subdivides the plot into two parts, sagging 

(negative) and hogging (positive) VBMs. Hogging peaks are extracted from both low- 

and high-frequency signals and separately stored. Figure 7.3 shows the histograms of 

the peaks of signal 1 (Figure 7.3(a,b,c,d)) and signal 2 (Figure 7.3(e,f,g,h)). VBM 

(hogging) and HBM are both shown in Figure 7.3(a,c,e,g) and Figure 7.3(b,d,f,h), 

respectively, whereas low- and high-frequency moments are reported in Figure 

7.3(a,b,e,f) and Figure 7.3(c,d,g,h), respectively. These histograms are then fitted by 

using the Rayleigh and exponential distributions for low- and high-frequency 

moments, respectively, which, among other types of distributions, resulted to be the 

most appropriate one, in accordance with the theoretical approach. The obtained 

relevant statistical descriptors are also reported in Figure 7.3 (mode α for Rayleigh and 

mean λ for exponential). 

Next, the low-frequency VBM, obtained by signals 1 and 2, is updated. Figure 7.4 

shows the integration of collected observations of VBM through Bayesian updating. 

Figure 7.4(a,b) show partial updating considering 1 and 30 observations, respectively. 

It can be noticed that the weight of the SHM data (extracted peaks) with respect to the 

prior distribution (Rayleigh) becomes more significant when the set of these data gets 

larger. The posterior distributions (Rayleigh), governed by the expected value of 
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parameter θ, are evaluated using both close-form solution (Equation (7.17)) and 

simulation-based techniques by using the slice sampling algorithm. The two methods 

indicate complete agreement; then, by incorporating all extracted peaks, the final 

updated posterior distributions are obtained, as shown in Figure 7.4(c,d) for VBM of 

signals 1 (number of peaks nSHM = 402) and signal 2 (number of peaks nSHM = 449), 

respectively. Figure 7.4(c,d) report also on partial updating, indicating partial updated 

posteriors in dashed light gray curves. Besides, the high-frequency VBM is used 

without being updated, because its prior information is insufficient and not specific for 

any combination of Hs, U, and H. 

Once VBM is initially predicted, and after filtering the SHM data, some of the 

VBMs belonging to the proper operational condition Hs, U, and H of signals 1 and 2 

are updated accordingly. Although the collected SHM data enhance the initial 

prediction, due to the scarcity of available data, it is assumed that signal 1 can be used 

to update the VBM associated with 7.62 m ≤ Hs ≤ 12.19 m, 16 m/s ≤ U ≤ 20 m/s, and 

-20° ≤ H ≤ 20°, and signal 2 used for 13.72 m ≤ Hs ≤ 18.29 m, 6 m/s ≤ U ≤ 10 m/s, 

and -20° ≤ H ≤ 20°. This approach is generally valid, also for other combinations of 

Hs, U, and H, if further data become available. Although HBMs are collected for both 

signals 1 and 2 as well, HBM is not updated because the obtained values for H = 0° 

are too small to be extended to other angles that become more significant in terms of 

HBM. Once the updated load effects are evaluated, reliability analysis and risk 

assessment can be performed. Figure 7.5 shows the profiles of the assessed 

performances (VBM, reliability index, probability of exceedance, and risk), including 

both initial prediction and updated information (indicated with a light gray shaded 
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region). In detail, Figure 7.5(a) shows the polar representation of the VBM (two 

different scales are shown), given Hs = 9.14 m and U = 18 m/s. Figure 7.5(b) shows 

the polar profiles of the reliability index associated with the four limit states LS1 to 

LS4 for the intact ship (t = 0 years) and for an aged ship (t = 30 years), given Hs = 

9.14 m and U = 18 m/s. Figure 7.5(c) shows the profiles of the probability of 

exceedance associated with the limit states LSi, fixing U = 18 m/s and H = 0º, and 

reports on the probabilities for the intact ship of being in states S1 to S5. Figure 7.5(d) 

shows the profiles of direct and indirect risks associated with states S2 to S5 of the 

intact ship (S1 does not generate any consequences). According to the cost analysis, 

indirect risk is much greater that direct risk. The updated risk is almost negligible 

when the ship is traveling under this specific Hs = 9.14 m, U = 18 m/s, and 20° ≤ H ≤ 

20° combination compared to risk with H = 180°. 

7.5.3  NEAR REAL-TIME ROUTE MULTI-CRITERIA 

OPTIMIZATION USING SHM INFORMATION  

Weather prediction is provided in the form of sea maps reporting on the significant 

wave height Hs and wave direction. It is assumed that the sea map has each edge of 

1000 km, and the trip starts from point O ≡ (1000 km, 200 km) and ends at point D ≡ 

(0 km, 400 km), which are the origin and destination, respectively. However, different 

maps associated with the current sea weather (0 h) and prediction for time frames of 1 

h, 3 h, 6 h, 12 h, 24 h, 48 h, and 72 h, are considered as shown in Figure 7.6. The 

significant wave height is assumed to range between about 3 m and 8 m, representing 

sea states between 5 and 7, respectively. Two storms are reported in the maps where 
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sea prediction is within 24 h (i.e. maps 0 h to 24 h). Then they merge forming storm 3 

for prediction later than 24 h (i.e. maps 48 h and 72 h). The disturbance areas are 

moving north-west to south-est. The ship is supposed to travel in the opposite 

direction, and a decision regarding whether it is convenient to avoid the two 

encountered storms must be taken. According to the above explained optimization 

problems (denoted OP-A, OP-B, OP-C, and OP-D), 15 segments (N = 15) represent 

the discretization of the x-axis. Therefore a total of 29 design variables are considered, 

including 14 coordinates yk and 15 ship speeds Uk. Moreover, the following bounds for 

yk and Uk are assumed 0 km ≤ yk ≤ 1000 km (Equations (7.21a), (7.25a), (7.28a), and 

(7.32a)) and 4 m/s ≤ Uk ≤ 20 m/s (Equations (7.21b), (7.25b), (7.28b) and (7.32b)), 

respectively. In order to solve the optimization problems, multidimensional matrices 

with a dense discretization of the parameters Hs, U, and H have been obtained for total 

risk, reliability index, and fuel cost. The significant wave height and the wave 

direction within the assumed sea maps are discretized into regular meshes. The 

updated information from SHM, whenever available, is in accordance to the updating 

process explained above. The optimization problems have been solved numerically by 

using GA, setting population size of 500 and maximum number of generations of 500. 

The considered Pareto fronts are categorized according to Table 7.2 and are 

obtained by solving the optimization problems formulated based on combining the 

following: 

� Column 1: identification number (Roman) 

� Column 2: type of optimization problems (denoted OP-A, OP-B, OP-C, or OP-D). 
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� Column 3: number of objective (two-objective or three-objective). 

� Column 4: number of constraints (two or four). 

� Column 5: ship age (intact case t = 0 years or aged case t = 30 years). 

� Column 6: (a) weather prediction (WP), accounting for different maps 0 h to 72 h, 

is accounted for; and (b) WP not considered, therefore, only the current weather 

associate with map 0 h is accounted for. 

� Column 7: (c) SHM is not considered; (d) SHM is considered assuming that the 

updated load effects (VBM) are proportional to the ratio between the modes of the 

posterior and prior distributions (equal to 1.15) found for signal 1, extended to 

each combination of Hs, U, and H; and (e) actual updated load effects (VBM) for 

the specific combinations of Hs, U, and H of signals 1 and 2. 

Figure 7.7(a) shows the Pareto fronts (I) and (II) associated without and with SHM 

data, respectively. Although the available SHM data are limited to signals 1 and 2, 

performing optimization analysis assuming that the outcomes of one of these signals 

are extended to all the possible combinations of Hs, U, and H can provide interesting 

insights concerning optimal routing. Pareto fronts are represented in terms of optimal 

ETA (h) and mean total risk Rmean (USD). It can be noticed that in order to select any 

solution but the extreme points of the Pareto, a trade-off must be taken into 

consideration. Since the mode of the updated VBM is larger than the posterior one, by 

including the new information into risk assessment, the Pareto front (II) shifts to 

higher values of risk considering a fixed ETA. Therefore, for instance, points A and B, 

representing the fastest routes within the Pareto fronts (I) and (II) with ETA equal to 
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14.16 h, respectively, account for different risk levels. These results are very important 

in order to highlight the potential contribution of a permanent SHM system that 

records the ship responses under generic conditions. Risk can therefore be more 

accurate and potential underestimations may be avoided. Figure 7.7(b) shows the 

Pareto fronts (I) and (III) considering two and four constraints, respectively (see Table 

7.2), obtained without considering SHM. The allowable values of minimum and 

maximum thresholds of the reliability index (Equation (7.25c)) and total risk 

(Equation (7.25d)) are assumed to be equal to 2.5 and 8×106 USD, respectively. It can 

be noticed that, in order to satisfy the two introduced constraints, the fastest route of 

Pareto front (III) has ETA equal to 26.13 h (point C). In Figure 7.7(c), the Pareto 

fronts (II) and (IV), considering two and four constraints, respectively (see Table 7.2), 

are obtained considering SHM. In this case, being the updated VBM larger than the 

predicted, Pareto front (IV) shifts to higher ETA when the constraints of Equations 

(7.25c,d) are considered. Therefore, larger ETAs are found for Pareto (IV) than for 

Pareto (III), in fact the fastest route of Pareto front (IV) has ETA equal to 33.47 h 

(point D). 

The Pareto fronts (V), (VI), and (VII) (see Table 7.2), obtained by solving the OP-

A are shown in Figure 7.8(a). The fact of having different sea maps available allows 

the decision maker to select routes that potentially reduce risk; in fact the Pareto fronts 

associated with WP have lower risk than those based on the current sea map only. 

Four optimal solutions are selected, called routes A, B, C, and D. Figure 7.8(b) reports 

on the routes A and B within the actual sea map (0 h). Route A is associated with the 

higher level of risk and linearly crosses the region between O and D, whereas, route B 
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avoids storm 2 by deviating from the shortest pattern. Figure 7.8(c,d,e,f) show the 

route profiles associated with total risk (USD), reliability index associated with hull 

collapse (LS4), ship speed (m/s), and cumulative time from departure (h). Total risk 

and reliability are in accordance to the encountered sea and depend also on the U and 

H. Among the selected solutions, route A is the fastest, whereas the other routes seem 

to allow greater reliability index. The paths of routes C and D are shown in Figure 7.9, 

where 6 maps are reported, since the ETA of the selected trip is lower than 24 h. These 

two routes are prone to avoid the storm at different locations and accordingly 

encounter different sea and travel conditions as reported in Figure 7.8(c,d,e,f). The 

two-ship shaped symbols indicatively show the location of the ship with respect to the 

x-axis for the two considered routes. 

Figure 7.10 shows the Pareto fronts (VIII) of Table 7.2, obtained by solving OP-C 

and considering SHM. Three objectives are simultaneously minimized. The solution to 

the problem is a 3D Pareto front as reported in Figure 7.10(a). Solutions that are trade-

offs of the three objectives are reported. It can be noticed that higher fuel cost is 

generally associated with low risk levels because fuel consumption is related to the 

ship speed and the encountered sea conditions, therefore when longer patterns are 

chosen, risk decreases, whereas fuel cost increases. Although the latter seems always 

true, the opposite does not occur. In fact, low fuel cost may be associated with high or 

low risk levels, depending on the followed route. Moreover, solutions with high ETA 

are generally associated with low risk, due to longer routes in order to avoid dangerous 

situations. Four solutions are extrapolated from the Pareto set, called Route E, F, G, 

and H. Figure 7.10(b,c,d,e,f,g) show the route profiles with respect to total risk (USD), 
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fuel cost (USD), reliability index, the value of the y-axis (km), ship speed (m/s), and 

cumulative time from departure (h). Instead of presenting the route pattern through sea 

maps, y-axis coordinates are provided (Figure 7.10(e)) in this case. Accordingly, risk 

is high and reliability index down crosses critical levels when route E is selected, since 

it is the shortest and fastest path. Although the speed profile of route H is relatively 

low, and route H has the lowest fuel cost among the selected routes, its risk profile is 

not as low, because its path goes through the storm. Figure 7.11(a) shows the Pareto 

front (IX) of Table 2, obtained by solving OP-D, and by keeping the same remaining 

problem properties included in Figure 7.10, but introducing the additional constraints 

of Equations (7.32c,d) (βthreshold and Rthreshold are equal to 2.5 and 8×106 USD, 

respectively). This Pareto front does not include any more solutions with high risk and 

generally provides a high ETA. Similarly, four solutions are extrapolated from the 

Pareto set, called Route I, J, K, and L, for which Figure 7.11(b,c,d,e,f,g) show their 

profiles with respect to total risk (USD), fuel cost (USD), reliability index, the value of 

the y-axis (km), ship speed (m/s), and cumulative time from departure (h). In this case, 

the fastest route has ETA equal to 31.74 h, with relatively low risk and fuel 

consumption. It can be noticed that the additional constraints are active for routes I, J, 

and L (βthreshold = 2.5) (Figure 7.11(d)), whereas, as shown in Figure 7.11(b), the risk 

constraint is almost active for route J. 

7.6  CONCLUSIONS 

In this chapter, which is mostly based on Decò and Frangopol (2013c), a risk-based 

approach for near real-time optimal routing of ships integrating structural health 
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monitoring data has been presented. Two-objective and three-objective optimization 

problems are solved by minimizing ETA, total risk, and fuel costs. The results are 

shown in the form of Pareto-optimal sets. Mission profiles including total risk, 

reliability index, fuel cost, ship path, ship speed, and cumulative time from departure 

are obtained for a NAVY’s JHSS. The information obtained from SHM and different 

sea weather maps are integrated within the developed optimization framework. 

Bayesian statistics have been used to update prior information by using both a closed-

form solution and a simulation-based technique. 

The following conclusions are drawn: 

1. SHM provides useful information that is used to update the structural performance. 

A closed-form solution, based on the accepted assumption that the peak responses 

follow the Rayleigh distribution, is developed herein. The obtained results have 

been compared with those provided by numerical simulation using the slicer 

sampling, obtaining perfect match. The profiles of load effects in terms of VBM 

and HBM, reliability index, and risk have been updated by using the available 

information provided by testing a scaled ship model in terms of VBM. 

2. It is found that near real-time decision making can be achieved by integrating 

SHM data with the prior performance information. If a permanent SHM system is 

installed, the proposed updating process would yield to real-time decision making. 

The crew members can be advised before down crossing critical performance 

thresholds, thus adequately avoiding a potential dangerous situation by modifying 

the ship trajectory and/or reducing the traveling speeds. 
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3. It is found that optimizing three objectives, including the minimization of ETA, 

total risk, and fuel cost provides a comprehensive set of optimal solutions. 

Although some solutions are trivial (e.g. the shortest path), some others need to be 

further analyzed by decision makers to understand their values. It is found that a 

higher fuel cost is generally associated with low risk, whereas the opposite is not 

always true. Moreover, solutions with high ETA are generally associated with low 

risk, due to longer routes necessary to avoid dangerous situations. Overall, it is 

also found that having different sea maps available allows the decision maker to 

select routes that potentially reduce risk; in fact the associated Pareto fronts, when 

WP is considered, have lower risk than those based on the current sea map only. 

4. SHM and sea weather predictions play a fundamental role for optimal ship routing. 

Integrating this information into the developed framework provides decision 

makers with more comprehensive sets of optimal solutions that may reduce risk, 

ETA and fuel cost. 

5. The importance of considering constraints within the investigated optimization 

problems is demonstrated. These constraints limit ship operations so that they 

remain within specific boundaries, allowing slowest paths and reduced traveling 

speeds. 

6. The developed approach is flexible, and can update the optimal solutions by 

including additional data about specific fuel consumption and further SHM data 

accounting for different combinations of Hs, U, and H.  
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Table 7.1 Parameters involved in the cost analysis. 

Parameter Value Reference 

Damage ratios dr,Si for [S1, S2, S3, S4, S5] [0, 0.10, 0.35, 0.75, 1] Assumed 
Fuel consumption r’fuel (t/h) for [SS1, SS2, SS3, 
SS4, SS5, SS6, SS7, SS8] at speed U’ = 20 m/s [7, 8, 9, 10, 11, 12, 13, 14] Assumed 

Fuel cost cfuel ($/t) 640 WSC (2008) 
Percentage of fatalities fSi for [S1, S2, S3, S4, S5] [0%, 0%, 0%, 1%, 2%] Assumed 
Ratio rinj 6.14 Skjong (2002) 
Ship occupancy O 200 Assumed 
Ship type factor STF 7 Miroyannis (2006) 
Value of a statistical life (USD) 6,200,000 USDOT (2011) 
Weight of WGT100 for S1, S2, S3, and S4 (long 
tons) 5,466 Devine (2009) 

Weight of WGT100 for S5 (long tons) 10,300 Devine (2009) 
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Table 7.2 Summary of the formulations of all the solved optimization problems 
leading to the Pareto fronts discussed in Section 7.5.4. 

(1) (2) (3) (4) (5) (6) (7) 

Pareto front 
Type of 

optimization 
problem 

Number of 
objectives 

Number of 
constraints 

Ship age t 
(years) 

Weather 
prediction 

(WP) 

Extended SHM 
based on signal 

1 (assumed) 
(I) OP-A 2 2 0 (a) (c) 
(II) OP-A 2 2 0 (a) (d) 
(III) OP-B 2 4 0 (a) (c) 
(IV) OP-B 2 4 0 (a) (d) 
(V) OP-A 2 2 0 (a) (e) 
(VI) OP-A 2 2 0 (b) (e) 
(VII) OP-A 2 2 30 (a) (e) 
(VIII) OP-C 3 2 0 (a) (e) 
(IX) OP-D 3 4 0 (a) (e) 

Note:  (a) denotes that the weather prediction (WP) is accounted for 
(b) denotes that only the current weather associate with map 0 h is accounted for 
(c) denotes that the SHM is not considered 
(d) denotes that the assumed extended SHM based on signal 1 is considered 
(e) denotes that the actual SHM based on signals 1 and 2 is considered 
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Figure 7.1 (a) signal 1 and (b) signal 2 represented in the frequency-domain, 
where SS indicates the sea state, S is the ship speed and H is the 
heading angle. 
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Figure 7.2 Raw signals and filtered low- and high-frequency responses for the 
VBMs of (a) signal 1 and (b) signal 2, where SS indicates the sea state, 
S is the ship speed and H is the heading angle. 
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Figure 7.3 Histograms of the peaks of signal 1 (a,b,c,d) and signal 2 (e,f,g,h) 
associated with (a,c,e,g) HBM and (b,d,f,h) VBM, and with respect to 
(a,b,e,f) low- and (c,d,g,h) high-frequency moments. Low- and high-
frequency histograms are fitted with Rayleigh and exponential 
distributions, respectively, of which statistical descriptors are also 
reported (mode α for Rayleigh and mean λ for exponential). SS 
indicates the sea state, S is the ship speed and H is the heading angle. 

10

SS7; U = 18.01 m/s; H = 0º

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.00

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.00

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 100.0

0.2

0.4

0.6

0.8

1.0

PD
F 

(1
0-8

)

PD
F 

(1
0-9

)

PD
F 

(1
0-8

)

PD
F 

(1
0-8

)

PD
F 

(1
0-8

)

PD
F 

(1
0-9

)

PD
F 

(1
0-8

)

PD
F 

(1
0-8

)

α = 0.44x108 Nm

Low-frequency horizontal 
bending moment

Horizontal bending moment (108 Nm)

Horizontal bending moment (108 Nm)

Horizontal bending moment (108 Nm)

Horizontal bending moment (108 Nm)

SS7; U = 18.01 m/s; H = 0º

λ = 0.27x108 Nm

High-frequency horizontal 
bending moment

SS8; U = 7.71 m/s; H = 0º

α = 0.55x108 Nm

Low-frequency horizontal 
bending moment

SS8; U = 7.71 m/s; H = 0º

λ = 0.26x108 Nm

High-frequency horizontal 
bending moment

Vertical bending moment (109 Nm)

Vertical bending moment (108 Nm)

Vertical bending moment (109 Nm)

Vertical bending moment (108 Nm)

SS7; U = 18.01 m/s; H = 0º

α = 0.73x109 Nm 

Low-frequency vertical 
bending moment (hogging)

SS7; U = 18.01 m/s; H = 0º

λ = 1.04x108 Nm

High-frequency vertical 
bending moment (hogging)

SS8; U = 7.71 m/s; H = 0º

α = 1.05x109 Nm  

Low-frequency vertical 
bending moment (hogging)

SS8; U = 7.71 m/s; H = 0º

λ = 2.08x108 Nm 

High-frequency vertical 
bending moment (hogging)

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)



309 

 

 

Figure 7.4 Updating process including prior distributions, SHM histograms, and 
posterior distributions for the VBMs of (a,b,c) signal 1 and (d) signal 2, 
where SS indicates the sea state, S is the ship speed and H is the 
heading angle. Partial distribution for VBM signal 1 with nSHM = 1 and 
nSHM = 30 are shown in (a) and (b), respectively. 
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Figure 7.5 Initially predicted and updated profiles (indicated with a light gray 
shaded region) of (a) VBM, (b) reliability index (intact ship t = 0 years 
and aged ship t = 30 years), (c) probability of exceedance (intact ship t 
= 0), and (d) direct and indirect risk (intact ship t = 0). 
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Figure 7.6 Assumed sea weather maps associated with the current sea weather (0 
h) and prediction for time frames of 1 h, 3 h, 6 h, 12 h, 24 h, 48 h, and 
72 h. The variation of the significant wave height is reported in the 
scale on the right-hand side of the figure, and the vector field within the 
maps indicates the wave direction. Three moving storms are also 
reported in the maps. Trip origin point O and destination point D are 
also shown. 
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Figure 7.7 (a) Pareto fronts (I) and (II) of Table 7.2, obtained by solving OP-A. (b) 
Pareto fronts (I) and (III) of Table 7.2, without considering SHM and 
assuming βthreshold and Rthreshold equal to 2.5 and 8×106 USD for front 
(III). (c) Pareto fronts (II) and (IV) of Table 7.2, considering SHM and 
assuming βthreshold and Rthreshold equal to 2.5 and 8×106 USD for front 
(IV). Points A, B, C and D represent the fastest routes within the Pareto 
fronts (I), (II), (III), and (IV), respectively.  
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Figure 7.8 (a) Pareto fronts (V), (VI), and (VII) (in accordance with Table 7.2), 
obtained by solving OP-A. Four optimal routes called routes A, B, C, 
and D are selected. (b) Paths of the four selected routes A, B, C, and D. 
represented in the current sea map (0 h). Profiles of the four solutions, 
reporting on (c) route total risk (USD), (d) route reliability index 
associated with ultimate failure (LS4), (e) ship speed (m/s), and 
cumulative time from departure (h). 

  

(b)

Map 0 h

O

Dy-
ax

is
 d

ire
ct

io
n 

(k
m

)

Route A

0

250

500

750

1000

Route B

0 1000250 500 750

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 (m

)

x-axis direction (km)

0

5

10

15

20

Sp
ee

d 
(m

/s
)

(e)

0 250 500 750 1000
x-axis direction (km)

C
um

ul
at

iv
e 

tim
e 

(h
)

(f)

To
ta

l r
is

k 
 (1

07
U

SD
)

(c)

0.0

0.5

1.0

1.5

2.0

2.5

Route A
Route B
Route C
Route D

Route total risk

R
el

ia
bi

lit
y 

in
de

x

(d)

0
1
2
3
4
5
6

Route reliability

Route speed

Cumulative time

0

5

10

15

20

Problem OP-A

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

M
ea

n 
to

ta
l r

is
k 

 (1
06

U
SD

)

Estimated time of arrival (h)

Route A

Pareto front (V)
Pareto front (VI)
Pareto front (VII)

Route B

Route C

Route D

(a)

O



314 

 

 

Figure 7.9 Paths associated with the selected optimal routes C and D of Figure 
7.8(a). The two ship shaped symbols indicatively show the location of 
the ship with respect to the x-axis for the two considered routes. 
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Figure 7.10 (a) Pareto fronts (VIII) of Table 7.2, obtained by solving OP-C. Four 
optimal routes called routes E, F, G, and H are selected. Profiles of the 
four solutions, reporting on (b) route total risk (USD), (c) fuel cost 
(USD), (d) route reliability index associated with ultimate failure (LS4), 
(e) route y-axis value (km), (f) ship speed (m/s), and cumulative time 
from departure (h). 
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Figure 7.11 Pareto fronts (IX) of Table 7.2, obtained by solving OP-D and 
assuming βthreshold and Rthreshold equal to 2.5 and 8×106 USD, 
respectively. Four optimal routes called routes I, J, K, and L are 
selected. Profiles of the four solutions, reporting on (b) route total risk 
(USD), (c) fuel cost (USD), (d) route reliability index associated with 
ultimate failure (LS4), (e) route y-axis value (km), (f) ship speed (m/s), 
and cumulative time from departure (h). 
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CHAPTER 8 

SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

8.1  SUMMARY 

This study has developed a risk-informed approach for the life-cycle assessment and 

management of civil and marine structures with emphasis on single highway bridges, 

groups of bridges, and ship structures. The study is composed of two parts. Part I deals 

with the life-cycle management of single bridges and bridge groups based on risk, in 

which also a probabilistic tool for the prediction of resilience to disaster is presented. 

Part II proposes an optimality-based approach for the management of aging ship 

structures under different operational conditions and integrating structural health 

monitoring (SHM), considering reliability, redundancy, and risk as performance 

indicators. 

In Chapter 2, a comprehensive computational approach for assessing the time-

dependent risk as an indicator of the life-cycle performance has been presented. The 

effects of several hazards, including live loads, environmental attacks, scour, and 

earthquakes, on time-dependent structural failure probabilities and their associated 

consequences have been investigated. Moreover, redundancy has been considered into 

risk assessment by introducing a risk modifier coefficient. Epistemic and aleatory 
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uncertainties have been accounted for within quantitative risk assessment of structural 

systems and have been modeled for each step of risk assessment, including structural 

performance evaluation, analysis of the probability of occurrence of different types of 

hazards, and evaluation of the associated consequences due to the inadequacy of the 

structural system. 

In Chapter 3, some important issues emerging from the life-cycle risk assessment 

of spatially distributed aging bridges within a transportation network have been 

investigated. The time-dependent effects of traffic and seismic hazards, for a group of 

aging bridges contained into an earthquake-prone region have been investigated. A 

detailed consequence analysis has been performed in order to evaluate the effects 

associated with different bridge limit states. 

Chapter 4 has extended the existing deterministic model of resilience to disaster 

towards an approach for the probabilistic prediction of seismic resilience. The social 

impact in terms of direct and indirect costs has also been investigated. A spectrum of 

restoration strategies are studied based upon a model that describes the variation of 

functionality over time with emphasis on single highway bridges and bridge highway 

segments affected by earthquakes. 

In Chapter 5 an efficient approach for the evaluation of ship reliability and 

redundancy including the effects of corrosion, allowing to investigate different 

operational conditions, has been presented. The strip method was used for the 

assessment of the response amplitude operator (RAO) of vertical bending moment 

(VBM) for three ship cross-sections and the probabilistic analysis of structural 
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responses for natural sea is conducted by investigating specific sea states, ship speeds 

and heading angles. 

Chapter 6 has developed an approach for risk assessment, accounting for the 

consequences induced by different limit states. Risk has been used as a performance 

indicator with the purpose of evaluating the optimal routing of ships. Direct risk 

assessment of ships has been performed with respect to discrete hull damage states and 

for a large spectrum of operational conditions. Mission parameters such as ship speed 

and heading angle, structural reliability, estimated time of arrival (ETA), and traveled 

distance are assessed for the case of a ship traveling between two points given a sea 

weather map. Optimization has been performed in order to obtain the paths that 

minimize both risk and ETA for the case in which the ship is intact and when the 

effects due to corrosion are considered. 

Chapter 7 has developed a comprehensive risk-based approach for near real-time 

optimal routing of ships integrating structural health monitoring data and considering 

weather prediction. Bayesian statistics have been used in order to update the prior 

information by using the collected SHM data, obtaining an improved (posterior) 

prediction. Both closed-form solution and simulation-based technique have been 

developed for the updating process. Moreover, different sea weather maps were 

integrated within the developed optimization framework. Two-objective and three-

objective optimization problems were solved by minimizing (a) ETA and total risk, 

and (b) ETA, total risk, and fuel costs, respectively. 
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8.2  CONCLUSIONS 

Among the specific conclusions drawn from each chapter of this thesis, only the most 

important are summarized in this section. From Part I (i.e. framework involving bridge 

structures), the following conclusions are drawn: 

� The interpretation of the results given by the probability density function (PDF) of 

the time-to-failure associated with each considered hazard represents a valuable 

tool for the identification of the importance of hazards (i.e. from the highest to the 

lowest effects) affecting the bridge under investigation. 

� While assessing risk, the level of detail in modeling the effects of a potential 

hazard must fit the importance of such hazard with respect to total risk. A highly 

detailed model is needed only for those hazards with significant contributions to 

the total risk. 

� Bridge risk assessment is a process that carries significant epistemic and aleatory 

uncertainties generated by multiple sources such as the assessment of the bridge 

vulnerability and the consequences associated with bridge failure or malfunction. 

The treatment of such uncertainties in modeling the bridge performance over time 

requires exceptional care. It has been found that the dispersion of the time-

dependent total risk increases over time. 

� The investigation of the normalized indirect risk index provides useful information 

about the importance of the considered bridge. The effect of a potential failure 

mode may have great impact on the economy of the surrounding areas, causing 

indirect losses to be much greater than the direct ones over time. 
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� When life-cycle risk is assessed under multiple hazards, the predominant hazard 

must be adequately modeled in order to achieve reliable estimates of total risk. 

Therefore, if the investigated group of bridges is located within an earthquake-

prone region, it is crucial to model the seismic hazard (earthquake scenarios) with 

a powerful tool such as the probabilistic ground motion and associated fragility 

analysis. It has been found that the only inclusion of risk induced by traffic hazard 

provides an incomplete analysis that may lead to a wrong decision process. 

� As expected, it has been found that the risk induced by seismic hazard increases 

over time due to structural aging consideration and the predicted increment of the 

average daily traffic (ADT) over time. It has been found that the dispersion of 

seismic risk increases over time. The inclusion of epistemic uncertainties enhances 

the probabilistic model, but adds dispersion to the initial sample. 

� According to the proposed framework, it is found that expected rehabilitation costs 

are greater than expected rebuilding costs. Whilst this is true in this case, this 

observation may change depending on the extent of damage and on the method of 

computation. 

� The assessment of seismic resilience can be conducted in a probabilistic way by 

including uncertainty affecting both bridge vulnerability and recovery phase. The 

proper use of the parameters, within the used model, allows investigating several 

recovery processes associated with different levels of damage. The average 

functionality recovery heavily depends on the gain obtained by the rehabilitations 

associated with extensive and complete damages. 
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From Part II (i.e. framework involving ship structures), the following conclusions are 

drawn: 

� The proposed polar representation for reliability and redundancy improves the 

interpretation of the structural safety level under specific operational conditions, 

helping the ship operator make appropriate decisions. 

� It has been found that the impact of corrosion effects (ship aging) on reliability and 

redundancy is in general limited compared with the effects of specific critical 

operations. 

� When the structural performance reaches critical threshold, the ship operations 

must be modified according to the residual structural safety by reducing the 

forward speed, or by changing the heading angle according to the obtained polar 

profiles. 

� The results obtained from the optimization show that several solutions can be 

adopted depending on the acceptable risk and on the allowable ETA. All the 

solutions, except for the shortest and fastest one, provide directions that avoid the 

assumed storm in order to reduce direct risk. 

� Aging effects lead to higher risk and optimal routes can be different than those 

made for intact ships. Different Pareto-optimal sets are obtained for two cases, 

highlighting the importance of this aspect in the decision making process. 

� The developed closed-form solution for the updating process, based on the 

assumption that the peak responses follow the Rayleigh distribution, provides 

results that perfectly match those obtained by numerical simulation using the slicer 
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sampling. The profiles of load effects in terms of VBM and horizontal bending 

moment (HBM), reliability index, and risk have been consequently updated. 

� It is found that near real-time decision making can be achieved by integrating 

SHM data with the prior performance information. If a permanent SHM system is 

installed, the proposed updating process would yield to real-time decision making. 

� It is found that the optimization of three objectives (minimization of ETA, total 

risk, and fuel cost) provides a comprehensive set of optimal solutions. A higher 

fuel cost is generally associated with low risk, whereas the opposite is not always 

true. Moreover, solutions with high ETA are generally associated with low risk, 

due to longer routes necessary to avoid dangerous situations. 

� It is also found that the Pareto fronts when weather prediction is considered have 

lower risk than those based on the current sea map only. 

8.3  RECOMMENDATIONS FOR FUTURE WORK 

The recommendations for future work related to Part I (involving bridge structures) 

are as follows: 

� This study mainly focused on the assessment and prediction of the performance of 

existing structures. The developed approaches for risk assessment and resilience to 

disaster should be extended to new structures in order to achieve performance-

based design. 

� The proposed approach for the assessment of life-cycle risk of single highway 

bridges and bridge groups needs to be extended to bridge transportation networks 
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by including the effects of traffic redistribution in order to consider a more realistic 

network performance. 

� The need of opinions and input from experts working in different fields are critical 

in order to provide the community with valuable and applicable research. 

Interdisciplinary research teams covering aspects related to transportation 

engineering, structural engineering, and economics, must be formed and 

interdisciplinary research teams incentivized. 

� It is important to develop specific approaches for combining hazards (only if they 

are relevant) by evaluating their simultaneous or sequential effects on single 

bridges. 

� For the prediction of seismic resilience, a comprehensive calibration of recovery 

curves covering different bridge classes and different rural and metropolitan areas 

is still missing in the existing literature. Only an extensive focus of future research 

can fill this lack of information leading to more accurate evaluations resilience. 

� The probabilistic approach for resilience, applied to single highway bridges and 

bridge highway segments, has to be extended to existing transportation networks 

by considering real case studies. 

For Part II (involving ship structures), the recommendations for future work are 

summarized as follows: 

� Detailed analyses of dynamic effects induced by waves are not explicitly included 

into the reliability analysis of ship structures of this study because of 

computational limitations. Therefore, research is needed for the implementation of 
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dynamic effects such as whipping and springing through FE and Response Surface 

analyses. 

� The proposed approach for optimal ship routing, that minimize risk, ETA, and fuel 

cost, must be extended in order to account for several other objectives such as ship 

movements, wave resistance, and other operating costs. 

� Uncertainties associated with weather prediction are not considered in this study; 

therefore, they can be accounted for by developing an extension of the proposed 

approach for optimal ship routing. 

� Although it is recognized that the flexural failure mode of the hull midship section 

is the critical mode, time-variant redundancy and risk should be investigated also 

for different failure modes such as shear and torsional moments. 
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APPENDIX A 

PERFORMANCE INDICATORS, PROBABILISTIC 

METHODS AND OPTIMIZATION 

A.1  PERFORMANCE INDICATORS 

Several deterministic and probabilistic performance indicators have been investigated 

over the last decades. These indicators serve as measure of structural performance of 

both undamaged and damaged structures. In life-cycle analysis, indicators commonly 

used include: safety margin, probability of failure, reliability index, lifetime 

distributions, redundancy index, vulnerability, damage tolerance, risk, robustness, and 

resilience. Most of these performance indicators are usually time dependent because 

they are affected by progressive and/or sudden deterioration processes. In the reminder 

of this Appendix, reliability and redundancy indices, lifetime distributions, risk, and 

resilience, which are the most used indicators in this study, are reviewed. 

A.1.1  RELIABILITY INDEX 

Ang and Tang (1984) define reliability as “the probabilistic measure of assurance of 

performance”. Therefore, the problems of reliability of structural systems may be 

represented as the problem of “supply” versus “demand”. In other words, reliability 

measures the capacity of components/systems to withstand to the applied load, related 
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to the capacity through a performance function that takes into account the relevant 

uncertainty of the reliability problem. 

The indicator of the performance governing the problem of supply and demand is 

generally governed by the following performance function (Ang and Tang 1984) 

� � � �nXXXgg ,...,, 21�X  (A.1) 

where X ≡ {X1,X2,…,Xn} is the vector of the random variables and the performance 

function g(X) determines the states 

� �� �0�Xg  “safe state” (A.1) 

� �� �0�Xg  “limit state” (A.2) 

� �� �0�Xg  “failure state” (A.3) 

Equation (A.1) can be expressed through a simplified and more intuitive form that 

includes the capacity C and demand D 

DCDCg 	�),(  (A.4) 

The relevant random variables are then included into the terms C and D of Equation 

(A.5). Figure A.1 shows the schematic representation of a linear limit state function 

that separates the safe and failure domains. Based on the performance functions of 

Equations (A.1) and (A.5), the probabilities of the safe state Ps and failure state Pf are 

defined as (Ang and Tang 1984) 

� �� � � �DCPgPPs 
�
� 0X  (A.5) 
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� �� � � �DCPgPPf ���� 0X  (A.6) 

Thus, if the joint probability density function (PDF) of the random variables 

{X1,X2,…,Xn} is fX(x) = fX1,X2,…,Xn(x1,x2,…,xn), the probability of failure Pf is 

analytically computed as 

� �� � � �����
F X xxX dfgPPf 0  (A.7) 

where 

� �� 0g �� XF  (A.8) 

is the failure domain. Usually, the integral of Equation (A.8) cannot be solved with a 

closed-form solution; therefore, approximate methods must be used such as the First-

Order Reliability Method (FORM), the Second-Order Reliability Method (SORM), or 

through simulations. The reliability index β is usually assumed to be associated with 

the probability of failure as follows 

� �fP1	�	��  (A.9) 

where Φ-1(·) is the inverse standard normal cumulative distribution function (CDF). 

If C and D of Equation (A.5) are statistically independent normally distributed 

random variables with mean values μC and μD, respectively, and standard deviations σC 

and σD, respectively, the probability distribution of the safety margin M = C - D is also 

normal with mean value μM and standard deviation σM given as 

DCM ��� 	�  (A.10) 
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22
DCM ��� ��  (A.11) 

Consequently, the reliability index and the associated probability of failure are 

computed as 
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 (A.13) 

Figure A.2 shows qualitatively the normal distributions of the capacity C, demand D, 

and safety margin M. As shown, the reliability index β is the ratio of the mean of the 

safety margin and its standard deviation. 

When multiple failure modes and/or multiple components being part of a system 

are analyzed, system reliability is performed. In this case, k multiple failure modes 

and/or multiple components have different performance functions represented as (Ang 

and Tang 1984) 

� � � � kiXXXgg nii ,...,2,1,...,, 21 ��X  (A.14) 

such that the individual failure events are 

� �� � kigE ii ,...,2,10 ��� X  (A.15) 

Therefore, the probability of failure of the system is expressed as 

� �
� ��� �������

���
nnXXX

EEE
f dxdxdxxxxfP

n
k

2121,...,,
...

,...,,
21

21

 (A.16) 
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The overall system performance can be evaluated by modeling multiple failure modes 

and/or multiple components with classical theory of series and parallel system 

reliability. For instance, a series system will fail if any one of its component fails, 

whereas a parallel systems will fail only if all its components fail. The failure domain 

Ω of series and parallel systems is then defined as (Ang and Tang 1984) 

� ��  kig
k

i
i ,...,2,10

1

���
�
� XΩ  (A.17) 

� ��  kig
k

i
i ,...,2,10

1

���
�
� XΩ  (A.18) 

For series-parallel systems, composed by a series systems of Q parallel subsystems 

with Ni components, the failure domain Ω becomes (Ang and Tang 1984) 

� �� ��
Q

i

N

j
ij

i

g
1 1

0
� �

�� XΩ  (A.19) 

The probability of failure of the systems depends upon the correlation among the 

safety margins of the single components. Figure A.3 shows the schemes of series, 

parallel, and series-parallel systems. Because of the complexity of the problem, 

generally, closed-form solutions are not available; therefore, approximated solutions in 

the form of bounds have been developed. Cornell (1967) provided first-order bounds, 

whereas Ditlevsen (1979) refined these bounds by proposing tighter second-order 

bounds. For practical purposes, FORM and SORM can also be used. In this study 

reliability problems have been solved by using the software RELSYS (Estes and 
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Frangopol 1998) and CALREL (Liu et al. 1989). Reliability analysis is extensively 

performed throughout this study. 

A.1.2  LIFETIME FUNCTIONS 

This section reviews three lifetime functions, including the CDF of the time-to-failure, 

survivor function, and hazard function, that are used in Chapters 2 and 3 of this study. 

The first reviewed lifetime distribution is the CDF of the time-to-failure F(t) that 

represents the probability that the time-to-failure of a component/system is less than 

time t. Okasha and Frangopol (2010c) define F(t) as 

� � � � � � 0,
0


��� � utduuftTPtF
t

 (A.20) 

where f(u) is the PDF of the time-to-failure. This indicator is also called time-

dependent reliability within some research groups. 

The survivor function S(t) is complementary to the CDF of the time-to-failure F(t), 

therefore, S(t) is defined as the probability that a component/system is still functioning 

at time t (Leemis 1995) 

� � � � � � � � 01 
�	��� �
�

tduuftFtTPtS
t

 (A.21) 

Figure A.4 shows the qualitative relationship among the PDF of the time-to-failure 

f(t), the CDF of the time-to-failure F(t), and the survivor function S(t). It can be 

noticed that the area to the left of time t0 is F(t0) and the area to the right of t0 is S(t0). 
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The last indicator to be reviewed is the hazard function h(t) that represents the 

frequency with which components/systems fail. Its definition is as follows (Leemis 

1995) 

� � � �
� � 0
� t
tS
tfth  (A.22) 

A.1.3  REDUNDANCY INDEX 

Besides reliability index and lifetime functions redundancy is also a useful 

performance indicator that provides warnings of partial failure. A redundant system 

has enough resources to survive even though one component within itself fails; the 

structural system will collapse only if the failure pattern propagates throughout 

multiple components. A high level of redundancy can contribute to the mitigation of 

unexpected actions generated by potential hazard-induced events. Several definitions 

were investigated by Frangopol and Curley (1987) in order to relate redundancy to the 

meaning of “warning provider,” including: 

1. Reserve capacity factor 

design

intact

L
L

Red �1  (A.23) 

in which Lintact is the load carrying capacity of the intact structure and Ldesign is the 

design load. 

2. Residual capacity factor 

intact

damaged

L
L

Red �2  (A.24) 



351 

 

where Ldamaged is the load carrying capacity of the damaged structure. 

3. Normalized capacity factor 

damagedintact

intact

LL
L

Red
	

�3  (A.25) 

If a probabilistic approach is used, and the time-dependent reliability indices 

associated with the yielding limit state for the components and with the ultimate 

collapse for the system are evaluated, the time-variant redundancy index may 

alternatively be defined by (Frangopol and Okasha 2008) 

� � � � � � � � � �tttRed sysysysf �� 	�4  (A.26) 

� � � � � � � � � �
� � � �t

tt
tRed

sysf

sysysysf

�
�� 	

�5  (A.27) 

where βf(sys)(t) and βy(sys)(t) are the reliability indices with respect to the occurrence of 

first yielding and system failure at time t, respectively. Analogously, time-variant 

redundancy indices can be calculated by using the probabilities of exceedance of the 

above mentioned limit states (Frangopol and Okasha 2008, Okasha and Frangopol 

2010a) 

� � � � � � � � � �tPtPtRed sysfsysy 	�6  (A.28) 

� � � � � � � � � �
� � � �tP

tPtP
tRed

sysf

sysfsysy 	
�7  (A.29) 
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in which Py(sys)(t) and Pf(sys)(t) are the probabilities of first yielding and system failure 

at time t, respectively. Lastly, Okasha and Frangopol (2010d) introduced a redundancy 

measure based on lifetime functions, defined as 

� � � � � �
� �tF

tFtF
tRed

s

swc 	
�8  (A.30) 

where Fs(t) and Fwc(t) are the CDF of the time-to-failure of the system and weakest 

component, respectively. The evaluation of the time-variant redundancy index is 

included in Chapters 2 and 5 of this study. 

A.1.4  RISK 

Risk is defined as the combination of chances and consequences of events 

generated by different hazards in a given context. Therefore, a major task in risk 

assessment is the identification of a spectrum of hazards, which affects the structure 

under investigation, based on the location of the structure and other factors. The 

outcome of such analysis is a list of all the hazards which may affect the structural 

system. Hazards are situations or circumstances that cause a level of danger to the 

structural system leading to potential occurrence of structural failures or 

malfunctioning. Accordingly, the hazard scenario is a sequence of possible events 

producing undesirable results in terms of consequences (CIB 2001). The prediction of 

hazard-induced events and the quantification of their caused consequences are aspects 

of essential relevance for risk assessment. In general, the instantaneous total risk R of 

a structural system can be expressed as follows (CIB 2001): 
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� � � ��� ������� nnXXXn dxdxdxxxxfxxxR
n 2121,...,,21 ,...,,,...,,

21
�  (A.31) 

where δ represents the consequences, and fX(x) = fX1,X2,…,Xn(x1,x2,…,xn) is the joint 

PDF containing the considered random variables X ≡ {X1,X2,…,Xn}. The solution of 

the above-multiple integral is not obvious and in most cases it cannot be obtained 

numerically. Therefore, some assumptions must be introduced in order to separate the 

effects induced by different hazards (e.g. assuming that hazards are mutually exclusive 

and collectively exhaustive). Concepts related to risk assessment are included in 

several chapters because they represent the backbone of this study. Time-dependent 

risk has been evaluated for both highway bridges and ship structures. 

A.1.5  RESILIENCE 

According to Bruneau et al. (2003), resilience is a performance indicator that 

“measures the ability of a community to mitigate the effects of an extreme event, to 

contain the effects of the event when it occurs, and to efficiently recover”. This 

definition can be adapted to several structural and infrastructural systems, such as 

bridge transportation networks (Bocchini and Frangopol 2012a, Bocchini and 

Frangopol 2012b) and hospital networks (Cimellaro, Reinhorn and Bruneau 2010), 

among others. Generally, resilience Res can be defined as (Cimellaro, Reinhorn and 

Bruneau 2010) 

� ���
ht

t

dttQRes
0

 (A.32) 
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where Q(t) is the time-dependent functionality, t is the time, t0 is the time at which the 

extreme event occurs, and th is the investigated time horizon. The schematic 

representations of resilience and time-dependent functionality are shown in Figure 

A.5. It is assumed that, when the extreme event occurs, the pre-event functionality 

drops, leading to a residual functionality. Subsequently, recovery activities restore the 

functionality. Resilience is proportional to the shaded area in Figure A.5. 

Moreover another aspect of resilience is described by means of ‘rapidity’, which is 

defined as the derivative of the time-dependent functionality with respect to the 

recovery time (Cimellaro, Reinhorn and Bruneau 2010) 

� �
httt

dt
tdQRap ��� 0  (A.33) 

Resilience and rapidity are discussed in Chapter 4. 

A.2  PROBABILISTIC METHODS AND OPTIMIZATION  

This section covers some of the probabilistic methods and the optimization technique 

used in this study. A brief review of the fundamentals of Latin Hypercube sampling, 

slice sampling, and the basics of Bayesian updating is provided herein. Notions of 

optimization are also provided. 

A.2.1  LATIN HYPERCUBE SAMPLING 

Latin Hypercube is sampling technique that belongs to the family of the stratified 

sampling methods. It provides a more representative distribution of the outputs for the 

same number of simulated input samples than the standard Monte Carlo sampling 
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(Kyriakidis 2005). A square grid containing sample positions represents a Latin square 

only if there is only one sample in each row and each column. The generalization of 

this concept leads to the Latin Hypercube (McKay, Conover and Beckman 1979). A 

simulation based on this sampling technique allows to save computational time and 

computer resources with respect to a crude Monte Carlo simulation because requires a 

less number of samples in order to reach a specific confidence level (Neves, Frangopol 

and Cruz 2006, Neves, Frangopol and Petcherdchoo 2006). Based on Olsson, 

Sandberg and Dahlblom (2003), the algorithm for the generation of realizations of 

correlated and uncorrelated random variables, through Latin Hypercube sampling, is 

summarized as follows: 

1. Generate an N  K matrix P, where N is the number of samples, and K is the 

number of random variables, in which each of the K columns is a random 

permutation of 1,..,N. 

2. Generate an N  K matrix R of independent random numbers from the uniform 

distribution (0,1). 

3. Generate the elements yij of the matrix Y, such that the elements of P are divided 

by the number of samples N + 1 and mapped on the standard Gaussian distribution 

��
�

�
��
�

�
�

�� 	

1
1

N
p

y ij
ij  (A.34) 

4. Obtain the covariance matrix of Y that is estimated by using the Cholesky 

decomposition as follows 

� �YLL cov�
T

 (A.35) 
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where L  is the lower triangular. 

5. Evaluate a new matrix Y* with a sample covariance equal to the identity 

� �T1	� � LYY  (A.36) 

if the random variables are uncorrelated, and 

� � T
T

LLYY
1	� �  (A.37) 

if they are correlated, where L is the lower triangle matrix from the Cholesky 

decomposition of the target correlation matrix. 

6. Obtain the matrix P*, where its elements are the ranks of the elements of the 

columns of Y*. 

7. Generate the matrix S as 

� �RPS 	� �

N
1  (A.38) 

8. Obtain the matrix X, in which each element of S is mapped on the selected 

marginal distribution of each random variables as 

� �ijjij sFx 1	�  (A.39) 

where Fj
-1(·) is the inverse CDF of random variable xj. 

This sampling algorithm has been coded with the software MATLAB (The 

MathWorks 2011) and extensively used throughout this study for those analyses that 

have required simulations. 
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A.2.2  SLICE SAMPLING 

The slice sampling algorithm is a kind of Markov chain Monte Carlo algorithm for the 

generation of pseudo-random numbers from a statistical distribution (Neal 2003). This 

sampling algorithm is used in this study for the obtaining the posterior distribution of 

the Bayesian statistics treated in Chapter 7. The algorithm has been implemented by 

forcing the specific mapping distribution in accordance to the posterior distribution. 

Briefly, the algorithm is summarized as follows (The MathWorks 2011): 

1. Assume an initial value x(s) within the domain of d(x). 

2. Draw a uniformly distributed value y from (0, d(x(s))), defining a horizontal 

“slice” as S = {x: y < d(x)}. 

3. Find an interval I = (L, R) around x(s) that contains all, or much of the “slice” S. 

4. Draw the new point x(s+1) within this interval. 

5. Increment s → s+1 and repeat steps 2 through 4 until the desired number of 

samples is reached. 

A.2.3  BAYESIAN UPDATING 

Bayesian approach makes it possible to use the additional monitoring information in 

conjunction with the already available initial information (Kay 1993). Briefly, the 

Bayesian approach mainly deals with the parameters θj, which are described by their 

associated PDF called “prior PDF” f’(θ). In turns, the prior PDF has parameters itself, 

that are often called “hyperparameters” in order to distinguish them from the basic 

parameters of the underlying random variable X (Fink 1997). Assuming that 
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x1,x2,…xj,…,xn are the stored observations, then the likelihood function L(θ) assuming 

a given parameter θ is (Ang and Tang 2007) 

� � � � 
�

�
n

j
jX xfL

1

|!!  (A.40) 

where fX(xj|θ) is the PDF of the random variable X evaluated with the SHM data value 

xj, given the PDF parameter θ. Based on the Bayes’ theorem, the posterior PDF f’’(θ), 

i.e. the updated PDF of the parameters θj, is obtained by combining the prior PDF with 

the likelihood of the available observations as follows (Ang and Tang 2007) 

� � � � � �!!! fLkf n "�""  (A.41) 

where kn is the normalizing constant given as follows 

� � � ��
�

�	
"

�
!!! dfL

kn
1  (A.42) 

The expected value of parameter θ is commonly used as Bayesian estimator; therefore, 

by using the method of moments, the updated parameter θ is given by (Ang and Tang 

2007) 

� ��
�

�	
""�"" !!!! dfˆ  (A.43) 

Figure A.6 shows the qualitative representation of the distribution associated with 

collected SHM data, and of the prior distribution f’(θ) and posterior distribution f’’(θ). 

The implementation of SHM observation through Equation (A.41) and the closed-

form solution for Equation (A.42) are not always achievable. Therefore, numerical 
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based techniques, such as Markov chain Monte Carlo (Coles and Powell 1996), 

Metropolis-Hastings algorithm (Robert 2007), and slice sampling algorithm (Neal 

2003), among others, may be used. Both closed-form solution and simulation-based 

method are covered in Chapter 7. 

A.2.4  OPTIMIZATION 

Optimization is an important tool that allows making optimal decisions within life-

cycle management of bridges and ship structures. For instance, optimization has been 

used for the management of civil structures and infrastructures (Estes and Frangopol 

1999, Neves, Frangopol and Cruz 2006, Neves, Frangopol and Petcherdchoo 2006, 

Okasha and Frangopol 2009, Okasha and Frangopol 2010d, Frangopol and Bocchini 

2011, Kim and Frangopol 2011, Bocchini and Frangopol 2012a, Bocchini and 

Frangopol 2012b), and for the management of ship structures (Journée and Meijers 

1980, Papatzanakis, Papanikolaou and Liu 2012). The general formulation of a multi-

objective minimization problem is provided by (Arora 2004): 

Given: system properties (e.g. values of performance indicators, 

maintenance costs, sea elevation map) 

Find: the design vector 

� nZZZ ,...,, 21�Z  (A.44) 

To minimize: the objective functions 

� � � � � � � �� �ZZZZo kooo ,...,,min 21�  (A.45) 

Subjected to: the equality constraints 
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� � piai ,...10 ��Z  (A.46) 

 and inequality constraints 

� � mjbj ,...10 ��Z  (A.47) 

where k is the number of objective functions, p is the number of equality 

constraints, and m is the number of inequality constraints. 

Figure A.7 shows the schematic representation of qualitative solutions of a bi-

objective optimization problem (both the objective have to be minimized), in which 

there are non-Pareto solutions, and Pareto points included within the Pareto front. For 

instance, typical objective functions to be optimized within the life-cycle management 

framework may be reliability index, redundancy index, risk, resilience, total travel 

time of ships, life-cycle costs, retrofit costs, among others, considering design 

variables, such as the interval time of maintenance actions, material properties, 

geometrical dimensions of structures, ship traveling speed, and ship direction while 

traveling, among others. 

The solution of single-objective optimization problems can be found by using, for 

instance, sequential quadratic programming, which is an implemented tool of the 

optimization function fmincon of MATLAB (The MathWorks 2011). Alternatively, 

Genetic Algorithm (GA) may be used. GA is a search heuristic method that mimics 

the process of natural evolution generating solutions by using techniques inspired by 

natural evolution, such as inheritance, mutation, selection, and crossover. The solution 

of single-objective optimization problems through GA is implemented in MATLAB in 

the tool ga, in which linear and non-linear constraints can be considered. The solution 
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of a single-objective optimization problem is unique. However, the solution of multi-

objectives optimization problems required more advanced algorithm, in order to obtain 

results in the form of a Pareto front (Arora 2004). The MATLAB software includes a 

tool for this purpose called gamultiobj. Although this is a powerful tool, non-linear 

constraint cannot be explicitly input, therefore, penalty functions must be used. When 

the objectives to be optimized are at least two, decision makers are provided with a 

spectrum of optimal solutions (Pareto front) that are useful when the decision must be 

made considering for instance economic constraints and time constraints, among 

others. In this study, optimization has been used in Chapters 6 and 7, in which optimal 

ship routing is performed. 
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Figure A.1 Schematic representation of the safe, failure, and the limit state. 
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Figure A.2 Qualitative representation of the normal distributions of the capacity C, 
demand D, and safety margin M. 
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Figure A.3 Schemes of series, parallel, and series-parallel systems. 
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Figure A.4 Qualitative relationship among the PDF of the time-to-failure f(t), CDF 
of the time-to-failure F(t), and the survivor function S(t). 
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Figure A.5 Schematic representation of resilience and time-dependent 
functionality. 
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Figure A.6 Qualitative representation of the distribution associated with collected 
SHM data, prior distribution f’(θ), and posterior distribution f’’(θ). 
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Figure A.7 Schematic representation of qualitative solutions of a bi-objective 
optimization problem. 
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APPENDIX B 

COMPUTATIONAL FRAMEWORK FOR THE 

MANAGEMENT OF AGING SHIP STRUCTURES 

This appendix describes the developed computational framework for the management 

of aging ship structures based on the several papers published (Decò, Frangopol and 

Okasha, 2011, Decò, Frangopol and Zhu 2012, Decò, Frangopol and Okasha 2012b) 

or submitted for possible publication (Decò and Frangopol 2013b, Decò and 

Frangopol 2013c). Figure B.1 shows the developed framework that is composed by 

four modules. 

Briefly, Module (1) evaluates the loads effects on the hull, due to still water and 

waves and by considering different ship operational conditions (see Figure B.2). The 

body of the ships is modeled with the software FREE!ship (2006). Then, based on the 

ship geometry, the hydrodynamic software PDSTRIP (2006) is used to evaluate the 

structural response of a given hull section under regular wave. By considering the sea 

spectrum for natural sea, the statistical descriptors of the response can be evaluated. 

These lasts operation are implemented into a MATALB code that also account for 

different ship operational conditions. This framework is used in Chapters 5, 6, and 7. 

Module (2) covers the assessment and prediction of the flexural capacity of critical 

ship sections (see Figure B.3). Two frameworks are developed. The first framework, 

which is used in Chapter 5, is based on a self-developed MATALB (The MathWorks 
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2011) code that basically evaluates the vertical flexural capacities associated with the 

failure of the first stiffened panel and ultimate failure of a hull section. The second 

framework is used in Chapters 6 and 7. A hull section is modeled with the finite 

element (FE) software ABAQUS (Dassault Systèmes Simulia 2011) and FE analyses 

are performed for evaluating the contours that accounting for the combined effects of 

vertical and horizontal flexural capacities. Then, by applying the response surfaces 

method, it is possible to obtain the statistical descriptors of vertical and horizontal 

flexural capacities associated with different level of plastification of the hull section. 

Module (3) performs reliability analysis for the accounted limit states and different 

ship operational conditions (see Figure B.4). In this module, performance indicators, 

including reliability, redundancy, and risk are assessed. Moreover, in order to assess 

risk, economic losses are also quantified. Reliability analysis is performed by using 

the software RELSYS (Estes and Frangopol 1998). This module is used in Chapters 5, 

6, and 7. Finally, Module (4) describes the approach for the optimal routing of ships as 

management tool (see Figure B.5). The optimization is solved by using the Genetic 

Algorithm that is implemented into a MATLAB toolbox (The MathWorks 2011). The 

optimization problem is based upon the quantification of reliability and risk associated 

with a wide spectrum of ship operational conditions, and upon assumed weather maps, 

reporting the significant wave heights and wave directions. The design variables are 

the ship speed and direction, and the objectives to be minimized are the ship estimated 

time of arrival, risk, and fuel consumption. This module is used in Chapters 6 and 7. 

Figure B.6 shows the interaction between the software used within the developed 

framework. Their interconnection is handled by self-developed MATLAB codes that 
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automatically interact with other software by writing input files and reading output 

files. 
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Figure B.1 Computational framework for the management of aging ship structures 
composed by four modules. 
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Figure B.2 Module (1) evaluates the loads effects on the hull. 
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Figure B.3 Module (2) assesses and predicts the flexural capacity of critical ship 
sections. 
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Figure B.4 Module (3) includes reliability analysis for the accounted limit states 
and different ship operational conditions. 
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Figure B.5 Module (4) includes the approach for the optimal routing of ships. 
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Figure B.6 Interaction between the software used within the developed framework. 
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APPENDIX C 

LIST OF NOTATIONS 

C.1  NOTATIONS OF CHAPTER 2  

A(t) = average daily traffic referred to year t 

ADS = median spectral acceleration associated with the occurrence of the 

damage state DS 

As(t) = time-variant top transversal tensile steel reinforcement area 

B = parameters based on the environment aggressivity 

cATC = average total compensation per hour 

cAW = average wage per hour 

Cc = monetary value associated with the consequences 

Ccorr = corrosion coefficient 

CD = monetary values associated with direct consequences 

cgoods = time value of the goods transported in a cargo 

Ci(t) = instantaneous capacity associated with failure mode i 

CID = monetary values associated with indirect consequences 

Cp(t) = corrosion penetration 

cReb = rebuilding cost per square meter 

CReb = rebuilding costs 

CRun = running costs 

cRun,car = average costs for running cars per kilometer 

cRun,truck = average costs for running trucks per kilometer 

CTL = time loss costs 

D = depth 

d = duration of the detour 
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D0 = initial top reinforcement diameter 

DD = dimensionless depth ranges of the stream 

Df = depth at full flow 

Dfm = distribution factor for moments 

Dl = net length of the detour 

DS = damage state 

F = failure 

f = full flow 

fttf(t) = PDF of the time-to-failure 

FV(t) = future monetary value referred to year t 

fX(x) = joint PDF of the vector of the random variables 

X = {X1,…,Xj,…,Xm} 

gi(t) = instantaneous performance functions associated with failure mode 

i 

H = hazard 

h(t) = hazard function 

HQ = seismic event 

icorr = corrosion parameter 

L = bridge length 

M = earthquake Richter magnitude 

MDL = dead load applied moment 

MLL = live load applied moment 

Mn = flexural moment capacity of the reinforced concrete deck 

Mu = ultimate girder moment capacity 

My = yielding girder moment capacity 

n = number of the considered hazards 

nb = number of top transversal steel bars 

NC = epistemic uncertainty coefficient referring to the consequences 

NFC = epistemic uncertainty coefficient associated with the flexural 

moment capacities 
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NRID = normalized indirect risk index 

NS = epistemic uncertainty coefficient associated with the applied 

moments 

OCar = average vehicle occupancies for cars 

OTruck = average vehicle occupancies for trucks 

P(SSi) = probability of occurrence of the i-th seismic scenario 

PCD(t) = annual probability of structural failure associated with complete 

damage 

Pf = annual failure probability 

Pf,SC = annual failure probability due to scour 

Pf,sys = system probability of failure 

Pf,sys(t) = annual system failure probability 

PSA = spectral acceleration amplitude for a period of 1 sec 

PV = present monetary value 

Py,sys(t) = annual probability of exceeding the yielding limit state 

Q = discharge 

Q100 = flood discharge associated with the selected recurrence interval 

Qf = discharge at full flow 

r = annual discount rate of money 

R = risk 

RD = direct risk 

RI = redundancy index 

RID = indirect risk 

RMC = risk modifier coefficient 

s = sum of squared residuals 

Si(t) = instantaneous load effect associated with failure mode i 

Sp = average detour speed 

SS = seismic scenario 

SV = scour vulnerability 

T = average daily truck traffic percentage 
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t = time 

TDPf(t) = time-dependent failure probability 

Ti = corrosion initiation time 

TS = considered time span 

W = bridge width 

XY = latitude and longitude of the earthquake epicenter 

α = dynamic allowance 

βc = normalized composite log-normal standard deviation 

βsys = system reliability index 

δ = consequences 

ηR = load modifier coefficient 

κ = shape parameter of the Weibull distribution 

λ = scale parameter of the Weibull distribution 

ρ = radius of the considered region area 

Φ = standard normal CDF 

Φ-1 = inverse standard normal CDF 

C.2  NOTATIONS OF CHAPTER 3  

A(t) = average daily traffic referred to year t 

A[k] = average daily traffic referred to year k 

ADS = median spectral acceleration associated with the occurrence of the 

damage state DS 

ADS[0] = original median spectral acceleration associated with the 

occurrence of the damage state DS 

al and bl = coefficients depending on the earthquake characteristics associated 

with rupture length 

aw and bw = coefficients depending on the earthquake characteristics associated 

with rupture width 

B = total number of bridges within the network 
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c0 = costs that do not depend on the level of damage 

CD(t) = time-dependent direct consequences 

CID(t) = time-dependent indirect consequences 

cInj = cost associated with injuries 

cInv = inventory cost 

cOp,car = operating costs of cars 

cOp,truck = operating costs of trucks 

cReb = rebuilding cost per square meter 

cReb = rebuilding cost per square meter 

cS,car = car salvage value 

cS,cargo = value of the cargo 

cS,truck = truck salvage value 

cTC = total compensation per hour 

cVSL = value of a statistical life 

cW = wage per hour 

D = directional factor 

d = duration of the detour 

Dl = bypass detour length 

DS = damage state 

EInj = factor accounting for epistemic uncertainties associated with time- 

injury costs 

ELHL = factor accounting for epistemic uncertainties associated with time- 

loss of human lives 

EMD = factor accounting for epistemic uncertainties associated with 

material damaged in a vehicular accident 

EOp = factor accounting for epistemic uncertainties associated with 

operating costs 

EReb = factor accounting for epistemic uncertainties associated with 

rebuilding costs 
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EReh = factor accounting for epistemic uncertainties associated with 

rehabilitation costs 

ETL = factor accounting for epistemic uncertainties associated with time-

loss costs 

F = total traffic flow 

FC = bridge traffic flow capacity 

fdis = distance term 

fflt = style-of-faulting term 

fhng = hanging-wall term 

fmag = magnitude term 

fsed = deep site response term 

fsite = shallow site response term 

Fttf = CDF of the time-to-failure of the superstructure 

fttf = PDF of the time-to-failure of the superstructure 

FV(t) = future monetary value referred to year t 

K1 and K1 = percentages of traffic associated with the portion of ADT during 

the peak and off-peaks hours 

L = bridge length 

M = earthquake Richter magnitude 

M0 = threshold magnitude value 

Mp = maximum regional finite magnitude value 

nL = number of lanes carried by the bridge 

OCar = vehicle occupancy for cars 

OTruck = vehicle occupancy for trucks 

P[ND](t), P[SL](t), P[MOD](t), P[EXT](t), and P[COM](t) = time-dependent 

probabilities of no damage ND, slight damage SD, moderate MOD, 

extensive damage EXT, and complete damage COM 

P[S1|Surv](t), P[S2|Surv](t), and P[S3|Surv](t) = time-dependent of being in 

service states S1, S2, and S3 given that the bridge survives 
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PE,S1(t), PE,S2(t), PE,S3(t), and PE,S4(t) = time-dependent probabilities of the 

bridge being in service state S1, S2, S3, and S4 due to seismic 

hazard 

PSA = response spectra accelerations 

PT,f = annual failure probability due to traffic hazard 

PT,S1(t), PT,S2(t), PT,S3(t), and PT,S4(t) = time-dependent probabilities of the 

bridge being in service state S1, S2, S3, and S4 due to traffic 

hazard 

PV = present monetary value 

r = annual discount rate of money 

Rl = rupture length 

RNet = life-cycle total risk for the network 

RTot(t) = life-cycle total risk 

Rw = rupture width 

S = traveling speed 

S0 = free-flow traffic speed 

t = time 

Tm = marginal travel time 

W = bridge width 

Ŷ = median value of the peak ground acceleration 

Yunc = predicted value of the median value of the peak ground 

acceleration accounting for epistemic uncertainties 

αInj = percentage of expected injuries 

αLHL = percentage of expected human losses 

β = distribution parameter of the truncated exponential distribution 

βc = normalized composite log-normal standard deviation 

γ = aging coefficient 

δ = coefficient accounting for the level of damage 

ΔlnŶ = incremental value of the median ground motion due to epistemic 

uncertainties 
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κ = shape parameter of the Weibull distribution 

λ = scale parameter of the Weibull distribution 

ρ = percentage of traffic increment between two available ADTs 

spaced 10 years apart 

τ = average daily truck traffic percentage 

Φ = standard normal CDF 

C.3  NOTATIONS OF CHAPTER 4  

A’l(t) and A’d(t)  = time-dependent post-event ADTs of link and detour 

Ad = detour ADT before the seismic event 

Al, and Atot = link and total ADTs 

At = average daily traffic 

b = bridge 

B = the total number of considered bridges 

br = bypass cost ratio 

Cb = total cumulative costs for bridge b of the network 

cc = correlation coefficient 

cdis = correlation coefficient associated with the relative distance 

between two bridges 

cimp = correlation coefficient associated with the importance of the 

carried link within the network 

cL = correlation coefficient associated with the bridge length 

Cnet,s = total direct cost for the entire bridge transportation network, given 

network recovery scenario s 

cop,car = operating costs of cars per kilometer 

cop,truck = operating costs of trucks per kilometer 

creb = rebuilding cost per square meter 

crem = debris removal cost per square meter 

ctc = total compensation per hour 
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ctyp = correlation coefficient associated with the bridge type 

cw = wage per hour 

D = directional factor 

dis = relative distance between two bridges 

Dl = additional travel distance 

dr = damage ratio 

FC = bridge traffic flow capacity 

FC,l and FC,d = link and detour traffic flow capacities 

i = restoration strategy 

imp = importance of the carried link within the network 

j = strategy outcome 

K1 and K1 = percentages of traffic associated with the portion of ADT during 

the peak and off-peaks hours 

L = bridge length 

Ll = link length 

nl = number of lanes carried by the bridge 

nl,l and nl,d = number of lanes of link and detour 

Ocar = vehicle occupancy for cars 

Otruck = vehicle occupancy for trucks 

PDS = probability of damage state DS 

Q(t) = time-dependent functionality 

Qr = residual functionality 

r = rapidity 

R = resilience 

s = network recovery scenario 

S’l(t) and S’d(t) = time-dependent traffic traveling speeds of link and detour 

after the seismic event 

S0 = free-flow traffic speed 

Sl(t) and Sd(t) = time-dependent traffic traveling speeds of link and detour 

before the seismic event 
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t = time 

t0 = time at which the seismic event occurs 

th = investigated time horizon 

tr = time at which the recovery process ends 

TTD(t) = time-dependent total travel distance of the users within the 

network 

TTT(t) = time-dependent total travel time of the users within the network 

typ = bridge type 

Vc = velocity coefficients for costs 

Vt = velocity coefficients for duration 

W = bridge width 

αj, βj, and γj = coefficients 

γD = relative weight of importance associated with the travel distance 

γdis = relative weight of importance associated with the relative distance 

between two bridges 

γimp = relative weight of importance associated with the importance of 

the carried link within the network 

γL = relative weight of importance associated with the bridge length 

γT = relative weight of importance associated with the travel time 

γtyp = relative weight of importance associated with the bridge type 

δi = idle time interval 

δr = recovery duration 

δr’ = updated recovery duration 

ρQr = correlation coefficient of the residual functionality 

ρδi = correlation coefficient of the idle time 

ρδr = correlation coefficient of the recovery duration 

τ = average daily truck traffic percentage 

Г(t) = time-dependent network performance 

Г0 = network performance in the cases in which all the bridges are out 

of service 
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Г100 = network performance in the cases in which all the bridges are in 

service 

C.4  NOTATIONS OF CHAPTER 5 

a = acceleration component of the undisturbed wave field 

A = added mass coefficient 

Aw = wave amplitude 

B = damping coefficient 

b = ship breadth 

bw = web width 

C = restoring coefficient 

C1 = annual corrosion rate 

C2 = corrosion constant 

Cb = block coefficient 

CS = ship cross-section 

Cwv = wave coefficient 

d = stiffener depth 

E = elastic modulus 

F = complex amplitudes of the exciting force and moment 

FD = diffraction forces 

FF = first failure 

FFK = Froude-Kriloff forces 

FFM = first failure moment 

fsw = factor for the variation of still water vertical bending moment 

along the vessel length 

g = gravitational acceleration 

G = performance function 

H = ship heading angle 

h = ship height 
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H1/3 = significant wave height 

hog = hogging 

i = complex unit 

j = reference axis 

k = matrix index 

l = ship length 

Mc = flexural capacity 

M = mass matrix 

m0 = area under the spectral density function 

Msw = still water vertical bending moment 

Mw = wave-induced vertical bending moment 

n = unit vectors normal to the body surface 

p = pressure over the section contour 

Pf = failure probability 

r = thickness loss 

RI1 and RI2 = redundancy indices 

S = ship wetted surface 

s = variable of integration 

sag = sagging 

SM = response spectrum 

SS = sea state 

SW = wave spectrum 

SX = spectral density function of the input 

SY = spectral density function of the output 

t = time 

t0 = corrosion initiation time 

T1 = wave mean period 

tf = flange thickness 

tp = plating thickness 

tw = web thickness 
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U = forward ship speed 

UF = ultimate failure 

UFM = ultimate failure moment 

X = input 

xR = model uncertainty associated with the resistance determination 

xsw = model uncertainty associated with the still water bending moment 

prediction 

xw = model uncertainty associated with the wave-induced bending 

moment prediction 

Y = output 

α = mode of the Rayleigh distribution 

β = reliability index 

���  = acceleration of the rigid body 

��  = velocity of the rigid body 

�  = displacement of the rigid body 

κ = curvature 

μ = mean value 

σ = standard deviation 

σYp = plating yielding stresses 

σYs = stiffener yielding stresses 

Φ = transfer function 

Φ-1 = inverse standard normal CDF 

ω = circular frequency 

ωe = circular encounter frequency 

C.5  NOTATIONS OF CHAPTERS 6 AND 7 

b = ship breadth 

c1,LSi and c2,LSi = parameters of the contour limit state equation 

Cb = ship block coefficient 
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CCon = construction costs 

CD,si = total direct cost 

CF = complexity factor 

Cfat,Si = losses due to fatalities associated with specific states Si 

cfuel = fuel cost per liter 

Cfuel = fuel cost rate 

CID,si = total indirect cost 

Cinj,Si = losses due to injuries associated with specific states Si 

CReh = rehabilitation costs 

CSi = total consequences associated with specific states Si 

Ctot,fuel = total fuel costs 

cVSL = value of a statistical life 

DISPL = ship full load displacement 

dr = damage ratio 

ETA = estimated time of arrival 

f(t,X) = joint PDF of the considered random variables X = x1, x2,…,xk at a 

given time t 

f’(θ) = prior distribution of the parameter θ 

f’’(θ) = posterior distribution of the parameter θ 

fSi = percentage of fatalities associated with specific states Si 

fX(xj|θ) = PDF of the random variable X evaluated with the SHM data value 

x 

GLSi,SE,U,H(t) = time-dependent performance function associated with a LSi and for 

different operational conditions 

H = ship heading angle 

h = ship height 

Hs = significant wave height 

i = complex unit 

k = travel segment index 

kn = normalizing constant 
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k1, k2, k3, and k4 = coefficients for fuel estimation 

kD = correlation factor between wave-induced and dynamic bending 

moments 

kW = correlation factor for the wave-induced bending moment 

l = total number of random variables 

L(θ) = likelihood function 

LBP = length between the perpendiculars of the ship 

LS = limit states 

m0,Hs,U,H = zero-th moment of the associated response spectrum for a given set 

of Hs, U, and H 

Mh = horizontal bending moment due to sea load effects 

Mh,LSi = horizontal flexural capacity associated with a specific limit state 

LSi 

Mhigh,Hs,U,H = high-frequency VBM 

Mlow,Hs,U,H = updated low-frequency VBM 

Msw = still water bending moment 

Mv = vertical bending moment due to sea load effects 

Mv,LSi = vertical flexural capacity associated with a specific limit state LSi 

MWH = whipping bending moment 

Mwh,Hs,U,H = horizontal wave-induced bending moment 

Mwv,Hs,U,H = vertical wave-induced bending moment 

N = number of segments 

O = ship occupancy 

p(t) = excitation function 

P(ω) = Fourier transform 

P[Hs,U,H] = occurrence probability of encountering determinate sea states 

under different operational parameters 

PLSi,Hs,U,H(t) = time-dependent exceedance probability associated with a LSi and 

for different operational conditions 
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PSi,Hs,U,H(t) = time-dependent probabilities of the hull being in a specific state Si 

for different operational conditions 

R(t) = time-dependent risk 

R,Hs,U,H(t) = time-dependent total risk for a given set of Hs, U, and H 

r’fuel,Hs = design fuel consumption rate for a specific sea state 

RD,Hs,H(t) = time-dependent direct risk for a given set of Hs, U, and H 

Re = real part of the complex quantity 

rinj = the ratio of costs due to injuries and fatalities 

Rk,Hs,U,H = total risk associated with the k-th route segment 

Rmean = mean total risk 

RS = response 

Rthreshold = maximum thresholds of the total risk 

S = state 

SF = size factor 

STF = ship type factor 

SW(ω) = sea spectrum 

t = time 

Tk = time necessary for the ship to cover the k-th route segment 

U = ship speed 

U’ = design speed 

Umax = maximum allowable ship speed 

Umin = minimum allowable ship speed 

WGT100 = weight of the SWBS 100 

xi and xj = random variables 

xR = parameters accounting for the model uncertainties associated with 

the resistance determination 

xsw = parameters accounting for the model uncertainties associated with 

still water bending moment prediction 

xw = parameters accounting for the model uncertainties associated with 

wave-induced bending moment prediction 
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y = ordinate 

ymin and ymax = bounds of y coordinate 

α = mode of the Rayleigh distribution (hyperparameter) 

α0, αi, αij, and αii = polynomial coefficients 

βk,LS4,Hs,U,H = reliability index of LS4 associated with the k-th route segment 

βLSi,Se,U,H(t) = time-dependent reliability index associated with a LSi and for 

different operational conditions 

βthreshold = minimum thresholds of the reliability index 

δ = parameter of the contour limit state equation 

δ(t,X) = consequences 

θ = parameter 

λHs,U,H = mean of VBM for a combination of Hs, U, and H 

σHBM = standard deviation of HBM 

σVBM = standard deviation of VBM 

Φ*HBM(ω) = complex conjugate of the transfer function of HBM 

ΦVBM(ω) = transfer function of VBM 

ω = frequency 

C.6  NOTATIONS OF APPENDIX A 

C = capacity 

D = demand 

F = failure domain 

F(t) = CDF of the time-to-failure 

f(t) = PDF of the time-to-failure 

f’(θ) = prior distribution of the parameter θ 

f’’(θ) = posterior distribution of the parameter θ 

Fj
-1(·) = inverse CDF 

Fs(t) = CDF of the time-to-failure of the system 

Fwc(t) = CDF of the time-to-failure of the weakest component 
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fX(x) = joint PDF of the random variables 

fX(xj|θ) = PDF of the random variable X evaluated with the SHM data value 

x 

g(X) = performance function including the vector of the random variables 

X ≡ {X1,X2,…,Xn} 

h(t) = hazard function 

k = failure modes and/or multiple components 

K = number of random variables 

kn = normalizing constant 

L(θ) = likelihood function 

Ldamaged = load carrying capacity of the damaged structure 

Ldesign = design load 

Lintact = load carrying capacity of the intact structure 

M = safety mrgin 

N = number of samples 

Pf(sys)(t) = time-dependent probability associated with the system failure 

Py(sys)(t) = time-dependent probability associated with the occurrence of first 

yielding 

Q = number of parallel subsystems with Ni components 

Q(t) = time-dependent functionality 

R = risk 

Res = resilience 

S(t) = survivor function 

t = time 

t0 = time at which the extreme event occurs 

th = investigated time horizon 

β = reliability index 

βf(sys)(t) = time-dependent reliability index with respect to the occurrence of 

first yielding 

βy(sys)(t) = time-dependent reliability index with respect to system failure 
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θ = parameter 

μC = mean values of the capacity 

μD = mean values of the demand 

μM = mean values of the safety margin 

σC = standard deviation of the capacity 

σD = standard deviation of the demand 

σM = standard deviation of the safety margin 

Φ-1 = inverse standard normal CDF 

Ω = failure domain of series or parallel systems 
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