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ABSTRACT 

The condition and performance of infrastructure systems is continuously deteriorating 

due to various environmental and mechanical stressors. There is a great need to 

implement optimal mitigation strategies that maintain structural performance within 

acceptable levels through the life-cycle of deteriorating civil infrastructure. In order to 

ensure adequate life-cycle performance, cost-efficient interventions must be 

implemented. This study presents computational frameworks that serve as decision 

support tools for bridge and ship managers, which ultimately allow them to make cost-

, risk-, and sustainability-informed choices in the context of life-cycle engineering. 

Reliability, risk, sustainability, and utility-based performance indicators are examined 

and applied to civil and marine infrastructure systems subjected to a variety of hazards 

in order to determine optimal life-cycle management plans, balancing structural 

performance, cost of intervention, and available resources. The final product of the 

proposed decision support tools, optimal life-cycle management plans, describe which 

performance enhancing measure(s) should be implemented and when to intervene.  

 Specifically, this study adds to existing probabilistic life-cycle management 

frameworks by integrating a novel utility-based sustainability metric in the life-cycle 

maintenance planning of civil and marine infrastructure. The effect of the risk attitude 

of the decision maker is examined in this study by including utility functions, which in 

this context, depict the relatively desirability of lifetime management plans to the 

decision maker. Additionally, lifetime functions such as hazard and availability are 

included as new performance indicators for bridges. Furthermore, the utility-based 
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decision making framework developed is applied to a ship structure in order to 

determine optimal structural health monitoring plans under uncertainty. Optimal 

monitoring plans for the ship are determined by simultaneously maximizing 

availability and lifetime monitoring costs. 
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CHAPTER 1 INTRODUCTION 

1.1 OVERVIEW 

The condition of civil infrastructure systems around the world is degrading due to a 

variety of deteriorating mechanisms, including aging, environmental stressors, man-

made hazards (e.g., blasts and fires) and natural hazards (e.g., earthquakes and 

hurricanes), among others. Consequently, improving the overall condition and safety 

of deteriorating infrastructure systems is a key concern worldwide. For example, in 

2017, the American Society of Civil Engineers (ASCE) reported, within the Report 

Card for America’s Infrastructure, that the average age of the United States’ 614,387 

bridges was 43 years. Additionally, nearly a quarter of these highway bridges were 

classified as either structurally deficient or functionally obsolete (ASCE 2017). These 

staggering statistics highlight the dire need to implement rational mitigation strategies 

that maintain structural performance within acceptable levels through the life-cycle of 

deteriorating civil infrastructure. In order to ensure adequate life-cycle performance, it 

is crucial to implement rational management strategies that maintain performance of 

infrastructure systems within acceptable levels through their life-cycle. Life-cycle 

management is widely recognized as an effective tool for maximizing the cost-

effectiveness of implementing intervention actions that improve condition and safety, 

and extend the service life of deteriorating infrastructure systems.  

In order to predict the performance of structural systems during their life-cycle 

under uncertainty, deterioration mechanisms for the investigated systems (e.g., 

corrosion and fatigue) must be carefully considered. Aggressive environmental 

3 
 



conditions and natural aging processes facilitate a gradual reduction in the 

performance (e.g., system reliability) of existing structures. Alternatively, there are 

extreme events that cause an abrupt reduction of the functionality of structures such as 

blasts, fires, earthquakes, hurricanes, and terrorist attacks. During their life-cycle, 

infrastructure systems can be subjected to multiple hazards. Thus, it is necessary to 

consider the performance of infrastructure systems under multiple hazards in the 

hazard assessment and mitigation procedure, all in a life-cycle context. Life-cycle 

assessment of deteriorating infrastructure systems includes aleatory and epistemic 

uncertainties associated with natural randomness and inaccuracies in the prediction or 

estimation of reality, respectively (Ang and Tang 2007). Because of these 

uncertainties, it is imperative for structural engineers to accurately model and assess 

the structural performance and expected total cost within a probabilistic life-cycle 

context.  

In general, structural performance prediction of deteriorating structural systems 

is affected by various uncertainties inherent in the load conditions, damage 

propagation, among others. Although aleatory uncertainties are not reducible, 

epistemic uncertainties may be reduced by including information collected from 

inspections and structural health monitoring (SHM) (Peil 2005; Frangopol and 

Messervey 2009a,b). Utilizing SHM within the performance assessment of 

deteriorating structural systems is an effective tool to reduce uncertainties in the 

analysis and derive crucial information on the real-time structural response (Paik and 

Frieze 2001). Within this dissertation, a decision tool for optimal life-cycle 
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management of deteriorating infrastructure is developed that determines cost-efficient 

SHM plans that provide crucial information regarding structural performance. 

Furthermore, the effects of maintenance, repair, and rehabilitation on structural 

life-cycle performance must be well studied. The influence of maintenance and repairs 

on structural performance can be incorporated in a generalized framework for multi-

criteria optimization of the life-cycle management of infrastructure systems. 

Performance of infrastructure systems may be represented by a variety of indicators. 

Approaches for the life-cycle management of infrastructure systems involving 

reliability performance indicators consider uncertainties associated with loads and 

resistance, but are not able to account for the consequences incurred from bridge 

failure. Risk-based indicators provide the means to combine the probability of 

structural failure with the consequences associated with this event. Furthermore, 

methodologies considering sustainability as a performance indicator are becoming 

relevant within the field of life-cycle engineering. The incorporation of sustainability 

in the life-cycle performance assessment and management procedures allows for the 

effective integration of economic, social, and environmental aspects. A sustainability 

performance metric may be established considering multi-attribute utility theory, 

which facilitates the combination of several risks while incorporating the risk attitude 

of the decision maker.  

Utility theory is employed herein to incorporate the influence of the decision 

maker’s risk attitude on the relative desirability of lifetime management plans (Keeney 

and Raiffa 1993). In general, utility is defined as a measure of desirability to the 

decision maker. Different formulations of utility functions, always bounded by 0 and 
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1, are employed to express the relative desirability of lifetime management schedules. 

Within the context of this work, utility theory is a powerful tool used to conduct 

rational multi-criteria decision making analyses considering uncertain information. 

Overall, life-cycle management concepts for bridge and ship systems under 

uncertainty and the application of such concepts considering the risk attitude of the 

decision maker are presented within this study. Risk- and sustainability-informed 

management of bridges under the effects of deteriorations is investigated. Quantifying 

the life-cycle performance, risk, and sustainability of bridges at the component and 

network levels is also addressed. Moreover, bridge and ship management planning, in 

addition to optimization under a constrictive budget and performance constraints are 

presented through a probabilistic management framework. The computational 

frameworks presented can serve as a useful tool in risk mitigation and, in general, 

decision-making associated with bridges and ships. The approaches presented can 

provide optimal intervention strategies to the decision maker that will allow for cost- 

and performance (e.g., risk, sustainability, availability)-informed decisions regarding 

lifecycle management of highway bridges and ship structures. 

1.2 OBJECTIVES 

The objectives of this study are:  

1. Develop probabilistic a computational framework for optimal decision making 

for bridge and ship managers that consider multiple objectives and 

performance constraints under uncertainty.  

2. Integrate utility concepts and methods within life-cycle decision support tools. 
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3. Incorporate the influence of the risk attitude of the decision maker within life-

cycle performance assessment. 

4. Propose a novel approach to quantify the sustainability performance of 

infrastructure systems considering hazards that impact the economy, society, 

and the environment. 

5. Utilize lifetime functions in the reliability assessment of structural systems 

within a life-cycle management framework. 

6. Establish a methodology to utilize structural health monitoring (SHM) data to 

reduce uncertainties associated with structural performance prediction and 

facilitate cost-efficient, optimal life-cycle SHM planning of ship structures. 

1.3 SUMMARY OF THE PROPOSED APPROACH 

The overall goal of this study is to develop an integrated life-cycle management and 

decision making framework for civil and marine infrastructure considering risk 

attitudes and utility theory. The diagram shown in Figure 1.1 shows the proposed 

utility-based decision making framework, composed of five interconnected modules 

that perform specific tasks. This type of decision support tool is applied to bridges and 

naval vessels, as indicated in Figure 1.1. The first step of the framework involves 

identifying relevant structural parameters (i.e., module 1) and the stressors that affect 

the investigated system. Some critical parameters include the structural geometry, 

material behavior, loading due to multiple hazards, information from SHM, and risk 

attitude of the decision maker. 
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Next, the structural performance is assessed and predicted throughout the life-

cycle of the investigated system (i.e., module 2). Within this step, time-variant 

structural performance is evaluated to determine the current and predict the future 

condition of particular components or the entire structure. The uncertainty inherent 

within the modeling and due to randomness requires the quantification of loading 

effects and structural capacity in a probabilistic manner. This study emphasizes the 

calculation of structural performance in terms of risk, sustainability, and lifetime 

functions (e.g., availability) (Leemis 1995). 

 After determining the time-variant structural performance of the system, the 

utility assessment of each attribute investigated within the decision making problem is 

conducted (i.e., module 3). Utility theory is utilized in order to depict the relative 

desirability of maintenance strategies to the decision maker and provides a framework 

that can measure, combine, and consistently compare these relative values (Ang and 

Tang 2007). Attributes that are mapped to utility within this study include: risk, cost, 

benefit, and lifetime functions (e.g., availability, hazard). Multi-attribute utility theory 

is employed herein in order to effectively capture the sustainability performance of 

highway bridges and impact of the decision maker’s risk attitude (Sabatino et al. 

2016).  

Once all investigated attributes are mapped to utility, the objective functions 

may be formulated, and a multi-criteria optimization can be carried out (i.e., module 4) 

with the final goal of determining optimal life-cycle management plans (i.e., when to 

intervene and which performance measure(s) should be implemented). Life-cycle 

optimization is an essential task within the life-cycle management (LCM) framework 
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(Ang and De Leon 2005; Chang and Shinozuka 1996; Estes and Frangopol 1999; 

Frangopol and Soliman 2015; Okasha and Frangopol 2009; Sabatino et al. 2015; 

Soliman and Frangopol 2014; Soliman et al. 2013, Wen and Kang 2001; Yang et al. 

2006b). In general, in this study, optimal lifetime intervention plans are obtained by 

carrying out a multi-criteria optimization procedure where the utility associated with 

total intervention cost and utility corresponding to performance are considered as 

conflicting objectives. Within this optimization procedure, the utilities associated with 

total life-cycle cost and performance are simultaneously maximized in order to 

achieve optimal lifetime management plans. The output of the optimization process, 

facilitated with genetic algorithms (GAs), is a Pareto optimal set of solutions which 

provides rational, informed intervention schedule choices to the decision maker that 

balances both cost and performance (i.e., module 5). Ultimately, based upon the risk 

attitude, preferences, and budgetary constraints of the decision maker, he/she may 

choose, amongst a group of trade-off solutions, an optimal intervention schedule for 

an investigated structural system. Overall, the proposed methodology can be used in 

assisting decision making regarding intervention actions that improve the performance 

of structural systems, in a life-cycle context. 

In order to build these self-developed, computational decision making 

frameworks several commercial programs were employed. MATLAB (MathWorks 

2013) was used to facilitate probabilistic, optimization calculations and connect other 

software functions. Additionally, the reliability program RELSYS (Estes and 

Frangopol 1998) was also used to calculate component and system reliability. The 

multi-criteria lifetime management problems proposed herein are solved using a 
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genetic algorithm-based optimization approach (MathWorks 2013) in MATLAB on a 

Dell Precision R5500 rack workstation equipped with two six cores X5675 Intel Xeon 

processors with 3.06 GHz clock speed and 24 GB DDR3 memory. 

1.4 CONTRIBUTIONS 

This study enhances the capabilities of already established life-cycle techniques, 

especially with respect to incorporating utility and the influence of the decision 

maker’s risk attitude into making informed choices for lifetime management of civil 

and marine infrastructure. The main contributions of this study are:  

1. Establish a probabilistic methodology to implement risk-informed life-cycle 

management of deteriorating infrastructure systems (e.g., when to intervene 

and which performance enhancing measures to implement) taking into account 

the influence of the risk attitude of the decision maker. This attitude dictates 

how the decision maker will invest resources in order to mitigate risk. 

2. Formulate a decision support framework under uncertainty that incorporates 

utility theory within the traditional life-cycle structural engineering concepts. 

In this context, utility theory is utilized in order to depict the relative 

desirability of lifetime management strategies to the decision maker.  

3. Develop a novel sustainability approach at the system level, considering multi-

attribute utility theory under uncertainty. In this context, the sustainability 

performance indicator, mapped to a multi-attribute utility value, is quantified 

in terms of a combination of utilities associated with economic, social, and 

environmental risks. 
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4. Develop a novel approach for optimal structural health monitoring of ship 

structures considering cost and availability. In order to determine optimal 

monitoring plans, a bi-objective optimization process is performed that 

simultaneously maximizes the utilities associated with monitoring cost and 

availability. 

5. Propose a comprehensive life-cycle decision making framework considering 

the risk attitude of the decision maker, utility theory, cost-benefit analysis, risk, 

sustainability, and life-cycle cost. This framework was implemented in a 

computational platform that allows for adjustments in inputs, optimization 

parameters, and can be applied to a variety of structural applications including 

bridges and ships. 

1.5 OUTLINE 

This document is organized as follows: 

• Chapter 1 serves as an introduction to this study. 

• Chapter 2 discusses fundamental topics related to the life-cycle performance 

assessment and lifetime management of deteriorating infrastructure systems 

under uncertainty. Risk- and sustainability-informed management of structural 

under the effects of both gradual and sudden deteriorations is investigated. 

Methods regarding the quantification of the life-cycle performance, system 

reliability, risk, and sustainability of infrastructure systems at the component 

and systems levels are also addressed. Additionally, life-cycle management 
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planning and optimization under a constrictive budget and performance 

constraints are presented through a probabilistic management framework.  

• Chapter 3 presents a methodology for determining optimal maintenance 

strategies for a highway bridge considering sustainability and cost as 

conflicting objectives. Utility theory is employed to effectively capture the 

sustainability performance of highway bridges and impact of the decision 

maker’s risk attitude. The main objective of this framework is to reduce the 

extent of the consequences of structural failure to the economy, society, and 

the surrounding environment.  

• Chapter 4 emphasizes the use of lifetime functions to quantify structural 

performance. Lifetime functions are utilized to model, using closed form 

analytical expressions, the time-variant effect of intervention actions on the 

performance of civil infrastructure systems. The presented decision-support 

framework in this chapter has the ability to quantify maintenance cost, failure 

consequences, and performance benefit in terms of utility. This framework 

effectively employs tri-objective optimization procedures in order to determine 

optimum maintenance strategies under uncertainty. It provides optimum 

lifetime intervention plans allowing for utility-informed decision making 

regarding maintenance of civil infrastructure systems.  

• Chapter 5 proposes a decision making framework for optimal SHM planning 

of ship structures considering availability and utility. Uncertainties associated 

with modeling and performance prediction of structures may be addressed and 

subsequently reduced by including, within the performance assessment, 
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information collected from inspections and structural health monitoring. 

Presented in this chapter is an approach that determines cost-effective SHM 

plans that consider the probability that the performance prediction model based 

on monitoring data is suitable throughout the life-cycle of ship structures. This 

probability is used to compute the expected average availability of monitoring 

data for prediction during the life-cycle of a system. Utility theory is employed 

to incorporate the influence of the decision maker's risk attitude on the relative 

desirability of SHM plans. Optimization techniques are utilized to 

simultaneously maximize the utilities associated with monitoring cost and 

expected average availability in order to determine optimal monitoring 

strategies under uncertainty.  

• Chapter 6 summarizes this study, draws relevant conclusions, and 

recommends future research. 

• Appendix A summarizes methodologies for modeling the system reliability of 

bridge systems. Parts of this appendix were provided to the Federal Highway 

Administration in 2017 to augment a report on the application of redundancy 

factors to highway bridge systems. 

• Appendix B presents a list of notations contained in each chapter. 

• Appendix C presents a list of acronyms for the entire document. 
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Figure 1.1. Informed, utility-based, life-cycle decision making framework 
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CHAPTER 2 BACKGROUND 

2.1 OVERVIEW 

This chapter presents an overview of life-cycle management concepts for 

infrastructure systems under uncertainty. Risk- and sustainability-informed 

management of structural under the effects of both gradual and sudden deteriorations 

is investigated. Quantifying the life-cycle performance, system reliability, risk, and 

sustainability of infrastructure systems at the component and systems levels is also 

addressed. Additionally, sustainability assessment considering the risk attitude of the 

decision maker is discussed Moreover, life-cycle management planning and 

optimization under a constrictive budget and performance constraints are presented 

through a probabilistic management framework. This framework can serve as a useful 

tool in risk mitigation and, in general, decision-making associated with engineering 

systems.  

2.2 PERFORMANCE EVALUATION AND PREDICTION 

Performance of deteriorating infrastructure systems can be quantified at the cross-

section, component, overall structural (system), group of structures (network), and 

networks of network levels. Typically, performance assessment activities associated 

with the components rely on visual inspections results. For bridges, visual inspection 

results are usually employed to establish a condition rating index to measure the 

bridge’s remaining load-carrying capacity. The conditions of bridges in the United 

States are rated using two different methods based on visual inspection. The first 

method is using National Bridge Inventory (NBI) condition rating system (FHWA 
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2013). According to the NBI condition rating system, the condition evaluation 

corresponds to the physical state of the deck, superstructure, and substructure 

components of a bridge. The second method, Pontis, uses the element-level condition 

rating method to represent the conditions of bridge components. Generally, bridge 

management systems characterize the performance of structural elements by discrete 

condition states which incorporate predefined degrees of damage (Hawk and Small 

1998; Thompson et al. 1998). Based on the identified condition states, maintenance 

interventions may be prioritized among all inspected structural components.  

Several research efforts have integrated these discrete condition states within 

the life-cycle management and intervention optimization associated with deteriorating 

infrastructure systems. Most of these approaches incorporate Markov chain models to 

depict the structural deterioration process. In a Markov chain model, the current 

condition states of the investigated system’s elements are considered to be dependent 

only on a finite number of previous states. The main element of a Markov chain model 

is the transition matrix that specifies the probability that the state of a component 

changes to another state within a specified period of time. A safety index can also be 

defined to model the life-cycle performance of deteriorating systems. Note that the 

condition index is a subjective measure which may not realistically reflect the true 

load-carrying capacity of structural members (Liu and Frangopol 2006b; Saydam et al. 

2013b).  

Although such an approach may ensure an adequate level of safety of 

components, it does not provide information about the interaction between the 

components and overall performance of the whole structure (Saydam and Frangopol 
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2011). Accordingly, other performance indicators capable of properly modeling the 

structural performance, while considering various uncertainties associated with 

resistance and load effects, have been developed and adopted in the life-cycle 

management of deteriorating infrastructure systems. Structural reliability theory offers 

a rational framework for quantification of system performance by including the 

uncertainties both in the resistance, load effects, and relevant correlations. In the 

following section, probabilistic performance analyses (e.g., reliability analysis) of 

bridge structures at component level and system level are presented. 

2.2.1 Reliability 

Structural reliability can be defined as the probability that a component or a system 

will adequately perform its specified purpose for a prescribed period of time under 

particular conditions (Leemis 1995; Paliou et al. 1990). Component, as well as system 

reliability can be computed for the investigated infrastructure considering that failure 

of a single component or a combination of individual components may initiate the 

failure of the system. For instance, if R and S represent the resistance and the load 

effect, respectively, PDFs, fR and fS, characterizing these respective random variables 

may be established. The probability that S will not exceed R, P(R > S), represents the 

reliability. As a general case, the time-variant probability of failure pF(t) can be 

expressed in terms of joint probability density function (PDF) of the random variables 

R(t) and S(t), fR,S(t), as: 

∫ ∫
∞
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Furthermore, the reliability index can be expressed as: 

17 
 



))(1()( 1 tpt F−F= −β  (2.2) 

where F-1(·) is the inverse of the standard normal cumulative distribution function 

(CDF). In addition to identifying the structural reliability against failure, it is also 

possible to consider various functionality aspects that affect infrastructure systems 

such as serviceability limit states.  

Overall, system reliability can be evaluated by modeling the bridge system 

failure as series or parallel or series-parallel combination of component limit states 

(Hendawi and Frangopol 1994). It is possible to evaluate the reliability of entire 

structural system by making appropriate assumptions (e.g., series, parallel, or 

combined system assumptions) (Czarnecki and Nowak 2007; Ditlevsen and Bjerager 

1986; Galambos 1989; Rashedi and Moses 1988, Tang and Melchers 1988; Thoft-

Christensen and Murotsu 1986; Vu and Stewart 2000) regarding the interaction 

between individual components. Another approach for reliability assessment of 

structural systems makes use of finite element (FE) analysis, if the overall non-linear 

system behavior is of interest. A proper statistical distribution for the output of FE 

analysis (e.g., stress, displacement, bending moment) can be obtained by repeating the 

analysis for a large number of samples of the random variables associated with the 

structure. However, for complex structures, the time required to repeat FE analysis 

many times may be impractical. In such cases, Response Surface Methods can be used 

to approximate the relation between the desired output of FE analysis and random 

variables by performing analyses for only a significantly less number of samples. 

Response Surface Methods have also been implemented in system reliability of bridge 

superstructures (Liu et al. 2001), substructures (Ghosn and Moses 1998), and bridge 
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systems (Moses et al. 1993; Okasha and Frangopol 2010b,d; Yang et al. 2004). 

Additionally, Enright and Frangopol (1999a,b) used the failure path method to 

compute the reliability function of a general (i.e., series-parallel) system and 

developed the computer program RELTSYS for this purpose (Enright and Frangopol 

2000). Lifetime functions (Leemis 1995) are adopted for the time-dependent reliability 

approach, and have been utilized for the life-cycle performance prediction of bridge 

structures (Sabatino et al. 2016; Barone and Frangopol 2013, 2104a,b). Establishing 

the lifetime function system reliability may be carried out utilizing various methods 

such as the minimal path and cut sets approaches (Hoyland and Rausand 1994; Leemis 

1995). 

2.2.2 Risk 

Risk is quantified by combining the probability of occurrence and the consequences of 

events generated by hazards. In general, the instantaneous total risk R of a structural 

system can be formulated as (CIB 2001) 

( ) ( ) mmm dxdxdxxxxfxxxR  212121 ,,,,,, ⋅⋅= ∫∫ ∫ Xκ  (2.3) 

where κ(x) denotes the consequences associated with events resulting from certain 

hazards x and fX(x) is the joint PDF describing the probabilistic behavior of the 

random variables X = { X1, X2, …, Xm }. The m-fold integral within Eq. (2.3) is 

difficult to assess and often cannot be solved. Therefore, assumptions are established 

in order to obtain a simpler expression for total risk. A simplistic approach for 

calculating instantaneous total risk R is (Ellingwood 2005) 
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where Cm represents the consequences of failure, P(Hi) describes the probability of 

occurrence of a hazard, PF |Hi(t) is the conditional failure probability given the 

occurrence of a hazard, and n is the total number of hazards considered within the 

analysis.  

Many research efforts have been conducted involving the risk assessment of 

bridge structures. Cesare et al. (1993) calculated the total risk associated with a bridge 

using the reliability and consequences of closure of the bridge. Stein et al. (1999) used 

risk concepts for prioritizing scour-vulnerable bridges. Adey et al. (2003) focused on 

the risk assessment of bridges affected by multiple hazards. Lounis (2004) presented a 

multi-criteria approach regarding bridge structural assessment with emphasis on risk. 

Similarly, Stein and Sedmera (2006) proposed a risk-based approach for bridges 

performance evaluation in the absence of foundation information. Ang (2011) focused 

on life-cycle considerations in risk-informed decision making for the design of civil 

infrastructure. Decò and Frangopol (2011) developed a rational framework for the 

quantitative risk assessment of highway bridges under multiple hazards. Saydam et al. 

(2013b) presented an illustrative example for the time-variant expected losses 

associated with the flexural failure of girders; a risk-based robustness index was 

calculated for an existing bridge. Furthermore, risk analysis was utilized to assess the 

performance of networks of infrastructure systems (Bocchini and Frangopol 2013; 

Dong et al. 2014e; Frangopol and Bocchini 2012). For example, the time-dependent 

expected losses of deteriorated highway bridge networks were investigated within 
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Saydam et al. (2013b). Additionally, Dong et al. (2014e,f) and Decò and Frangopol 

(2011, 2013) proposed a computational framework for the quantitative assessment of 

life-cycle risk of multiple bridges within a transportation network including the effects 

of seismic and abnormal traffic hazards. Overall, risk, as a performance indicator, can 

offer valuable information regarding the performance of individual structures or 

spatially distributed systems, such as buildings, bridges, and bridge networks. 

2.2.3 Sustainability 

Within the field of life-cycle engineering, two definitions of sustainability are usually 

referred to when developing appropriate sustainability metrics. The first representation 

of sustainability defines it as: “meeting the needs of the present without comprising 

the ability of future generations to meet their own needs” (Adams 2006). The second 

definition complements the first one by emphasizing that economic, environmental, 

and social objectives must be simultaneously satisfied within a sustainable design or 

plan (Elkington 2004). In general, it is important to measure the performance of 

bridges and networks of structural systems whose functionality is vital for economic 

and social purposes. Generally, sustainability should be quantified in terms of 

economic, social, and environmental metrics as indicated in Figure 2.1. 

Recent research efforts have considered a wide variety of risks in order to 

effectively quantify sustainability. For instance, Dong et al. (2013) presented a 

framework for assessing the time-variant sustainability of bridges associated with 

multiple hazards considering the effects of structural deterioration. The proposed 

approach was illustrated on a reinforced concrete bridge and the consequences 
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considered within the risk assessment were the expected downtime and number of 

fatalities, expected energy waste and carbon dioxide emissions, and the expected loss. 

Overall, the inclusions of societal and environmental impacts along with economic 

consequences effectively encompass the concept of sustainability within the risk 

analysis framework. Combining the economic, societal, and environmental, risk 

metrics allows engineers and decision makers to make informed decisions based on 

sustainability by providing them with a complete picture of system performance 

(Lundie et al. 2004; Marzouk and Hisham 2011; Shinozuka 2008). Generally, a 

structure is more sustainable if its life-cycle cost (i.e., construction, maintenance, 

failure, and replacement costs) is relatively low. Similarly, a structure is more 

sustainable if the energy, carbon dioxide emissions, and user delays arising from its 

repair are low. In general, the social metrics can include downtime and fatalities. 

Utility theory is utilized in order to depict the relative desirability of 

maintenance strategies to the decision maker. In general, utility is defined as a 

measure of value to the decision maker. Utility theory provides a framework that can 

measure, combine, and consistently compare these relative values (Ang and Tang 

2007). Multi-attribute utility theory may be used to transfer the utility of each attribute 

involved in the performance assessment (e.g., economic, social, and environmental 

risks) into one utility value that effectively combines the effects of all risks 

investigated as shown in  Figure 2.2. In this process, it is usually assumed that 

there is a single decision maker who possesses a predetermined risk attitude with 

respect to a specific structural system. Next, all possible solution alternatives are 

identified and the uncertainties associated with the investigated decision making 
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problem are accounted for by using a probabilistic approach. Since technical and 

economic uncertainties are both expected and unavoidable in the life-cycle assessment 

of civil infrastructure systems, decisions regarding life-cycle management must 

consider all relevant uncertainties associated with the probability of failure and its 

corresponding consequences.  

Utility theory is employed herein in order to effectively capture the 

sustainability performance of highway bridges and bridge networks and impact of the 

decision maker’s risk attitude. Once the utility function associated with each attribute 

of sustainability is appropriately established, a multi-attribute utility that effectively 

represents all aspects of sustainability can be obtained by combining the utility 

functions associated with each attribute (Sabatino et al. 2016). Within the additive 

formulation for the multi-attribute utility function, utility values associated with each 

attribute are multiplied by weighting factors and summed over all attributes involved. 

The multi-attribute utility associated with a structural system can be computed as 

(Jiménez et al. 2003) 

)()()( EnvukSocukEcouku EnvEnvSocSocEcoEcoS ++=  (2.5) 

where kEco, kSoc, and kEnv are the weighting factors corresponding to each sustainability 

metric; uEco, uSoc, and uEnv are the utility functions for the economic, social, and 

environmental attributes, respectively; and Eco, Soc, and Env are the values of the 

three metrics associated with sustainability. Overall, the proposed global strategies 

may be adopted for a variety of applications, including but not limited to bridges, 

buildings, and infrastructure networks. 
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2.2.4 Lifetime functions 

This approach for performance quantification involves identifying the PDF of the 

time-to-failure of a component under investigation. The time-to-failure of a 

component, treated as a random variable is defined as the time elapsing from the time 

the component is put into operation until it fails for the first time (Hoyland and 

Rausand 1994). The exact choice of this PDF is heavily dependent upon the 

component characteristics and failure pattern. This PDF serves as the basis for 

calculating a few useful lifetime reliability measures such as the survivor and hazard 

functions. The survivor function S(t) represents the probability that a component will 

not fail before time t and is calculated as: 

( ) ∫
∞

=>=−=
t
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where F(t) denotes the cumulative probability of failure and f(u) is the original PDF of 

time-to-failure. A depiction of the survivor function is shown in Figure 2.3. The 

survivor function may be used as a basis to calculate other lifetime functions. For 

example, the availability of a component A(t), which is defined as the probability that 

the component is functioning at a given time instant, coincides with S(t) when no 

maintenance is considered (Ang and Tang 1984; Leemis 1995). The availability 

function has been employed in assessing the effects of implementing intervention 

strategies to existing civil infrastructure (Biswas et al. 2003; Barone and Frangopol 

2014a,b). 
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The hazard function h(t) is also known as the instantaneous failure rate and can 

be defined as the conditional probability that given a component has survived until 

time t it will fail in the time interval t + dt. The hazard function is calculated as 

follows (Leemis 1995). 

)(
)()(

tS
tfth =  (2.7) 

Barone and Frangopol (2013) highlight the use of the hazard function in reliability 

analysis of components and systems. The hazard function was used to provide optimal 

inspection/repair lifetime planning strategies for deteriorating structures via an 

iterative procedure. The hazard function is also applied to an existing deteriorating 

bridge deck under corrosion to determine its performance.  

2.2.5 Life-cycle cost 

One of the most important measures in the evaluation of bridge performance is life-

cycle cost. The proper allocation of resources can be achieved by minimizing the total 

cost while keeping structural safety at a desired level. The expected total cost during 

the lifetime of a bridge structure can be expressed as (Frangopol et al. 1997) 

FREPINSPMTET CCCCCC ++++=  (2.8) 

where CT is the initial cost; CPM is the expected cost of routine maintenance cost; CINS 

is the expected cost of inspections; CREP is the expected cost of repair; and CF is 

expected failure cost. Numerous research efforts have focused on balancing cost and 

performance to determine optimum planning for life-cycle management of civil 

infrastructure systems (Ang and De Leon 2005; Chang and Shinozuka 1996; Estes and 
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Frangopol 2005; Estes et al. 2004; Frangopol and Furuta 2001; Frangopol et al. 1997, 

2001; Gharaibeh and Frangopol 2000; Okasha and Frangopol 2010d). 

2.3 LIFE-CYCLE ASSESSMENT, MANAGEMENT, AND 
OPTIMIZATION 

In order to predict performance of structural systems during their life-cycle under 

uncertainty, deterioration mechanisms for the investigated systems (e.g., corrosion and 

fatigue) must be carefully considered. Aggressive environmental conditions and 

natural ageing processes facilitate a gradual reduction in the performance (e.g., system 

reliability) of existing structures. Alternatively, there are extreme events that cause an 

abrupt reduction of the functionality of structures such as blasts, fires, earthquakes, 

hurricanes, and terrorist attacks. Life-cycle assessment of deteriorating highway 

bridges has uncertainties that are present within modeling the structural resistance 

(e.g., material properties and element dimensions), the occurrence and magnitude of 

hazards that may impact the structure (e.g., corrosion, fatigue, earthquakes, floods, and 

hurricanes), operating conditions, and loading cases (in addition to those associated 

with the cost of interventions performed during the service life. Due to the 

uncertainties associated with loads, resistances, and modelling, it is imperative for 

structural engineers to accurately model and assess the structural performance within a 

probabilistic life-cycle context. Furthermore, the effects of maintenance, repair, and 

rehabilitation on structural life-cycle performance must be well understood. The 

influence of maintenance and repairs on structural performance can be incorporated in 

a generalized framework for multi-criteria optimization of the life-cycle management 

of infrastructure systems (Frangopol 2011; Frangopol et al. 2015b,2017). Within the 
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last two decades, several studies introduced techniques which can assist the 

infrastructure management, including: Biondini et al. (2008, 2014), Enright and 

Frangopol, (1999a,b), Estes and Frangopol (2001), Frangopol and Liu (2007), 

Frangopol and Okasha, (2009), Frangopol and Soliman (2016), Frangopol et al. 

(2004), Kong and Frangopol (2003, 2005), Kong et al. (2002), Morcous and Lounis 

(2005), Neves et al. (2006), Okasha and Frangopol (2010b), and Stewart and 

Rosowsky (1998).  

In general, the effects of maintenance on the probabilistic performance 

assessment and cost evaluation are depicted in Figure 2.4. Within this figure, the 

probabilistic aspect of performance prediction is illustrated by the representations of 

the probability density functions (PDFs) of the initial performance index, deterioration 

initiation, rate of deterioration, and service life without maintenance, with preventive 

maintenance (PM), and with both preventative and essential maintenance (EM). In 

general, preventive maintenance is applied at a predefined time, in order to delay the 

deteriorating process of a structural system and to keep the bridge above the required 

level of structural performance. Preventive maintenance actions for a deteriorating 

infrastructure system includes replacing small parts, patching concrete, repairing 

cracks, changing lubricants, and cleaning and painting exposed parts, among others. 

On the other hand, essential maintenance is typically a performance-based 

intervention. As depicted in Figure 2.4(a), essential maintenance is applied when the 

performance level reaches a predefined threshold. Essential maintenance actions can 

lead to higher levels of performance than preventive maintenance actions, but they 

typically cost more. Strengthening and replacement of structural components are 
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examples of essential maintenance actions. Furthermore, the effects of maintenance on 

the total cost of life-cycle management must be considered; Figure 2.4(b) shows the 

cumulative maintenance cost as a function of time for preventive and essential 

maintenance interventions. 

Life-cycle optimization is an essential task within the life-cycle management 

(LCM) framework (Ang and De Leon 2005; Chang and Shinozuka 1996; Estes and 

Frangopol 1999; Frangopol and Soliman 2015; Frangopol et al. 

2015b,2016a,2016b,2017; Okasha and Frangopol 2009; Sabatino et al. 2015; Soliman 

and Frangopol 2014; Soliman et al. 2013, Wen and Kang 2001; Yang et al. 2006b). 

This process is performed using a probabilistic platform considering various 

uncertainties associated with LCM as shown in Figure 2.5. A lifetime intervention 

optimization formulation requires one or more life-cycle performance indicators, such 

as system reliability (Augusti et al. 1998, Estes and Frangopol 1999), system 

reliability and redundancy (Okasha and Frangopol 2009), lifetime-based reliability 

(Yang et al. 2006b), lifetime-based reliability and redundancy (Deb 2001; Deb et al. 

2002; Goldberg 1989; Morcous et al. 2010; Okasha and Frangopol 2010b), cost and 

spacing of corrosion rate sensors (Marsh and Frangopol 2007), probabilistic condition 

and safety indices (Frangopol and Liu 2007; Liu and Frangopol 2006a,b; Neves and 

Frangopol 2005; Neves et al. 2004), damage detection delay (Kim and Frangopol 

2011a,c, 2017), probability of damage detection (Soliman et al. 2013), and risk and 

sustainability-informed performance assessment (Dong et al. 2014a,b,c,d,e; Frangopol 

and Sabatino 2016a,b; Sabatino et al. 2015, 2016; Zhu and Frangopol 2013c). 
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For example, planning retrofit actions on bridge networks under tight budget 

constraints were investigated by Dong et al. (2014f). They presented a probabilistic 

methodology to establish optimum pre-earthquake retrofit plans for bridge networks 

based on sustainability. A multi-criteria optimization problem was formulated to find 

the optimum timing of retrofit actions for bridges within a network. The role of 

optimization is to identify the most effective retrofit strategy in terms of which bridges 

to be retrofitted and the optimal times for retrofit actions.  

Next, utility-informed decision making is investigated. In general, utility-

informed decision making may be divided into five separate stages: the pre-analysis, 

problem set-up, uncertainty quantification, utility assignment, and optimization as 

shown in Figure 2.6 (Keeney and Raiffa 1993). The application of utility-informed 

decision making in the optimal lifetime intervention on bridges is a topic of paramount 

importance and is experiencing growing interest within the field of life-cycle 

infrastructure engineering. The proposed methodology can be used in assisting 

decision-making regarding the maintenance/retrofit activities to improve the 

performance of highway bridge network.  

2.4 PROPOSED METHODOLOGY 

The formulation of a comprehensive life-cycle framework that has the ability to model 

a structural system while considering various deterioration models (e.g. corrosion and 

increase of live loads), multiple hazard effects, and the impact of structural failure on 

society, the environment, and the economy is crucial for the successful management of 

the structure. The ultimate goal of this study is to extend the existing life-cycle 
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management framework to include the effect of multiple hazards and a more 

comprehensive probabilistic risk assessment with consideration of risk attitudes of 

decision makers. A depiction of the proposed methodology is presented within Figure 

2.7. The novel part of this framework is contained within the blue-shaded, pentagon 

shapes within Figure 2.7. The contributions of the proposed research fit into the 

procedures for calculating expected losses of a structural system and for carrying out 

optimization techniques. The expected losses consider multi-hazard effects as well as 

the impact of the risk attitude of the structure’s decision maker. Novel optimization 

procedures are implemented that employ utility as objectives to be maximized. 

Within a robust risk assessment, it is crucial to consider the economic, social, 

and environmental impacts of structural failure. Sustainability assessment involves the 

integration of these various risk values into a convenient index used to measure 

performance. In general, it is important to measure the performance of infrastructure 

systems and networks of structural systems whose functionality is vital for economic 

and social purposes (Saydam et al. 2013a). Recent research efforts have considered a 

wide variety of risks in order to effectively quantify sustainability. For instance, the 

time-dependent expected losses of deteriorated highway bridge networks were 

investigated within Saydam et al. (2013a). A five-state Markov model was proposed 

to predict the time-dependent performance of bridges within a network. The 

probabilistic variation of direct, indirect, and total expected losses in time was 

computed. The proposed approach was illustrated on an existing highway bridge 

network in the lower San Francisco Bay Area, California. Additionally, Dong et al. 

(2013) presented a framework for assessing the time-variant sustainability of bridges 
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associated with multiple hazards considering the effects of structural deterioration. 

The proposed approach was illustrated on a reinforced concrete bridge and the 

consequences considered within the risk assessment were the expected downtime and 

number of fatalities, expected energy waste and carbon dioxide emissions, and the 

expected loss. Overall, the inclusions of societal and environmental impacts along 

with economic consequences effectively encompass the concept of sustainability 

within the risk analysis framework. Combining the economic, societal, and 

environmental, risk metrics allows engineers and decision makers to make informed 

decisions based on sustainability by providing them with a complete picture of system 

performance. 

In general, utility-based decision making may be divided into five separate 

stages: the pre-analysis, problem set-up, uncertainty quantification, utility assignment, 

and optimization, as shown in Figure 2.6 (Keeney and Raiffa 1993). In this process, it 

is usually assumed that there is a single decision maker who possesses a 

predetermined risk attitude with respect to a specific structural system. Next, all 

possible solution alternatives are identified and the uncertainties associated with the 

investigated decision making problem are accounted for by using a probabilistic 

approach. Since technical and economic uncertainties are both expected and 

unavoidable in the life-cycle assessment of civil infrastructure, decisions regarding 

life-cycle management must consider all relevant uncertainties associated with the 

probability of structural failure and its corresponding consequences (Ang 2011). For 

instance, life-cycle management problems involving deteriorating highway bridges 

have uncertainties that are present within modeling the structural resistance (e.g., 
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material properties and element dimensions), the occurrence and magnitude of hazards 

that may impact the structure (e.g., corrosion, fatigue, earthquakes, floods, and 

hurricanes), operating conditions, and loading cases (Stewart 2001), in addition to 

those associated with the cost of interventions performed during the service life. 

After effectively incorporating the appropriate uncertainties, the decision 

maker may assign utility values to the investigated attributes (e.g. risk attributes) 

associated with each alternative considering his/her risk attitude. Utility theory is 

applied in order to normalize each attribute value corresponding to solution 

alternatives to a number between 0 and 1; this ensures that all attributes are directly 

comparable to each other. The formulation of the utility function corresponding to 

each attribute depends on the knowledge, preferential characteristics, and risk attitude 

of the decision maker. Within the last step of the utility-based decision making 

framework an optimization procedure is carried out in order to find the alternative that 

maximizes the utility value. 

Once the time-variant risks affecting a deteriorating system are calculated (e.g., 

using Eq. 2.4), the decision maker may assign utility values to the attributes associated 

with each alternative considering his/her risk attitude. As an example, the 

computational procedure for the multi-attribute utility assessment of a highway bridge 

subjected to a corrosive environment and time-increasing traffic loading is shown in 

 Figure 2.2, where ui and ki, respectively, are the utility function and associated 

weighting factor corresponding to the ith risk attribute. A multi-attribute utility value 

is established that effectively represents sustainability performance by consolidating 

economic, social, and environmental risks. 
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For the risk attributes analyzed, each of the corresponding utility functions 

may be formulated as monotonically decreasing functions. Considering an exponential 

formulation, the utility associated with a single attribute (e.g., economic, social, and 

environmental risks) can be expressed as (Ang and Tang 1984):   
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where RA is the mean of the risk attribute value under investigation, RAmax and RAmin 

denote the maximum and minimum value of the risk attribute, respectively, and γ is 

the risk attitude of the decision maker (i.e., γ > 0 indicates risk-aversion and γ < 0 

denotes risk-acceptance). A monotonically decreasing function that has bounds of 0 

and 1 must be utilized within the utility assignment procedure in order to accurately 

depict the relative utility of detrimental consequences.  

Qualitative plots of the exponential utility function corresponding to a single 

risk attribute with variable risk attitude, considering the exponential formulation, are 

provided in Figure 2.8. As indicated by Keeney and Raiffa (1993), for a single risk 

attribute, uRA = 1 corresponds to the lowest possible loss while uRA = 0 is associated 

with the largest possible loss. Alternatives associated with high utility values are 

usually preferred to those associated with small utility values (Howard and Matheson 

1989). The concavity of these utility functions is highly dependent on the risk attitude 

of the decision maker. Risk averse and risk accepting attitudes yield concave and 

convex utility functions, respectively. 

After the utility function associated with each risk attribute is appropriately 

established, multi-attribute utility theory may be employed to combine them into a 
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single utility value that effectively represents a sustainability performance metric. 

Although there are various established types of multi-attribute utility functions, the 

additive formulation is utilized herein. Within the additive formulation for the multi-

attribute utility function, marginal utility values associated with each attribute are 

multiplied by weighting factors and summed over all attributes investigated, as shown 

in Eq. 2.5 (Stewart 1996). 

Once the appropriate multi-attribute utility-based sustainability metric is 

established, it may be utilized within a life-cycle optimization to find the best 

intervention strategies for the investigated structure. In general, the presented 

generalized decision–support approach may be used to determine optimal repair, 

rehabilitation, and monitoring interventions. Accordingly, the effect of interventions 

on the sustainability performance must be examined. Within the generalized decision 

making methodology presented, two objectives, represented in terms of utility, can be 

simultaneously maximized:  (a) the relative value of investment costs considering the 

risk attitude of the decision maker uc, and (b) the sustainability of each alternative 

expressed in terms of the utility us. The cost associated with implementing optimal 

lifetime maintenance actions may be expressed in terms of utility by employing Eq. 6. 

Given the maximum cost investment that the decision maker can tolerate, a utility 

function representative of cost considering the attitude of the decision maker may be 

established. The formulation of the cost utility uc effectively captures the decision 

maker’s preference to investing money in the face of risk.  

The cost uc and sustainability us utilities are used within a multi-criteria 

optimization process as the objective functions to be maximized. More specifically, 
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this optimization maximizes the minimum annual utility associated with sustainability 

while simultaneously maximizing the utility associated with the total maintenance 

cost. Generally, if the utility values of all the alternatives are available, the solution 

with the highest utility value is always preferred (Howard and Matheson 1989); thus, 

the two utility objectives are maximized within the presented optimization procedure. 

The main output of this bi-objective optimization, often carried out by using genetic 

algorithms (Davis 1991) in MATLAB (MathWorks 2013), comes in the form of a 

Pareto-optimal solution set that depicts optimal solutions outlining lifetime 

maintenance schedules. A solution is Pareto-optimal if there does not exist another 

solution that improves at least one objective without worsening another one. A plot 

depicting Pareto fronts for the lifetime maintenance planning of a bridge, considering 

a varying risk attitude, is shown in Figure 2.9. Within this example, the weighting 

factors associated with marginal economic, social, and environmental utilities are all 

assumed to be equal to 1/3; essentially, the decision maker weighs all three risks 

equally within the sustainability assessment.  

Embedded within each Pareto solution contained in Figure 2.9 are the optimum 

maintenance plans that detail which structural components should be maintained and 

the optimum maintenance time. In this case, the investigated bridge has a 

predetermined lifetime of TL years and three maintenance actions may be implemented 

throughout its life-cycle. Representative solutions A and B, denoting typical optimum 

maintenance plans resulting from a risk averse and risk accepting decision maker, 

respectively, are shown in Figure 2.9. The time-variant multi-attribute utilities 

associated with sustainability corresponding to representative solutions A and B are 
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shown in Figure 2.10a. Similarly, the economic risk profiles associated with solutions 

A and B are depicted in Figure 2.10b. In general, these plots show that the multi-

attribute utility assessment of sustainability is highly dependent upon the risk attitude 

of the decision maker.  

In general, the methods presented herein can be utilized to facilitate informed 

decision making regarding the lifetime intervention scheduling of deteriorating 

infrastructure. Although bridge and ship applications are emphasized in this study, the 

proposed generalized decision making framework can be applied to variety of 

engineering systems, including, but not limited to, other civil infrastructure (e.g., 

buildings, tunnels, dams, levees, and roads), aerospace systems (e.g., space structures 

and airplanes), and construction management applications. If the proposed 

methodology is applied to a new system, the initial steps (i.e., modules 1 and 2 within 

Figure 1.1) would be modified accordingly to account for properties of the structure 

and its loading cases, in addition to integrating relevant performance metrics for the 

system under investigation.  

Overall, multi-attribute utility theory can be used to formulate a utility-based 

sustainability index which offers a measure of desirability of a given management 

alternative to the decision maker. An approach that incorporates multi-attribute utility 

theory provides a framework which can measure, combine, and consistently compare 

the relative values of different alternatives while taking into account the decision 

maker’s attitude.   
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Figure 2.1. Metrics of sustainability. 

 

 

 Figure 2.2. Multi-attribute utility-based sustainability assessment.  
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Figure 2.3. Relationship between the PDF of the time-to-failure f(t), the survivor 
function S(t), and the cumulative probability of failure F(t). 

 

 

Figure 2.4. Effect of gradual deterioration and essential and preventive maintenance 
on (a) structural performance and (b) cost.  
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Figure 2.5. Integrated life-cycle management framework. 

 

 

 

Figure 2.6. Utility-based decision making procedure.  
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Figure 2.7. Computational framework for the life-cycle management of structures. 

 

 

Figure 2.8. Qualitative representations of typical exponential utility functions that are 
monotonically decreasing as the expected value of the risk attribute value increases. 
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Figure 2.9. Effect of risk attitude on the optimal solutions for lifetime maintenance 
considering weighting factors equal to one third  
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Figure 2.10. Time-variant profiles of (a) utility associated with sustainability and (b) 
economic risk for representative solutions A and B in Figure 2.9. 
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CHAPTER 3 SUSTAINABILITY-INFORMED MAINTENANCE 
OPTIMIZATION OF HIGHWAY BRIDGES CONSIDERING 

MULTI-ATTRIBUTE UTILITY AND RISK ATTITUDE 

3.1 OVERVIEW 

Throughout their service life, highway bridges deteriorate due to increasing traffic 

loads and aggressive environmental conditions. Aging of materials can have 

significant effects on the structural performance of highway bridges. A comprehensive 

risk assessment procedure is crucial in evaluating and ultimately mitigating 

detrimental consequences of structural failure to the economy, society, and the 

environment. The proposed sustainability-based maintenance optimization decision-

support framework provides decision makers with optimal life-cycle maintenance 

actions that balance conflicting objectives. Utility theory is employed herein in order 

to effectively capture the sustainability performance of highway bridges and impact of 

the decision maker’s risk attitude. The main objective of this framework is to reduce 

the extent of the consequences of structural failure to the economy, society, and the 

surrounding environment. The capabilities of the proposed approach are demonstrated 

on an existing highway bridge. 

This chapter is based on the work published in Sabatino et al. (2015); Dong et 

al. (2014a,b,c,d, 2015, 2017); and Frangopol and Sabatino (2016a,b). 

  

3.2 INTRODUCTION 

Throughout their service life, highway bridges may be exposed to a multitude of 

stressors, including aggressive chloride environmental conditions, material aging, and 
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increasing loads due to traffic. These stressors cause the structural performance of 

highway bridges to gradually decrease over time leading ultimately to structural 

failure. The consequences associated with structural failure due to progressive 

deterioration can be large and widespread. In order to mitigate the detrimental impacts 

of structural failure, risk and sustainability indicators are utilized within an efficient 

life-cycle maintenance optimization procedure to find maintenance strategies that 

balance both cost and performance. The results from this optimization may be 

employed within a risk-informed decision making process. 

The decision-making paradigm associated with the optimal maintenance of 

civil structures is a fundamental concept studied within the field of life-cycle structural 

engineering. Generally, five separate stages of decision making may be considered: 

the pre-analysis, problem set-up, uncertainty quantification, utility assignment, and 

optimization (Keeney and Raiffa 1993). First, it is assumed that there is a single 

decision maker who possesses a predetermined risk attitude with respect to a specific 

structural system. Next, typically, all possible solution alternatives are identified and 

the uncertainties corresponding to the decision-making problem are recognized and 

accounted for using a probabilistic approach. After effectively incorporating the 

appropriate uncertainties, the decision maker can assign utility values to the 

consequences associated with each alternative. Lastly, an optimization procedure is 

carried out in order to find the alternative that maximizes the utility value.  

Within the proposed decision support system for life-cycle maintenance 

planning of highway bridges, several attributes, including economic, societal, and 

environmental impacts, are considered in quantifying the consequences of structural 
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failure in terms of risk (i.e., probability of failure occurrence multiplied by its 

associated consequence). Previous research efforts have effectively performed risk 

analyses in a qualitative (Hessami 1999; Ellingwood 2001) and quantitative manner 

(Pedersen 2002; Decò and Frangopol 2011, 2012, 2013; Barone and Frangopol 2014a; 

Barone et al. 2014) under a multitude of hazards for various structures. In general, 

structural components that are under relatively high risk should receive priority for 

maintenance interventions. Although there have been a wide variety of studies 

investigating quantitative risk assessment, these studies do not attempt to quantify 

sustainability. In this chapter, risk assessment techniques are combined with multi-

attribute utility theory to formulate an appropriate sustainability performance 

indicator. 

Optimal maintenance planning is a widely investigated topic within the field of 

life-cycle engineering. Studies concerning the optimization of maintenance strategies 

based on reliability, risk, and/or redundancy have been conducted (Barone et al. 2014; 

Mori and Ellingwood 1994; Okasha and Frangopol 2009; Zhu and Frangopol 2013b). 

Additionally, lifetime distributions have also been used within maintenance 

optimization applications in (Yang et al. 2006) and (Okasha and Frangopol 2010b). In 

this chapter, structural performance is formulated in terms of multi-attribute utility that 

effectively represents the sustainability indicator. This novel utility-based 

sustainability metric is utilized as an objective within an optimization procedure that 

determines the best essential maintenance strategies for highway bridges. 

Additionally, a second objective that represents life-cycle maintenance costs is 
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integrated within the proposed framework. Therefore, a robust decision support 

system that simultaneously maximizes performance and minimizes cost is obtained.  

The methodology utilized herein quantifies the sustainability of existing 

highway bridges and employs multi-criteria optimization techniques to find the best 

maintenance strategies. Within this approach, the desirability of each alternative (i.e., 

maintenance plan detailing the type and timing of interventions) depends on three risk-

attributes (i.e., economic, social, and environmental impacts), measured with different 

units. Ultimately, there is a need to establish a consistent range of values that each 

attribute may take so that the attributes are directly comparable to each other. Utility 

theory is applied in order to normalize each risk-attribute value to a number between 0 

and 1. The formulation of the utility function corresponding to each attribute greatly 

depends on the knowledge and preferential characteristics of the decision maker. 

Monotonically decreasing functions are employed to effectively depict the relative 

utility of detrimental consequences of the structural failure of deteriorating highway 

bridges. A final multi-attribute utility function is developed that considers the 

weighted relative utility value corresponding to each attribute involved. This function 

represents a sustainability metric that effectively weighs the contribution of impacts to 

the economy, society, and the environment.  

The multi-attribute utility methodology adopted herein was first suggested in 

(Dong et al. 2015) where a sustainability performance indicator including the 

consequences of structural failure on the economy, society, and the environment was 

proposed. Besides the work reported in (Dong et al. 2015), there has been a lack of 

relevant studies that utilize multi-attribute utility theory within the structural 
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engineering field. Furthermore, little research has been carried out that includes 

optimization within multi-criteria decision making problems (Coello Coello 2000). 

Among this small pool of studies, (Papanikolaou et al. 2010) employed multi-

objective optimization procedures to facilitate decision making regarding oil tanker 

design, (Grierson 2008) developed a multi-criteria decision making strategy that is 

applied to bridge maintenance-intervention protocol design, and (Dabous and Alkass 

2008) proposed a multi-criteria decision support method for bridge deck management. 

In this chapter, multi-attribute utility theory is employed to effectivity quantify the 

sustainability of highway bridges and determine optimal lifetime maintenance plans. 

This sustainability indicator quantifies the detrimental impacts of bridge failure due to 

increasing live loads and an aggressive corrosive environment, while the sustainability 

metric proposed by (Dong et al. 2015) was employed to assess the effects of seismic 

hazard on a network of multiple highway bridges. Overall, the main novelty of this 

work is the development of a sustainability performance indicator that has the ability 

to incorporate a wide variety of risks associated with structural failure of highway 

bridges. This performance indicator is integrated within a bi-objective optimization 

that determines optimal maintenance planning while balancing cost and performance. 

Additionally, a four-objective optimization procedure is applied in this chapter 

to determine optimal maintenance schedules. The illustrative example contained 

herein examines the lifetime maintenance optimization problem that simultaneously 

maximizes utility associated with the maintenance cost and the utilities corresponding 

to economic, societal, and environmental risks. The results of this four-objective 
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optimization may be utilized in order to determine appropriate values of weighting 

factors for further use in the multi-attribute utility assignment. 

The proposed methodology has the ability to quantify sustainability-based 

performance in terms of utility and effectively employs multi-criteria optimization 

procedures in order to determine optimum maintenance strategies that reduce the 

extent of detrimental consequences to the economy, society, and the surrounding 

environment, while simultaneously minimizing maintenance costs. The utility values 

of both the cost and performance corresponding to alternatives are utilized within an 

optimization procedure that determines optimal maintenance plans for highway 

bridges. The effects of the risk attitude and preferences of the decision maker, in 

addition to the number of maintenance interventions on the optimal maintenance 

strategies, are investigated. Furthermore, optimal maintenance strategies obtained 

considering the simultaneous maximization of four utility values are investigated as 

motivation for choosing appropriate weighting factors within the multi-attribute utility 

assessment. A genetic algorithm (GA) based optimization procedure is utilized to find 

the optimal maintenance interventions. The proposed approach provides optimal 

intervention strategies to the decision maker that ultimately allows for risk-informed 

decision making regarding maintenance of highway bridges. The capabilities of the 

presented decision support framework are illustrated on an existing highway bridge 

located in Colorado. 
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3.3 MULTI-ATTRIBUTE RISK ASSESSMENT OF HIGHWAY 
BRIDGES UNDER TRAFFIC LOADING 

3.3.1 Vulnerability analysis 

The first step in the risk assessment is to evaluate the performance of a bridge 

considering the hazards that plague it. An increase in live loads associated with the 

average daily traffic and the effect of chloride contamination are the hazards 

considered herein for bridge superstructures. The time-variant performance function 

associated with a reinforced concrete bridge deck in bending gdeck is (Akgül 2002) 
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The random variables considered in Eq. (3.1) are:  Asr(t) = area of transverse 

steel reinforcing in the slab at time t (m2), fy = yield strength of reinforcing steel in slab 

(MPa), f’cs = compressive strength of the concrete slab (MPa), γmfs = modeling 

uncertainty for flexure in the slab, λdeff = reinforcing depth uncertainty factor, λa = 

asphalt weight uncertainty factor, λc = concrete weight uncertainty factor, and λtrk(t) = 

effect of the load. Deterministic quantities, K1, K2, K3, K4, and K5, take on specific 

values depending on bridge type and geometric properties. In addition to flexure in the 

deck, the most critical mode of failure for the girders is associated with flexure. Thus, 

the following performance function is assumed to describe the time-variant behavior 

of bending in the steel girders.   
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Random variables in Eq. (3.2) include: Fy = yield strength of steel girder 

(MPa), Sp(t) = plastic section modulus at time t (m3), If = impact factor, Df = the 

distribution factor, γmfg = modeling uncertainty for flexure in girder, λs = structural 

steel weight uncertainty factor, and Mtrk(t) = moment due to truck load (kN-m). K6, K7, 

K8, K9, K10, and K11 are deterministic constants. 

Time effects are simulated by applying an increasing live load to the bridge 

superstructure and simultaneously imposing a continuous reduction of the cross-

sectional areas of the steel girders and reinforcing bars in the slab to reflect chloride 

contamination induced corrosion. The loading model utilized herein is based on a live 

load annual amplification approach proposed by (Okasha and Frangopol 2010d). The 

corrosion models applied to the steel girders (Eq. 3.3) and reinforced concrete deck 

(Eq. 3.4) are based Albrecht and Naeemi (1984) and Thoft-Christensen (1998), 

respectively. The section loss functions are defined as: 

BAttC =)(  (3.3) 
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where C(t) = corrosion penetration depth (μm), A and B are parameters based on 

environmental aggressivity, As(t) = top transversal tensile steel reinforcement area 

(mm2), n = number of top transversal steel bars, D0 = initial top reinforcement 

diameter (mm), ic = corrosion parameter (mA/cm2), Cc = corrosion coefficient, and Ti 

= corrosion initiation time (years). Failure probabilities associated with each 

component of a bridge superstructure (e.g., deck, exterior girders, and interior girders) 
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and the entire superstructure system are evaluated by the First Order Reliability 

Method (FORM) employing the RELSYS computer software (Estes and Frangopol 

1998). Similar approaches have been adopted by Decò and Frangopol (2011), Zhu and 

Frangopol (2013), and Estes (1997) in order to calculate the system reliability. Note 

that the probability of system failure is considered as an input for the proposed 

optimization framework. 

3.3.2 Effects of maintenance actions 

The effects of maintenance actions may be evaluated by modifying particular 

parameters contained within the performance functions in Eqs. (3.1) and (3.2). In 

general, essential maintenance actions are typically applied when a performance 

indicator reaches a predefined threshold. The essential maintenance actions considered 

herein are the replacement of bridge superstructure components; more specifically, the 

replacement of the deck, exterior girders, interior girders, and the entire superstructure 

are the four maintenance actions considered. The time-variant cross sectional area of 

the reinforcement within the slab Asr and the plastic section modulus Sp associated with 

the steel girders are the specific parameters within the performance functions that are 

changed when maintenance is performed.  

In addition to the effect of maintenance on a structure’s performance, the cost 

of implementing maintenance to a bridge must also be considered within the multi-

criteria decision support system. The total cost of a maintenance plan is calculated in 

terms of USD in the year the bridge was built. Therefore, the total cost of a lifetime 

maintenance strategy is determined as: 
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where CEM,i(t) = cost of a maintenance action i that is applied at year t (USD), rm = 

discount rate of money, and NEM  = total number of essential maintenance actions 

considered through the lifetime of a structure. 

3.3.3 Evaluation of risk-attributes associated with highway bridges 

This section presents the risk assessment process involved in determining optimal 

maintenance plans for highway bridges considering multiple criteria. Risk, which 

combines the probability of occurrence of a specific event with the consequence 

associated with this event, is regarded as an important performance indicator. A 

simple formulation of risk is (Ang and De Leon 2005): 

χ⋅= pR  (3.6) 

where p = probability of occurrence of an adverse event and χ = consequences of the 

event. Three main consequences or risk-attributes are investigated herein for highway 

bridges: economic, social, and environmental impacts. More specifically, these 

consequences include the rebuilding and repair costs (economic losses); extra travel 

time and distance that drivers must endure, in addition to any fatalities that may occur 

(social impact); and energy consumption and carbon dioxide (CO2) emissions 

(environmental consequences). Overall, the evaluation of a wide variety of 

consequences associated with structural failure plays a fundamental role in the 

decision making process regarding bridge maintenance planning. 
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The first risk-attribute investigated captures the economic consequences of 

structural failure associated with a bridge superstructure (i.e., the system). The 

economic impact (i.e., direct loss) is measured in terms of the risk associated with the 

rebuilding cost RRB during a certain year for a bridge (Stein et al. 1999).  
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where C1 = rebuilding cost per square meter ($/m2), Pf,sys = probability of system 

failure, W = width of the bridge (m), L = length of the bridge (m), rm = discount rate of 

money, and t = time (years). 

Next, the indirect losses are investigated. These losses include the negative 

impacts of structural failure to society and the surrounding environment. The social 

impacts of bridge failure are explored first. The social consequences of bridge failure 

include the extra travel time and distance experienced by vehicle operators, in addition 

to any fatalities that may occur. The risk associated with the extra travel time for users 

that must use a detour may be expressed as a function of time (Stein et al. 1999): 
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where Or = occupancy rate for non-truck vehicles, TTp = percentage of average daily 

traffic that is trucks (%), Ld = detour length (km), ADT(t) = average daily traffic 

during year t, Dd = duration of detour (days), and Sd = average detour speed (km/hour). 

Note that Eq. (3.8) is highly dependent upon the traffic volume on the bridge during 

year t. 
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Similarly, the risk attribute corresponding to the extra travel distance due to 

detour is computed (Stein et al. 1999). 

ddsysfETD DtADTLtPtR ⋅⋅⋅= )()()( ,  (3.9) 

The last part of the social impact incorporates the total number of fatalities resulting 

from structural failure. The estimated annual expected number of fatalities is 

(Rackwitz 2002; Zhu and Frangopol 2013b): 
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where fd is the safe following distance during driving (m).   

The final risk attribute examined is the detrimental effects of structural failure 

on the environment. More specifically, the environmental metric accounts for two 

impacts: (a) carbon dioxide emissions, and (b) energy consumption associated with 

detour and bridge repair. The risk associated with carbon dioxide emissions resulting 

from detour is considered as one sub-attribute of the environmental metric. The annual 

expected amount of carbon dioxide emissions due to detour of a bridge is (Stein et al. 

1999): 
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where CPDC and CPDT represent carbon dioxide emissions per unit distance 

associated with cars and trucks, respectively (kg/km). The risk associated with the 

annual amount of energy consumption due to detour can also be computed as 

EPDDLtADTtPtAER ddsysfEDET ⋅⋅⋅⋅= )()()( ,,  (3.12) 
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where EPD = energy consumption per unit distance associated with any vehicle 

(MJ/km).  

In addition to the environmental consequences resulting from detour, it is 

necessary to consider the environmental impacts produced from the repair or 

replacement of a highway bridge after experiencing major structural damage due to 

traffic loads and corrosion. For instance, carbon dioxide emissions resulting from 

repair or replacement actions are computed considering a fraction of the CO2 

emissions associated with rebuilding an entire bridge. The annual expected amount of 

carbon dioxide produced from the repair of a bridge can be computed as (based on 

Basöz and Mander 1999): 

LWCDtPtAER REBsysfCREP ⋅⋅⋅= )()( ,,  (3.13) 

where CDREB = amount of carbon dioxide associated with rebuilding (kg/m2). 

Similarly, the annual expected amount of energy consumption associated with the 

repair of a bridge can be calculated as  

LWECtPtAER REBsysfEREP ⋅⋅⋅= )()( ,,  (3.14) 

where ECREB = total energy consumption associated with the rebuilding (GJ/m2). 

In order to determine the total value of each environmental impact (i.e., CO2 

emissions and energy consumption) for a highway bridge, the annual environmental 

risk values associated with bridge detour and repair are added. The annual risk-

attribute values corresponding to carbon dioxide emissions REC(t) and energy 

consumption REE(t) for a bridge during year t are  
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3.4 UTILITY ASSESSMENT FOR SUSTAINABILITY EVALUATION 

Utility is defined as a measure of value (or desirability) to the decision maker. Utility 

theory provides a framework that can measure, combine, and consistently compare 

these relative values (Ang and Tang 1984). Utility theory is utilized herein in order to 

depict the relative desirability of lifetime maintenance strategies to the decision maker. 

This section outlines how multi-attribute utility theory is used to transfer the utility of 

each risk-attribute into one utility value that is representative of bridge sustainability. 

A utility function corresponding to the total cost of maintenance that considers the 

decision maker’s risk attitude can also be formulated. Overall, the computational 

procedure adopted herein for the multi-attribute utility assessment of a bridge 

subjected to traffic loads and a corrosive environment is shown in Figure 3.1, where ui 

and ki are the utility function and associated weighting factor corresponding to the ith 

risk attribute. This flowchart outlines the process of calculating the utility associated 

with three risk-attributes as well as the multi-attribute utility value corresponding to 

the sustainability performance.   

3.4.1 Utility function for maintenance cost 

Establishing a utility function that depicts the relative value of maintenance cost 

investment to the decision maker considering his/her particular risk attitude is crucial 

in the proposed decision support system. In general, the maintenance strategies 
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associated with high utility values correspond to relatively small maintenance costs 

and are usually preferred to those associated with small utility values (Howard and 

Matheson 1989). Given the maximum cost investment that the decision maker can 

tolerate, a utility function representative of maintenance cost considering the attitude 

of the decision maker may be formulated. The utility associated with a given 

maintenance cost is (Ang and Tang 1984):  
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where Cmaint = total maintenance cost, γ = risk attitude of the decision maker (i.e., γ > 0 

indicates risk-aversion and γ < 0 denotes risk-acceptance), and Cmax = maximum 

maintenance cost which is utilized to normalize the cost-utility so that it always takes 

values between 0 and 1. Considering the same maintenance strategy, a risk averse 

attitude will always yield a higher utility value than that produced from a risk 

accepting attitude.   

3.4.2 Utility function for risk-attributes 

The utility functions associated with each risk-attribute investigated within the 

sustainability assessment (economic, social, and environmental impacts) are formed 

considering the risk attitude of the decision maker (Keeney and Raiffa 1993). For the 

risk-attributes analyzed, each of the corresponding utility functions may be formulated 

as monotonically decreasing functions. Considering an exponential formulation, the 

utility associated with a single attribute (e.g., extra travel distance and carbon dioxide 

emissions) can be expressed as:   
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where RA = expected value of the risk-attribute value under investigation and RAmax 

and RAmin denote the maximum and minimum value of the risk-attribute, respectively. 

Overall, a monotonically decreasing function that has bounds of 0 and 1 must be 

utilized within the utility assignment procedure in order to accurately depict the 

relative utility of detrimental consequences. As indicated by (Keeney and Raiffa 

1993), for a single attribute considered within the presented approach, uRA = 1 

corresponds to the lowest possible loss while uRA = 0 is associated with the largest 

possible loss. The concavity of these utility functions is highly dependent on the risk 

attitude of the decision maker. Risk averse and risk accepting attitudes yield a concave 

and convex utility function, respectively.  

3.4.3 Multi-attribute utility assessment corresponding to sustainability 

After the utility function associated with each risk-attribute is appropriately 

established, multi-attribute utility theory may be employed to combine them into a 

single utility value that effectively represents a sustainability performance metric. 

Overall, the sustainability performance indicator may be quantified in terms of 

economic, social, and environmental consequences. Although there are various 

established types of multi-attribute utility functions, the additive formulation is 

utilized herein. Within the additive formulation for the multi-attribute utility function, 

marginal utility values associated with each attribute are multiplied by weighting 

factors and summed over all attributes investigated (Stewart 1996). The utility values 

corresponding to economic, social, and environmental risk-attributes are determined 
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by considering equal contributions of the sub-attributes involved. For example, the 

environmental utility associated with a particular solution is calculated considering 

equal contributions of two detrimental consequences:  carbon dioxide emissions and 

energy consumption. Considering an additive formulation, the multi-attribute utility 

function utilized within the presented decision making framework is computed as 

(Jiménez et al. 2003) 

envenvsocsoceconecons ukukuku ++=  (3.19) 

where us is the multi-attribute utility function associated with the sustainability 

performance metric; uecon, usoc, and uenv represent the marginal utility values associated 

with economic, social, and environmental risk-attributes, respectively; and kecon, ksoc, 

and kenv are the weighting factors corresponding to the three metrics considered in the 

sustainability assessment such that kecon + ksoc + kenv = 1. Typically, these weighting 

factors are not explicitly known or are difficult to assess for certain decision makers. 

However, within this chapter, a sensitivity study concerning these weighting factors is 

conducted in order to determine the effect of the decision maker’s particular 

preference to which aspect of sustainability is most important.  

3.5 OPTIMIZATION OF BRIDGE MAINTENANCE PLANNING 

The two utility functions investigated are:  (a) the relative value of maintenance 

investment costs considering the risk attitude of the decision maker uc, and (b) the 

sustainability of each alternative expressed in terms of the utility us. These utility 

functions are further used within a maintenance optimization process as the objective 

functions to be maximized. More specifically, the optimization herein maximizes the 
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minimum annual utility associated with sustainability while simultaneously 

maximizing the utility associated with the total maintenance cost. Generally, if the 

utility values of all the alternatives are available, the solution with the highest utility 

value is always preferred; thus, the two utility objectives are maximized within the 

presented optimization procedure.  

The optimization approach embedded within the proposed maintenance 

methodology is shown in Figure 3.2. The optimization algorithm sends the candidates 

for the design variables (maintenance action and time of application) to the 

performance and cost modules which calculate the value of each objective function. 

The performance module has the capability to handle all computations associated with 

the system reliability assessment, consequences evaluation, probabilistic risk analysis, 

and utility value associated with the sustainability resulting from implementing 

maintenance. The main result of the performance module is the multi-attribute utility 

associated with sustainability considering maintenance; this objective value is 

maximized considering a specific bridge lifetime. Additionally, the cost module of the 

proposed computational framework calculates the total maintenance cost of a bridge. 

Next, the utility associated with this total maintenance cost is determined considering 

the risk attitude of the decision maker. Lastly, the utility value associated with both 

sustainability us and maintenance cost uc is employed within the optimization module 

in order to find the set of Pareto optimum solutions outlining bridge maintenance 

planning. The set of Pareto optimum solutions for the multi-objective optimization 

problem is obtained utilizing GAs within an adequate number of generations (Okasha 

and Frangopol 2009, Frangopol 2001, Dong et al. 2014e). 
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The bi-objective optimization problem is formulated as follows: 

Given:  

• Bridge information including its geometry, physical characteristics, 

material properties, and time-variant system reliability (information 

associated with Eqs. 3.1 and 3.2) 

• Consequences associated with structural failure (calculated using Eqs. 

3.7 to 3.16) 

• Risk attitude of the decision maker (γ in Eqs. 3.17 and 3.18) 

• Sustainability multi-attribute utility function (Eq. 3.19) and weighting 

factors that represent the contribution of economic, social, and 

environmental risk-attributes (kecon, ksoc, and kenv, respectively in Eq. 

3.19) 

• Bridge lifetime under investigation (TL) 

• Total number of maintenance actions (NEM)  

Find:  

• Bridge components to be replaced  

• Time of application of maintenance actions 

So that: 

• Utility associated with the total maintenance cost uc is maximized (Eq. 

3.17) 
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• Annual minimum utility associated with sustainability us over the 

bridge lifetime is maximized (Eq. 3.19) 

Subjected to: 

• Total cost of maintenance should be less than a prescribed value 

• Constraints on the allowable minimum and maximum values of each 

risk-attribute (RAmin and RAmax, respectively in Eq. 3.18) 

• Constraints on the application times of maintenance 

3.6 CASE STUDY 

The proposed multi-criteria optimization framework is applied to an existing highway 

bridge located in Broomfield, Colorado, USA. The E-16-FK Bridge is classified as a 

concrete on rolled I-beam continuous bridge (CIC) and consists of four spans. As 

shown in a transverse cross-section of the superstructure in Figure 3.3, the reinforced 

concrete slab is supported by five steel girders spaced evenly at 2.235 m apart. The 

bridge carries one lane of traffic in each direction (i.e., westbound and eastbound) and 

average daily traffic of 18,900 vehicles was reported in 2007 (FHWA 2013). The 

average daily traffic during the year the bridge was built (i.e., t = 0) is taken as 10,826 

while the maximum predicted average daily traffic over the lifetime (i.e., t = 75 years) 

is 23,998 vehicles. The total length of the bridge L = 69.2 m while the total width W = 

10.4 m. 

The maintenance planning optimization problems based on risk reported in 

monetary terms associated with other bridges located in Colorado, USA have been 

previously investigated by Barone and Frangopol (2014a) and Zhu and Frangopol 
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(2013b). As stated previously, the ultimate aim of this illustrative example is to apply 

the proposed bi-objective optimization methodology considering multi-attribute utility 

theory to an existing highway bridge to determine optimal essential maintenance 

strategies. The effects of the risk attitude and preferences of the decision maker, in 

addition to the number of maintenance interventions on the optimal maintenance 

strategies are investigated herein. Furthermore, optimal maintenance strategies 

obtained considering the simultaneous maximization of four utility values (i.e., uc, 

uecon, usoc, and uenv) are investigated as motivation for choosing appropriate weighting 

factors (i.e., kecon, ksoc, and kenv) within the assessment of the multi-attribute utility 

associated with sustainability.   

3.6.1 Evaluation of risk-attributes 

The initial step within this case study is to calculate the time-variant probability of 

failure associated with the components comprising the superstructure of the E–16–FK 

highway bridge. Eqs. (3.1) and (3.2) are utilized with the parameter values reported in 

Table 3.1 in order to determine time-variant component probabilities of failure. Note 

that all parameters listed in Table 3.1 follow the lognormal distribution. The following 

deterministic values are also considered in Eq. (3.1) for the investigated highway 

bridge’s deck:  K1 = 4.0625 × 10-1, K2 = 4.0850 × 10-3, K3 = 1.9695 × 10-1, K4 = 

4.1765 × 10-1, K5 = 4.6009 (Akgül 2002). Additionally, the values of the constants 

contained in Eq. (3.2) considering exterior girders 1 and 5 are assumed as:  K6 = 

8.3333 × 10-2, K7 = 32.070, K8 = 4.3860, K9 = 142.49, K10 = 54.721, and K11 = 1.4940. 

Similarly, the deterministic parameters within Eq. (3.2) for interior girders 2, 3 and 4 

take the following values:  K6 = 5.8 × 10-1, K7 = 5.24, K8 = 7.2527 × 10-1, K9 = 23.206, 
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K10 = 8.913, K11 = 2.4333 × 10-1 (Akgül 2002). The failure of the entire superstructure 

(i.e., the system) is modeled as a series-parallel system consisting of a failure of the 

deck or any two adjacent girders (see Figure 3.4). It is assumed that the substructure 

does require essential maintenance. Considering the above outlined system model 

configuration, component performance functions provided by Eqs. (3.1) and (3.2), 

deterministic parameters K1 – K11, and probabilistic random variables listed in Table 

3.1, the annual system reliability index and its corresponding annual probability of 

failure are computed using RELSYS (Estes and Frangopol 1998). The time-variant 

reliability profile (e.g., annual probability of failure) is considered as input for the 

maintenance optimization problem presented (see Figure 3.5). The four possible 

essential maintenance options and their associated costs considered herein are based 

on (Estes 1997); replacing the deck (D) has a maintenance cost of $225,600, essential 

maintenance of the exterior girders (GE) costs $104,600, essential maintenance of the 

interior girders (GI) costs $156,900, and replacing the entire superstructure (S) costs 

$487,100 (Estes 1997). It is assumed that the discount rate of money rm is equal to 

0.02 and the decision for implementing a particular optimal maintenance plan is made 

in 1996. 

Next, the detrimental consequences of structural failure are evaluated. Based 

on Eqs. (3.5) to (3.14), the expected value of the sustainability sub-attributes are 

calculated in terms of their respective units. All probabilistic parameters utilized 

within computation of the risk-attributes are summarized in Table 3.2. The time-

variant profile of the expected value corresponding to each sub-attribute of 
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sustainability considering no maintenance is shown in Figure 3.6 for a lifetime of TL = 

75 years.  

3.6.2 Utility assessment for maintenance cost and sustainability performance 

Within the proposed optimization procedure, for each alternative, it is necessary to 

evaluate both the utility associated with total maintenance cost uc and the utility value 

that is representative of the minimum annual sustainability performance metric us. The 

utility value associated with the total maintenance cost is obtained utilizing Eq. (3.17) 

with Cmax = $1M. The formulation of the cost utility employed herein effectively 

captures the decision maker’s preference to investing money in the face of risk.   

The multi-attribute utility value corresponding to the annual sustainability 

performance metric in terms of economic, social, and environmental attributes must be 

determined, in addition to the utility associated with the maintenance cost for each 

alternative considered within the optimization framework. Once the expected value of 

each sustainability sub-attribute is determined, it may be transferred to utility 

considering the exponential formulation in Eq. 3.18). The annual utility value 

corresponding to each sub-attribute is calculated considering the range of risk-attribute 

values shown in Table 3.3. Within this specific example, these minimum and 

maximum risk-attribute values are obtained considering the no maintenance case; 

RAmin and RAmax  are the expected risk-attribute values at t = 0 and t = TL (i.e., 75 

years) assuming that no maintenance is performed. In other cases, the decision maker 

may directly assign values to RAmin and RAmax in order to reflect personal risk 

tolerances. Furthermore, the annual utility values associated with each attribute of 
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sustainability (i.e., uecon, usoc, and uenv) are computed considering a weighted average 

of its sub-attributes. Each sub-attribute’s utility value is weighted equally (i.e., 1/3) in 

order to determine a single utility value associated with each attribute (i.e., economic, 

social, and environmental) of sustainability. The final step of this stage of the analysis 

involves calculating an annual utility value corresponding to the entire sustainability 

metric; the multi-attribute utility associated with the bridge’s total sustainability 

considering the effects of maintenance is determined using Eq. (3.19). Figure 3.7 

depicts the annual economic, social, and environmental utility values, and the time-

variant multi-attribute utility corresponding to the sustainability performance metric 

considering no maintenance. With no maintenance, the utility associated with 

sustainability decreases from 1 to 0 over the lifetime of the structure. The 

implementation of maintenance interventions restores the sustainability of the 

structure; lifetime maintenance planning can effectively mitigate a variety of risks 

while simultaneously ensuring that sustainability performance is always within 

acceptable levels. 

3.6.3 Optimal maintenance planning 

The bi-objective maintenance planning problem is solved using a GA-based 

optimization approach. MATLAB’s Global Optimization Toolbox (MathWorks 2013) 

is employed herein in order to obtain optimal lifetime maintenance strategies for the 

highway bridge investigated. The problem presented was solved using MATLAB on a 

Dell Precision R5500 rack workstation equipped with two six cores X5675 Intel Xeon 

processors with 3.06 GHz clock speed and 24 GB DDR3 memory. 
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Considering the framework outlined previously, there are several inputs that 

influence the results of the proposed decision support system. For the specific life-

cycle maintenance problems investigated herein, the sustainability multi-attribute 

utility function considering the no maintenance case, depicted in Figure 3.7 for 

Colorado highway bridge E – 16 – FK, is employed. The optimization is performed by 

simultaneously maximizing the utility associated with total maintenance cost uc and 

the annual minimum utility corresponding to the sustainability us over the lifetime of 

the bridge (i.e., TL = 75 years). The main results of the optimization procedure are the 

maintenance actions performed on the bridge components and their respective times of 

application. The following constrains are also considered herein:  (a) total 

maintenance cost should not exceed Cmax = $1M, (b) constraints on the allowable 

minimum and maximum values of each risk-attribute (see Table 3.3), (c) first essential 

maintenance may not be performed before t = 5 years, and (d) consecutive 

maintenance actions must be performed at least 3 years apart. 

The Pareto optimal solutions obtained considering three maintenance actions 

(i.e., NEM = 3) with a risk accepting (e.g., γ = -1) and risk averse (e.g., γ = 1) decision 

maker are shown in Figure 3.8. The weighting factors kecon, ksoc, and kenv are all 

assumed to be equal to one third for this example, representing equal contribution of 

detrimental economic, societal, and environmental impacts. The risk averse decision 

maker will always assign larger utility to the same alternatives as compared to a 

decision maker that is risk accepting. The essential maintenance strategies 

corresponding to solutions A1, A2, A3, B1, B2, and B3 in Figure 3.8 are detailed 

within Table 3.4. The solutions associated with the risk averse decision maker, B1, 
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B2, and B3, represent maintenance strategies that correspond to different values of 

utility associated with cost and sustainability. Compared to the other Pareto 

alternatives obtained for a risk averse decision maker, Solution B1 is a high-cost, high-

performance solution with a cost utility of 0.5613 and minimum annual sustainability 

utility of 0.8705. The maintenance plan outlined for Solution B1 entails replacing the 

entire superstructure at years 33, 52, and 65. Conversely, Solution B3 is a low-cost, 

low-performance solution with uc = 0.9044 and us = 0.1800. The maintenance plan 

associated with Solution B3 includes replacing the interior girders at year 50, the deck 

at year 69, and again the interior girders at year 74. Solutions B2 and B3 are 

summarized in Table 3.4. 

Furthermore, the cost utility, minimum annual utilities corresponding to the 

economic, social, and environmental risk attributes, and the minimum annual multi-

attribute utility associated with the sustainability performance for representative 

solutions marked in Figure 3.8 are shown in Table 3.5. The profiles of the annual 

utility associated with sustainability for solutions B1, B2, and B3 are shown in Figure 

3.9. In addition to the specific maintenance plan and utility values, the maximum 

annual expected risk-attributes corresponding to each Pareto alternative may also be 

investigated. Table 3.6 summarizes the maximum annual risk attributes values 

corresponding to the representative optimal maintenance strategies. Amongst the 

selected Pareto alternatives obtained for a risk averse decision maker, Solution B3 is 

the highest cost alternative; however, it yields relatively low consequences in terms of 

economic, social, and environmental impacts. In order to illustrate time effects, the 

68 
 



annual risk profiles associated with CO2 emissions REC corresponding to Solutions B1, 

B2, and B3 are shown in Figure 3.10.  

In addition to the effect of the decision maker’s risk attitude on the Pareto 

optimal solutions, the influence of the number of essential maintenance actions is also 

investigated. Figure 3.11 depicts Pareto optimal solutions considering a variable 

number of essential maintenance actions (i.e., NEM = 1, 2, or 3), a risk averse decision 

maker, and weighting factors all equal to one third. The maintenance plans 

corresponding to the three representative solutions on the Pareto front in Figure 3.11, 

Solutions C1, C2, and C3, are shown in Table 3.7. It is evident that maintenance plans 

that consider only one intervention have the lowest cost (i.e., high cost utility) but, as a 

limit, can only achieve a certain level of sustainability utility. Intervention strategies 

that contain two or more essential maintenance actions can achieve higher levels of 

utility associated with sustainability but possess higher maintenance costs (i.e., lower 

cost utility) when compared to the plans containing only one maintenance action. This 

trend can also be observed in Figure 3.12, which plots the annual sustainability utility 

values corresponding to the representative solutions marked as C1, C2, and C3 within 

Figure 3.11. Solution C3 dictates maintenance that frequently restores the 

sustainability performance and allows it to remain large throughout the lifetime, while 

Solution C1 only contains one intervention that dramatically increases the 

sustainability performance but is unable to keep it at high levels throughout the entire 

lifetime. 

The weighting factors contained within the multi-attribute utility equation have 

a great effect on the shape of the final Pareto front. Figure 3.13 depicts the Pareto 
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optimal solutions for the bi-objective optimization problem considering three 

maintenance actions, a risk averse decision maker, and three separate sets of weighting 

factors. The combination of weighting factors that produces the largest utility values 

associated sustainability is (kecon, ksoc, kenv) = (0.1, 0.8, 0.1), while the weighting factor 

combination of (0.8, 0.1, 0.1) yields relatively smaller performance utility values. The 

maintenance strategies corresponding to representative Solutions D1, D2, and D3 are 

outlined within Table 3.8. 

The final part of this illustrative example includes the examination of the 

Pareto front obtained by carrying out a four-objective optimization procedure that 

maximizes the utility associated with maintenance cost uc while simultaneously 

maximizing the minimum annual economic uecon, social usoc, and environmental uenv 

utilities. The motivation behind performing this optimization is to determine the 

sensitivity of the Pareto front to change in the values of the weighting factors for 

future use in the decision support framework. Figure 3.14 presents the output of the 

four-objective optimization procedure considering a risk averse decision maker (i.e., γ 

= 1) in a 3D plot with utility associated with economic, social, and environmental risks 

represented on each of the axes. The fourth objective, the utility associated with 

maintenance cost, is segmented into four separate ranges and the solutions falling into 

each of these ranges are plotted in Figure 3.14(a) – (d). Selected points from this four-

objective Pareto front and their respective values of minimum annual utility values are 

indicated in Table 3.9. Overall, the results obtained for the four-objective optimization 

problem may be employed to determine the effect of the utility associated with 

maintenance cost uc on the other three utilities. 
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3.7 CONCLUSIONS 

This chapter presents a framework for life-cycle maintenance optimization of highway 

bridges that utilizes multi-attribute utility theory to quantify the sustainability 

performance metric. The ultimate aim of implementing maintenance throughout the 

lifetime of a bridge is to mitigate the detrimental impacts of structural failure to the 

economy, society, and the environment. Optimum maintenance plans are obtained by 

carrying out a multi-criteria optimization procedure where the utility associated with 

total maintenance cost and utility corresponding to sustainability performance are 

considered as conflicting objectives.  

Overall, this chapter proposes a comprehensive approach for the life-cycle 

maintenance optimization of highway bridges considering the decision maker’s risk 

attitude and preferential characteristics. The presented methodology can be used to 

assist decision making regarding maintenance actions and, ultimately, maintain the 

life-cycle sustainability of highway bridges.  

The following conclusions are drawn: 

1. All three aspects of sustainability (i.e., economic, social, and 

environmental) are crucial to the performance assessment of highway 

bridges. Multi-attribute utility theory allows for the quantification of a 

structure’s sustainability performance considering weighting factors that 

define the relative contribution of each aspect of sustainability. In general, 

utility theory can be employed to determine the desirability of a particular 
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alternative considering a decision maker’s risk attitude towards 

consequences of structural failure. 

2. Optimum maintenance plans for highway bridges can be obtained by 

employing a multi-objective optimization approach that results in a set of 

Pareto optimal solutions. Ultimately, a decision maker is able to make 

informed decisions based on their particular preferences and the decision 

support system provided by the Pareto set of optimal solutions. Depending 

on the maintenance cost, level of sustainability, and in turn, maximum 

annual risk-attribute values desired, a decision maker can choose a Pareto 

optimal intervention plan that best satisfies his/her needs. 

3. The risk attitude of the decision maker has a large impact on the optimal 

solutions resulting from the proposed decision support system. 

4. The maximum number of essential maintenance actions considered 

throughout a bridge’s lifetime has great effects on the final Pareto optimal 

solutions. Alternatives with very few maintenance actions are associated 

with significantly larger cost utilities as compared to maintenance plans 

that implement more intervention actions.  

5. The weighting factors considered within the multi-attribute utility 

assessment of sustainability have a significant impact on the resulting 

Pareto optimal solutions. Thus, it is crucial to determine appropriate values 

for them. The four-objective optimization process that is presented herein 

acts as a preliminary investigation in determining the sensitivity of 

optimum solutions to changes in the values of the weighting factors. 
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Further research is needed to properly select appropriate weighting factors 

within the multi-attribute utility assessment process. 
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Table 3.1. Random variables and their corresponding parameters used within the 
reliability analysis of the E-16-FK highway bridge. 

Random Variable Mean COV References 
Area of transverse steel 

reinforcing in the slab 
Asr 

Varies (m2) Varies Akgül (2002) 

Yield strength of 
reinforcing steel in 
slab fy 

308.9 MPa 0.11 Akgül (2002) 

Compressive strength of 
the concrete slab f’cs 

19.03 MPa 0.18 Akgül (2002) 

Modeling uncertainty for 
flexure in the slab γmfs 

1.02 0.06 Akgül (2002) 

Slab reinforcing depth 
uncertainty factor λdeff 

1.00 0.02 Akgül (2002) 

Asphalt weight 
uncertainty factor λa 

1.00 0.025 Akgül (2002) 

Concrete weight 
uncertainty factor λc 

1.05 0.01 Akgül (2002)) 

Effect of the load on the 
slab λtrk 

Varies 0.20 Akgül (2002);                  
Okasha and Frangopol (2010d) 

Yield strength of steel 
girders Fy 

252.6 MPa 0.12 Akgül (2002) 

Plastic section modulus 
of steel girders Sp 

Varies (m3) Varies Akgül (2002) 

Impact factor for steel 
girders If 

1.12 0.10 Akgül (2002) 

Distribution factor for 
steel girders Df. 

1.44 0.12 Akgül (2002) 

Modeling uncertainty for 
flexure in girder γmfg 

1.11 0.11 Akgül (2002) 

Structural steel weight 
uncertainty factor λs 

1.03 0.08 Akgül (2002) 

Moment due to truck load 
on steel girders Mtrk 

Varies (kN-m) 0.20 Akgül (2002);                  
Okasha and Frangopol (2010d) 
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Table 3.2. Variables and their corresponding parameters used in the evaluation of the 
risk-attributes associated with the investigated highway bridge. 

Random Variable Mean COV Distribution 
type Reference 

Rebuilding cost parameter 
C1 

$1292/m2 -- Deterministic Dong et al. (2014f) 

Width of the bridge W 10.4 m -- Deterministic FHWA (2013) 
Length of the bridge L  69.2 m -- Deterministic FHWA (2013) 
Occupancy rate for non-

truck vehicles Or 
1.56 -- Deterministic Stein et al. (1999) 

Percentage of average 
daily traffic that is 
trucks TTp  

4% -- Deterministic FHWA (2013) 

Detour length Ld 7.9 km 0.20 LN 

Based on local 
transportation 

network; Google 
Maps (2014) 

Average daily traffic ADT Varies 0.20 LN FHWA (2013) 
Duration of detour Dd 180 days 0.20 LN Stein et al. (1999) 

Average detour speed Sd 104 km/hr 0.20 LN Based on local 
transportation network 

Safe following distance fd 55 m 0.20 LN Colorado State Patrol 
(2011) 

Carbon dioxide emissions 
associated with cars 
CPDC 

0.22 kg/km 0.20 LN Dong et al. (2014f) 

Carbon dioxide emissions 
associated with trucks 
CPDT  

0.56 kg/km 0.20 LN Dong et al. (2014f) 

Energy consumption 
associated with each 
vehicle EPD  

3.80 MJ/km 0.20 LN Dong et al. (2014f) 

Carbon dioxide emissions 
associated with 
rebuilding CDREB 

159 kg/m2 0.20 LN Dequidt (2012) 

Energy consumption 
associated with 
rebuilding ECREB  

2.05 GJ/m2 0.20 LN Dequidt (2012) 
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Table 3.3. Minimum and maximum values of risk-attributes.  

 
 
  

Attribute type Attribute Minimum RAmin Maximum RAmax 

Economic Rebuilding cost RRB (USD) 171 172,572 

Social 

Extra travel time RETT (hr) 41 364,895 
Extra travel distance RETD 
(km) 2827 24,824,743 

Fatalities RFT (no.) 6.375 × 10-4 2.655 

Environmental 
CO2 emissions REC (kg) 691 5,975,918 
Energy consumption REE 
(MJ) 11,012 95,462,023 
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Table 3.4. Maintenance plans corresponding to the representative risk solutions on the 
Pareto front shown in Figure 3.8. 

Solution Maintenance 
actions 

Time of application 
(years) 

A1 [D, S, S] [32, 43, 61] 

A2 [D, GI, D] [40, 57, 71] 

A3 [D, GI, GI] [50, 70, 74] 

B1 [S, S, S] [33, 52, 65] 

B2 [D, GI, GI] [40, 58, 73] 

B3 [GI, D, GI] [50, 69, 74] 

Note:  D = replace the deck; GI = replace all interior 
girders; S = replace the entire superstructure 
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Table 3.5. Minimum annual utility values corresponding to six solutions within the 
Pareto front in Figure 3.8. 

Solution Cost utility 
uc 

Minimum annual utility 

Economic 
uecon 

Social 
usoc 

Environmental 
uenv 

Sustainability 
us 

A1 0.4037 0.5636 0.6769 0.6768 0.6840 

A2 0.7026 0.3219 0.5711 0.5757 0.5527 

A3 0.7671 0.1107 0.4158 0.4531 0.3265 

B1 0.5613 0.7570 0.8708 0.8707 0.8705 

B2 0.8790 0.5634 0.7426 0.7426 0.7500 

B3 0.9044 0.0950 0.2081 0.2311 0.1800 
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Table 3.6. Maximum annual utility risk-attribute values corresponding to solutions A 
and B within the Pareto front in Figure 3.8. 

Solution 

Maximum annual risk-attribute values 

Economic Social Environmental 

Rebuilding 
cost RRB 
(USD) 

Extra 
travel 
time 
RETT 
(hr) 

Extra 
travel 

distance 
RETD (km) 

Fatalities 
RFT (no.) 

CO2 
emissions 
REC  (kg) 

Energy 
consumption 

REE (MJ) 

A1 55,894 83,158 5,657,427 0.605 1,361,880 21,755,288 

A2 96,798 113,552 7,725,250 0.871 1,860,760 29,721,230 

A3 14,274 15,376 10,461,001 1.435 2,528,629 40,361,388 

B1 60,408 72,990 4,965,703 0.533 1,195,365 19,095,305 

B2 96,798 133,247 9,065,123 0.969 2,182,195 34,859,373 

B3 162,103 306,079 20,823,333 2.364 5,017,196 80,133,059 
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Table 3.7. Maintenance plans corresponding to solutions C1, C2, and C3 on the Pareto 
front shown in Figure 3.11. 

Solution Maintenance 
actions 

Time of application 
(years) 

Cost utility uc 
Minimum annual 

performance utility 
us 

C1 [D] [55] 0.9541 0.4175 
C2 [D, GI] [41, 71] 0.9134 0.6939 
C3 [S, S, GI] [33, 54, 69] 0.6595 0.8559 
Note:  D = replace the deck; GI = replace all interior girders; S = replace the entire 

superstructure 
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Table 3.8. Maintenance plans corresponding to solutions D1, D2, and D3 on the Pareto 
front shown in Figure 3.13 considering various weighting factors. 

Solution Weighting 
factors 

Maintenance 
actions 

Time of 
application 

(years) 
Cost utility uc 

Minimum 
annual 

performance 
utility us 

D1 (0.8, 0.1, 0.1) [S, S, S] [30, 43, 58] 0.4879 0.8449 
D2 (0.1, 0.8, 0.1) [D, GI, S] [39, 52, 65] 0.8005 0.8308 
D3 (1/3, 1/3, 1/3) [D, GI, GI] [40, 58, 73] 0.8790 0.7500 

Note:  D = replace the deck; GI = replace all interior girders; S = replace the entire 
superstructure 
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Table 3.9. Maintenance plans and associated utility values corresponding to the 
representative solutions on the four-dimensional Pareto front contained in Figure 3.14. 

Solution Maintenance 
actions 

Respective time 
of application 

(years) 

Cost 
utility uc 

Minimum annual utility 
Economic 

uecon 

Social 
usoc 

Environmental 
uenv 

E1 [D, GI, S] [40, 52, 64] 0.8001 0.5634 0.8397 0.8540 

E2 [D, GI, S] [34, 49, 61] 0.7805 0.7303 0.8496 0.8506 

E3 [S, S, GI] [32, 56, 71] 0.6623 0.7783 0.8546 0.8566 
E4 [S, S, S] [37, 56, 67] 0.5991 0.6532 0.8796 0.8812 

Note:  D = replace the deck; GI = replace all interior girders; S = replace the entire 
superstructure 
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Figure 3.1. Flowchart describing the multi-attribute utility perfromance assesment. 
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Figure 3.2. Flowchart describing the bi-objective optimization procedure. 
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Figure 3.3. Transverse cross-section of the superstructure of bridge E-16-FK. 

 

 
  

85 
 



 

Figure 3.4. System reliability model for the investigated bridge superstructure. 
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Figure 3.5. Evolution of annual probability of failure over time of the elements of the 
superstructure and the system, as a whole. 
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Figure 3.6. Time-variant risk attributes considering no maintenance. 
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Figure 3.7. Profiles of annual utility associated with economic, social, and 
environmental sustainability metrics considering no maintenance and a risk averse 

attitude (γ = -1). 
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Figure 3.8. Pareto optimal solutions for three maintenance actions considering risk 
accepting and risk averse attitudes. 
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Figure 3.9. Profiles of annual utility associated with sustainability corresponding to 
three (B1, B2, B3) optimal solutions considering a risk averse decision maker as 

shown in Figure 3.8. 
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Figure 3.10. Time-variant annual risk associated with CO2 emissions REC 
corresponding to representative optimal solutions considering a risk accepting decision 

maker as shown in Figure 3.8. 
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Figure 3.11. Pareto optimal solutions considering a variable number of essential 
maintenance actions and a risk averse decision maker. 
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Figure 3.12. Annual utility associated with sustainability corresponding to 
representative solutions on the Pareto front in Figure 3.11. 
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Figure 3.13. Pareto optimal solutions considering variable multi-attribute utility 
weighting factors and a risk averse decision maker. 
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Figure 3.14:  Pareto optimal solutions for the four-objective optimization problem that 
simultaneously maximizes uc, uecon, usoc, and uenv considering a risk averse attitude (γ = 

1). 
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CHAPTER 4 LIFE-CYCLE UTILITY-INFORMED 
MAINTENANCE PLANNING BASED ON LIFETIME 

FUNCTIONS: OPTIMUM BALANCING OF COST, FAILURE 
CONSEQUENCES AND PERFORMANCE BENEFIT 

4.1 OVERVIEW 

Decision making regarding the optimum maintenance of civil infrastructure systems 

under uncertainty is a topic of paramount importance. This topic is experiencing 

growing interest within the field of life-cycle structural engineering. Embedded within 

the decision making process and optimum management of engineering systems is the 

structural performance evaluation, which is facilitated through a comprehensive life-

cycle risk assessment. Lifetime functions are utilized herein to model, using closed 

form analytical expressions, the time-variant effect of intervention actions on the 

performance of civil infrastructure systems. Multi-attribute utility theory is used to 

incorporate the influence of the decision maker’s risk attitude on the relative 

desirability of lifetime maintenance strategies. The presented decision-support 

framework has the ability to quantify maintenance cost, failure consequences, and 

performance benefit in terms of utility. This framework effectively employs tri-

objective optimization procedures in order to determine optimum maintenance 

strategies under uncertainty. It provides optimum lifetime intervention plans allowing 

for utility-informed decision making regarding maintenance of civil infrastructure 

systems. The effects of the risk attitude, correlation among components, and the 

number of maintenance interventions on the optimum maintenance strategies are 
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investigated. The capabilities of the proposed decision support framework are 

illustrated on an existing highway bridge. 

The work presented in this chapter is based upon the research published in 

Sabatino et al. (2016); Frangopol and Sabatino (2016a,b); and Frangopol et al. 

(2016a,2017). 

 

4.2 INTRODUCTION 

In 2013, the American Society of Civil Engineers reported, within the Report Card for 

America’s Infrastructure, that the average age of the United States’ 607,380 bridges 

was 42 years (ASCE 2013). Additionally, nearly a quarter of these highway bridges 

were classified as either structural deficient or functionally obsolete (FHWA 2013). 

These staggering statistics highlight the dire need to implement rational mitigation 

strategies that maintain structural performance within acceptable levels through the 

life-cycle of deteriorating civil infrastructure. Throughout their service lives, highway 

bridges may be subjected to various stressors that cause their structural performance to 

decrease over time, ultimately leading to failure. The consequences associated with 

structural failure can be widespread and significant. In order to avoid the detrimental 

effects of structural failure, lifetime functions, paired with risk and sustainability 

indicators, are utilized within an efficient life-cycle maintenance optimization 

procedure to find intervention strategies that balance maintenance cost, failure 

consequences, and performance benefit.  

Decision making regarding the optimum maintenance of civil and marine 

infrastructures is a topic of paramount importance and is experiencing growing interest 
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within the field of life-cycle structural engineering. In general, decision making may 

be divided into five separate stages: the pre-analysis, problem set-up, uncertainty 

quantification, utility assignment, and optimization (Keeney and Raiffa 1993). First, 

all possible solution alternatives are identified and the uncertainties associated with the 

investigated decision-making problem are accounted for using a probabilistic 

approach. Since technical and economic uncertainties are both expected and 

unavoidable in the life-cycle assessment of civil structures, decisions regarding 

infrastructure must consider all relevant uncertainties associated with the probability 

of structural failure and its corresponding consequences (Ang 2011). For deteriorating 

highway bridges, uncertainties are present within modeling the structural resistance 

(e.g., material properties and element dimensions), the occurrence and magnitude of 

hazards that may impact the structure (e.g., corrosion, fatigue, earthquakes, floods, and 

hurricanes), operating conditions, and loading cases (Stewart 2001).  

After effectively incorporating the appropriate uncertainties, the decision 

maker may assign utility values to the attributes associated with each alternative 

considering his/her risk attitude. Utility theory is applied to normalize each attribute to 

a number between 0 and 1 so that all attributes corresponding to a solution alternative 

can be directly compared. The formulation of the utility function corresponding to 

each attribute greatly depends on the knowledge, preferential characteristics, and risk 

attitude of the decision maker. The attributes investigated herein include cost (i.e., cost 

of essential maintenance), failure consequences (i.e., direct and indirect risks), and 

performance benefit (i.e., improvement in lifetime functions). In this chapter, these 

attributes are identified as cost, risk, and benefit, respectively. In order to effectively 
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combine certain attributes for further use in a tri-objective optimization procedure, a 

multi-attribute utility function is developed that considers the weighted relative utility 

value corresponding to each attribute involved. In the last step of the decision making 

process, optimization is performed in order to find the alternative that maximizes the 

utility value. The proposed framework incorporates three conflicting and inter-related 

objectives into a maintenance optimization procedure that has the capability of 

determining the best intervention schedules (i.e., maintenance plans detailing the 

components to be maintained and timing of interventions) that simultaneously balance 

cost, risk, and benefit. 

Within the proposed decision support system for life-cycle maintenance 

planning of civil structures, several separate detrimental impacts are considered in 

quantifying the consequences of structural failure to the economy, society, and 

surrounding environment in terms of risk. In its most basic form, risk is calculated as 

the probability of occurrence of a specific event multiplied by the consequence 

associated with this event. Previous research efforts have included risk analyses in 

both qualitative (Hessami 1999; Ellingwood 2001) and quantitative manners (Pedersen 

2002; Decò and Frangopol 2011, 2012, 2013; Barone and Frangopol 2014a; Barone et 

al. 2014) considering a wide variety of hazards and many different structures (Arunraj 

and Maiti 2007). 

In this chapter, risk assessment techniques are combined with multi-attribute 

utility theory to establish appropriate risk and performance benefit indicators that 

incorporate different attributes. The utility values associated with risk and benefit are 

computed considering the difference between the risk and benefit attributes after and 
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before maintenance is applied. A similar approach for the risk and benefit assessment 

was employed by Sabatino et al. (2015), in which a decision making support tool was 

developed for the maintenance of existing highway bridges considering multi-attribute 

utility theory within a bi-objective optimization process that balances the utility values 

associated with maintenance cost and sustainability. Multi-attribute utility theory was 

also employed by Dong et al. (2014e) to determine optimum retrofit actions for a 

network of bridges subjected to seismic hazard. Although previous studies employed 

multi-attribute utility to represent the risks that plague structures, the work herein 

focuses on establishing a comprehensive decision support framework that (a) utilizes 

computationally efficient lifetime functions, (b) incorporates a large variety of criteria 

within a tri-objective optimization procedure that balances maintenance cost, risks, 

and benefit, and (c) may be applied to a wide array of engineering systems.   

Lifetime distributions are used to represent the performance of a structural 

system over its life-cycle through functions that probabilistically characterize the 

system’s time-to-failure, which is regarded as a continuous, non-negative random 

variable (Leemis 1995). These functions have been utilized to model the time-variant 

effect of intervention actions on the performance of structural systems in several 

studies including van Noortwijk and Klatter (2004), Yang et al. (2004, 2006a,b), 

Okasha and Frangopol (2009, 2010c); Orcesi and Frangopol (2011), and Barone and 

Frangopol (2013, 2014a,b). Moreover, research regarding lifetime functions has 

emphasized their power as an effective tool in quantifying the lifetime reliability of 

highway bridges (Yang et al. 2004). Barone and Frangopol (2014a,b) used system 

hazard and availability to quantify structural performance and determine optimum 
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maintenance schedules for an existing highway bridge. However, lifetime functions 

were not used to calculate risk. Lifetime functions are employed herein to determine 

the benefit provided by optimized lifetime maintenance plans based upon minimum 

lifetime system availability and maximum lifetime system hazard. Furthermore, these 

functions are directly incorporated within risk calculations herein in order to compute 

both direct and indirect risks.  

As indicated previously, the proposed decision-support framework has the 

ability to quantify cost, risk, and benefit in terms of utility and effectively employs tri-

objective optimization procedures in order to determine optimum maintenance 

strategies. The effects of the risk attitude and preferences of the decision maker, in 

addition to the number of maintenance interventions on the optimum maintenance 

strategies, are investigated. A genetic algorithm (GA) based optimization procedure is 

employed to find optimum maintenance schedules. The proposed approach provides 

optimum lifetime intervention strategies to the decision maker that ultimately allows 

for risk-informed decision making regarding maintenance of civil infrastructure. The 

capabilities of the presented decision support framework are illustrated on five 

representative 4-component series-parallel systems and an existing highway bridge 

located in Colorado. 

4.3 LIFETIME FUNCTIONS 

The main advantage of employing lifetime distributions within reliability calculations 

is the extreme mathematical flexibility that is provided by their closed-formulation 

expression of the distribution of time-to-failure. Due to their mathematical versatility, 
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computations involving lifetime distributions are efficient; thus, these distributions are 

particularly suitable for problems involving optimization (Okasha and Frangopol 

2010b). Generally, lifetime distributions are used to represent time-variant structural 

performance through continuous functions that are established in closed-form by 

considering the time-to-failure of components as a continuous random variable 

(Okasha and Frangopol 2010c). More specifically, the time-to-failure random variable 

is defined as the time elapsing from the time a component is put into operation until it 

fails for the first time (Hoyland and Rausand 1994). The type of distribution used to 

represent the probability density function (PDF) associated with the time-to-failure of 

a particular component is determined based upon its failure characteristics and 

historical material behavior. Commonly employed distributions used to represent the 

PDF of time-to-failure are the Weibull and exponential distributions (Jiang and 

Murthy 1995; Lai and Murthy 2003; van Noortwijk and Klatter 2004; Okasha and 

Frangopol 2010c). With knowledge of the PDFs describing the times-to-failure of the 

components comprising an engineering system, the distribution of the system time-to-

failure can be calculated considering the type and configuration (e.g., series, parallel, 

or series-parallel) of the system.  

4.3.1 Component analysis 

The most commonly used lifetime functions include the PDF of the time-to-failure and 

survivor, availability, and hazard functions. The Weibull PDF of component time-to-

failure is (Leemis 1995): 

( ) ( )[ ] 0forexp)( 1 >⋅−⋅⋅⋅= − tttktf kk λλλ  (4.1) 
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where k and λ are the shape and scale parameter of the Weibull distribution, 

respectively. In general, the shape and scale parameters used in the Weibull PDF of 

the time-to-failure associated with the components of a structural system are 

determined based upon failure data related to specific materials and deterioration 

mechanisms. Next, the probability that the time-to-failure TF of the investigated 

component is less than a given time instant t, denoted as the cumulative-time failure 

probability F(t), is: 

[ ] ∫=>=
t

F dxxfTtPtF
0

)()(  (4.2) 

where TF = time-to-failure of the investigated component or system. The complement 

of F(t) is the survivor function S(t), which expresses the probability of a component or 

system surviving (i.e., not failed) before the time instant t. S(t) has been utilized to 

assess bridge lifetime performance and to facilitate the implementation of maintenance 

strategies to an existing structure (Yang et al. 2004, 2006a,b). The survivor function, 

in its most general form, is (Leemis 1995): 

[ ] ∫
∞

=≤=−=
t

F dxxfTtPtFtS )()(1)(  (4.3) 

If f(t) follows a Weibull distribution, the associated survivor function is: 

( )[ ]kttFtS ⋅−=−= λexp)(1)(  (4.4) 

The survivor function may be used as a basis to calculate other lifetime functions. For 

example, the availability of a component A(t), which is defined as the probability that 

the component is functioning at a given time instant, coincides with S(t) when no 

maintenance is considered (Ang and Tang 1984; Leemis 1995). The availability 
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function has been employed in assessing the effects of implementing intervention 

strategies to existing civil infrastructure (Biswas et al. 2003; Barone and Frangopol 

2014a,b). 

 In addition to availability, the hazard function h(t) is also investigated as a 

suitable performance indicator in the context of lifetime functions. This function 

provides information regarding how fast a component becomes non-functional over 

time. Overall, the hazard metric is representative of the occurrence of failure as a 

function of time for any component. There are several other common terms utilized to 

describe the hazard function including hazard rate, failure rate, rate function, and 

intensity function. The hazard function has been successfully applied to several areas 

of science and engineering, including biological sciences (Tanner and Wong 1984; 

Heidenreich et al. 1997; Horová et al. 2009), performance assessment of engineering 

systems (Zhang and Li 2010; Amari et al. 2012; Thies et al. 2012), fatigue analysis 

(Lawson and Chen 1995), and optimum maintenance planning of complex systems 

(Cui et al. 2004; Barone and Frangopol 2014a,b). 

The hazard function h(t) for a particular component is calculated by 

considering the probability of failure between t and t + Δt conditioned on the event 

that the component is functioning at time t (Leemis 1995): 

[ ]
)(1

)(
)(
)(

)(
)('lim)(

0 tF
tf

tS
tf

tS
tS

t
TtttTtPth FF

t −
==−=

∆
≤|∆+≤≤

=
→∆

 (4.5) 

The units of h(t) are typically given in failures per time unit. Therefore, in order to 

determine the number of expected failures within a certain interval, h(t) is multiplied 

by that time interval. The shape of the hazard function is indicative of how a 
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component ages. In general, when the hazard function is large, the component is 

subject to a significant risk of failure, and when the hazard function is small, the 

component has less chance of experiencing failure. Considering the assumption that 

the PDF of time-to-failure f(t) follows the Weibull distribution, the expression for h(t) 

is: 

1)( −⋅⋅= ktkkth λ  (4.6) 

 

4.3.2 System analysis 

Thus far, the mathematical relations for the survivor S(t), availability A(t), and hazard 

h(t) functions for the component level have been presented. In order to formulate 

system-level expressions, the configuration of the system must be considered. For 

systems comprised of components with known lifetime distributions, the closed-form 

system survivor Ssys(t), availability Asys(t), and hazard hsys(t) functions may be obtained 

for both statistically independent (i.e., ρ = 0) and perfectly correlated (i.e., ρ = 1) 

components based upon cut set techniques (Leemis 1995) considering the system 

configuration (e.g., series, parallel, or series-parallel). 

4.3.3 Effects of essential maintenance 

The main advantage of employing lifetime functions to facilitate efficient maintenance 

planning lies in the fact that it is possible to perform direct computations in analytical 

form. In general, the type of maintenance applied to structural components greatly 

depends upon the deterioration mechanisms and their evolution in time. Accordingly, 

different maintenance measures may be applied during the lifetime of a structural 
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component. Assuming that only essential maintenance (i.e., full replacement of 

component(s)) is implemented and that interventions are performed N times during the 

lifetime of a deteriorating system, the resulting change to component lifetime 

functions may be evaluated. Si(t) = 1 – Fi(t), Ai(t), and hi(t) represent the ith’s 

component lifetime functions with no maintenance, while  Si,m(t) = 1 – Fi,m(t), Ai,m(t), 

and hi,m(t) denote the same component’s lifetime functions considering maintenance. 

Assuming essential maintenance is implemented at times T1, … , TN on the ith 

component and T0 = 0 (i.e., the initial observation time), the ith component’s resulting 

survivor function adjusted for maintenance Si,m(t), is: 
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where Si(t) = 1 – Fi(t) = survivor function associated with component i considering no 

maintenance. Each time essential maintenance is applied to component i, the 

magnitude of the slope corresponding to Si,m(t) = 1 – Fi,m(t) decreases. Although the 

survivor function is a continuous, monotonically decreasing function of time, the 

availability function abruptly increases in value whenever maintenance is performed. 

More specifically, it is assumed that component availability is restored to its original 

value (i.e., Ai,m(t) = 1) when essential maintenance (i.e., full replacement) is performed 

on a particular component. The availability function corresponding to a maintained 

component i, Ai,m(t), is obtained from the unmaintained component survivor function 

as (Okasha and Frangopol 2010b): 
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In a similar way, component hazard is restored to its initial value (i.e., hi,m(t) = 

0) after each replacement. The hazard function for the maintained component i is: 

1( ) ( ) fori ,m i N N Nh t h t T T t T += − ≤ ≤  (4.9) 

where hi(t) = hazard function associated with component i without maintenance. 

After component lifetime functions are established for a particular maintenance 

plan, the lifetime functions at the system-level can provide information regarding the 

structural system performance considering maintenance. Calculations of system 

survivor Ssys,m(t), availability Asys,m(t), and hazard hsys,m(t) are highly dependent upon 

system configuration and the correlation among components (i.e., statistically 

independent  ρ = 0 or perfectly correlated  ρ = 1, where ρ = correlation coefficient). 

4.4 ATTRIBUTES EVALUATION 

This section highlights the three separate objectives utilized within the optimization 

procedure embedded within the proposed decision support framework for lifetime 

maintenance planning. Maintenance cost, failure consequences quantified via risk 

metrics, and performance benefit measured by the improvement in minimum annual 

system availability and maximum annual system hazard are regarded as the three 

objectives investigated herein. 
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4.4.1 Cost 

The cost of a lifetime maintenance plan is computed in terms of USD in the year the 

structure was built. The total cost of a lifetime essential maintenance strategy is 

determined as: 

1

( )
(1 )

N
EM , j

maint t
j m

C t
C

r=

=
+∑  (4.10) 

where CEM,j = cost of maintenance action j applied at year t (USD), rm = annual 

discount rate of money, and N = total number of essential maintenance actions 

considered throughout the lifetime of a structure. 

4.4.2 Consequences 

Risk, which combines the probability of occurrence of a specific event with the 

consequence associated with this event, is a crucial performance indicator for civil 

infrastructure. A simple formulation of risk is (Ang and De Leon 2005): 

χ⋅= pR  (4.11) 

where p = probability of occurrence of an adverse event and χ = consequences of the 

event. Three main consequences are investigated herein for highway bridges: 

economic, social, and environmental impacts. More specifically, these consequences 

include the rebuilding and repair costs (economic losses); extra travel time and 

distance that drivers must endure, in addition to any fatalities that may occur (social 

impact); and energy consumption and carbon dioxide (CO2) emissions (environmental 

consequences). Both the effects of direct (i.e., economic impacts) and indirect (i.e., 

social and environmental losses) consequences may be incorporated into the 
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calculation of the total risk. Overall, the evaluation of a wide variety of consequences 

associated with structural failure plays a fundamental role in the decision making 

process regarding infrastructure management planning. Time-variant direct and 

indirect risk attributes are calculated considering the following expressions: 

)()()( , tCtPtRA directsysfdirect ⋅=  (4.12) 

,( ) ( ) ( )indirect f sys indirectRA t P t C t= ⋅  (4.13) 

where Pf,sys(t) = probability of system failure during year t, Cdirect(t) = direct 

consequences associated with system failure, and Cindirect(t) = indirect consequences. 

The total risk associated with a particular system is calculated considering the sum of 

its direct and indirect risks. In this chapter, the annual probability of system failure 

Pf,sys(t) is calculated using the system hazard function hsys(t) and the cumulative-time 

failure probability is calculated using the complement of the survivor system function 

Fsys(t) = 1 – Ssys(t) . These two ways of calculating the system probability of failure 

(i.e., annual and cumulative) yield distinctly different optimum maintenance plans 

considering all other parameters remain the same. In fact, the illustrative highway 

bridge example presented herein investigates the sensitivity of the optimum solutions 

to which form of the probability of system failure is utilized within risk calculations.  

Although specific risks related to the economic, social, and environmental 

impacts are considered herein, the decision maker may include his/her desired number 

of risk attributes within the related lifetime maintenance optimization procedure. For 

example, if the most dire concern of the decision maker is the effects of structural 
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failure on the surrounding environment and local society, then he/she may decide to 

employ only the indirect consequences within the developed risk calculation approach. 

4.4.3 Benefit 

The performance benefit utilized within the proposed tri-objective maintenance 

optimization framework is calculated based on the improvement in lifetime function 

values when essential maintenance strategies are implemented. Two indicators are 

utilized as benefit attributes herein: (a) an increase in the minimum lifetime 

availability and (b) a decrease in the maximum lifetime hazard when comparing the no 

maintenance case with the optimum maintenance case. Therefore, when considering 

just the increase in minimum lifetime availability as the sole benefit, the difference 

between minimum lifetime availability offered by the cases without and with 

maintenance serves as the index employed to measure the performance benefit. A 

similar procedure may be carried out to determine the performance benefit in terms of 

system hazard. Although the benefits included herein are related to availability and 

hazard, other benefits of implementing lifetime maintenance strategies may be 

included in the proposed decision making framework.  

4.5 UTILITY ASSESSMENT 

Utility functions that depict the relative value of each attribute to the decision maker 

considering his/her particular risk attitude play vital roles within the proposed decision 

making support system. Maintenance strategies associated with relatively high utility 

values are typically the most desirable solutions. This section provides the process for 

formulating single and multi-attribute utility functions that effectively depict the 

111 
 



decision maker’s value of lifetime maintenance schedules in terms of cost, risk, and 

benefit. Overall, the computational procedure adopted herein for computing attributes 

and their corresponding utility values, in relation to decision making, is shown in 

Figure 4.1.  

4.5.1 Single attribute utility assignment 

Two types of attributes are considered: (a) one that possesses decreased desirability 

when its attribute value is increased, and (b) another that exhibits increased 

desirability as the attribute value increases. The investigated attributes that fall into the 

first category are maintenance cost, direct and indirect risk, and system hazard. The 

system availability is the only attribute herein that causes an increase in desirability as 

the attribute value is increased. Figure 4.2(a) depicts a qualitative representation of 

typical exponential utility functions that are monotonically decreasing for the 

attributes that experience a decrease in utility (i.e., desirability) as the attribute value 

increases. Conversely, Figure 4.2(b) shows representative exponential utility functions 

that are monotonically increasing for the system availability; as the system availability 

increases, the utility also increases. The governing equation for the utility functions 

shown in Figure 4.2(a) is (Ang and Tang 1984): 
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where γ = risk attribute of the decision maker (i.e., γ > 0 indicates risk aversion and γ < 

0 denotes risk acceptance), a = expected value of the attribute value under 

investigation, amin = minimum value of the attribute, and amax = maximum value of the 

attribute. The minimum and maximum values of the investigated attribute are utilized 
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to normalize the utility so that it always takes values between 0 and 1. Considering the 

same solution alternative, a risk averse attitude will produce yield a higher utility than 

that yielded from a risk accepting attitude. Similarly, the monotonically increasing 

utility functions shown in Figure 4.2(b) are governed by the following equation. 
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For a single attribute, ua = 1 and ua = 0 correspond to the most and least desirable 

value that the investigated attribute may take, respectively. In general, a risk averse 

attitude produces a concave utility function, while a risk accepting attitude is exhibited 

by a convex utility function. 

4.5.2 Multi-attribute utility 

Once the utility function associated with each attribute is appropriately established, 

multi-attribute utility theory may be employed to combine them into single utility 

values that effectively represent each of the three separate utility objectives employed 

in the optimization procedure presented herein (i.e., cost ucost, risk urisk, and benefit 

ubenefit). Although there are various types of multi-attribute utility functions, the 

additive formulation is employed herein. This formulation is obtained by multiplying 

marginal utility values associated with each attribute by weighting factors and 

summing over all attributes investigated (Stewart 1996). The utility associated with 

indirect risk ur,i is computed considering equal contributions of social and 

environmental consequences. Subsequently, the utility associated with the total risk is 

quantified as: 

113 
 



( )irdrtotr uuu ,,, 2
1

+=  (4.16) 

where ur,d = utility associated with direct risk, and ur,i = utility associated with indirect 

risk.  

Similarly, the first step in formulating the multi-attribute utility function representative 

of the performance benefit considering maintenance is calculating the utility of the 

minimum lifetime system availability and maximum lifetime system hazard. If the 

decision maker would like the multi-criteria optimization procedure to include the 

effects of both system availability and hazard, then the following formulation of the 

benefit utility under maintenance is used: 

( )hAmb uuu +=
2
1

,  (4.17) 

where ub,m = utility associated with the performance benefit considering maintenance, 

uA = utility associated with minimum lifetime system availability, and uh = utility 

associated with maximum lifetime system hazard. Additionally, if the decision maker 

desires only the effect of system availability or hazard to be included within the 

performance benefit utility, then ub,m = uA or ub,m = uh, respectively. 

The utility associated with cost ucost is calculated using the exponential form of 

the single attribute utility function. Cost attributes can easily be incorporated within 

the decision making process if reliable data regarding these cost metrics are available. 

4.5.3 Utility associated with performance benefit 

The total utility associated with the performance benefit, ubenefit, is: 

0,, bmbbenefit uuu −=  (4.18) 
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where ub,0 = performance utility without maintenance. 

4.6 TRI-OBJECTIVE OPTIMIZATION FRAMEWORK FOR 
LIFETIME MAINTENANCE PLANNING 

Overall, the three utility functions integrated within the presented multi-criteria 

optimization framework represent the relative value of solution alternatives  to the 

decision maker, considering his/her risk attitude. The three objectives that are all 

simultaneously maximized are: (a) utility corresponding to lifetime maintenance 

investment cost ucost, (b) utility associated with risk urisk, and (c) utility associated with 

performance benefit ubenefit. The general methodology embedded within the proposed 

optimization procedure is shown in Figure 4.1. Within the proposed framework, three 

separate modules compute the objective values utilized within the multi-criteria 

optimization process, whose results come in the form of Pareto optimum solutions 

outlining bridge maintenance planning. Although the numerical examples presented 

herein address the life-cycle essential maintenance planning problem, the proposed 

multi-criteria decision support system has the capability to optimize non-essential 

maintenance interventions (e.g., preventive measures which may delay deterioration or 

temporarily reduce the rate of deterioration) if information regarding the effect of 

these actions becomes available. A set of Pareto optimum solutions is obtained 

utilizing GAs within an adequate number of generations (Okasha and Frangopol 2009; 

Frangopol 2011; Dong et al. 2014e). 

The tri-objective optimization problem is formulated as follows: 

Given:  
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• Lifetime functions representing time-variant structural performance of 

components comprising an engineering system (information associated 

with Eqs. 4.1 – 4.6) 

• Monetary cost associated with specific essential maintenance actions 

(input to Eq. 4.10) 

• Risk associated with structural failure (Eqs. 4.11– 4.13) 

• Risk attitude of the decision maker (γ in Eqs. 4.14 and 4.15) 

• Desired attributes to be included (e.g., direct, indirect, or total risk 

within the formulation of urisk) 

• Lifetime under investigation (TL) 

• Total number of maintenance actions (N)  

Find:  

• Components to be maintained  

• Time of application of maintenance actions 

So that: 

• Utility associated with the total maintenance cost ucost is maximized 

• Minimum utility associated with risk urisk over the system’s lifetime is 

maximized 

• Minimum utility associated with performance benefit ubenefit over the 

system’s lifetime is maximized 

Subjected to: 
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• Maximum allowable total maintenance cost 

• Constraints on the allowable minimum and maximum values of each 

attribute (amin and amax, respectively, in Eqs. 4.14 and 4.15) 

• Constraints on the application times of maintenance actions 

 

4.7 ILLUSTRATIVE EXAMPLE 

In order to illustrate the capabilities of the proposed decision support system, the 

presented methodology is demonstrated on five systems consisting of the four same 

components, as shown in Figure 4.3. For these five configurations, the utility 

assignment is carried out and the evaluation of the no maintenance case is conducted 

in order to determine the effect of system configuration on the utility profiles. The 

shape ki and scale λi parameters corresponding to the Weibull distribution are used to 

define the PDF of time-to-failure of the four components investigated in this example, 

as follows: component 1, k1 = 2.6 and λ1 = 8 × 10-3; component 2, k2 = 2.4 and λ2 = 6 × 

10-3; component 3, k3 = 2.4 and λ3 = 5 × 10-3; and component 4, k4 = 2.1 and λ4 = 6 × 

10-3. For the systems in Figure 4.3, the closed-form system survivor Ssys(t), availability 

Asys(t), and hazard hsys(t) functions are obtained for both statistically independent (i.e., 

ρ = 0) and perfectly correlated (i.e., ρ = 1) components. The cumulative-time failure 

probability, F(t), hazard h(t), and availability A(t) of each of the four components in 

Figure 4.3 are shown in Figure 4.4(a), Figure 4.5(a), and Figure 4.6(a), respectively. 

Considering the five system configurations shown in Figure 4.3, the system 

cumulative-time failure probability Fsys(t) = 1 – Ssys(t), availability Asys(t), and hazard 

hsys(t) for the extreme correlation cases are shown in Figure 4.4(b), Figure 4.5(b), and 
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Figure 4.6(b),respectively. Since the calculation of the probability of failure may use 

either Fsys(t) or hsys(t), Figure 4.7 depicts the effects of correlation among components 

on both the cumulative-time system failure probability and annual system failure 

probability of systems A and E. The most conservative cases are associated with the 

cumulative-time failure probability for the independence and full correlation 

assumptions, for systems A and E, respectively. 

Next, the consequences of structural failure are examined and the 

corresponding risk attributes are evaluated for Systems A to E. The economic impact 

(i.e., direct loss) is measured in terms of the risk associated with the rebuilding cost 

Cdirect during a certain year. Similarly, the indirect losses (i.e., consequences to local 

society and environment) are measured in terms of the risk associated with the 

monetary indirect consequences Cindirect. For illustrative purposes, in this example, 

Cdirect and Cindirect are assumed as 400,000 USD and 1,000,000 USD, respectively. 

Considering these assumptions, direct, indirect, and total risk profiles for systems A 

and E are shown in Figure 4.8. 

The last step involves formulating the time-variant utility values associated 

with risk and benefit. Once the time-variant risk and benefit attributes are determined, 

they may be transferred to utility considering the exponential formulations in Eqs. 

(4.14) and (4.15). For example, the utility corresponding to each attribute is calculated 

considering the range of risk attribute values shown in Table 4.1. In this table, amin and 

amax are the expected attribute values at t = 0 and t = TL (i.e., 60 years). urisk and ubenefit 

are computed using Eqs. (4.16) to (4.18). Figure 4.9 depicts utility profiles for system 

A with risk averse and risk taking attitudes. It is evident from this figure that risk 
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averse and risk taking attitudes yield convex and concave utility functions, 

respectively. Furthermore, time-variant total risk and benefit utilities of the five 

systems A to E are shown in Figure 4.10 and Figure 4.11, respectively. The effect of 

system configuration is quite significant. For systems with a high level of redundancy 

(i.e., systems B and E), both total risk and benefit utilities tend to remain at high levels 

for a longer period of time than those associated with the other systems. 

4.8 CASE STUDY 

The case study presented herein applies the developed framework to the E-17-HS 

bridge, an existing reinforced concrete highway bridge located in in Adams County, 

Colorado. The bridge deck is supported by four reinforced concrete T-girders, as 

detailed in Akgül (2002). The superstructure of bridge (i.e., the system) is modeled 

with a series-parallel model that defines system failure as either failure of the deck or 

any two adjacent girders.  

It is assumed that the PDFs of time-to-failure of the three main components of 

the bridge superstructure, the deck (D), exterior girders (GE), and interior girders (GI), 

follow the Weibull distribution with the following shape ki and scale λi parameters: (a) 

deck, k1 = 2.4 and λ1 = 8 × 10-3; (b) exterior girders, k2 = 2.3 and λ2 = 8 × 10-3; and (c) 

interior girders, k3 = 2.1 and λ3 = 6 × 10-3 (Barone and Frangopol 2014a). The 

functions F(t), h(t) and A(t) associated with no maintenance considering extreme 

correlations and a lifetime TL = 75 years are reported in Figure 4.12. Figure 4.13 

depicts the annual and cumulative system probability of failure profiles under extreme 

correlation conditions. The five possible maintenance options and their associated 
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costs considered herein are (Barone and Frangopol 2014a,b); replacing the deck (D), 

100,000 USD; replacing the two exterior (GE) or the two interior (GI) girders, 80,000 

USD; replacing all girders (G), 140,000 USD; and replacing the entire superstructure 

(S), 200,000 USD. An annual discount rate of money rm = 0.02 is assumed unless 

otherwise noted. 

The next step includes evaluating the detrimental consequences associated with 

structural failure of the system. Based on Dong et al. (2015), the expected value of all 

the risk attributes are calculated in terms of their respective units. Namely, the 

economic impact (i.e., direct loss) is measured in terms of the risk associated with the 

rebuilding cost RRB during a certain year, while the social consequences of bridge 

failure include the extra travel time RETT and distance RETD experienced by vehicle 

operators, in addition to any fatalities that may occur RFT. The third type of risk 

examined encompasses the detrimental effects of structural failure on the environment. 

More specifically, the environmental metric accounts for two impacts: (a) carbon 

dioxide emissions REC, and (b) energy consumption associated with detour and bridge 

repair REE. In general, indirect risks integrate the effects of both social and 

environmental consequences of structural failure.  

Within this chapter, the investigated risk attribute values may be computed in 

two different ways:  one in which the annual probability of failure (i.e., Pf,sys in Eqs. 

4.12 and 4.13) is derived directly from the system hazard and one that utilizes the 

system cumulative distribution function (CDF) as a measure of system failure (i.e., 

Fsys(t) = 1 – Ssys(t)). Considering the parameters in Table 4.2, the time-variant 

consequences considering the no maintenance case are determined. The time-variant 
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profile of the expected value corresponding to each risk attribute considering statistical 

independence among components (ρ = 0) is shown in Figure 4.14.  

Within the proposed tri-objective optimization procedure, for each alternative, 

it is necessary to evaluate the utilities associated with total maintenance cost ucost, risk 

urisk, and benefit ubenefit. The value associated with ucost is obtained from Eq. (4.14) 

with minimum cost amin = 0 and maximum budget amax = 400,000 USD. Once the 

time-variant risk and benefit attributes are determined, they may be transferred to 

utility considering the exponential formulations in Eqs. (4.14) and (4.15). The utility 

value corresponding to each attribute is calculated considering the range of risk 

attribute values shown in Table 4.3, with the system hazard utilized as the probability 

of failure. Within this case study, these minimum and maximum attribute values are 

obtained considering the no maintenance case; amin and amax  are the expected attribute 

values at t = 0 and t = TL (i.e., 75 years) assuming no maintenance. In other cases, the 

decision maker may directly assign values to amin and amax in order to reflect personal 

risk tolerances. Furthermore, urisk and ubenefit are computed considering Eqs. (4.16) to 

(4.18). Figure 4.15 depicts the time-variant utility profiles corresponding to the risk 

and benefit considering no maintenance. In this case, all utilities decrease continuously 

over the lifetime of the structure. The application of essential maintenance 

interventions improves the performance of the structure and reduces risk; lifetime 

maintenance planning can effectively mitigate a variety of risks while simultaneously 

ensuring that performance is within acceptable levels. 

There are several inputs that influence the final results of the proposed decision 

support tool. For this case study, the optimization is performed by simultaneously 
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maximizing the utility associated with total maintenance cost ucost, the minimum utility 

corresponding to the risk urisk, and the minimum utility associated with the benefit 

ubenefit over the lifetime of the bridge (i.e., TL = 75 years). The main output of this 

optimization procedure are the bridge components to be maintained and their 

respective times of application. The following constraints are also considered herein:  

(a) total maintenance cost should not exceed 400,000 USD, (b) constraints on the 

allowable minimum amin and maximum amax values of each risk and benefit attribute 

are defined in Table 4.3, (c) essential maintenance may not be performed before t = 5 

years or after t = 70 years, and (d) consecutive maintenance actions must be performed 

at least 3 years apart. The tri-objective maintenance planning problem is solved using 

a genetic algorithm-based optimization approach. MATLAB’s Global Optimization 

Toolbox (MathWorks 2013) is utilized in order to determine optimum lifetime 

maintenance strategies for the highway bridge investigated. The problem presented 

was solved using MATLAB on a Dell Precision R5500 rack workstation equipped 

with two six cores X5675 Intel Xeon processors with 3.06 GHz clock speed and 24 

GB DDR3 memory. 

The first set of optimum solutions presented herein employs an annual risk 

formulation that incorporates the system hazard function. In this particular example, 

both the hazard and availability improvements experienced from maintenance are used 

to establish the utility associated with benefit. Three-dimensional Pareto fronts 

obtained considering different risk attitudes γ, correlations among components ρ, 

number of maintenance actions NEM, and discount rates of money rm are shown in 

Figure 4.16.  
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Considering the two Pareto fronts depicted in Figure 4.16a (i.e., NEM = 3, ρ = 0, rm = 

2%, and variable risk attitude γ), the maintenance strategies corresponding to solutions 

A1, A2, A3, B1, B2, and B3 are detailed in Table 4.4. The optimum solutions 

associated with a risk averse (i.e., γ = 2) and risk taking (γ = -2) decision maker are 

A1, A2, A3 and B1, B2, B3, respectively. They represent maintenance strategies that 

correspond to different values of utility associated with cost, risk, and benefit. The 

maintenance plan for solution A1 entails replacing the interior girders at years 24 and 

70, and replacing the exterior girders at year 47. The maintenance plan associated with 

Solution A3 includes replacing the entire superstructure at years 16 and 57, and the 

deck at year 36. 

Furthermore, the optimum values of the utilities associated with the six 

representative solutions in Figure 4.16a are indicated in Table 4.5. The profiles of the 

utility associated with total risk urisk and performance benefit ubenefit for the 

representative solutions A1, A2, A3 and B1, B2, B3 are shown in Figure 4.17a and 

Figure 4.17b, respectively. In addition to the specific optimum maintenance plans and 

utility values, the maximum and minimum lifetime risk and benefit attributes 

corresponding to each Pareto alternative are also examined; Table 4.6 summarizes the 

maximum and minimum attributes values corresponding to the representative 

optimum maintenance strategies highlighted in Figure 4.16a. In order to illustrate time 

effects associated with the optimum solution A2 for the cases with and without 

maintenance, the risk utility and economic risk profiles are shown in Figure 4.18. 

Furthermore, for the same solution, the performance benefit utility, survival 
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probability, availability, and hazard associated with bridge components and the bridge 

system are indicated in Figure 4.19.  

The Pareto fronts contained within Figure 4.16a are further detailed in Figure 

4.20 for the case 0.5 ≤ ubenefit ≤ 0.6. As shown, for Pareto solutions exhibiting a benefit 

utility between 0.5 and 0.6, the risk utility for a risk averse (i.e., γ = 2) and risk 

accepting (i.e., γ = -2) decision maker always falls in the range of 0.55 ≤ urisk ≤ 0.62 

and 0.37 ≤ urisk ≤ 0.45, respectively. Similarly, the cost utilities associated with the 

specific solutions outlined in Figure 4.20 fall in the range 0.81 ≤ ucost ≤ 0.82 and 0.31≤ 

ucost ≤ 0.36 for a risk averse and risk accepting attitude, respectively. 

In addition to the effect of the decision maker’s risk attitude on the Pareto 

solutions, the influence of the assumed correlation among components ρ, the discount 

rate of money rm, and the number of essential maintenance actions NEM are 

investigated. Figure 4.16b depicts Pareto fronts for a risk averse decision maker 

considering two extreme cases of correlation among the components of the system. 

The Pareto fronts associated with statistical independence and perfect correlation are 

examined and two representative solutions C1 and C2 from these fronts are 

highlighted in Figure 4.16b. Similarly, the influence of the discount rate of money on 

Pareto solutions is indicated in Figure 4.16c. The optimum solutions C3 and C4 in 

Figure 4.16c are compared to solutions C1 and C2 within Table 4.7. In this table, the 

cost utilities, corresponding minimum lifetime risk and benefit utilities, and 

maintenance schedules associated with solutions C1, C2, C3, and C4 are summarized. 
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Next, the effect of the number of essential maintenance actions on the Pareto 

solutions is examined. Figure 4.16d shows Pareto solutions considering a variable 

number of essential maintenance actions (i.e., NEM = 1, 2, or 3), a discount rate of 2%, 

and a variable risk attitude. The maintenance plans corresponding to the three 

representative solutions on each of the Pareto fronts in Figure 4.16d, solutions D1, D2, 

D3, E1, E2, and E3, in addition to their associated cost, risk, and benefit utilities, are 

detailed in Table 4.8. In general, maintenance plans that consider only one 

intervention have the lowest cost (i.e., high cost utility) but, as a limit, can only 

achieve a certain levels of risk and benefit utilities. Intervention strategies that contain 

two or more essential maintenance actions can achieve higher levels of utilities 

associated with risk and benefit but possess higher maintenance costs (i.e., lower cost 

utility) when compared to the plans containing only one maintenance action. This 

trend can also be observed in Figure 4.21, which contains the time-variant risk and 

benefit utilities corresponding to solutions D1, D2, and D3. Solution D3 dictates 

maintenance that frequently restores the performance benefit and risk utilities and 

allows them to remain relatively large throughout the lifetime, while Solution D1 only 

contains one intervention that dramatically increases the risk and performance benefit 

utilities but is unable to sustain high levels throughout the entire lifetime. 

The final part of this case study includes the comparison of the Pareto fronts 

obtained by carrying out the lifetime maintenance optimization considering annual or 

time-cumulative system failure probability, calculated with hsys(t) and Fsys(t), 

respectively. Figure 4.22 presents the output of these two optimizations assuming a 

risk averse decision maker (i.e., γ = 2), a 2% discount rate of money, and three 

125 
 



essential maintenance actions. The maintenance plans and utility values associated 

with two representative solutions associated with annual and cumulative-time system 

failure probability, F1 and F2, respectively, are reported in Table 4.9. In general, the 

optimum maintenance plans considering cumulative-time system failure probability 

exhibit smaller utilities than those associated with annual system failure probability. 

4.9 CONCLUSIONS 

This chapter presents a decision-support framework that has the ability to quantify 

cost, risk, and benefit in terms of utility and effectively employs tri-objective 

optimization procedures in order to determine the best maintenance strategies for 

structures with deteriorating components characterized by lifetime functions. The 

effects of the risk attitude and preferences of the decision maker, number of 

maintenance interventions, discount rate of money, correlation among components, 

and computational type of system failure probability (i.e., annual or cumulative-time) 

on the optimum maintenance strategies are investigated. The flexibility of the multi-

attribute utility evaluation process is demonstrated by examining five systems with 

different configurations comprised of four components. Additionally, the capabilities 

of the presented optimization and decision support framework are illustrated on an 

existing highway bridge located in Colorado. 

Overall, a comprehensive approach for the multi-objective life-cycle 

maintenance optimization of deteriorating structural systems based on multi-attribute 

utility theory considering lifetime functions and the decision maker’s risk attitude is 

developed. The presented methodology can be used to assist decision making 
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regarding maintenance actions and, ultimately, maintain optimum performance of civil 

structures during their life-cycle by balancing the utility values associated with 

maintenance cost, risk, and performance benefits.  

The following conclusions are drawn: 

1. It is crucial to consider a variety of risks that plague civil infrastructure 

systems when quantifying their lifetime performance. Economic, social, 

and environmental consequences of structural failure are incorporated 

within the proposed methodology by employing multi-attribute utility 

theory. By taking into account a wide variety of risks, the decision maker 

can ensure that the maintenance plans resulting from the optimization were 

calculated in a robust and comprehensive manner. 

2. Optimum essential maintenance strategies are determined using a multi-

criteria optimization algorithm that balances three objectives: the utilities 

associated with maintenance cost, risk, and performance benefit. 

Ultimately, a decision maker is able to make utility-informed decisions 

based on his/her particular preferences and the decision support system 

provided by the Pareto set of optimum solutions.  

3. The risk attitude of the decision maker can have significant influence on 

the optimum solutions resulting from the proposed decision support 

system. Additionally, the number of essential maintenance actions 

considered throughout a structural system’s lifetime has an important effect 

on the final Pareto solutions.  
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4. The way system failure probability is calculated, annual or cumulative-

time, influences the final Pareto solutions.  

5. System modeling greatly influences the optimum maintenance plans. 

Depending upon how system failure is modeled, the optimum time-variant 

utilities can vary significantly. 

6. Employing lifetime functions within risk and life-cycle optimization under 

uncertainty assessment provides mathematical flexibility due to their 

closed-form expression of the distribution of time-to-failure.  

  

128 
 



Table 4.1. Minimum and maximum annual values of attributes involved in the risk and 
benefit assessment of the five four-component systems shown in Figure 4.3.  

  

System 
configuration 
(see Figure 

4.3) 

Attribute 

Independence  
(ρ = 0) 

Full correlation 
(ρ = 1) 

Minimum 
amin 

Maximum 
amax 

Minimum 
amin 

Maximum 
amax 

System A 

Direct risk (USD) 0 1,974 0 784 

Indirect risk (USD) 0 4,935 0 1,959 

System hazard hsys 0 0.0162 0 0.0064 
System availability 
Asys 

0.6656 1 0.8621 1 

System B 

Direct risk (USD) 0 1 0 271 

Indirect risk (USD) 0 3 0 678 

System hazard hsys 0 1 × 10-5
 0 0.0022 

System availability 
Asys 

0.999 1 0.9459 1 

System C 

Direct risk (USD) 0 790 0 783 

Indirect risk (USD) 0 1,976 0 1,959 

System hazard hsys 0 0.0065 0 0.0064 
System availability 
Asys 

0.8617 1 0.8621 1 

System D 

Direct  risk (USD) 0 508 0 501 

Indirect  risk (USD) 0 1,270 0 1,252 

System hazard hsys 0 0.0042 0 0.0041 
System availability 
Asys 

0.8890 1 0.8896 1 

System E 

Direct  risk (USD) 0 152 0 420 

Indirect  risk  (USD) 0 381 0 1,050 

System hazard hsys 0 0.0012 0 0.0034 
System availability 
Asys 

0.9385 1 0.9175 1 
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Table 4.2. Parameters used in the evaluation of the risk attributes associated with the 
E-17-HS bridge. 

Parameter Mean value Reference 
Rebuilding cost parameter C1 1292 USD/m2 (Dong et al. 2014f) 
Width of the bridge W 10.4 m (Akgül 2002) 
Length of the bridge L  64.5 m (Akgül 2002) 
Occupancy rate for non-truck 

vehicles Or 
1.56 (Stein et al. 1999; Barone 

and Frangopol 2014a,b)  
Percentage of average daily 

traffic that is trucks TTp  
4% (Barone and Frangopol 

2014a,b) 

Detour length Ld 10 km (Barone and Frangopol 
2014a,b)  

Average daily traffic ADT 400 vehicles (Barone and Frangopol 
2014a,b) 

Duration of detour Dd 365 days (Barone and Frangopol 
2014a,b) 

Average detour speed Sd 64 km/hr (Barone and Frangopol 
2014a,b) 

Safe following distance fd 55 m (Colorado State Patrol. 2011) 
Carbon dioxide emissions 

associated with cars CPDC 0.22 kg/km (Dong et al. 2014f) 

Carbon dioxide emissions 
associated with trucks CPDT  

0.56 kg/km (Dong et al. 2014f) 

Energy consumption associated 
with each vehicle EPD  3.80 MJ/km (Dong et al. 2014f) 

Carbon dioxide emissions 
associated with rebuilding 
CDREB 

159 kg/m2 (Dequidt 2012) 

Energy consumption associated 
with rebuilding ECREB  

2.05 GJ/m2 (Dequidt 2012) 
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Table 4.3. Minimum and maximum annual values of attributes involved in the risk and 
benefit assessment of the E-17-HS bridge 

 
 

  

Attribute type Attribute 

Independence  
(ρ = 0) 

Full correlation 
(ρ = 1) 

Minimum 
amin 

Maximum 
amax 

Minimum 
amin 

Maximum 
amax 

Risk 
(economic) 

Rebuilding cost 
RRB (USD) 0 3,105 0 1,848 

Risk 
(social) 

Extra travel time 
RETT (hr) 0 555 0 329 

Extra travel 
distance RETD 
(km) 

0 23,094 0 13,711 

Fatalities RFT 0 0.0528 0 0.0314 

Risk 
(environmental) 

CO2 emissions 
REC (kg) 0 7,165 0 4,939 

Energy 
consumption REE 
(MJ) 

0 109,510 0 65,015 

Benefit System hazard hsys 0 0.0158 0 0.0094 

Benefit System 
availability Asys 

0.6599 1 0.7457 1 
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Table 4.4. Maintenance plans corresponding to the six optimum solutions on the 
Pareto fronts shown in Figure 4.16a. 

Solution 
(see Figure 

4.16a) 

Maintenance 
actions 

Time of application 
(years) 

A1 [GI, GE, GI] [24, 47, 70] 

A2 [D, GI, D] [29, 46, 64] 

A3 [S, S, D] [16, 36, 57] 

B1 [GI, GI, GI] [23, 46, 70] 

B2 [D, G, D] [23, 41, 52] 

B3 [D, S, S] [18, 33, 54] 

Note:  D = replace the deck; GI = replace all interior girders; 
GE = replace all exterior girders; G = replace all girders; 

S = replace the entire superstructure 
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Table 4.5. Optimum utility values corresponding to the six optimum solutions within 
the Pareto fronts in Figure 4.16a. 

Solution 
(see Figure 

4.16a) 

Cost 
utility 
ucost 

Optimum utility 

Direct 
risk 
ur,d 

Indirect 
risk 
ur,i 

Total risk 
urisk 

Hazard 
uh 

Availability 
uA 

Benefit 
ubenefit 

A1 0.8232 0.5291 0.6061 0.5676 0.6061 0.4581 0.5347 

A2 0.7648 0.7756 0.8729 0.8508 0.8729 0.9471 0.9010 

A3 0.2725 0.9088 0.9424 0.9377 0.9424 0.9829 0.9626 

B1 0.3865 0.1313 0.1609 0.1515 0.1609 0.1023 0.1316 

B2 0.1886 0.4219 0.6222 0.5842 0.6222 0.8153 0.7393 

B3 0.0439 0.5269 0.7302 0.6730 0.7302 0.9067 0.8184 
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Table 4.6. Attribute values corresponding to the six optimum solutions within the 
Pareto fronts in Figure 4.16a. 

Solution 

Maximum values Minimum 
value 

Economic 
attribute Social attributes Environmental 

attributes 
System 
hazard 

System 
availability 

RRB 
(USD) 

RETD 
(km) 

RETT 
(hr) RFT REC  

(kg) 
REE 

(MJ) hsys Asys 

A1 2,155 14,521 349 0.0332 4,505 68,858 0.0099 0.7456 

A2 1,381 6,865 165 0.0157 2,130 32,554 0.0047 0.9505 

A3 712 3,621 87 0.0083 1,123 17,170 0.0025 0.9823 

B1 2,159 14,928 359 0.0342 4,632 70,788 0.0102 0.7454 

B2 1,076 4,567 110 0.0105 1,417 21,656 0.0031 0.9704 

B3 817 3,067 74 0.0070 952 14,544 0.0021 0.9857 

Note:  RRB, RETD, RETT, RFT, REC , and REE are defined in Table 4.3 
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Table 4.7. Maintenance plans corresponding to the four optimum solutions within the 
Pareto fronts in Figure 4.16b,c. 

Solution 
(see 

Figure 
4.16b,c) 

Correlation 
coefficient 

ρ 

Discount 
rate rm 

Maintenance 
actions 

Time of 
application 

(years) 

Cost 
utility 
ucost 

Minimum 
utility 

Total 
risk 
urisk 

Benefit 
ubenefit 

C1 0 2% [GI, GE, GI] [24, 48, 70] 0.8231 0.5676 0.5353 

C2 1 2% [D, GI, D] [22, 31, 53] 0.7388 0.8684 0.9078 

C3 0 0% [D, GE, GI] [37, 53, 59] 0.5822 0.8818 0.9103 

C4 0 2% [D, GI, D] [28, 42, 62] 0.7611 0.8565 0.9157 
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Table 4.8. Maintenance plans corresponding the six optimum solutions within the two 
Pareto fronts shown in Figure 4.16d. 

Solution 
(see Figure 

4.16d) 

Maintenance 
actions 

Time of 
application 

(years) 

Cost 
utility 
ucost 

Optimum utility 

Total risk 
urisk 

Benefit 
ubenefit 

D1 [D] [50] 0.9680 0.6056 0.7574 

D2 [D, D] [40, 68] 0.8870 0.7367 0.8162 

D3 [D, D, D] [35, 58, 70] 0.7472 0.7942 0.8210 

E1 [D] [56] 0.8039 0.1374 0.2449 

E2 [D, D] [42, 68] 0.5148 0.2906 0.3817 

E3 [D, D, D] [27, 53, 70] 0.2913 0.3326 0.3866 
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Table 4.9. Maintenance plans corresponding to the two optimum solutions within the 
two Pareto fronts shown in Figure 4.22. 

Solution 
(see Figure 

4.22) 

Maintenance 
actions 

Time of 
application 

(years) 

Cost 
utility 
ucost 

Minimum utility 

Total risk 
urisk 

Benefit 
ubenefit 

F1 [D, GI, D] [29, 46, 64] 0.7648 0.8508 0.9010 

F2 [GI, GE, GI] [23, 46, 70] 0.8232 0.3688 0.5338 
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Figure 4.1. Flowchart outlining the computations involved in the decision support tool. 
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Figure 4.2. Exponential utility functions that are monotonically (a) decreasing and (b) 
increasing as the attribute value increase.  
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Figure 4.3. Five configurations of a four-component system 
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Figure 4.4. Cumulative-time failure probability associated with (a) components and 
(b) systems in Figure 4.3 considering independence (ρ = 0) and full correlation (ρ = 1) 

among components. 
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Figure 4.5. Hazard associated with (a) components and (b) systems in Figure 4.3 
considering independence (ρ = 0) and full correlation (ρ = 1) among components. 
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Figure 4.6. Availability associated with (a) components and (b) systems in Figure 4.3 
considering independence (ρ = 0) and full correlation (ρ = 1) among components. 
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Figure 4.7. Cumulative and annual probability of system failure considering extreme 
correlation cases among components of (a) System A and (b) System E. 
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Figure 4.8. Time-variant profiles of annual direct, indirect, and total risk attributes for 
systems A and E, considering statistical independence among components (ρ = 0). 
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Figure 4.9. Time-variant profiles of availability, hazard, risk, and benefit utilities 
considering system A, independence among components (ρ = 0), and (a) risk averse 

(γ = 2) or (b) risk taking attitude (γ = -2). 
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Figure 4.10. Time-variant profiles of total risk utilities considering all systems in 
Figure 4.3, independence among components (ρ = 0), and (a) risk averse (γ = 2) or (b) 

risk taking attitude (γ = -2). 
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Figure 4.11. Time-variant profiles of benefit utilities considering all systems in Figure 
4.3, independence among components (ρ = 0), and (a) risk averse (γ = 2) or (b) risk 

taking attitude (γ = -2). 
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Figure 4.12. (a) Cumulative-time failure probability, (b) hazard, and (c) availability 
associated with both the components and the system (i.e., superstructure of the bridge 

E-17-HS) considering no maintenance and extreme correlation cases.  
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Figure 4.13. Cumulative and annual probability of system (i.e. superstructure of bridge 
E-17-HS) failure considering extreme correlation cases among components 
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Figure 4.14. The time-variant profile of each risk attribute considering no 
maintenance, statistical independence among components (ρ = 0), and the annual 

probability of system failure. 
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Figure 4.15. The time-variant profile of risk and benefit utilities considering 
independence among components (ρ = 0) and a risk averse attitude (γ = 2). 
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Figure 4.16. Pareto optimum solutions considering the effects of (a) risk attitude γ, (b) 
correlation among components ρ, (c) discount rate of money rm, and (d) number of 

maintenance actions NEM. 
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Figure 4.17. (a) Risk and (b) benefit utility profiles associated with the six optimum 
solutions shown in Figure 4.16a  
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Figure 4.18. Time-variant (a) risk utilities and (b) economic risk values associated 
with the optimum solution A2 in Figure 4.16a. 
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Figure 4.19. Time-variant (a) utilities associated with benefit, (b) survival probability, 
(c) availability, and (d) hazard associated with the optimum solution A2 in Figure 

4.16a. 
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Figure 4.20. Pareto optimum solutions associated with benefit utilities ubenefit within 
the range 0.5 – 0.6 associated with Figure 4.16a. 
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Figure 4.21. Time-variant (a) risk and (b) benefit utilities corresponding to optimum 
solutions D1, D2, and D3 in Figure 4.16d.  
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Figure 4.22. Pareto optimum solutions associated with both annual failure probability 
and cumulative-time failure probability considering a risk averse attitude (γ = 2), 

independence among components (ρ = 0), discount rate of money of 2% (rm = 0.02), 
and three maintenance actions (NEM = 3). 
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CHAPTER 5 DECISION MAKING FRAMEWORK FOR 
OPTIMAL SHM PLANNING OF SHIP STRUCTURES 

CONSIDERING AVAILABILITY AND UTILITY 

5.1 OVERVIEW 

Uncertainties associated with modeling and performance prediction of structures may 

be addressed and subsequently reduced by including, within the performance 

assessment, information collected from inspections and structural health monitoring 

(SHM). Under ideal conditions, continuous monitoring is required to accurately assess 

and predict the performance of deteriorating systems; however, in general, this is 

neither practical nor financially efficient. Presented herein is an approach that 

determines cost-effective SHM plans that consider the probability that the 

performance prediction model based on monitoring data is suitable throughout the life-

cycle of ship structures. This probability is used to compute the expected average 

availability of monitoring data for prediction during the life-cycle of a system. Utility 

theory is employed to incorporate the influence of the decision maker's risk attitude on 

the relative desirability of SHM plans. Optimization techniques are utilized to 

simultaneously maximize the utilities associated with monitoring cost and expected 

average availability in order to determine optimal monitoring strategies under 

uncertainty. The effects of the formulation of the utility function, risk attitude of the 

decision maker and number of uniform and non-uniform time monitoring intervals on 

optimal SHM plans are investigated. The capabilities of the proposed decision support 

framework are illustrated on a naval ship.  
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The work presented in this chapter is based upon the research published in 

Sabatino and Frangopol (2017a); Sabatino and Frangopol (2017b,c); and Dong et al. 

(2016). 

 

5.2 INTRODUCTION 

Due to the ever-changing state of an engineering system subjected to deterioration, it 

is imperative to consider both aleatory and epistemic uncertainties within structural 

performance assessment procedures. In general, aleatory and epistemic uncertainties 

are associated with the randomness of the underlying phenomenon and the models 

used to predict reality, respectively (Ang and Tang 2007). Although aleatory 

uncertainties are not reducible, epistemic uncertainties may be reduced by including 

information collected from inspections and structural health monitoring (Peil 2005; 

Frangopol and Messervey 2009a, 2009b).  

The structural performance prediction of naval vessels is affected by various 

uncertainties inherent in the load conditions, damage propagation, among others 

(Soliman et al. 2015). Utilizing SHM within the performance assessment of ship 

structures is an effective tool to reduce uncertainties in the analysis and derive crucial 

information on the real-time structural response (Paik and Frieze 2001). Since SHM 

can provide reliable information regarding the future state of a structure, the collected 

data associated with optimized SHM plans will, in general, reduce epistemic 

uncertainties associated with structural performance prediction. The overall goals of 

SHM, in relation to civil and marine infrastructure, include: (a) assessing structural 

performance, (b) predicting remaining service life, and (c) providing a decision tool 
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for optimal life-cycle management of deteriorating infrastructure (Frangopol 2011). 

The first two objectives outlined above were explored in depth by Okasha and 

Frangopol (2010a), Okasha et al. (2010; 2011), Zhu and Frangopol (2013a), Frangopol 

and Kim (2014), Decò and Frangopol (2015), Soliman et al. (2015), and Mondoro et 

al. (2016). For instance, Soliman et al. (2015) used SHM to evaluate fatigue structural 

performance and assess serviceability of deteriorating ship structures. Within this 

chapter, the third objective outlined above is emphasized by determining cost-efficient 

SHM plans that provide crucial information regarding ship performance.  

In an ideal situation, continuous monitoring is required to accurately assess and 

predict the performance of deteriorating naval vessels; however, in general, this is 

neither practical nor financially efficient. Thus, SHM plans that balance cost and 

performance objectives must be established (Kim and Frangopol 2011b). Presented in 

this chapter is a computational framework that has the ability to determine cost-

effective SHM plans considering the probability that the performance prediction 

model based on monitoring data is suitable throughout the life-cycle of a naval vessel. 

This probability is used to calculate the expected average availability of monitoring 

data for performance prediction of a ship structure during the investigated time 

horizon. Within this context, the expected average availability associated with a SHM 

plan is representative of the overall quality of the collected data and its usefulness in 

predicting future performance (Kim and Frangopol 2011b). The proposed 

computational approach employs SHM data collected during seakeeping trials and 

normal ship operation to determine the future state of ships and ultimately cost-

effective SHM plans. With very few exceptions (e.g., Kim and Frangopol 2011b), 
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there is a lack of studies that determine optimal SHM plans considering the 

availability of the data collected. The approach presented by Kim and Frangopol 

(2011b) considers only uniform time monitoring planning and does not include the 

effect of the decision maker’s attitude on optimal monitoring plans. The methodology 

presented herein provides both uniform and non-uniform optimal monitoring plans 

based on utility functions that integrate the effect of the risk attitude of a decision 

maker. 

Embedded within the presented decision support system for the optimal 

planning of SHM for marine structures is the performance prediction modeling, which 

is accomplished using statistics of the extremes and availability theory. Utility theory 

is employed herein to incorporate the influence of the decision maker’s risk attitude on 

the relative desirability of lifetime SHM plans (Keeney and Raiffa 1993, Dong et al. 

2016, Sabatino et al. 2016). In general, utility is defined as a measure of desirability to 

the decision maker (Ang and Tang 1984). Three different formulations of utility 

functions, always bounded by 0 and 1, are employed to express the relative desirability 

of lifetime SHM schedules.  

Overall, utility theory is a powerful tool used to conduct rational multi-criteria 

decision making analyses considering uncertain information (Thurston 2001, Malak et 

al. 2009, Sabatino et al. 2015, 2016, Sabatino and Frangopol 2016a,b,c). Benefits of 

implementing decision based design with utility analysis include: avoiding biases of 

the decision maker, identifying alternatives worth further analysis, determining which 

tradeoffs are most desirable, avoiding irrationality under uncertainty, and 

communicating preference information to non-technical team members (Thurston 
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2001). Research efforts have been conducted regarding the use of utility theory in 

decision making problems. Keeny and Wood (1977) used multi-attribute utility theory 

to evaluate water resource development plans; twelve attributes were employed in 

their robust decision making analysis. Yang and Xu (2002) employed a utility-based 

approach to analyze the performance of four types of motorcycles considering three 

separate performance attributes to represent overall desirability. Fernández et al. 

(2005) presented a utility-based selection decision support methodology for aiding 

human judgment in making critical selection decisions. In addition to the technical 

advantages of employing utility theory in decision making analysis, this theory 

provides a mechanism to bridge the communication barrier between engineers and 

decision makers (Ross et al. 2004). 

Genetic algorithm-based optimization techniques are utilized to simultaneously 

maximize the utilities associated with monitoring cost and expected average 

availability in order to determine optimal SHM plans under uncertainty. The effects of 

the formulation of the utility function, risk attitude of the decision maker, number of 

monitoring intervals, and assumptions in calculating the expected average availability 

of the prediction model on the optimal SHM strategies are investigated. Furthermore, 

both uniform and non-uniform monitoring interval SHM plans are explored. The 

capabilities of the proposed decision support framework are illustrated on an 

aluminum wave piercing catamaran. 
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5.3 PERFORMANCE PREDICTION CONSIDERING SHM DATA 

In order to manage SHM data effectively and reduce the overall amount of recorded 

information, the data associated with extreme physical quantities should be considered 

(Mahmoud et al. 2005). In the context of deteriorating structural systems under 

fatigue, SHM can be used to evaluate fatigue structural performance and assess their 

serviceability. A prediction function based on monitored extreme data can provide 

accurate information regarding the effective stress range and the number of cycles a 

deteriorating system may experience during its service life. The future state of a 

system and whether it conforms to the prediction function is based on the relation 

among the variation of monitored extreme data in time, the effective stress range, and 

the number of cycles. Overall, the prediction function based on monitored extreme 

data serves as an effective tool in assessing and predicting fatigue structural 

performance of deteriorating systems (Frangopol et al. 2008a,b, Strauss et al. 2008). 

Figure 5.1 presents the flowchart of the performance prediction, expected average 

availability, and cost of implementing monitoring. Detailed explanations regarding 

Figure 5.1 can be found in this section. 

5.3.1 SHM data analysis 

The formulation of the prediction function is based on statistics of the extremes. The 

extreme values of measured quantities can be treated as random variables. The 

probability density functions (PDFs) corresponding to these extreme values can be 

derived from the statistical data associated with the initial sample values. The extreme 

data is assumed to follow the asymptotic distributions established by Gumbel (1958): 

166 
 



Type I, Type II, and Type III. For instance, when the monitored data follow either 

normal or exponential distributions that have exponential tails, the largest monitored 

value may be effectively captured by a Type I asymptotic PDF (Ang and Tang 1984). 

5.3.2 Exceedance probability 

Next, regression techniques are utilized to establish an appropriate prediction function 

based upon the monitoring data. The residuals between this prediction function and 

actual extreme recorded data can be assumed normally distributed with a mean value 

of zero (Ang and Tang 1984). In this case, the extreme values may be modeled by the 

Type I asymptotic form. For this type of problem, the probability that the maximum 

positive residual in Y future monitored samples will be larger than the maximum 

positive residual among z already observed samples is given as (Ang and Tang 1984) 





−=

z
YPe exp1  (5.1) 

Considering Eq. (5.1), in which z = number of daily maximum positive 

residuals and Y = number of daily maximum positive residuals in the future, the 

probability that the largest positive residual in the future t days will exceed the largest 

positive residual during the monitoring period τm (days) is (Ang and Tang 1984) 
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Future down- and up-crossings, subsequently called exceedances, of the minimum 

negative residuals and the maximum positive residuals, respectively, may also be 

considered simultaneously. In this case, the probability that the maximum residual 

during t future days will exceed the largest positive residual during τm monitoring days 
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or the minimum residual in t days will be less than the minimum negative residual 

during τm days is (Ang and Tang 1984) 
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Next, the probability associated with the number of future exceedances ex can 

be formulated considering the equations for a single exceedance (i.e., Eqs. 5.2 and 5.3) 

and the Poisson process. For instance, the probability of future exceedances Yex = ex 

considering the largest positive residual within the prediction model is (Ang and Tang 

1984) 
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Furthermore, considering the probability of future exceedances P(Yex = ex), the 

probability of observing at least ex exceedances Pex is calculated as 
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As an example, when examining only the positive residual, the probability of 

observing at least ex exceedances is derived using Eqs. (5.4) and (5.5). 
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5.3.3 Expected average availability 

Once the probability associated with residual exceedances is established, the expected 

average availability of the monitoring data for prediction may be derived. In general, 
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the availability of a system is defined as the probability that the system is in an 

operating state. The availability of SHM data for performance prediction can be 

characterized by the probability that the prediction model based on monitoring data 

can be usable in the future. The average availability of the prediction model during a 

time period τ is calculated considering two mutually exclusive and collectively 

exhaustive events (i.e., the prediction model is usable and the prediction model is not 

usable) as (Kim and Frangopol 2011b) 

( ) ( )t
t

t pm
l

pm U
t

AA ⋅+=  (5.7) 

where Apm(τ) = availability of the prediction model during τ, Upm(τ) = unavailability of 

the prediction model during τ, Apm(τ) + Upm(τ) = 1, and tl = time to lose the usability of 

the adopted prediction model. The prediction model adopted herein utilizes the 

maximum residual between values from prediction model and monitoring data for 

future performance prediction. For instance, during monitoring period τm, if this 

residual exceeds the maximum residual observed, then the prediction model is 

considered no longer usable. Within this context, the expected average availability 

associated with a SHM plan is representative of the overall quality of the collected 

data and its usefulness in predicting future performance. 

The expected average availability of the prediction model during a time period 

τ is developed considering Eq. (5.7) and the exceedance probability Pex formulated in 

Eq. (5.5) as (Ang and Tang 1984; Kim and Frangopol 2011b) 

( ) ( )∫ −=
t

t
0

11 dtPAE ex  (5.8) 

169 
 



Table 5.1 summarizes the expected average availability values associated with various 

combinations of number of exceedances and residual(s) considered in the prediction 

model.  

Two types of SHM plans are included within the analyses herein: those that 

exhibit regular monitoring periods and plans that possess non-uniform monitoring 

periods. Figure 5.2 outlines the typical monitoring plan associated with regular and 

non-uniform interval monitoring periods. For SHM plans with uniform monitoring 

periods, the relationship between the monitoring period τm (days), time τ in days that 

the system is not monitored, an initial unmonitored time period τini, which is assumed 

to begin immediately after the end of the reference monitoring period, and the time 

horizon Th is illustrated in Figure 5.2a. Similarly, SHM plans with non-uniform time 

monitoring intervals are defined by an initial unmonitored time period τini, the duration 

of each monitoring period τm1, τm2, …, τmn, and the duration of each non-monitoring 

interval τ1, τ2, …, τn. Although two different types of SHM plans are considered 

herein, the calculation of expected average availability is quite similar for both cases. 

The expected average availability of SHM data considering uniform interval 

monitoring periods is directly calculated using Eq. (5.8). However, the expected 

average availability associated with SHM plans possessing irregular duration 

monitoring intervals is calculated by considering the expected average availability of 

each full cycle (e.g., τm1 + τ1). First, the integral contained in Eq. (5.8) is computed 

considering each cycle separately, then the resulting values are multiplied by the ratio 

of the full cycle duration to the total time horizon (e.g., (τm1 + τ1)/Th), and added 

together to determine the expected average availability of SHM plans with non-
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uniform monitoring intervals. Overall, the number of exceedances allowed, residuals 

examined in the prediction process, and type of SHM plan are presented as inputs to 

the presented SHM decision support framework.  

5.3.4 Monitoring cost 

Monitoring costs are associated with the overall data collection procedure. More 

specifically, general preparation, project coordination, placement of sensors, wiring, 

data acquisition setup and maintenance, continuous review of collected data, analysis 

of SHM data, and preparation of the associated reports activities are all included 

within monitoring costs estimations (Frangopol et al. 2008a,b). Considering that the 

total monitoring cost of a SHM plan is proportional to the monitoring duration and 

that all actions related to the monitoring program are implemented only during the 

monitoring durations, the cumulative monitoring cost Cm over a total time horizon can 

be calculated for plans that include uniform and non-uniform monitoring periods. For 

uniform monitoring intervals, the total monitoring cost is calculated as: 
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where Cm0 = reference monitoring cost during τm0 days, rm = daily discount rate of 

money, n = total number of cycles investigated, and Cp = cost of initializing 

monitoring. Similarly, the cumulative monitoring cost associated with SHM plans 

with non-uniform monitoring periods is: 
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5.4 UTILITY ASSESSMENT 

Utility is a measure of value (or desirability) of a certain alternative for the decision 

maker. In this context, utility depicts the relative desirability of lifetime SHM 

strategies to the decision maker. The computational procedure adopted for the utility 

assessment of SHM planning is shown as a part of Figure 5.3. Overall, this flowchart 

outlines the process of calculating the utility associated monitoring costs and expected 

average availability. In addition, it is shown how these utility functions are 

incorporated into a bi-objective optimization framework that facilitates optimal 

decision making concerning SHM planning. 

5.4.1 Risk attitude 

Utility functions associated with cost and expected average availability are computed 

considering the risk attitude of the decision maker Att, defined herein as the negative 

ratio of the second derivative of a utility function to its first derivative (Pratt 1964; 

Arrow 1965). The risk attitude is calculated as follows: 

u
uAtt
′
′′

−=  (5.11) 

where u is the utility function investigated, and u' and u" are the first and second 

derivative, respectively.. Negative and positive risk attitude indicate risk acceptance 

and risk aversion, respectively. Two types of attributes are considered within this 

chapter: (a) one that exhibits decreased desirability when increased (i.e., monitoring 

cost), and (b) one that possesses increased desirability when increased (i.e., expected 
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average availability). A normalized value x may be established for each type of 

attribute considering decreasing xdec or increasing xinc desirability as follows: 

minmax

max
aa

aa
xdec −

−
=  (5.12) 

minmax

min
aa

aaxinc −
−

=  (5.13) 

where a = attribute value under investigation, amin = minimum value of the attribute, 

and amax = maximum value of the attribute. The minimum and maximum values of the 

investigated attribute are utilized to normalize the utility so that it always takes values 

between 0 and 1. Within the proposed framework, the minimum and maximum 

attribute values corresponding to the monitoring cost in USD are amin  = 0 and amax  = 

Cm,max, respectively. Similarly, the minimum and maximum attribute values associated 

with availability are amin  = 0 and amax  = 1, respectively.  

5.4.2 Formulations 

Three types of monotonic utility function formulations are considered within the 

proposed approach: (a) exponential, (b) quadratic, and (c) logarithmic. The governing 

equations corresponding to these utility formulations are (Keeney and Raiffa 1993; 

Ang and Tang 1984): 

[ ]
[ ]ρ
ρ
−−
⋅−−

=
exp1

exp1
exp

xu  (5.14) 







 ⋅⋅−⋅

−
= 2

2
1

21
1 xxuquad a
a

 (5.15) 

[ ] [ ]( )ββ

β
β

lnln
1ln

1
log −+⋅








 +
= xu  

(5.16) 

173 
 



where ρ, α, and β are the parameters associated with exponential, quadratic, and 

logarithmic utility functions, respectively. Considering the definition of risk attitude 

Att outlined in Eq. (5.11) and the utility formulations detailed in Eqs. (5.14), (5.15), 

and (5.16), the risk attitude, as a function of attribute value, is calculated and 

expressions for the most extreme value of coefficient γ over all attribute values (i.e., 

smallest negative or largest positive value) are derived. The coefficients γ represent the 

smallest negative and largest positive risk attitude Att associated with the utility 

formulations. These coefficients are representative of the risk attitude of the decision 

maker and are considered as given within the proposed optimization approach. Given 

γ, appropriate values of the parameters ρ, α, and β in the exponential, quadratic, and 

logarithmic utility equations, respectively, can be calculated as (Pratt 1964; Arrow 

1965) 

γρ =  (5.17) 
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Plots of the utility function corresponding to an attribute, considering the exponential, 

quadratic, and logarithmic formulation, are provided in Figure 5.4, Figure 5.5, and 

Figure 5.6, respectively. u = 1 corresponds to the best case scenario while u = 0 is 

associated with the worst possible case. Alternatives associated with large utility 

values are preferred to those associated with small utility values (Howard and 

Matheson 1989). The concavity of the utility functions is highly dependent on the risk 

attitude of the decision maker. Risk averse and risk accepting attitudes yield concave 
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and convex utility functions, respectively. Additionally, the relationship between the 

parameters ρ, α, and β and the extreme risk attitude coefficient γ are depicted in Figure 

5.4, Figure 5.5, and Figure 5.6. The exponential formulation exhibits constant risk 

attitude as a function of attribute value, the logarithmic form is associated with 

decreasing risk aversion, and the quadratic utility formulation corresponds to 

increasing risk aversion (Keeney and Raiffa 1993).  

5.5 OPTIMIZATION FRAMEWORK 

Considering amin  and amax  for both attributes investigated, the risk attitude of the 

decision maker characterized by the extreme risk attitude coefficient γ , and the utility 

function formulation, appropriate utility functions corresponding to monitoring cost uc 

and expected average availability ua  may be established and ultimately employed 

within the optimization procedure outlined in Figure 5.3. Within the proposed decision 

support framework, utility values corresponding to monitoring cost uc and expected 

average availability ua are calculated for each SHM plan alternative. Genetic 

algorithms are employed to iteratively search for and determine optimal SHM plans 

that simultaneously maximize uc and ua. Finally, a Pareto front depicting optimal 

monitoring plans in the objective space is determined. Embedded within this trade-off 

set of solutions are SHM plans that are characterized by  τm, τ, and τini for uniform 

monitoring intervals and τm1, τm2, …, τmn,, τ1, τ2, …, τn, and τini for non-uniform 

monitoring durations. The outputs of the optimization procedure are the durations of 

the monitoring periods, in days, as outlined in Figure 5.2. 

The optimization formulation is outlined as follows: 

Given: 
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• SHM data for a duration of τm0 days 

• Cost of reference SHM data Cm0 

• Target life Th 

• Discount rate of money rm 

• Total number of monitoring cycles n 

• Case (determined by residuals examined and number of exceedances ex 

considered in the prediction process, please refer to Table 5.1) 

• Coefficient γ representative of risk attitude 

 

Find: 

• Monitoring duration (τm  for uniform intervals; τm1, τm2, …, τmn for non-uniform 

intervals) 

• Prediction duration (τ and τini  for uniform intervals; τini  and τ1, τ2, …, τn for 

non-uniform intervals) 

 

So that:  

• Utility associated with monitoring cost uc is maximized 

• Utility associated with expected average availability ua is maximized 

 

Subjected to: 

• Maximum allowable budget for cumulative monitoring cost Cm,max 

• Duration of each non-monitoring period τ must be greater than or equal to τmin 

and less than or equal to τmax, τmin ≤ τ ≤ τmax 

• Duration of each monitoring period τm must be greater than or equal to τm,min 

and less than or equal to τm,max, τm,min ≤ τm ≤ τm,max 

• Duration of SHM plan, including the last monitoring period, must be less than 

Th 

• Duration of SHM plan, including the last non-monitoring period, must be at 

least Th 
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Ultimately, the decision maker will use the outputs of the optimization, (i.e., the 

Pareto set of solutions that outline optimal SHM plans), to make the best informed 

choices regarding cost-effective SHM planning. 

5.6 CASE STUDY 

The SHM planning optimization procedure presented within this chapter is applied to 

the HSV-2 swift, an aluminum wave piercing catamaran. The ship measures 98 m in 

length and is capable of achieving speeds of 38–47 knots (Incat 2003). A three 

dimensional schematic of the ship is shown in Figure 5.7a (Incat 2003; Brady 2004a,b; 

Salvino and Brady 2008; Soliman et al. 2015).  

Upon completion of the construction of the naval vessel in December 2003, it 

was instrumented with various types of sensors to measure the primary load response, 

stress concentrations, and behavior under secondary loading (Brady 2004a). More 

specifically, the HSV-2 swift was instrumented with foil strain gages and piezoelectric 

accelerometers that were wired and connected to remote junction boxes and an 

instrumentation trailer (Brady 2004a). This monitoring plan was deployed with several 

main goals, including determining the safe operating limits of the HSV-2 swift based 

on responses measured in both calm and rough water seakeeping trails (Brady 2004a). 

In order to determine the response under a wide array of operational conditions, 

seakeeping trials were carried out that varied the ship speed, wave heading, and sea 

state. 

As a part of the monitoring program, 16 sensors (i.e., sensors T1-1 to T1-16) 

were used to measure the structural response of the ship to global loading in terms of 
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global bending stresses, pitch connecting moments, and split responses. A second set 

of sensors (i.e., T2-1 to T2-9 and T2-12 to T2-21) were placed in order to determine 

stress concentrations at various locations. The locations at which T1 and T2 sensors 

were installed were selected based on detailed finite element analysis and previous 

experience with similar ships (Brady 2004a). An example of sensor placement is 

depicted in Figure 5.7b for sensor T2-4 of frame 26; this sensor was placed to measure 

the bending response on the keel at frame 26 on the port side. This sensor and its 

counterpart sensor T2-5, installed on the same frame but on the starboard side, 

exhibited the largest strain response among all the T2 sensors (Soliman et al. 2015). 

The strain data was filtered and then used to obtain the stress range bin 

histograms and average number of cycles for each operational condition (Soliman et 

al. 2015). The resulting stress range histograms are utilized herein as input for the 

presented SHM planning framework. Complete information regarding the data 

collection, signal analyses, and stress range histograms can be found in Soliman et al. 

(2015) and Mondoro et al. (2016). Based upon the total run-time of the initial SHM 

data, optimal SHM plans are developed for the HSV-2 swift considering an initial 

monitoring time of τm0 = 3 days. For the uniform monitoring interval problem, the 

outputs of the optimization algorithm are the monitoring period τm (days) and the time 

τ in days that the vessel is not monitored. Note that the SHM plans reported within this 

chapter include an initial unmonitored time period τini, which is assumed to occur 

directly after the reference monitoring period. Similarly, the outputs of the 

optimization procedure for the non-uniform monitoring interval problem are the 
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monitoring durations (i.e., τm1, τm2, …, τmn) and prediction durations (i.e., τini and τ1, τ2, 

…, τn).  

For all the optimizations carried out within this chapter, unless otherwise 

noted, a total time horizon Th of the HSV-2 swift of 10 years (i.e., 3650 days) is 

assumed and each SHM plan consists of 4 monitoring cycles (i.e. n = 4). Additionally, 

for each alternative (i.e., SHM plan), it is necessary to evaluate both the utility 

associated with total monitoring cost uc and the utility that is representative of the 

expected average availability ua. The utility value associated with the total monitoring 

cost is obtained utilizing Eqs. (5.12), (5.14), (5.15), and (5.16) with amax = $500,000 

(i.e., 500 times the reference monitoring cost Cm0 = $1,000) and amin = $0, and the cost 

of initializing monitoring Cp = $500 (i.e., 0.5 times Cm0). Similarly, the utility value 

associated with expected average availability ua is calculated considering Eqs. (5.13), 

(5.14), (5.15), and (5.16) with amax = 1 and amin = 0. 

The following constraints on the design variables involved in the optimization 

are also considered: (a) 150 days ≤ τini ≤ 500 days, (b) 60 days ≤ τm ≤ 1500 days, (c) 60 

days ≤ τ ≤ 1500 days, (d) duration of a SHM, plan including the last monitoring 

period, is less than Th, and (e) duration of the SHM, plan including the last non-

monitoring period, is at least Th. The last two constraints are included to ensure that 

the optimal SHM plans cover the entirety of the time horizon investigated. 

Considering the non-uniform monitoring interval problem, constraints (b) and (c) 

listed above are modified to include all monitoring durations (i.e., τm1, τm2, …, τmn) and 

prediction durations (i.e., τ1, τ2, …, τn).  

179 
 



5.6.1 Uniform time intervals 

This section contains the results of several optimization problems, considering a 

variety of inputs to the optimal SHM framework outlined previously and uniform 

monitoring intervals. First, the effects of the type of utility formulation on optimal 

SHM plans are investigated. Considering the exponential, quadratic, and logarithmic 

utility formulations, three separate optimization procedures are carried out for a risk 

accepting decision maker (i.e., γ = -1) considering case LS4 in Table 5.1 (i.e., at least 

4 exceedances of the minimum negative and maximum positive extreme values) and 

an annual discount rate of money rm  = 2%. The Pareto optimal solutions for this 

problem are shown in Figure 5.8 for all three utility types considered. Six 

representative solutions in the objective space (i.e., A1, A2, ... , A6) are highlighted as 

five-point stars in Figure 5.8. 

Representative solutions A1, A2, A3, and A4 correspond to SHM plans 

obtained considering the exponential utility formulation, while solutions A5 and A6 

are associated with quadratic and logarithmic utility formulations, respectively. SHM 

plans embedded within the Pareto front corresponding to the exponential utility 

formulation are outlined, in the design space, in Figure 5.9. Note that this figure 

details the SHM plans with monitoring periods denoted by thick lines with round caps 

at each end and non-monitoring durations indicated by thin, dashed lines (please refer 

to Figure 5.2a). As shown, a solution that exhibits relatively large cost utility uc will 

usually possess a relatively small utility associated with availability ua. Figure 5.10 

depicts SHM plans corresponding to solutions A2, A5, and A6 within Figure 5.8; 

these SHM plans all exhibit availability utility ua values equal to 0.4. Although the 
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plans shown in Figure 5.10 are similar in terms of monitoring durations and timings, 

they possess different cost utilities uc and cumulative monitoring costs Cm. 

Next, the effects of the residuals examined in the prediction process and 

number of exceedances ex considered on the Pareto optimal solutions are investigated. 

An optimization is carried out for a risk averse decision maker (i.e., γ = 2) considering 

the quadratic utility formulation and an annual discount rate of money rm  = 2%. This 

optimization procedure is conducted for several combinations of residuals examined in 

the prediction process and number of exceedances ex. Figure 5.11a depicts Pareto 

optimal solutions considering the maximum positive residual, denoted by case L (see 

Table 5.1) while Figure 11b shows Pareto optimal solutions associated with both the 

minimum negative residual and the maximum positive residual, named herein as case 

LS (see Table 5.1). Representative SHM plans B1, B2, B3, C1, C2, and C3 are 

highlighted in Figure 5.11 and depicted in the design space in Figure 5.12. By 

comparing the Pareto fronts shown in Figure 5.11a and Figure 5.11b, for the same 

number of exceedances ex, it is evident that optimal solutions considering case L 

exhibit larger availability utility ua than those associated with case LS. For instance, if 

the Pareto fronts contained in Figure 5.11 associated with ex = 3 for both cases L and 

LS are plotted together, it could be observed that the optimal solutions on separate 

Pareto fronts with equal cost utility uc possess different availability utilities ua. More 

specifically, considering optimal SHM plans on each front that correspond to the same 

cost utility uc, the solution corresponding to case L exhibits larger availability utility ua 

than that associated with case LS. Figure 5.12 shows that solutions corresponding to 

case L possess shorter monitoring durations than those associated with case LS. 
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Additionally, the SHM plans associated with relatively small number of exceedances 

(e.g., ex = 1) exhibit longer monitoring durations than those considering larger number 

of exceedances (e.g., ex = 5) for both cases L and LS. 

The last uniform monitoring interval SHM problem presented herein 

investigates the effect of the number of monitoring cycles n on the Pareto optimal 

SHM obtained for the HSV-2 swift. Thus far, the optimizations presented within this 

chapter have assumed a fixed number of monitoring cycles (i.e., n = 4); however, this 

constraint may be relaxed and the number of monitoring cycles may be included as a 

design variable within the optimization by introducing the parameter nmax , the 

maximum number of cycles. Assuming nmax = 8 cycles, a risk averse decision maker 

(i.e., γ = 1), the logarithmic utility formulation, and case L3 in Table 5.1 (i.e., at least 3 

exceedances of the maximum positive residual), an optimization is carried out to 

determine SHM plans with a varying number of monitoring cycles over a ten year 

period. The results of this optimization are presented, in the form of a Pareto front, in 

Figure 5.13. Within this figure, the fill-shade of each solution within the objective 

space denotes the number of monitoring intervals embedded within that particular 

SHM solution. Five representative solutions, D1, D2, D3, D4, and D5, possessing 

availability utility ua values of 0.2, 0.4, 0.6, 0.8, and 0.95, are highlighted in Figure 

5.13. The SHM plans, including monitoring interval durations, are depicted in Figure 

5.14 for optimal solutions D1, D2, D3, D4, and D5. As shown, optimal SHM plans 

with a relatively small number of monitoring cycles (e.g., n = 2) possess high cost 

utilities uc, but relatively low availability utilities ua. Conversely, SHM plans with 

relatively large number of monitoring cycles (e.g., n = 8) are high in cost but are very 
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effective in ensuring accurate performance prediction. For example, optimal SHM 

plans like Solution D5 exhibit large utility associated with availability (i.e., ua = 0.95) 

but relatively small cost utility (i.e., uc = 0.251). 

5.6.2 Non-uniform time intervals 

Similarly, the optimization procedure outlined previously is also applied to non-

uniform time monitoring (see Figure 5.2b). The effects of utility formulation, risk 

attitude, and the discount rate of money on the final Pareto optimal solutions obtained 

are examined in detail. 

First, the effects of the utility formulation on optimal, non-uniform interval 

SHM plans are investigated. Considering the exponential, quadratic, and logarithmic 

utility formulations, three separate optimization procedures are carried out for a risk 

accepting decision maker (i.e., γ = -2) considering case LS4 in Table 5.1 (i.e., at least 

4 exceedances of the minimum negative and maximum positive extreme values), an 

annual discount rate of money rm  = 2%, and n = 4 monitoring cycles. The Pareto 

optimal solutions for this problem are shown in Figure 5.15. Five representative 

solutions in the objective space are highlighted as five-point stars in Figure 5.15. 

Representative solutions E1, E2, E3, and E4 are associated with SHM plans obtained 

considering the exponential utility formulation, while solutions E5 and E6 are 

associated with quadratic and logarithmic utility formulations, respectively. SHM 

plans embedded within the Pareto front corresponding to the exponential utility 

formulation are shown, in the design space, in Figure 5.16. From Figure 5.16 it is 

observed that solutions exhibiting low availability utility ua (e.g., Solution E1) have a 
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total monitoring duration (i.e., τm1 + τm2 + τm3 + τm4) that is shorter than those plans 

with relatively higher availability utility ua (e.g., Solution E4). In addition to analyzing 

the variation of SHM plans along the Pareto front corresponding to just one utility 

formulation, SHM plans that have the same availability utility (i.e., ua = 0.4) but are 

obtained considering different utility formulations are compared in Figure 5.17. 

Although there are visual differences between the three optimal SHM plans 

corresponding to solutions E2, E5, and E6, their cost utilities do not differ greatly, 

especially considering solutions E5 and E6 associated with quadratic and logarithmic 

utility formulations, respectively.  

Next, the effect of the risk attitude of the decision maker on optimal SHM 

plans is investigated. Two separate optimizations are performed for a risk accepting 

and risk averse decision maker (i.e., γ = -2 and γ = 2, respectively) considering the 

exponential utility formulation, an annual discount rate of money rm  = 2%, n = 4 

monitoring cycles, and case LS3 (i.e., at least 3 exceedances of the minimum negative 

and maximum positive residuals, see Table 5.1). The two Pareto fronts resulting from 

this optimization are presented, in the objective space, in Figure 5.18. According to 

this figure, in general, optimal SHM plans associated with a risk averse decision 

maker exhibit higher cost and availability utilities than those corresponding to a risk 

accepting decision maker. Representative solution sets F and G contain optimal SHM 

plans associated with a risk accepting and risk averse decision maker, respectively; the 

monitoring timelines corresponding to solution set F and G are depicted in Figure 5.19 

and Figure 5.20, respectively. SHM plans corresponding to a risk averse decision 

maker have short duration monitoring periods that occur late during the investigated 
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time horizon, while the solutions associated with a risk accepting decision maker 

exhibit longer monitoring durations that occur toward the beginning of the 

investigated time horizon. 

The final sensitivity analysis conducted herein studies the effect of the annual 

discount rate of money rm on the optimal SHM plans for the HSV-2 swift. Considering 

rm = 6%, 2%, and 0%, three optimization procedures are conducted. The resulting 

Pareto fronts are depicted in Figure 5.21 considering a risk averse decision maker (i.e., 

γ = 2), the quadratic utility formulation, n = 4 monitoring cycles, and case LS3 (i.e., at 

least 3 exceedances of the minimum negative and maximum positive residuals). A 

representative solution on each Pareto front in Figure 5.21 is highlighted with a five 

point star; these solutions, Solution H1, H2, and H3, all possess availability utility ua 

= 0.8, indicating that collected data will be extremely useful in providing predictions 

for future performance. The monitoring plans corresponding to Solutions H1, H2, and 

H3 are detailed in Figure 5.22. The optimal SHM plans are quite sensitive to the 

annual discount rate of money rm. For instance, as evidenced in Figure 5.22, Solution 

H3, which considers rm = 0%, possesses monitoring periods that are relatively uniform 

and occur toward the beginning of the investigated time horizon; however, Solution 

H1, where rm = 6%, has monitoring periods that vary in duration and occur toward 

beginning, middle, and end of the investigated time horizon.   

5.7 CONCLUSIONS 

Overall, optimal SHM plans, the output of the presented decision support framework, 

allow for availability-informed decision making regarding monitoring of ship 
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structures. Optimal SHM plans are obtained by simultaneously maximizing the 

utilities associated with monitoring cost and expected average availability of the 

prediction model. Three formulations of the utility function are considered herein: 

exponential, quadratic, and logarithmic. The effects of the formulation of the utility 

function, risk attitude of the decision maker, number of monitoring intervals, and 

assumptions in calculating the expected average availability of the prediction model 

on the optimal SHM strategies are investigated. Given the risk attitude, the decision 

maker can employ the proposed decision-support system to make cost- and 

availability- informed choices regarding the monitoring of ship structures. 

The following conclusions are drawn: 

1. SHM plans are determined using a multi-criteria optimization algorithm 

that balances two objectives: the utilities associated with monitoring cost 

and expected average availability. Ultimately, a decision maker is able to 

make informed decisions based on the decision support system provided by 

the Pareto set of optimal solutions.  

2. The risk attitude of the decision maker can have great influence on the 

optimal solutions resulting from the proposed decision support system. In 

general, risk averse decision makers, will assign larger utility values to the 

same alternative as compared to risk accepting decision makers.  

3. The number of monitoring cycles considered throughout the time horizon 

investigated has an important effect on the Pareto solutions. Both the 

cumulative monitoring cost and overall effectiveness of the SHM data, 

represented by expected average availability are sensitive to changes in the 
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proposed number of cycles and in the discount rate of money. The effect of 

the time horizon considered on the Pareto solutions also has to be 

investigated. 

4. Further and continued research and promotion of an integrated utility-based 

approach as the rational basis for optional structural health monitoring 

planning of ship structures considering uncertainties is required. 
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Table 5.1. Expected average availability corresponding to various combinations of 
number of exceedances and the residual(s) examined in the prediction process 
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Figure 5.1. Flowchart describing the performance prediction, expected average 
availability, and cost of implementing monitoring. 
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Figure 5.2. Timeline of monitoring at (a) uniform time and (b) non-uniform time 
intervals. 
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Figure 5.3. Flowchart describing the utility assessment and optimization procedure. 
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Figure 5.4. (a) Exponential utility decreasing, (b) exponential utility increasing, and 
(c) risk attitude as functions of attribute a for different values of ρ and γexp.  
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Figure 5.5. (a) Quadratic utility decreasing, (b) quadratic utility increasing, and (c) risk 
attitude as functions of attribute a for different values of α and γquad.  
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Figure 5.6. Logarithmic utility decreasing, (b) logarithmic utility increasing, and (c) 
risk attitude as functions of attribute a for different values of β and γlog.  

194 
 



 

Figure 5.7. (a) HSV-2 swift and (b) plan view detailing the location of an example 
sensor, T2-4 on frame 26 (adapted from Soliman et al. 2015). 
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Figure 5.8. Pareto optimal solutions considering uniform monitoring time intervals, a 
risk accepting attitude, and three utility formulations. 

  

196 
 



 

Figure 5.9. Uniform monitoring time interval SHM plans corresponding to four 
representative solutions on the Pareto front associated with the exponential utility 

formulation shown in Figure 5.8. 
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Figure 5.10. Uniform monitoring time interval SHM plans corresponding to three 
representative solutions associated with ua  = 0.4 on the Pareto fronts in Figure 5.8. 
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Figure 5.11. Pareto optimal solutions considering uniform monitoring time intervals, a 
risk averse attitude, and different number of exceedances (i.e., ex = 1, ex = 3, ex = 5) 

for residuals associated with cases (a) L and (b) LS. 

  

199 
 



 

Figure 5.12. Uniform monitoring interval SHM plans corresponding to three 
representative solutions on the Pareto fronts contained in (a) Figure 5.11a and (b) 

Figure 5.11b. 
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Figure 5.13 Pareto optimal solutions considering uniform monitoring time intervals, a 
risk averse attitude, and variable number of monitoring cycles. 
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Figure 5.14. Uniform interval SHM plans corresponding to five representative 
solutions on the Pareto front in Figure 5.13. 
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Figure 5.15. Effect of the utility formulation on the Pareto optimal solutions 
considering non-uniform time monitoring intervals and a risk accepting attitude. 
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Figure 5.16. Non-uniform interval SHM plans corresponding to four representative 
solutions on the Pareto front corresponding to the exponential utility formulation 

shown in Figure 5.15. 
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Figure 5.17. Non-uniform interval SHM plans corresponding to three representative 
solutions associated with ua  = 0.4 on the Pareto fronts in Figure 5.15. 
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Figure 5.18. Pareto optimal solutions considering non-uniform monitoring intervals, 
the exponential utility formulation, and two risk attitudes 
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Figure 5.19. Non-uniform interval SHM plans corresponding to four representative 
solutions on the Pareto front corresponding to a risk accepting attitude shown in 

Figure 5.18. 
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Figure 5.20. Non-uniform interval SHM plans corresponding to four representative 
solutions on the Pareto front corresponding to a risk averse attitude shown in Figure 

5.18. 
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Figure 5.21. Effect of the discount rate of money on the Pareto optimal solutions 
considering non-uniform monitoring intervals, the logarithmic utility formulation, and 

a risk averse attitude  
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Figure 5.22. Non-uniform interval SHM plans corresponding to three representative 
solutions associated with ua  = 0.8 on the Pareto fronts in Figure 5.21. 
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CHAPTER 6 SUMMARY, CONCLUSIONS, AND FUTURE WORK 

6.1 SUMMARY 

This study presented, from a life-cycle perspective, various aspects pertaining to the 

maintenance and safety of deteriorating infrastructure systems. A utility and 

sustainability-based methodology to carry out probabilistic optimization of lifetime 

intervention actions regarding deteriorating structural systems was presented. The 

roles of probabilistic performance indicators including reliability, risk, and 

sustainability, within the context of decision making for infrastructure systems, were 

highlighted. Furthermore, utility theory was introduced and a multi-attribute utility 

value representative of sustainability, established in order to effectively combine the 

effect of economic, social, and environmental risks, was proposed. Multi-objective 

optimization procedures, with cost and sustainability-based utilities as the objectives 

to be maximized, were used to determine the best maintenance plans for highway 

bridges.  

Cost- and availability-informed decision making regarding monitoring of ship 

structures can be carried out considering the approach developed in this study. A bi-

objective optimization process was performed that simultaneously maximizes the 

utilities associated with monitoring cost and availability. Several different utility 

formulations (e.g., exponential, quadratic, and logarithmic) formulations are 

considered. Overall, given the risk attitude of the decision maker and a maximum 

budget, the approach may be used to facilitate cost- and availability-informed choices 

regarding the monitoring of ships and other structures. Although the proposed 
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framework was applied to bridge and ship structures herein, it can be employed to 

facilitate informed decision making for other types of engineering systems if 

information regarding the structural properties, loading, and relevant performance 

indicators is provided. 

Chapter 1 contained an introduction and overview of the topics covered within 

this study. Objectives of the study, summary of the approach, contributions, and an 

outline of the document were also presented. 

Chapter 2 discussed fundamental topics related to the life-cycle performance 

assessment and lifetime management of deteriorating infrastructure systems under 

uncertainty. Methods regarding the quantification of the life-cycle performance, 

system reliability, risk, and sustainability of infrastructure systems at the component 

and systems levels were discussed. Additionally, life-cycle management planning and 

optimization under a constrained budget and performance constraints were presented 

through a probabilistic management framework.  

Chapter 3 and 4 presented methodologies for determining optimal maintenance 

strategies for highway bridges, considering utility-based performance and cost as 

conflicting objectives. Within Chapter 3, utility theory was employed to effectively 

capture the sustainability performance of highway bridges and the impact of the 

decision maker’s risk attitude. Chapter 4 emphasized the use of lifetime functions to 

quantify structural performance. The presented decision-support framework in Chapter 

4 was used to quantify maintenance cost, failure consequences, and performance 

benefit in terms of utility. Overall, Chapters 3 and 4 provided optimum lifetime 
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intervention plans allowing for utility-informed decision making regarding 

maintenance of highway bridges.  

Chapter 5 proposed a decision making framework for optimal SHM planning 

of ship structures considering availability and utility. Utility theory was employed to 

incorporate the influence of the decision maker's risk attitude on the relative 

desirability of SHM plans. Optimization techniques were utilized to simultaneously 

maximize the utilities associated with monitoring cost and expected average 

availability in order to determine optimal monitoring strategies under uncertainty.  

Chapter 6 presented a general summary, conclusions, and ideas for future 

research work. 

Appendix A summarized approaches for modeling the system reliability of 

bridge systems. Appendix B and C presented a list of notations for each chapter and a 

list of acronyms for the entire document. 

Overall, Chapters 3, 4 and 5 of this study directly fit into the framework 

presented within Figure 1.1. Multi-attribute utility theory was used to formulate a 

utility-based sustainability index which offers a measure of desirability of a given 

management alternative to the decision maker. The computational framework 

developed in this study incorporated utility theory, which provides the basis to 

quantify, combine, and consistently compare the relative values of different 

alternatives while taking into account the decision maker’s attitude. Overall, a 

generalized framework for probabilistic optimal decision making and life-cycle 
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management considering risk, sustainability, and utility was developed and applied to 

bridges and ships. 

6.2 CONCLUSIONS 

The following conclusions are drawn from the optimal, utility-based, lifetime 

management of bridges: 

• It is crucial to consider a variety of risks that plague civil and marine 

infrastructure systems when quantifying their lifetime performance. By taking 

into account a wide variety of risks, the decision maker can ensure that the 

maintenance plans resulting from the optimization were calculated in a robust 

and comprehensive manner. 

• All three aspects of sustainability (i.e., economic, social, and environmental) 

are crucial to the performance assessment of highway bridges. Multi-attribute 

utility theory allows for the quantification of a structure’s sustainability 

performance considering weighting factors that define the relative contribution 

of each aspect of sustainability. 

• Employing lifetime functions within risk and life-cycle optimization under 

uncertainty assessment provides mathematical flexibility due to their closed-

form expression of the distribution of time-to-failure.  

• Optimum maintenance plans for highway bridges can be obtained by 

employing a multi-objective optimization approach that results in a set of 

Pareto optimal solutions. Ultimately, a decision maker is able to make 

informed decisions based on their particular preferences and the decision 
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support system provided by the Pareto set of optimal solutions. The risk 

attitude of the decision maker has a large impact on the optimal solutions 

resulting from the proposed decision support system. 

• System modeling greatly influences the optimum maintenance plans. 

Depending upon how system failure is modeled, the optimum time-variant 

utilities can vary significantly. 

• The way system failure probability is calculated, annual or cumulative-time, 

influences the final Pareto solutions.  

• The maximum number of essential maintenance actions considered throughout 

a bridge’s lifetime has great effects on the final Pareto optimal solutions.  

• The weighting factors considered within the multi-attribute utility assessment 

of sustainability have a significant impact on the resulting Pareto optimal 

solutions. Thus, it is crucial to determine appropriate values for them.  

Based on the decision support tool developed to optimize the SHM scheduling on 

ship structures, the following conclusions are drawn: 

• SHM plans are determined using a multi-criteria optimization algorithm that 

balances two objectives: the utilities associated with monitoring cost and 

expected average availability. Ultimately, a decision maker is able to make 

informed decisions based on the decision support system provided by the 

Pareto set of optimal solutions.  

• The risk attitude of the decision maker can have great influence on the optimal 

solutions resulting from the proposed decision support system. In general, risk 
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averse decision makers, will assign larger utility values to the same alternative 

as compared to risk accepting decision makers.  

• The number of monitoring cycles considered throughout the time horizon 

investigated has an important effect on the Pareto solutions.  

6.3 FUTURE WORK 

• The performance assessment and prediction processes are the building blocks 

of a life-cycle management framework. The prediction process greatly depends 

on the accuracy of the performance prediction model and the descriptors of its 

probabilistic parameters. However, in some cases, accurate information 

regarding some model parameters does not exist; therefore, future efforts to 

quantify these parameters are impetrative. For instance, the equations 

developed for the risk attributes calculated in section 3.3.3 of this study may be 

improved to more accurately depict actual environmental and societal 

consequences of structural failure.  

• The effect of different types of maintenance on the sustainability performance 

of bridges needs to be further developed. The examples provided in Chapters 3 

and 4 consider crude essential maintenance actions of replacing entire elements 

of a bridge superstructure. Therefore, further research is needed to establish the 

relationship among various maintenance types including essential and 

preventive maintenance. 

• An approach that incorporates multi-attribute utility theory provides a 

framework which can quantify, combine, and consistently compare the relative 
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values of different alternatives while taking into account the decision maker’s 

attitude. However, sensitivity studies aimed to quantify the weighing factors 

which represent the effect of the decision maker’s particular preference to 

which aspect of sustainability is most important are still needed. The weighting 

factors considered within the multi-attribute utility assessment of sustainability 

have a significant impact on the resulting Pareto optimal solutions. Thus, it is 

crucial to determine appropriate values for them. Although the four-objective 

optimization process that was presented in Chapter 3 acts as a preliminary 

investigation in determining the sensitivity of optimum solutions to changes in 

the values of the weighting factors, further research is needed to properly select 

appropriate weighting factors within the multi-attribute utility assessment 

process. 

• Employing lifetime functions within risk and life-cycle optimization under 

uncertainty assessment provides mathematical flexibility due to their closed-

form expression of the distribution of time-to-failure. Further study on 

implementing lifetime functions as probabilistic performance indicators for 

structural components and systems needs to be conducted. There is 

considerable computational advantage to using this closed formulation, time-

dependent expressions. 

• There is a great need for more research regarding establishing appropriate 

utility functions to utilize within decision support tools for infrastructure 

systems. Although it is outside the scope of this study, an entire area of 

research could be dedicated to developing appropriate utility functions for 
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lifetime management of civil infrastructure. Overall, it is necessary to derive 

accurate predictions regarding how decision makers invest their money in the 

face of risk.  

• The number of monitoring cycles considered throughout the time horizon 

investigated has an important effect on the Pareto solutions within illustrative 

example presented in Chapter 5. Both the cumulative monitoring cost and 

overall effectiveness of the SHM data, represented by expected average 

availability are sensitive to changes in the proposed number of cycles and in 

the discount rate of money. The effect of the time horizon considered on the 

Pareto solutions also has to be investigated. In general, further research and 

promotion of an integrated utility-based approach as the rational basis for 

optimal structural health monitoring planning of ship structures considering 

uncertainties is required. 
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APPENDIX A  SYSTEM RELIABILITY MODELING OF 
BRIDGES 

A.1 OVERVIEW 

This appendix summarizes methodologies for modeling the system reliability of 

bridge systems. In particular, when building a system reliability model, several 

fundamental engineering principles are integrated into the approach, including 

identification of relevant failure modes, uncertainty quantification, and probabilistic 

considerations. This commentary was provided to the Federal Highway 

Administration in 2017 to augment a report on the application of redundancy factors to 

highway bridge systems. 

A.2 NOTATIONS 

CDF = cumulative distribution function 

E(X) = mean value of the random variable X 

Ec (R) = mean resistance of a single component 

Ecs (R) = mean resistance of a component in a system 

Fj = failure of component j 

g = performance function 

M = safety margin 

P = load 

PDF = probability density function 

Pf  = probability of failure 
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Ps  = probability of survival 

Q = load effect 

R = resistance of a component 

V(X) = coefficient of variation of the random variable X 

X = random variable 

βc = reliability index of a single component 

βcs = reliability index of a component in a system 

βsys = reliability index of a system 

δ = post-failure behavior factor 

ηR = component redundancy factor 

μM = mean of the safety margin 

μQ = mean of the load effect 

μR = mean of the component resistance 

ρ(X1, X2) = correlation coefficient between random variables X1 and X2 

σM = standard deviation of the safety margin 

σQ = standard deviation of the load effect 

σR = standard deviation of the component resistance 

F-1(·) = inverse of the standard normal cumulative distribution 

∩ = union of events 

⋃ = intersection of events 
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A.3 RELEVANT TERMS 

Bridge component 

Bridge component reliability 

Bridge component redundancy 

Bridge failure modes 

Bridge modeling 

Bridge sub-system 

Bridge sub-system redundancy 

Bridge sub-system reliability 

Bridge system 

Bridge system reliability 

Bridge system redundancy 

Brittle component 

Correlation among bridge component resistances 

Correlation among bridge failure modes 

Correlation among bridge loads 

Correlation between two random variables 

Ductile component 

Post-failure behavior 

Semi-brittle component  
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A.4 DEFINITIONS 

A.4.1 Bridge component 

According to AASHTO, a bridge component may be regarded as a physical piece of 

material that comprises a bridge. For example, structural bridge components include 

girders, decks, and piers. In this report, the word component is encountered when 

analyzing system reliability block diagrams; the components are arranged in specific 

configurations within the system reliability block diagram. A girder can fail in many 

ways (e.g., bending, shear) and in various locations. A component in the reliability 

model used in this study is a place where a limit state could occur. For example, a 

bridge girder can fail in many ways (e.g., bending, shear) and in various locations. 

Component j, representing a specific bridge part (e.g., girder) is idealized in 

Figure A.1 

A.4.2 Bridge system 

The bridge system is the combination of all the components comprising the bridge 

structure. An example of an eight-component bridge system is shown in Figure A.2.  

A.4.3 Bridge sub-system 

A bridge sub-system is considered a group of components within the bridge system. 

As an example, three sub-systems (i.e., A, B, and C) of the bridge system in Figure 

A.2 are highlighted in Figure A.3. If Fj represents the failure of component j, the 

failure of sub-system A requires the failure of component 1 or component 2, or both, 

expressed mathematically as the event F1 ⋃ F2. Similarly, sub-system B fails when 

both component 3 and 4 fail (i.e., F3 ∩ F4). The failure of sub-system C occurs when 
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component 5 fails or components 6, 7, and 8 fail simultaneously 

(i.e., F5 ⋃ (F6 ∩ F7 ∩ F8)). 

A.4.4 Bridge failure modes 

A failure occurs when a component or system stops performing its required function. 

A failure mode is defined as the mechanism that is responsible for the non-operation 

of a component, sub-system, or system. For structural components within bridge 

systems, failure modes investigated include shear, bending, fatigue, yielding, rupture, 

and cracking, among others. 

A.4.5 Bridge modeling 

Bridge modeling refers to the configuration of the system reliability block diagram, 

including series, parallel, and series-parallel. An example of each type of these 

systems is shown in Figure A.4. Systems A, B, C, D, and E contain the same four 

components arranged in different configurations. Series, parallel, and series-parallel 

systems are depicted in Figure A.4a, Figure A.4b, and Figure A.4c-e, respectively. 

In order to provide guidance for the discretization of superstructure 

continuums, the process of system modeling associated with different types of bridges 

is discussed herein. For a box girder bridge, it can be assumed that the critical sections 

are arranged in either series, parallel, or a series-parallel. Additionally, for a bridge 

that consists of steel girders that support a reinforced concrete deck, the girders’ and 

deck’s failure modes may be arranged in a series-parallel configuration; this type of 

bridge is modeled in Figure A.7. 
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A.4.6 Bridge component redundancy 

Component redundancy is a measure of how much its failure contributes the failure of 

the bridge system. AASHTO defines component redundancy as “the quality of a 

bridge component that enables it to perform its design function in a damaged state.” 

As an example, rupture or yielding of an individual component may not cause collapse 

or failure of the whole bridge system (AASHTO 2010). 

A.4.7 Bridge system redundancy 

If a system is redundant, there exists more than one way of fulfilling the requirements 

of system operation (i.e., non-failure). Similarly, bridge redundancy is defined as “the 

capability of a bridge structural system to carry loads after damage or the failure of 

one or more of its members” in The Manual for Bridge Evaluation (AASHTO 2008). 

A.4.8 Bridge sub-system redundancy 

Similar to the definition of bridge system redundancy, if a sub-system is redundant, 

there exists more than one way of fulfilling the requirements of sub-system operation 

(i.e., non-failure).  

A.4.9 Bridge component reliability 

In general, bridge component reliability can be defined as the probability that this 

component will adequately perform its purpose for a period of time under specified 

environmental conditions. The reliability assessment of bridge components can be 

expressed as a problem of supply and demand, which is modeled by means of random 

variables. For instance, if R and Q are the resistance and the load effect corresponding 

to a specific bridge component respectively, the probability that Q will not exceed R 
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represents the reliability of the structural component investigated. The resistance of a 

bridge component greatly depends upon the material it is composed of, the 

environmental conditions, in addition to its dimensions. In contrast, the load effect 

depends upon hazards that the bridge component is subject to and also on the bridge 

characteristics. 

The probability of failure of a component is defined as the probability of 

violating any of the limit state functions that define its failure modes. Limit states 

associated with bridge components are expressed with equations relating the resistance 

of the structural component to the load effects acting on this component. The safety 

margin is expressed as follows: 

QRM −=  (A.1) 

where M is the safety margin, R represents the resistance, and Q denotes the load 

effect. Another way of expressing the safety margin is called the performance function 

g. For example, the structural behavior of a bridge component may be described by the 

following performance function: 

QRg −=  (A.2) 

The safety margin M is a random variable with probability density function 

(PDF) fM (m). As shown in Figure A.5, the area under the PDF upper bounded by m = 

0 represents the probability of failure. The reliability index of a component is defined 

as (see Figure A.5): 

M

M
c σ

µ
β =  (A.3) 
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where µM and σM are the mean and standard deviation of the safety margin, 

respectively.  

If R and Q are independent, the reliability index of a component becomes 

22
QR

QR
c

σσ

µµ
β

+

−
=  (A.4) 

where µR, µQ and σR, σQ are the means and standard deviations, respectively. 

Furthermore, on the assumption that the safety margin M is normally distributed, the 

reliability index can be expressed as: 

( ) ( )fsc PP −F=F= −− 111β  (A.5) 

where F-1(·) is the inverse of the standard normal cumulative distribution function 

(CDF), Pf is the probability of failure, and Ps = 1 - Pf is the probability of safety. 

A.4.10 Bridge system reliability 

Bridge system reliability is calculated considering the system reliability model 

(also called the system reliability block diagram). Bridge systems that are composed of 

multiple components can be classified as series, parallel, or combined series-parallel. 

In general, the failure events comprising the system reliability model may be 

represented as events in series (defined as union, ⋃) or in parallel (denoted as 

intersection, ∩).  

Systems whose components are connected in series are such that the failure of 

any of these components constitutes the failure of system. These types of systems (i.e., 

series systems) have no redundancy and are also known as “weakest link” systems; the 

241 
 



reliability of this type of system requires that none of the components fail. An 

idealized series system is shown in Figure A.6a. For series systems, the domain Ω, 

representing system failure, is expressed in terms of component failure events as: 

( ){ }


n

k
kg

1
0

=
<=Ω X  (A.6) 

Conversely, if system failure requires the failure of all its components, then the 

system may be idealized as a parallel system. If any of the components survive in a 

parallel system, the system will not fail. Clearly, a parallel system is a redundant 

system and may be represented as shown in Figure A.6b. For parallel systems, the 

system failure domain Ω is expressed as: 

( ){ }


n

k
kg

1
0

=
<=Ω X  (A.7) 

Figure A.6c depicts an idealized series-parallel system with n sub-systems of 4 

parallel components in series. In general, the failure domain of a series-parallel system 

may be expressed in terms of component failure events as 

( ){ }


n

k

c

j
jk

n

g
1 1

, 0
= =

<=Ω X  (A.8) 

where cn is the number of components in the nth cut set. 

An example of a system reliability model for a bridge with a reinforced 

concrete deck and steel girders is shown in Figure A.7. Figure A.7a presents the 

transverse cross section of the investigated bridge superstructure while Figure A.7b 

shows the idealized system reliability model. In this system reliability model, it is 

assumed that failure of the entire bridge superstructure (i.e., the system) is modeled as 
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a series-parallel system consisting of a failure of the deck or the failure of any two 

adjacent girders. Considering that Fj represents the failure of component j, the event 

set describing the failure of the entire bridge system is: 

( ) ( )
( ) ( )5443

3221

girdergirdergirdergirder

girdergirdergirdergirderdecksystem

FFFF

FFFFFF

∩∪∩∪

∩∪∩∪=
 (A.9) 

 

A.4.11 Bridge sub-system reliability 

Similar to the definition of bridge system reliability, bridge sub-system reliability is 

calculated considering the sub-system’s reliability block diagram. The sub-system’s 

reliability model is representative of a sub-system’s reliability in an event diagram 

format. As an example, the reliability associated with sub-systems A, B, and C within 

Figure A.3 are calculated considering the event sets F1  ⋃ F2, F3  ∩ F4, and F5  ⋃ (F6 ∩ 

F7 ∩ F8), respectively.  

A.4.12 Post-failure behavior 

The structural response of bridge components beyond the elastic limit can be 

characterized by brittle, ductile, or mixed (ductile-brittle) behavior. The parameter 

utilized to express the post-failure behavior is δ, with δ = 1 and δ = 0 representing a 

ductile and brittle component, respectively. δ is called the post-failure behavior factor. 

For component j, the representative force-deformation relationships, 

considering the post-failure behavior of the component, is shown in Figure A.8. 

243 
 



A.4.13 Ductile component  

As defined by AASHTO, ductility refers to a “property of a component or connection 

that allows inelastic response.” Additionally, if, by means of confinement or other 

measures, a bridge component or connection can sustain inelastic deformations 

without significant loss of load-carrying capacity, this component can be considered 

ductile (AASHTO 2010). 

A.4.14 Brittle component 

Brittle behavior, or “the sudden loss of load-carrying capacity immediately when the 

elastic limit is exceeded,” refers to the post-failure behavior of a bridge component. 

According to AASHTO, “brittle behavior is undesirable because it implies the sudden 

loss of load-carrying capacity immediately when the elastic limit is exceeded” 

(AASHTO 2010). 

A.4.15 Semi-brittle component 

A component which exhibits post-failure behavior in between the brittle and ductile 

response extremes. A semi-brittle component is represented by 0 < δ < 1. 

A.4.16 Correlation between two random variables 

Correlation indicates the amount of relative dependency among random variables. The 

most common measure of dependence between two quantities is the Pearson's 

correlation coefficient, commonly called "the correlation coefficient." It is obtained by 

dividing the covariance of the two investigated variables by the product of their 

standard deviations. The correlation coefficient ρ(X 1, X 2) between two random 
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variables X1 and X2 with expected values μX1 and μX2 and standard deviations σX1 and 

σX2 is defined as: 

( ) ( )( )[ ]
21

2211
21,

XX

XX XXEXX
σσ

µµ
ρ

⋅
−−

=  (A.10) 

Statistical independence between the two random variables X1 and X2 implies 

ρ(X1, X2) = 0 (i.e., no correlation). In contrast, perfect correlation between the two 

random variables X1 and X2 implies ρ(X 1, X 2) = 1. Figure A.9 depicts different 

correlations between two random variables X1 and X 2. 

A.4.17 Correlation among bridge loads 

Correlation among bridge loads occurs when the loads applied to a structural system 

are related. Typically, separate loads are independent when the occurrence of one load 

has no bearing on the occurrence of the other load. As an example, the dead load and 

live load on a bridge are independent; in other words, these two loads have no 

correlation.  

Since statistical independence between two random variables X1 and X2 

(i.e., ρ(X1, X2) = 0) implies that the two variables are not related, the value of one 

variable has no influence on the value of the other variable. An example of statistically 

independent variables with application to bridges is the loading applied to the 

structure. For example, traffic loading and dead loads are independent and traffic loads 

and seismic loads are also independent; the amount of traffic has no bearing on the 

occurrence and magnitude of dead or seismic loads.  
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A.4.18 Correlation among bridge component resistances 

Correlation among bridge resistances occurs when the structural resistances associated 

with multiple components (e.g., R1, R2, …, RN) are related. In practice, the resistances 

of bridge components could be correlated, like in the case of multiple interior bridge 

girders. However, the resistances of an interior girder and the deck of a bridge (see 

Figure A-15a for an example) are typically not correlated (e.g., independent).  

A.4.19 Correlation among bridge failure modes 

Correlation among bridge failure modes occurs when some or all of the components of 

limit state functions of the two failure modes are related (e.g., same load present in the 

two failure modes, same resistances present in the two failure modes). Typically, only 

the correlation among the random variables involved in the reliability assessment are 

known and/or quantified. However, the correlation among different performance 

functions (e.g., g1, g2, …, gN) may also be calculated considering the relationships 

among all the investigated random variables. 

Since perfect correlation between two random variables (i.e., ρ = 1) implies 

that the two variables are fully interrelated, the value of one variable has complete 

influence on the value of the other variable. An example with application to bridges is 

found when analyzing the bending and shear failure of a simply supported span of a 

two lane bridge with two independent truck loads (e.g., two trucks following each 

other in the same lane). The simply supported span with the two applied truck loads P1 

and P2 is shown in  Figure A.10. The free body diagram of the span is also shown in 

 Figure A.10 where vertical reaction forces at the left and right support are 
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denoted as Y1 and Y2, respectively. Because the expressions for the vertical reactions at 

the supports of the span are functions of similar terms (i.e., P1 and P2), there exists 

some inherent correlation between the reaction forces (i.e., ρ(Y1, Y2) > 0). For this 

particular span, the two modes of failure considered are bending and shear.  

The bending moment at point A is denoted as MA and is a function of both 

truck loads P1 and P2. Similarly, the shear force at point C, VC is also a function of 

both truck loads P1 and P2. In general, the expressions for moment and shear in the 

span contain terms representing the magnitude of the two applied loads. Because both 

equations used to calculate MA and VC contain P1 and P2, the bending moment at point 

A and shear force at point C are correlated. In this case, the magnitude of the applied 

loads are independent (i.e., no correlation) but their load effects are correlated. The 

bending moment at points A and B, MA and MB, respectively, will be correlated, as 

well. 

Furthermore, the failure modes associated with bending and shear of the bridge 

may be analyzed. The performance function associated with bending is  

MMM QRg −=  (A.11) 

where RM is the bending resistance and QM  is the bending load effect. Similarly, the 

performance function corresponding to shear failure is expressed as: 

vvv QRg −=  (A.12) 

where RV is the shear resistance and QV  is the shear load effect. Since the two load 

effects QM  and QV  are correlated, it is evident that the performance functions (i.e., 

failure modes) presented in Eqs. (A.11) and (A.12) are also correlated. Therefore, even 
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if the resistances in bending and shear are independent, their respective failure modes 

will always be correlated. 

A.5 SYSTEM RELIABILITY MODELING 

This section outlines the methodology for developing system reliability models 

corresponding to bridge systems. First, fundamental nomenclature and definitions are 

clarified. Additionally, several examples of modeling simple structures (e.g., beams 

and trusses) and bridges, in general, are presented. 

Element 

For the purposes of this report, an element is defined as any physical piece of 

material that comprises a bridge system. Examples of bridge elements include 

structural members such as girders, decks, and piers. Each element has particular 

material, geometrical, and physical properties that contribute to its overall internal 

capacity. Hazards and loading events may affect elements in various ways (e.g., 

uniformly, selectively), depending upon the location and intensity of loadings. 

 

Component 

A component is defined as a “place” where a limit state could occur. The 

reliability of each element of a bridge may be evaluated with respect to various limit 

states and at different locations. For instance, a bridge girder can fail in many ways 

(e.g., bending, shear) and in various locations (e.g., mid-span for bending, at the 

support for shear). Components characterizing the main failure modes of a system are 

arranged in specific configurations (i.e., series, parallel, series-parallel) to form an 
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idealized representation of the reliability performance of the system denoted as the 

system reliability model. 

This next section of the commentary presents a collection of examples of 

system reliability modeling regarding various applications including beams, trusses, 

and simple bridges. 

A.5.1 Beams 

Consider a simply supported beam structure, as shown in Figure A.11. The beam is 

subjected to a distributed load w and two points of interest are established: one at 

midspan where the bending moment is largest, point A, and one near the left support 

where the shear force is maximum, point B. It is assumed that the resistance in shear is 

weaker near the left support than that near the right support. The bending moment at 

point A is denoted as MA and the shear force at point B as SB. The performance 

function associated with bending at point A is  

MMM QRg −=  (A.13) 

where RM is the bending resistance and QM  is the bending load effect. Similarly, the 

performance function corresponding to shear failure at point B is expressed as 

SSS QRg −=  (A.14) 

where RS is the shear resistance and QS  is the shear load effect. The load effects QM  

and QS  are correlated because they both are dependent on the same uniform load w; 

thus, the performance functions (i.e., failure modes) presented in Eqs. (A.13) and 

(A.14) are also correlated. Considering shear and bending failure modes, the beam 
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system in Figure A.11 may be idealized as two components arranged in series, as 

shown in the reliability model in Figure A.12. 

The event set describing the failure of the beam system is 

( ) ( )00 <∪<= SMbeam ggF  (A.15) 

where the union ∪ represents the occurrence of event gM < 0, event gS < 0, or both 

events. 

A.5.2 Trusses 

Consider the ten-bar symmetric truss system shown in Figure A.13. The truss is 

subjected to two concentrated loads W.  

In order to determine a system reliability model, several collapse mechanisms 

are considered. If bar 1 or bar 9 fails, then the entire truss fails. Additionally, if failure 

of two members, including only failure of member 3 or member 4 or member 5 is 

considered, failure of both bars 3 and 1, or 3 and 4, or 3 and 5, or 3 and 6, or 3 and 8, 

or 3 and 9, or 4 and 1, or 4 and 5, or 4 and 6, or 4  and 8, or 4 and 9, or 5 and 1, or 5 

and 6, or 5 and 8, or 5 and 9, will cause  the truss system to collapse. This system 

failure model considering failure of one member, or failure of two members including 

members 3 or 4 or 5, is depicted in the system reliability model shown in Figure A.14. 

Considering that Fj represents the failure of bar j, the event set describing the 

failure of the entire truss structure under the assumption that one member fails or two 

member fail, including members 3, 4 or 5, is 
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 (A.16) 

where the intersection ∩ represents the simultaneous occurrence of all events 

investigated. 

A.5.3 Bridge modeling – general 

Bridges are designed/constructed using a wide array of methods/materials and, at the 

same time, subjected to a variety loads. These factors affect the resistance and load 

effects parameters which are embedded in component performance functions. This 

section contains an example that illustrates the process of developing a system 

reliability model considering a variety of different limit states, such as strength (e.g., 

bending, shear), serviceability (e.g., maximum deflection), and fatigue-and-fracture 

(e.g., fatigue cracking). 

In general, three components, or performance functions may be considered to 

form a system reliability model of this bridge. Figure A.15 depicts, at the most basic 

level, the system reliability model of the bridge; three basic failure modes are defined 

for this bridge: (1) strength gst, (2) serviceability gser, and (3) fatigue gf. This reliability 

model may be further refined when more information about each of the failure modes 

is included; for example, the single reliability block representing strength limit states 

in Figure A.15 may be considered a sub-system consisting of three components, shear 

gs, bending gb, and torsion gt failure modes arranged in series. Additionally, multiple 

serviceability limit states may be included within the model by breaking down the 
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component related to serviceability within Figure A.15 into two components 

representing deflection gδ and vibration comfort gv. Similarly, the component 

corresponding to fatigue limit states in Figure A.15 may be further broken down into a 

series sub-system composed of multiple fatigue critical details (e.g., bolted gbc and 

welded gwc connections). The refined system reliability model for the investigated 

bridge is shown in Figure A.16. 

A similar approach is applied by Estes and Frangopol (2001), where a 

hypothetical series system for a girder consisting of components relating to failure by 

shear, moment, and excessive deflection is developed (see Figure A.17). Using the 

general approach outlined herein, one can idealize any type of bridge systems 

including girder, cable-stayed, and suspension bridges. 
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Figure A.1 Component j. 

 

 

 

 

 

 

Figure A.2. Eight-component bridge system. 
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Figure A.3. Sub-systems of a bridge system. 

 

 

 

 

 

Figure A.4. Five configurations of a four-component system.  
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Figure A.5. PDF of the safety margin fM (m). 

 

 

 

 

 

Figure A.6. Idealized series, parallel, and series-parallel systems. 
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Figure A.7. Transverse cross-section and (b) system reliability model of the 
superstructure of a bridge. 

 

 

 

 

 

Figure A.8. Force-deformation relationship considering the effect of the post-failure 
behavior δ.  
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Figure A.9. Correlation coefficient ρ(X1, X2) between two random variables X1 and X2. 

 

 

 

 

 

 Figure A.10. Simply supported bridge span with two truck loads   
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Figure A.11. Simply supported beam with uniform load. 

 

 

 

 

 

 

Figure A.12. System reliability model of the beam in Figure A.11 considering bending 
and shear failure. 
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Figure A.13. 10 bar symmetric truss (adopted from Frangopol and Curley 1987) 

 

 

 

 

 

 
Figure A.14. System reliability model for the 10 bar truss in Figure A.13, considering 
failure of one member and failure of two members including failure of members 3, 4, 

or 5. 
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Figure A.15. System reliability model for investigated steel bridge. 

 

 

 

 

 

 

 
Figure A.16. Refined system reliability model for the investigated bridge. 

 

 

 

 

 

 

 

Figure A.17. Hypothetical series system model of typical girder (Estes and Frangopol 
2001). 
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APPENDIX B  LIST OF NOTATIONS 

B.1 NOTATION FOR CHAPTER 2 

A(t) = availability function 

CF = expected failure cost  

CINS = expected cost of inspections 

Cm = consequences of failure 

CPM = expected cost of routine maintenance  

CREP = expected cost of repair 

CT = initial cost 

Eco = value of the economic metric associated with sustainability 

Env = value of the economic metric associated with sustainability 

F(t) = cumulative probability of failure 

f(t) = probability density function of time-to-failure 

fR = PDF of resistance effect R 

fR,S = joint PDF of the random variables R and S 

fS = PDF of load effect S 

fX(x) = the joint PDF describing the probabilistic behavior of the random variables 

X = { X1, X2, …, Xm }. 

h(t) = hazard function 

kEco = weighting factor corresponding to economic sustainability metric 

kEnv = weighting factor corresponding to environmental sustainability metric 

kSoc = weighting factor corresponding to societal sustainability metric 

n = total number of hazards considered within the analysis 
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P(Hi) = probability of occurrence of a hazard 

PF |Hi(t) = conditional failure probability given the occurrence of a hazard 

PF(t) = time-variant probability of failure 

R = resistance effect 

RISK(t) = time-variant risk 

S = load effect 

S(t) = survivor function 

Soc = value of the economic metric associated with sustainability 

uEco = utility function for economic attribute  

uEnv = utility function for environmental attribute 

us = multi-attribute utility associated with a structural system representative of 

sustainability 

uSoc = utility function for societal attribute 

F-1(·) = inverse of the standard normal CDF 

β = reliability index 

κ(x) = consequences associated with events resulting from certain hazards x 
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B.2 NOTATION FOR CHAPTER 3 

A and B = parameters based on environmental aggressivity 

ADT(t) = average daily traffic during year t 

AERDET,C = annual expected amount of carbon dioxide emissions due to detour of a 

bridge 

AERDET,E = risk associated with the annual amount of energy consumption due to 

detour 

AERREP,C = annual expected amount of carbon dioxide produced from the repair of a 

bridge 

AERREP,E = annual expected amount of energy consumption associated with the repair 

of a bridge 

As(t) = top transversal tensile steel reinforcement area (mm2) 

Asr(t) = area of transverse steel reinforcing in the slab at time t (m2) 

C(t) = corrosion penetration depth (μm) 

C1 = rebuilding cost per square meter ($/m2) 

Cc = corrosion coefficient 

CDREB = amount of carbon dioxide associated with rebuilding (kg/m2) 

CEM,i(t) = cost of a maintenance action i that is applied at year t (USD) 

Cmaint = total cost of a lifetime maintenance strategy 

Cmaint = total maintenance cost 

Cmax = maximum maintenance cost 

CPDC = carbon dioxide emissions per unit distance associated with cars (kg/km) 

CPDT = carbon dioxide emissions per unit distance associated with trucks(kg/km) 

D0 = initial top reinforcement diameter (mm) 
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Dd = duration of detour (days) 

Df = the distribution factor  

ECREB = total energy consumption associated with the rebuilding (GJ/m2) 

EPD = energy consumption per unit distance associated with any vehicle (MJ/km) 

f’cs = compressive strength of the concrete slab (MPa) 

fy = yield strength of reinforcing steel in slab (MPa) 

Fy = yield strength of steel girder (MPa) 

gdeck = time-variant performance function associated with a reinforced concrete bridge 

deck in bending gdeck 

ggirder = performance function describing the time-variant behavior of bending in the 

steel girders 

ic = corrosion parameter (mA/cm2) 

If = impact factor 

K1, K2, K3, K4, and K5 = Deterministic quantities that take on specific values 

depending on bridge type and geometric properties 

K6, K7, K8, K9, K10, and K11 = Deterministic constants 

kecon = weighting factor corresponding to the economic metric of sustainability 

kenv = weighting factor corresponding to the environmental metric of sustainability 

ksoc = weighting factor corresponding to the societal metric of sustainability 

L = length of the bridge (m) 

Ld = detour length (km) 

Mtrk(t) = moment due to truck load (kN-m) 

n = number of top transversal steel bars 

NEM  = total number of essential maintenance actions considered through the lifetime 

of a structure 
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Or = occupancy rate for non-truck vehicles 

p = probability of occurrence of an adverse event 

Pf,sys = probability of system failure 

RA = expected value of the risk-attribute value under investigation 

RAmax = maximum value of a risk-attribute 

RAmin = minimum value of a risk-attribute 

REC = risk-attribute value corresponding to carbon dioxide emissions 

REE = risk-attribute value corresponding to energy consumption  

RETD = risk attribute corresponding to the extra travel distance 

RETT = risk associated with the extra travel time for users that must use a detour 

RFT = estimated annual expected number of fatalities 

rm = discount rate of money 

rm = discount rate of money 

RRB = risk associated with the rebuilding cost 

Sd = average detour speed (km/hour) 

Sp(t) = plastic section modulus at time t (m3)  

t = time (years). 

Ti = corrosion initiation time (years) 

TTp = percentage of average daily traffic that is trucks (%) 

uc = utility associated with a given maintenance cost 

uecon = utility value associated with economic risk attribute 

uenv = utility value associated with environmental risk attribute 

uRA =  utility associated with a single attribute 

266 
 



us = multi-attribute utility function associated with the sustainability performance 

metric 

usoc = utility value associated with societal risk attribute 

W = width of the bridge (m) 

γ = risk attitude of the decision maker 

γmfg = modeling uncertainty for flexure in girder 

γmfs = modeling uncertainty for flexure in the slab 

λa = asphalt weight uncertainty factor 

λc = concrete weight uncertainty factor 

λdeff = reinforcing depth uncertainty factor 

λs = structural steel weight uncertainty factor 

λtrk(t) = effect of the load 

χ = consequences of an adverse event 
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B.3 NOTATION FOR CHAPTER 4 

a = expected value of the attribute value under investigation 

A(t) = availability function 

Ai,m(t) = availability function corresponding to a maintained component i 

amax = maximum value of the attribute 

amin = minimum value of the attribute 

Asys(t) = system availability function 

Cdirect(t) = direct consequences associated with system failure 

CEM,j = cost of maintenance action j applied at year t (USD) 

Cindirect(t) = indirect consequences 

Cmaint = total cost of a lifetime essential maintenance strategy 

F(t) = cumulative-time failure probability 

f(t) = PDF of component time-to-failure  

h(t) = hazard function 

hi,m(t) = hazard function corresponding to a maintained component i 

hsys(t) = system hazard function 

k = shape of the Weibull distribution 

N = total number of essential maintenance actions considered throughout the lifetime 

of a structure 

p = probability of occurrence of an adverse event 

Pf,sys(t) = probability of system failure during year t 

RAdirect(t) = time-variant direct risk attribute 

RAindirect(t) = time-variant indirect risk attribute 

rm = annual discount rate of money 
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S(t) = survivor function 

Si(t) = survivor function associated with component i considering no maintenance. 

Si,m(t) = ith component’s resulting survivor function adjusted for maintenance 

Ssys(t) = system survivor function 

TF = time-to-failure of the investigated component or system 

TL = Lifetime under investigation 

uA = utility associated with minimum lifetime system availability 

ua,dec = utility function that is monotonically decreasing  

ua,inc = utility function that is monotonically increasing  

ub,0 = performance utility without maintenance 

ub,m = utility associated with the performance benefit considering maintenance 

ubenefit = total utility associated with the performance benefit 

uh = utility associated with maximum lifetime system hazard 

ur,d = utility associated with direct risk 

ur,i = utility associated with indirect risk 

ur,tot = utility associated with the total risk 

γ = risk attribute of the decision maker 

λ = shape of the Weibull distribution 

χ = consequences of an adverse event 
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B.4 NOTATION FOR CHAPTER 5 

Cm = cumulative monitoring cost 

E(Ā) = expected average availability of a monitoring plan 

ex = number of future exceedances 

n = total number of monitoring cycles investigated 

Pex = probability of observing at least ex exceedances 

rm = daily discount rate of money 

Th = time horizon (days) 

ua = utility associated with expected average availability 

uc = utility associated with monitoring cost 

α = parameter associated with the quadratic utility function 

β = parameter associated with the logarithmic utility function  

γ = most extreme risk attribute over attribute values (coefficient representative of the 

risk attitude of the decision maker) 

ρ = parameter associated with the exponential utility function 

τ = time that the system is not monitored in uniform SHM plans (days) 

τ1, τ2, …, τn = non-monitoring intervals in non-uniform SHM plans (days) 

τini = initial unmonitored time period in optimized SHM plans (days) 

τm = monitoring period in uniform SHM plans (days) 

τm1, τm2, …, τmn = monitoring periods in non-uniform SHM plans (days) 
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APPENDIX C  LIST OF ACRONYMS 

ASCE: American Society of Civil Engineers  

CDF: cumulative distribution function 

FE: finite element 

FHWA: Federal Highway Administration 

GA: genetic algorithm 

NBI: National Bridge Inventory 

PDF: probability density function 

SHM: structural health monitoring  
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