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ABSTRACT 

Permeable granular piles are used to increase the time rate of consolidation, 

reduce liquefaction potential, improve bearing capacity, and reduce settlement. 

However, the behavior of granular piles depends on the confinement provided by 

surrounding soil, which limits their use in very soft clays and silts, and organic and 

peat soils. This research effort aims to develop a new ground-improvement method 

using pervious concrete piles. Pervious concrete piles provide higher stiffness and 

strength which are independent of surrounding soil confinement, while offering 

permeability comparable to granular piles. This proposed ground-improvement 

method can improve the performance of different structures supported on poor soils.  

To achieve the goal of the research project, a series of pervious concrete 

sample mixing has been conducted to investigate the pervious concrete material 

properties. Four vertical load tests were performed on one granular pile and three 

pervious concrete piles. The vertical load responses of pervious concrete and 

aggregate piles are compared and the variation of soil stresses and displacement 

during pile installation are discussed. Two lateral load tests were conducted on a 

precast pervious concrete pile and on a cast-in-place pile. The behavior of pervious 

concrete piles and the effects of installation on their response under lateral loading 

were investigated. In addition, a finite element model simulation account for the 

installation effect has been used to further investigate the behavior of the pervious 

concrete pile and surrounding soil under vertical load condition.  
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Ground improvement methods are widely used to enhance soil strength, allow 

for drainage path, mitigate total and differential settlements, and to reduce 

construction time. Based on different conditions, various ground improvement 

methods are available (i.e., prefabricated vertical drains, vacuum consolidation, deep 

soil mixing, grouting, and vibro-compaction). As one of the most commonly used 

ground improvement methods, granular piles have been used extensively in several 

geotechnical engineering applications (Mitchell 1981; Barksdale and Bachus 1983; 

Aboshi and Suematsu 1985; Bergado et al. 1994; Baez 1995; Terashi and Juran 2000; 

Okamura et al. 2006). The sections below will discuss different types of granular 

piles and their installation, properties and failure mechanisms. In addition, this 

chapter presents the properties of pervious concrete. Furthermore, the motivation and 

goals of research are presented in this chapter. 

 

1.1.1 Granular Piles 

The term ‘granular piles’ refers to columns composed of compacted sand or 

gravel. The three common granular piles are sand compaction piles, stone columns, 

and rammed aggregate piers (Geopiers
®

). Granular piles provide higher stiffness and 

strength than surrounding soil. In addition, the piles provide high permeability 

allowing for soil drainage and consolidation. 
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The construction of granular piles will change the soil stresses and accelerate 

pore water pressure dissipation, resulting in consolidation, which leads to the 

improvement of surrounding soil. Granular piles have been used to increase the time 

rate of consolidation, increase the bearing capacity, reduce liquefaction potential, and 

reduce settlement (Mitchell 1981; Barksdale and Bachus 1983; Aboshi and Suematsu 

1985; Bergado et al. 1994; Baez 1995; Terashi and Juran 2000; Okamura et al. 2006).  

 

Construction Techniques 

Depending on soil types, water level, equipment availability, local practice 

and construction company ownership, various technical methods have been 

developed to install different types of granular piles. (Mitchell 1981; Barksdale and 

Bachus 1983; Bergado 1994; Lin and Wong 1999; Terashi and Juran 2000; Elias et al. 

2006). These main installation methods are briefly described as below: 

1. Vibro-compaction Method 

In this method, a vibroflot with water jetting and vibration penetrate into soil 

to predetermined depth, and then the vibroflot is withdrawn gradually with granular 

backfill inserted near the ground surface by top feeding method. This specific method 

is usually used in the cohesionless granular soils (Figure 1.1). 



4 
 

   
(a) Step 1                                      (b) Step 2                                      (c) Step 3 

Figure 1.1 Constructions of granular piles by Vibro-compaction Method: (1) Step 1; (2) Step 2; 

(3) Step 3. (www.HaywardBaker.com) 

 
 

2. Vibro-replacement Method 

This method uses a vibroflot that sinks into the ground under its own weight 

and with assistance of water (wet top feeding). In wet top feeding method, when the 

vibroflot reaches the designed depth, it is withdrawn and the uncased hole is flushed 

out and filled in stages with 12-75 mm size imported gravel. It is mainly used in 

cohesive soils with high groundwater level and with more than 18% passing No. 200 

sieve (Figure 1.2). 

   
(a) Step 1                                      (b) Step 2                                      (c) Step 3 

http://www.haywardbaker.com/


5 
 

Figure 1.2 Constructions of granular piles by Vibro-replacement Method (Top feeding method): 

(1) Step 1; (2) Step 2; (3) Step 3. (www.HaywardBaker.com) 

 

3. Vibro-displacement Method 

This method is similar to the vibro-replacement method, however, the 

difference is that the soil is penetrated without water jetting and can be either top 

feeding method (short piles) or bottom feeding (deep piles). In the bottom feeding, 

the aggregate is fed gradually through a feeding pipe attached to the vibrator as 

showed in Figure 1.3. Because of the dry process without water jetting, this method is 

suitable for soft clay with undrained shear strength more than 40 kN/m
2
 and low 

groundwater level. 

   
(a) Step 1                                      (b) Step 2                                      (c) Step 3 

Figure 1.3 Constructions of granular piles by Vibro-displacement Method (Bottom feeding 

method): (1) Step 1; (2) Step 2; (3) Step 3. (www.HaywardBaker.com) 

 

4. Aggregate Ramming Method 

Rammed aggregate piers is a method using a beveled tamper to compact the 

loose aggregate into the prebored hole in stages. The compaction process results in a 

high density and stiffness aggregate pier (Figure 1.4). With the beveled tamper, the 

surrounding soil is densified and horizontal stresses are increased to further support 

http://www.haywardbaker.com/
http://www.haywardbaker.com/
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the piers. Rammed aggregate piers can be used in soft clay and silt, loose sand and 

soils below the groundwater level. 

.    
(a) Step 1                                      (b) Step 2                                      (c) Step 3 

Figure 1.4 Constructions of rammed aggregate piers: (1) Step 1; (2) Step 2; (3) Step 3. 

(www.HaywardBaker.com) 

 

5. Vibro-compozer Method  

This method is mainly used to install sand compaction piles (Bergado et al. 

1988, 1994; Aboshi et al. 1974, 1985). As shown in Figure 1.5, a casing pipe is driven 

into the soil with a vertical vibratory hammer. The casing pipe with an open end cone 

will be used to transport sands down to the bottom and the casing is then repeatedly 

extracted and partially re-driven to compact the sand below. When the pipe is driven 

in, the cone at the tip of the casing pipe is kept close. As the pipe is extracted, the 

cone will open under the weight of feeding sand. This method is suitable to be used in 

soft clay with high groundwater level.  

http://www.haywardbaker.com/
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 Figure 1.5 Constructions of sand compaction pile (Kitazume, 2005) 

 

Failure Mechanism 

As shown in Figure 1.6, regardless of the used construction method, single 

isolated granular piles under vertical load fail in bulging, shear, or punching 

(Barksdale and Bachus 1983). For typical granular pile length-to-diameter (L/D) 

ratios, the most common failure mechanism is bulging, which is usually observed 

over a distance of 2 to 3 pile diameters (2 to 3D) below the soil surface (Barksdale 

and Bachus 1983; Bergado et al. 1994). In this failure mechanism, the granular pile 

bulges into the surrounding soil (Figure 1.6a). Therefore, the ultimate vertical 

resistance of the column depends upon the lateral confining stress provided by the 

surrounding soil. Shear failure is possible to occur in short piles bearing on a firm 

support layer. This is similar to the general shear bearing capacity failure occurring in 

shallow foundations. Punching failure occurs in a short pile (less than 3 D in length) 

with a floating end installed in soft soils. The ultimate capacities of the first two 

failure mechanisms are summarized in Table 1.1. Note that the third failure 
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mechanism is similar to that experienced by rigid deep foundations subjected to 

vertical loading. 

When subjected to lateral load, such as in slope stabilization, the granular 

piles fail in direct shear along the failure surface. The shear strength is calculated as 

the average shear strength of the soil/granular piles composite materials along the 

failure surface (Mitchell 1981; Barksdale and Bachus 1983; Bergado et al. 1994). 

 

(a) Bulging Failure                      (b) Shear Failure                      (c) Punching Failure 

Figure 1.6 Failure mechanisms of single granular piles 

 
Table 1.1 Ultimate capacity for different failure mechanisms of granular piles 

Mode of  

failure 
Derived formula References 

Bulging 

                  
  

         
          

  

 
  

Where,     : the total radial confining stress;   : undrained shear 

strength of soil;   :the friction angle of aggregate material;   : 

undrained modulus of soil;   : Poisson’s ratio of soil 

Barksdale and 

Bachus 1983 

Shear 

     
 

 
      

         
                 

      
              

 
; 

Where,   : saturated or wet unit weight of the cohesive soil;  : 

foundation (including surrounding soil) width;  : failure surface 

inclination;   : the area replacement ratio;    the stress concentration 

factor for granular piles;   : undrained shear strength within the 

unreinforced cohesive soil; 

Barksdale & 

Bachus 1983 
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Properties of Granular Piles 

The properties of granular piles (i.e. sand compaction piles, stone columns, 

rammed aggregate piers) are summarized in Table 1.2. As shown in the table, the 

modulus of granular piles ranges from 25 to 190 MPa and the permeability ranges 

from 0.05 to 2.0 cm/sec. 

Table 1.2 Summaries of the properties of granular piles 

Granular 

pile 

Friction 

Angle (°) 

Modulus 

(MPa) 

Stress 

Concentration 

ratio 

Permeability 

(cm/sec) 
Reference 

Sand 

Compaction 

Piles 

30-36 25-40 1.5-6.0 0.05-0.65 
Aboshi et al. 1979; Bergado 

et al. 1988, 1994  

Stone 

Columns 
35-45 30-70 2.0-8.5 0.09-2.0 

Mitchell 1981; Barksdale 

and Bachus 1983; Baez 

1995 

Rammed 

Aggregate 

Piers 

47-52 60-190 2.0-10 1.90 

Hoevelkamp 2002; White 

and Suleiman 2004; 

Suleiman et al. 2014a 

 

1.1.2 Pervious Concrete 

Pervious concrete is a special concrete made primarily of single-size 

aggregate (Figure 1.7). Pervious concrete has been used in pavements to reduce the 

quantity of storm water runoff and perform initial treatment of water quality by 

allowing water to penetrate through the porous surface. The pervious concrete is 

mainly used in pavement application, including sidewalks, parking lots, tennis courts, 

and low traffic density areas (Tennis et al. 2004; and Suleiman et al. 2011).  
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                     (a)                                                                               (b)  

Figure 1.7 Pervious concrete: (a) Pervious concrete sample; (b) Pervious concrete pavement 

surface. (Concrete Technology Forum Focus on Pervious Concrete Conference, NRMCA, 2006) 

 

As summarized in Table 1.3, the pervious concrete has porosity ranging from 

11% to 42%, 28-days compressive strength 5.5 MPa to 26.5 MPa and permeability 

0.01 cm/sec to 1.50 cm/sec (Kajio et al. 1998; Beeldens et al. 2003; Tennis et al. 2004; 

Park and Tia 2004; and Suleiman et al. 2006; Kevern et al. 2008). 

Table 1.3 Summary of the properties of pervious concrete material 

Porosity (%) 
Permeability 

(cm/sec) 

28-days Compression 

 Strength (MPa) 
Reference 

11-15 0.025-0.18 N/A Kajio, 1998 

19 N/A 26.0 Beeldens, 2003 

N/A N/A 19.0 Tamai and Yoshida, 2003 

15-25 0.2-0.53 5.5-20.7 Tennis, et al. 2004 

18-31 N/A 11.0-25.0 Park and Tia, 2004 

12-42 0.03-1.50 11.9-25.3 Schaefer, et al., 2006 

19-33 0.18-1.50 10.4-22.3 Suleiman et al., 2006 

15-33 0.01-1.18 17.3-26.5 Kevern et al., 2008 
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1.2 MOTIVATION 

1.2.1 Pervious Concrete Ground Improvement Piles 

The various installation methods and improvement benefits allow granular 

piles to be used to improve a wide range of poor soils. However, when compared with 

other pile types (e.g., steel and concrete piles), the strength and stiffness of granular 

piles are lower and depend on the properties of the surrounding soil. For conditions 

where the surrounding soil cannot provide the confining pressure around granular 

piles to ensure developing the required stiffness and strength, the use of granular piles 

is limited (Venema 1991). For example, Barksdale and Bachus (1983) reported that 

when a stratum of poor soil (very soft clays and silts, peat and other organic materials) 

with a thickness greater than 1 column diameter, granular piles is not suitable to 

improve the soil. Therefore, granular piles have limited use in very soft clays and silts, 

and organic and peat soils.  

Comparing the properties of granular piles (Table 1.2) with those of the 

pervious concrete material (Table 1.3), pervious concrete can develop a much higher 

unconfined compressive strength and maintain a relatively similar permeability of 

granular piles. According to the studies of other ground improvement techniques 

(Suleiman et al. 2003; Han and Gabr 2002), the stress concentration ratio of pervious 

concrete piles is expected to be 3 to 4 times that of granular piles in embankment 

applications. Higher stress concentration ratio indicates that the stresses carried by 

soils and the area replacement ratio in the field will be reduced. Meanwhile, the 

relative high permeability ensures accelerated consolidation and dissipation of pore 

water pressure. Furthermore, the stiffness of pervious concrete pile is not depending 
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on surrounding soil. These advantages are expected to result in an enhanced ground 

improvement system that can be used in a wider range of soil types. 

 

1.2.2 Pile Installation Effects 

During pile installation or constructions, the soil surrounding the pile 

experience significant change of displacement and stress and its properties also be 

changed correspondingly. The changes due to the pile installation influence the 

subsequent load-displacement response of the pile. Therefore, the effects of pile 

installation have been investigated by several researchers (Yu 1990 and 2000; 

Shublaq 1992; Klotz and Coop 2001; Hunt et al. 2002; Lee et al. 2004; White and 

Bolton 2004; Dijkstra et al. 2006 and 2008; Suleiman and White 2006; Pham and 

White 2007; Salgado and Prezzi 2007; Chen et al. 2009; Said et al. 2009; Basu et al. 

2010; Castro and Karstunen 2010; Thompson and Suleiman 2010; Yi et al. 2010; 

Dijkstra et al. 2011; Pucker and Grabe 2012; and Lundberg et al. 2013).  

Different approaches have been used by these researchers to investigate the 

effects of pile installation on surrounding soils, including cavity expansion analysis, 

numerical modeling methods, experimental methods with pressure measurement at 

soil-pile interface, soil density measurement, shear wave velocity measurement and 

movement around the pile. 

Shublaq (1992) and Dijkstra et al. (2008) used thermal probe density 

measurement to investigate the installation effect of driven pile in sand and showed 

that sand was compacted with 0.6 to 28.6% density increase in a zone of 7D 

(diameter) around the pile tip. Klotz and Coop (2001) conducted a series of model 
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pile tests in a centrifuge and investigated the effects of changing soil density and 

stresses on pile capacity. They concluded that the shaft friction increase by 

approximately 12% due to the increase of horizontal stresses. Hunt et al. (2002) 

measured the shear wave velocity change and investigated the changes of soil 

properties surrounding piles driven in soft clay through a comprehensive testing 

program. The testing results show that the soil zone affected by pile installation 

extends to 3.5D (3.5 x pile diameter) from pile center and that the soil stiffness of the 

soil adjacent to pile increased by10 to 15% due to pile installation. Lee et al. (2004), 

who performed centrifuge tests, reported that the soil horizontal stresses and pore 

water pressure changes by 30 to 100% within 6D surrounding the pile during the 

installation of sand compaction piles in soft clay. Yi et al. (2010) investigated the 

effects of installation of sand compaction piles on soil shear strength using the same 

centrifuge test setting-up as Lee et al. (2004). The results showed that the increase of 

the shear strength of the soil at 1.5D from pile center ranged from 25% to 200% along 

the pile length. White and Bolton (2004) investigated the penetration mechanism of a 

displacement pile using an image-cased deformation measurement technique, and the 

results demonstrate that the soil displacement extended to 15D, which were amplified 

by the testing boundary. Yu (1990 and 2000) and Salgado and Prezzi (2007) used the 

cavity expansion theory and cone penetration tests to investigate the stress 

development in pile installation. However, the cavity expansion theory assumed an 

large effected zone (70 to 100 times of cavity diameter) for available calculation. 

Lundberg et al. (2013) observed the displacement of soil during pile installation 

through the Plexiglas wall of test container and the results showed the displacement 
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occurs within 2D from pile centers due to pile installation. However, none of these 

approaches, directly and simultaneously measured the variation of soil stresses and 

soil movement during pile installation. Therefore, Lundberg et al. (2013) reported that 

there is a lack of direct combined measurements of soil stresses and movement 

surrounding piles in general.  

Numerical simulation methods have been also utilized to investigate the 

effects of pile installation on soil properties, displacement and stress (Dijkstra et al. 

2006; Ambily and Ganhdi 2007; Pham and White 2007; Chen et al. 2009; Said et al. 

2009; Basu et al. 2010; Castro and Karstunen 2010; Thompson and Suleiman 2010; 

Dijkstra et al. 2011; Pucker and Grabe 2012). However, due to the complexity of the 

pile installation effects and lack of direct measurements on soil and pile, the 

modelling results are difficult to be validated (Dijkstra 2011; Pucker and Grabe 2012). 

In addition, very few researches have investigated the change of soil properties due to 

pile installation (Wehnert and Vermeer 2004a and 2004b; Said et al. 2009) in 

numerical simulation. Therefore, the numerical simulation needs to be improved and 

validate calculation results with the experimental measurement. In addition, very few 

researchers have been investigating the installation effects on the behavior of laterally 

loaded piles (Lunberg et al. 2013). The installation effects on laterally loaded pile and 

soil require further investigation. 

In this research, the installation effects on pile and soil behavior will be 

investigated utilizing both experimental method and numerical modeling method.  
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1.3 GOALS AND OBJECTIVES 

The goal of this research is to develop an innovative ground improvement 

alternative that uses pervious concrete piles and investigate the pile installation effect. 

The pervious concrete piles should be able to provide higher stiffness and strength 

that are independent of the surrounding soil properties while offering permeability 

comparable to granular piles, to support structures and highway facilities constructed 

on a wide range of poor soil conditions, including very soft clays and silts, and peat 

and organic soils. In addition, the effect of pile installation on soil properties, 

displacement and stress was directly measured in tests. The installation effects are 

analyzed by experimental and numerical approaches. 

The objectives of this research are: 

1. Investigating the pervious concrete material properties and developing 

suitable mixing procedures and mixing proportions for pervious concrete pile 

casting;  

2. Developing installation technique for pervious concrete pile and investigating 

the effects of pile installation effects on soil and pervious concrete pile 

properties, soil-pile interactions, and on pile behavior; 

3. Evaluating the response of pervious concrete piles when subjected to different 

loading conditions; 

4. Developing appropriate analytical methods to simulate the pervious pile 

behavior, soil-pile interaction and installation effects. 
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1.4 ORGNIZATION 

The Dissertation begins with Chapter 1, in which the back ground information, 

the motivation and research goal has been introduced. 

Chapter 2 discusses the investigation of pervious concrete material properties, 

and provides an optimized mixing procedure and mixing proportion design for 

casting pervious concrete piles. 

Chapter 3 describes the soil-pile interaction and behavior of pervious concrete 

piles subjected to vertical loading and the effects of pile installation on the sepsonse 

under vertical loading.  

Chapter 4 presents the soil-pile interaction and behavior of pervious concrete 

piles under lateral loads, including the pile behavior with respect to lateral capacity, 

pile and soil displacements, soil-pile interactions and the effects of installation.  

Chapter 5 focuses on numerical modeling of pervious concrete piles under 

vertical load including the effects of installation. 

Chapter 6 summarizes the general conclusions and provides recommendations 

for further studies. 



17 
 

CHAPTER 2 

INVESTIGATION OF PERVIOUS CONCRETE PROPERTIES 

2.1 INTRODUCTION 

In Chapter 1, the use of pervious concrete in pavement and sidewalk 

applications were introduced and the properties of pervious concrete from literatures 

were summarized in Table 1.3, which shows a wide range of strength and 

permeability. For ground improvement applications, a pervious concrete material 

need to be improved with high stiffness and strength, and permeability comparable to 

granular piles (ranged from 0.05 to 2.0 cm/s). 

To develop a mixture suitable for ground improvement application, a series of 

pervious concrete mixtures was prepared to obtain an adequate compressive strength 

and permeability. Pervious concrete cylinder samples were tested to measure the 

porosity, permeability, compressive strength, elastic modulus, and split tensile 

strength. The porosity was measured using ASTM C1688 (ASTM 2009e), the 

compressive strength was determined using ASTM C39 (ASTM 2009b), the elastic 

modulus was measured using ASTM C469 (ASTM 2009j), and the split tensile 

strength was measured using ASTM C496 (ASTM 2009i). In addition, the 

permeability was measured using an in house designed falling-head as shown in 

Figure 2.1. The permeameter has a transparent tube with scale for recording the water 

level. The tube has an inside diameter of 76 mm and height of 914 mm. The sample 

was installed at the bottom of the tube. Duct Seal (DS-130, Gardner Bender) was used 

to seal the both sides of the sample to prevent water leakage along the sides of the 
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sample. The falling-head test was performed for several times to obtain an average 

value of permeability. 

Pervious concrete properties are significantly affected by the mixing 

procedure, aggregate type, compaction (vibrating) times, water/cement ratio, and 

sand/aggregate ratio (Schaefer et al. 2006; Suleiman 2006; Kevern 2008). The effects 

of these variables on pervious concrete strength and permeability were investigated 

and will be discussed next. 

 
Figure 2.1 Falling head permeameter used for the permeability testing 

 

2. 2 MIXING DESIGN INVESTIGATION 

The materials used for pervious concrete mixing include aggregate, cement 

(Portland cement type II from Lafarge North America Inc.), sand (fine play sand 

available in home improvement store), water, air enhancement admixture (AEA, 

Daravair 1000) and high range water reducer (HRWR, V-MAR VSC 500).  The 

investigation focuses on mixing procedure, aggregate type, compaction time, 

water/cement ratio, and sand/aggregate ratio. Mixtures were prepared using 
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water/cement ratios ranging from 0.21 – 0.28 and sand/aggregate ratios ranging from 

0.05 – 0.17 using two mixing procedures, four different types of aggregate and four 

different compaction times. 

 

2.2.1 Mixing Procedure 

The main procedure of pervious concrete mixing follows the normal concrete 

mixing procedure in the ASTM C192 (2009a). Two procedures have been used for 

pervious concrete mixing as summarized in Table 2.1. The main difference between 

two mixing procedures is in the Step 2 and Step 4 as show in table. Two mixtures 

were prepared using the two mixing procedures. The first mixture has the following 

mixing design: sand/aggregate ratio of 0.07, water/cement ratio of 0.26, 343 kg/m
3
 

cement, 1,510 kg/m
3
 coarse aggregate, 0.49 kg/m

3
 AEA, and 0.96 kg/m

3
 HRWR. The 

sec.ond mixing design is 0.11 sand/aggregate ratio, 0.21 water/cement ratio, 343 

kg/m
3
 cement, 1,440 kg/m

3
 coarse aggregate, 2.47 kg/ m

3
 AEA, and 4.94 kg/m

3
 

HRWR. Both mixtures used Nazareth gravel, which was locally available in Lehigh 

Valley. The aggregate was sieved and the portion passing the 9.5 mm sieve (3/8 in. 

sieve) and retained on the 4.75 mm sieve (No.4 sieve) was used (Schaefer et al. 2006). 

For both mixtures, a compaction time of 10 sec. was used. 

The compressive strength and permeability comparison of mixture using these 

two mixing procedures are summarized in the Figure 2.1. The results shows that the 

compressive strength of mixtures prepared by procedure 1 (13.8 MPa as average) is 

higher than that of mixtures prepared by procedure 2 (9.6 MPa as average). The 

permeability of samples prepared suing procedure 2 (2.1 cm/sec.) is higher than that 
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in procedure 1 (1.7 cm/sec.). Further investigation on mixing proportion adjustment 

shows that the compressive strength can be improved by optimization of mixing 

proportion, while the permeability is more difficult to be improved by changing the 

mixing proportion if the aggregate size is kept the same. It is worth noting that the 

mixing of cement in step 4 of procedure 1 may cause cement clumps as shown in 

Figure 2.2, which may affect the pervious concrete properties. As shown in Figure 2.4, 

the failure surface of samples prepared by procedure 2 passes through the aggregate, 

while the failure surface of samples prepared by procedure 1 mainly passes through 

cement or the interface between the cement and aggregate. This phenomenon 

indicates that the sample prepared by procedure 2 may achieve a higher strength with 

better quality aggregate material. Based on the above observations and analysis, the 

mixing procedure 2 was selected for further mixing. 

Table 2.1 Mixing procedure 

Procedure 1:  

Step 1 Mix water, AEA, and HRWR together 

Step 2 Add sand, aggregate,  and 2/3 of water mixture to mixer 

Step 3 Mix together for 1 minute 

Step 4 Add cement and last 1/3 of water mixture to mixer 

Step 5 Mix thoroughly for 3 minutes 

Step 6 Allow to rest for 3 minutes 

Step 7 Mix for an additional 2 minutes 

 

 

Procedure 2: 

Step 1 Mix water, AEA, and HRWR together 

Step 2 Add Aggregate and 5 – 10% cement 

Step 3 Mix together for 1 minute 

Step 4 Add sand, water mixture, and rest of cement to mixer 

Step 5 Mix thoroughly for 3 minutes 

Step 6 Allow to rest for 3 minutes 

Step 7 Mix for an additional 2 minutes 
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(a) 

 
(b) 

Figure 2.2 Pervious concrete properties for mixtures prepared using different mixing procedures: 

(a) 28-day compressive strength; (b) permeability 

 
Figure 2.3 Pervious concrete properties for mixtures 
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(a)                                                         (b)  

Figure 2.4 Failure surface of samples prepared using the two mixing procedure: (a) Mix 

procedure 1; (b) Mix procedure 2 

 

2.2.2 Sand/Aggregate Ratio 

Four different sand/aggregate ratios (0.05, 0.08, 0.11 and 0.17) have been 

used. The samples were mixed using the mixing procedure 2, sieved Nazareth 

aggregate, and 10 sec. compaction time. The material proportion for mixing is 

water/cement ratio of 0.21, 343 kg/m
3
 cement, 1,523 kg/m

3
 coarse aggregate for ratio 

0.05 (1,477 kg/m
3
 for  ratio 0.08, 1,440 kg/m

3
 for  ratio 0.11, and 1,329 kg/m

3
 for  

ratio 0.17), 0.49 kg/m
3
 AEA, and 0.96 kg/m

3
 HRWR. 

The results in Figure 2.5 show that the mixing with sand/aggregate ratio with 

0.11 can provide the highest compressive strength of 13.6 MPa. The permeability of 

the mixtures with different sand/aggregate ratio is higher than 1.6 cm/s which is 

comparable to granular piles (up to 2.0 cm/sec.). Therefore, the sand/aggregate ratio 

of 0.11 was selected for further investigation.  

Other mixtures were prepared using the sieved Pea gravel with sand/aggregate 

ratios of 0.07 and 0.11. The mixtures have water/cement ratio of 0.21, 343 kg/m
3
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cement, 1,440 kg/m
3
 coarse aggregate, 0.74 kg/m

3
 AEA, and 4.06 kg/m

3
 HRWR. The 

compressive strengths of mixtures with 0.07 and 0.11 sand/aggregate ratios were 22.2 

and 29.0 MPa, respectively. The permeability was 1.68 cm/sec. of mixture with 0.07 

sand/aggregate ratio and 1.45 cm/sec. of mixture with 0.11 sand/aggregate ratio. 

Therefore, the sand/aggregate ratio of 0.11 was selected for further mixing 

investigation. 

  
Figure 2.5 Pervious concrete compressive strength and permeability for mixtures prepared using 

different sand/aggregate ratios 

 

2.2.3 Water/Cement Ratio 

Four different water/cement ratios (0.21, 0.23, 0.27 and 0.28) were used for 

pervious concrete mixtures. The samples were mixed using mixing procedure 2 and 

with sand/aggregate ratio of 0.11, water/cement ratio of 0.21, 377 kg/m
3
 cement, 

1,440 kg/m
3
 coarse aggregate, 2.47 kg/m

3
 AEA, and 4.94 kg/m

3
 HRWR. The 

aggregate used for these mixtures was sieved Nazareth gravel. The compaction time 

of 10 sec. was used for these samples. 
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As shown in Figure 2.6, the water/cement ratio of 0.21 provides higher 

compressive strength (18.3 MPa) for mixing sample. The increase of water/cement 

ratio to 0.27 decreases the compressive strength up to 25%. In addition, the sample 

with 0.21 water/cement ratio has 1.33 cm/s permeability which is within the 

permeability range of granular piles (0.05 to 2.0 cm/sec.).  

The sample mixing with water/cement ratio less than 0.21 has also been tried. 

During the mixing, the mixture was dry, which indicated that water was not enough 

for cementation development. Therefore, the mixing of water/cement ratio less than 

0.21 was stopped and the water/cement ratio was adjusted to 0.21. 

  
Figure 2.6 Pervious concrete compressive strength and permeability for mixtures prepared using 

different water/cement ratios 

 

2.2.4 Aggregate Type 

Four different aggregate types, including Nazareth gray gravel, Marble gravel, 

Pea gravel and New Jersey aggregate, have been used during the pervious concrete 

mixing preparation. The properties of aggregate are summarized in the Table 2.2 and 

their gradations are presented in Figure 2.7. The aggregates were washed and sieved, 
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and the portion passing the 9.5 mm sieve (3/8 in. sieve) and retained on the 4.75 mm 

sieve (No.4 sieve) was used for all mixtures. The samples were mixed using mixing 

procedure 2, compaction time of 10 sec., and sand/aggregate ratio of 0.11, 

water/cement ratio of 0.21, 377 kg/m
3
 cement, 1,440 kg/m

3
 coarse aggregate, 2.47 

kg/m
3
 AEA, and 4.94 kg/m

3
 HRWR. 

The compressive strength and permeability versus porosity are presented in 

the Figure 2.8. The testing results show that aggregate type has great effect on the 

pervious concrete mixture properties. The mixture using New Jersey aggregate 

provides the highest compressive strength and permeability. However, this type 

material can only be obtained from one manufacture in New Jersey. The quantity 

obtained by research team is not enough for further mixing. Among the mixtures of 

the other three aggregates, the samples mixed with Pea gravel have higher strength 

(20.8 MPa) and permeability (1.75 cm/sec.) comparable to granular piles (up to 2.0 

cm/sec.).  In addition, the pea gravel is available from home improvement stores. 

Therefore, the Pea gravel was chosen for further investigation. 

Table 2.2 Properties of aggregates used for the pervious concrete mixing 

Aggregate Type 
Nazareth Gray 

Gravel 

Marble 

Gravel 

Pea 

Gravel 

New Jersey 

Aggregate 

Unit Weight (kN/m
3
) 14.9 16.2 16.1 16.1 

Voids (%) 40 35 33 43 

Specific Gravity 2.62 2.62 2.48 2.90 

Absorption (%) 1.8 1.6 0.7 0.9 

Abrasion Mass Loss (%) 12.1 - 14.1 10.9 
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Figure 2.7 The gradation of aggregates used for pervious concrete mixing 

 
Figure 2.8 Pervious concrete compressive strength and permeability for mixtures prepared using 

different aggregate 

 

2.2.5 Compaction Time 

The pervious concrete samples were compacted using a vibrating table 

(HUMBOLDT, 60 Hz with amplitude 0.86 mm). The samples were mixed using 

sieved Pea gravel and mixing procedure 2 with 0.11 sand/aggregate ratio, 0.21 

water/cement ratio, 377 kg/m
3
 cement, 1,440 kg/m

3
 coarse aggregate, 2.47 kg/m

3
 

AEA and 4.94 kg/m
3
 HRWR. Four different compaction times (5 sec., 10 sec., 30 sec. 
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and 60 sec.) have been used to investigate the compaction time effect on pervious 

concrete properties.   

As shown in Figure 2.9a, the samples with compaction time of 10 sec. have 

uniform distribution of materials, while samples with 30 and 60 sec.. compaction time 

have segregation at the bottom. This segregation may affect the permeability of the 

pervious concrete sample and the pile as well as the strength. The 28-day compressive 

strength and permeability presented in Figure 2.9b, the sample compacted by 10 sec.. 

has highest strength (33.3 MPa) and a comparable permeability (1.1 cm/sec.) to 

granular piles. Therefore, compaction time with 10 sec. was selected for further 

investigation. It should be noted that the permeability increase of samples with 30 and 

60 sec. compaction times shown in Figure 2.9b was determined after cutting the 

segregation part at the bottom of the samples. 

 
(a) 



28 
 

 
(b) 

Figure 2.9 pervious concrete mixtures with different compacting times: (1) samples compacted 

with 10 sec., 30 sec. and 60 sec.; (2) compressive strength and permeability versus porosity 

 

2.2.6 Mixing for Pervious Concrete Pile 

For all mixtures prepared as part of this study, the 28-day compressive 

strength and permeability as a function of porosity of the pervious concrete mixings 

are summarized in the Figure 2.10. This figure includes different mixing procedure, 

sand/aggregate ratio, water/cement ratio, aggregate type and compaction time. 

Among all the mixtures, the improved mixing design selected for pervious concrete 

pile casting has the following mixing design: water/cement ratio of 0.21, 

sand/aggregate ratio of 0.11, 377 kg/m
3
 cement, 1,440 kg/m

3
 coarse aggregate, 2.47 

kg/m
3
 AEA and 4.94 kg/m

3
 HRWR.  

When comparing the material properties of the pervious concrete sample with 

the granular piles, it was found that the unconfined compressive strength of the 

pervious concrete material was more than 10 times greater than that of the confined 

granular piles; and the permeability coefficient of the pervious concrete sample and 

granular columns were comparable (Suleiman et al. 2014a). 
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Figure 2.10 pervious concrete compressive strength and permeability versus the porosity 

 

2.3 BEAM TEST 

2.3.1 Beam Test Set Up 

The purpose of the beam test is to obtain the moment-curvature relationship of 

the pervious concrete pile cross section. The test follows the procedure of ASTM C78 

(2009f). A load increment of 89 N was used and each load was hold for 1 minute. The 

test was stopped when the pile displacement increased continuously under a constant 

load. 

The pervious concrete pile shown in Figure 2.11 was cast using the mixing 

design mentioned at the end of the previous section. The pervious concrete mixing 

has a porosity of 0.11, permeability of 1.21 cm/s, 28-day compressive strength of 24.8 

MPa, split tensile strength of 2,260 kPa and elastic modulus of 16.3 GPa. The pile has 

101 mm diameter and 1,524 mm length. The pile had one No.4 rebar installed at pile 

center and one groove along the pile was made for Shape Acceleration Arrays (SAA) 

installation (Figure 2.11b). 
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As shown in Figure 2.11, the beam was loaded at two symmetric points, 

which was located at 1/3 and 2/3 length of pile. The moment at the section between 

these two loading points is keep constant. The pile was instrumented with Shape 

Acceleration Arrays (SAA) at middle along the pile to measure the pile deformation 

during the test. Four dial gauges had been set to verify the SAA measurements.  

 
Figure 2.11 Beam test setting up of pervious concrete pile: (a) pervious concrete pile setting up; 

(b) SAA and dial gauge setting up; (c) hydraulic load on beam 

 

2.3.2 Test Results 

The ultimate load of the beam test was 5,204N with maximum displacement 

of 18.7 mm at the middle of the pile. Figure 2.12 shows the pile deformation during 

the test. Based on the measurement values of the load and the displacement along the 

pile, the moment curvature relationship was calculated and presented in Figure 2.13. 

The maximum moment is 1,322N·m with curvature of 0.0019. Theoretical method 

results based on SAP2000 was compared with the moment-curvature response 

calculated using the measured displacement of the pile, which shows very good 

(a)

(b) (c)
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agreement. The slope of the moment-curvature curve shows that EI (elastic modulus 

multiplied by inertia) value of pile section decreased from 130 kN·m
2
 to 18 kN·m

2
. 

This moment-curvature relationship will be used to model the behavior of the 

pervious concrete pile cross section. 

 
Figure 2.12 The deformation of pervious concrete pile in beam test 

 

  
Figure 2.13. The moment curvature relationship of pervious concrete pile 
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2.4 SUMMARY AND CONCLUSIONS 

In this chapter, the pervious concrete properties have been investigated. A 

mixing design targeted higher strength and comparable permeability of granular pile 

The moment-curvature properties have been investigated using the beam tests. Based 

on the discussion of the experimental results presented in this chapter, the conclusions 

on pervious concrete properties are made as follow: 

1. The mixing initial step of  the additional 1 min. mixing of aggregate 

and 5-10% cement improved the coating of aggregate w and improved 

the mixing quality.  

2. Sand/aggregate ratio of 0.11 provides higher compressive strength in 

the range of 0.05 to 0.17, and comparable permeability to granular 

piles.  

3. Water/cement ratio of 0.21 provides highest compressive strength 

(18.3 MPa) comparing to other water/cement ratio and permeability of 

1.33 cm/sec. 

4. Aggregate type has great effect on concrete strength and permeability. 

Pea gravel, which provides high strength (20.8 MPa) and comparable 

permeability (1.75 cm/sec.), was chosen for pervious concrete pile 

mixing. 

5. The 10 second compaction time c prevent segregation of cement at 

bottom and provide adequate strength and permeability. The sample 

has compressive strength of 33.3 MPa and a comparable permeability 

of 1.1 cm/sec. 
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6. The moment-curvature curve of pervious concrete pile has been 

developed using beam test and proved that the calculation procedure 

for normal concrete to develop moment-curvature can be used for 

pervious concrete section.  
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CHAPTER 3 

DEVELOPMENT OF PERVIOUS CONCRETE PILE GROUND-

IMPROVEMENT ALTERNATIVE AND BEHAVIOR UNDER VERTICAL 

LOADING 

3.1 INTRODUCTION 

Numerous structures and highway facilities, including embankments and 

bridges, are often constructed on poor soils (i.e., soft or loose soils as well as 

organic/peat soils). In order to facilitate construction, achieve allowable settlements, 

and avoid failures, poor soils are often improved using ground improvement 

technologies. A common ground improvement technique involves using permeable 

granular piles (aggregate piers), which include sand compaction piles, stone columns 

and rammed aggregate piers, to improve soil strength and provide a drainage path. 

The use of permeable granular piles increases the time rate of consolidation, reduces 

liquefaction potential, improves bearing capacity and reduces settlement (Barksdale 

and Bachus, 1983; Mitchell, 1981; Aboshi and Suematsu, 1985; Bergado, 1994; Baez, 

1995; Terashi and Juran, 2000; and Okamure et al., 2006). However, when compared 

to other pile types (i.e., steel and concrete piles), the strength and stiffness of granular 

piles are lower and depend on the properties of the surrounding soil. Therefore, 

granular piles have limited use in very soft clays and silts, and organic and peat soils. 

This research effort proposes the use of pervious concrete piles that can provide 

higher stiffness and strength, which are independent of the surrounding soil properties, 

while offering permeability comparable to granular piles, to support structures and 

highway facilities constructed on poor soils. 
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The goal of this research is to develop an innovative ground improvement 

alternative that uses pervious concrete piles. This chapter focuses on: (1) presenting 

the material properties of pervious concrete and describing the developed installation 

method for pervious concrete piles; (2) comparing the response of pervious concrete 

and aggregate piles when subjected to vertical loading; (3) comparing the vertical 

loading response of precast pervious concrete pile with that of cast-in-place pervious 

pile constructed using the developed installation method; and (4) briefly discussing 

the variation of soil stresses and displacement (or movement) during installation. 

 

3.2 BACK GROUND 

3.2.1 Permeable granular piles 

Permeable granular piles are often used as a ground improvement technique to 

support structures, embankments and highway facilities constructed on poor soils. 

The term “permeable granular column” describes any columnar foundation element 

made of sand or gravel, including sand compaction piles, stone columns, and rammed 

aggregate piers. The effective use of permeable granular piles in supporting structures 

and highway facilities subjected to static and seismic loading is well documented (e.g., 

Mitchell, 1981; Barksdale and Bachus, 1983; Welsh, 1987; Bergado et al., 1994; 

Baez, 1995; Mitchell et al., 1995; Yasuda et al., 1996; Schaefer et al., 1997; Lawton, 

1999; Lawton, 2000; Terashi and Juran, 2000; Ashford et al., 2000; Okamura et al., 

2003; White and Suleiman, 2004; Ohtsuka et al., 2004; Krishna et al., 2006; and 

Suleiman and White, 2006). The benefits of permeable granular piles include 
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increasing the time rate of consolidation, reducing liquefaction potential, improving 

bearing capacity, and reducing settlement.  

Many construction methods, including vibro-composer, vibro-compaction, 

vibro-replacement, impact, and ramming compaction, are used to install permeable 

granular piles (Aboshi et al., 1979; Mitchell, 1981; Barksdale and Bachus, 1983; 

Bergado et al., 1994; Moseley and Kirsch, 2004; White and Suleiman, 2004; and 

Geopier Foundation Company, 2012). These construction methods change the soil 

stresses resulting in horizontal consolidation, which leads to the improvement of 

surrounding soil (Handy, 2001; Basu et al., 2011; and Lundberg et al., 2013). The 

effects of granular piles construction on soil stresses and displacement have been 

investigated by several researchers (Shublaq, 1992; Hunt, et al., 2002; Lee, et al., 

2004; Suleiman and White, 2006; Ambily and Ganhdi, 2007; Guetif et al., 2007; 

Elshazly et al., 2008; Chen et al., 2009; Yi et al., 2010; Dijkstra, et al., 2011; 

Thompson and Suleiman, 2010; and Frikha et al., 2013). Different approaches have 

been used to evaluate the effects of granular column installation on surrounding soils, 

including cavity expansion analysis, numerical modeling methods, cone penetration 

tests before and after installation, and shear wave velocity measurements. None of 

these approaches, however, directly and simultaneously measured the variation of soil 

stresses and soil movement during pile installation. Lundberg et al. (2013) reported 

that there is a lack of direct combined measurements of soil stresses and movement 

surrounding displacement piles in general; a knowledge gap that is partially addressed 

as part of this chapter for the installation method used to construct pervious concrete 

piles. Further experimental tests measuring the variation of soil stresses and lateral 
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movement during installation along with analytical modeling are being performed by 

the research team.   

The method used to install granular piles affects their properties. Table 3.1 

provides a comparison of published properties of sand compaction piles, stone 

columns and rammed aggregate piers. For the range of design loads, the friction angle 

of sand compaction piles, stone columns and rammed aggregate piers ranges from 

30–36°, 35–45° and 48–52°, respectively. White and Suleiman (2004) conducted 

triaxial tests on different types of compacted aggregates used in constructing granular 

piles and reported an average friction angle of 48.5° and a cohesion of 30 kPa. Table 

3.1 also shows that the initial elastic modulus of granular piles ranges from 25 to 120 

MPa and the measured stress concentration ratios range from 1.5 to 10, while the 

permeability measured using laboratory and field tests ranges from 0.05 cm/sec. to 

2.0 cm/sec.  

Regardless of the used construction method, single isolated granular piles fail 

in bulging, shear, or punching (Barksdale and Bachus, 1983). For typical granular 

column length to diameter (L/D) ratios, the most common failure mechanism is 

bulging, which is usually observed over a distance of 2 to 3 pier diameters below the 

soil surface (Barksdale and Bachus, 1983; Bergado et al., 1994). The ultimate vertical 

load capacity for a bulging failure mechanism of granular piles depends on the 

confinement provided by the surrounding soil (Hughes and Withers, 1974). For this 

reason, the use of granular piles is limited in very poor soils, where minimum 

confinement is provided by the surrounding soil (Barksdale and Bachus, 1983; and 

Bergado et al., 1994). This research effort proposes an innovative ground 
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improvement method using pervious concrete piles that offer adequate permeability 

and material properties, which are independent of soil confinement, allowing it to be 

used in a wide range of poor soils including very soft, loose, and peat and organic 

soils. 

Table 3.1 Properties of three types of granular piers 

Granular Pier 

Friction 

Angle 

(°) 

Initial 

Elastic 

Modulus 

(MPa) 

Stress 

Concentration 

ratio 

Permeability 

(cm/sec) 
Reference 

Sand 

Compaction 

Piles 

30-36 25-40 1.5-6.0 0.05-0.65 
Bergado, 1988&1994;  

Aboshi et al., 1979 

Stone Columns 35-45 30-70 2.0-8.5 0.09-2.0 

Mitchell, 1981;Barksdale 

and Bachus, 1983; Baez, 

1995 

Rammed 

Aggregate 

Piers 

48-52 60-190 2.0-10 N/A 

Hoevelkamp, 2002;  

White and Suleiman, 

2004 

 

3.2.2 Pervious Concrete Material 

Pervious concrete is a special concrete product made primarily of a single-

sized aggregate. Pervious concrete has been used in pavements to reduce storm water 

runoff quantities and perform initial water quality treatment by allowing water to 

penetrate through the surface. In the United States, pervious concrete is mainly used 

in pavement applications, including sidewalks, parking lots, tennis courts, pervious 

base layers under heavy duty pavements and low traffic density areas (Tennis et al., 

2004; and Suleiman et al., 2011). Based on previous material studies (Kajio et al., 

1998; Beeldens et al., 2003; Tennis, et al,. 2004; Park and Tia, 2004; and Suleiman et 

al. 2006), pervious concrete material has a porosity ranging from 11% to 31%, a 28-

day compressive strength between 5.5 MPa and 26.0 MPa and a permeability 

coefficient ranging from 0.25 to 0.54 cm/sec. Recent material tests performed by 
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Kevern et al. (2008) indicated that the 28-day compressive strength of pervious 

concrete ranged from 17.0 MPa to 26.5 MPa and the permeability coefficient ranged 

from 0.02 to 1.03 cm/sec. 

To investigate the benefits of the proposed pervious concrete pile ground 

improvement method, four vertical load tests were conducted in a Soil-Structure 

Interaction (SSI) facility. The Test units included one granular column (Test unit 1) 

and three pervious concrete piles (Test units 2, 3, and 4). All the Test units were 

installed in loose well-graded sand. Test units 1 and 2 were used to compare the 

behavior of a granular column to a pervious concrete pile. Test units 3 (precast) and 4 

(cast-in-place or installed) were used to evaluate the effects of the installation method 

on the behavior of pervious concrete piles subjected to vertical loading. The 

following sections of this chapter focus on presenting the pervious concrete material 

properties; describing the installation method for pervious concrete piles; comparing 

the vertical loading response of pervious concrete and aggregate piles; comparing the 

vertical loading response of precast and installed pervious concrete piles; and briefly 

discussing the variation of soil stresses and movement during installation. 

 

3.3 MATERIAL PROPERTIES 

3.3.1 Pervious Concrete Properties 

A series of pervious concrete mixtures were prepared in order to obtain an 

adequate compressive strength and permeability. Pervious concrete cylinder samples 

were tested to measure the porosity, permeability, compressive strength, elastic 

modulus, and split tensile strength. The compressive strength was determined using 
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ASTM C39 (2009a), the permeability was measured using an in-house designed 

falling head permeameter, the porosity was measured using ASTM C1688 (2009b), 

the elastic modulus was measured using ASTM C469 (2009c) and the split tensile 

strength was measured using ASTM C496 (2009d). Several aggregate types, sizes 

and compaction (vibration) times were investigated. Mixtures were prepared using 

water/cement ratios (w/c) ranging from 0.21 to 0.27 and sand/aggregate ratios ranging 

from 5% to 11% using two mixing procedures and three different compaction times. 

Figure 3.1a summarizes the 28-day compressive strength and permeability 

coefficient results for pervious concrete mixtures that were prepared using a 10 

second compaction time for different water/cement and sand/aggregate ratios, as a 

function of porosity. The results presented in Figure 3.1a indicate that the porosity 

ranged from 6% to 23% with the 28-day compressive strength ranging from 10.0 to 

34.0 MPa and the permeability coefficient ranging from 1.0 to 2.4 cm/sec. Based on 

these results, two pervious concrete mixes with high compressive strength and 

adequate permeability (comparable to granular piles) were selected to cast the piles 

for the vertical load tests. Both mixtures used a 0.21 water/cement ratio, an 11% 

sand/aggregate ratio, 377 kg/m
3
 cement and 1440 kg/m

3
 coarse aggregate. Test units 

1 and 2 used crushed Nazareth aggregate, which is locally available in eastern 

Pennsylvania. However, it was observed that the quality of this aggregate varies from 

one delivery to the other. To ensure more consistent results, pea river gravel 

(commercially available at home improvement stores) was used to conduct further 

material testing and to construct Test units 3 and 4. Both aggregates were washed and 

sieved, and the portion passing through a 9.5 mm sieve and retained on a No.4 (4.75 
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mm) sieve was used (see Figure 3.1b). The pervious concrete mixture used in 

preparing Test unit 2 had an average porosity of 20%, a permeability of 1.33 cm/sec., 

a 28-day compressive strength of 18.3 MPa, a split tensile strength of 2344 kPa, and 

an elastic modulus of 16.2 GPa. The pervious concrete mixture used in preparing Test 

units 3 and 4 had an average porosity of 12.5%, a permeability of 1.21 cm/sec., a 28-

day compressive strength of 22.2 MPa, a split tensile strength of 2337 kPa, and an 

elastic modulus of 15.4 GPa.  

Pervious concrete samples cut from Test units 3 and 4 were used to measure 

the porosity and permeability of these piles.  The average porosity and permeability 

of the precast pile (Test unit 3) were 13.6% and 1.35 cm/sec., respectively. For the 

installed pile (Test unit 4), the average porosity and permeability were 11.2% and 

1.06 cm/sec., respectively. Strength tests were not performed on the samples cut from 

the test piles because the cutting process affects the strength of pervious concrete as 

concluded by Suleiman et al. (2006).   

Mixtures that used a compaction (vibration) time of 10 seconds per layer 

during sample preparation resulted in an adequate compressive strength and 

permeability with no or minimal segregation of cement and aggregate. By comparing 

the material properties of granular piles and the pervious concrete piles, the following 

observations can be made: (1) the unconfined compressive strength of the pervious 

concrete material is more than 10 times greater than that of the confined granular 

piles; and (2) the permeability coefficient of the pervious concrete piles and granular 

piles are comparable. Furthermore, according to the analytical work of Han and Gabr 

(2002) and Suleiman et al. (2003) for embankments supported on several ground 
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reinforcement techniques representing a wide range of modulus ratios (i.e., elastic 

modulus of pile/elastic modulus of soil), using a pile with a modulus similar to 

pervious concrete piles will increase the stress concentration ratio by approximately 3 

times the ratio for granular piles. This will reduce the stress carried by poor 

foundation soils and reduce the area replacement ratio. Given that several researchers 

documented the successful use of granular piles in mitigating liquefaction, which is 

attributed to higher stiffness and permeability when compared to the surrounding soil 

(e.g., (Adalier et al., 2003; Adalier and Elgamal, 2004; Shenthan et al., 2004; and 

Shao et al. 2013), it is expected that pervious concrete piles will provide the same 

advantages under similar loading conditions.   

3.3.2 Sand and Aggregate Properties 

Due to the large soil quantity needed in the large-scale experiments and 

because it is easier to rain sandy soils and to achieve uniform soil properties in the 

soil box, the testing program focuses on pervious concrete piles installed in loose 

sand. However, pervious concrete piles can be used in different soil types including 

very soft clays, and peat and organic soils. The soil used in all vertical load tests was 

classified as well-graded sand (SW) according to the United Soil Classification 

System (Figure 3.1b). The minimum and maximum relative density vibrating table 

tests [ASTM D4254 (2009h), and ASTM D4253 (2009g)] were performed at oven 

dry conditions and the minimum and maximum unit weight of the sand were 15.1 

kN/m
3
 and 20.8 kN/m

3
, respectively (i.e., maximum void ratio of 0.720 and minimum 

void ratio of 0.250). For each vertical load test, the soil was placed in the large soil 

box using soil storage and moving system. The dry unit weight and moisture content 
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of the sand placed in the soil box were measured using a nuclear density gauge. The 

placed soil had an average relative density of 32%, unit weight of 16.5 kN/m
3
, and 

water content of 2%. The standard deviation of the unit weight measurements was 

0.377 kN/m
3
, which confirmed the uniformity of the placed soil. (Note: soil 

placement is described later in the chapter). To characterize the soil properties, 

consolidated drained (CD) triaxial tests were performed. The samples were prepared 

to achieve a relative density similar to that of the soil in the large soil box (i.e., 32% 

relative density or unit weight of 16.5 kN/m
3
). The 70-mm diameter samples were 

tested at confining stresses of 15, 25, 35, 100 and 160 kPa. The measured deviator 

stress-axial strain and volume change during the CD triaxial tests are presented in 

Figure 3.1c.  The initial modulus of the soil (Ei) as a function of confining pressure 

(σ3) was evaluated using the power function suggested by Janbu (1963) [i.e., Ei = k 

Pa (σ3/Pa)
n
, where Pa is the atmospheric pressure, k is the modulus number and n is 

the modulus exponent] and the calculated values of k and n were 82.3 and 0.95, 

respectively, as shown in Figure 3.1c.  The Kf line presented in Figure 3.1d indicates 

that the peak friction angle of the soil equals to 38°. The peak and critical friction 

angles of the used loose sand have the same value, which is consistent with the results 

presented by Mitchell and Soga (2005) for loose sands. The friction angle and 

permeability of Nazareth aggregate, which was used to construct Test unit 1 (granular 

column), was measured using CD triaxial tests and failing head permeability tests.  

The friction angle of the aggregate was 47° and the permeability was 1.90 cm/sec. 
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(c) 

 
(d) 

Figure 3.1 Material properties: (a) pervious concrete compressive strength and permeability for 

mixtures prepared using different aggregates with compaction time of 10 seconds, (b) gradation 

of the aggregate used for casting the test piles and for the soil used in the large soil box, (c) CD 

triaxial tests on sand samples with the same relative density used in the soil box, and (d) p’f-q’f 

diagram for the peak stresses of soil samples 
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3.4 TESTING FACILITY 

The used experimental Soil-Structure Interaction (SSI) Facility had a reaction 

frame system, advanced sensors, state-of-the-art instrumentation and data acquisition 

and control system. The two stacked soil boxes and the vertical reaction frame test 

configuration are shown in Figure 3.2. The two soil boxes have dimensions of 

1.5×1.5×1.5 m and 1.5×1.5×0.75 m and were designed to allow for flexible assembly. 

The advanced sensors available in the SSI facility include customized flexible 

Shape Acceleration Arrays (SAA) deformation sensors, in-soil null pressure sensors, 

and tactile pressure sheets. The SAAs consists of a linked series of micro-machined 

electromechanical sensors that enabled gravity-based shape calculation over the 

sensed area. The sensors can measure three-dimensional (3D) movement based on a 

reference point. The SAAs were specially machined with segment lengths of 90 and 

120 mm to fit the scale of the performed experiments. The in-soil null pressure 

sensors were designed in-house with a diameter of 42 mm and a thickness of 7 mm. 

Each null pressure sensor has an air pressure chamber with an embedded strain gauge. 

The null pressure sensors are connected to a closed loop system that controls the flow 

of air to maintain the strain measurement at zero. Talesnick (2005) and Talesnick et al. 

(2008) tested similar sensors within different soil types at several levels of pressure in 

a calibration chamber and reported that the difference between the measured and the 

applied pressure was smaller than 0.3 kPa. The tactile pressure sheets consist of a 

matrix of small point sensing cells (32×32 sensors) that provide discrete pressure 

measurements. Palmer et al. (2009) concluded that the accuracy of pressure 
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measurements using the tactile pressure sheets was higher than 90%. Suleiman et al. 

(2014b) studied the accuracy of the pressure measurements obtained in a lateral load 

test by comparing the applied load to the soil reaction obtained from measured 

pressures, which resulted in a difference smaller than 8%. The data acquisition and 

control system combines testing control and sensor monitoring. The system monitors 

several types of sensors, including load cells, strain gauges, null pressure sensors, tilt 

meters and displacement transducers. The SSI facility also has a soil storage and 

moving system, vibrating table to characterize granular material compaction 

properties, nuclear density gauge, and web broadcasting capability. 

 
(a) 

Actuator

Soil

Top soil box

Bottom soil box

Reaction frame
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(b) 

Figure 3.2 SSI facility and reaction frame system for vertical load tests: (a) schematic of the SSI 

facility, and (b) top soil box and reaction system of the SSI facility 

 

3.5 TEST UNITS AND INSTRUMENTATION 

3.5.1 Installation of Test Units 

A laboratory installation method was developed by the research team to 

simulate a field construction method. Details of several stages of the laboratory 

installation method are shown in Figure 3.3. The developed installation system 

consists of a hollow steel mandrel with a specially designed cone at the tip. The 

mandrel can be vibrated into soil using an attached concrete vibrator (Figure 3.3a) or 

a Rhino pile driver placed on top of the mandrel. A bracing system was designed to 

ensure the verticality of the mandrel driving (Figure 3.3b and c). During mandrel 

advancement (mandrel penetration stage), the cone tip stays closed. Once the desired 

depth is reached, the pervious concrete or aggregate is placed inside the mandrel from 

the top (Figure 3.3d). Then, the mandrel is lifted upward (mandrel retrieval stage) at a 

Reaction frame

Top soil box

Actuator
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slow rate. During the mandrel retrieval stage, the cone tip opens and the pervious 

concrete or aggregate fills the created space (Figure 3.3e). This installation method is 

similar to the one used for sand piles described by Magnan (1983), which 

demonstrate that pervious concrete piles can be installed using available construction 

techniques. 

Initially, a mandrel with 76 mm outside diameters was designed and 

fabricated. Test units 1 and 2 (one aggregate pier and one pervious concrete pile) 

were installed using the 76 mm mandrel utilizing the installation method described 

above. These two test units were tested under vertical loading and only the load and 

the displacement at the pile head were measured. To investigate the load transfer 

along the pile length, a steel rebar with mounted strain gauges is needed. With the 76 

mm diameter mandrel, the installation of the steel rebar without damaging the strain 

gauges (or their wires) was difficult. So, a newer cone/mandrel setup was designed 

and fabricated with a diameter of 102 mm that allowed for easier installation of strain 

gauges. The 102 mm mandrel was used to install Test unit 4. Test unit 3 was a precast 

pervious concrete pile that has the same dimensions as Test unit 4. 
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Figure 3.3 Summary of the developed pile installation method: (a) cone with vibrator, (b) 

bracing (guiding) system, (c) driving the mandrel, (d) casting the pile, (e) open cone during 

casting 

 

3.5.2 Description of Test Units 

Test units 1 and 2 were cast using the 76-mm diameter mandrel with an 

embedded length of 864 mm. Test unit 1 was a granular column and Test unit 2 was a 

pervious concrete pile; both used the same aggregate (Nazareth crushed aggregate) 

and were installed using the developed laboratory installation method described 

above. Test units 3 and 4 were pervious concrete piles, which were prepared using 

pea river gravel, with an embedded length of 1219 mm.  Test unit 3 was a precast pile 

with a 102 mm diameter, which was placed vertically into the soil box and the soil 

was rained around it. Test unit 4 was installed using the 102-mm diameter mandrel. 
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Since the cone did not completely open during the installation of Test unit 4, the 

installed pile has a slightly tapered tip with a cross-sectional area of 4825 mm
2
 and an 

average cross-sectional area along the pile length of 5935 mm
2
. 

3.5.3 Instrumentation of Test Units and Surrounding Soil 

As mentioned previously, two soil boxes were stacked on top of the other, 

which provided a total height of 2.25 m, and a reaction frame was assembled for the 

vertical load tests (Figure 3.2a and Figure 3.4a). To produce a uniform soil, a soil 

storage and movement system was designed. This system consists of a bottom dump 

soil container with an attached sieve to rain the soil into the soil box. As shown in 

Figure 3.4b, the soil was placed in the soil boxes by raining the soil from a height of 

approximately 1.5 m. 

Due to the large soil quantity needed in the large-scale experiments and 

because it is easier to rain sandy soils and to achieve uniform soil properties in the 

soil box, the testing program focuses on piles installed in sand. However, pervious 

concrete piles can be used in different soil types including very soft clays, and peat 

and organic soils. 

Test unit 1 (granular column) and Test unit 2 (pervious concrete pile) were 

installed to assess the performance of the developed installation method and to 

compare the response of the granular column to that of the pervious concrete pile 

when subjected to vertical loading. These two Test units and the surrounding soil 

were not reinforced or instrumented and only the vertical applied load and 

displacement of the pile head were monitored during the load tests.  
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Test unit 3 (precast pervious concrete pile) and Test unit 4 (pervious concrete 

pile installed using the developed installation method or simply referred to as 

installed pervious concrete pile) were used to evaluate the effects of the installation 

method on the pile response when subjected to vertical loading. Test unit 3 was 

reinforced with a No. 4 (12.7 mm diameter) rebar instrumented with strain gauges 

and placed at the center of pile cross-section, as shown in Figure 3.5a. To evaluate the 

effects of the soil box boundaries on the installation and response of the pile, one 

tactile pressure sheet was mounted on the bottom of the soil box and another sheet on 

the side of the soil box (Figure 3.5a and b).  

Test unit 4 was installed using the developed installation method. Similar to 

Test unit 3, Test unit 4 was reinforced with a No. 4 rebar with mounted strain gauges 

along the length of the pile. The surrounding soil was instrumented with three SAAs 

and six null pressure sensors as shown in Figures 3.4c, d and Figure 3.5. Two of the 

SAAs were installed at a distance of one pile diameter (1D or 102 mm) from the 

center of the pile and one SAA was installed at a distance of 2D from the center of the 

pile (203 mm). As shown in Figure 3.5, null pressure sensors 1, 2 and 3 were installed 

at 76, 178, and 279 mm (i.e., 0.75D, 1.75D, and 2.75D) below the tip of the pile. Null 

pressure sensors 4, 5 and 6 were installed at a horizontal distance of 1D from the 

center of the pile at either a depth of 914 mm or 1270 mm below the soil surface. Null 

pressure sensors 4 and 5 were installed at the same depth with a similar distance from 

the center of the pile to check the repeatability of the measured stress changes. 

Furthermore, one pressure sheet was mounted at the bottom of the soil box and one 

on the side wall of the soil box (Figure 3.5a and b) to assess the effect of the soil box 
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boundaries during installation and loading.  The pressure sheets mounted on the side 

and at the bottom of the soil box recorded a maximum pressure change of 0.3 kPa and 

1.4 kPa, respectively. These measurements illustrate that soil box boundaries has 

minimal or no effect on pile installation and soil-pile system response when subjected 

to vertical loading. It should be noted that several strain gauges used in the installed 

pile (Test unit 4) may have been damaged during installation and did not function 

properly during the vertical load test. 

 
Figure 3.4 Set up of vertical load tests: (a) experiment set up showing the two soil boxes and the 

reaction system, (b) soil placement by raining the soil from an elevation of approximately 1.5 m, 

(c) SAAs used in the soil surrounding Test unit 4, and (d) in-soil null pressure sensors installed 

near the tip of Test unit 4 with a picture of the pressure sensor compared to the size of a quarter 

coin 
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(a)                                                                              (b) 

Figure 3.5 Instrumentation for Test unit 4: (a) side view, and (b) top view. 

 

3.6 LOADING SEQUENCE 

The four vertical load tests were conducted in general accordance with the fast 

procedure outlined in the ASTM D1143 (2009d). Each load level was held constant 

for at least 4 minutes or until the pile head displacement stabilized. The test was 

stopped when the pile displacement continued increasing without an increase in the 

applied load. During testing of Test units 1 and 2, a load increment of 222.4 N was 

used. For Test units 3 and 4, load increments of 222.4 N and 889.6 N were used. 
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3.7 TEST RESULTS 

3.7.1 Experimental Pile Load-Displacement Response 

Effect of Pile Type on Response 

Figure 3.6a presents the measured vertical load-displacement responses for 

Test unit 1 (granular column) and Test unit 2 (pervious concrete pile). Both test units 

were made using the same aggregate and installed using the same installation method.  

The ultimate load of Test unit 1 was 2.2 kN and the ultimate load of Test unit 2 was 

9.8 kN. Therefore, the ratio of the ultimate load of the pervious concrete pile to the 

ultimate load of the granular column was 4.4. After the ultimate load was reached 

during testing, the soil surrounding each pile was removed to expose the Test units. 

Figure 3.7a illustrates that Test unit 1 (granular column) failed by bulging into the 

surrounding soil due to the low confining pressure provided by the surrounding soil. 

The depth of the bulged zone was approximately 2.5D below the soil surface. For 

Test unit 2 (pervious concrete pile), the pile failed by punching vertically into the soil 

(Figure 3.7b). The observed failure types indicate that unlike granular piles, pervious 

concrete piles do not experience bulging into the surrounding soil allowing them to be 

used in different poor soil conditions including very soft, loose, and peat and organic 

soils. 
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(a)  

 

  
(b) 

Figure 3.6 Vertical load versus displacement for all test units: (a) Test units 1 and 2 with a 76 

mm diameter piles installed using the developed installation method, and (b) Test units 3 and 4 

with a 102 mm diameter piles 

 

Effect of Pile Installation Method on Response 

Figure 3.6b presents the measured vertical load-displacement responses for 

Test unit 3 (precast pervious concrete pile) and Test unit 4 (installed pervious 

concrete pile). These tests were conducted to compare the load-displacement response 
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of two similar pervious concrete piles that were installed using different methods. The 

ultimate load of Test unit 3 was 12.20 kN and the ultimate load of Test unit 4 was 

31.20 kN. Therefore, the ratio of the ultimate load of the installed pervious concrete 

pile to the ultimate load of the precast pile was 2.6. The difference between the 

ultimate loads of the two pervious concrete piles occurs because of the installation 

method, which has significant effects on the surrounding soil properties that will be 

briefly discussed later in this chapter. Similar to the failure experienced by Test unit 2, 

Test units 3 and 4 also experienced vertical punching failures as shown in Figure 3.7c 

and d. 

 
Figure 3.7 Test units after performing the vertical load test: (a) Test unit 1 with bulging failure, 

(b) Test unit 2, (c) Test unit 3, and (d) Test unit 4 

 

3.7.2 Load Transfer along Pile Length 

Using the strain gauge measurements along the pile length and the calculated 

initial elastic modulus of the pervious concrete composite section, including the steel 

reinforcing bar, the load transfer along the pile length for Test units 3 and 4 was 

calculated and compared at loading stages of 1.78 kN, 4.89 kN and 11.12 kN (Figure 
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3.8). These loading stages were selected for comparison because they represent the 

initial (linear) stage, transition stage and near the ultimate load for Test unit 3. The 

rate of load transfer shown in Figure 3.8 indicates that at the applied load of 11.12 kN, 

the maximum unit friction, which is the slope of the curve between depths of 381 mm 

and 965 mm, was 9.0 N/mm for Test unit 3 (precast pile) and 10.6 N/mm for Test unit 

4 (installed pile).  These unit friction values illustrate that the pile installed using the 

developed installation method had a 17.8% higher load transfer rate to the 

surrounding soil through shaft resistance than the precast pile at this loading step. 

Extending the load transfer curves in Figure 3.8 to the depth of the pile tip for the 

11.12 kN loading stage results in tip resistances of 1.10 kN and 3.28 kN for Test units 

3 and 4, respectively. At the ultimate load of Test unit 4 (31.20 kN), the tip resistance 

was approximately 35% of the applied load (i.e., shaft friction resisted 65% of the 

applied load). The difference in the ultimate load and load transfer between Test unit 

3 and 4 is mainly attributed to the used installation method, which for the installed 

pile changes the soil density and soil stresses, as well as results in a rougher pile 

surface as shown in Figure 3.7 c and d. 

Using the load transfer along the pile length and displacements back 

calculated using the strain measurements along the pile, the frictional soil-pile 

interface stress (interface shear stress)-displacement relationships at the soil-pile 

interface (i.e., t-z curves) were developed and are presented in Figure 3.9. The results 

illustrate that Test unit 4 (installed pile) had a higher maximum interface frictional 

stress transfer than that of Test unit 3 (precast pile). The ratio of maximum frictional 

stress at the soil-pile interface for Test unit 4 relative to that of Test unit 3 was 2.5 at 
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an average depth of 191 mm below the soil surface and 5.3 at an average depth of 635 

mm. These ratios are consistent with those reported in the literature when comparing 

displacement and non-displacement piles (e.g., Colombi et al., 2006). The differences 

in ultimate load and load transfer clearly illustrate the significant effect that the 

installation method had on the soil-pile interaction for vertically loaded pervious 

concrete piles. 

 
Figure 3.8 Comparison of the force transferred along the length of Test units 3 and 4 for 

different loading stages 

 

3.7.3 Variation of Soil Stresses and Movement during Pile Installation 

As the mandrel penetrates the soil, it pushes the soil downward and laterally 

(cavity expansion) resulting in a significant increase of vertical stress and a smaller 

increase of horizontal stress (Basu et al., 2011). For a soil element at a specific depth, 

the cavity expands until the mandrel, which has a constant diameter, starts to 

penetrate the location of the soil element. Vertical shearing is then applied to the soil 

element as the mandrel penetrates deeper.  As discussed before, the effects of pile 
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installation on soil lateral displacement (movement) and stresses were monitored 

using SAAs and null pressure sensors for Test unit 4. The in-soil null pressure sensors 

were zeroed before starting the experiment which did not allow us to record the initial 

horizontal stresses (i.e., allowing the measurement of the change of stresses during 

installation and load testing). Null pressure sensor 2 did not function properly due to 

air leakage during installation. 

 
(a) 

 
(b) 

Figure 3.9 Shear stress versus displacement curves (t-z curves) for the soil-pile interface 

calculated using the strain gauge measurements for test units 3 and 4: (a) for average depth 

below soil surface of 191 mm, and (b) for average depth below soil surface of 635 mm 
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Lateral Soil Movement 

The lateral soil movement due to pile installation measured using the SAAs 

are summarized in Figure 3.10. The SAAs measurements at 1D (102 mm) from the 

center of the pile, which was 51 mm from the surface of the pile, illustrate that the 

steel mandrel penetration resulted in a non-uniform lateral soil movement along the 

depth of the mandrel.  The lateral movement near the soil surface was 17.6 mm, while 

the lateral movement near the pile tip was 8.2 mm. Therefore, the soil movement at 

the pile tip is only 50% of the soil movement near the soil surface. These non-uniform 

displacements along the depth of the pile are commonly modeled by researchers as 

uniform displacements that produce similar vertical load-displacement pile response 

(e.g., Chen et al., 2009; and Dijkstra et al. 2011). However, non-uniform 

displacement can also be simulated using the volumetric strain approach suggested by 

Thompson and Suleiman (2010); an approach that is currently being investigated 

further by the authors. During vertical loading, the soil at 1D experienced 1.7 to 5.8 

mm additional lateral movement. At a distance of 2D (152.4 mm from the surface of 

the pile), the lateral soil movement was 4.1 mm at the soil surface with no lateral soil 

movement occurring below a depth of 500 mm (~5D). 
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Figure 3.10 Soil lateral displacement at 51 mm (average) and at 152 mm from the surface of the 

pile measured using SAAs for Test unit 4 

 

Horizontal Soil Stresses 

The changes of horizontal soil stresses due to pervious concrete pile 

installation and during vertical loading, which were measured using null pressure 

sensors 4, 5 and 6, are summarized in Figure 3.11a. The following observations can 

be made regarding the changes occurring in the horizontal stresses: (1) due to 

mandrel advancement, the change of horizontal stresses measured by sensor 6 was 

147 kPa at 914 mm below the soil surface; (2) the horizontal stress increased by 99 

kPa at 1240 mm below the soil surface (i.e., near the tip of the pile); (3) sensors 4 and 

5, located at the same depth and distance from the pile, showed similar horizontal 

stress increases during mandrel advancement, which confirms the repeatability of the 

stress measurements for the sensors.; (4) during the vertical load test, the horizontal 

stresses measured by sensor 6 increased, which is similar to the trend reported by 

Lehane et al. (1993); and (5) during the vertical load test, Test unit 4 with a slightly 

tapered tip (see Figure 3.5) penetrated the soil below the pile tip resulting in cavity 
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expansion at the location of sensors 4 and 5 approaching a condition similar to that at 

the location of sensor 6. Therefore, it was expected that at this stage the change of soil 

horizontal stress measured using sensors 4 and 5 would be similar to that of sensor 6, 

which is observed in Figure 3.11a. This measurement is another confirmation of the 

repeatability of the measured stresses.  

The measured changes of soil horizontal stresses were compared with the 

elastic and elastic-plastic cavity expansion solutions presented by Yu (2000). Using 

the elastic and elastic-plastic solutions, the calculated changes of horizontal stress at 

the location of sensor 6 (914 mm below soil surface) were 182.9 kPa and 170.3 kPa, 

respectively, which are approximately 26% and 17% smaller than the measured 

change in soil horizontal stress at the same location (145 kPa). At the location of 

sensors 4 and 5 (depth of 1240 mm), the calculated changes in soil horizontal stress 

were 172.3 kPa and 177.5 kPa using the elastic and elastic-plastic cavity expansion 

analyses, respectively, which are approximately 12% and 10% smaller than the 

average measured pressure using sensors 4 and 5 (195.7 kPa).  

 

Vertical Soil Stresses 

For changes in vertical stresses, which were measured using sensors 1 and 3, 

the vertical stress increased by 180 kPa at 76 mm below the tip of the cone due to 

mandrel advancement. The increase of vertical stress is approximately 1.9 times the 

increase in horizontal stress measured using sensors 4 and 5 (located near sensor 3). 

The result of having the vertical stress significantly higher than horizontal stress 

during cone advancement was also reported by Salgado et al. (1997) and Salgado and 
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Prezzi (2007). Sensor 1 showed an increase of vertical stress of 57 kPa at the end of 

mandrel advancement. At the end of the load test, sensor 3, which was approximately 

55 mm below the pile tip at this stage, recorded an increase of vertical stress of 638 

kPa and sensor 1, which was approximately 60 mm below the pile tip at this stage, 

recorded an increase of 135 kPa (Figure 3.11a and b).  

Figure 3.11b summarizes the development of measured pressures from sensor 

6 during different installation stages focusing on the mandrel advancement stage. 

During mandrel advancement, the variation of horizontal stress measured using 

sensor 6 increased until the mandrel passed the location of the sensor.  The horizontal 

stress measured by sensor 6 then decreased as the mandrel advanced deeper. This 

stress changing trend caused by the cavity expansion and shearing along soil-pile 

interface is consistent with the one-dimensional (1-D) finite element analytical results 

reported by Basu et al. (2011) for jacked piles. 
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(b) 

Figure 3.11 Effect of installation on the change of soil pressure: (a) summary of pressure changes 

developed at the end of installation and during load testing, and (b) details of changes of 

horizontal pressure measured using sensor 6 and changes of vertical pressure measured using 

sensor 3 focusing on the changes during installation (Note: the x axis represent different stages 

(steps) including mandrel advancement, waiting period, casting and mandrel retrieval and 

vertical load testing) 

 

3.8 SUMARY AND CONCLUSIONS 

A new ground improvement method has been developed using pervious 
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method on the soil-pile interaction. Although the testing program focuses on piles 

installed in loose sand, pervious concrete piles can be used in different soil types 

including very soft clays, and peat and organic soils. Based on the experimental 

results obtained from the four vertical load tests and the discussion of the results 

presented in this chapter, the following conclusions were made:  

1. Pervious concrete piles have a compressive strength that is more than 

10 times that of granular piles, while providing similar permeability to 

granular piles. 

2. The pervious concrete pile (Test unit 2), which had the same 

dimensions, aggregate type, and installation method, as the granular 

column (Test unit 1), had an ultimate load that was 4.4 times greater 

than the ultimate load of the granular column. Furthermore, the 

pervious concrete pile failed by vertically punching into the soil at the 

pile tip, while the granular column failed by bulging outward into the 

surrounding soil. 

3. The installation method had significant effects on the response of the 

pervious concrete piles. When comparing the response of the two 

pervious concrete piles installed using different methods [precast pile 

(Test unit 3) and installed pile (Test unit 4)], the ultimate load of the 

installed pile was 2.6 times greater than the ultimate load of the precast 

pile. 

4. Installation of the pervious concrete pile resulted in an increase of the 

maximum frictional stress transferred at the soil-pile interface. The 
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ratio of the maximum frictional stress calculated using the strain 

gauges for the installed pile compared to the precast pile ranged from 

2.5 to 5.3. 

5. The lateral soil displacements measured at a distance of 1D from the 

pile center during installation were not uniform along the length of the 

pile. The installation of the pile also resulted in significant increases of 

the soil vertical stress and a smaller increase of the soil horizontal 

stress.  The measured change of the vertical and horizontal soil stresses 

showed trends similar to those reported in the literature. 
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CHAPTER 4 

BEHAVIOR AND SOIL-STRUCTURE INTERACTION OF PERVIOUS 

CONCRETE GROUND IMPROVEMENT PILES UNDER LATERAL 

LOADING 

4.1 INTRODUCTION 

Granular columns are commonly used to resist vertical and lateral loads and to 

improve soft and loose soils.  Granular columns include stone columns, sand 

compaction piles, and rammed aggregate piers.  With higher stiffness, strength, and 

higher permeability than surrounding soils, granular columns have been used to 

improve soil strength, increase consolidation rate, reduce liquefaction potential, 

improve bearing capacity, reduce settlement, improve embankment stability, and 

stabilize slopes (Barksdale and Bachus 1983; Mitchell 1981; Aboshi and Suematsu 

1985; Bergado et al. 1994; Baez 1995; Terashi and Juran 2000; Okamure et al. 2006; 

Elgamal et al. 2009; and Stuedlein and Holtz 2013).  For typical granular column 

length to diameter (L/D) ratios, the most common failure mechanism when subjected 

to vertical loading is bulging, which is usually observed over a distance of 2 to 3 

diameters below the soil surface (Barksdale and Bachus 1983; Bergado et al. 1994; 

Suleiman et al. 2014a). When subjected to lateral loading, such as to stabilize slopes, 

granular columns fail in direct shear at the location of loading or along the slope 

failure surface (i.e., do not transfer loads to deeper stable soils as in the case of 

concrete or steel piles used to stabilize slopes) (Barksdale and Bachus, 1983; Mitchell 

1981; Bergado et al. 1994; White and Suleiman 2005; Suleiman et al. 2014b).   
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Compared to other pile types (concrete and steel piles), granular columns have 

lower strength and stiffness, which depend on the properties of the surrounding soil.  

Therefore, granular columns have limited use in very soft clays and silts, and organic 

and peat soils. The research team has recently developed a new ground improvement 

pile made of pervious concrete material. In addition to providing adequate 

permeability comparable to granular columns, pervious concrete ground improvement 

piles have higher stiffness and strength, which are independent of the surrounding soil 

properties. 

The behavior of vertically loaded pervious concrete piles compared to 

granular columns has been studied using a series of fully-instrumented tests. The 

results and analysis of pervious concrete piles subjected to vertical loading were 

presented by Suleiman et al. (2014a). The vertical load tests included one granular 

column test and three pervious concrete pile tests installed using two different 

methods. Comparison of the behavior of the granular column and the pervious 

concrete pile that had the same dimensions and installation method showed that the 

ultimate load of the pervious concrete pile was 4.4 times that of the granular column. 

In addition, the pervious concrete pile failed by punching into the soil at the pile tip, 

while the granular column failed by bulging into the surrounding soil.  

To further characterize the behavior of the pervious concrete ground 

improvement piles, this chapter focuses on experimentally investigating the behavior 

of pervious concrete piles and the effects of pile installation on the soil-structure 

interaction when subjected to lateral loading. It is worth noting that there is a lack of 

knowledge related to the effects of pile installation on the soil-structure interaction of 
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laterally loaded piles in general (Fan and Long, 2005; Kim and Jeong, 2011); a 

knowledge gap that is partially addressed in this chapter. To achieve the goal of the 

chapter, two fully-instrumented lateral load tests were performed using the soil-

structure interaction (SSI) testing facility at Lehigh University. One of the test piles 

was a precast pervious concrete pile with sand rained around it, while the other was a 

cast-in-place pile installed using the method developed by the research team to 

simulate field installation. To investigate the soil-structure interaction of laterally 

loaded pervious concrete piles, the piles and surrounding soil were instrumented with 

advanced sensors. In addition to comparing the lateral load responses of the precast 

and installed piles, the soil-structure interaction pressure and displacement in the 

surrounding soil were analyzed. Furthermore, the effects of the pile installation 

methods on measured responses were briefly discussed. This chapter presents: (1) the 

material properties of the pervious concrete and the installation methods used for 

pervious concrete piles; (2) the lateral load behavior of pervious concrete piles, 

including pile response, soil-pile interaction and surrounding soil displacements; and 

(3) the effects of the installation methods on the response of pervious concrete piles 

and on surrounding soil.  The research team is currently conducting a detailed 

analytical study to evaluate the effects of installation on the response of pervious 

concrete piles subjected to vertical and lateral loading; the results of which will be 

presented in a separate future paper. 
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4.2 MATERIAL PROPERTIES 

4.2.1 Soil Properties 

The soil used in the two lateral load tests was classified as poorly graded sand 

(SP) using the Unified Soil Classification System (Figure 4.4.1a). The minimum and 

maximum unit weights of sand at oven dry condition obtained from minimum and 

maximum relative density tests (ASTM D4253, 2009g and ASTM D4254, 2009h) 

were 14.54 kN/m
3
 and 16.75 kN/m

3
, respectively (maximum void ratio of 0.79 and a 

minimum of 0.55). In order to provide homogeneous soil conditions, the sand was 

rained from a height of approximately 1.5 m through a bottom-dump container fitted 

with a sieve. The soil placed in the box had an average unit weight of 15.24 N/m
3
 and 

water content of 0.4%, which were measured by a nuclear density gauge (Humboldt 

HS-5001EZ). A series of consolidated drained (CD) triaxial tests with different 

confining pressures (15 kPa, 25 kPa, 50 kPa and 100 kPa) targeting the same relative 

density (35%) as the soil in the box were conducted. The results showed that the 

average peak friction angle of soil was 39° with a critical state friction angle of 36°. 

The initial soil modulus (Ei) was evaluated as a function of confining pressure (σ3) as 

Ei=kPa(σ3/Pa)
n
 (Janbu, 1963), where Pa is the atmospheric pressure of 101 kPa and k 

and n are calculated as 506.7 and 0.445, respectively (Figure 4.1b). 
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(c) 

Figure 4.1 Material Properties: (a) Gradation of soil and aggregate used in lateral loading tests, 

(b) CD triaxial tests on sand with same relative density measured in the lateral load tests, (c) 

pervious concrete compressive strength and permeability vs. the porosity 

 

4.2.2 Pervious Concrete Properties 

To achieve adequate compressive strength and permeability, a series of 

pervious concrete mixtures were prepared. Pervious concrete cylindrical samples 

were tested to measure the pervious concrete properties including the compressive 

strength (ASTM C39, 2009b), permeability, porosity, spilt tensile strength (ASTM 

C496, 2009i), and elastic modulus (ASTM C469, 2009j). The effects of aggregate 

type, size and compaction time were investigated to optimize the pervious concrete 

mix. The 28-day compressive strength, porosity and permeability of tested mixtures 

are summarized in Figure 4.1c. Based on the results presented in Figure 4.1c, the 

mixture with 0.21 water/cement ratio, 0.11 sand/aggregate ratio, 377 kg/m
3
 cement 

and 1440 kg/m
3
 coarse aggregate (pea gravel, available at home improvement stores) 

was used for casting the test piles. The pea gravel for pile casting was washed and 
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sieved, and the portion passing the 9.5 mm sieve (3/8 in. sieve) and retained on the 

4.75 mm sieve (No.4 sieve) was used. The pervious concrete mixture used in 

preparing the test piles had average porosity of 10.7%, permeability of 1.44 cm/sec., 

28-day compressive strength of 22.8 MPa, split tensile strength of 2702 kPa, and 

elastic modulus of 15.1 GPa. Samples cut from the test piles were used to measure the 

porosity and permeability of the two piles. The permeability and porosity for the 

precast pile were 1.33 cm/sec. and 10.4%, respectively. For the installed pile, the 

permeability and porosity were 1.51 cm/sec. and 11.3%, respectively. By comparing 

the material properties of the pervious concrete piles with the granular columns, it 

was found that the unconfined compressive strength of the pervious concrete material 

was more than 10 times greater than that of the confined granular columns; and the 

permeability coefficient of the pervious concrete piles and granular columns were 

comparable (Suleiman et al. 2014a). 

 

4.3 TESTING FACILITY 

The Soil-Structure Interaction (SSI) testing facility at Lehigh University, 

which includes soil boxes, a reaction frame system, advanced sensors, state-of-the-art 

instrumentation and data acquisition and control systems, has been used for the 

pervious concrete lateral load tests. As shown in the Figure 4.2, a soil box with 

dimensions of 1.8 × 1.8 × 1.8 m (width × length × height) and a reaction frame were 

assembled for the two lateral load tests.  

The advanced sensors available at the SSI facility included customized 

flexible Shape Acceleration Arrays (SAAs) deformation sensors and tactile pressure 
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sheets. The SAAs consist of a series of micro-machined electromechanical sensors 

capable of measuring three-dimensional (3D) movement based on a reference point. 

These SAAs were specially designed with segment lengths of 90 and 120 mm to fit 

the scale of the performed laboratory experiments. The tactile pressure sheets (0.7 

mm thickness) consist of a matrix of small point sensing cells that provide discrete 

pressure measurements. The accuracy of pressures measured by the tactile pressure 

sheets was discussed by Palmer et al. (2009) who concluded that the error was 

smaller than 10%. In addition to using these sensors, bender elements were fabricated 

in-house using two-parallel-layer piezoelectric transducer to measure the soil shear 

wave velocity in the soil box (Lee and Santamarina, 2005; Brandenberg et al., 2008). 

The SSI facility also uses data acquisition and control systems that combine testing 

control and sensor monitoring of several types of sensors, including load cells, strain 

gauges, tiltmeters and displacement transducers. In addition, the SSI facility includes 

a soil storage and moving system, pile driving system, nuclear density gauge to 

measure the soil properties, and web broadcasting system.   
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Figure 4.2 Laboratory Soil-Structure Interaction (SSI) testing facility with lateral loading set up 

and a 3D system sketch (bottom left). 

 

4.4 TEST UNITS AND INSTRUMENTATION 

4.4.1 Test Units and Installation 

The two test piles were prepared using the designed pervious concrete mix 

with a diameter of 102 mm and a length of 1321 mm below the soil surface. The 

precast pile (Test unit 1) was cast using a 102 mm-inside diameter PVC pipe. The pile 

was then placed vertically in the soil box and soil was rained around it. To produce 

soil with uniform properties, a soil storage and movement system was used. The 

system (shown in Figure 4.3a) consisted of a bottom-dump soil container with an 

attached sieve to rain the soil into the soil box from a height of 1.5 m. Due to the 

needed large soil quantity and because it is easier to rain sandy soils to achieve 

uniform soil properties, the testing program focused on piles installed in sand. 
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However, pervious concrete piles can be used in different soil types, including very 

soft clays, and organic and peat soils. 

The installed pile (Test unit 2) was constructed using a laboratory installation 

system after filling the soil box. The laboratory installation system was developed to 

simulate field installation methods. As shown in Figure 4.3b, the laboratory 

installation system consists of a hollow steel mandrel (102 mm inside diameter) with 

a specially designed cone at the tip and an air-operated driver (Rhino PD-200) placed 

on top of the mandrel. A bracing system was designed to ensure accurate pile position 

and the verticality of the pile installation. Through the hollow cylinder of the bracing 

system (Figure 4.3b), the mandrel was driven into the soil. Once the designed depth 

was reached, the pervious concrete was placed inside the mandrel from the top. As 

the mandrel was lifted upward at slow rate, the cone was separated from the mandrel 

and the pervious concrete filled the cavity created by the mandrel retrieval. This 

installation method is similar to the one described by Magnan (1983) for installing 

sand compaction piles, which demonstrates that pervious concrete piles can be 

installed using currently available construction techniques.  It is worth noting that 

similar to displacement piles, the used installation method results in lateral 

compression and densification of the surrounding sand as well as increase lateral soil 

stresses (e.g., Lundberg et al. 2013; Dijkstra et al. 2011).  These changes are expected 

to affect the soil-structure interaction and response of laterally loaded pervious 

concrete piles. 
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4.4.2 Instrumentation of Test Units and Surrounding Soil 

As discussed previously, one soil box with height of 1.8 m and a reaction 

frame were assembled for the lateral load tests. As shown in Figure 4.3c and 3d, the 

lateral loads were applied to the pile by a hydraulic jack, which was attached to the 

pile head by a free rotation plate to create a free head loading condition. The load cell 

and displacement transducers were attached to the pile head with the loading point 

located at 235 mm above the soil surface.  

The advanced sensors described previously were used to instrument the pile 

and surrounding soil as shown in Figure 4.4. In the precast pile test (Test unit 1), one 

steel rebar with 11 strain gauges was installed on the tension side of the pile at 25.4 

mm from the pile center. Three SAAs were installed in the pile and within the passive 

wedge (on the front side as shown in Figure 4.4) to measure the pile and soil 

movement. SAA1 and SAA2 were installed at 51 mm and 153 mm (0.5 D and 1.5 D) 

from pile surface. SAA3 was installed in the pile to measure the lateral displacement 

along the pile length at one side of the central line. Three tactile pressure sheets were 

wrapped along the pile length between the soil surface and a depth of 1111 mm to 

measure the soil-pile interface pressure. One additional pressure sheet was mounted 

on the inside surface of soil box to independently monitor the boundary effects of the 

soil box during the lateral load test. 

For the installed pile test (Test unit 2), one steel rebar, with strain gauges 

installed at the same locations as the precast pile, was used. Due to the installation 

method, it was not possible to install the pressure sheets around the pile or the SAA in 

the pile. Therefore, three SAAs (SAA1, SAA2 and SAA3) were placed on the front 
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side of pile at 51 mm, 153 mm and 254 mm (0.5 D, 1.5 D and 2.5 D) from pile 

surface. Four bender element pairs were installed around the pile at a depth of 508 

mm. The bender element pairs 1, 2 and 3 were installed beside the SAAs [i.e. on the 

front side of the pile with a distance of 51 mm, 153 and 254 mm (0.5D, 1.5D and 

2.5D) from the pile surface]. Bender element pair 4 was installed 51 mm (0.5D) from 

the pile surface similar to bender element pair 1 but on the back side of the pile. In 

addition, one pressure sheet was mounted on the inside surface of the soil box to 

monitor the boundary effects during installation and lateral load test. During both 

tests, the pressures measured by the pressure sheets on the inside surface of the box 

were less than 1 kPa, which confirmed that the soil box boundaries had no effect on 

the measurements during pile installation and lateral load tests. 

 
Figure 4.3 Lateral loading tests set up: (a) soil raining in preparation for installed pile test, (b1) 

pervious pile installation in the installed pile test, (b2) pile casting at the soil surface, (c) loading 

of the precast pile, (d) loading of the installed pile. 
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(a)                                                                                         (b) 

Figure 4.4 Instrumentation for lateral loading tests: (a) Side View, (b) Top view (Notes: the 

strain gauge with rebar was installed on the tension side of pile at 25 mm from pile center; SAA3 

was installed in the precast pile and was installed in the soil at 254 mm from pile for the installed 

pile test). 

 

4.5 LOADING SEQUENCE 

The two lateral load tests were conducted in general accordance with the 

procedure outlined in ASTM D3966 (2009i). The loading procedure, however, 

included two stages; a loading-control stage and a displacement-control stage. During 

the loading-control stage, loading was held constant for at least 5 minutes or until the 

pile head displacement stabilized. When the pile reached ultimate load (observed by a 

large increase of lateral displacement under constant load), the control was shifted to 

displacement-control by applying a constant lateral displacement at the pile head. The 

tests were stopped when the displacement at the pile head reached approximately 125 

mm. For the precast pile test, a load increment of 111 N was used for loads smaller 

than 1780 N and a load increment of 222 N was used for larger loads. When the 
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ultimate load was reached at a displacement of 72.3 mm, the procedure shifted to 

displacement-control with an increment of 10 mm and 2 minute holding time. For the 

installed pile test, load-control with an increment of 222 N was used, and 

displacement-control with 10 mm increment and 2 minute holding time was applied 

after reaching the ultimate load at a displacement of 39.7 mm. 

4.6 TEST RESULTS 

4.6.1 Lateral Load-Displacement at Pile Head 

Figure 4.5 illustrates the lateral load-displacement response of the precast and 

installed pervious concrete piles. The results show that the ultimate loads of the 

precast and installed pervious concrete piles were 3225 N and 3440 N, respectively, 

indicating that the installation method had small effect on the ultimate (maximum) 

load for laterally loaded piles, which is consistent with the results reported by 

Lundberg, et al. (2013). This result could be attributed to the fact that the ultimate 

lateral load is controlled by the structural resistance of the pile as concluded by 

Suleiman et al. (2014b). However, ultimate loads were reached at a pile head 

displacement of 39.7 mm for the installed pile, which is 55% of the displacement of 

the precast pile (72.3 mm) at ultimate load. In addition, the stiffness of the soil-pile 

system (i.e. the slope of the initial part of the load-displacement curve) for the precast 

pile was 75.2 N/mm, which is 32% of the stiffness of the installed pile (233.2 N/mm). 

These differences between the pile head displacement at ultimate load and stiffness of 

the soil-pile system are mainly attributed to the effect of pile installation method, 

which alters soil stresses and properties as will be discussed later. 
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Figure 4.5 Lateral load vs. displacement at the loading point. 

 

4.6.2 Strain along the Pile 

The strain measurements along the pile length from the two tests are 

summarized in Figure 4.6. The strains are presented at four loading stages that 

represent the beginning of the test, the linear part of the load-displacement response, 

the nonlinear part of the load-displacement response, and the ultimate condition. 

Figure 4.6 shows that the strains along the pile increased with lateral load. In both 

pervious concrete piles, the strain increased along the depth and reached a peak value 

at depth of 444 mm (4.4 D) below the soil surface; then the strain started to decrease 

reaching zero at the pile tip. At ultimate load, the maximum strain occurred at the 

depth of 444 mm, which indicates that the maximum moment was at this depth. After 

the tests, the piles were retrieved and inspected (Figure 4.7). The precast and installed 

piles cracked on the tension side at depths ranging from 460 mm (4.5 D) to 470 mm 

(4.6 D) below the soil surface and the concrete was crushed on the compression side 

at similar depth locations.  These results are consistent with measurements of strain 

gauges in the piles. The strain profiles and inspection of the piles after the tests 
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confirm that pervious concrete ground improvement piles behave as flexible laterally 

loaded piles (i.e., similar to long concrete or steel piles), while still having a 

permeability similar to granular columns.  For the case of stabilizing slopes, this 

behavior can help in transferring lateral loads to stable soils below the failure surface, 

which improves the stability of slopes compared to granular columns that fail along 

the slope failure surface (Suleiman et al. 2014b).  

Based on the strain measurements and the moment-curvature relationship of 

the pile cross-section, the bending moment along the pile length was calculated for 

both piles and the soil-pile interaction force versus pile lateral displacement 

relationships (p-y curves) at different depths were calculated using the procedure 

outlined in several references (e.g., Naggar and Wei, 1999; Yang and Liang, 2006; 

Kim et al. 2004). The p-y curves based on strain data for both piles will be further 

discussed in the following sections of the chapter. 
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(b)  

Figure 4.6 Strain profile along the pile during lateral load tests: (a) precast pervious concrete pile, 

and (b) installed pervious concrete pile. 

 

 
(a)                                (b) 

Figure 4.7 Test units after lateral load tests: (a) precast pervious concrete pile (the tape 

measurement from the bottom of pile head, the depth of crack is at 470 mm below the soil 

surface), and (b) Installed pervious concrete pile (the tape measurement from the top of pile head, 

the depth of crack is 460 mm below the soil surface). 

 

4.6.3 Soil-Pile Interaction 

Pile and Soil Lateral Displacement   

The pile and soil lateral displacements measured by the SAAs and 

displacement transducers at an applied lateral load of 3225 N, which is the ultimate 
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load of the precast pile, are presented in Figure 4.8. As shown in the Figure 4.4 for 

the precast pile, the SAAs were installed in the pile, at 51 mm and at 152 mm (0.5D 

and 1.5D) from pile, while the SAAs were placed at 51 mm, 152 mm and 254 mm 

(0.5D, 1.5D and 2.5D) from pile surface for the installed pile test. Based on the SAA 

measurements at the applied load of 3225 N, the following observation can be made: 

(1) the precast pile had a displacement of 61.8 mm at the soil surface while the 

displacement of the installed pile was 27.7 mm; (2) at a distance of 51 mm (0.5D) 

from the pile surface, the soil in precast pile test had a displacement of 24.4 mm at a 

depth of 115 mm and decreased to 0 mm at a depth of 900 mm, while the soil had a 

lateral displacement of 20.0 mm at a depth of 115 mm and decreased to 0 mm at a 

depth of 640 mm for the installed pile test; (3) at 152 mm (1.5 D) from the pile 

surface, the soil lateral displacement was small in both tests (less than 6 mm); and (4) 

for the installed pile test, the soil at a distance of 254 mm (2.5D) on the front side of 

the pile showed minimal lateral displacement during the test. These results indicate 

that the soil lateral displacements on the front side of the installed pile were smaller 

than those measured during the precast pile test, which reflects the effects of soil 

densification and lateral compression during pile installation on the surrounding soil 

and soil-pile interaction. 

Figure 4.9 summarizes the lateral displacement of the precast pile along its 

length. Figure 4.9 shows that the pile lateral displacement increased as the load 

increased. The pile experienced no or minimal movement at the pile tip indicating a 

long, flexible pile behavior when subjected to lateral loading. The displacement 
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profile indicates that a plastic hinge forms at a depth of approximately 440 mm, 

which is consistent with the strain measurements (Figure 4.6). 

  
(a)  

 
(b)  

Figure 4.8 The pile and soil lateral displacement under lateral loading of 3225 N: (a) precast 

pervious concrete pile, and (b) installed pervious concrete pile 
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Figure 4.9 Precast pile displacements under lateral loading 

 

Soil-Pile Interaction Pressure along the Precast Pile 

During the precast pile test, the interaction pressures between the pile and 

surrounding soil were measured using tactile pressure sheets. As mentioned in the 

instrumentation section, three pressure sheets were wrapped around the pile from the 

soil surface to the depth of 1111 mm (the bottom pressure sheet didn’t function 

properly during the test due to a wire connection problem). The soil reaction (i.e. the 

soil-pile interaction force per unit length, p in N/mm) along the pile is shown in 

Figure 4.10 at the four loading stages previously defined. The soil reaction was 

calculated using the measured soil-pile interaction pressures utilizing the following 

two steps: (1) integrate the soil-pile interaction measured pressures to produce a force 

(in N); and (2) divide the calculated force by the integrated length to produce the soil-

pile interaction force (p in N/mm). As shown in Figure 4.10, as the lateral loading 

increased, the soil reaction (p) along the pile increased and the maximum value of soil 

reaction reached 2.5 N/mm between depths of 388 mm and 453 mm (3.8 D and 4.5 D) 

at ultimate load in the precast pile test. 
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Figure 4.10 Soil reactions (soil-pile interaction force per unit length) along the pile for the 

precast pile test unit 

 

Soil-Pile Interaction Force-Displacement Relationships (P-Y Curves) 

Based on the measured pressures (Figure 4.10) and pile displacements (Figure 

4.9), the p-y curves based on direct measurement at several depths along the precast 

pile were generated (Figure 4.11a). The curves show that the initial slope (or stiffness) 

and ultimate soil reaction (pu) increased as the depth increased.  

The directly-measured p-y curves for the precast pile were compared with the 

p-y curves calculated using the strain measurements and those developed using the 

procedures suggested by Reese et al. (1974). For the precast pile, the p-y curves 

calculated using the measured strains show higher initial stiffness (i.e. the slope of the 

initial part of the curve) and ultimate soil reaction than the directly-measured curves. 

An example of the compared p-y curves is presented in Figure 4.11b for a depth of 

364 mm and comparisons at other depths show similar trends. Along the length of the 

precast pile, the differences in the p-y curve initial stiffness and ultimate soil reaction 

between the directly-measured curves and those calculated using measured strains 

ranged from 20% to 53% and 31% to 73%, respectively. The p-y curves error was 

Soil Reaction, p (N/mm)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
ep

th
 (

m
m

)

-200

0

200

400

600

800

1000

1200

1400

445 

1334

2335

3225

Soil Surface

Load (N)



89 
 

calculated using the procedure suggested by Yang and Liang (2006).  The error is 

defined as the summation of the ratios of the difference between the measured and the 

calculated p divided by the measured p at deflections of 0.25ym, 0.5 ym, 0.75 ym and 

ym (ym  is the maximum measured y).  For different p-y curves along the pile length, 

the calculated errors ranged from 3 to 8, which are similar or smaller than that those 

reported by Yang and Liang (2006) who mainly attributed these errors to the 

inaccurate determination of moment profiles from strain gauges.  When compared to 

the procedures suggested by Reese et al. (1974), the initial stiffness and ultimate soil 

reaction of the directly measured p-y curves show differences up to 95% and 82%, 

respectively.  

The p-y curve of the installed pile at a depth of 364 mm has an initial stiffness 

that is 95% of the value calculated using the method suggested by Reese et al. (1974). 

The ultimate soil reaction is 98% of that calculated using Reese et al. (1974) method. 

Along the pile length, the difference between values of initial stiffness and ultimate 

soil reaction ranges from 1% to 58% and 0% to 17%, respectively.  The better match 

of the method suggested by Reese et al. (1974) to the installed pile results was 

expected since the Reese method was developed for driven piles, which is an 

installation method similar to the method used in the installed pile. 

It is noteworthy that when comparing the p-y curves of the precast and 

installed piles (i.e., effect of installation) using the strain measurements at the same 

depth, the p-y curves of the installed pile shows a higher stiffness and ultimate soil 

reaction. Along the pile, the ratio of the ultimate soil reaction of the installed pile to 

the precast pile ranges from 1.4 to 5.9 at different depths.  For smaller diameter piles 
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(12 mm), Kim et al. (2004) reported that this ratio range from 2 to 4 for laterally 

loaded piles installed in medium dense sand. 

  
(a) 

  
(b)  

Figure 4.11 Soil-pile interaction force-displacement relationships: (a) directly-measured soil-pile 

interaction force-displacement relationship (i.e. p-y curves) at several depths along the precast 

pile, and (b) comparison of p-y curves at a depth 364 mm 

 

4.6.4 Shear Wave Velocity Change during Pile Installation 

To further characterize the effects of pile installation, bender elements were 

installed to measure the change of shear wave velocity due to pile installation. The 

bender elements were installed at a depth of 508 mm (5 D) with distances of 51 mm, 

153 mm and 254 mm (0.5D, 1.5D, and 2.5D from pile surface) on the front side of the 
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pile and 51 mm (0.5 D) from the pile on the back side. Based on the measurements, 

the ratios of shear wave velocity (i.e., shear wave velocity/initial shear wave velocity) 

at the end of pile installation are presented in Figure 4.12. These results show that the 

shear wave velocity close to the surface of the installed pile (within 0.5D) increased 

by 25% (30 m/s) during pile installation and that this effect decreased with distance. 

Figure 4.12 also illustrates that the velocity change due to pile installation extend to a 

distance of 254 mm (2.5D) from the pile surface.  The measured increase in shear 

wave velocity due to pile installation is mainly attributed to the increase of soil 

density and lateral stresses in the soil (Lee et al. 2007). The measured zone of soil 

affected by pile installation (2.5D from the pile surface) is consistent with the 

analytical results reported by Dijkstra et al. (2011) and experimental results reported 

by Lundberg et al. (2013), Vesic (1977), and Salgado (2014). 

  
Figure 4.12 Change of shear wave velocity during pile installation at depth 550 mm 

 

4.7 SUMMARY AND CONCLUSIONS 

A new ground improvement method has been developed using pervious 

concrete piles. This chapter summarizes the material properties of pervious concrete 

Distance to Pile Center (mm)

0 100 200 300 400

S
h
ea

r 
W

av
e 

V
el

o
ci

ty
 R

at
io

, 
V

/V
0

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Distance to Pile Center (Diameter)

After Pile Installation

Pile

2D1D 3D 4D

Soil without Installation Effect

0



92 
 

and the pile and soil responses obtained from two lateral load tests performed using 

the SSI facility at Lehigh University. Fully-instrumented lateral load tests were 

performed on a precast pervious concrete pile and an installed pervious concrete pile 

to investigate the pile and soil behavior, to study the soil-pile interaction, and to 

evaluate the effects of installation methods on pile behavior under lateral loading. 

Based on the experimental results obtained from the two lateral load tests and the 

discussion of the results presented in this chapter, the following conclusions are 

drawn:  

1. A pervious concrete mixture prepared using proportions of 0.21 water/cement 

ratio, 0.11 sand/aggregate ratio, 377 kg/m
3
 cement and 1440 kg/m

3
 coarse 

aggregate provided an average compressive strength of 22.8 MPa, modulus of 

15.1 GPa, and permeability of 1.44 cm/sec. at an average porosity of 10.7%.  

These properties show that pervious concrete piles have a compressive 

strength that is more than 10 times that of granular columns, while having 

permeability similar to granular columns.  

2. The used installation method results in lateral compression and densification 

of surrounding sand as well as lateral stress increase.  These changes 

significantly affect the pile and soil responses and the soil-structure interaction 

of pervious concrete ground improvement piles when subjected to laterally 

loading. 

3. The ultimate lateral loads for the precast and installed pervious concrete piles 

were similar but the lateral displacements at ultimate load were significantly 

different. The displacement of the installed pile was 55% of the precast pile. 
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4. For both the precast and installed piles, the maximum strain and moment 

occurred at a similar depth of 444 mm below the soil surface, which is 

consistent with the locations of major tensile cracks (460 to 470 mm).  

Regardless of the installation method, pervious concrete ground improvement 

piles behave similar to long concrete or steel piles (i.e., long, flexible piles) 

when subjected to lateral loading, while providing permeability similar to that 

of granular columns. Unlike granular columns, this behavior helps in 

transferring lateral loads to stable deeper soils below the failure surface when 

used to stabilize slopes, which improve the response of stabilized slopes. 

5. The installation of pervious concrete piles affects the surrounding soil 

response. A comparison of the soil displacements illustrates that the lateral 

displacements around the installed pile are smaller than the displacements 

around the precast pile. 

6. The soil-pile interaction was directly measured for the precast pile using 

tactile pressure sheets and SAAs, which provided the information needed to 

develop directly measured p-y curves. The p-y curves obtained based on direct 

measurements show that the initial slope and ultimate soil reaction increased 

as the depth increased. 

7. The p-y curves developed using the strain measurements of the installed pile 

more closely matched the curves produced using the Reese et al. (1974) 

method than the curves developed for the precast pile. 
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8. The installation method significantly affects the p-y curves for laterally loaded 

piles. Along the pile, the ratio of the ultimate soil reaction of the installed pile 

to the precast pile ranged from 1.4 to 5.9.   

9. Shear wave velocity changes measured in the soil surrounding the installed 

pervious concrete pile during installation demonstrate that the zone of soil 

affected by installation extended to 2.5D from the pile surface.  
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CHAPTER 5 

NUMERICAL SIMULATION OF PERVIOUS CONCRETE PILE TESTS 

5.1 INTRODUCTION 

Pervious concrete piles have recently been developed as an innovative ground 

improvement method (Suleiman et al. 2014; Ni et al. 2014). The behaviors of 

pervious concrete piles when subjected to vertical loading have been investigated 

using state-of-art Soil-Structure Interaction (SSI) facility. As part of this research, the 

piles and surrounding soil were instrumented and the effects of pile installation on 

soil-pile interaction and pile responses have been evaluated using the experimental 

tests. To improve the understanding of the installation effects on soil-pile interaction, 

2D finite element modeling has been used. This study focuses on validating the finite 

element analytical models that can be used to simulate the installation effects of pile 

and the behaviors of pervious concrete piles under vertical loading.    

However, developing a proper numerical model to accurately simulate the pile 

installation and behavior under vertical loading is a challenging task. In finite element 

method modeling, the large deformations, which occur during pile installation and at 

the soil-pile interface during loading, lead to severe mesh distortion in the finite 

element analysis. In addition, pile installation may change the soil properties and 

stresses, which significantly affect the behavior of piles when subjected to vertical 

loading. 

Researchers have used different modeling approaches to simulate the effects 

of installation methods and effect on vertical load behavior, including 1D, 2D and 3D 
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finite element methods(Dijkstra et al. 2006; Pham and White 2007; Gennaro et al. 

2008; Chen et al. 2009; Said et al. 2009; Basu et al. 2010; Dijkstra et al. 2011; Pucker 

and Grabe 2012). These approaches utilized defining soil-pile interaction properties 

by interface model and using special calculation steps to modeling the pile installation 

effects, the pile and soil behavior under vertical loading.   

In this chapter, numerical analysis method has been developed to investigate 

the behavior of the pervious concrete piles subjected to vertical loading. The vertical 

load tests of pervious concrete piles are simulated using 2D axisymmetric finite 

element model with Plaxis 2D. An approach used to take into account the installation 

effects are proposed and discussed. The comparison between calculation results from 

the numerical simulations and measured results from experimental testing were 

conducted to validate the numerical simulations. 

 

5.2 BACKGROUND 

During the process of pile installation, the soil experience large displacement 

and its properties and stress will change. These installation effects influence the load-

displacement response of the pile. Several laboratory and field tests have been 

conducted to investigate the installation effects of different types of pile. 

Measurements included the change of soil density, soil deformation along the pile and 

at the tip of the pile, cone penetration tests before and after installation, and shear 

wave velocity (Shublaq 1992; Klotz and Coop 2001; Hunt et al. 2002; Lee et al. 2004; 

White and Bolton 2004; Suleiman and White 2006; Ambily and Ganhdi 2007; Yi et al. 

2010; Frikha et al. 2013; and Lundberg et al. 2013).  
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Numerical simulations of pile installation have been developed by several 

researchers (Wehnert and Vermeer 2004a, 2004b; Dijkstra et al 2006; Ambily and 

Gandhi 2007; Guetif et al. 2007; Pham and White 2007; Gennaro et al 2008; Chen et 

al. 2009; Said et al. 2009; Basu et al. 2010; Castro and Karstunen 2010; Thompson 

and Suleiman 2010; Dijkstra et al. 2011; and Pucker and Grabe 2012). These 

approaches include 1D (one dimension), 2D and 3D finite element modeling of 

different pile types (i.e. stone column, rammed aggregate pier, displacement pile, and 

bored pile). 

To consider the installation effects of bored piles, Wehnert and Vermeer 

(2004a and 2004b) concluded that the soil stiffness (i.e. soil Young’s modulus) 

needed to be increased 25% within 1D at the tip of pile. 

In the numerical analysis of stone columns, Ambily and Gandhi (2007) didn’t 

consider the installation effect, Guetif, et al. (2007) used an elastic-perfectly plastic 

soil model and the improvement of the soil Young’s modulus was considered due to 

column installation. Castro and Karstunen (2010) improved the simulation by using a 

hardening-soil model and modeling the pile installation as the expansion of a cavity. 

The behavior of rammed aggregate piers installed in a prebored hole was 

simulated by Pham and White (2007), Chen, et al. (2009), and Thompson and 

Suleiman (2010). In the study of Pham and White (2007), the pier installation process 

was modeled by applying 5 to 10% of the nominal diameter of cavity outward 

displacement along the shaft and downward uniform displacement at the bottom of 

the cavity based on measurement (Pham 2005). Chen et al. (2009) used same concept 

of cavity expansion to develop a 3D (diameter) model and investigate the effect of 
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different installation method of aggregate pier. Thompson and Suleiman (2010) used 

prescribed cavity volumetric strain expansion to simulate stress-dependent stiffness 

behavior of the aggregate, instead of using the prescribed displacement method 

proposed by Pham and White. In addition, the interface elements with hardening soil 

model were used to improve the modeling. 

The displacement pile (normal concrete pile compared with granular pile) has 

been investigated using numerical method by several researchers. Dijkstra et al (2006) 

studied the effects of soil model on the behavior of pile, recommended the interface 

element with reduction factor as 0.75 for modeling and proposed the cavity expansion 

method with 3.75% of the pile diameter horizontally expansion and 3.75D (diameter) 

vertical expansion to simulate the displacement pile installation effects. Gennaro, et al. 

(2008) and Said et al. (2009) simulated the soil pile interaction by special interface 

constitutive model and proposed an approach to account for the pile installation 

effects due to jacking and driving in a 2D finite element model. In this approach, 

empirical correlations based on field data have been used to reproduce the soil stress, 

shaft friction and base resistance due to pile installation. The numerical models 

mentioned above only take into the installation effects without simulating the 

installation process. Few researchers have simulated the installation process to 

improve the understanding of changes during the installation process. Basu et al. 

(2011) used 1D finite element model to investigate the shaft capacity development for 

a displacement pile installed in sand. A small initial radius (<10% of pile diameter) 

has been selected for cavity expansion to simulate the pile installation. Dijkstra, et al. 

(2011) used a 2D finite element model capable of large displacement to simulate the 
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pile installation phase. The simulation results showed a soil zone with 2D around pile 

and 4D × 2D at the pile tip in axisymmetric model was effected by pile installation 

and the soil property (density) had been changed in the pile installation process. 

Pucker, et al. (2012) develop a 3D finite element model to simulate the pile 

installation process. The pile installation effects on the soil stress state and the soil 

density was investigated. However, because of the complexity of installation process 

simulation, the further validation of these models is still needed.  

Based on the previous research work, a proper numerical model to simulate 

the pile installation and behavior under vertical loading should include:  

1. Proper soil constitutive model to simulate the soil behavior 

2. Interface element to consider the soil pile interaction 

3. A Cavity expansion procedure to simulate the soil stress development due 

to pile installation 

4. Changes of soil properties caused by the pile installation 

These requirements were used in the numerical simulations presented in this 

chapter. The next sections provide the details of the numerical models and the 

experimental measurements used for validation. 

 

5.3 EXPERIMENTAL PROGRAM 

5.3.1 Soil Properties 

The soil used in vertical load test was classified as well-graded sand (SW) 

according to the Unified Soil Classification System. The sand was rained into the soil 

box to produce a homogeneous soil profile along the total depth of the pile. The 
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minimum and maximum unit weights of the sand were 15.1 and 20.8 kN/m
3
, 

respectively (i.e., maximum void ratio of 0.720 and minimum void ratio of 0.250). 

The rained sand had average relative density of 32%, unit weight of 16.5 kN/m
3
, and 

water content of 2%. 

To characterize the soil properties, consolidated drained (CD) triaxial tests 

were performed. The soil samples were prepared with similar properties for vertical 

load tests, (i.e., relative density of 32% and unit weight of 16.5 kN/m
3
). The samples 

were tested under confining pressures of 15, 25, 100 and 160 kPa. The Kf line 

indicates that the peak friction angle of the soil is 38°. The critical friction angle is the 

same as the peak friction angle, which is consistent with the results presented by 

Mitchell and Soga (2005) for loose sand. Based on the triaxial data, the sand at low 

confining pressure has the friction angle as 42° which is higher than the friction angle 

calculated using all confining pressure. Low confining pressure presents the stress 

range within the soil box; therefore, it is more suitable to use the friction angle at low 

confining pressure to represent the initial condition. 

 

5.3.2 Vertical Load Tests 

The pervious concrete pile tests used to validate the numerical analysis are 

two instrumented vertical load tests. Both piles were prepared using pea river gravel, 

with diameter of 102 mm and embedded length of 1,219 mm. The first test unit was a 

precast pile, which was installed vertically into soil box with soil raining afterward. 

The second test unit (installed pile) was a cast-in-place pile installed using a 102-mm-

diameter mandrel as shown in Figure 3.3. A bracing system was designed to ensure 
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accurate pile position and the verticality of the pile installation. Through the hollow 

cylinder of the bracing system, the mandrel was driven into the soil. Once the targeted 

depth was reached, the pervious concrete was placed into the mandrel from the top. 

As the mandrel was lifted upward at a slow rate, the cone would open to fill the 

created cavity with pervious concrete during retrieval. It is worth noting that similar 

to displacement piles, the used installation method results in lateral compression and 

densification of the surrounding sand as well as increase lateral soil stresses (Dijkstra 

et al. 2011; Lundberg et al. 2013).  

The vertical load tests generally followed the fast procedure outlined in the 

ASTM D1143 (ASTM 2009d). In tests, the loads were applied by successive 

increments of 222.4 N for precast pile test and 889.6 N for installed pile test. Each 

load was held constant for 4 min or until the pile head displacement stabilized. The 

tests were stopped when the pile displacement continued increasing without an 

increase in the applied load. The load-displacement responses were shown in the 

Fgiure 3.6b. 

In the vertical load test of installed pile, the surrounding soil was instrumented 

with three SAAs and six null pressure sensors, as shown in Figure 3.5. Two SAAs 

were installed at 102 (1D) from the center of pile, and one SAAs was installed at 203 

mm from the center of pile (2D).  The null pressure sensor 1, 2 and 3 were installed at 

76, 178 and 279 mm (i.e., 0.75 D, 1.75 D, and 2.75 D) below the tip of the pile to 

measure the vertical soil pressure. The null pressure sensor 4, 5 and 6 were installed 

at the same horizontal distance of 102 mm (1D) from the pile center with different 

depth of 1,270, 1,270 and 914 mm below the soil surface, respectively. The soil 
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movement during the pile installation and vertical test are shown in Figure 3.10 and 

the soil pressure changes are summarized at Figure 3.11. 

 

5.4 MATERIAL CONSTITUTIVE MODELS 

5.4.1 Hardening-Soil Model 

The hardening-soil (HS) constitutive model is used to describe the behavior of 

sand used in the tests. This HS model has been recommended by Wehnert and 

Vermeer (2004a) and Dijkstra et al. (2006) to simulate sand behaviors. The 

parameters for the model are derived from triaxial consolidated drained (CD) tests 

which are summarized in Table 5.1. In this constitutive model, the soil initial stiffness 

   is determined by    , which is the confining stress dependent modulus given by 

the equation (1): 

                                       
   

 
          

     

                
 
 

                                       (1)  

The parameters are defined in Table 5.1 and are calculated based on 

Brinkgreve et al. (2014). The dilatant behavior of sand needs to be considered in the 

modelling for its influence on the shaft resistance (Wehnert and Vermeer 2004a; 

Dijkstra et al. 2006; Gennaro et al. 2008). A dilatation angle of 12° was selected for 

modeling. This value was determined based on the difference of 30° between the 

friction angle and the dilatation angle as recommended by Gennaro et al. (2008) and 

Brinkgreve et al. (2014). The stress dependency value m is 0.725 in the range given 

by Von Soos (1990) and the unloading-reloading modulus    
   

 is set as three times 

of    
   

 based on the recommendation by Schanz et al. (1999). 
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Table 5.1 The constitutive model parameters for sand used in vertical load tests 

Name Symbol HS model Unit 

Unsaturated unit weight        16.5 kN/m
3
 

Saturated unit weight      19.8 kN/m
3
 

Initial void ratio      0.606 - 

Reference stiffness    
   

 4878 kN/m
2
 

Oedometer reference modulus     
   

 4878 kN/m
2
 

Unloading/reloading stiffness    
   

 14634 kN/m
2
 

Power for stress-level dependency of stiffness m 0.725 - 

Cohesion     
  0 kN/m

2
 

Friction angle   42   (degree) 

Dilatation angle   42   (degree) 

Poisson ratio    
  0.2 - 

Reference stress for stiffness      100 kN/m
2
 

Interface strength reduction factor        0.75 (0.8) - 

To validate the soil parameters used in the hardening soil model, the triaxial 

tests was modeled in Plaxis. The measured from consolidated drained (CD) triaxial 

test and calculated (from Plaxis) stress-strain responses for sand are presented in the 

Figure 5.1. The similarity between measured and calculated soil behavior indicates 

that the soil behavior is well simulated by HS constitutive model. 
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Figure 5.1 The measured and calculated triaxial deviator stress vs. strain curves under different 

confining pressure 

 

5.4.2 Interface Soil Element Model 

The soil-pile interaction is included in the model by utilizing the interface 

element between the pile and surrounding soil. The interface element is modelled 

using the Mohr-Coulomb friction failure criterion. The displacement is allowed to 

occur within the interface element to simulate the relative movement between the pile 

and soil, where the small displacements are controlled by elastic behavior and large 

displacement are described by plastic behavior. In Plaxis, the interface properties are 

functions of the adjacent soil strength properties associated with strength reduction 

factor (       ). The value of        is set as 0.75 for precast pile interface as 

recommended by Dijkstra et al. (2006) and set as 0.8 for installed pile interface with 

rough pile surface based on the match between the calculated and measured results.  
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5.4.3 Pile Element Model 

The pile is simulated by linear elastic model (Wehner and Vermeer 2004; 

Dijktra et al. 2006) with Young’s elastic modulus of 15.4×10
6
 kN/m

3
, and Poisson 

ratio of 0.3, which are obtained from experimental results of pervious concrete 

sample. 

 

5.5 FINITE ELEMENT MODEL 

The model dimension is set the same as the soil box that was used for vertical 

load tests with height of 2286 mm and half width of 762 mm as shown in Figure 5.2. 

The pile and soil are modeled by 15-noded triangular elements in axisymmetric 

model. The interface between pile and soil has been set along the pile length using  

       values mentioned before.  

In vertical load tests, the pervious concrete piles have radius of 51 mm and 

embedded length of 1219 mm. The precast pile is directly modeled with this 

dimension. For the installed pile, the model accounted for the installation effects, 

which will be discussed in further details in the next section. The previous analysis by 

Wehnert and Vermeer (2004a) and Dijkstra et al. (2006) pointed out that, in order to 

avoid the effect of element size on calculation results, the pile needed to be meshed 

with at least 16 elements along the pile and at least 2 elements over the radius of the 

pile tip. Therefore, the local element size factor of pile was reset to 0.1 instead of 1.0. 

And the local element size factor of soil near the pile was reset to 0.25. The smaller 

size of element is able to provide better prediction of the soil behavior. The mesh of 

two models with the refined zone near the pile is shown in the Figure 5.3.  
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As shown in Figure 5.2a and 5.3a, three soil zones were used around the 

precast pile for near the pile are set for mesh refinement. According to the 

investigation of Dijkstra et al. (2008), Said et al. (2009), Dijkstra et al. (2011) and 

Lundberg et al. (2013), the soil within 2D around the pile and 4D below the pile tip 

was effected by the vertical loading. Therefore, Zone 1 is adjacent to the pile along its 

length (1219 mm) and has a width of 203 mm (2D). Zone 2 is below the pile with 

height of 406 mm (4D) and width of 51 mm (0.5 D). Zone 3 is below the soil adjacent 

to the pile with height of 406 mm (4D) and width of 203 mm (2D). Zone 4 represents 

the soil away from pile, which is less affected by the vertical load, with boundary of 

soil box. The model includes 2119 elements totally. 

For the installed pile model shown Figure 5.2b and 5.3b, the soil area 

surrounding the installed pile was divided into additional six zones to take account for 

the installation effects on surrounding soil. Research on the installation effects of 

displacement pile demonstrated that the area affected by pile installation at the tip is 

approximately 4D × 2D (height × width) (Shublaq 1992; Dijkstra et al. 2008; Said et 

al. 2009; Dijkstra et al. 2011; and Lundberg et al. 2013). This affected zone is 

confirmed by the measured vertical stress below the pile tip presented in Chapter 3. In 

addition, the measured soil movements around the pile show that the zone affected by 

pile installation extended to 2D along the pile (Lundberg et al. 2013). Therefore, the 

soil area affected by installation is set in a horizontal distance of 2D along the pile 

and a vertical distance of 4D below the pile tip. As shown in Figure 5.2b and 5.3b, 

two zones beside the pile have been set, which are zone 1 of 1019 mm × 147 mm 

(height × width) and zone 2 of 1019 mm × 102 mm (height × width). In addition, two 
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bottom zones, which are zone 3 of 403 mm × 152 mm (height × width) and zone 4 of 

606 mm × 254 mm (height × width, and expect zone 3), have been used. The Zone 5 

is set with dimension of 203 mm (2D) below the zone 4 and 203 mm (2D) beside the 

zone 1 and 4. Zone 5 is set for the further study the effected zone of pile installation. 

Zone 6 represents the dimension of the soil box in vertical load test. The total number 

of the meshed element is 1784. The effects of installation on soil properties will be 

discussed in the next section.  

   

                                           (a)                                                                      (b) 

Figure 5.2 The geometry of finite element model: (a) Precast pile; (b) Installed pile. 
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                                                              (a)                                              (b) 

Figure 5.3 The mesh of finite element model: (a) Precast pile; (b) Installed pile. 

 

5.6 MODELING PROCEDURE 

 For the precast pile, the modeling procedure includes the initial phase to 

generate initial stress and a series of loading phases. In order to consider the 

installation effects on the vertical load test of the installed pile, installation phases 

were included between pr the initial phase and the loading phases. The section below 

provides the details of different modeling phases. 

 

5.6.1 Initial Phase 

The initial stress condition is established to generate the initial vertical and 

horizontal soil stresses. The vertical stresses are calculated using the unit weight of 
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the soil. Initial horizontal stresses are generated using the K0 procedure, in which the 

in-situ horizontal effective stresses are calculated using the vertical effective stress 

and the predefined K0 value (based on the soil friction angle).  

 

5.6.2 Installation Phase 

For the installed pile, the zone representing the pile with the initial size which 

is 10% of the pile diameter (5.1 mm width) is deactivated initially. The 10% size of 

the initial cavity was recommended by Basu et al. (2011). In pile installation, the 

cavity is mainly expanded vertically with the pile driving into deeper depth. However, 

the simulation of only vertical cavity expansion in finite element model will cause 

mesh distortion at the tip of pile. Therefore, the numerical approach focuses on 

simulating the final installation effects rather than the installation procedure itself. 

The installation effects are considered by applying prescribed displacements 

at the pile-soil boundary of initial cavity. The prescribed displacement method was 

recommened by Broere and Van Tol (2006) and Said et al. (2009). The total cavity 

expansion includes horizontal prescribed displacement of 45.7 mm and vertical 

prescribed displacement of 200 mm (2D) as shown in Figure 5.4. The implementation 

of cavity expansion is divided into four expansion steps. Each step has 25% 

increment of horizontal displacement (11.4 mm) and vertical displacement (50 mm). 

For each expansion step, the mesh is updated (i.e. to consider large displacement) to 

avoid mesh distortion. This expansion procedure of cavity in model is different from 

the actual cavity creation process during pile penetration.  
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During the experimental test, the horizontal displacement of the soil (cavity 

expansion) starts from zero lateral soil displacement (i.e., no initial cavity). However, 

the cavity expansion from a zero radius in finite element model may cause numerical 

instability and errors. Therefore, researches investigating pile installation effects 

using cavity expansion (e.g., Salgado and Prezzi 2007; Basu et al. 2011) 

recommended that instead of creating a cavity from zero radius, the cavity expansion 

from a sufficient small initial cavity radius (~10% of the final radius) lead to a 

reasonable results. Therefore, the initial horizontal expansion in this model is set as 

5.1 mm, which is 10% of final pile radius.  

For the vertical direction, the cavity was expanded by a displacement that 

results in vertical stress change similar to the measured value during the test. Several 

trials were performed for the vertical expansion to match measured stress. It was 

found that the vertical expansion of 200 mm (i.e., after expansion the length of cavity 

is the same as the pile length of 1219 mm) produce similar soil stress at the tip of the 

pile as the measured pressure at the same location in the experimental test. 
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Figure 5.4 The prescribed displacement on soil boundary to simulate the cavity expansion in pile 

installation  

 

5.6.3 Activation Phase 

Before applying the vertical load on the installed pile, the pile elements were 

reactivated in the expanded cavity and the prescribed displacement was deactivated.  

For the installed pile, the pile installation will not only densify the soil and 

increase the soil stress, but also will improve the soil stiffness. Wehnert and Vermeer 

(2004a, and 2004b) recommended improving the soil stiffness by 25% in the effected 

zone below the pile tip of 1D. Gennaro (1999) presented an equation to quantify the 

increase of the soil modulus after pile installation, which is confirmed by Said, et al. 

(2009). The equation of the modified soil modulus as a function of confining pressure 

is presented as: 

                                        
                                                                    (2) 

H: 45.7 mm

V:200 mm
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where the m value is calculated as 1.16 from the initial value of     under reference 

confining pressure (100 kPa) from measurements of CD triaxial test. The modified 

value of     at pile tip is calculated as 21.96 MPa using Equation (2) and the 

measured radial stress close to the pile tip as 210 kPa (i.e. the stress measured by 

sensor 4 and 5), which is about 50% increase compared to initial soil modulus. 

Therefore, the soil modulus in the installation effected zone (2D around the pile, 4D 

below the pile tip) should increasing 25 to 50% compared to initial modulus. 

According to the previous studies (Suleiman et al. 2014) on soil stiffness 

change during pile installation and the experimental analysis of soil stress and 

movement during vertical load tests in Chapter 3, the soil modulus (including the 

parameter of     
   ,     

   , and    
   ) are reactivated with increased value due to pile 

installation is shown in the Figure 5.5. Zone 1 (within 1D to pile) and zone 3 (within 

2D to pile tip) has modulus 1.5 times of the initial value. Zone 2 (1D to 2D beside the 

pile) and zone 4 (2D to 4D below the tip of pile) has modulus 1.25 times of the initial 

value. 
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Figure 5.5 The soil stiffness change after pile installation 

 

5.6.4 Loading Phase 

The vertical loading procedure was modeled by applying a sequence of 

vertical loads on the pile head. The vertical loads on the top of the pile were 

simulated by point loads at the axis of symmetry. The input value of loads was the 

force acted on the angle of one radian (i.e., the point load should be multiplied by 2π 

to give load on physical pile). Mesh updating was also used for each load step to 

minimize any numerical instability that could be caused by large displacement, and to 

obtain more accurate results.  
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5.7 RESULTS ANALYSES 

5.7.1 Model Validation 

The model validation focuses on the comparison between the calculated and 

measured values, including the load-displacement relationship, soil movement and 

stress development near the pile tip.  

The calculated and measured vertical load-displacement relationships were 

shown in Figure 5.6. For the precast pile, the calculated initial slope of load 

displacement curve is 149 N/mm and the displacement at ultimate load is 113 mm, 

which are similar with the measured initial slope of 155 N/mm and displacement of 

119 mm (i.e., the calculated slope and displacement under ultimate load is 96% and 

95% of the measured value, respectively). For the installed pile, the calculated initial 

slope of load displacement curve is 2,427 N/mm and displacement at ultimate load is 

37 mm, which is 84% of the measured initial slope (2,883 N/mm) and 109% of the 

measured displacement (34 mm), respectively. The very good match between the 

model prediction and test results indicates that procedure used to model the response 

of pervious concrete piles and the effects of installation is reasonable and the soil 

parameter selection is appropriate. 

The major difference between precast pile model and installed pile model is 

the additional of two calculation phases to consider the pile installation effects. The 

increases of load capacity and slope of the load-displacement curve attributed to the 

pile installation effects have been well simulated by the proposed approach, which 

confirmed that this modeling approach of pile installation effects is reasonable.  
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(a) 

  

(b) 

Figure 5.6 Comparison of vertical load versus displacement: (a) Precast pile; (b) Installed pile 

 

The soil horizontal movement (Ux) at distance 51 mm (0.5 D) from pile 

surface along the pile is compared with the measured SAAs data in Figure 5.7. The 

maximum difference between the calculated and measured movement value along the 
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pile is 3.7 mm (34%), which further validates that the initial set of prescribed 

displacement with 45.7 mm on a small diameter (5.1 mm) cavity. 

  

Figure 5.7 The comparison of calculated and measured soil lateral movements at 51 mm from 

surface of installed pile 

 

During the vertical loading stage, the soil stress development at 76 mm (0.75D) 

below the pile tip is plotted and compared with the measured soil stress at this point 

(i.e., the pressure sensor 3 measurement in Figure 3.11a). As shown in Figure 5.8, 

after pile installation, the calculated pressure (the 1
st
 point) is 214 kPa, which is very 

close to the measured pressure of 215 kPa after installation. This confirms that the 

prescribed displacement of 200 mm (2D) in the vertical direction is appropriate. 

When comparing the measured final pressure of 644 kPa under ultimate vertical load, 

the calculated pressure (the last point) of was 512 kPa has difference to the measured 

pressure value less than 20%.  
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Figure 5.8 The comparison of calculated and measured soil vertical pressure 76 mm below the 

pile tip during the vertical load test 

 

5.7.2 Soil Movement and Stress Distribution  

The distribution of soil movement under ultimate load is plotted in Figure 5.9, 

including total soil movement (|U|), vertical movement (Uy) and horizontal movement 

(Ux) for both the precast pile and the installed pile. As shown in the Figure 5.9, the 

soil movements in both vertical and horizontal direction mainly occur in the zone of 

406 mm × 203 mm (4D × 2D as height × width) below the pile tip. This range is 

consistent with the observation of soil properties change around the tip of pile under 

vertical load by other researchers (Dijkstra et al. 2008; Said et al. 2009; Dijkstra et al. 

2011; and Lundberg et al., 2013).  

Comparing the soil horizontal movement (Ux) beside the pile, the soil beside 

the precast pile has very little horizontal movement along the pile depth, while the 

soil has apparent movement along the installed pile within the range of 2D distance to 
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the pile surface. The difference of soil horizontal movement next to the pile between 

precast pile and installed pile indicates that the vertical load will not produce 

significant soil horizontal movement along the pile shaft and the pile installation is 

the main factor of soil horizontal movement development. 

 

(a) 

|U| UxUy
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(b) 

Figure 5.9 distribution of displacement under vertical load: (a) Precast pile; (b) Installed pile 

 

The soil stress distributions in vertical and horizontal direction at the final 

loading step of 31,200 N are shown in Figure 5.10. The stress contours show that the 

zone of main stress change is below the pile tip that extend is 4.5 D × 3D for installed 

pile model and 4 D × 2D for the precast pile model. This effected soil area is 

consistent with the area of soil properties changes observed by other researchers (Said 

et al. 2009; Dijkstra et al. 2011) and confirms the geometry setting of soil zone in 

both model.  
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(a) 

  

(b) 

Figure 5.10 Distribution of soil stress under vertical load: (a) Precast pile; (b) Installed pile 
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5.7.3 Influence of the Interface Model 

The influence of the interface model on the simulation results of the vertical 

load tests is investigated by two calculation cases. In the first calculation case, the 

soil-pile interface behavior is modeled using interface element created between soil 

and pile. For the second case, the soil and pile were perfectly attached to each other 

(i.e., no interface element). 

The calculation results of load-displacement relationship are compared in the 

Figure 5.11. And the properties of load-displacement curve are summarized in the 

Table 5.2. For the precast pile, the model without interface element has initial slope 

of 295 N/mm and failed at a small displacement of 30 mm under an ultimate load of 

10,000 N. Compared to the measured response, the model without interface element 

has much higher (around 2 times as high as the measured one) initial load-

displacement slope with an underestimated the displacement and ultimate load at 

failure. Moreover, when large vertical displacement occurs at large vertical load, the 

model needs extended interface to simulate the large soil movement below the tip of 

pile. As showed in Figure 5.10a, when the displacement is larger than 51 mm (0.5D), 

the model without extended interfaces cannot well estimate the vertical load behavior, 

while the model with original interface along the pile and extended interface can 

accurately simulate the pile under vertical load.  

For the installed pile, without using interface element does not have 

significant influence at the stage with small displacement increment as show in Table 

5.2. However, when the large displacements occur (>17 mm), the soil in model 

without interface collapsed under lower vertical load. 
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In both vertical load tests, the finite element model without interface failed at 

small displacement. This phenomenon is expected because that the finite element 

model doesn’t allow large displacement to occur.  

Table 5.2 The load-displacement properties of model with/without interface 

Type 
Initial slope 

(N/mm) 

Ultimate load 

(N) 

Displacement 

(mm) 

Precast pile 

Test 155 12, 200 119 

Model with two 

interfaces 
149 12, 200 113 

Model without 

extended interface 
149 12, 200 88 

Model without 

interface 
295 10, 000 30 

Installed pile 

Test 2883 31, 222 34 

Model with 

interface 
2427 31, 222 37 

Model without 

interface 
2600 28, 770 17 
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(b) 

Figure 5.11 Influence on the interface: (a) Precast pile; (b) Installed pile 

 

5.7.4 The Influence of Soil Stiffness  

As mentioned in background, the soil stiffness has been improved by the pile 

installation, which will affect the load-displacement response of pile. To evaluate the 

effects of soil stiffness change, the results of two models, one without changes of soil 

stiffness and one with changes, were compared. As shown in the Figure 5.12, the 

initial slope of the model without considering the changes of soil stiffness around the 

pile is 2067 N/mm, which is 72% of the slope of the measured response; and the 

displacement under ultimate load (44 mm) is 29% larger than the measure value. 

Therefore, the results of the model with initial soil stiffness overestimate the 

displacement of pile under vertical load around 30% compared to the test results. In 

addition, the effect of soil stiffness 1D beside the pile and 2D below the pile tip was 

investigated by increasing 30%, 40% and 60% after pile installation. The results show 

that the displacements under ultimate load with 30%, 40% and 60% soil stiffness 
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increase are 5.5% bigger, 2.1% bigger and 2.5% smaller than the one with 50% soil 

stiffness increase, which indicate that the soil stiffness increase indeed effect the pile 

load-displacement behavior.   

  

Figure 5.12 Influence of soil stiffness for vertical load of installed pile 

 

5.7.5 Soil Movement during Installation 

In the installed pile model, the pile installation is taken into account using 

installation and activation phases. In the installation phase, the cavity expansion due 

to the pile installation is applied using a prescribed displacement on soil. During the 

prescribed displacement process, the soil is pushed to create the cavity. The 

corresponding soil movement caused by pile installation is presented in Figure 5.13. 

The range of the soil movement is mainly in the zone of 406 mm (4D) below the tip 

of the pile and 203 mm (2D) beside the pile. The affected soil zone is consistent with 

the soil movement zone measured by Lundberg et al. (2013) and the SAAs 

measurements in the tests presented in chapter 3. 
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Figure 5.13 Soil movements during pile installation 

 

5.8 SUMMARY AND CONCLUSIONS 

In this chapter, the behaviors of pervious concrete piles and surrounding soil 

were investigated using Plaxis 2D. The pile installation effects have been taken into 

account. The analysis results confirm that the installation effects significant influence 

the pile and soil behaviors. 

Two finite element models have been created to simulate the installation 

effects and behavior of pervious concrete piles subjected to vertical loading. The pile 

responses in modeling have been compared with the measured response. The major 

findings of the numerical study include: 

1. A finite element simulation approach is proposed to account for the effects of 

pile installation. The approach includes two additional calculation phases: 

installation phases with prescribed displacement (2D in vertical direction and 
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0.45 D in horizontal direction); and activation phase with soil stiffness 

increased.  

2. The modeling results of both precast and installed pile show good agreement 

with the measurement results. The difference of the initial load-displacement 

slope and the displacement under ultimate load is less than 16%, the 

difference of the displacement under ultimate load is less than 9%.  

3. The pile installation effect on soil movement (1D from pile center) has 

difference less than 34% between the modeling results and measurements. 

After pile installation, the soil stress development at pile tip in model has less 

than 20% difference to the measured pressure value.  

4. The soil properties improvement is taken into consideration of modeling the 

pile installation effect. The analytical results show that within the range of 2D 

horizontal distance to pile and 4D vertical distance to tip of pile, the soil 

stiffness based on the needs to be increased by 25%~50%  as consequence of 

pile installation. 
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CHAPTER 6  

SUMMARY AND CONCLUSIONS 

6.1 SUMMARY AND CONCLUSIONS 

An innovative ground improvement method using pervious concrete piles has 

been created and studied in this research. In addition, the installation effects are 

investigated by various advanced experimental and numerical methods. The 

important conclusions from this research are summarized as follow: 

1. Pervious concrete piles have a compressive strength that is more than 10 times 

that of granular piles, while providing similar permeability to granular piles. 

2. The pervious concrete pile, which had the same dimensions, aggregate type, 

and installation method as the granular pile, had an ultimate load that was 4.4 

times greater than the ultimate load of the granular piles. 

3. The installation method had significant effects on the response of the pervious 

concrete piles and surrounding soil. 

4. The ultimate vertical load of the installed pile was 2.6 times greater than that 

of the precast pile. 

5. Installation of the pervious concrete pile resulted in an increase of the 

maximum frictional stress transferred at the soil-pile interface. 

6. The lateral soil displacements measured at a distance of 1D from the pile 

center during installation were not uniform along the length of the pile. 

7. The ultimate lateral loads for the precast and installed pervious concrete piles 

were similar but the lateral displacement at ultimate load of the installed pile 

was 55% of the precast pile. 
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8. The installation method significantly affects the p-y curves for laterally loaded 

piles. Along the pile, the ratio of the ultimate soil reaction of the installed pile 

to the precast pile ranged from 1.4 to 5.9. 

9. Shear wave velocity changes measured in the soil surrounding the installed 

pervious concrete pile during installation demonstrate that the zone of soil 

affected by installation extended to 2.5D from the pile surface. 

10. A new finite element simulation approach is proposed to account for the 

effects of pile installation. The approach includes two additional calculation 

phases: installation phases with prescribed displacement and activation phase 

with soil stiffness increased. 

11. 2D axisymmetric finite element simulations that account for the effects of 

installation show good agreement with the measured response of test piles. 

12. The zone of soil affected by the pile installation and loading is 2D × 4D 

(Width × height) below the tip of the pile and 2D along the pile length. 

 

6.2 FUTURE RESEARCH 

The author suggests that the following of pervious concrete ground 

improvement pile needs further study: 

1. Parametric study on pervious concrete pile in different soils using finite 

element models proposed by author. 

2. The pervious concrete pile has high permeability comparing to surrounding 

soil. The pore water pressure dissipation is worth to investigate to further 

understand the ground improve process by using pervious concrete piles. 
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3. Instead of single pile, the further investigation should include the pile and soil 

behavior of group piles. And the 3D model will be more benefit for 

investigation the soil-pile interaction and group piles behavior. 

4. The field tests on pervious concrete pile will be helpful for investigate the 

pervious concrete piles behavior and industrial application. 
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