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Abstract 

Microbial adhesion is critical to natural and engineered systems due to the ubiquitous 

presence of bacteria, their tendency to attach to biotic and abiotic surfaces and their 

ability to survive in habitats not suitable for most life.  Many processes benefit from 

microbial adhesion, such as attached-growth wastewater treatment and symbiotic 

nitrogen fixation. In other scenarios, microbial adhesion is highly detrimental and 

examples include pathogenic biofilm infections on medical implants and devices and 

bio-corrosion of pipelines and ship hulls. Studies have demonstrated that the metabolic 

state of adhered bacteria can vary based on the physiochemical properties of the solid 

surface, but the reasons for this remained ambiguous until recent work by Hong and 

Brown. They proposed a hypothesis linking the charge regulation effect, which causes 

the local pH to vary as two surfaces with acid/base functional groups approach each 

other, and cellular bioenergetics, which stores energy in the form of a proton gradient 

across the bacterial cytoplasmic membrane.  In their initial study, Hong and Brown 

proposed the hypothesis and demonstrated it for bacteria attachment to glass beads.  

Here, we demonstrate the validity of this hypothesis for a range of surfaces with 

different functional groups using experimental and modelling methods.  Initial work 

focused on depicting that cellular bioenergetics of neutrophilic bacteria is influenced 

by changes in surface pH. Second, the effect of adhesion on metabolic activity of 

Escherichia coli was studied using a negatively-charged sand surface and a positively-

charged goethite-coated sand surface. It was shown that the energy level of E.coli was 
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enhanced upon adhesion to the untreated sand and it was reduced upon adhesion to the 

coated sand, thus demonstrating the effect of solid surface functional groups on the 

metabolic activity of attached bacteria.  

The hypothesis was extended to study the impact of a range of acidic and basic 

surfaces on the bacterial metabolic activity making it possible to investigate a wide 

spectrum of attachment induced surface pH conditions. Adhesion experiments were 

performed with the Gram-negative E. coli and the Gram-positive Bacillus subtilis 

employing various surfaces in granular form. Surface characterization experiments 

and numerical modelling enabled the identification of the dissociation constants 

associated with functional groups on the bacterial surface and the solid surface which 

facilitated demonstration of a direct link between bacterial surface pH and cellular 

ATP levels. 

The results of the study indicated an overall relationship between solid surface 

functional group properties and bioenergetics of sessile bacteria.  To summarize, upon 

adhesion to negatively-charged (acidic) surfaces, the charge regulated interface results 

in a proton-rich environment that stimulates ATP synthesis via chemiosmosis. The 

finite and rapid increase in ATP experimentally observed over the first 48 hours was 

followed by bacteria exhibiting an enhanced metabolic state through the course of the 

experiment. Attachment to basic surfaces results in a proton-deficit interface resulting 

in the depletion of intracellular ATP.  The positive surfaces induced a declined 

metabolic state upon bacterial adhesion resulting in continual depletion of energy 

reserves over the experiment period. 
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These findings can serve as the basis in the selection of surfaces and coatings to bring 

about a desired metabolic activity in attached bacteria based on requirements for the 

system at hand. 
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CHAPTER 1 Introduction and Overview  

1.1 Introduction and Background 

Microorganisms exist as free planktonic forms or, more commonly, as attached or 

sessile forms due to a natural tendency to adhere to surfaces [1-4]. Upon adhesion, 

proliferation of bacteria and secretion of extracellular polymeric matrix substances 

result in biofilm development [5-9]. Bacterial colonization can occur on different 

kinds of surfaces including living tissues (plants, animals, human) and abiotic surfaces 

(pipelines, implants and medical devices, rocks, etc.) [7,10-14]. 

Microbial adhesion is of critical importance in many natural and engineered systems. 

In some situations bacterial attachment and the subsequent colonization followed by 

the establishment of complex microbial communities is desirable [15-24]. In many 

other scenarios the adhesion of bacteria is highly objectionable and can be problematic 

[17,24-34]. Interestingly, it has been noted that upon adhesion to surfaces, bacteria 

demonstrate a change in their metabolic activity levels. This effect was observed 

initially by Zobell in 1943 and was later identified by many others.  If bacterial 

metabolic activity levels are enhanced, it can encourage colonization and biofilm 

development at interfaces.  Studies have examined the effect of clays [35,36], ion 

exchange resins [37,38], glass [4,39] plastics [40-42] etc. and demonstrated an 

enhanced metabolic activity in attached bacteria. However, as other studies have 

implied, adhesion of bacteria to certain other surfaces can result in lower metabolic 

activity levels. A decline in metabolic activity has been observed with attachment of 



 

6 

an array of different bacterial species to fluorapatite, amine coated surfaces and other 

biomaterials [43-46].  

Despite several attempts to explain the effect of bacterial attachment on cellular 

metabolic activity, the reasons for this effect remained uncertain and the underlying 

mechanism was not clear. The question of why a change in metabolic activity occurs 

during adhesion and why attachment induced metabolic response is different with 

various surfaces remained unanswered [47] until recent work by Hong and Brown 

[39]. Their hypothesis explored a possible link between the charge regulation effect, 

which occurs when two surfaces bearing functional groups approach each other, and 

cellular bioenergetics. The basis of the hypothesis development is discussed in the 

following sections. Hong and Brown experimentally demonstrated an increase in 

cellular ATP levels when bacteria adhered to a negatively charged glass surface and 

example results are presented in Figure1.1.  

The hypothesis directly links variation in bacterial activity to the functional properties 

of the adhering surfaces. Understanding the roles surfaces and their associated 

properties play in causing a variation in bacterial metabolism can be extremely 

beneficial. This knowledge can be applied in diverse fields where microbial adhesion 

is relevant. Example areas include environmental engineering, environmental science, 

medical applications, dental implants, marine engineering, food storage, etc. Within 

the scope of environmental engineering, it finds application in studies related to  
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Figure 1.1 – Example results from Hong and Brown [39] demonstrating an 

enhancement in the metabolic activity of bacteria upon adhesion to glass beads of 

different diameter.  The adenosine triphosphate (ATP) levels for planktonic cells 

(hollow symbols) and attached cells (solid symbols) show that the ATP levels of 

sessile bacteria can vary from that of their planktonic counterparts (ATP is a main 

energy carrier in living organisms).  
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attached biofilm wastewater treatment plants, microbial fouling in water distribution 

systems and membranes, oligotrophic survival of bacteria, microbial surface 

recognition studies, bioremediation, bioaugmentation etc.  As will be shown through 

this thesis, the findings of this research provide a basis for the selection and design of 

surfaces, materials and coatings for controlling the activity of attached bacteria and for 

interpreting the interactions of bacteria with natural and engineered surfaces.  

The following chapter provides a brief discussion of the two main processes that we 

build our hypothesis on, cellular bioenergetics and the charge regulation effect. We 

then lay out the hypothesis that we have developed to explain the mechanism of how 

attachment of bacteria to surfaces induces a variation in cellular metabolic activity. If 

activity is enhanced it may help the bacterial cells to colonize the surface and induce 

biofilm formation, whereas if activity is reduced it can result in a decreased 

colonization rate and possibly compromise survival and result in cell death.  This is 

followed by a discussion of the specific goals and objectives for this study. 

1.2 Cellular Bioenergetics  

Microorganisms require energy for growth, division and maintenance of all life 

processes. Cellular metabolism is the sum total of processes that result in energy 

generation and energy consumption in the cell. Catabolic processes are those by which 

complex molecules are degraded into simpler units thereby producing energy. 

Anabolic processes constitute those that synthesize macromolecules from smaller 

components thereby consuming the energy provided by the energy releasing  
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Figure 1.2 – This figure depicts metabolism within the cell. Energy coupling occurs 

inside the cell with exergonic processes driving endergonic processes. Catabolism is 

the exergonic breakdown of complex substrate into simpler molecules accompanied 

by the release of energy which is trapped in energy rich molecules like ATP. The 

energy is used to drive endergonic anabolic processes that help in macromolecular 

synthesis.  
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processes. The interdependent transfer of energy between catabolism and anabolism is 

termed energy coupling and is represented in Figure1.2. 

1.2.1 The Chemiosmosis theory of Mitchell 

During the process of catabolism, energy yielding substrate (eg., glucose) is oxidized 

to produce energy rich molecules like adenosine triphosphate (ATP) which is the chief 

energy currency in the cell. As a result of the oxidation process, electrons are 

produced from the substrate and transported along the cytoplasmic membrane toward 

a terminal electron acceptor (eg., oxygen) via a cascade of membrane proteins. 

Catabolic pathways deliver chemical energy in the form ATP and other energy carriers 

such as of NADH, NADPH, and FADH2 which function as carriers along an electron 

transport chain where electrons are transferred from one protein to another. As 

electrons are transported towards the terminal electron acceptor, protons are pumped 

out of the membrane thereby causing a concentration gradient where more protons are 

outside the membrane than inside.  Proton and electrostatic potential gradients are 

established that together contribute to the proton motive force (Δp) which quantifies 

the energy stored across the membrane   (Equation 1). The proton motive force 

consisting of an electrical and chemical component is expressed as                                            

 Δp = Δψ − ZΔpH  (1) 

where ∆𝜓  is the electrical or membrane potential and ΔpH, the pH gradient across the 

cell  membrane.  
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Figure 1.3 - This figure depicts the chemiosmotic theory proposed by Mitchell. 

Process (A) denotes the pumping out of protons across the cytoplasmic membrane 

during catabolism that set up the pH and potential gradients that combine to form the 

proton motive force. Process (B) depicts the synthesis of ATP within the cell as 

protons are allowed to reenter the cell via the ATP synthase molecule at the expense of 

the proton motive force. 
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An enzyme called ATP synthase provides a conduit for the protons to reenter the cell, 

simultaneously creating energy- rich ATP molecules from adenosine diphosphate 

(ADP) and inorganic phosphate (Pi). Peter Mitchell was awarded the Nobel Prize in  

1978 for postulating this theory referred to as the chemiosmotic theory presented in 

Figure 1.3.  

The energy stored in ATP is used in anabolic pathways to convert small precursor 

molecules into complex cell macromolecules. Thus, cellular bioenergetics links 

catabolism to anabolism via pH and electrostatic potential gradients across the cellular 

plasma membrane that together contributes to the proton motive force. The proton 

motive force helps form cellular ATP, the most prevalent energy source within a cell.  

1.2.2 Proton-Motive Force 

The proton motive force consisting of a charge and pH gradient expressed in Equation 

1 can be rewritten as  

   Δp = Δψ − 2.303
𝑅𝑇

𝐹
ΔpH         (2) 

where F is the Faraday constant, R is the universal gas constant and T is the 

temperature. 

The free energy required to synthesize ATP termed the phosphorylation potential is 

depicted as ΔGp and can be expressed as 

   ∆G𝑝 =  ∆G° + 2.303RT log (
[ATP]

[ADP][P𝑖]
)                           (3)         
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In the above equation, Gp
o
 is the standard free energy for ATP hydrolysis with a 

reported value of 30.1 kJ/mol; [Pi], [ADP] and [ATP] are the concentrations of 

intracellular inorganic phosphate, ADP and ATP, respectively (mol/L). 

The proton motive force is related to the phosphorylation potential via 

 ∆p =  
∆Gp

nF
=  −

1

nF
[∆G° + 2.303RT log (

[ATP]

[ADP][P𝑖]
)]  (4) 

where F is the Faraday constant and n is the number of protons translocated by ATP 

synthase per ATP molecule synthesized. For bacteria the value of n is typically 

reported to fall in the range of 2 to 4.  The ATP synthase enzyme is reversible, and 

thus an increase in the Δp will result in an increase in the cellular ATP and a decrease 

in the Δp will cause a decrease in the cellular ATP.  

1.2.3 ATP synthase  

ATP synthase is an enzyme present in the membranes of mitochondria and 

chloroplasts in eukaryotes and in the cytoplasmic membrane of prokaryotes. The 

enzyme consists of two large multi-peptide units referred to as F0, the hydrophobic 

part consisting of 3 subunits and F1, which is hydrophilic with 5 subunits. This 

complex enzyme serves as a rotatory molecular channel through which protons are 

allowed to move across the cell membrane. Thus ATP generation occurs within the 

cell at the expense of the proton motive force that is created at the membrane. The 

ATP synthase mediated ATP synthesis from ADP and Pi is reversible and protons can 

be allowed to move across to the outside of the membrane via ATP hydrolysis. 
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1.3 Charge regulation 

Charge regulation is a physiochemical process that takes place when two surfaces 

bearing acid/base functional groups approach each other, such as a bacterium 

approaching a sand grain surface.  The degree of ionization of the acidic and basic 

groups on the two surfaces is a function of the local pH at the interface. It is 

worthwhile to first briefly discuss the bacterial surface prior to describing the charge 

regulation effect.  

1.3.1 The Bacterial Cell Surface  

Bacteria are generally classified into two broad categories based on a differential 

method of staining introduced by Christian Gram in 1884. Due to differences in the 

composition of the cell wall, Gram positive bacteria retain the purple color of the 

primary stain (crystal violet) while Gram negative bacteria appear pink or red as a 

result of the counter stain (safranin or fuchsin). The structure of the Gram positive cell 

wall composed mainly of peptidoglycan is less complex than that of the Gram 

negative cell wall.  Peptidoglycan is primarily responsible for the rigidity, shape and 

protection of the bacteria apart from the plasma membrane. Teichoic acids, teichuronic 

acids, polysaccharides and some proteins are also associated with the wall of the Gram 

positive bacteria. The Gram negative cell wall on the other hand has three regions: the 

outer membrane, the relatively thinner peptidoglycan layer and a periplasmic 

membrane. The outer membrane possesses phospholipids, lipopolysaccharides and 

polysaccharides. In many cases the bacterial surface bears extracellular appendages 
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like pili, fimbriae and flagella that help in conjugation, adhesion and locomotion. The 

cytoplasmic or periplasmic membrane limits the cytoplasm and its contents. The 

bacterial surface is associated with various acidic and basic functional groups 

including carboxylic, phosphoric, amine and hydroxyl groups. Studies have 

demonstrated that bacteria generally possess a net negative surface charge at pH 

values found in most natural habitats. 

1.3.2 The Charge Regulation Effect 

When a charged particle is present in an electrolyte solution, counter ions bearing the 

opposite charge tend to aggregate around the particle. An inner layer of ions 

aggregates directly at the surface and this is called the stationary (or Stern layer) as it 

moves with the particle in solution.  A second layer of counter ions and co-ions form a 

diffuse layer around the Stern layer, thereby resulting in an ionic double layer.  

Several theories have been introduced in an attempt to determine the surface potential 

of charged species, with most based on the Poisson-Boltzmann equation.  Here, the 

ions are treated as point charges and the uniform distribution of charges is assumed. 

When a bacterium approaches another surface, the surface charge and potential will 

vary.  The surface charge and surface potential at both of the interacting interfaces are 

a function of the ionization of the functional groups on the surfaces and the distance 

between the surfaces. The effect of the functional groups can be modelled using the 

Poisson Boltzmann equation, which can be written as:   
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where ψ is the electrostatic potential, x is the distance from the charged surface, εo is 

the permittivity of vacuum; ε is the dielectric constant of the medium, nri is the number 

of ions of species i per unit volume; zi is the valence of ion i, k is the Boltzmann 

constant and T is the temperature and e is the electron charge. The boundary 

conditions at the two surfaces are based on Gauss’s Law, where the change in 

potential at the surface is related to the surface charge by: 

  s o

d 1

dx
 




      (6) 

where 𝜎 is the surface charge per unit area of the surface.  The net surface charge of 

the cell can be obtained by summing the individual functional groups creating the 

positive and negative surface charges: 

 
bj ai

j i

[R H ] [R ]
e

   


  (7) 

where Rai are the acidic ionizable sites of type I, Rbj are the basic ionizable sites of 

type b.  Rai and Rbj can be represented based on the ionization of the various functional 

groups as a function of surface pH and their site densities.  In this case, Equations 6 

and 7 lead to the following boundary [48,49]conditions:  
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 (8) 

In this equation Kai and Kbj are the dissociation constants for the different acidic and 

basic functional groups, respectively.  The local hydrogen ion concentration is 

expressed by the Boltzmann distribution where [H
+
] is the concentration of the 

hydrogen ions in the bulk solution and s is the surface potential.  Using Equation 8, 

the surface charge and surface pH can be modeled as the bacterial cell approaches the 

adhering surface.  The model can also be validated by considering the bacterial cell 

surface in the bulk solution (i.e., no adhesion) and comparing the pH response of the 

modeled surface charge to electrophoretic mobility measurements of the bacterial cell 

as a function of pH. 

Based on modelling, we expect to obtain a decrease in pH at the bacterial surface upon 

adhesion to a negatively charged acidic surface. Alternatively, when bacteria adhere to 

a positively charged basic surface, we expect an increase in the local pH. Example 

modelling results for an E.coli bacterium upon approaching a negatively charged and a 

positively charged surface is depicted in Figure 1.4. 

A more prominent decline in surface pH is observed as the dissociation constant 

becomes more acidic and as the density of the functional group increases. 

Simultaneously the dotted lines show an increase in surface pH as the dissociation  
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Figure 1.4 - Numerical Modelling of an Escherichia coli cell approaching a surface 

containing a single type of ionizable functional group.  Dashed lines represent basic 

(positively-charged) groups and solid lines represent acidic (negatively-charged) 

groups.  The results indicate that the cell surface pH is a function of the type and 

density of the acid and base functional groups present on both the interacting surfaces.  
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constant increases in basicity. This pH variation will result in a corresponding 

difference in the cellular ATP concentration.  

1.4 The hypothesis Statement 

To summarize, p generated during cellular bioenergetics is composed of both charge 

and pH gradients across the cell cytoplasmic membrane. The charge-regulation effect 

results in variation of the cell surface charge and pH as the bacteria approaches 

another surface.  Our hypothesis suggests a link between these two processes and that 

a change in p (measured via cellular ATP levels) will occur in direct response to 

changes in cell surface pH and potential. A decrease in surface pH will result in an 

increase in proton motive force while an increase in surface pH will cause a decrease 

in the proton motive force. This change in p will result in the attached cells having a 

different metabolic level compared to their planktonic counterparts. The effect of the 

physiochemical charge regulation on cellular bioenergetics is represented in Figure 

1.5.  

The variation in the local pH at the bacterial surface is a function of the surface 

properties of the two adhering surfaces. 

Understanding how the adhesion of bacteria to a surface with a defined charge can 

affect Δp and thus the cellular ATP is desirable and can find various applications.  

Using a series of experiments and numerical modeling methods we propose to 

establish that relationship. This knowledge will help us design surfaces according to 

the metabolic activity we desire the adhered bacteria to possess. An increase in 
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cellular metabolic activity will result in colonization and biofilm formation whereas a 

decrease in ATP can even affect bacterial survival and viability.   

1.5 Goals and Objectives of Study 

The primary goal of this study was to validate the hypothesis using different surfaces 

that would provide a range of cell surface pH values, from acidic to basic.  A 

secondary goal was to establish a direct link between cell surface pH and changes in 

cellular bioenergetics and ATP formation.  The objectives used to meet these goals are 

as follows. 

1.5.1 Objective 1: Establish a relationship between the local pH at the 
bacterial surface and intracellular ATP concentration. 

As per our hypothesis, changes in surface pH of the bacteria can trigger a variation in 

the cellular ATP concentration. It is essential to test if this part of the hypothesis is 

valid. We have achieved this by performing experiments that artificially manipulate 

the bulk pH of the bacterial sample, thus duplicating the effect of charge regulation at 

the bacterial surface by creating a proton rich or deficit condition. 

1.5.2 Objective 2: Characterize the cellular surface of Escherichia coli 
Bacillus subtilis and obtain data required for Charge Regulation and 
Bioenergetics modeling 

For this project, the Gram negative Escherichia coli k12 (ATCC 29181) and Gram 

positive Bacillus subtilis (ATCC23059) were used as the model bacterial strains. The 

E.coli and B. Subtilis surfaces were characterized to determine the N and pK values  
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Figure 1.5 - The hypothesis linking the charge-regulation effect to cellular 

bioenergetics is depicted here for a bacterium adhering to a negatively-charged 

surface. (A) During catabolic processes, protons are pumped outside the inner 

(cytoplasmic) membrane (IM), generating the proton motive force (B) The protons are 

allowed to reenter the cell through ATP synthase that drives ATP synthsis. During 

adhesion, the charge-regulation effect alters the proton concentration at the cell 

surface.  We hypothesize that this variation in pH at the cell surface (c) propagates 

through the outer membrane and affects the pH gradient across the IM thus impacting 

cellular bioenergetics.  
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that best represent the cell surfaces. This was done using zeta potential measurements 

for the bacteria by titrating across a wide pH range. 

1.5.3 Objective 3:  Identify and Characterize different materials of 
varying surface charge, ranging from positive to negative. 

Granular forms of multiple surfaces with different electrostatic properties were 

identified. The use of surfaces spanning a range of surface charge from positive to 

negative were used to gain a better understanding of the effect of surface charge on the 

metabolic activity of adherent bacteria. These surfaces consisted of both naturally-  

occurring minerals and surface coatings on sand grains.  These materials were 

characterized in order to obtain the pK and N values that best represent their charge 

properties using zeta potential measurements and the surfaces were characterized 

using scanning electron microscopy with energy dispersive X-ray analysis. 

1.5.4 Objective 4: Experimentally explore how ATP levels of adhered 
and planktonic bacteria vary with surfaces selected under Objective 3. 

The effect of bacterial adhesion on metabolic activity was characterized by measuring 

the ATP levels of planktonic bacteria and bacteria adhered to the various surfaces. The 

results from these experiments allow us to determine if the ATP levels changed upon 

adhesion in agreement with the working hypothesis. 
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1.5.5 Objective 5: Apply the Charge Regulation and Bioenergetics 
models to experimental data to determine if results follow the working 
hypothesis. 

The impact of the selected materials on bacterial surface pH and electrostatic potential 

were accessed through the use of the charge-regulation and bioenergetics models. This 

allowed examination of the relationship between the surface charge density and the 

effect it causes on the local pH.  

1.6 Dissertation organization  

This dissertation is organized in a paper format, with the main chapters presenting a 

discrete set of findings that have been published, are currently in peer review, or are in 

preparation for submission.  Each chapter is summarized below. 

Chapter 2: Central to our hypothesis is the concept that variation in pH at the surface 

of the bacterium can result in the generation or hydrolysis of ATP via the ATP 

synthase complex. During bacterial attachment to various surfaces, the local pH 

between the adhering surfaces will vary as a function of the functional groups on the 

surfaces of attachment. As per our hypothesis, this variation in proton gradient can 

induce a metabolic response from the bacterium. In this chapter we artificially 

reproduce a surface pH variation by manipulating the bulk pH and testing for a 

corresponding difference in cellular ATP concentration.  

Chapter 3: In this chapter the hypothesis was demonstrated for a positively-charged 

surface using E.coli as a model organism. Here the bacterial bioenergetics of E.coli 

was studied upon adhesion to different masses of sand and iron hydroxide (goethite) 
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coated sand.  These materials provided negatively-charged (acidic) and positively-

charged (basic) surfaces, respectively.  The results followed the hypothesis and 

demonstrated that chemically-stable iron hydroxides can lower the metabolic activity 

of attached bacteria. 

Chapter 4: In this chapter we examined the effects of multiple surfaces on the ATP 

levels of both E. coli and B. subtilis. These materials ranged from sand, with an 

isoelectric point near 2 (acidic surface), to aluminum-coated sand, with an isoelectric 

point near 9 (basic surface).  The results demonstrate that our hypothesis is able to 

predict the bioenergetic response of bacteria adhering to surfaces with different charge 

properties. 

Chapter 5: The dissertation concludes with this chapter, which summarizes the 

overall contributions of this study and makes recommendations for future research 

work based on current findings and knowledge. 
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CHAPTER 2 Variation in bacterial ATP concentration 

during rapid changes in extracellular pH and implications 

for the activity of attached bacteria 

2.1 Introduction 

In recent work, we demonstrated that bacterial attachment to a surface can impact 

cellular bioenergetics, with the effect related to the types and surface densities of 

acid/base functional groups on the bacterial and solid surfaces [1-5].  Specifically, we 

have demonstrated that surfaces with acidic functional groups can enhance bacterial 

activity, measured as an increase in cellular adenosine triphosphate (ATP), whereas 

surfaces with basic functional groups can decrease cellular ATP. 

The current theory describing this effect is based on the charge-regulated nature of the 

two surfaces [1-5].  When a surface with ionizable groups approaches another surface, 

electroneutrality requires the counterion concentration to increase in the solution 

between the surfaces to offset the decrease in inter-spatial volume.  As H+ and OH- 

are counterions for negatively- and positively-charged surfaces, respectively, their 

concentrations next to the surface will vary, altering the local pH and electrostatic 

potential (Figure 2.1) [6-8].   

Through charge-regulation modeling, we have shown that the local pH at the adhesion 

interface can drop below pH 5 or rise above pH 9, depending on the acid/base 

characteristics of the bacterial and solid surfaces [1, 2, 4]. This is illustrated in Figure 

2.2 for an Escherichi coli bacterium as it approaches both a glass (negatively-charged, 

acidic) surface and an amine (positively-charged, basic) surface.  
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Figure 2.1 - The working hypothesis describing the effect of adhesion on bacterial 

metabolic activity, depicted here for a Gram-negative bacterium adhering to a 

negatively-charged surface, links cellular bioenergetics to the charge-regulation effect. 

(a) In cellular bioenergetics, protons are pumped across the inner (cytoplasmic) 

membrane (IM) during respiration, setting up pH and electrostatic gradients across the 

IM, which are quantified as the proton motive force (Δp). We hypothesize that the 

alteration in proton concentration at the cell surface (c) propagates through the outer 

membrane and affects the pH gradient across the IM.  Similar results would be 

expected with Gram-Positive bacteria. 
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Figure 2.2 - Example charge-regulation results showing the pH at the E. coli cell 

surface (solid lines) and glass and amine-coated surfaces (dashed lines) as the 

bacterium approaches each of the two surfaces.  Following the hypothesis outlined in 

Figure 2.1, the decrease in pH upon adhesion to the glass surface should result in an 

increase in cellular ATP and the increase in pH upon adhesion to the amine surface 

should result in a decrease in cellular ATP. 
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The hypothesis states that this variation in pH between the bacteria and solid surface 

can affect cellular bioenergetics, which links catabolic and anabolic reactions.  During 

bacterial respiration, catabolic reactions establish an electrochemical proton gradient 

across the cytoplasmic membrane by pumping protons to the outside of the 

cytoplasmic membrane (process A in Figure 2.1) [9-11].  This is analogous to 

charging a capacitor, with the energy stored in a proton gradient rather than an 

electron gradient.  The energy stored in this electrochemical gradient is termed the 

proton motive force (Δp, in units of mV) and is composed of both a charge gradient 

(Δψ) and a pH gradient (ΔpH) and can be expressed using the Nernst equation [12, 

13]: 

 

2.3RT
p pH

F
   

  (1) 

where R is the ideal gas constant, T is temperature and F is the Faraday constant.  The 

energy stored in Δp is used to create ATP, which is used to drive many anabolic 

reactions.  In this process, protons are allowed to cross back into the cytoplasm 

through the ATP Synthase enzyme complex and the energy stored in the proton 

gradient is used to convert adenosine diphosphate (ADP) to ATP (process B in Figure 

2. 1).  Thus, an increase in ΔpH should increase Δp and be observed as an increase in 

cellular ATP concentration.  Conversely, a decrease in ΔpH should decrease Δp and 

cellular ATP. 

We have experimentally demonstrated that adhesion of bacteria under non-growth 

conditions results in significant shifts in cellular ATP, and numerical modeling of the 
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charge-regulation effect indicates that these shifts were due to local pH variations up 

to two units away from the pH of the bulk solution [1-3]. Full development of this 

hypothesis, however, requires development of the relationship describing how cellular 

ATP concentration responds to external pH shifts under non-growth conditions 

(process C in Figure 2. 1).  There has been research with actively growing cells that 

examined the effects of bulk pH on Δp.  These studies examined acidophiles, 

neutrophiles and alkaliphiles, using a variety of electron donors and acceptors [14-26].  

In these studies, the extracellular pH was varied within the optimal range for growth of 

the different species and the results demonstrated that Δp is highest under acidic pH 

(with acidophilic bacteria) and it decreases as the pH increases through neutral pH 

(with neutrophilic bacteria) to basic pH (with alkaliphilic bacteria). 

We have identified three studies that demonstrated the effects of a large external pH 

shift on the ATP levels of non-growing bacteria.  In these studies, the pH of a 

suspension of E. coli cells was lowered from ~8 to ~3 in a single, rapid step and this 

resulted in an increase in cellular ATP concentrations [27-29].  One study then 

increased the pH back to pH ~8 and the cellular ATP concentration returned to a lower 

level [28].  This data is in agreement with the working hypothesis (Figure 2.1), but 

given that these studies focused on a single data point, the relationship between 

changes in external pH and cellular ATP levels (process C in Figure 2.1) remained 

unresolved. 
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A goal of this study was to develop a general form of this relationship.  We can 

approach this mathematically by considering the free energy of phosphorylation, ∆Gp 

(kJ/mol), which provides a mathematical relationship between p and ATP [30]: 

 

 
  

oP
P

i

ATPG 1
p G RT ln

nF nF ADP P

  
          

      (2) 

Here, Gp
o
 is the standard free energy for ATP hydrolysis with a reported value of 

30.1 kJ/mol [31]; [Pi] is the intracellular inorganic phosphate concentration (mol/L); 

[ATP] and [ADP] are the concentrations of ATP and ADP, respectively (mol/L), and n 

is the number of protons translocated by the ATP synthase to generate one ATP 

molecule.  The value of n is typically reported in the range of 2 to 4 for bacteria [31-

35] and there is strong evidence that n varies as an inverse function of Δp, i.e., n 

nship described 

by equation 2 is a reversible thermodynamic process: if p increases, then the 

concentration of  

Combination of equations 1 and 2 then provides a relationship describing the cellular 

ATP concentration as a function of pH:   

 

    
o

P
i

GnF
ATP ADP P exp 2.3n pH

RT RT

 
    

   (3) 

While this is a simplistic analysis, as [ADP] and [Pi] will vary inversely with [ATP]  

[1, 3, 31, 37-39], it does demonstrate that the ATP concentration should be 
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exponentially related to the pH gradient across the cytoplasmic membrane.  Assuming 

changes in extracellular pH affect pH, we would then anticipate an exponential 

relationship between external pH and the cellular ATP concentration. 

The focus of this study was to experimentally elucidate this exponential relationship 

for neutrophilic bacteria by varying extracellular pH and rapidly measuring cellular 

ATP concentrations.  These experiments were conducted under non-growth 

conditions, with local pH values varied both within and well outside of the cell’s 

optimal range, thus allowing exploration of process C in Figure 2.1.  Specifically, this 

was accomplished by artificially manipulating the external (bulk) pH between the 

values of 3.5 to 10.5 and rapidly measuring changes in cellular ATP levels in four 

different neutrophilic bacterial strains (two Gram-Negative and two Gram-Positive).  

The results provide further evidence in support of the working hypothesis by 

elucidating process C in Figure 2.1, and demonstrate that an exponential relationship 

between pH and cellular ATP concentrations was observed in agreement with equation 

3. 

2.2 Materials and Methods 

2.2.1 Bacterial Cultivation 

Four neutrophilic bacterial strains were used in this study, including the Gram-

Negative strains Escherichia coli K-12 (ATCC29181) and Pseudomonas putida 

(ATCC12633) and the Gram-Positive strains Bacillus subtilis (ATCC23059) and 

Staphylococcus epidermidis (ATCC 35984).  Bacterial cultures were grown to the 
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exponential phase in 500 mL of Luria Bertini broth (LB broth, Fisher Scientific) and 

then stored with 15% glycerol at -86°C using the glass bead method [3, 4, 40].  For 

each experiment, bacteria from the frozen stock were cultivated in 500 mL of LB 

broth at 30°C.  After 20 hours of growth the bacteria were harvested and washed by 

centrifuging the suspension at 3500xg for 15 minutes, followed by re-suspension of 

the bacterial pellet in phosphate buffer solution (PBS, 0.258g KH2PO4 and 0.470g 

K2HPO4 in 1 liter of deionized water with the pH adjusted to 7.2 using 1M NaOH). 

The bacterial suspension was sampled into 50 mL centrifuge tubes and placed on a 

rotatory shaker at room temperature.  The test tubes were removed after either a 24 

hour (1 day) starvation period or a 168 hour (1 week) starvation period and the 

bacteria were washed a second time. The use of two starvation periods was to 

demonstrate if cells respond differently after undergoing extended depletion of their 

energy reserves. The resulting bacterial suspensions were diluted with PBS to a 

concentration of approximately 10
8
 cells, determined via Acridine Orange direct 

counts [41].  These final bacterial suspensions were used as described below. 

2.2.2 Experimental Methods 

For each experimental condition, an 8 ml sample of the bacterial suspension was 

withdrawn and its pH was adjusted from its current value of 7.2 to a desired value in 

the range of 3.5 to 10.5 using 1 M HCl or 1 M NaOH.  After a specified waiting 

period (discussed below), 1 mL of the sample was removed and treated with 1 mL of 

nucleotide releasing buffer solution (NRB) [3].  NRB consists of 0.05% alkyl-

dimethyl-benzyl-ammonium-chloride (benzalkonium chloride) in Tris-Mg
2+

 buffer (20 
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mM Tris, 2 mM EDTA and 10 mM magnesium acetate adjusted to a pH of 7.75) and it 

is used to lyse the bacterial cells and inactivate ATPase so that the enzyme does not 

degrade the released ATP.  The samples treated with NRB were shaken well for 15 

seconds and then analyzed for ATP as described below. 

2.2.3 Analysis of Bacterial ATP 

The ATP assay was performed following Hong and Brown [3] using a Sirius 

Luminometer (Titertek-Berthold) and freshly prepared Luciferin-Luciferase solution.  

Luciferase solution was prepared by adding 1 ml Tris buffer (20 mM Tris and 2 mM 

EDTA, adjusted to a pH of 7.75) to 1 mg of Luciferase (Sigma).  25 μl aliquots of this 

Luciferase solution were stored at -20°C in amber colored bottles until required for 

use.  Prior to each experiment, the Luciferin-Luciferase solution was prepared by 

adding 1 mg of Luciferin (Sigma) and 10 ml of Tris Albumin buffer (20 mM Tris, 2 

mM EDTA, 150 mM magnesium acetate, 50 μM dithiothreitol and 1 g bovine serum 

albumin adjusted to a pH of 7.75) to a Luciferase aliquot.  The solution was gently 

mixed and allowed to sit at room temperature for 30 minutes before use. 

For the ATP measurement, 100 μl of Tris Mg
2+

 buffer was pipetted into a luminometer 

tube containing 200 μl of the bacterial-NRB sample. The contents were mixed 

thoroughly for 15 seconds using a vortex mixer.  The tube was then placed in the 

luminometer and 100 μl of the Luciferin-Luciferase solution was injected into the 

sample.  The light generated by the reaction of ATP and the Luciferin-Luciferase was 

measured by the luminometer and quantified as Relative Light Units (RLU), which is 
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a direct measure of the ATP concentration in the vial.  To allow comparison of the 

change in ATP as a function of solution pH between the four different bacterial 

strains, the RLU values obtained at different pH values for each strain were 

normalized by the RLU value obtained at a pH of 7.2 and the units are provided as 

normalized RLU (nRLU). 

2.3 Results and Discussion 

2.3.1 Temporal variation in cellular ATP during rapid extracellular pH 
change 

In prior studies, it was demonstrated that the bacterial ATP concentration rose and 

quickly plateaued after a rapid drop in pH, and then began to decrease after a few 

minutes, presumably due to protein denaturation [27, 28].  The first experimental 

series in this study examined these temporal changes for the four different bacterial 

strains, with the goal of selecting a specific waiting period between the rapid change in 

solution pH and the ATP measurement.  Variations in ATP as a function of time are 

shown in Figure 2.3 for E. coli K-12 at a solution pH of 7.2 and when the solution pH 

was rapidly changed from 7.2 to both 4.5 and 9.2.  As anticipated, the ATP 

concentration increased upon lowering the solution pH and it decreased when the pH 

was increased.   

Temporal variations in ATP were observed upon changing the pH, with notable 

differences for the one-day and one-week starvation periods.  With one-day starvation, 

the ATP concentrations rapidly reached a stable value within 30 seconds (the time of 
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the first measurement) and remained stable for approximately 2-3 minutes, after which 

they started to decline.  With one-week starvation, the ATP concentrations took 2-4 

minutes to reach a stable value (which was very similar to the stable value for the one-

day starvation), with a decline in ATP then starting soon afterwards.  Similar temporal 

results were found with the other bacterial strains, and based on the results of these 

experiments the remaining analyses used ATP values obtained during the stable period 

(90 seconds for the one-day starvation period and up to four minutes for the one-week 

starvation period). 

2.3.2 Response of ATP concentration to rapid changes in extracellular 
pH 

The second experimental series measured the bacterial ATP concentration after a rapid 

change from a pH of 7.2 to values within the range of 3.5 to 10.5.  It was anticipated 

that a rapid decrease in bulk pH would induce an increase in the proton gradient across 

the cell membrane, enhancing p and increasing the cellular ATP concentration, and 

as shown in Figure 2.4 this was directly observed.  The nRLU values obtained for 

various  
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Figure 2.3 - Total ATP concentration of E. coli suspensions as a function of time at 

three solution pH values.  Data presented as RLU normalized to the average RLU 

value at pH 7.2 (nRLU) for both one-day  (solid symbols) and one-week (hollow 

symbols) starvation periods.  For the pH 4.5 and 9.2 data, zero minutes represents the 

time when the pH was changed from 7.2 to the specified pH.   
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Figure 2.4 - ATP concentration, presented as Relative Light Units normalized to the 

value at pH 7.2 (nRLU), as a function of the solution pH.  Grey and black symbols are 

replicate experiments with bacteria starved for one day.  White symbols are bacteria 

starved for one week. 
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pH levels are in direct proportion to the H
+
 concentration in the bulk solution and, 

with the exception of S. epidermidis, which will be discussed below, the ATP 

concentrations showed a two- to four-fold increase as the pH of the sample was 

decreased to 3.5.  Conversely, it was anticipated that a rapid increase in bulk pH 

would decrease the proton gradient across the cell membrane, depleting p and 

decreasing cellular ATP.  As shown in Figure 2.4, the ATP decreased as the bulk H
+
 

concentration decreased, with the ATP concentrations dropping by 20% to 70% as the 

pH was increased to 10.5.  The results also demonstrate that the response to the rapid 

change in pH was identical under both the one-day and one-week starvation periods.  

Overall, these results are consistent with the hypothesis shown in Figure 2.1 and 

suggest a distinct relationship between bacterial ATP content and solution pH, with 

the ATP concentration inversely related to the pH.   

2.3.3 Relationship between ATP and extracellular pH 

To test for the exponential relationship between ATP and pH suggested by equation 

3, the data for each bacterial strain were aggregated and examined for their ability to 

be fit via a general exponential function.  The results, shown in Figure 2.5, 

demonstrate that the exponential function accurately describes the experimentally-

observed ATP/pH relationship. 

To examine this relationship further, a comparative analysis of the four bacterial 

strains was performed and the results are presented in Figure 2.6.  E. coli, B. subtilis 

and P. putida all demonstrated similar metabolic responses across the entire pH range.   
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Figure 2.5 - Exponential curve fits of the consolidated experimental data.  Hollow 

symbols for S. epidermidis were not included in the curve fit. 
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Figure 2.6 - Comparison of ATP levels between the four bacterial species as a 

function of solution pH.  (a) Experimental data.  (b) Exponential curve fits.  
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This finding indicates that the hypothesis outlined in Figure 2.2 is a common 

mechanism for influencing p via changes in pH outside of the cell and occurs with 

both Gram-Negative and Gram-Positive bacteria. S. epidermidis, on the other hand, 

showed no response under acidic conditions and a steeper slope under basic conditions 

than the other three bacterial strains.  S. epidermidis is a well-studied inhabitant of 

human skin, which has a pH range of 4.0 to 5.6 with an average value around 4.7 [42-

47].  This indicates that this species, although neutrophilic, has adapted to survive and 

grow under acidic conditions [48].  S. epidermidis has been shown to grow at both pH 

7.0 and 5.5 with an identical growth rate and minimal lag period, whereas at a pH of 

8.5 it had a an extensive lag period and a much lower growth rate [49].  The results 

found here, with no variation in S. epidermidis ATP levels under acidic conditions and 

an enhanced decrease in ATP under basic conditions, are consistent with these prior 

studies.  

Statistical analysis of the data of the four bacterial species supports the similarity 

between the bacterial strains and the difference with S. epidermidis. Linearization of 

the exponential relationships in Figure 2.5 gives  

 
 ln nRLU m pH b  

  (4) 

where m is the slope and b is the intercept of the line fits.  The 95% confidence 

intervals on m and b for each of the bacterial strains are presented in Figure 2.7.  E. 

coli, B. subtilis and P. putida responded similarly to changes in pH and this is seen by 

the grouping of their confidence intervals, whereas S. epidermis shows distinct 
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deviation from this grouping.  When considered in context with our prior work on the 

variation in bacterial ATP upon adhesion [1-5], these results suggest that S. epidermis 

adhesion to acidic surfaces would have no effect on cellular bioenergetics, while its 

adhesion to basic surfaces will have an enhanced effect compared to other neutrophilic 

bacteria. This information may be useful in identifying and developing antibacterial 

materials, coatings and solutions to discourage S. epidermidis colonization of surfaces. 

2.4 Implications to bioenergetic response of attached bacteria 

We have previously demonstrated that bacterial adhesion to surfaces results in changes 

in cellular ATP, with the variation a function of the surface properties as described by 

the working hypothesis [1-3].  However, the direct elucidation of the link between 

surface pH changes and variation in cellular ATP had not been established (process C 

in Figure 2.1).  The results provided herein demonstrated that a distinct response in 

cellular ATP to changes in pH at the cell surface does exist.  This finding fills in a key 

knowledge gap in the hypothesis suggesting that charge-regulation-induced pH 

changes at the cell surface can induce a bioenergetic response in bacteria [1-

5].Specifically, and most importantly, this study elucidated a means to predict changes 

in cellular ATP as a function of changes in the local pH.  Charge-regulation modeling 

can provide an estimate of the local pH upon a bacterium adhering to a surface [1, 2, 

4, 6-8] and an example was provided in Figure 2.2.  The exponential relationship 

elucidated in Figures 2.5 and 2.7 provides a means to estimate the relative variation in 

cellular ATP that may occur during this adhesion-induced pH change.  In summary,  
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Figure 2.7 - Comparative analysis of the slope (m) and intercept (b) from equation 4 

for the four bacterial species. Error bars represent the 95% Confidence Intervals. 

Results demonstrate that E. coli, B. Subtilis and P. putida have similar responses to pH 

changes (delineated by circle) and S. epidermis deviates from this response. The data 

for S. epidermidis was obtained using the upper pH range indicated in Figure 2.5. 
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we have demonstrated how cellular ATP levels are influenced by rapid changes in the 

extracellular pH, and this information may aid in the selection and design of surfaces 

that provide a desired bioenergetic response in bacteria (e.g., a passively antimicrobial 

surface) through local pH variations via the charge-regulation effect [1-4]. 
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Chapter 3 Variation in E. coli energy levels during 

attachment to iron hydroxide (goethite) coated sand: 

Identification of a charge-regulated mechanism for bacterial 

inactivation. 

3.1 Introduction 

Owing to their low cost, relative abundance in nature and physiochemical properties, 

iron minerals and iron (hydr)oxides are used in a range of environmental engineering 

applications.  Iron particles and nanoparticles have been shown to efficiently remove 

heavy metals and arsenic from industrial waste effluent and contaminated water [1-8].  

Iron-based permeable reactive barriers are used for remediation of oxidized 

groundwater contaminants, such as chlorinated compounds, by mediating redox 

reactions [9-12].  Iron nanoparticles have been proposed for stabilizing biosolids from 

wastewater treatment plants [13].  And iron and iron-coated surfaces, including iron-

impregnated activated carbon, readily remove bacteria and viruses from water through 

sorption [14-19].   

In aqueous systems, bacteria are typically negatively charged and iron surfaces exhibit 

positive charges, resulting in favorable adhesive forces between the two surfaces [20].  

Studies have shown that iron surfaces exhibit antimicrobial properties to the adhered 

bacteria, with much of the work being performed with iron nanoparticles [21-24].  

These studies have mainly focused on ferrous and zero-valent iron nanoparticles and 

have demonstrated that these forms of iron are highly cytotoxic to bacteria, with the 
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antimicrobial effects attributed to oxidative stress caused by oxygen radical formation, 

membrane disruption, and interference with ionic transport chains across the cell wall.   

When considering antimicrobial properties of chemically stable forms of iron, such as 

goethite (FeOOH), magnetite (Fe3O4), and maghemite (-Fe2O3), the results are mixed. 

A few studies showed no bactericidal effects[21-23] while some demonstrated a 

decrease in bacterial viability [25, 26].  There experimental durations and approaches 

varied between these studies, and to date there is no consensus on antimicrobial 

properties of stable iron forms. 

In this study we examine the effects of chemically-stable iron on the activity of 

attached bacteria by considering the relationship between cellular bioenergetics and 

the physiochemical charge-regulation process that occurs during bacterial adhesion 

(Figure 3.1) [27-30].  Bioenergetics describes the link between catabolic and anabolic 

reactions.  During respiration, catabolic reactions pump protons across the cytoplasmic 

membrane (process A in Figure 3.1), setting up an electrochemical proton gradient 

composed of both pH (pH) and electrostatic potential () gradients [31-33].  The 

energy stored in this gradient is termed the proton motive force (p) and is used to 

create chemical energy in the form of adenosine triphosphate (ATP) from adenosine 

diphosphate (ADP) via the membrane-bound enzyme complex ATP synthase (process 

B in Figure 3.1).  ATP is a main energy carrier in living organisms and is used by the 

cell to drive anabolic processes.[34]  It is important to note that cellular bioenergetics 

is a reversible process: a rise in p will increase ATP and a drop in p will result in a  
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Figure 3.1 - The working hypothesis, depicted here for a Gram-negative bacterium 

adhering to a negatively-charged sand surface, links cellular bioenergetics to the 

charge-regulation effect.  (Process A) In cellular bioenergetics, protons are pumped 

across the inner (cytoplasmic) membrane (IM) during respiration, setting up pH and 

electrostatic gradients across the IM.  (Process B) The protons are then allowed back 

across the IM via the ATP-Synthase enzyme complex and the energy is captured to 

produce ATP from ADP.  When cells approach the negatively-charged sand grain 

surface, the charge-regulation effect results in decrease in pH at the cell surface, which 

(Process C) propagates through the outer membrane (OM) and enhances the pH 

gradient across the IM.  This enhancement in p increases the formation of ATP.  The 

exact opposite is expected for the positively-charged iron-hydroxide surface, where a 

rise in pH due to the charge-regulation effect results in a decrease in p and ATP. 
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decrease in ATP, and as will be discussed below, this is a key component of how 

attachment to iron (hydr)oxide surfaces affects bacterial bioenergetics. 

We recently demonstrated that changes in the pH at the bacterial cell surface can 

directly impact bioenergetics and cellular ATP levels, with the relationship following 

the reversible thermodynamics of cellular bioenergetics.  Specifically, the cellular 

ATP concentration increased when the external pH was reduced (i.e., H
+
 concentration 

increased, enhancing p) and the ATP decreased when the external pH was increased 

(i.e., H
+
 concentration decreased, depleting p) [27].  While this study used an 

artificially-induced extracellular pH change, the local pH at the bacterial surface can 

also vary during adhesion due to the charge-regulation effect, which occurs as two 

surfaces with acid/base functional groups approach each other [28-30, 35-41], and this 

is the basis of our working hypothesis.  The bacterial cell surface contains an array of 

functional groups including carboxylic, phosphoric, hydroxyl and amine groups. As 

the separation distance decreases between a bacterium and solid surface, which can 

also contain ionizable functional groups, the charge and electrostatic potential at the 

two surfaces will vary as a result of electroneutrality constraints between the surfaces.  

This charge-regulated surface response depends on the type and quantity of functional 

groups on the two surfaces and it results in a change in surface pH.   

Our working hypothesis is that this charge-regulated change in pH at the bacterial cell 

surface will influence cellular bioenergetics by providing a local proton-rich or proton-

deficient environment.  In a recent study with the Gram negative Escherichia coli and 
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the Gram positive Bacillus brevis, we found that charge-regulation modeling predicted 

a pH decrease upon adhesion to negatively-charged glass beads, and experimentally 

demonstrated that the cellular ATP concentrations of the adhered cells were greater 

than for their planktonic counterparts [28-30].  Further charge-regulation modeling 

indicated that positively-charged surfaces should result in a pH rise and thus our 

working hypothesis predicts a decrease in p and cellular ATP levels.   

As stable iron forms in aqueous systems exhibit positively-charged surface oxides, this 

suggests that they may reduce the activity of attached bacteria by lowering p and 

ATP levels.  This was the focus of this study, where we examined the bioenergetics of 

E. coli cells adhered to FeOOH (goethite) coated sand and to untreated sand.  Through 

a combination of experimental studies, and numerical modeling of cellular 

bioenergetics and the charge-regulation process, we demonstrate that E. coli 

attachment to untreated sand results in enhanced cellular ATP concentrations, while 

attachment to the FeOOH-coated surface results in depleted ATP levels, with the 

results in agreement with the working hypothesis.  We summarize with a discussion of 

the implications of these findings. 

3.2 Materials and Methods 

3.2.1 Bacterial Cultivation 

Gram-Negative Escherichia coli K-12 (ATCC29181) was grown in 500 mL of Luria 

Bertini broth (LB broth, Fisher Scientific) and stored in 15% glycerol at -86°C using 

the glass bead method [42].  In preparation for each experiment, bacteria from the 
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frozen stock were grown in 500 mL of LB broth at 30°C for 20 hours. The bacterial 

culture was then washed twice by centrifuging at 3500×g for 15 minutes, followed by 

re-suspension of the bacterial pellet in phosphate buffer solution (PBS, 0.258g 

KH2PO4 and 0.470g K2HPO4 in 1 L of deionized water with the pH adjusted to 7.2 

using 1M NaOH).  The bacteria samples were starved for 48 hours and subjected to 

another wash before being diluted with PBS to a concentration of approximately 10
8
 

cells, determined via Acridine Orange direct counts [43].   

3.2.2 Sand Surface Preparation 

Two 200 g batches of silica sand (AGSCO 000 sand) were rinsed with deionized 

water, autoclaved and dried in an oven at 105°C.  One batch was coated with synthetic 

FeOOH (Goethite) according to the method described by Kim et al [44, 45].  Briefly, 

200 g of sand was treated with 100 mL ferric hydroxide precipitate solution, which 

was prepared by raising the pH of a 0.2 M ferric chloride solution (FeCl3·6H20) to 7.8.  

The sand suspension was mixed in a shaker at 60°C for 12 hr, after which it was dried 

for 24 hr at 105°C. The iron-coated sand was then rinsed with deionized water a 

minimum of five times, dried at 105°C and stored in centrifuge tubes.  The untreated 

and iron-coated sand samples were rinsed one final time with DI immediately prior to 

use. 

3.2.3 Surface Analysis 

The iron surface coverage on both untreated and iron-coated sand grains was mapped 

using scanning electron microscopy (SEM, Hitachi 4300 SE/N) and Energy Dispersive 
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X-ray Spectroscopy (EDS, Zeiss LEO 1550).  The zeta potentials of the E. coli cells 

and of colloidal fines from the sand and iron-coated sand samples (obtained during the 

washing process) were measured using a Malvern Zetasizer Nano ZS in a 10 mM 

NaCl solution at pH values ranging from ~2 to ~11 (adjusted with NaOH and HCl).   

3.2.4 Experimental Methods 

 Bacterial attachment and ATP experiments were conducted using three different 

masses (0.3 g, 0.6 g, and 1.2 g) of sand and iron-coated sand, providing variation in 

the surface area available for adhesion.  Glass vials were prepared by adding the 

specified sand mass with 4 mL of bacterial suspension and control vials contained 

only the bacterial suspension.  The vials were placed on an Orbitron shaker at 25 rpm, 

maintained at 30°C in an incubator, and they were individually sacrificed at specific 

times through a total of five days for bacterial counting or determination of the 

bacterial ATP concentration.  The number of adhered cells was determined as the 

difference between the total cells added to the vial and the planktonic cell count.  The 

ATP was quantified on a total ATP per vial and then converted to ATP/cell for 

adhered and planktonic bacteria using the cell counts. 

The ATP was extracted from the vials by placing the vials in boiling water for 3.5 min 

followed by rapid cooling in an ice bath for 1 min.  This procedure lyses the cells, 

releasing ATP into solution, and inactivates the ATP synthase enzyme.[46]  A 1 mL 

sample was then pipetted out of the vial and stored immediately in microcentrifuge 

tubes at -20°C prior to ATP analysis. 
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3.2.5 Bacterial ATP analysis 

The ATP assay was performed according to Hong and Brown [30] using a Sirius 

Luminometer (Titertek-Berthold) and freshly prepared Luciferin-Luciferase solution.  

Luciferase solution was prepared adding 1 mL of Tris buffer (20 mM Tris and 2 mM 

EDTA, adjusted to a pH of 7.75 with acetic acid) to 1 mg of Luciferase (Sigma) and it 

was stored in 25 μL aliquots at -20°C.  The Luciferin-Luciferase solution was then 

prepared by adding 10 mL of Tris Albumin buffer (20 mM Tris, 2 mM EDTA, 150 

mM magnesium acetate, 50 μM dithiothreitol and 1 g bovine serum albumin, adjusted 

to a pH of 7.75 with acetic acid) to 1 mg of Luciferin (Sigma) and gently mixed with a 

Luciferase aliquot.  The freshly prepared Luciferin-Luciferase solution was incubated 

at room temperature for a minimum of 30 minutes before performing the ATP 

analysis. 

During ATP measurement, the frozen ATP extract samples were thawed to room 

temperature using a thermomixer.  100 μL of the bacterial ATP sample was pipetted 

into a luminometer tube containing 200 μL of Tris Mg
2+

 buffer (20 mM Tris, 2 mM 

EDTA, and 10 mM Mg
2+

 added as Mg acetate, adjusted to pH 7.75 with acetic acid).  

The contents of the tube were mixed thoroughly for 15 seconds using a vortex mixer.  

The tube was then placed in the luminometer and 100 μL of the Luciferin-Luciferase 

solution was injected into the sample.  The Relative Light Units (RLU) obtained from 

the luminometer is a direct measure of the ATP concentration in the vial and was 

converted to ATP using standard curves with ATP standard solutions (Sigma).   
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3.3 Results and Discussion 

3.3.1 Surface Characterization 

The SEM/EDS analysis of the sand grains showed that the untreated sand had no 

detectable iron on its surface, while the iron-coated sand showed roughly 30% surface 

coverage of iron (Figure 3.2).  This iron coverage resulted in a shift in the isoelectric 

point (IEP) of the sand from near 2 for the untreated sand to approximately 8 for the 

iron-coated sand (Figure 3.3).  Additionally, the E. coli suspension has an IEP of near 

2.5.  These values are in agreement with data in the literature, where sand has reported 

IEP of ~2 [47], synthetic Goethite has reported IEP values in the range of 7.5-9.6 [48], 

and E.coli has an IEP of near 2 [35, 36].  Thus, the sand and E. coli both had a net 

negative charge a neutral pH, whereas the iron-coated sand had a net positive charge 

(Figure 3.3). 

3.3.2 ATP and Cellular Bioenergetics 

The shift from a negative charge for the untreated sand to a positive charge for the 

iron-coated sand had a significant impact on the adhesion of E. coli.  As shown in 

Figure 3.4, the iron-coated sand showed a large increase in bacterial adhesion, from 

10-20% for the untreated sand to 92-94% adhesion with the coating.  Given that the  
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Figure 3.2 - Scanning electron microscope image of an iron-hydroxide coated sand 

grain particle.  The red delineates high surface concentrations of iron as determined 

via Energy Dispersive X-ray Spectroscopy. 
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Figure 3.3 - Zeta potential of the sand, iron-coated sand, and E. coli suspended in 10 

mM NaCl.  A large shift in the isoelectric point was observed between the untreated 

(IEP≈2) and treated (IEP≈8) sands.  The black symbols are the experimental data and 

the small white circles represent the best-fit charge-regulation model of the 

experimental data for determining the pK and N values for the surfaces.  
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Figure 3.4 - Adhesion of E. coli to untreated sand (solid symbols) and iron-coated 

sand (hollow symbols) with 4 mL of bacteria suspension and three different masses of 

sand.  Results demonstrate a significant increase in adhesion with the iron-hydroxide 

coating. 
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sand surface was only partially covered with the iron coating, this indicates that the 

bacteria had a high affinity for adhering to the positively-charged iron coating.   

The ATP results for both the adhered and planktonic bacteria are shown in Figure 3.5.  

The ATP levels of the planktonic E. coli remained relatively constant throughout the 

5-day experiment.  Conversely, the ATP for E. coli adhered onto the untreated sand 

increased above the planktonic values and the ATP for E. coli adhered onto the iron-

coated sand decreased, with both findings in agreement with the hypothesis.  For the 

untreated sand, ATP increased throughout the first 24 hours and then slowly declined 

back towards the planktonic values over the next four days.  These results were similar 

to those from our preliminary study with E. coli and Bacillus brevis adhesion onto 

glass beads [28, 30].  For the iron-coated sand, the ATP levels continuously declined 

below the planktonic levels over the five-day experimental period.  These results 

clearly demonstrated that bacterial adhesion to the sand and iron-coated sand directly 

impacted cellular bioenergetics. 

To explore this further, the change in pH across the cytoplasmic membrane required 

to achieve these ATP shifts was explored within the framework of the Chemiosmotic 

Theory.  This was done by considering the relationship betweenp (in units of mV) 

and the free energy of phosphorylation, ∆Gp (kJ/mol): 

 

PG
p

nF


  

  (1) 
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Figure 3.5 - ATP/cell for the planktonic bacteria and bacteria attached to the untreated 

sand (solid symbols) and iron-coated sand (hollow symbols).  Gray shading highlights 

planktonic bacteria from the controls for each of the two experiments (i.e., from vials 

with no sand). 
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where n is the number of protons translocated per ATP synthesized (Process A in 

Figure 3.1) and F is the Faraday constant. The value of n is typically reported in the 

range of 2 to 3 for bacteria [49-53], and a value of n = 2 was used to calculate p for 

the following analysis. Gp can be calculated from the following relationship [54]: 

 

 
  

o

P P

i

ATP
G G RT ln

ADP P

 
       

   (2) 

where Gp
o
 is the standard free energy for ATP hydrolysis with a reported value of 

30.1 kJ/mol [49]; [Pi] is the intracellular inorganic phosphate concentration (mol/L); 

[ATP] and [ADP] are the concentrations of ATP and ADP, respectively (mol/L); R is 

the ideal gas constant and T is temperature (K).   

To determine p from the experimental ATP concentrations via Equations (1) and (2), 

the ADP and Pi concentrations must be determined.  This was done by considering the 

adenylate relationships (the adenylate pool and the adenylate energy charge) within 

biological cells.  The adenylate pool (AP) is the sum of the molar concentrations of 

ATP, ADP and adenosine monophosphate (AMP): 

 AP = [ATP] + [ADP] + [AMP] (3) 

While the distribution of the adenylates will vary as a function of the bacteria’s 

metabolic state, the AP remains fairly constant within a bacterial cell [55-57].  The 

adenylate energy charge (ECA) describes the relative distribution of the adenylates in 

the adenylate pool.  It is defined as 
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   
A

1
ATP ADP

2EC
AP




  (4) 

and varies from 0 (AP = [AMP]) to 1 (AP = [ATP]) [58].  The three adenylates can 

also be related through the reaction catalyzed by adenylate kinase, ATP + AMP ↔ 

2ADP, represented by the equilibrium equation:  

 

  

 
2

ATP AMP
K

ADP


  (5) 

where K has a value of 0.8 [58-60].  Finally, the total intracellular phosphate 

concentration (CT,PO4
) is the sum of the phosphate distribution between the adenylates: 

 CT,PO4 = 3[ATP] + 2[ADP] + [AMP] + [Pi] (6)  

The following two assumptions were used to solve this system of equations: 

i. The ECA of bacteria during growth has been shown to be ~0.8 and it declines 

to a constant value of 0.2–0.3 during starvation [49, 55, 61-63].  Here, with the 

bacteria starved prior to the experiment, it was assumed that the initial ECA (t = 

0) was 0.2.  

ii. The Pi of starved E. coli has been shown to be ~14 mM and this was used as 

the initial value at the beginning of the experiment (t = 0) [49]. 
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Using these initial conditions, along with the experimental ATP data for the planktonic 

bacteria, AP and CT,PO4
 were calculated, and these were subsequently used as constant 

values through the remainder of the analysis.   

Results of the adenylate analysis are shown in Figure 3.6, where it can be seen that the 

E. coli adenylate energy charge is enhanced during attachment to the negatively- 

charged untreated sand, with values ranging from 0.20 up to 0.75, whereas it is 

depleted during attachment to the positively-charged iron-coated sand, with values 

ranging from 0.19 down to 0.05.  Correspondingly, the ATP increased from ~10% of 

AP to over 60% during adhesion to the untreated sands, in agreement with our prior 

results for E. coli attachment to glass beads [28, 30].  For the iron-coated sand, the E. 

coli ATP decreased significantly, from ~7% of AP down to <1%.   

Using these results, ∆p was calculated from Equations (1) and (2) and the results are 

presented in Figure 3.7.  In this figure it can be seen that p for the planktonic cells 

ranged between -190 mV to -195 mV over the course of the experiment.   These 

values are within reported ranges of p for bacteria, which extend from -140 mV to 

over -220 mV [64, 65].  For the cells adhered to the untreated sand, p increased to 

approximately -228 mV over the first 24 hours and then decreased slowly over the 

next 4 days.  For the cells adhered to the iron-coated sand, p continuously declined, 

dropping to approximately -178 mV by the end of the 5-day experiment. 

As stated earlier, p is composed of both a pH gradient (p) and an electrostatic 

potential gradient () and it is expected that changes in p due to the charge- 
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Figure 3.6 -  Ratio of ATP, ADP and AMP to the adenylate pool as a function of the 

adenylate energy charge.  Symbols are calculated from the experimental data and the 

lines are the theoretical model from Atkinson and Walton.
30, 58

  Results demonstrate an 

increase in bioenergetics (i.e., an increase in the adenylate energy charge) for E. coli 

adhered to the uncoated sand (solid symbols) as compared to the planktonic bacteria 

(hollow symbols), and a decrease in bioenergetics (i.e., a decrease in the adenylate 

energy charge) during adhesion to the iron-hydroxide coated sand (gray symbols). 
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Figure 3.7 - Proton motive force (p) and change in pH ((pH)) required to 

achieve the experimentally-measured ATP values.  Gray shading highlights the p 

values for the planktonic bacteria.  Solid symbols are with the untreated sand and the 

hollow symbols are with the iron-hydroxide coated sand.   
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regulation effect would be to the pH component [28, 30, 65].  When p is in units of 

mV, it can be written as [66]: 

 

2.3RT
p pH

F
   

 (7) 

For neutrophilic bacteria, such as E. coli examined here, ∆ψ accounts for 70-80% of 

∆p, with ∆pH contributing 20-30% [65].  Here, the change in pH required to give the 

experimentally-observed ATP values was calculated by assuming that  was equal 

to 75% of the p value t = 0 and the subsequent variation in p was due to changes in 

pH [28, 30, 65].  The results are shown in Figure 3.7, where it can be seen that an 

increase in pH (i.e., (pH)) of as little as 0.6 pH units is required to achieve the 

ATP increase observed with untreated sand, and this is similar the values of up to ~0.5 

pH units found with E. coli and B. brevis on clean glass beads [28, 30].   With the 

iron-coated sand, a decrease in pH of only down to 0.25 pH units results in the 

experimentally-observed drop in ATP below that of the planktonic cells.  

3.3.3 Charge-Regulation Effect 

Charge-regulation modeling was performed to determine if the predicted pH change at 

the E. coli surface during adhesion is sufficient to result in the (pH) values 

calculated from the bioenergetic modeling.  The charge-regulation model presented 

here was developed in Hong and Brown [29, 35] and follows the model proposed by 

Ninham and Parsegian [67], with modifications to allow modeling of surfaces 

containing multiple functional groups [29, 35, 38, 68-70].  While this model is 
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sufficient here for representing the charge-regulated bacterial cell surface [29, 35], 

other approaches for charge-regulated surfaces are also applicable, such as the soft-

particle approach [41, 71-73]. 

The model used here is based on the Poisson-Boltzmann equation, which describes the 

electrostatic potential in an electrolyte solution as a function of distance from a 

charged surface.  The one-dimensional Poisson-Boltzmann equation can be written as 

 

2

i
ri i2

io

z ed 1
n z eexp

dx kT

   
   

   


 (8) 

where x is the distance from the charged surface; ψ is the electrostatic potential (V); εo 

is the permittivity of vacuum (8.85410
-12

 C
2
/J-m); ε is the dielectric constant of the 

medium (78.5 for water); nri is the number of ions of species i per unit volume in the 

bulk fluid; zi is the valence of ion i; e is the electron charge (1.60210
-19

 C); k is the 

Boltzmann constant (1.38110
-23

 J/K); and T is the temperature (298 K).  Gauss’s law 

is used to provide the boundary conditions to Equation 8: 

 o

d

dx






 

 
 (9) 

where  is the surface charge density (C/m
2
) and subscript  = 1,2 defines the two 

surfaces.   

The surface charge comes from the dissociation of acid/base functional groups at the 

two surfaces, i.e. 
 HRHR ajaj  and 

  HRHR bkbk , where Raj are the 
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acidic ionizable sites of type j (e.g., phosphoric, carboxylic, and hydroxyl groups) and 

Rbk are the basic ionizable sites of type k (e.g., iron hydroxide groups).  Given these 

reactions, the charge-regulated boundary conditions for the electrostatic potential 

profile can be written as the sum of the positively-charge sites minus the sum of the 

negatively-charged sites, resulting in the following equation [28, 29, 35, 38]: 

 

b am m
aj ajbk

k 1 j 1
bk aj

K N[H ] N
e

e e
[H ] K exp K [H ] exp

kT kT
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
   

   

 
 
    

      
         

 

  (10) 

where Naj and Nbk are the number of acid sites of type j and base sites of type k per 

unit area of surface ; Kaj and Kbk are the corresponding dissociation constants 

associated with the acidic and basic functional groups (mole/L); [H
+
]∞ is the bulk 

proton concentration (mole/L);  is the electrostatic potential for each surface (V); 

and ma and mb are the number of different acidic and basic groups on each surface, 

respectively.  Finally, the local proton concentration adjacent to each surface ([H
+
]) 

can be determined using the Boltzmann distribution: 

 

se
[H ] [H ] exp

kT

  
 

 
  

   (11) 

To model these charge-regulated surface interactions, the pK and N values for the 

acidic and basic functional groups on the two surfaces (where pK = -log(K)) were 

quantified from the zeta potential () data.  The purpose here is to identify values of 

pK and N that accurately represent the charge and electrostatic potential of the 
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surfaces as a function of pH, and this is not necessarily the pK and N values for each 

functional group on the surface.  This was accomplished by applying the Grahame 

equation, which represents the charge as a function of the electrostatic potential and 

solution electrolyte composition: 

 

1

2
i

o ri

i

z e
2 kT n exp 1

kT




    
        

   


 (12) 

Using  as an estimate of , equations 10 and 12 were coded in C++ and combined 

with the numerical optimization code PEST (Watermark Numerical Computing) to 

obtain the pK and N values that best simulate the zeta potential titration data.  The 

resulting pK and N values are presented in Table 1 and the charge-regulation model 

simulations of the surface potential using these values are presented in Figure 3.3, 

indicating that the pK and N values are able to accurately represent the electrostatic 

nature of the surfaces as a function of pH. 

The pK and N values in Table 1 were used with equations 8-11 to calculate the E. coli 

surface pH as a function of separation distance from the sand and iron-coated sand 

surfaces, and the results are shown in Figure 3.8.  First, it can be seen that with a bulk 

pH of 7, the E. coli surface pH is approximately 6.2 due to the negatively-charged cell 

surface and the local distribution of H
+
 adjacent to the cell surface via the Boltzmann 

distribution.  As the bacterium then approaches the untreated sand surface, the cell 

surface pH drops from 6.2 to below 5. 
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Figure 3.8 - Charge-regulated surface pH of E. coli as a function of separation 

distance from the untreated sand and iron-coated sand (electrolyte is 10 mM NaCl at 

pH 7).  Also presented is the surface pH for the case where the site density of the basic 

functional group describing the iron-coated surface (Nb, Table 3) was doubled.  See 

text for discussion. 
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Table 3.1 - Best-fit pK and N values for acidic (a) and basic (b) sites for the three 

surfaces used in this study.  Parentheses indicate 95% confidence intervals.  Resulting 

model fits using these values are presented in Figure 3.3. 

 

 pK N (#/nm
2
) 

E. coli 
pKa = 2.60 (2.49 – 2.71) 

pKb = 11.24 (7.70 – 14.8) 

Na = 0.118 (0.108 – 0.129) 

Nb = 0.0420 (0.0322 – 0.0547) 

Sand 
pKa1 = 2.75 (2.49 – 3.02) 

pKa2 = 5.16 (4.94 – 5.38) 

Na1 = 0.0383 (0.0340 – 0.0431) 

Na2 = 0.0532 (0.0460 – 0.0614) 

Fe-coated Sand 

pKa1 = 4.42 (4.04 – 4.81) 

pKa2 = 7.52 (6.86 – 8.18) 

pKb = 9.04 (8.40 – 9.68) 

Na1 = 0.0393(0.0250 – 0.0715) 

Na2 = 0.0303 (0.0122 – 0.0752) 

Nb = 0.0687 (0.0524 – 0.0901) 
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For the iron-coated sand, it was anticipated that the cell surface pH would rise as the 

separation distance decreases, but the model shows a decrease in pH, albeit less of a 

drop than the uncoated sand.  It is important to note that the pK and N values are those 

that best represent the overall (spatially-averaged) electrostatic properties of the 

surfaces.  For the iron-coated surface, the iron hydroxide only partially coats the 

surface (Figure 3.2) yet accounts for a significant fraction of the adsorbed bacteria 

(Figure 3.4).  If we make an educated assumption that the local surface density of the 

basic (positive) functional groups on the iron-coated portions of the sand is higher than 

the average value obtained from the zeta potential measurements, we can reassess the 

effects of E. coli adhesion to the iron coating.  This is shown in Figure 3.8 for a simple 

doubling of the basic site density (Nb), and the results demonstrate that the pH 

increases from 6.2 to above 7.5 as the E. coli cell approaches the iron-coated surface.  

One should not take these as absolute numbers, as the model assumes planar surfaces, 

but it does suggest the expected trend as the bacterium approaches the sand surface 

and demonstrates how the charge-regulated surfaces result in a variation in the cell 

surface pH with separation distance.  Specifically, E. coli adhesion to the negatively-

charged (acidic) sand surface results in a decrease in surface pH, causing an increase 

in pH and p, with a corresponding rise in cellular ATP.  Conversely, E. coli 

adhesion to the positively-charged (basic) iron hydroxide surface results in an increase 

in surface pH, causing a decrease in pH and p, with a corresponding decrease in 

cellular ATP.  While attachment to the negatively-charged surface demonstrated a 

finite change in ATP, with the positively-charged surface the cellular ATP continually 
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decreased over the five-day experiment, indicating that the surfaces were steadily 

depleting the bacterial energy stores.   

There are a number of implications from these findings.  First, the results suggest that 

prolonged attachment to iron (hydr)oxide surfaces will deplete p and ATP, and likely 

lead to cellular death if energy sources are not available to make up for these losses.  

As shown in Figure 3.5, the cellular ATP concentration for E. coli attached to the iron-

coated sand did not drop below the planktonic values until near 12 hours of 

attachment, and it then continued to decrease through the five-day experimental 

period.  These results are supported by the literature. In particular, the studies that 

found no bacterial inactivation on iron (hydr)oxide surfaces were performed under 

short time durations from five minutes up to one hour [21-23], while the studies that 

did identify inactivation were performed for 24 to 48 hours [25, 26].  These results 

demonstrate that stable iron (hydr)oxide surfaces can lead to cellular inactivation 

through the charge-regulation process.  This leads one to imagine that cells that use 

iron (hydr)oxide surfaces as electron acceptors may have developed means to remain 

physically distanced from the surface (Figure 3.8 suggests ~5 nm may be sufficient), 

while using external electron shuttles and nanowires to complete the redox reactions 

[74-78].  It should also be noted that this charge-regulated inactivation will be 

mediated by other positively-charged surfaces, such as cationic polymers, which have 

been shown to lead to bacterial inactivation [79-81].   

One other implication is surface sensing and gene expression.  Surface recognition and 

gene expression for initiating biofilm growth has been shown to be dependent on the 



 

82 

local pH [82-85] and osmolarity [85-88], both of which will change during charge-

regulated adhesion.  Changes in p and cellular ATP concentrations have also been 

suggested as surface-sensing signals [89], and the cellular concentration of cyclic 

AMP (cAMP), which is formed from ATP, regulates genes in bacteria, including 

surface sensing genes [90].  This suggests that appropriate selection of surfaces may 

allow expression or repression of genes in attached bacteria via changes in p and 

ATP mediated by the charge-regulation process. 
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Chapter 4 Examination of attachment induced intracellular 

ATP variations in both Gram-positive and Gram-negative 

bacteria using surfaces spanning a range of surface charge 

functionality.  

4.1 Introduction 

Microbial attachment to surfaces plays a critical role in many natural and artificial 

systems. In any given system, it is characteristic of bacteria to naturally adhere to 

surfaces. This inclination of bacteria for adhesion is the initial step towards surface 

colonization and biofilm development which is beneficial in some systems and 

detrimental in other systems [1-6]. In general, the initial step of biofilm formation is 

the adhesion of the microorganism to the surface by interactions that are governed by 

the surface charge and the hydrophobicity of the bacterial and adhering surfaces [7]. 

Bacterial adhesion to a solid surface can influence various bacterial processes. Of 

particular interest is the effect of adhesion on the metabolic activity of bacteria which 

can be either elevated or suppressed, depending on the surface properties of the 

adhering surfaces. Many studies have focused on identifying surfaces that enhance or 

inhibit microbial metabolic activity and the reasons for these effects are were 

ambiguous [8-14] until Hong and Brown developed a hypothesis explaining the 

underlying mechanism [17]. The same hypothesis is applied here to explore the effect 

of various surfaces with different functional groups, spanning a range of iso-electric 

points (IEP’s) on the metabolic activity of bacteria. Our findings will facilitate better 

selection of surfaces for different applications. The hypothesis driving our study 

indicates a relationship between physiochemical charge regulation that occurs during 
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bacterial adhesion [15-17] and cellular bioenergetics which centers on energy coupling 

between catabolic processes and anabolic processes in a living bacterial cell.  

4.2 Charge Regulation 

The bacterial cell surface contains acidic and basic functional groups like carboxylic, 

phosphoric, hydroxyl and amine groups [18-20]. As the separation distance between a 

bacterium and solid surface decrease, there is a variation in the surface charge and 

potential via the charge regulation effect [17]. The charge regulated nature of the cell 

surface depends on the type and quantity of functional groups on the bacterial  and 

solid surfaces [21-24]. The degree of ionization of the various functional groups is 

dependent on the local pH [25, 26]. Adhesion results in a variation in the local pH 

between the surfaces as a result of electro neutrality. This shift in local pH can directly 

impact the cellular metabolic activity levels via the proton motive force.  The charge-

regulation effect is modeled using the Poisson-Boltzmann equation that describes the 

electrostatic potential as a function of distance from the charged surface.  The Poisson-

Boltzmann equation can be written as  

 
2

i
ri i2

io

z ed 1
n z e exp

dx kT

   
      

   
  (1) 

Here  is the electrostatic potential, o is the permittivity of the vacuum, is the 

dielectric constant of the medium, e is the electron charge, k is the Boltzmann 

constant, and T is the temperature. 
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The boundary conditions for the two surfaces are based on Gauss’s Law, where the 

change in potential at the surface is related to the surface charge: 

  
surface o

d 1

dx


  

 
      (2) 

Taking into account the acidic and basic functional groups on the surface, the net 

surface charge of the cell can be obtained by adding the individual functional groups 

possessing the positive and negative surface charges:  

 
bj ai

j i

[R H ] [R ]
e

       (3) 

where 𝜎 is the surface charge per unit area of the surface, Rai and Rbj are the acidic 

ionizable sites of type i, and the basic ionizable sites of type j.  Rai and Rbj can be 

represented as a function of surface pH and their site densities (Nai and Nbj).  In this 

case, Equations 2 and 3 lead to the following boundary conditions:  
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j is ssurface o
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e edx
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 
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       
                          

   (4) 

Here, Kai and Kbj are the dissociation constants associated with the different acidic and 

basic functional groups, respectively. Using Equations 1 and 4, the surface charge and 

surface pH can be modeled as a bacterial cell approaches a surface. 
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4.3 Bioenergetics 

The chemiosmotic theory of Mitchell states that the proton motive force generated 

during catabolism directly controls the generation of adenosine triphosphate (ATP, 

which is the energy currency of the cell). The pumping of protons across the 

cytoplasmic membrane as electrons move down a series of membrane proteins 

establishes a charge and pH gradient exterior to the membrane. The gradients together 

constitute the proton motive force that can be represented by the Nernst equation 

which is expressed as [27,28].            

                                                     
2.3RT

p pH
F

                                             (5) 

The protons are allowed to reenter the bacterial protoplasm through the ATP synthase 

complex generating an ATP molecule from cytoplasmic ADP and inorganic phosphate 

for every 2-4 protons. This process is thermodynamically reversible and can aid the 

generation of ATP via proton entry through ATP synthase or ATP depletion via proton 

exit through the same ATP synthase. The thermodynamic relationship between Δp and 

the formation of ATP is expressed as 

 
p o

i

G 1 [ATP]
p G 2.303RTlog

nF nF [ADP][P ]

   
        

  
 (6) 

where F is the Faraday constant, n is the number of protons translocated per ATP 

molecule synthesized, ΔGp is the phosphorylation potential and [ATP], [ADP], [Pi] are 

the cellular concentrations of adenosine triphosphate, adenosine diphosphate and 
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phosphate respectively.  The ATP synthase enzyme is reversible in function, and thus 

an increase in the Δp will result in an enhanced cellular ATP response and a decrease 

in the Δp will cause a decline in the cellular ATP.  

The shift in pH between the two surfaces as a result of the charge regulation process 

can influence the cellular bioenergetics by providing a proton rich or proton deficit 

environment.  The bacterial surface typically possesses a net negative charge and the 

pH at the surface is a function of the solid surface functional properties, pH and ionic 

strength. A decrease in local pH can cause protons to enter the bacterial cell miming 

that which takes place during chemiosmosis. Thus the ATP concentration within the 

cell increases and this can encourage bacterial growth and colonization. An increase in 

pH at the membrane would result in ATP depletion within the cell and thereby 

decreasing the overall metabolic activity level of cells as result, growth and survival of 

bacteria may be compromised. 

In Chapter 2 we demonstrated that cellular ATP concentration is a function of 

bacterial surface pH [29]. Following which, in Chapter 3 we demonstrated that 

adhesion of E.coli to a negative and positive surface resulted in an increase and 

decrease in energy levels as predicted by the governing hypothesis.  In this study we 

explored the effect of a range of acidic and basic surfaces that can induce a wide 

spectrum of bacterial surface pH conditions during adhesion.  The investigation 

focused on understanding how Gram positive and Gram negative bacteria may 

respond during attachment to surfaces that span a range of surface functionality, 

resulting in a varied bacterial surface pH similar to that tested by artificial 
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manipulation of the bulk pH at the point of adhesion in Chapter 2. We have examined 

the metabolic response of E. coli and B. subtilis upon these pH variations induced by 

charge regulation.  As a result of the charge regulation effect between surfaces during 

attachment, a negativel-charged surface will cause a decline in surface pH impacting 

the proton gradient. Thus protons can enter the cell at the expense of the generated 

gradient, resulting in an increase in cellular ATP levels. Alternatively, attachment to a 

positive surface can increase the surface pH of bacteria resulting in ATP depletion, 

thus resulting in compromised growth and survival of adhered species. We also 

anticipated the metabolic response of attached bacteria to be a function of the solid 

surface functionality. 

The hypothesis was explored by identifying and characterizing surfaces with different 

surface potentials to observe varied metabolic response of adhered bacteria. Following 

characterization, adhesion experiments were performed to study the effect of surface 

functional groups on the metabolic activity of bacteria by measuring ATP 

concentrations.  

Experiments were conducted using soda lime glass beads, silica sand, iron hydroxide 

modified sand, aluminum hydroxide modified sand, feldspar and olivine.  Surface 

modification of glass beads was also successfully performed and the coated glass 

beads were used for preliminary experiments (Appendix C). Feldspar is one of the 

most abundant elements found in nature that also serves as a raw material in the 

manufacture of ceramics and glass. Olivine is a common subsurface mineral 

associated usually with igneous rocks. 
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4.4 Materials and Methods 

4.4.1 Bacterial Culture 

Gram-negative Escherichia coli K-12 (ATCC29181) and Gram-positive Bacillus 

subtilis (ATCC23059) were used in this study.  Both bacteria were grown in 500 ml of 

Luria Bertini Broth (LB broth, Fisher Scientific) and stored using the glass bead 

procedure [38] at -80°C to serve as inoculum for the experiments. In preparation for 

each experiment, bacteria were cultivated in 500 ml LB broth at 30°C for 20 hr. The 

bacteria were washed twice by centrifuging for 15 min at 3500×g using phosphate 

buffer solution solution (PBS, 0.258 g KH2PO4 and 0.470 g K2HPO4 in 1 L of 

deionized water with the pH adjusted to 7.2 using 1 M NaOH). After the cultures were 

incubated for 48 hours they were washed one last time and diluted to a concentration 

of approximately 10
8
 cells, determined via acridine orange direct counts.   

4.42 Granular Surface preparation  

The different surfaces used in the adhesion experiments were prepared individually. 

Soda lime glass beads were soaked in 1 M HCl for 12 hr and washed under running 

tap water for an hour. The beads were then washed for 10 min with deionized water 

and dried in the oven overnight at 60°C. 

Silica sand was washed in deionized water and dried overnight in an oven at 105°C. 

200 g was used directly for experiments while separate 200 g batches were coated 

with iron and aluminum hydroxide based on the method described by Kim et al 

[30,31]. The method included treating 200 g of sand with 100 mL of either 0.2 M 
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ferric chloride or 0.2 M aluminum chloride solution (FeCl3.6H20 and AlCl3.6H20). 

Ferric hydroxide (goethite) and aluminum hydroxide were precipitated in the solution 

by increasing the pH to ~7.5 using 6 M NaOH. The sand was mixed in a shaker at 

60°C for 12 hr after which it was dried in the oven for 24 hr at 105°C. The coated sand 

was then washed using deionized water a minimum of five times, dried in the oven at 

105°C for 48 hr and stored in centrifuge tubes until used.  

Feldspar and Olivine were washed in deionized water and dried at 60°C in an oven 

overnight. The minerals were stored in poly propylene containers. 

4.4.3 Surface Characterization 

The surfaces were observed using SEM and surface elemental mapping was performed 

using Energy Dispersive X-ray Analysis to confirm coating on the sand. The zeta 

potential of the bacterial and solid surfaces was measured by titrating across a range of 

pH values using a Nano Zetasizer ZS (Malvern). For these titrations, the bacterial 

suspension was washed and resuspended in 10 mM NaCl and fines from the solid 

surfaces were obtained during the washing procedure and suspended in 10 mM NaCl. 

Fines for glass beads were obtained by crushing with a mortar and pestle. 

4.4.4 Experimental Method 

Adhesion experiments were performed by adding 2 g of the surface of interest into and 

4 ml of the bacterial suspension into 10 mL round bottomed glass vials. The vials were 

placed on an Orbitron shaker at 25 RPM and maintained at 30°C. Vials were removed 

at specific times up to 120 hr for determining bacterial planktonic counts and cellular 
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ATP concentrations. ATP was extracted from the sample by introducing the vials in 

boiling water for 3.5 min followed by snap cooling in an ice bucket for 1 min. One mL 

of the sample was collected from each vial and stored at -20°C. The samples were 

assayed using the Luciferase-Luciferin solution in the following manner. 

4.4.5 Cellular ATP Analysis 

ATP concentrations in each vial was determined according to Hong and Brown [17] 

using a Sirius Luminometer (Titertek-Berthold) and a freshly prepared Luciferin-

Luciferase solution.  Luciferase solution was prepared in 25 μL aliquots by adding 1 

mL of Tris buffer (20 mM Tris and 2 mM EDTA, adjusted to a pH of 7.75) to 1 mg of 

Luciferase (Sigma) and stored at -20°C. Ten mL of Tris Albumin buffer (20 mM Tris, 

2 mM EDTA, 150 mM magnesium acetate, 50 μM dithiothreitol and 1 g bovine serum 

albumin adjusted to a pH of 7.75) was added to 1 mg of Luciferin (Sigma) and gently 

mixed with a Luciferase aliquot. The freshly prepared Luciferin-Luciferase solution 

was incubated at room temperature for 30 min before performing the ATP analysis. 

The frozen ATP extract samples were thawed to room temperature using a 

thermomixer and 100 μL of the bacterial ATP sample was added into a luminometer 

tube containing 200 μL of Tris Mg
2+

. The contents of the tube were mixed thoroughly 

for 15 sec using a vortex mixer.  The tube was then placed in the luminometer which 

was set to automatically inject 100 μL of the Luciferin-Luciferase solution into the 

sample.  The ATP concentration in the vial was obtained in the form of Relative Light 
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Units (RLU) and was converted to molar ATP concentrations using standard curves 

with ATP standard solutions (Sigma).   

4.5 Results and Discussion 

4.5.1 Microscopy of surfaces 

Scanning electron microscopy (SEM) was used to study the morphology of surfaces 

(Figure 4.1) and Energy Dispersive X-ray Analysis patterns (Figure 4.2 and 4.3) and 

mapping provided compositional information of the minerals and confirmed the 

presence of coating for modified sand. Figures 4.4 and 4.5 show the elemental 

mapping of the sand to confirm coating of iron hydroxide (goethite) and aluminum 

hydroxide on the sand. 

4.5.2 Surface Characterization 

The zeta potential values across a range of pH for the bacteria and the solid surfaces 

are presented in Figure 4.6 and Figure 4.7. E. coli and B. subtilis had an isoelectric 

point (IEP) of near 2.5 and possessed a net negative surface charge in the pH range of 

most natural habitats.  Sand and glass were shown to have an IEP of ~2 while iron and 

aluminum hydroxide had an IEP of ~8 and ~9.1, respectively.  The IEP of feldspar 

was determined to be ~3.5.  These values are in agreement with data in the literature 

[18,30-34]. The zeta potential results were used to obtain the pK (pK = -lot(K)) and N 

values that best represent the pH-dependent charge properties of the surfaces. Zeta 

potential measurements performed for olivine showed fluctuations over time as 

reported in literature [35, 36] hence data was obtained from literature for reference and 
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Figure 4.1 – SEM Images of the surfaces used in adhesion experiments. (a) ) plain 

sand; (b) soda-lime glass bead; (c) Iron hydroxide coated sand; (d) Aluminum 

hydroxide coated sand; (e) Feldspar; (f) Olivine. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.2 - EDS patterns of the iron hydroxide coated sand showing the presence (a) 

and absence (b) presence of coating at the designated point.  

 

 

 

(a)  (b) 
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Figure 4.3 - EDS patterns of the aluminum hydroxide coated sand showing the 

presence (a) and absence (b) presence of coating at the designated point.  

 

 

(a) (b) 
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Figure 4.4 - An elemental map delineating the presence of iron hydroxide coating on 

the sand particle is shown above. (Top) SEM image of the iron hydroxide coated sand 

grain; (Bottom) Image denoting the presence of iron hydroxide on the sand grain. 
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Figure 4.5 - An elemental map delineating the presence of aluminum hydroxide 

coating on the sand particle is shown above. (Top) SEM image of the aluminum 

hydroxide coated sand grain; (Bottom) Image denoting the presence of aluminum 

hydroxide on the sand grain. 
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not used for modelling purposes [37]. Olivine has been reported to possess a net 

positive charge across a pH of 2-11.  Based on the results glass, sand and feldspar 

have a net negative charge at neutral pH  while iron hydroxide coated sand, aluminum 

hydroxide coated sand and olivine have a net positive charge at neutral pH. 

4.5.3 Bacterial Adhesion 

An analysis of the percentage of attached cells for each surface is depicted in Figure 

4.8 for E.coli and Figure 4.9 for B. subtilis. The percentage of attachment varied 

between surfaces and was highest for the positively-charged surfaces and significantly 

lesser attachment was observed with the negatively-charged surfaces. The number of 

planktonic cells in the control vials without surface for attachment remained relatively 

constant. It was observed that E.coli showed a varied degree of attachment with the 

different surfaces studied, with less than 60% attachment on negative surfaces and 

greater than 75% of adhesion on positively-charged surfaces. When compared to the 

B. subtilis, E.coli showed a greater degree of variation across the surfaces. B. subtilis 

showed >85% adhesion with all the positively-charged surfaces and ~20% of adhesion 

with negatively-charged surfaces.  
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Figure 4.6 - This figure depicts the zeta potential values of E.coli and B. subtilis 

obtained experimentally (solid symbols) and that determined via modelling (hollow 

symbols). Both bacteria were identified to have an IEP of ~2.5.  

 

 

 

 

 

-50

-40

-30

-20

-10

0

10

2 3 4 5 6 7 8 9 10 11

Ze
ta

 P
o

te
n

ti
al

 (
m

V
)

pH

E. coli

B. subtilis

A15-010



 

109 

 

    

Figure 4.7 - This figure demonstrates the zeta potential measurements (solid symbols) 

of the different surfaces employed in our experiments. Glass and Sand were observed 

to have an IEP of ~2; feldspar had an IEP of ~ 3.4. iron hydroxide and aluminum 

hydroxide had IEPs of ~8.1 and ~9.0 respectively. The model fits (hollow symbols) 

obtained from pK and N values accurately describes the surface electrostatic 

properties. 
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Figure 4.8 – The percentage of adhesion of E.coli to the different surfaces used in the 

adhesion experiments.  Overall trends show a greater percentage of attachment with 

the positively-charged surfaces (adhesion >75%) when compared to the negatively-

charged surfaces (adhesion < 60%). 
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Figure 4.9 – The percentage of adhesion of B.subtilis to the different surfaces used in 

the adhesion experiments. Overall trends show a greater percentage of attachment with 

the positively-charged surfaces (adhesion of ~85%) when compared to the negatively-

charged surfaces (adhesion of ~20%). 

   

  

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

P
e

rc
e

n
ta

ge
 o

f 
ad

h
e

re
d

 c
e

lls

Time (Hours)

B.subtilis

Sand

Glass

Feldspar

Iron

Aluminum

Olivine



 

112 

4.5.4 Bacterial Energetics 

The hypothesis predicts that a variation in surface pH via charge regulation will have a 

corresponding impact on cellular bioenergetics upon bacterial attachment.  A drop in 

surface pH will result in an enhanced ATP response while an increase in surface pH 

will result in decreased ATP concentrations. 

The total ATP levels per vial for both bacteria are presented in Figure 4.10 and Figure 

4.11 indicating a varied response with attachment to different surfaces. Experimental 

results showed that the total ATP per vial with no surface was fairly constant 

throughout the course of the experiment. The total ATP of vials containing the acidic 

sand, glass and feldspar surfaces increased over time and remained higher than the 

total ATP values in vials without any surface for attachment throughout the length of 

the experiment. A rapid increase in total ATP per vial was observed for the first 48 

hours with glass and sand as expected, after which a gradual decline was observed. 

Vials containing feldspar also showed an enhanced ATP response which stayed fairly 

stable after 24 hours. Feldspar showed a less pronounced increase in ATP when 

compared to glass and sand, owing to its less acidic IEP of ~3.5.   

On the other hand; the vials with iron hydroxide coated sand and olivine demonstrated 

a pronounced decline in cellular ATP values over the first 24 hour period after which a 

gradual decline was observed. With E.coli, the aluminum hydroxide coated sand 

exhibited ATP values much lower than the plain sand but very similar to the 

planktonic cells, likely indicating the proportion of sand surface that may have been 

coated. 
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Figure 4.10 - Total ATP per vial of E.coli containing the different surfaces of interest.  
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Figure 4.11 - Total ATP per vial of B. subtilis containing the different surfaces of 

interest.  
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The results imply that the percentage of coating was just enough to balance the decline 

in ATP upon bacterial attachment to aluminum hydroxide rich area and increase in 

ATP upon attachment to uncoated areas.  For B.subtilis, ATP values corresponding to 

the aluminum hydroxide vials show a more prominent decrease when compared to the 

ATP values associated with plain sand. 

The ATP per planktonic cell and per attached bacterium for the six different surfaces 

is presented in Figure 4.12 and Figure 4.13. The results illustrate the variation in 

metabolic activity as a function of the surface functional groups associated with the 

substrata provided for attachment. The ATP per attached cell for sand was higher than 

the ATP per planktonic cell closely followed by glass and then feldspar. The 

attachment resulted in a 2-4 fold increase during the 24 to 48 hour period for all three 

surfaces. The ATP per attached cell reduced upon adhesion to the positive surfaces in 

all cases except with E.coli attachment on aluminum hydroxide for which it was close 

to planktonic values. The reduction in cellular ATP upon bacterial adhesion to all the 

modified surfaces resulted in ATP concentrations lower than that observed due to 

adhesion to negative surfaces. 

In Figure 4.14, the cellular ATP concentration per attached cell upon incubation for 24 

hours and 48 hours is plotted as a function of the surface IEP.  The intracellular ATP 

concentration per planktonic bacterium is indicated by the dotted lines for reference. 

The ATP concentrations of both bacterial strains were elevated upon adhesion to glass, 

sand and feldspar demonstrating that a more acidic surface can enhance metabolic 

activity. 
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Figure 4.12 – ATP concentrations for planktonic and attached E. coli cells.  The 

results demonstrate a variation in ATP as predicted by the hypothesis. 
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Figure 4.13 - ATP concentrations for planktonic and attached B. subtilis cells.  The 

results demonstrate a variation in ATP as predicted by the hypothesis.  
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The ATP concentrations show a decline for the modified sands, indicating the effect 

positive surface functional groups have on the cellular metabolic activity. With the 

modified sand, bacteria may attach to the negatively charged uncoated area of sand or 

to the positively charged metal hydroxide coated area. The combined effect resulted in 

a net decline in ATP concentration per attached cell. The ATP concentrations per 

adhered cell upon attachment to olivine also resulted in a decline in ATP 

concentrations. The results are similar across the two different bacteria strains studied. 

4.5.5 Charge Regulation Modelling  

The pK and N values of the surfaces were obtained from the zeta potential data as 

explained in Chapter 3 and the results are provided in Tables 1 and 2.  The charge-

regulation model results using these values are presented along with the 

experimentally obtained zeta-potential measurements in Figures 4.6 and 4.7 and it can 

be seen that the identified pK and N values were able to accurately represent the 

surface potential as a function of pH.   

The pK and N were used to calculate the bacterial surface pH as a function of 

separation distance from the surfaces, and the results are shown in Figure 4.15.  The 

figure represents the difference in surface pH during bacterial adhesion to surfaces 

with different functional groups. In the case of the negative surfaces modelling 

indicates a drop in pH implying a corresponding increase will be observed in cellular 

ATP concentrations. This is in agreement with our experimental data.  Initial 

modelling of the positive surfaces suggests that the surface pH of the bacterium is  
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Figure 4.14 - The variation in bacterial ATP as a function of the surface IEP at 24 hr 

and 48 hr.  The dotted lines depict the ATP concentration per planktonic cell for both 

E. coli and B. subtilis.  
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Table 4.1 - Dissociation constants of the bacterial surface functional groups and their 

corresponding site densities obtained from zeta potential measurements.  

Dissociation constants and their site densities obtained 
for bacterial surfaces 

E. coli  

Parameters 
95% Confidence Interval 

value Lower Upper 

pKa 2.60 2.49 2.71 

pKb 11.24 7.70 14.79 

Na (#/nm
2) 1.18E-01 1.08E-01 1.29E-01 

Nb(#/nm
2) 4.20E-02 3.22E-02 5.47E-02 

B. subtilis  

pKa 2.48 2.15 2.81 

pKb 9.06 3.94 14.19 

Na (#/nm
2) 9.96E-02 7.79E-02 1.27E-01 

Nb(#/nm
2) 2.07E-02 6.21E-03 6.88E-02 
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Table 4.2 - Dissociation constants of the different solid surface functional groups and 

their corresponding site densities obtained from zeta potential measurements. 

Dissociation constants and their site densities obtained for solid 
surfaces 

Sand 

Parameters 
95% Confidence Interval 

value Lower Upper 

pKa1 2.75 2.49 3.02 

pKa2 5.16 4.94 5.38 

Na1 (#/nm
2) 3.83E-02 3.40E-02 4.31E-02 

Na2(#/nm
2) 5.32E-02 4.60E-02 6.14E-02 

Glass beads 

pKa1 3.14 2.93 3.34 

Na1 (#/nm
2) 7.41E-02 6.56E-02 8.38E-02 

Feldspar 

pKa1 3.72 3.62 3.82 

pKb1 6.42 6.16 6.68 

Na1 (#/nm
2) 6.43E-02 6.29E-02 6.57E-02 

Nb1 (#/nm
2) 2.02E-02 1.79E-02 2.27E-02 

   Iron-coated sand 

pKa1 4.42 4.04 4.81 

pKa2 7.52 6.86 8.18 

pKb1 9.04 8.40 9.68 

Na1 (#/nm
2) 3.93E-02 2.50E-02 6.15E-02 

Na2(#/nm
2) 3.03E-02 1.22E-02 7.52E-02 

Nb1 (#/nm
2) 6.87E-02 5.24E-02 9.01E-02 

Aluminum-coated sand 

pKa1 4.30 0.83 7.77 

pKa2 7.74 6.56 8.91 

pKb1 9.41 8.55 10.28 

Na1 (#/nm
2) 1.70E-02 3.05E-03 9.51E-02 

na2 3.38E-02 1.26E-02 9.05E-02 

nb1 6.41E-02 3.88E-02 1.06E-01 
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higher during adhesion to the more positive surfaces than the negative surfaces as 

expected, however the results depict a decline in surface pH as the distance between 

the bacterium and the solid surface decreases. The modelling results with the positive 

modified sand deviate from those experimentally determined where a decline in ATP 

was observed with the positive surfaces via an increase in surface pH.  Nonetheless, 

we know that the modification of sand resulted in only partial coverage of sand with 

coating; hence, it is reasonable to conclude that the site density of the basic functional 

groups (Nb) is higher in the coated areas than the average values obtained from the 

zeta potential experiments. Furthermore, it is essential to recognize that the adhesion 

results discussed above show elevated levels of adhesion upon attachment to coated 

surfaces confirming that a great percentage of adhesion occurred onto the coated areas 

of the sand grains. We can accommodate that knowledge in our modelling by 

increasing the site density of the basic functional groups associated with the coating. 

The results presented in Figure 4.16 demonstrate that a doubling of Nb results in an 

increase in bacterial surface pH values as the bacterium approaches the surface. With 

iron hydroxide coated sand the pH value increased to ~7.5 and with aluminum 

hydroxide, the pH value increased to ~8.0. The final modelling results obtained are in 

agreement with our experimental results.  

The modeled surface charge densities of the coated sands are presented in Figure 4.17 

for both Nb and 2xNb. The IEP associated with the iron hydroxide coated sand  
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Figure 4.15 - Initial modelling resulted in a decline in surface pH with negatively 

charged surfaces as expected. Although a higher surface pH was obtained with the 

positive surfaces when compared to the negative surface, the modelling still suggests a 

decline in ATP at the surface. 
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Figure 4.16 – A doubling of Nb for the coated sands results in an increase in surface 

pH with the positively-charged surfaces during bacterial adhesion.  See text for 

discussion. 
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increased to ~9 while that of the aluminum hydroxide coated sand increased to ~9.5, 

and both remain within values obtained from literature. It should be noted that these 

results provide us with overall trends in surface pH that we can expect during bacterial 

adhesion to various surfaces and not specific numbers, as modelling assumes that both 

the bacterial surface and the solid surface are planar surfaces with a uniform 

distribution of functional groups.  Thus, experimental and modelling results indicate 

that upon bacterial adhesion to a negatively-charged surface, the decline in bacterial 

surface pH contributes towards the proton motive force manifesting in improved ATP 

concentrations while adhesion to a positively-charged surface results in an increase in 

surface pH and a decreased proton motive force, resulting in compromised ATP 

levels. The ATP of bacteria attached to negative surfaces show a definite increase and 

remain at those elevated levels or gradually taper down during the duration of the 

experiment. However, attachment to positive surfaces results in a continual depletion 

of energy reserves during the course of the experiment. 

4.6 Conclusions 

The results of the adhesion studies showed a greater degree of attachment with 

positively-charged surfaces than negatively-charged surfaces. These results are 

reasonable owing to the greater attraction between the negatively-charged bacterial 

surface and the positively-charged surfaces. The results obtained from the adhesion 

experiments and ATP analyses are in agreement with the hypothesis. All the results  
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Figure 4.17 - Here we present the surface charge density  as a result of variation in pH 

for the normal site density obtained via modelling and two times the site density of the 

positive functional group associated with iron hydroxide and aluminum hydroxide 

coatings. The figure shows that the IEP of the surface results in minor shifts that are in 

agreement with literature.  
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demonstrate how different surface functional groups spanning a range of IEPs can 

induce a characteristic metabolic response during bacterial attachment. The modelling 

results showed that when two surfaces bearing functional groups approach each other, 

the pH at the interphase is a function of the surface associated functional groups. The 

implications of an increase or decrease in pH were shown with a quantifiable variation 

in ATP indicating that the pH and potential can propagate across the membrane. The 

effect of testing multiple surfaces across a range of properties is clearly observed in 

the diverse ATP concentrations measured.  

The results of this study have several environmental implications as bacterial adhesion 

to surfaces is crucial to many systems. The results of this study can serve as a basis in 

the selection of surfaces for various applications to result in a desired metabolic level 

in bacteria. Enhancement of ATP concentrations denotes more growth, colonization 

and biofilm development this can be take advantage of in waste water treatment, 

biodegradation and bio augmentation. A decline in ATP refers to lower metabolic 

states that yield  relatively compromised activity, biofilm establishment and survival 

forming a basis for application in controlling microbiologically induced corrosion, 

biofouling etc.  These findings also can form the framework for applications across 

various disciplines including dentistry, medicine, marine science and food storage. 
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CHAPTER 5 Summary and Conclusions 

 

5.1 Overall Results and Conclusions 

The study provides an understanding of how surfaces containing a range of ionizable 

functional groups can impact bacterial bioenergetics during adhesion. We have 

examined the results within our hypothesis that connects physiochemical surface 

processes and cellular bioenergetics via the proton motive force. Changes in metabolic 

activity in bacteria were quantified as the cellular ATP concentration using the 

Luciferase-Luciferin assay.  

Based on modelling methods, we predicted variation in the metabolic activity of 

bacteria upon adhesion to surfaces, with an increase in cellular ATP for acidic 

(negatively-charged) surfaces and a decrease in cellular ATP for basic (positively-

charged) surfaces.  The experimental results demonstrated that the ATP response in 

adhered bacteria was in agreement with our predictions. Thus, the hypothesis has been 

tested and holds true for Gram positive and Gram negative neutrophilic bacteria. The 

major contributions of the study are summarized below. 

5.1.1 The bacterial ATP concentration is directly affected by changes in 
the local pH 

We have demonstrated that pH variation at the bacterial surface can alter the cellular 

bioenergetics within the framework of chemiosmosis. Our investigation has 

demonstrated that surface changes in pH that occur during adhesion play a pivotal role 
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in the metabolic state of bacteria. We have demonstrated in particular that variation of 

surface pH of bacteria can drive ATP synthesis or ATP hydrolysis based on ΔpH 

across the membrane. The results show a 2- to 4-fold increase in ATP concentrations 

when the external pH was decreased to 3.5 and showed a 20-70% decline when the 

external pH was increased to 10.5.  

Comparative analysis of four different neutrophillic bacteria showed an exponential 

relationship between surface pH of bacteria and cellular ATP concentrations. The 

responses were similar for the different starvation times studied (1 day and 1 week). 

An interesting deviation in ATP response was observed with S. epidermidis, which 

showed no change in ATP with a decrease in pH but showed a more prominent decline 

in ATP when the pH was increased, implying that alkaline formulations may be ideal 

in controlling S, epidermis colonization of surfaces. This study also paves way to 

predict cellular ATP concentration of bacteria as a function of the local pH. 

5.1.2 Bacterial adhesion to positively-charged surfaces results in a 
decline in cellular ATP and adhesion to negatively-charged surfaces 
results in an increase in ATP, with both results following our hypothesis  

The major contribution of this study was the demonstration that variation in pH at the 

interface during bacterial adhesion affects cellular ATP concentration. The results 

show that planktonic bacteria had relatively constant ATP concentrations over the 

experimental duration, whereas the ATP levels varied during attachment.  Modelling 

results showed an anticipated decrease or increase in surface pH, depending on the 

electrostatic properties of the surface.  The experimental results are coherent and in 
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accordance to predictions, with bacterial adhesion to negatively-charged surfaces 

showing an enhanced metabolic state when compared to their planktonic counterparts 

and adhesion to positively-charged surfaces resulting in a decline in ATP.  Thus, 

sessile bacteria in many systems have a different metabolic profile in comparison to 

free living species. 

5.1.3 While attachment to the negatively-charged surfaces 
demonstrated a finite change in ATP, with the positively-charged 
surfaces the cellular ATP continuously decreased over the five-day 
experiment, indicating that the surfaces were steadily depleting the 
bacterial energy stores. 

Experimental results showed that bacterial attachment to negatively-charged surfaces 

resulted in a finite increase in ATP.  In some cases the bacteria maintained an 

enhanced metabolic profile throughout the length of the experiment and in other cases 

a gradual decline in metabolic activity of the bacteria was observed. The results with 

the positively-charged surfaces demonstrated that bacterial ATP continually declined 

over the course of the experiment, implying that the adhesion resulted in a steady 

depletion of bacterial energy reserves by the reverse function of ATP synthase. 

5.1.4 The magnitude of the change in bacterial ATP upon adhesion is 
directly related to the acid/base properties of the adhering surface  

A primary contribution of this thesis was identifying the varied response of bacteria 

upon attachment to surfaces that have a range of IEPs.  Model predictions indicated an 

increase in cellular metabolic activity when bacteria are in close proximity to acidic 

surfaces. This was experimentally demonstrated by adhesion experiments with 
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negatively-charged sand, glass and feldspar, where elevated ATP concentrations were 

measured. Moreover, the measured ATP concentrations were found to vary as a 

function of the surface IEP, as predicted by the charge-regulation modeling.  This 

implies that the charge regulation process directly impacted p.  Bioenergetic 

modeling indicated that upon bacterial attachment to positive surfaces, p will decline 

resulting in a simultaneous decrease in ATP.  This effect of basic surfaces on cellular 

ATP concentrations was demonstrated with adhesion experiments using iron 

hydroxide coated sand, aluminum hydroxide coated sand and olivine.  Conversely, 

bioenergetic modeling of negatively-charged surfaces indicated that p will increase, 

resulting in an increase in ATP and this was demonstrated with glass beads, sand and 

feldspar.  The results indicate that the surface charge of attachment substratum plays 

an integral role in defining the metabolic state of adhered bacteria.  

5.1.5 The required variation in pH that results in the experimentally-
observed ATP variations is less than 0.6 pH units and this can be 
achieved via the charge-regulation process upon bacterial adhesion. 

The results indicate that a variation of less than 0.6 pH units across the membrane is 

sufficient to achieve the enhance ATP response observed. This pH shift was 

demonstrated to be attainable by charge regulation by modelling the variation in 

surface pH during bacterial adhesion. With goethite coated sand, it was observed that a 

minor shift of 0.25 pH units was sufficient to achieve the declined ATP response 

obtained experimentally and modelling has shown that this decline in pH can be 
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readily achieved during adhesion. Thus, minor changes in pH are satisfactory to 

obtain the observed ATP variations. 

5.1.6 The results were similar for both the Gram-negative E. coli and the 
Gram-positive B. subtilis, demonstrating that the hypothesis is valid for 
both types of bacterial cell walls.  

Our experiments with both the Gram-negative E.coli and the Gram-positive B. subtilis 

yielded results with similar trends.  Bacterial ATP decreased upon attachment to 

positively charged surfaces and increased upon adhesion to negatively charged 

surfaces thereby, indicating that the observed metabolic response of the bacteria 

triggered via the charge regulation effect is common.  It is interesting to note that bulk 

pH manipulation experiments with the neutrophilic S. epidermidis, which is able to 

grow at pH levels below 5, demonstrated no effect on ATP levels during a decrease in 

extracellular pH.  This indicates that bacteria can evolve to overcome the effects of 

extracellular pH. 

5.2 Future research 

The experimental results obtained in his study are meaningful and clearly describe the 

effect of solid surface properties on metabolic activity of bacteria upon bacterial 

adhesion. The following sections discuss potential future research based on this study. 

5.2.1 Examining effects of solid surface properties on growth and 
colonization 

We have shown that the metabolic activity of bacteria varies upon bacterial adhesion 

to surfaces.  It is desirable to understand how the metabolic activity of attached 
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bacteria during growth will change as a function of solid surface properties.  This 

understanding of how surface growth and colonization of bacteria is impacted via 

changes in metabolic activity can be potentially useful. 

5.2.2 Exploring the impact of the charge-regulated bacterial surface in 
the formation and growth of biofilms 

Bacteria commonly form complex microbial communities, micro-colonies and 

biofilms in natural and engineered systems following initial adhesion. All our 

experiments have focused on the initial adhesion of bacteria to surfaces, it will be 

beneficial to take steps in learning the effect of the charge regulated bacterial surface 

interacting with other bacterial surfaces via modelling and experiments. The results 

can find application across a range of disciplines to which microbial adhesion is 

crucial. 

5.2.3 Examining the impact of conditional films on bacteria-surface 
interactions 

Conditioning layers consisting of organic and inorganic particles form on surfaces in 

most environments. Incorporating natural conditioning of surfaces in experiments to 

study the effect of conditioning films on bacterial metabolic states during adhesion 

and characterizing them can provide a greater understanding of details involved in 

metabolic effects of adhesion in various systems. 
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5.2.4 Examining the implications of the hypothesis on natural and 
engineered systems (e.g., bacterial evolution of nanowires for electron 
transfer to iron surfaces). 

It can be advantageous to study the implications of the hypothesis in natural and man-

made systems.  Certain bacteria have been identified to produce nanowires that help 

them use alternate external surface-associated molecules (eg., metal oxides) as 

terminal electron acceptor during limited presence of oxygen. This facilitates electron 

transfer from bacteria without direct contact with the surface and also facilitates 

electron transfer to surfaces inaccessible for adhesion. The hypothesis can be extended 

to examine if the charge regulated surface triggers the development of nanowires. 

Another area to explore is charge regulated surface signaling for surface recognition 

and to examine the possibility of charge regulation serving as an indicator to surface 

proximity. 

5.2.5 Determination of the changes in  and pH during charge-
regulated bacterial adhesion 

As discussed in the previous chapters, the proton motive force consist of a charge and 

pH gradient. Determining the effect of charge regulation on each of the two 

components of the proton motive force during bacterial adhesion and their 

corresponding influence on cellular bioenergetics using selective ionophores can be 

extremely useful. This will provide us with a more holistic understanding of the 

charge regulated metabolic response of bacteria. 
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5.2.6 Developing paints/coatings that can aid in improving 
biofilm/colonization control  

Eradication of biofilms has proved to be a great challenge as they render selective 

advantages for survival and resistance over free swimming bacteria. It is also known 

that initial surface colonization rates are influenced by the chemical nature of surfaces 

involved. Thus, developing paints or coatings that can provoke a decline in cellular 

bioenergetics upon adhesion can go a long way in the control of biofilms. This can be 

beneficial in many fields, such as developing paints minimize biofilm growth in 

distribution pipeline systems. Also it can be used in the pharmaceutical field, where 

often high doses of antibiotics are administered over extended periods to control 

pathogenic biofilm formation on medical implants and devices.  It is necessary to 

however understand how conditioning can change the surface properties in these 

systems. 
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Appendix A: Standardization of the ATP extraction Protocol 

 

The most popular assay for ATP estimation is the firefly luciferase- luciferin 

bioluminescence assay using a luminometer.  It is essential to initially extract ATP 

from intact living cells prior to performing the quantification of ATP. Several methods 

for ATP extraction are practiced and it was required to identify an appropriate method 

to conduct our experiments. The initial method adopted for ATP extraction was by 

means of a Nucleotide Releasing Buffer (NRB). The agent of choice was 

benzalkonium Chloride and our method of extraction was identical to that used in 

prior experiments by Hong and Brown.  

The NRB method served as an excellent ATP extraction procedure, however in 

experiments in which extracted ATP samples had to be stored over a long period of 

time at -20°C before collective analysis, it was noticed that the Relative Light Units 

(RLU) obtained from the luminometer were significantly lower. The RLU is a direct 

estimation of the ATP concentration in the sample. ATP measurements performed 

immediately after extraction showed high RLU values whereas those for samples that 

were stored at -20°C dropped. Moreover samples treated with NRB showed a decline 

in NRB 3 minutes post treatment. For this purpose experiments were performed to 

identify alternate extraction methods to be used when samples were not analyzed 

immediately post extraction.  
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Several procedures were investigated and modified (example with/without sonication, 

with/without freezing) to compare final concentrations of ATP. Some of the methods 

explored were the TCA method, microwave method, boiling method etc. The boiling 

method was selected for experiments that required storage of samples owing to its 

simplicity, stability and reproducibility. The NRB method was used in experiments 

that did not require freezing and thawing of samples. The following results indicate 

the pronounced decline in RLU post freezing and thawing of bacterial samples 

incubated with glass beads of varying mass (Figure A1.1). The results with the boiling 

method on the other hand showed consistent RLU in samples that were frozen and 

thawed and those that were not (Figure A1.2). However, it was identified that it was 

required that all samples be at the same temperature during analysis. This was ensured 

by using placing thawed samples in a thermomixer at 27° C for 20 minutes prior to 

analysis. 

The finalized protocol involved placing the bacterial sample in a boiling water bath on 

a hot plate for 3.5 minutes followed by snap cooling in an ice bucket for 1 minute. 1 

ml of sample was immediately pipetted into micro centrifuge tubes and stored at -

20°C until analysis. Prior to ATP analysis, the samples were thawed by placing at 

room temperature for 30 minutes followed by thawing in a thermomixer for 20 

minutes at 27° C. The ATP concentration of samples was then determined as usual. 

The method can be modified as per experimental requirements. 
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Figure A1.1 - The figure demonstrates the drop in RLU upon freezing and thawing of 

bacterial ATP samples post NRB treatment. Experimental results show a gradual 

increase in ATP concentrations per vial with an increase in surface area of negatively 

charged glass beads. The experiment was preliminary with the goal of studying the 

effects of freezing and thawing of ATP samples. The unfrozen samples exhibit higher 

RLU values compared to the frozen samples. 
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Figure A1.2 - The figure demonstrates the effect of freezing and thawing on bacterial 

ATP samples post boiling treatment. Experimental results show a gradual increase in 

ATP concentrations per vial with an increase in surface area of negatively charged 

glass beads. The experiment was preliminary with the goal of studying the effects of 

freezing and thawing of ATP samples. The unfrozen samples exhibit RLU values 

similar to the frozen samples indicating that freezing and thawing samples subject to 

boiling treatment did not affect ATP concentrations. 
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Bioenergetics of bacteria is impacted during adhesion to 

surfaces 
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Appendix B: Bioenergetics of bacteria is impacted upon 

adhesion to surfaces 

 

We have presented our results depicting bacterial ATP variation upon adhesion to 

different surfaces with a range of surface properties in chapter 3 and 4. To ensure that 

adhesion impacted these energy variations, we conducted experiments using dialysis 

tubing in which surfaces of interest were delimited forming dialysis sacs, with 

surfaces. Experiments were conducted identical to the procedure described in chapter 

3 and chapter 4. The exception was that here, the surface was limited within a dialysis 

sac ensuring that bacteria did not adhere to the surface under study. 

Experiments were performed with no dialysis tubing, with dialysis tubing and with 

surfaces limited within the dialysis tubing. The experiment was performed over the 

regular length of time of our adhesion experiments E.coli served as model organism. 

The results obtained depicted in Figure B1.1showed minimum variation between the 

different experimental conditions, implying that the adhesion is critical to obtaining 

significant bioenergetics changes in bacteria.  
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Figure B1.1 - The results presented in this figure show minimum variation in ATP 

concentrations across the different experimental conditions. Experiments were 

conducted with E.coli in the absence of membrane sac and surface, in the presence of 

membrane sac alone, in the presence of surfaces (plain sand, iron hydroxide coated 

sand, aluminum hydroxide coated sand) delimited by a membrane sac. 
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Appendix C 

Effect of plain and coated glass beads on the metabolic 

activity of adhered bacteria 
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Appendix C Effect of plain and coated glass beads on the 

metabolic activity of adhered bacteria 

 

The effect of charge regulation on the metabolic activity of bacteria upon adhesion to 

glass beads and iron hydroxide coated glass beads was tested experimentally. Based 

on the hypothesis, surface pH and charge variation as the result of charge regulation 

during adhesion can impact cellular ATP levels of the adhering bacterium. An increase 

in surface pH can negatively impact the proton motive force resulting in a decrease in 

ATP concentration. Alternatively, with a decrease in surface pH, the proton motive 

force increases and results in ATP synthesis. Thus, the effect of adhesion on metabolic 

activity was explored for negatively charged glass and positively charged iron 

hydroxide coated glass. 

It was expected that upon E.coli adhesion to negatively charged glass, an increase in 

proton motive force would result in an increased cellular ATP response and with the 

positively charged iron hydroxide coated glass a decline in proton motive force and a 

corresponding ATP concentration decline will be observed. The results obtained are in 

agreement with the hypothesis with ATP enhancement upon adhesion to glass and 

ATP decline upon adhesion to iron coated glass and demonstrated in Figure C1.1 and 

Figure C1.2. 
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Figure C1.1 - The figure depicts an increase in ATP per attached E.coli when 

compared to planktonic cells. This is the result of an enhanced proton motive force 

due to charge regulation during bacterial adhesion to a negatively charged glass 

surface. 
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Figure C1.2 - The figure depicts a decrease in ATP per attached E.coli when 

compared to planktonic cells. This is the result of a decline in proton motive force due 

to charge regulation during bacterial adhesion to a positively charged iron hydroxide 

surface. 
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Appendix D 

Preliminary exploration of adhesion induced metabolic 

activity variation of S. epidermidis  
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Appendix D Preliminary exploration of adhesion induced 

metabolic activity variation of S. epidermidis 

 

As part of testing the hypothesis correlating surface changes via charge regulation and 

cellular bioenergetics variation, the effect of bulk pH on ATP concentration was 

tested. The alteration of bulk pH enabled artificially manipulating the surface pH to 

mimic the effect of charge regulation on the surface pH during adhesion. The details 

are provided in chapter 2 of this dissertation. The results obtained showed that with a 

decline in bulk pH the ATP concentration of bacteria increased and with an increase in 

surface pH by increasing the bulk pH, the cellular ATP concentration decreased. Four 

neutrophilic bacterial strains were used in this study, including the Gram-Negative 

strains Escherichia coli K-12 (ATCC29181) and Pseudomonas putida (ATCC12633) 

and the Gram-Positive strains Bacillus subtilis (ATCC23059) and Staphylococcus 

epidermidis (ATCC 35984).  The results obtained were similar across the strains, 

indicating that this is a common mechanism by which ATP synthesis or hydrolysis 

occurs. The one exception was observed with S. epidermidis which showed no 

alteration in cellular ATP when the pH of the bulk solution was decreased but showed 

a more steeper decline in ATP when the bulk pH of the solution was increased. This 

deviation from normal behavior suggested that S. epidermidis adhesion to a negatively 

changed surface may not result in changes in metabolic activity of the bacteria. 

A quick experiment was performed to test the effect of S. epidermidis attachment onto 

negatively charged glass beads and iron hydroxide coated glass beads. Vials were set 
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up with 0.5, 1.0 and 2.0 grams of glass beads. The experiment was conducted with 

E.coli bacteria alongside to allow comparison. In Chapter 4 we presented results of 

how the ATP concentration of E. coli and B. subtilis increase upon adhesion to glass 

beads. However, preliminary experiments with S. epidermidis did not indicate that the 

bacterial ATP was enhanced upon adhesion to the glass beads. Experimental results 

upon adhesion of S. epidernidis to positively charged glass beads indicated a decline 

in cellular ATP concentrations. To allow comparison of the change in ATP across 

both the bacterial strains the results are presented in Figure D1.1 and Figure D1.2 in 

the form of normalized RLU. Here, RLU values obtained with different masses of 

beads were normalized by the RLU value obtained for planktonic bacteria. 

Currently the results are preliminary in nature and conducting experiments over longer 

periods of time can provide insight to S. epidermidis adhesion behavior. 
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Figure D1.1 - This figure depicts the increase in ATP corresponding to an increase in 

the mass of glass beads with E.coli (solid symbols).  Results with S. epidermidis 

(hollow symbols) do not exhibit an increase in ATP concentration with an increase in 

mass of beads. 

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5

n
(R

LU
) 

Mass of Beads 

E.coli-Glass

S.epi-Glass



 

157 

    

 

Figure D1.2 - This figure depicts the decline in ATP corresponding to an increase in 

the mass of coated glass beads with E. coli (solid symbols) and S. epidermidis (hollow 

symbols). 
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