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ABSTRACT 

This research proposes a new low damage seismic resistant system that implements a 

manual post-tensioning procedure by inserting a spring element at the post-tensioning steel 

anchorage. This system is aimed at the following: (1) eliminate the need for specialized 

post-tensioning equipment and the associated highly trained workers required in the 

construction of the conventional rocking systems; and, (2) promote more sustainable 

seismic systems by combing with renewable materials.  

This report derives a set of closed form expressions that provide a useful tool for 

understanding the behavior of the proposed system. Also, it develops a finite element 

model to capture the response of the system under static pushover loads. The report also 

conducts an extensive parametric study using the closed form expressions and the finite 

element model to understand the effects of certain parameters on the lateral displacement 

response of the proposed system. These parameters are: (1) the axial stiffness of the spring 

element; (2) the length of the rocking frame; (3) the initial stress of the post-tensioning 

steel; and, (4) the height of the post-tensioning steel. The results of this parametric study 

show that the closed form expressions display an excellent agreement with the finite 

element results. Also, even though a rocking timber frame has constant member 

dimensions and post-tensioning steel area, connecting the post-tensioning steel in series 

with a flexible spring element could significantly increase the drift capacity of the rocking 

frame.  

This report also develops a finite element model to capture the response of the proposed 

system under actually recorded ground motions.  Several prototype frames were subjected 

to 22-pair ground motions, and the results of different prototype frames were plotted and 
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compared. The results show that even though significant ground shakes are applied to the 

prototype frames, the residual post-tensioning force after the earthquake of frames having 

flexible spring element is always more than other frames with no spring element. In fact, 

the frames with flexible spring elements never experienced yielding in any of the ground 

shakes in this study, while some frames with stiff spring element experienced significant 

yielding.  It was also noticed from the dynamic analyses that the moment hysteresis loop 

for frames with flexible spring element is likely to be flat after the frame decompression 

(i.e. no moment increase), while the hysteresis loop of frames with stiff spring element is 

steeper (moment increases) under the same circumstances.  
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         CHAPTER 1 

INTRODUCTION  

Conventional lateral force resistant systems subjected to high-intensity seismic loads are 

designed to dissipate energy and reach significant drift by damage through inelastic 

deformation. Figure 1-a shows a reinforced concrete wall, which is a conventional lateral 

force resistant system subjected to a cyclic lateral load that could develop during 

earthquakes. The lateral load causes the wall to deform laterally and increases the stress at 

the reinforcing bars and concrete. The increased stress causes cracking of the concrete in 

tension, yielding of the reinforcing bars, and softening of the concrete in compression. The 

force-deformation response of the wall indicates that the wall encountered damage by 

inelastic deformations that are difficult and challenging to repair.  

Lehigh University has been working on developing low damage lateral force resistant 

systems that accomplish the goal of providing large drift capacity and reducing the 

permanent lateral displacements after extreme events. Figure 1-b shows a scheme of the 

unbonded post-tensioned walls (also called rocking concrete walls) that were investigated 

by Lehigh University (Kurama 1997, Perez 2004, Srivastava 2013, and chancellor 2014). 

The idea is to use post-tensioning steel to provide re-centering force, besides introducing a 

gap opening mechanism at the base of the wall. Under the normal operation of the building, 

the clamping force of the post-tensioning (PT) bars provides compression at the base, and 

thus the gap at the base is closed. However, extreme seismic loads could overcome the 

clamping force of the PT bars leading to the gap opening and softening of the wall. When 
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the seismic loads are removed, the PT force will bring back the wall to its original position, 

and this is the reason it is called self-centering system.  

Recent work has been emphasizing the use bonded mild steel that crosses the gap at the 

base of the wall to provide the energy dissipation mechanism as shown in Figure 1-c. The 

PT steel is still unbonded and expected to give the self-centering  force, but the mild steel 

is bonded and supposed to yield under extreme seismic loads.   

Figure 1.2 shows the time history response of the three systems shown in Figure 1.1. While 

the conventional reinforced concrete wall is shown to have residual drift by the end of the 

earthquake, the self-centering  systems undergo limited residual drift since the PT steel 

recentres the system. However, the self-centering  system with mild steel has shown to 

reach lower peak response because of the damping provided by yielding of the mild steel.  

The goal of this report is to introduce a simple lateral force resistant system that implements 

a manual post-tensioning procedure as shown in Figures 1.3 and 1.4. This system would 

eliminate the need for specialized post-tensioning equipment and the associated highly 

trained workers. The idea is to introduce a spring element that is connected in series with 

the PT bar aimed to facilitate the manual post-tensioning process. Moreover, another goal 

is to combine with renewable materials to make more sustainable seismic systems (Pessiki, 

2017).  
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1.1 OBJECTIVE  

The objective of this research is to investigate the lateral force behavior of the unbonded 

post-tensioned rocking frames with disc springs at the PT bar anchorage under static and 

dynamic loads.  

1.2 APPROACH  

The research approach was comprised of the following 5 tasks: 

1. Derive closed-form expressions (CFE) that describe the key stages in the response 

under lateral loads. This will provide a useful tool to understand the behavior of the 

system. 

2. Develop a finite element model (FE) model to capture the response under static 

pushover loads. Open SEES (Mazzoni et al., 2006) is used to develop the FE model. 

Then, the model is used to conduct a parametric study to understand the effects of 

certain parameters on the response.  

3. Conduct a parametric study and compare the results of the CFE and the FE. This 

would be helpful in verifying the CFE’s results.  

4. Develop an FE model for dynamic analyses using actually recorded ground 

motions. 

5. Analyze the response of the system to a set of ground motions.  
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1.3 ORGANIZATION OF REPORT 

The report has the following organization: Chapter 2 provides the background information 

about the rocking systems, the usage of the disc springs and their behavior under loads. 

Chapter 3 discusses the derivation of the closed-form expressions to predict the backbone 

curve. Chapter 4 develops the FE model to capture the response under static pushover 

loads. Chapter 5 discusses the prototype building used in this study. Chapter 6 compares 

the results of the CFE and the FE. Chapter 7 conducts the dynamic analysis of the proposed 

system under a set of ground motions. Chapter 8 provides the summary and conclusions 

and outlines future research needs.  

 

1.4 NOTATION 

The following notation is used in this report: 

a1 = stiffness proportional damping coefficient   

ao = mass proportional damping coefficient   

Ap1 = area of the post-tensioning (PT) steel at location 1 

Ap2 = area of the post-tensioning (PT) steel at location 2 

DEC    = limit state correlated with the decompression of the frame base  

Ep = elastic modulus of the PT steel  

FC = force required to bring the spring stack to its flat position  

FC = limit state at clamping of the spring stack  

Fn = normal force at the coulomb friction damper    

FP = limit state at fracture of PT steel  

Fp1i = initial stress of PT group 1 
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Fp2i = initial stress of PT group 2 

Fpu = ultimate strength of the PT steel  

Fpy = yielding strength of the PT steel  

Fsl  = loading force on the hysteresis loop of the spring stack   

Fsu  = unloading force on the hysteresis loop of the spring stack   

Hf = height of the frame  

ho = height of the disc spring  

Hunb = unbonded length of the post-tensioning steel  

Kbar  = axial stiffness of PT bar   

KbarT = axial stiffness of PT bar based on the tangent stiffness    

Kc1  = axial stiffness of PT group 1  

Kc2 = axial stiffness of PT group 2  

Keff     = effective stiffness of the assembly (spring stack plus PT bar in series) 

Ks        = stiffness of spring stack    

 Ks1  = stiffness of the spring stack at PT group 1  

Ks2 = stiffness of the spring stack at PT group 2  

Ksp      = stiffness of spring stack    

Lc1 = length of the spring stack at fully flat position at location 1  

Lc2 = length of the spring stack at fully flat position at location 2  

Lf = length of the frame  

LLP = limit state where PT steel yielded  

Lo1 = height of the unloaded spring stack at location 1  

Lo2 = height of the unloaded spring stack at location 2  

Lp1 = distance from right side of the frame to the first PT group  

Lp2 = distance from the right side of the frame to the second PT group  
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Ls1 = measured height of the 1st spring stack when lateral load is applied 

Ls1o = measured height of the 1st spring stack (no lateral load is applied)  

Ls2 = measured length of the 2nd spring stack when lateral load is applied 

Ls2o = measured length of the 2nd spring stack (no lateral load is applied) 

Mdec = moment at the frame base at decompression  

MFC = moment at the frame base when the spring stack clamps  

MFP = moment at the frame base when the PT steel fractures  

MLLP = moment at the frame base when the PT steel yields  

N = gravity loads applied to the frame  

n1 = number of springs in parallel at first PT group 

n2  = numb of  springs in parallel at the second PT group 

t = thickness of the disc spring  

Tp1i = initial force at PT group 1 

Tp1u = force at fracture of PT group 1 

Tp1y = force at yielding of PT group 1 

Tp2i = initial force at PT group 2 

Tp2u = force at fracture of PT group 2 

Tp2y = force at yielding of PT group 2 

u = displacement of the spring stack under compression load  

Vdec = base shear at the DEC limit state  

VFC = base shear at the FC limit state  

VFP = base shear at the FP limit state  

VLLP = base shear at the LLP limit state  

W = structure weight used in seismic calculations 

dec = drift at the DEC limit  
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FC = drift at the FC limit  

FP = drift at the FP limit  

LLP = drift at the LLP limit  

k  = relative stiffness of the spring stack  

∆DEC = roof displacement at the DEC limit  

∆FC = roof displacement at the FC limit  

∆FP = roof displacement at the FP limit  

∆LLP  = roof displacement at the LLP limit  

∆Tp1 = change in PT force due to the applied loads (PT group 1) 

∆Tp2 = change in PT force due to the applied loads (PT group 2) 

∆v1 = gap height under of PT group 1 

∆v2  = gap height under of PT group 2 

εpu = strain of PT steel at the fracture  

εpy = strain of PT steel at the yielding  

μm     = coefficient of friction between the contact faces of the disc springs   

μr      = coefficient of friction at the contact face of the applied load  
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(a): ACI complaint cast in place shear wall   

 

(b): Unbonded post-tensioned precast concrete wall 

 

(c): Unbonded post tensioned precast concrete wall with mild steel  

Figure 1.1: Walls under lateral load (Srivastava, 2013). 
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Figure 1.2: Idealized time history response of different walls.  
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 Figure 1.3: Proposed concept for a concrete rocking wall. 
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Figure 1.4: Proposed concept for a wood rocking frame.   
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           CHAPTER 2 

BACKGROUND 

2.1 INTRODUCTION  

This chapter presents the background information on the relevant topics. The chapter starts 

with a description of the rocking systems and their behavior. After that, the chapter 

discusses the work that has been conducted on self-centering timber systems. Finally, the 

chapter ends with a description of the behavior of the disc springs followed by the 

definition of the expected limit states used in this report.   

 

2.2 UPT LATERAL FORCE RESISTANT SYSTEMS  

2.2.1 General behavior of conventional lateral force resistant systems 

The goal of seismic design is to offer life safety of the occupants and to prevent the collapse 

of the structure. Hence, designing the building to remain elastic during severe earthquakes 

could be uneconomical.  

Buildings subjected to severe earthquakes are expected to develop large seismic forces that 

can cause damage and residual drift. Usually, damage and residual drift need expensive 

and challenging repairs, but the time required to perform these repairs might affect the 

business and the occupants of the building, which further increases the loss. 
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2.2.2 Wall systems  

2.2.2.1 Concrete  

Figure 2.1 shows a conventional reinforced concrete wall. The construction process of the 

wall starts by placing deformed bars and casting concrete. The service load is applied to 

the wall when the hardening of the concrete occurs. Note that in this case the longitudinal 

steel is bonded to the surrounding concrete because bars are deformable, and thus offer full 

interaction with the concrete. The longitudinal steel is confined with stirrups to resist shear 

forces on the wall. 

Figure 2.1 also shows the cyclic overturning moment versus roof drift of a conventional 

concrete wall. Under small lateral load, the wall is deforming elastically and is expected to 

go back to its original straight position. However, once the lateral load is increased, the 

wall behaves in non-linear manner due to three reasons: (1) cracking of the concrete in the 

tension side; (2) yielding of the PT steel; (3) crushing of the concrete in the compression 

side. Note that the wall could have significant drift and energy dissipation capacities, but 

damage to the wall provides that drift and energy disspation. This damage could be 

expensive and challenging to repair, adding to that the downtime needed to get the damage 

fixed.   

     

Figure 2.1: Conventional concrete wall (Srivastava, 2013).   
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Designing these conventional concrete shear walls to remain elastic under extreme seismic 

hazards might be possible, yet it is impractical due to the associated cost of over design.   

2.2.2.2 Masonry walls  

Masonary walls are built by bonding brick or block units using cement mortar. The primary 

goal of external masonry walls is to offer shelter for the occupants from the outside 

weather, while the internal walls are often used to partition the available space. Load 

bearing walls carry loads from the upper floors in addition to their weight, and they can 

also carry lateral loads. The cyclic force displacement history for a brick wall is tested as 

shown in Figure 2.2-a, and the hysteresis loop is shown in Figure 2.2-b. The masonry wall 

could have several failure modes under the applied lateral load (Naraine and Sinha 1989), 

including: (1) failure of the brick-mortar interface; (2) cracking of the brick.   

 

Figure 2.2: Masonry wall: (a) Test setup; (b) Hysteresis loop of the wall (Naraine and 

Sinha 1989). 
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2.2.2.3 CLT walls  

Cross-laminated timber (CLT) walls are used more widely in recent years because of their 

favorable weight to strength ratio, and their ductile behavior that could be achieved by 

proper design of connections, fasteners, and joints (Ceccotti et al. 2013).   

CLT walls subjected to lateral force could deform in several ways (Gavric et al. 2014): (1) 

vertical uplifting of the panel (rocking); (2) horizontal slipping; and, (3) shear and bending 

deformations as seen in Figure 2.3. When the applied load is increased, the wall could uplift 

and rotate as a rigid body. Also, the shear and bending deformations may vary depending 

on the dimensions of the wall and the intensity of the applied load. Since the wall is held 

down by mechanical connections, fasteners, angles, etc., slipping could happen if these 

elements have little lateral stiffness.  

 

Figure 2.3: Deflection components of CLT panels (Gavric et al. 2014). 

Figure 2.4 shows the lateral force-displacement response of CLT walls. Gavric et al. 

mentioned that the first wall has lateral displacement dominated by the rocking part, and it 

failed by excessive uplifting and crushing of the compression side of the wall. This wall 

demonstrates the self-centering behavior. The second wall has lateral displacement 

dominated by a combination of rocking and sliding, and it failed by the increased lateral 

force causing yielding of the mechanical fasteners. The third wall has lateral displacement 
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dominated by the sliding, and but it failed by the shear failure of angle bracket connector. 

Noted that the panel is not expected to return to its original position for two reasons: (1) 

the damage to the mechanical connection is not recoverable; and, (2) it is likely that the 

CLT is expected to undergo nonlinear response (i.e. permanent deformations), and thus it 

suffers permanent deformation. This is the same problem with the conventional concrete 

shear walls where extreme lateral loads could cause damage and residual drift. In the next 

section, a new type of lateral force resistant systems that implement self-centering and 

elastic-softening mechanisms to reduce damage and residual drift are reviewed.   

 

Figure 2.4: Force-lateral displacement response of a CLT panel: (a) Rocking; (b) 

Rocking and sliding; (c) Sliding (Gavric et al. 2014). 

2.2.3 Rocking frame systems  

Conventional lateral force resistant systems such as concrete shear walls and braced steel 

frames are expected to be damaged by severe earthquakes. This was the motivation of 

several researchers in Lehigh University to investigate low damage lateral force resistant 

systems that accomplish the following goals (Chancellor et al. 2014): 

1. Reduce damage under severe earthquakes;  
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2. Provide a gap opening mechanism to assure softening of the systems and thus limit 

the increase in the lateral force under large lateral loads;  

3. Utilize PT force to re-center the building after the ground motion and reduce the 

residual drift; 

4. Flexibility in integrating several energy dissipation devices that could be replaced 

easily after the earthquake. 

three systems were investigated in the literature: First, the unbonded post-tensioned precast 

concrete walls (Perez et al. 2004). Second, the self-centering rocking steel frames 

(Chancellor 2014). Third, the self-centering timber walls (Sarti et al. 2016) A review of 

these three systems is presented in the next sections.     

 

2.2.3.1 Concrete rocking wall systems  

The concrete rocking wall systems achieve two goals (Perez et al. 2004): (1) implement 

self-centering mechanism to bring back the wall to its vertical position and reduce the 

residual drift. This is achieved by integrating post tensioning (PT) steel that is placed in 

ducts (i.e. to remain unbonded to the concrete) inside the concrete wall and extended from 

the foundation and usually to the roof. Note that when the wall is displaced laterally, the 

PT steel will return the wall to its original vertical position, but this assumes that the PT 

steel is still elastic as yielding could reduce this recentering force. The PT steel is usually 

designed to still be elastic during the design based earthquake; and, (2) offer elastic-

softening mechanism under extreme loads by placing a gap at the base of the wall during 

the construction stage of the wall. The PT steel causes a clamping force to the wall (i.e. the 
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gap is closed) during service loads and the usual operation of the building. However, during 

extreme events, the lateral forces could overcome this clamping force and lead to the gap 

opening at the base and softening of the system. Note that the lateral stiffness of the wall 

is expected to reduce after the gap opening (softening mechanism) and this could control 

the seismic loads that develop in the system.  

Figure 2.5-a shows a scheme of the unbonded post-tensioned concrete walls, and Figure 

2.5-b shows the typical backbone curve.  

  

Figure 2.5: (a) Unbonded post tensioned precast concrete wall scheme; (b) 

Idealized base shear-lateral drift curve (Perez et al., 2004). 

 

2.2.3.2 Steel rocking frame  

According to Chancellor (2014) steel rocking frames are meant to reduce damage under 

severe earthquakes with little or no residual drift. In an analogous manner to the unbonded 

post-tensioned concrete walls, the rocking steel frames use PT steel to provide self-
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centering force. However, the columns at the base of the rocking frame are capable of 

uplifting to assure the elastic-softening mechanism as shown in Figure 2.6.  

 

Figure 2.6: Steel rocking frame: (a) load and configuration; (b) elastic displacement 

before the gap opening; (c) gap opening mechanism (Sause et al. 2010).  

Note that the post-tensioning force is causing a clamping force onto the gap under each 

column. Thus, the lateral deformations in this stage are elastic, and the frame works like 

the traditional braced frames under the normal operation of the building. Under severe 

earthquakes, the lateral force developed could overcome the clamping force at the base of 

the frame leading to opening of the gap at the base of the frame and softening of the 

systems. Note that the system could go back to its original position by the help of the PT 

steel. An idealized overturning moment versus roof drift curve of the steel rocking frames 

is shown in Figure 2.7 and includes the expected limit states.   
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Figure 2.7: Idealized overturning moment vs. roof drift steel rocking frame systems 

(Nathen et al. 2014).  

 

2.2.3.3 Timber self-centering systems  

The use of the self-centering systems made of timber is enabled with the introduction of 

new products like the Glued Laminated Timber (Glulam) and the Laminated Veneer 

Lumber (LVL) (Sarti, Palermo, and Pampanin 2016a). These engineering wood products 

provide substantial resistance to compression loads developed during the post-tensioning 

process (Sarti, Palermo, and Pampanin 2016a). Figure 2.8 shows examples of timber 

structures that implement a self-centering system.  

In the literature, the performance of self-centering timber walls has been investigated by 

(Sarti, Palermo, and Pampanin 2016a). The study included two third scale wall specimen 

under cyclic pushover loads as shown in Figure 2.9. The results of this test revealed that 

the wall could resist the design loads with little damage.  
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Figure 2.8: Implementation of wood self-centering systems 

(Sarti, Palermo, and Pampanin 2016a). 
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Figure 2.9: Test set up as reported by (Sarti et al. 2016).  

2.3 DISC SPRINGS  

A key component in this research is the inclusion of disc springs in the post-tensioning 

steel anchorage. This section reviews the properties of disc springs.   

2.3.1 Axial Behavior  

Figure 2.10-a shows a disc spring stack assembled from a series of discs around a central 

pin. Figure 2.10-b shows a single conical disc spring and illustrates the geometric 

properties. The outside diameter of the disc spring is OD while the inside diameter is ID. 

The thickness is t, total height is H, and the clear height is ho.  

The geometry of the conical disc spring determines its force deformation response.  For 

example, the force deformation response of the spring stack is not always linear as shown 

in Figure 2.11. Indeed, the shape of the response depends on the ratio of the height of the 
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spring ho to the thickness of the disc t. As ho/t becomes small, the response is nearly linear 

but the response becomes nonlinear as the ratio ho/t gets larger as shown in Figure 2.11.  

 

             

Figure 2.10: Disc spring (Spirol 2017, Shigley, J. E., & Mischke, C. R. 1996).  

 

Figure 2.11: Force deformation of a single disc spring (adapted from Shigley, J. E., & 

Mischke, C. R. 1996). 
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Disc springs provide designers with a flexible way to attain various force-deformation 

responses by combining multiple springs differently (Schnorr, 2003). For instance, an 

assembly of two or more disc springs could be arranged in many ways as shown in Figure 

2.12. Disc springs could be stacked in parallel, series or a combination of both leading to a 

different force-deformation response as shown in Figure 2.13. We can see that the first case 

in Figure 2.12 has four disc springs stacked in parallel. As shown in Figure 2.13, this lead 

to increase in the loading capacity of the stack by four times over a single spring, but the 

deformation capacity (travel capacity) remains the same as a single spring. On the other 

hand, the second case in Figure 2.12 is having four disc springs stacked in series. As shown 

in Figure 2.13, the load capacity remains the same as for a single spring, but the travel 

capacity increased four times over that of a single spring. Lastly, the last case in Figure 

2.12 shows that it is possible to arrange disc springs in a combination of series and parallel.   

 

 

 

Figure 2.12: Different stack arrangement (adapted from Schnorr, 2003). 

 

Parallel  Series  Combination 
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Figure 2.13: Force deformation of different spring stack arrangement  

(adapted from Schnorr, 2003). 

 

2.3.2 Hysteresis behavior of the disc springs  

Figure 2.14 shows the hysteresis loop of a disc spring stack. Three main sources of energy 

dissipation are causing this hysteretic behavior (Schnorr, 2003). First, friction of the disc 

springs with the supporting surface. Second, internal friction between the disc springs. 

Third, the energy dissipated by the disc springs material itself. It worth mentioning that the 

DIN 2092 standards give a range for the friction coefficients of these springs.   

According to (Schnorr, 2003), the area of the hysteretic loop is proportional to the number 

of disc springs stacked in parallel. This could be explained by the increase of area subjected 

series 

parallel 

combination 
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to friction as the disc springs deform under the load. However, the applications where 

energy dissipation from friction is not wanted, disc springs are usually lubricated to reduce 

this friction in the mechanical application (Schnorr, 2003).  Maintenance of this lubricant 

in long term applications envisioned in this research may not be necessary since friction 

may be beneficial.  

 

Figure 2.14: Hysteretic behavior of the disc spring stack (adapted from Schnorr, 2003). 

 

2.3.3 Effects of springs on the pre-stressing loss  

The use of disc springs to reduce the post tensioning (PT) loss was investigated in a project 

to rehabilitate a small wooden bridge in Ontario (Accorsi and Sarisley 1990). Disc springs 

were placed between the side of the bridge and the anchorage plate as shown in Figures 
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2.15 and 2.16. Then, rods were subjected to PT force causing the wooden deck to creep, 

and the reduction in the PT force with time was measured.  

 

(a): Test set up 

 

(b): Measuring the PT force  

Figure 2.15: Disc spring stack and rods assembly (Accorsi and Sarisley 1990). 

 

Disc Spring stack 
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Figure 2.16: Test setup (Accorsi and Sarisley 1990) 

To evaluate the influence of the disc spring stack, Accorsi et al. included four scenarios as 

shown in Table 2.1. The first case had no springs. The second case had 6 springs (three in 

parallel and two in series). The third case had 12 springs (three in parallel and four in 

series). The last case had no springs, but a small initial PT force. 

Table 2.1: Types of assemblies. 

 

 

. 

Figure 2.17 presents the results of this experiment. The results show that the third group 

had the least drop in PT force with time, while the first group had the largest. The author 

Group Description 

1 Regular (no springs) 

2 6 springs 

3 12 springs 

4 No springs (small force) 

Disc spring 

stack 

Post Tensioning 

Rod 

Wooden Bridge Deck 

Groups (1,4) 

 

 

Group 2 Group 3 

Anchorage Plate 
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mentions that the third group had the lowest PT loss since it had the lowest effective 

stiffness due to the attribute of the disc spring stack (Accorsi and Sarisley 1990).  

 

Figure 2.17: Averaged and normalized PT force (Accorsi and Sarisley 1990). 

 

The experiment described above suggests that the proposed system shown in Figure 1.4 

will experience the same phenomena leading to alleviation of PT loss with time. This would 

make it possible to implement various types of wood in the construction of the proposed 

system.  
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2.4 EXPECTED LIMIT STATES  

Rocking frames exhibit several limit states under the action of lateral force. However, the 

discussion of these limit states in this report is limited to what is needed to keep the text 

focused.  Four limit states are considered in this report as shown in Figure 2.18: 

1. Decompression of the base (DEC); 

2. Full clamping of the spring stack (FC); 

3. Linear limit of post-tensioning steel (LLP); 

4. Fracture of PT steel (FP). 

 

Figure 2.18: Expected limit states.  
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2.4.1 Decompression (DEC)  

The base of the rocking frame is expected to be in compression due to axial force from two 

sources. First, the gravity loads are collected by the columns down to the foundation 

leading to compression force at the base of the frame. Second, the force from the 

prestressing bars also causes compression at the base because it follows the same load path 

as the gravity loads.  

We define the DEC as the state where the reaction at the extreme side of the frame becomes 

zero. The base shear and the drift at this state limit are denoted by 𝑉𝑑𝑒𝑐 , 𝑎𝑛𝑑 𝑑𝑒𝑐.  

 

2.4.2 Linear limit of post tensioning steel (LLP) 

As more lateral load is applied to the frame, not only the does gap at the base of the frame 

open, but the force at the PT bars is mostly expected to increase. The force at the PT bars 

could reach the yield stress (Fpy) of the PT bars.  

Accordingly, we can define the LLP as the state where the PT bars have reached their yield 

stress (Fpy). The base shear and the drift are denoted by 𝑉𝐿𝐿𝑃 , 𝑎𝑛𝑑 𝐿𝐿𝑃  at this limit state.  

 

2.4.3 Fracture of PT steel (FP) 

After yielding of the PT bars, the force at the PT bars could increase, and more stress is 

developed due to the strain hardening of the PT steel. However, the steel has finite travel 

capacity, and as a result, PT bars could fracture. 
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For this reason, we define the FP as the state where the PT bars have reached their fracture 

stress (Fpu). The base shear and the drift are denoted by 𝑉𝐹𝑃, 𝑎𝑛𝑑 𝐹𝑃 at this state limit. 

 

2.4.4 Full clamping of spring stack (FC) 

Full clamping of the spring stack, if it occurs, could happen between any of the previous 

state limits. This is considered in developing the closed expressions as will be shown later 

in the next chapter.  

The full clamping of the spring stack (FC) limit state is defined as the state where the spring 

stack has reached its maximum travel capacity, and the surfaces of adjacent disc springs 

come into full contact and no more deformation is possible. The base shear the drift are 

denoted by 𝑉𝐹𝐶 , 𝑎𝑛𝑑 𝐹𝐶  at this limit state.  
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2.5 SUMMARY 

1. Disc springs provide a flexible way to attain various force-deformation 

responses by combining multiple springs differently. 

2. The literature shows that using a spring element connected in series with the PT 

bars could reduce the PT loss associated with time dependent deformations like 

creep and shrinkage.  
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CHAPTER 3 

DERIVATION OF CLOSED FORM EXPRESSIONS  

3.1 INTRODUCTION 

This chapter develops closed form expressions to describe the key stages in the force 

deformation response of rocking frames with disc springs. These closed form expressions 

provide a useful tool to understand the behavior of the proposed system. These closed form 

expressions are also used to check the validity of the FEA response in Chapter 6 

In deriving these closed form expressions (CFE), several assumptions were made: 

1. The frame is considered rigid; 

2. Sliding at the base of the frame does not occur; 

3. Frame has symmetric post-tensioning (PT) bars and spring stack layouts; 

4. PT bars are unbonded, deformable, and have a bilinear stress-strain relation as 

shown in Figure 3.1;  

5. PT force does not change before the decompression of the frame base; 

6. Friction between the disc springs is neglected; 

7. The clamped spring stack undergoes no further deformation as shown  

in Figure 3.2;  

8. Stability failure of the frame does not occur.  

The derivations of the closed form expressions are presented for two cases: The first case 

is where the PT bars are expected to yield and fracture before the spring stack fully 
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compresses and thus has no more travel capacity; and the second case is where the PT bars 

are expected to yield after the spring stack fully compresses.  

 

3.2 EXPECTED LIMIT STATES  

The proposed system exhibits four limit states as shown in Figures 3.3 and 3.4. These four 

limit states represent the key stages in the response that the frame is expected to encounter 

under the action of quasi-static pushover loads.  It is important to note that these limit states 

are for a frame that was treated as a rigid body for simplicity, and we would expect more 

limit states to be considered if we have an elastic frame instead. These four limit states are 

discussed more in detail in Chapter 2.  

 

3.3 PUSHOVER CURVES  

Figures 3.3 and 3.4 show idealizations of the most likely cases of the pushover curve of the 

proposed system. Note that the LLP and FP limit states have tag numbers 1 or 2. Limit 

states that end with 1 (i.e. LLP-1 and FP-1 shown in Figure 3.3) refer to the first case where 

the spring stack does not clamp, while limit states that end with 2 (i.e. LLP-2 and FP-2 

shown in Figure 3.4) refer to the second case where the spring stack clamps. However, the 

DEC limit state does not have a tag number because it is not affected by the clamping of 

the spring stack. As Figures 3.3 and 3.4 show, the spring stack clamping governs the shape 

of the pushover curve.  
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In the first case illustrated in Figure 3.3, the first limit state reached in the frame is 

decompression DEC. Then, the force at the PT bars increases and reaches yielding LLP-1. 

Afterward, the PT bar reaches its maximum travel capacity and fractures FP-1. Note that 

the spring stack does not fully clamp in this first case. 

In the second case shown in Figure 3.4, the first limit state reached in the frame is 

decompression DEC. Then, the spring stack reaches its maximum travel capacity FC. 

Afterward, yielding of the PT bar LLP-2 is followed by fracture FP-2. In this second case, 

the spring stack reaches it maximum travel capacity between the DEC and the LLP-2 limit 

states.  

 

3.4   DEVELOPMENT OF CLOSED FORM EXPRESSIONS  

A set of closed form expressions (CFE) is derived here to describe the backbone curve of 

the two cases explained in Section 3.3. Figure 3.5 presents the geometry notations used in 

the upcoming equations. In this figure, Hunb refers to the length of the PT bar, Hf is the 

height of the frame, Lp1 and Lp2 are the distance from the right support to the location of 

the first and second PT bars respectively, Lf is the length of the frame, Ls10 and Ls2o refer 

to the initial height of the disc spring stack at locations 1 and 2.   

Figure 3.6 illustrates the forces and the corresponding deformations. ∆v1 and ∆v2 are the 

height of the gap under the first and the second PT bars.  is the drift and ∆ is the roof 

displacement. Ls1 and Ls2 are the height of the disc spring stacks at locations 1 and 2. V is 

the base shear and N is the gravity load. Tp1 and Tp2 are the axial forces of the PT bars at 
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locations 1 and 2. The derivation of the CFE follows the assumptions mentioned at the 

beginning of this chapter.  

 

3.4.1 Decompression (DEC) 

The frame is expected to behave in an elastic manner at normal load levels. However, at 

larger loads, the gap at the base of the frame opens leading to a reduction in the lateral 

stiffness of the frame (Sause et al. 2010). Closed form expressions are derived in this 

section to predict the behavior of the DEC limit state. The following steps show the 

derivation process.  

We start with the basic compatibility principle. Thus, the gap under each PT bar at 

decompression is zero since the frame is treated as a rigid body as shown in Figure 3.7.  

 ∆𝑣1= 0 (3.1) 

 

 ∆𝑣2= 0 (3.2) 

 

Now, since the gap underneath each PT bar is zero, the change in length of each PT bar is 

also zero. Therefore, the change in force at each PT bar is zero.  

 ∆𝑇𝑝1 = 0 (3.3) 

 

  ∆𝑇𝑝2 = 0 (3.4) 
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By summing the moments about point O, the moment that causes decompression of frame 

base is: 

 𝑀𝐷𝐸𝐶 = (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2  (3.5) 

 

The roof displacement at decompression is zero since the frame is considered rigid: 

 ∆𝑑𝑒𝑐= 0 (3.6) 

 

The frame drift at decompression is zero: 

 𝛩𝑑𝑒𝑐 = 0 (3.7) 

 

3.4.2 Full clamping of spring stack (FC) 

This limit state happens if the spring stack reaches its maximum travel capacity before the 

PT bar yields as shown in Figure 3.8. This derivation assumes that the spring stack 

undergoes no additional deformations after clamping as shown in Figure 3.2.   

Using the deformation compatibility, the gap underneath each PT bar is:  

 
∆𝑣1=

𝐿𝑝1

𝐿𝑝2
 ∆𝑣2 

(3.8) 

 

 
∆𝑣2=

𝐹𝑐 − 𝑇𝑝2𝑖

𝐾𝑐2
+ (𝐿𝑜2 − 𝐿𝑐2 −

𝑇𝑝2𝑖

𝐾𝑠2
 ) 

(3.9) 



 

41 

 

where Fc is the force required to bring the spring stack to its flat position. Kc2 is the axial 

stiffness of PT bar at location 2. Lo2 is the initial length of the spring stack. Lc2 is the length 

of the clamped spring stack at location 2. Ks2 is the axial stiffness of the spring stack at 

location 2. The change in force at each PT bar is: 

 
∆𝑇𝑝1 = ∆𝑣1  (

1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

 
(3.10) 

 

where Kc1 and Ks1 are the axial stiffness of the PT bar, and the spring stack respectively. 

Tp2i is the initial force at PT bar in location 2. Summing the moment about point O yields: 

 𝑀𝐹𝐶 = (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2  (3.12) 

 

The roof displacement and drift at this state limit are: 

 
∆𝐹𝐶= ∆𝑣2

𝐻𝑤

𝐿𝑝2
 

 

(3.13) 

 
𝐹𝐶 = tan−1

∆𝑣2

𝐿𝑝2
 

(3.14) 

 

3.4.3 Linear limit of PT steel (LLP)  

As shown in Figures 3.3 and 3.4, the LLP limit state could happen in two forms: LLP-1 

where the spring stack does not clamp during pushover loads, and LLP-2 where the spring 

stack does collapse. The formulation for these two different cases is shown below.  

 ∆𝑇𝑝2 = 𝐹𝑐 − 𝑇𝑝2𝑖 (3.11) 
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In the first instance, LLP-1 illustrated in Figure 3.9, the force at the PT bars is expected to 

increase after the gap opening at the base of the frame. In fact, the force is likely to reach 

the yield stress of steel (Fpy). At this point, the lateral stiffness of the frame is expected to 

reduce due to yielding of the PT bars as shown later in Chapter 6.  

We start with the deformation compatibility at the base of the frame: 

 
∆𝑣1= ∆𝑣2  

𝐿𝑝1

𝐿𝑝2
 

(3.15) 

 

 

 
∆𝑣2= (𝜀𝑝𝑦 −

𝑇𝑝2𝑖

𝐴𝑝2𝐸𝑝
) 𝐻𝑢𝑛𝑏 + ( 

𝑓𝑝𝑦𝐴𝑝2 − 𝑇𝑝2𝑖

𝐾𝑠2
 ) 

(3.16) 

 

where εpy is the strain of PT steel at yielding. Ap2 is the cross-sectional area of the PT steel 

at location 2. Ep is the modulus of elasticity of the PT steel. Fpy is the stress at yielding of 

the PT bar.  

It is noted that Equation 3.16 assumes that the PT bar and the spring stack represent two 

springs connected in series as shown in Figure 3.10. Therefore, the expected gap at the 

base of the frame is the sum of the PT bar elongation and the spring stack shortening.  

Now, the change in force at each PT bar is determined using the gap height at the location 

of each PT bar.   

 
∆𝑇𝑝1 = ∆𝑣1  (

1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

 
(3.17) 
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 ∆𝑇𝑝2 = (𝑓𝑝𝑦𝐴𝑝2 − 𝑇𝑝2𝑖) (3.18) 

 

The moment at this limit state is:  

 𝑀𝐿𝐿𝑃−1 = (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2  (3.19) 

 

The roof displacement and drift at this limit state are:   

 
∆𝐿𝐿𝑃−1= ∆𝑣2  

𝐻𝑤

𝐿𝑝2
 

(3.20) 

 
𝛩𝐿𝐿𝑃−1 = tan−1

 ∆𝐿𝐿𝑃−1

 𝐻𝑤
 

(3.21) 

   

In the second instance, LLP-2 shown in Figure 3.11, the force at the PT bars will continue 

to increase after the full clamping of the spring stack and could reach yielding. We now 

derive the force deformation response at this limit state. Using the strain compatibility and 

the rigid frame assumption, the gap at the location each PT bar is determined by the 

following equations:  

 
∆𝑣1= ∆𝑣2

𝐿𝑝1

 𝐿𝑝2
 

(3.22) 

 

 
∆𝑣2= (𝜀𝑝𝑦 −

𝑇𝑝2𝑖

𝐴𝑝2𝐸𝑝
 ) 𝐻𝑢𝑛𝑏 + (𝐿𝑜2 − 𝐿𝑐2 −

𝑇𝑝2𝑖

𝐾𝑠2
 ) 

(3.23) 
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The above equation shows that the spring stack no longer deforms after clamping; one of 

the assumptions proposed at the beginning of this chapter as shown in Figure 3.2. Now, the 

change in force at each PT bar is:  

 
∆𝑇𝑝1 = ∆𝑣1  (

1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

 
(3.24) 

 

 ∆𝑇𝑝2 = 𝐹𝑝𝑦𝐴𝑝2 − 𝑇𝑝2𝑖 (3.25) 

 

Equation 3.24 assumes that the first spring stack is still deformable, but otherwise different 

approach should be taking by implementing the scheme shown in Figure 3.12 or Figure 

3.13. Now, the moment at the base is:  

 𝑀𝐿𝐿𝑃−2 = (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2  (3.26) 

 

The roof displacement is: 

 
∆𝐿𝐿𝑃−2= ∆𝑣2

𝐻𝑤

𝐿𝑝2
 

(3.27) 

The drift at this state limit is:  

 
𝐿𝐿𝑃−2 = tan−1

∆𝐿𝐿𝑃−2

𝐻𝑤
 

(3.28) 
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3.4.4 Fracture of PT steel (FP) 

In a similar manner to the LLP limit state, the FP limit state could also happen in two 

different forms as shown in Figures 3.3 and 3.4. The first case FP-1 where the spring stack 

does not clamp during pushover loads, and the second case FP-2 where the spring stack 

does clamp.  

In the first case, FP-1, the PT bar is expected to reach its ultimate capacity (Fpu). The 

following expressions were derived to predict the response at this limit state. The following 

steps explain the derivation process. 

Starting with the deformation compatibility in Figure 3.14, we can find the gap height at 

the location of each PT bar: 

 
∆𝑣1= ∆𝑣2  

𝐿𝑝1

𝐿𝑝2
 

(3.29) 

 

 

  
∆𝑣2= (𝜀𝑝𝑢 −

𝑇𝑝2𝑖

𝐴𝑝2𝐸𝑝
) 𝐻𝑢𝑛𝑏 + (

𝑓𝑝𝑢𝐴𝑝2 − 𝑇𝑝2𝑖

𝐾𝑠2
) 

(3.30) 

 

Where εpu and fpu are the strain and stress at fracture of the PT bar.  

In a similar manner to Equation 3.16, the above Equation 3.30 assumes that the spring stack 

and the PT bar are two springs connected in series. Consequently, the gap at the location 

of each PT bar is the sum of the bar elongation and the spring stack shortening. This 

assumption holds only if the spring stack has not reached its maximum travel capacity.  
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Now, we can find the increase in the force at each PT bar using the gap height at the location 

of each PT bar.  

 
∆𝑇𝑝1 = ∆𝑣1  (

1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

  
(3.31) 

  

 ∆𝑇𝑝2 = (𝑓𝑝𝑢𝐴𝑝2 − 𝑇𝑝2𝑖) (3.32) 

 

Equation 3.31 is valid for the elastic ranges only. For example, if ∆v1 is larger than the gap 

height under PT1 at yielding, ∆v1 found using Equation 3.29 should be used to find the 

inelastic force at PT1 where Equation 3.17 no longer holds. Note that Figure 3.12 or Figure 

3.13 could be used for this purpose.  

Now, the moment at the base of the frame represents the sum of the moments of the base: 

 𝑀𝐹𝑃−1 = (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2 (3.33) 

 

The roof displacement at this stage is: 

 
∆𝐹𝑃−1= ∆𝑣2

𝐻𝑤

𝐿𝑝2
 

(3.34) 

The drift of the frame at this stage is: 

 
𝐹𝑃−1  = tan−1

∆𝐹𝑃−1

𝐻𝑤
 

(3.35) 

In the second case FP-2 shown in Figure 3.15, after yielding of the PT bar, the bar could 

fracture due to the increased load, and to predict the response, the followings equations 

apply.  
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∆𝑣1= ∆𝑣2

𝐿𝑝1

𝐿𝑝2
 

(3.36) 

 

The change in force at each PT group is: 

 
∆𝑇𝑝1 = ∆𝑣1  ( 

1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

 
(3.38) 

 

 ∆𝑇𝑝2 = 𝐹𝑝𝑢𝐴𝑝2 − 𝑇𝑝2𝑖 (3.39) 

 

In a similar manner to Equation 3.31, the above Equation 3.38 is valid for elastic ranges 

and assumes that the spring stack has not clamped. Otherwise, we would have two 

scenarios.   

1. The first PT assembly has a clamped spring stack, but the PT bar has not yielded.  

As shown in Figure 3.14, this scenario lies between the spring stack clamping and 

yielding of the PT bar.  

2. The first PT assembly has a clamped spring stack, but the PT bar has yielded. As 

shown in Figure 3.13, this lies between the PT bar yielding and fracture.  

In both scenarios stated above, the stiffness of the assembly could be traced to find the 

force corresponding to ∆v1 calculated by Equation 3.36.  

 The moment at the base is: 

 
∆𝑣2= (𝜀𝑝𝑢 −

𝑇𝑝2𝑖

𝐴𝑝2𝐸𝑝
 ) 𝐻𝑢𝑛𝑏 + (𝐿𝑜2 − 𝐿𝑐2 −

𝑇𝑝2𝑖

𝐾𝑠2
 ) 

(3.37) 
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 𝑀𝐹𝑃−2 = (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2  (3.40) 

 

The roof displacement is:  

 
∆𝐹𝑃−2= ∆𝑣2

𝐻𝑤

𝐿𝑝2
 

(3.41) 

 

The drift at this state limit is:  

 
𝐹𝑃−2 = tan−1

∆𝐹𝑃−2

𝐻𝑤
 

(3.42) 

 

In summary, Figure 3.16 shows the expected limit states and the order they might occur. 

Also, Tables 3.1, 3.2, 3.3, 3.4, and 3.5 summarize the CFE in a tabulated form.  
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Table 3.1: Summary of the CFE for the decompression limit state (DEC). 

 

Table 3.2: Summary of the CFE for the full clamping of the spring stack limit 

state (FC). 

 

Decompression 

(DEC) 
CFE 

∆v1 0 

∆v2 0 

∆TP1 0 

∆Tp2 0 

MDEC (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2 

∆DEC 0 

DEC 0 

Full Clamping of 

The Springs Stack 

(FC) 

CFE 

∆v1 
𝐿𝑝1

𝐿𝑝2
 ∆𝑣2 

∆V2 
𝐹𝑐 − 𝑇𝑝2𝑖

𝐾𝑐2
+ (𝐿𝑜2 − 𝐿𝑐2 −

𝑇𝑝2𝑖

𝐾𝑠2
 ) 

∆TP1 ∆𝑣1  (
1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

 

∆Tp2 𝐹𝑐 − 𝑇𝑝2𝑖 

MFC (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2 

∆FC ∆𝑣2

𝐻𝑤

𝐿𝑝2
 

FC tan−1
∆𝑣2

𝐿𝑝2
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Table 3.3: Summary of the CFE for the linear limit of the PT steel limit state (LLP-1). 

 

Table 3.4: Summary of the CFE for the linear limit of the PT steel limit state (LLP-2). 

 

 

Linear Limit of Post 

Tensioning Steel (LLP-1) 
CFE 

∆v1 
𝐿𝑝1

𝐿𝑝2
 ∆𝑣2 

∆v2 (𝜀𝑝𝑦 −
𝑇𝑝2𝑖

𝐴𝑝2𝐸𝑝
) 𝐻𝑢𝑛𝑏 + ( 

𝑓𝑝𝑦𝐴𝑝2 − 𝑇𝑝2𝑖

𝐾𝑠2
 ) 

∆TP1 ∆𝑣1  (
1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

 

∆Tp2 (𝑓𝑝𝑦𝐴𝑝2 − 𝑇𝑝2𝑖) 

MLLP-1 (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2 

∆LLP-1 ∆𝑣2

𝐻𝑤

𝐿𝑝2
 

LLP-1 tan−1
 ∆𝐿𝐿𝑃−1

 𝐻𝑤
 

Linear Limit of Post 

Tensioning Steel (LLP-2) 
CFE 

∆v1 
𝐿𝑝1

𝐿𝑝2
 ∆𝑣2 

∆v2 (𝜀𝑝𝑦 −
𝑇𝑝2𝑖

𝐴𝑝2𝐸𝑝
 ) 𝐻𝑢𝑛𝑏 + (𝐿𝑜2 − 𝐿𝑐2 −

𝑇𝑝2𝑖

𝐾𝑠2
 ) 

∆TP1 ∆𝑣1  (
1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

 

∆Tp2 𝐹𝑝𝑦𝐴𝑝2 − 𝑇𝑝2𝑖 

MLLP-2 (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2 

∆LLP-2 ∆𝑣2

𝐻𝑤

𝐿𝑝2
 

LLP-2 tan−1
∆𝐿𝐿𝑃−2

𝐻𝑤
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Table 3.5: Summary of the CFE for the fracture of the PT steel limit state (FP-1). 

 

Table 3.6: Summary of the CFE for the fracture of the PT steel limit state (FP-2). 

 

 

Fracture of Post 

Tensioning Steel (FP-1) 
CFE 

∆v1 
𝐿𝑝1

𝐿𝑝2
 ∆𝑣2 

∆v2 (𝜀𝑝𝑢 −
𝑇𝑝2𝑖

𝐴𝑝2𝐸𝑝
) 𝐻𝑢𝑛𝑏 + (

𝑓𝑝𝑢𝐴𝑝2 − 𝑇𝑝2𝑖

𝐾𝑠2
) 

∆TP1 ∆𝑣1  (
1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

 

∆Tp2 (𝑓𝑝𝑢𝐴𝑝2 − 𝑇𝑝2𝑖) 

MFP-1 (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2 

∆FP-1 ∆𝑣2

𝐻𝑤

𝐿𝑝2
 

FP-1 tan−1
∆𝐹𝑃−1

𝐻𝑤
 

Fracture of Post 

Tensioning Steel (FP-2) 
CFE 

∆v1 
𝐿𝑝1

𝐿𝑝2
 ∆𝑣2 

∆v2 (𝜀𝑝𝑢 −
𝑇𝑝2𝑖

𝐴𝑝2𝐸𝑝
 ) 𝐻𝑢𝑛𝑏 + (𝐿𝑜2 − 𝐿𝑐2 −

𝑇𝑝2𝑖

𝐾𝑠2
 ) 

∆TP1 ∆𝑣1  (
1

𝐾𝑐1
+

1

𝐾𝑠1
 )

−1

 

∆Tp2 𝐹𝑝𝑢𝐴𝑝2 − 𝑇𝑝2𝑖 

MFP-2 (𝑇𝑝1𝑖 + ∆𝑇𝑝1)𝐿𝑝1 + (𝑇𝑝2𝑖 + ∆𝑇𝑝2)𝐿𝑝2 + 𝑁 𝐿𝑓/2 

∆FP-2 ∆𝑣2

𝐻𝑤

𝐿𝑝2
 

FP-2 tan−1
∆𝐹𝑃−2

𝐻𝑤
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Figure 3.1: Idealized post-tensioning reinforcement stress-strain curve (Kurama 1997). 

 

Figure 3.2: Force-deformation curve of typical spring stack (Schnorr, 2003). 
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Figure 3.3: Overview of the rocking frame limit states  

(spring stack does not clamp). 
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Figure 3.4: Overview of the rocking frame limit states  

(cpring stack does clamp).   
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Figure 3.5: Rocking frame geometry and notation. 

 

 

L
p2

 

L
p1

 

H
f
 

H
unb

 

L
f
 

L
s2o

=L
s1o

 

2

3
 H

f
 

Spring Stack 

Stiffness (Ks) 

Bar stiffness 

(Kb) 



 

56 

 

  

 

Figure 3.6: Notation for the rocking frame forces and 

deformations. 
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Figure 3.7: Decompression of the base (DEC). 
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Figure 3.8: Full clamping of the spring stack (FC). 
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Figure 3.9: Linear limit of the post-tensioning steel (LLP-1). 
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Figure 3.10: Force-deformation of the PT bar and the spring stack assembly  

(spring stack does not clamp).   
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Figure 3.11: Linear limit of post-tensioning steel (LLP-2). 
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Figure 3.12: Force-deformation of the PT bar and the spring stack assembly 

(spring stack does clamp). 
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Figure 3.13: Deformation of the assembly in the inelastic range (spring stack does 

clamp). 
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Figure 3.14: Fracture of post-tensioning steel (FP-1). 
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Figure 3.15: Fracture of post-tensioning steel (FP-2). 
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Figure 3.16: Summary of the expected pushover curves. 
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CHAPTER 4 

FINITE ELEMENT MODEL  

4.1 INTRODUCTION 

This chapter develops a finite element model (FE) that is used to conduct the parametric 

study presented in Chapter 6. The finite element software OpenSEES (Mazzoni et al. 2006) 

is used to develop the FE model and to execute the parametric study. The results of the FE 

analysis are compared with CFE models for the same parameters to examine the error 

between the finite element solution and the solution predicted by the closed form 

expressions.  

In developing this FE, the same assumptions made in deriving the CFE are used. A 

summary of these assumptions follows: 

1. The frame is considered rigid; 

2. The post tension bars are considered deformable; 

3. The friction between the disc springs is neglected;  

4. Stability failure does not occur;  

5. No sliding at the base of the frame occurs; 

6. The PT bars are unbonded;  

7. The disc spring stack remains elastic.  
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4.2 ELEMENTS USED IN THE FE MODEL  

The FE model is comprised of five main components: 

1. Beam column element to model the rocking frame and its braces; 

2. Zero length spring (ZLS) to model the disc spring stack; 

3. Truss element to model the PT bars; 

4. Zero length spring (ZLS) to model the gap opening mechanism; 

5. Gap element to model the spring stack clamping.  

 

4.3 DETAILED FE MODEL  

This section discusses the FE model in detail by describing the nodes, elements used their 

connectivity, the initial and the boundary conditions, the loading application, and the 

recorded responses of interest.  

 

4.3.1 Nodes 

As shown in Figures 4.1, 4.2, 4.3, and 4.4, the proposed FE models contain several nodes 

connecting the various elements employed. However, we can see that the first and the 

second models have 17 nodes, whereas the third and the fourth models have 21 nodes.  

OpenSEES command manual explains the method of creating nodes by assigning the node 

tag number, and the coordinates of the nodes (Mazzoni et al. 2006). It is seen that each 
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node in the FE models has a unique tag number, and thus elements could be uniquely 

defined between the nodes.  

 

4.3.2 Model Components  

4.3.2.1 Rocking frame members   

The rocking frame and its braces are modeled using beam-column elements as shown in 

Figures 4.1, 4.2, 4.3, and 4.4. These elements have three degrees of freedom per node and 

as the name indicates, elastic beam column elements will remain elastic during the analysis.  

Each elastic beam column element needs the following to be defined (Mazzoni et al. 2006): 

(1) unique tag number; (2) starting node number; (3) end node number; (4) cross-sectional 

area; (5) modulus of elasticity; (6) shear modulus; (7) moment of inertia about the x and 

the y-axes; and, (8) the coordinate transformation for the element.  

To model the frame as a rigid assembly and keep the consistency between the FE and CFE 

results, large values for the elements inputs were given. In that case, OpenSEES (Mazzoni 

et al. 2006) will use these large inputs to calculate the elements stiffness matrices, and 

accordingly, the elements will be practically rigid. With this intention, most of the elastic 

deformations are almost zero, and the consistency of the of the FE and the CFE solutions 

is maintained.  
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4.3.2.2 PT bars  

The PT bars are modeled using truss elements. These truss elements can carry axial loads 

only, and they can capture the nonlinear response due to yielding of the steel. Hence, the 

material of the PT bars is modeled as steel 01 in OpenSEES (Mazzoni et al. 2006) with a 

bilinear stress-strain curve as shown in Figure 3.1.  

  

4.3.2.3 Spring stack 

The disc spring stack is modeled using a zero-length spring (ZLS) connecting two nodes 

as shown in Figures 4.1, 4.2, 4.3, and 4.4. This element represents the force deformation 

response of the spring stack.  OpenSEES (Mazzoni et al. 2006) requires a uniaxial material 

to be assigned with this ZLS. Thus, a hysteretic material is implemented to represent the 

stiffness of the spring stack. However, it is noted that it is crucial to use only the elastic 

portion of the hysteretic curve to obtain a linear spring. The hysteretic curve does not 

capture the effects of friction between springs. As shown in Figures 4.1, 4.2, 4.3, and 4.4, 

the ZLS connects the truss element to the roof and this assembly depicts the physical 

behavior of a PT bar connected in series to a disc spring stack as explained in Figure 3.14.  

Keep in mind that the ZLS would have a symmetric force deformation response, and thus 

it should give wrong results if it goes under the circumstance shown Figure 4.5. The figure 

indicates that the assembly of the truss and the ZLS is valid only if the truss element is in 

tension, but it is invalid if the truss goes in compression since the physical model would 

behave differently.  
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4.3.2.4 Zero length spring (zls) to model the gap opening mechanism 

Zero length spring (ZLS) was used to capture the gap opening mechanism at the base of 

the frame as shown in Figures 4.1, 4.2, 4.3, and 4.4. Elastic-no-tension uniaxial material 

was assigned to this element to prevent it from resisting uplift while providing vertical 

reaction when the gap is closed. It was required to assign large value for the compression 

stiffness of the uniaxial material to prevent downward displacement; the same approach 

used by a previous study on the rocking steel frames (Chancellor 2014).   

 

4.3.2.5 Gap element to model the spring stack clamping   

Gap element is used to model the clamping of the spring stack as illustrated in Figures 4.2 

and 4.4. This gap element is connected in parallel with the ZLS representing the stiffness 

spring stack, and it simply limits the travel capacity of the ZLS. Once the gap element is 

activated, the ZLS undergoes no further deformation as shown in Figure 4.7. The Elastic 

gap material is assigned to this element to provide a locking mechanism as shown in Figure 

4.6.   

 

4.3.3 Elements connectivity 

As shown in Figures 4.1, 4.2, 4.3, and 4.4. elements are connected through nodes having 

unique tag numbers. The following paragraphs describe the connectivity these elements 

and the direction they are oriented.  
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Models 1,3  

• Zero-length spring (ZLS) connecting nodes 17 and 16 and pointing in the Y-

direction represents the gap opening mechanism.  

• ZLS at the roof connecting nodes 14 and 11 and oriented in the Y-direction 

represents the stiffness of disc spring stack.  

• Truss element are connecting nodes 15 and 14 and representing the PT bars. The 

truss element is not connected to the floors; only to node 14 as connecting it to other 

nodes would give totally different results than the real physical models.  

• For model 3 shown in Figure 4.3, additional gap element connecting nodes 14 and 

11 and pointing in the y-direction to represent the spring stack clamping. 

Connecting the gap element using nodes 14 and 11, same nodes connecting the ZLS 

assures that the ZLS and the gap element work in parallel.  

• All the remaining elements are elastic beam columns. Each element passes through 

two points as shown in Figures 4.1 and 4.3.  

 

Models 2,4  

• ZLS connecting nodes 21 and 20 representing the gap opening mechanism. 

• ZLS’s connecting three pairs of nodes: (17,10), (18,11), and (19,12) representing 

the disc spring stack (nodes 18 and 19 are not shown in Figure (4.2) or (4.4), but 

they lie on top of nodes 11 and 12). 

• Truss elements connecting three pair of nodes: (14,17); (15, 18), and (16, 19). 
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• For model 4, all ZLS’s on the roof are connected in parallel to gap elements to 

capture the stack clamping.  

• All the remaining are beam column elements connected through the nodes shown 

in Figures 4.2 and 4.4.  

 

4.3.4 Boundary conditions and constraints 

Below is a description of the boundary conditions and the constraints applied to the FE 

model. 

 

Models 1,3  

Models 1,2 have several boundary conditions to prevent rigid body motion of the FE 

model.  

• The base of the right column (node 2) is pinned allowing rotation but no 

translations. This constraint is only valid for lateral loads acting in the direction 

seen in Figures 4.1 and 4.2. 

• Nodes 15 and 17 are pinned to prevent translations. This would assure that the ends 

of the truss and the gap elements are prevented from rigid body translations. 

• Models 1, 2 have several constraints to the maintain the compatibility of 

displacement.  
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• Node 16 is slaved to node 1 in the y-direction. This allows the ZLS to prevent 

downward displacement of the column tip, but it still provides no resistance to 

uplifting (Chancellor 2014).  

• Node 14 is slaved to node 11 in the x-direction. This assures that node 14 moves 

horizontally with node 11 as the frame sways laterally.  

 

 

Models 2,4  

Models 2,4 have several boundary conditions to prevent rigid body motion of the FE 

model.  

• The base of the right column (node 2) is pinned allowing rotation but no 

translations. 

• Nodes 14,15,16 and 21 are pinned to prevent translations. 

• Models 2, 4 have several constraint to the maintain the compatibility of 

displacement.  

• Node 20 is slaved to node 1 in the y-direction. 

• Node 17 is slaved to node 10 in the x-direction; node 18 is slaved to node 11 in the 

x-direction; and node 19 is slaved to node 12 in the x-direction. (nodes 18 and 19 

are not shown, but they lie on top of nodes 11 and 12). 
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4.3.5 Initial conditions applied to the model 

One of the initial conditions that need to be defined is the PT force in the truss element. In 

fact, even though initial strain could be applied to the truss to reach the required PT force, 

some of this force would be lost since the truss element is connected in series to a zero-

length spring (ZLS) as shown in Figures 4.1, 4.2, 4.3, and 4.4. Therefore, initial strain that 

causes the required PT force is applied to the truss concurrently with an initial displacement 

of the ZLS that invokes the same PT as depicted in Figure 4.8. Thus, the force in the truss 

and the ZLS is now equal (i.e. both truss and the ZLS are in equilibrium, and the assembly 

maintains the required PT force without loss). 

Additionally, it is important to know when to activate the gap element of the spring stack 

during the push over analysis since it is correlated with the spring stack clamping. The gap 

element should provide no resistance if the displacement of the ZLS is less than the 

clamping travel capacity of the spring stack. However, it should completely restrain the 

displacement once the clamping capacity is reached. Thus, we define the required travel 

capacity of the gap element as follows: we calculate the displacement that the spring 

assembly can travel to the clamping and the initial extension of the ZLS due to the initial 

PT force. Then, the travel capacity of the gap element is the difference between these (the 

element will not be activated as long the spring displacement is less than the travel 

capacity). Once this travel capacity is reached, the gap element is activated, and the spring 

will carry no additional displacement.   
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4.3.6 Loads and recorders in OpenSEES  

Figures 4.1, 4.2, 4.3, and 4.4 show that the pushover load is defined at the two thirds the 

height of the frame and directed to the right. The load was applied by steps to the FE model 

to get a smooth pushover curve that includes many points.  

A load control integrator is used to apply the load in 1000 steps. Also, the constraints to 

the mode are applied using the Lagrange option. Additionally, a plain numbered, a general 

band system with a linear algorithm were used. Finally, the analysis is chosen to be static.  

After developing the script that describes the FEM, the outputs of the finite element 

analysis need to be recorded. OpenSEES (Mazzoni et al. 2006) requires the recorders to be 

specified in detail inside the script itself. For example, the node number, the type of the 

force required (axial force for truss element, reaction for supports), the direction of the 

recorded displacement, and so on. OpenSEES (Mazzoni et al. 2006) will record the results 

in separate files. Each file represents the response of specific point of interest.  

Several recorders in OpenSEES (Mazzoni et al. 2006) script were specified as follows. 

First, the displacement of the roof in the horizontal direction. This will help in determining 

the frame drift at each load step. Second, the axial force in each truss element. This will 

aid in finding the load step where the force in the truss elements reached the yield stress. 

Third, the force at each spring element. This recorder was specified to assure the 

consistency of the results, because the force at the truss element must equal the force at the 

spring element (satisfies equilibrium). Fourth, the force at the gap element. In fact, this will 

help in determining the decompression load.  
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After obtaining the outputs from OpenSEES (Mazzoni et al. 2006), the post processing of 

the results was carried out using MATLAB. It was also used in plotting the results as well.  
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Figure 4.1: FE model for zero eccentricity PT bars (spring stack does not clamp). 

 

 

 

Figure 4.2: FE model for zero eccentricity PT bars (spring stack does clamp). 
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Figure 4.3: FE model for intermediate eccentricity PT bars (spring stack does not clamp). 

 

 

 

Figure 4.4: FE model for intermediate eccentricity PT bars (spring stack does clamp). 
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Figure 4.5: Behavior of physical and FE models under compressive load. 
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Figure 4.6: Gap element force deformation curve (Mazzoni et al. 2006). 

 

 

  

Figure 4.7: Force-deformation of ZLS and gap element connected in parallel.
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Figure 4.8: Required displacement at the zero-length spring and the  

initial strain at the truss element to get the required initial PT force.  
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        CHAPTER 5 

PROTOTYPE BUILDING  

5.1 INTRODUCTION  

This chapter provides a description of a prototype building used in this study. The building 

is made of timber and used here to generate realistic frames for the parametric study. Also, 

it is used to obtain the analysis matrix for the parametric study in Chapter 6.  

 

5.2 PROTOTYPE BUILDING DESCRIPTION  

Figure 5.1 shows a typical floor plan of the prototype building. It consists of three stories 

(two elevated floors plus the roof). Each story has four bays in the longitudinal direction 

and three in the transverse direction. In the current study, the analysis focuses on the 

response of the building in the longitudinal direction, and two rocking frames are used in 

the longitudinal direction (E-W).  

This building is used in the literature to study the traditional post-tensioned walls (Sarti, 

Palermo, and Pampanin 2016a). It noted that the original building found in the literature 

has an inclined roof, but it was omitted here for simplicity.  

The building represents an office in a region with moderate seismic hazard. It is located in 

an area with soil type D where the design spectral acceleration is 0.6g for the short period, 

and 0.2g for the long period.  The building system was assumed to have a response 
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modification factor R=5.5 and an importance factor I=1. The damping ξ is 5% of the critical 

damping ξcr.  

 

5.3 PROTOTYPE BUILDING DESIGN 

Table 5.1 summarizes the dead loads for the prototype building. Table 5.2 shows the live 

loads that were determined using the ASCE 7-10 Minimum Design Loads for Buildings 

and Other Structures. It was assumed that 25% of the live load contributes to the seismic 

loads. No live load was included on the roof.  

The equivalent lateral load force procedure given in ASCE 7-10 is implemented here as 

follows. We first use the simplified method to calculate the period of the structure 

(Equation 12.8-7 ASCE7-10).  

 𝑇 = 𝑐𝑡 ∗ ℎ𝑥 = (29.5 𝑓𝑡)0.75 ∗ 0.02 = 0.25 sec   

 

(5.8) 

Given the seismic coefficients Ss and S1 (ASCE 7-10 Figures 22-1 and 22-2), we can 

determine the “maximum considered earthquake spectral response acceleration 

parameters.” 

 

 𝑆𝑀𝑆 = 𝐹𝑎  𝑆𝑠 = 0.79 (5.9) 

 

 𝑆𝑀1 = 𝐹𝑣 𝑆1 = 0.4 
 

(5.10) 

 
𝑆𝐷𝑆 = (

2

3
) 𝑆𝑀𝑆 = 0.52 

(5.11) 
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𝑆𝐷1 = (

2

3
) 𝑆𝑀1 = 0.27 

(5.12) 

 

𝐶𝑆 = (
𝑆𝐷𝑆

𝑅

𝐼

) = (
0.52

5.5

1

) = 0.096 

 

(5.13) 

 
𝐶𝑆 𝑚𝑖𝑛 = max (0.01,

0.5 ∗ 𝑆1
𝑅

𝐼

) = 0.018 

 

 

(5.14) 

 

𝐶𝑠 𝑚𝑎𝑥 = (
𝑆𝐷1
𝑅 𝑇

𝐼

) = 0.19 

 

(5.15) 

 𝐵𝑎𝑠𝑒 𝑠ℎ𝑒𝑎𝑟 (𝑉) = 𝐶𝑠𝑊 = 93 𝑘𝑖𝑝𝑠 

 

 

 

(5.16) 

 

 

 

 

 

𝑉1 =
𝑤1ℎ1

𝑘

𝑛=1 𝑤𝑖ℎ𝑖
𝑘  𝑉 = 19.3 𝑘𝑖𝑝𝑠 

 

(5.17) 

 
𝑉2 =

𝑤2ℎ2
𝑘

𝑛=1 𝑤𝑖ℎ𝑖
𝑘  𝑉 = 35.3 𝑘𝑖𝑝𝑠 

 

(5.18) 

 
𝑉3 =

𝑤3ℎ3
𝑘

𝑛=1 𝑤𝑖ℎ𝑖
𝑘  𝑉 = 38.4 𝑘𝑖𝑝𝑠  

 

(5.19) 

Finally, the overturning moment is   

 𝑀𝑜 = 2256 𝑘𝑖𝑝𝑠 − 𝑓𝑡 (5.20) 

The base shear is distributed per ASCE 7-10 Section 12.8.3. 
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Table 5.1: Floors dead loads. 

 

   

Table 5.2: Roof dead loads. 

 

 

Table 5.3: Floors live loads. 

Floor Live Load 

First floor 100 psf 

Second floor 80 psf 

 

Table 5.4: Seismic weights. 

 

 

 

 

 

 

 

 

 

Element Dead Load 

Beams 12.4 psf 

Hardwood 4 psf 

Wood paneling 2.5 psf 

Plywood 3 psf 

Plaster 8 psf 

Channel suspended system 1 psf 

                                                        =31 psf 

 

 

Element Dead Load 

Beams 12.4 psf 

Plywood 3 psf 

Felt (3 ply) 1.5 psf 

Book tile 20 psf 

                                                          =37 psf 

Floor Seismic Weight 

 

(25% live load 

is included) 

First floor 376 kips 

Second floor 343 kips 

Roof 249 kips 
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 Figure 5.1: Floor plan of the prototype building (Sarti, Palermo, and Pampanin 

2016). 
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Figure 5.2: Seismic weight distribution for prototype building.
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          CHAPTER 6 

PUSHOVER ANALYSIS RESULTS 

6.1 INTRODUCTION 

This chapter presents the results of the pushover analyses of a series of prototype frames 

using the finite element model described in Chapter 4. These prototype frames were 

subjected to static pushover loads, and the key limit states (e.g. DEC, LLP etc.) were 

computed and tabulated in this chapter. The limit states were then compared with the 

limit states determined using the CFE expressions derived in Chapter 3. 

 

6.2 PARAMETRIC STUDY SCHEME 

As explained in Chapter 4, the prototype frames were treated as rigid with deformable PT 

steel. The analyses in this chapter are presented in two groups. The first group is where 

the spring stack has infinite travel capacity, while the second group is where the spring 

stack has finite travel capacity and can clamp during pushover loads.  

 

6.3 ANALYSIS ASSUMPTIONS 

In the parametric study, several assumptions were made as listed below: 

• The pushover loads are modeled as quasi-static, and all the inertial effects are 

neglected. 
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• The geometric nonlinearities of the model are neglected. 

• The stress-strain curve of the post-tensioning steel is a bilinear curve as shown 

in Figure 3.1. 

• Analyses are performed in a 2D plane.   

• The force deformation response of the springs is assumed to be linear.  

 

6.4 PROTOTYPE FRAMES 

The prototype building presented in Chapter 5 is used to construct the analysis matrices 

in this chapter. Remember that Chapter 5 finds the design seismic loads of the prototype 

building based on the ASCE-10 and using the equivalent lateral force procedure. These 

seismic loads are used here to tailor the analysis matrices. In the next sections, the term 

“prototype frames” is used to note the frames in the analysis matrices.  

The prototype frames are in two groups: Frames in the first group have spring stacks with 

infinite travel capacities (i.e. the springs do not clamp during the static pushover 

analysis). The frames in the second group have spring stacks with finite travel capacities 

(i.e., the spring stacks do clamp during static pushover analysis). In this report, it is 

assumed that the clamping of the spring stack takes place at load level corresponding to 

0.75 the yielding stress of the PT steel.  

Each of the above groups is divided into two sub-groups as shown in Figures 6.1, and 6.2. 

The first group has PT bars with zero eccentricity (i.e. all the PT bars are positioned at 

the center of the frame cross-section). The second group has the PT bars with 
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intermediate eccentricity (i.e. PT bars are placed in three locations along the cross 

section).  

The parametric study in this chapter focuses on the influence of four main parameters: (1) 

the relative stiffness of the spring stack k; (2) the length of the frame Lf; (3) the initial PT 

stress Fpi; and, (4) the height of the unbonded steel Hunb. A description of each parameter 

is given in the follwing paragraphs. 

 

6.4.1 Relative stiffness of the spring stack ( k ) 

Tables 6.1 and 6.2 are used to study the effects of changing the stiffness of the spring 

stack on the pushover response. Table 6.1 summarizes the testing matrix of the first group 

where the spring stack has infinite travel capacity, while Table 6.2 summarizes the testing 

matrix for the second group where the spring stack has finite travel capacity. In these 

tables, several parameters need to be defined. Each prototype frame has a unique tag 

number starting at the beginning of the table. Fpi is the initial PT stress. Tpi is the initial 

PT force. Hf is the height of the frame. Ap is the area of the PT bars, and ep is the distance 

from center of the frame cross section to the location of the PT bar. Lf is the length of the 

frame. Hunb is the height of the unbonded PT bars. Kp is the axial stiffness of the PT bar, 

and Ks is the axial stiffness of the spring stack. The relative stiffness of the spring stack 

(k) is defined as the ratio of the axial stiffness of the spring stack to the stiffness of the 

PT bar. 

             
𝑘

=
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑡𝑎𝑐𝑘

𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡 𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑖𝑛𝑔 𝑏𝑎𝑟
                              (6.1) 
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The ratio k shows considerable importance since the disc springs can come in different 

sizes and dimensions. Thus, the designer would have the flexibility to arrange these 

springs is various ways, leading to different force-deformation behavior. 

In this parametric study, the relative stiffness k has the values 0.2, 0.5, 1, 2, 5 as seen in 

Tables 6.1 and 6.2. The first case, k=0.2 refers to a spring stack that is relatively flexible. 

However, as k increases, it means the spring stack is increasing in stiffness relative to the 

axial stiffness of the PT bar. 

Tables 6.1 and 6.2 includes two cases F-6 and F-12 where the frames have no spring 

stacks. These two frames represent the traditional rocking frames, and they were included 

to provide a reference on how the response is changing as we insert a spring stack. 

 

6.4.2 Length of the frame (Lf) 

The length of the frame is defined as the horizontal distance between centerlines of the 

the columns at the base as shown in Figure 3.3. 

The prototype building has a frame length of 120 inches. In the parametric study, we 

investigate the effects of varying the frame length from to 150 in and 90 in as shown in 

Figure 6.1. The analysis matrix for this parameter is presented in Table 6.3.  Note that all 

prototype frames in this table have spring stacks with infinite travel capacity.   
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6.4.3 Initial prestress (Fpi ) 

In this parametric study, initial prestress Fpi is the stress in the steel prior to application of 

lateral force. Three values for the initial prestress were considered in this study. These are 

0.3, 0.5, and 0.7 the yield stress Fpy of steel as shown in Table 6.4. Note that all prototype 

frames in this table have spring stacks with infinite travel capacity.   

 

6.4.3 Height of unbonded steel Hunb 

The height of unbonded steel Hunb is defined as the distance between the two anchorage 

points of the PT bar as shown in Figure 3.5. The analysis matrix for this parameter is 

provided in Table 6.5. In all analysis cases, the bottom end of the bar is anchored to the 

foundation (see Figure 6.2), and the effect of extending these bars to different floors was 

investigated. As shown in Figure 6.2, the bars are extended to the first, second, and the 

third floor. Note that all prototype frames in this table have spring stacks with infinite 

travel capacity.   

 

6.5 RESPONSE QUANTITIES 

In the parametric study, several response quantities are of interest as described below. 

6.5.1 Moment at decompression (MDEC) 

The moment at decompression MDEC is defined as the applied moment that causes the 

vertical reaction at the support to be zero as shown in Figure 3.7.  
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To determine the decompression moment using the FE model, the axial force of the gap 

element at the base of the frame shown in Figures 4.1, 4.2, 4.3, 4.4 was recorded. Once 

the axial force becomes zero, the value of the lateral load that corresponds to this instance 

is noted and then the moment is determined by multiplying the force by its lever as 

shown in Figure 3.7.  

 

6.5.2 Drift at decompression (DEC) 

The drift at decompression DEC is defined as the drift of the frame when decompression 

occurs at the base of the frame. One of the key assumptions of this parametric study is 

that the frame is rigid. This is accomplished by assigning very high stiffness values to the 

FE model. Thus, as noted earlier the drift at decompression will always be zero since 

elastic deformations are not included.  

 

6.5.3 Moment at yielding of the PT steel (MLLP) 

The moment at yielding of the PT bar MLLP is defined as the moment at the base of the 

frame when the force at the PT bar(s) reaches the yield stress. The value for this response 

was found as follows. The force at the PT steel is recorded, and once it reaches the yield 

stress, the magnitude of the horizontal load is noted. Now the yielding moment is found 

by multiplying the force by its arm.  
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6.5.4 Drift at yielding of the PT steel (LLP) 

This quantity is defined as the drift of the frame when the PT bar yields. Again, it was 

determined using the CFE and the FE model simultaneously in this parametric study. 

To determine LLP using the FE model, the force at the PT steel is recorded. Once 

yielding occurs, the corresponding displacement of the roof could be used to determine 

LLP. On the other hand, the CFE derived in Chapter 3 could also be used to predict this 

response quantity.  

 

6.5.5 Moment at the fracture of the PT steel (MFP) 

MFP represents the moment at the base of the frame where the bar on the tension side of 

the frame fractures. This response quantity is determined the same way as the yielding 

moment. The method is discussed above in Section 6.5.3, and the only difference is that 

the force at fracture of the PT bar is noted rather than the yielding force.  

 

6.5.6 Drift at fracture of PT steel (FP) 

The drift at fracture of the PT steel is defined as the drift of the frame when the PT steel 

fractures. It was determined using the CFE and the FE model simultaneously. The same 

procedure to identifying the drift at yielding is used to determine the drift at fracture, but 

the only change is that we are noting the lateral displacement when the PT bar fractures.  
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6.6 RESULTS OF THE PARAMETRIC STUDY 

This section presents the results of the analyses. The results are divided into two groups. 

The first group is having spring stack infinite travel capacity. The second group has 

spring stack with finite travel capacity. 

 

6.6.1 Results for the first group 

6.6.1.1 Relative stiffness (K) 

Figure 6.3 shows the effects of changing the relative stiffness k of the spring stack on the 

response of the frames with zero eccentricity. We can see that all the frames 

decompressed at the same load level. Also, no deformations before the gap opening are 

seen due to the rigid frame assumption. 

The stiffness of the spring seems to influence the response significantly. For example, 

Table 6.2 shows that F-5 yielded at a drift of 1.1%, whereas F-2 yielded at a drift of 

2.8%. The only difference between F-2 and F-5 is that the later one has stiff spring stack 

(k= 5), whereas frame 2 has flexible spring stack (k=0.2). It seems that adding flexible 

spring stack increases the drift LLP of the frame because the gap height at the location of 

the PT bar is the sum of the PT bar elongation and the spring stack shortening (i.e. the 

spring stack shortening and the gap height at the PT location would be large when 

flexible spring stack is used, and this increases the drift LLP).  Note that for a given PT 

bar force, the flexible spring stack shortens more that the stiff one and this explains why 

the gap height at the PT location is larger when flexible spring stack is added.  
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Figure 6.4 shows the response of F-10 which has intermediate eccentricity. The response 

starts with decompression of the base. Then, the force at the PT bars is increasing 

because of the increased lateral load as shown in Figure 6.4. After that, the bar at the end 

of the frame yields leading to a reduction of the lateral stiffness of the frame. It could also 

be seen in Figure 6.4 that the bars are yielding successively and the stiffness is decreasing 

gradually.  Moreover, the frame can still carry the load even though one of the bars is 

damaged by yielding. 

Figure 6.5 shows the response the entire group with intermediate eccentricity and some 

interesting observations are made. First, the group with intermediate eccentricity has 

concave moment-drift curve due to the successive yielding of the bars. Second, the zero-

eccentricity group carries larger moment MLLP at the LLP limit and more drift LLP than 

the intermediate eccentricity group. Third, the spring stack stiffness plays a major role in 

determining the backbone of the moment-drift curve. For instance, F-7 yielded at a drift 

of 3.7%, but F-11 yielded at significantly less drift of 0.7%. The reason for that is 

because F-11 has stiff spring (k=5). Notice this behavior was seen earlier in frames with 

zero eccentricity, and this is due to the same reason that flexible spring stack causes more 

shortening of the spring stack and more LLP accordingly.   

A summary of the results for the parameter is shown in Table 6.6. The table summarizes 

the results presented in Figures 6.3 and 6.5. The table shows that the response obtained 

by the FE model and predicted by the closed-form expressions are in good agreement. 

The table demonstrates that the CEF are, in general, accurate in predicting the response 

for a range of k values. However, the errors increase for the larger drifts corresponding 
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to the fracture of the PT bars. This is because the closed form equations developed is 

Chapter 3 were simplified by the use of the small deformations theory. It is noted that the 

closed form expressions under predict the drift at fracture of the PT reinforcement, and 

thus may provide a conservative estimate of the drift.   

 

6.6.1.2 Length of the frame (Lf) 

Figure 6.6 shows the effects of changing the length of frames with zero eccentricity. The 

frames have lengths of 90,120, and 150 inches, and spring stacks with k=0.2 (flexible 

spring stack), and k=5 (stiff spring stack). 

Figure 6.6 shows that increasing the frame length and keeping the stiffness of the springs 

constant increases the decompression moment. Hence, the moment of inertia of frame 

footprint is larger. Figure 6.6 also showes that the drift at yielding LLP is decreasing as 

we increase the frame length, and this is because the same gap height would result in 

smaller drift if the frame length is increased (i.e. the drift angle is the gap height divided 

by the horizontal distance, and in our case the gap is constant, but the horizontal distance 

is increasing and leading to smaller drift LLP).  

The stiffness of the spring impacts the drift at yielding. In all cases for the same frame 

length, using flexible spring stack resulted in larger drift at yielding LLP as shown in 

Figure 6.6. 

Figure 6.7 shows the effects of changing the frame length of frames with an intermediate 

eccentricity. Again, we can see that increasing the frame length increases the 
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decompression moment and decreases the drift at yielding. Also, the more flexible spring 

stack permitted a larger drift prior to yielding the bars. 

Table 6.7 summarizes the results for this parameter and compares the results obtained by 

FE, and the CFE. The table shows good agreement between the results predicted using 

the closed form expressions and the results obtained from the FE analyses.  Again, the 

largest errors are associated with the drift at fracture of the PT steel, with CFE under 

predicting the drift at fracture.   

 

6.6.1.3 Initial stress (Fpi) 

Figures 6.8, 6.9, 6.10, 6.11 show the response for the cases where the initial stress in the 

PT bars is varied. As we apply more initial stress at the PT bars, the decompression 

moment increases since the force over the area increases at base of frame, so larger 

moment is needed. Further, the drift at yielding is decreasing since the bars will deform 

less before they yield. 

Figure 6.8 to 6.11 also show that using flexible spring stack springs can alter the 

backbone curve leading to more drift even if we apply tremendous initial stress. 

Table 6.8 summarizes the results for this parameter, and it shows that the CEF can 

accurately enough to predict the response for a range of initial prestress values.    

 

6.6.1.4 Unbonded length (Hunb) 

Figures 6.12 and 6.13 illustrate the effects of decreasing the unbonded length of the PT 

steel for frames with zero eccentricity. The figures show that decreasing the unbonded 
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length increases the lateral stiffness of the frame and reduces the drift capacity at yielding 

of the PT bar. This is because the shorter bars have a higher axial stiffness than the longer 

bars.  

Comparison of Figures 6.12 and 6.13 shows that introducing a flexible spring stack 

reduces the lateral stiffness even with a small unbonded length. Also, the drift capacity 

increases as flexible spring stack is introduced.  

Figures 6.14 and 6.15 show the response of frames with intermediate eccentricity. As in 

earlier plots, we can see that successive yielding of the bars is still occurring, and the 

introduction of the flexible spring increased the drift at yielding of PT bars.  

The results of the initial stress Fpi parameter study are shown in Table 6.9. This table 

shows that the error between the CFE and FE results is small.  

 

6.6.2 Results for the second group 

6.6.2.1 Relative stiffness (k) 

Figure 6.17-(a) shows the backbone curve of F-38 under pushover load. After 

decompression, the force at the PT bar increases until it reaches 0.75 Fpy which 

corresponds to the clamping of the spring stack. Once clamping occurs, the spring 

element in the FE model no longer deforms, and this causes a sudden increase in the 

force of the PT bar as seen in Figure 6.17-(b). Correspondingly, F-38 exhibits increased 

lateral stiffness after the clamping of the spring stack as seen in Figure 6.17-(a). Figure 

6.17-(c) shows the force at the gap element. This figure shows that this gap element starts 

to carry force after the clamping of the spring stack. In fact, the gap element must carry 
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all the force developed in the PT bar after clamping without permitting the spring stack 

deform further.  

Figure 6.16 shows the effects of changing the relative stiffness of the spring stack for 

frames with zero eccentricity. Unlike the response attained earlier in Section 6.6.1.1, the 

spring stack clamps at a load level of 0.75 the yield stress of the steel. 

Interestingly, the frames increase in stiffness after the clamping of the spring stack. 

However, the clamping occurs at different drifts since the k for each frame is different, 

with larger drifts found when more flexible spring stacks are used. 

Figure 6.18 shows the moment drift response of F-44, and it indicates that the frame 

started with decompression. Then, the first spring stack reached clamping followed by 

yielding of the PT bar. The process of successive clamping and yielding happens to all 

the PT groups. However, each clamping is followed by gain in the stiffness whereas each 

yielding of the PT bar is followed by a reduction in the lateral stiffness.  

Figure 6.19 shows the response of frames with intermediate eccentricity. Similar to the 

results in Figure 6.18, the frames are exhibiting multiple occurrence of clamping and 

yielding. The frames gain stiffness due to each spring stack clamping, followed by a loss 

of stiffness due to yielding of the PT bar. Also, we can notice that using flexible stack of 

springs led to more drift and less lateral stiffness after the gap opening. The results for 

this parameter variation are summarized in Table 6.10.  
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6.7 CONCLUSIONS  

1. The closed form expressions derived in Chapter 3 display an excellent 

agreement with the FE results. However, the error of drift at bar fracture 

becomes higher for large drifts because the CFE were simplified using the 

small deformation theory.  

2. Even though a rocking frame has constant member dimensions and PT steel 

area, connecting the PT steel in series with a spring stack having variable 

stiffness could change the backbone curve under lateral loads.  

3. The use of flexible disc spring stack connected in series with the PT steel 

increases the drift capacity and delayes the onset of the PT steel yielding.  

4. The use of flexible disc spring stack causes the prototype frames to have low 

lateral stiffness after the gap opening (DEC limit state) at the base. In contrast, 

the use of stiff disc spring stack increases the lateral stiffness.  

5. When the PT steel was extended to the roof of the prototype frames, some 

frames displayed large drifts without reaching the nominal moment capacity 

of the frame (i.e. PT steel yielding). However, the parametric study showed 

that limiting the height of the PT bars to only the first floor instead of the roof 

would reduce the lateral drift at yielding of the PT bars.  

This phenomenon suggests that the use of spring stacks could eliminate the 

need to extend the PT bars to higher floor levels. This offers two significant 

advantages: 

• In standard rocking frame with full height post-tensioning, all the 

structural elements of columns and braces below the anchorage point of 
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the PT bars must be designed to accommodate the large PT force that 

develops during the application of the lateral load. However, limiting 

the height of the PT bars to, for example, the first floor would eliminate 

the need to design the elements above the first floor for these larger 

forces. 

• Limiting the PT bars to lower stories would require less total length of 

PT bars. 

The disadvantage of limiting the PT bars to only lower floor levels is that the 

PT steel is unable to assist with self-centering the floor above the anchorage 

point if they encounter permanent lateral deformations (floors 2 and 3 in 

Figures 6.20 and 6.21. 

6. When the spring stack has finite travel capacity, clamping can occur leading 

to increase in the lateral stiffness and sudden increase in PT steel force.  
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Table 6.1: Analysis matrix (relative stiffness of the spring stack k). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frame Fpi=0.5Fy Tpi  Tpi Hw Lf 
Number of  

bars 
Ap ep ep/Lw Hunb Kp Ks Ks/Kp 

1 72.5 172 172 396 120 3 2.37 0 0 396 174 35 0.2 

2 72.5 172 172 396 120 3 2.37 0 0 396 174 87 0.5 

3 72.5 172 172 396 120 3 2.37 0 0 396 174 174 1 

4 72.5 172 172 396 120 3 2.37 0 0 396 174 347 2 

5 72.5 172 172 396 120 3 2.37 0 0 396 174 868 5 

6 72.5 172 172 396 120 3 2.37 0 0 396 174 - - 

7 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 12 0.2 

8 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 29 0.5 

9 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 58 1 

10 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 116 2 

11 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 289 5 

12 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 - - 

- No spring 
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Table 6.2: Analysis matrix: relative stiffness of the spring stack k 

(spring stack clamps at PT stress of 0.75 Fpy). 

 

 

  

Frame Fpi=0.5Fy 
Tpi  Tpi 

Hw Lf 
Number of 

 bars 
Ap ep ep/Lw Hunb Kp Ks Ks/Kp 

37 72.5 172 172 396 120 3 2.37 0 0 396 174 35 0.2 

38 72.5 172 172 396 120 3 2.37 0 0 396 174 87 0.5 

39 72.5 172 172 396 120 3 2.37 0 0 396 174 174 1 

40 72.5 172 172 396 120 3 2.37 0 0 396 174 347 2 

41 72.5 172 172 396 120 3 2.37 0 0 396 174 868 5 

6 72.5 172 172 396 120 3 2.37 0 0 396 174 - - 

43 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 12 0.2 

44 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 29 0.5 

45 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 58 1 

46 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 116 2 

47 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 289 5 

12 72.5 57 172 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 - - 

- No spring  
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Table 6.3: Analysis matrix: length of the frame Lf. 

 

 

 

 

 

 

 

 

  

Frame Fpi=0.5Fy 
Tpi 

Hw Lf 
Number of  

bars 
Ap ep ep/Lw Hunb Kp Ks Ks/Kp 

13 72.5 172 396 90 3 2.37 0 0 396 174 87 0.5 

14 72.5 172 396 90 3 2.37 0 0 396 174 347 2 

2 72.5 172 396 120 3 2.37 0 0 396 174 87 0.5 

4 72.5 172 396 120 3 2.37 0 0 396 174 347 2 

15 72.5 172 396 150 3 2.37 0 0 396 174 87 0.5 

16 72.5 172 396 150 3 2.37 0 0 396 174 347 2 

17 72.5 57 396 90 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 29 0.5 

18 72.5 57 396 90 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 116 2 

8 72.5 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 29 0.5 

10 72.5 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 116 2 

19 72.5 57 396 150 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 29 0.5 

20 72.5 57 396 150 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 116 2 
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Table 6.4: Analysis matrix: initial stress Fpi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frame %Fpi  
Fpi Tpi 

Hw Lf 
Number of  

bars 
Ap ep ep/Lw Hunb Kp Ks Ks/Kp 

21 0.3Fy 43.5 103 396 120 3 2.37 0 0 396 174 87 0.5 

22 0.3Fy 43.5 103 396 120 3 2.37 0 0 396 174 347 2 

2 0.5Fy 72.7 172 396 120 3 2.37 0 0 396 174 87 0.5 

4 0.5Fy 72.5 172 396 120 3 2.37 0 0 396 174 347 2 

23 0.7Fy 101.5 241 396 120 3 2.37 0 0 396 174 87 0.5 

24 0.7Fy 101.5 241 396 120 3 2.37 0 0 396 174 347 2 

25 0.3Fy 43.5 34 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 29 0.5 

26 0.3Fy 43.5 34 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 116 2 

8 0.5Fy 72.7 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 29 0.5 

10 0.5Fy 72.5 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 116 2 

27 0.7Fy 101.5 80 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 29 0.5 

28 0.7Fy 101.5 80 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 116 2 
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Table 6.5: Analysis matrix: height of the unbonded length Hunb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frame Fpi=0.5Fy 
Tpi 

Hw Lf 
Number of  

bars 
Ap ep ep/Lw Hunb Kp Ks Ks/Kp 

29 72.5 172 396 120 3 2.37 0 0 132 521 260 0.5 

30 72.5 172 396 120 3 2.37 0 0 132 521 1041 2 

31 72.5 172 396 120 3 2.37 0 0 264 260 130 0.5 

32 72.5 172 396 120 3 2.37 0 0 264 260 521 2 

2 72.5 172 396 120 3 2.37 0 0 396 174 87 0.5 

4 72.5 172 396 120 3 2.37 0 0 396 174 347 2 

33 72.5 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 132 174 87 0.5 

34 72.5 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 132 174 347 2 

35 72.5 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 264 87 43 0.5 

36 72.5 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 264 87 174 2 

8 72.5 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 29 0.5 

10 72.5 57 396 120 1-1-1 0.79 30-0-30 0.25-0-0.25 396 58 116 2 
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Table 6.6: Analyses results: relative stiffness k. 

 

  

Frame 

𝑴𝒅𝒆𝒄 (kips-in) 𝒅𝒆𝒄 (%) 𝑴𝒍𝒍𝒑 (kips-in) 𝒍𝒍𝒑  (%) 𝑴𝒇𝒑 (kips-in) 𝒇𝒑 (%) 

CFE FE Error 

% 

CFE FE CFE FE Error 

% 

CFE FE Error 

% 

CFE FE Error 

% 

CFE FE Error 

% 

1 859 859 0.0 0.0 0.0 1718 1718 0 5.6 5.6 0.0 1896 1902 -0.3 25.5 27.1 -5.9 

2 859 859 0.0 0.0 0.0 1718 1718 0 2.8 2.8 0.0 1896 1902 -0.3 22.7 24.2 -6.2 

3 859 859 0.0 0.0 0.0 1718 1718 0 1.9 1.9 0.0 1896 1902 -0.3 21.7 23.0 -5.7 

4 859 859 0.0 0.0 0.0 1718 1718 0 1.4 1.4 0.0 1896 1902 -0.3 21.2 22.8 -7.0 

5 859 859 0.0 0.0 0.0 1718 1718 0 1.1 1.1 0.0 1896 1902 -0.3 20.9 22.4 -6.7 

6 859 859 0.0 0.0 0.0 1718 1718 0 0.9 0.9 0.0 1896 1902 -0.3 20.7 22.2 -6.8 

7 859 859 0.0 0.0 0.0 1527 1528 -0.1 3.7 3.8 -2.6 1855 1847 0.4 17.7 19 -6.8 

8 859 859 0.0 0.0 0.0 1527 1528 -0.1 1.9 1.9 0.0 1839 1847 -0.4 15.6 16.5 -5.4 

9 859 859 0.0 0.0 0.0 1527 1528 -0.1 1.2 1.2 0.0 1844 1853 -0.4 14.9 16.2 -8.0 

10 859 859 0.0 0.0 0.0 1527 1528 -0.1 0.9 0.9 0.0 1847 1855 -0.4 14.5 16 -9.3 

11 859 859 0.0 0.0 0.0 1527 1528 -0.1 0.7 0.7 0.0 1849 1855 -0.3 14.3 15.5 -7.7 

12 859 859 0.0 0.0 0.0 1527 1528 -0.1 0.6 0.6 0.0 1850 1855 -0.2 14.1 15.5 -9.0 
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Table 6.7: Analyses results: length of the frame Lf. 

  

 

  

Frame 

𝑴𝒅𝒆𝒄 (kips-in) 𝒅𝒆𝒄 (%) 𝑴𝒍𝒍𝒑  (kips-in) 𝒍𝒍𝒑  (%) 𝑴𝒇𝒑  (kips-in) 𝒇𝒑 (%) 

CFE FE Error 

% 

CFE FE CFE FE Erro

r % 

CF

E 

FE Error 

% 

CFE FE Error 

% 

CFE FE Error 

% 

13 644 645 -0.2 0.0 0.0 1288 1290 -0.2 3.7 3.7 0.0 1422 1461 -2.7 29.2 31.2 -6.4 

14 644 645 -0.2 0.0 0.0 1288 1290 -0.2 1.9 1.9 0.0 1422 1461 -2.7 27.4 29.9 -8.4 

2 859 859 0.0 0.0 0.0 1718 1718 0.0 2.8 2.8 0.0 1896 1902 -0.3 22.7 24.2 -6.2 

4 859 859 0.0 0.0 0.0 1718 1718 0.0 1.4 1.4 0.0 1896 1902 -0.3 21.2 22.8 -7.0 

15 1073 1075 -0.2 0.0 0.0 2147 2149 -0.1 2.2 2.2 0.0 2370 2387 -0.7 18.5 20.0 -7.5 

16 1073 1075 -0.2 0.0 0.0 2147 2149 -0.1 1.1 1.1 0.0 2370 2387 -0.7 17.3 18.9 -8.5 

17 644 645 -0.2 0.0 0.0 1145 1145 0.0 2.5 2.5 0.0 1379 1392 -0.9 20.4 22.3 -8.5 

18 644 645 -0.2 0.0 0.0 1145 1145 0.0 1.2 1.2 0.0 1385 1392 -0.5 19.0 20.7 -8.2 

8 859 859 0.0 0.0 0.0 1527 1528 -0.1 1.9 1.9 0.0 1839 1847 -0.4 15.6 16.5 -5.5 

10 859 859 0.0 0.0 0.0 1527 1528 -0.1 0.9 0.9 0.0 1847 1855 -0.4 14.5 16.0 -9.4 

19 1073 1074 -0.1 0.0 0.0 1909 1909 0.0 1.5 1.5 0.0 2299 2310 -0.5 12.6 13.3 -5.3 

20 1073 1074 -0.1 0.0 0.0 1909 1909 0.0 0.7 0.7 0.0 2309 2316 -0.3 11.7 12.6 -7.1 



 

111 

 

Table 6.8: Analyses results: initial stress Fpi. 

 

 

 

 

  

 

                              

 

Frame 

𝑴𝒅𝒆𝒄  (kips-in) 𝒅𝒆𝒄 (%) 𝑴𝒍𝒍𝒑  (kips-in) 𝒍𝒍𝒑 (%) 𝑴𝒇𝒑  (kips-in) 𝒇𝒑 (%) 

CFE FE Error 

% 

CFE FE CFE FE Erro

r % 

CF

E 

FE Error 

% 

CFE FE Error 

% 

CFE FE Error 

% 

21 515 517 -0.4 0.0 0.0 1718 1718 0.0 3.9 3.9 0.0 1896 1909 -0.7 23.7 25.4 -6.7 

22 515 517 -0.4 0.0 0.0 1718 1718 0.0 2.0 2.0 0.0 1896 1909 -0.7 21.7 23.5 -7.7 

2 859 859 0.0 0.0 0.0 1718 1718 0.0 2.8 2.8 0.0 1896 1902 -0.3 22.7 24.2 -6.2 

4 859 859 0.0 0.0 0.0 1718 1718 0.0 1.4 1.4 0.0 1896 1902 -0.3 21.2 22.8 -7.0 

23 1202 1204 -0.2 0.0 0.0 1718 1718 0.0 1.7 1.7 0.0 1896 1909 -0.7 21.7 23.5 -7.7 

24 1202 1204 -0.2 0.0 0.0 1718 1718 0.0 0.8 0.8 0.0 1896 1909 -0.7 20.7 22.6 -8.4 

25 515 517 -0.4 0.0 0.0 1451 1453 -0.1 2.6 2.6 0.0 1849 1854 -0.3 16.3 17.8 -8.4 

26 515 517 -0.4 0.0 0.0 1451 1453 -0.1 1.3 1.3 0.0 1852 1854 -0.1 14.9 16.4 -9.1 

8 859 859 0.0 0.0 0.0 1527 1528 -0.1 1.9 1.9 0.0 1839 1847 -0.4 15.6 16.5 -5.5 

10 859 859 0.0 0.0 0.0 1527 1528 -0.1 0.9 0.9 0.0 1847 1855 -0.4 14.5 16.0 -9.4 

27 1202 1225 -1.9 0.0 0.0 1603 1632 -1.8 1.1 1.1 0.0 1853 1884 -1.6 14.9 15.9 -6.3 

28 1202 1225 -1.9 0.0 0.0 1603 1632 -1.8 0.5 0.5 0.0 1859 1884 -1.3 14.1 15.1 -6.6 
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                      Table 6.9: Analyses results: height of the unbonded length Hunb. 

 

 

 

 

 

 

 

Frame 

𝑴𝒅𝒆𝒄  (kips-in) 𝒅𝒆𝒄 (%) 𝑴𝒍𝒍𝒑  (kips-in) 𝒍𝒍𝒑 (%) 𝑴𝒇𝒑  (kips-in) 𝒇𝒑 (%) 

CFE FE Error 

% 

CFE FE CFE FE Erro

r % 

CFE FE Error 

% 

CFE FE Error 

% 

CFE FE Error 

% 

29 859 859 0.0 0.0 0.0 1718 1718 0.0 0.9 0.9 0.0 1896 1891 0.3 7.9 8.6 -8.1 

30 859 859 0.0 0.0 0.0 1718 1718 0.0 0.4 0.4 0.0 1896 1906 -0.5 7.4 8.0 -7.5 

31 859 859 0.0 0.0 0.0 1718 1718 0.0 1.9 1.9 0.0 1896 1949 -2.7 15.6 16.9 -7.7 

32 859 859 0.0 0.0 0.0 1718 1718 0.0 0.9 0.9 0.0 1896 1955 -3.0 14.5 15.8 -8.2 

2 859 859 0.0 0.0 0.0 1718 1718 0.0 2.8 2.8 0.0 1896 1902 -0.3 22.7 24.2 -6.2 

4 859 859 0.0 0.0 0.0 1718 1718 0.0 1.4 1.4 0.0 1896 1902 -0.3 21.2 22.8 -7.0 

33 859 859 0.0 0.0 0.0 1527 1527 0.0 0.6 0.6 0.0 1851 1854 -0.2 5.3 5.7 -7.0 

34 859 859 0.0 0.0 0.0 1527 1527 0.0 0.3 0.3 0.0 1853 1854 -0.1 4.9 5.3 -7.5 

35 859 859 0.0 0.0 0.0 1527 1527 0.0 1.2 1.2 0.0 1851 1854 -0.2 10.5 11.5 -8.7 

36 859 859 0.0 0.0 0.0 1527 1552 -1.6 0.6 0.6 0.0 1853 1884 -1.6 9.8 10.4 -5.8 

8 859 859 0.0 0.0 0.0 1527 1528 -0.1 1.9 1.9 0.0 1839 1847 -0.4 15.6 16.5 -5.5 

10 859 859 0.0 0.0 0.0 1527 1528 -0.1 0.9 0.9 0.0 1847 1855 -0.4 14.5 16.0 -9.4 
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Table 6.10: analyses results: relative stiffness of the spring stack k 

 (spring stack clamps at PT bar stress of 0.75 Fpy ). 

 

 

Frame 

𝑴𝒅𝒆𝒄  (kips-in) 𝒅𝒆𝒄  
(%) 

𝑴𝒍𝒍𝒑  (kips-in) 𝒍𝒍𝒑 (%) 𝑴𝒇𝒑  (kips-in) 𝒇𝒑 (%) Mfc  (kips-in) 

 

fc (%) 

CF

E 

FE Error 

% 

CF

E 

FE CFE FE Erro

r % 

CFE FE Erro

r % 

CFE FE Error 

% 

CFE FE Erro

r % 

FE CFE Error 

% 

CFE FE Erro

r % 

37 859 860.6 -0.1 0.0 0.0 1718.3 1718.6 0 3.3 3.3 0.0 1896.0 1895.5 0.0 22.8 24.3 -6.2 1290.9 1288.7 -0.2 2.8 2.8 0.0 

38 859 860.6 -0.1 0.0 0.0 1718.3 1718.6 0 1.9 1.9 0.0 1896.0 1895.5 0.0 21.6 23.1 -6.5 1290.9 1288.7 -0.2 1.4 1.4 0.0 

39 859 860.6 -0.1 0.0 0.0 1718.3 1718.6 0 1.4 1.4 0.0 1896.0 1895.5 0.0 21.2 22.7 -6.6 1290.9 1288.7 -0.2 0.9 0.9 0.0 

40 859 860.6 -0.1 0.0 0.0 1718.3 1718.6 0 1.2 1.2 0.0 1896.0 1895.5 0.0 21.0 22.5 -6.7 1290.9 1288.7 -0.2 0.7 0.7 0.0 

41 859 860.6 -0.1 0.0 0.0 1718.3 1718.6 0 1.0 1.0 0.0 1896.0 1895.5 0.0 20.8 22.4 -7.1 1290.9 1288.7 -0.2 0.5 0.5 0.0 

42 859 860.6 -0.1 0.0 0.0 1718.3 1718.6 0 0.9 0.9 0.0 1896.0 1895.5 0.0 20.7 22.3 -7.2 1290.9 1288.7 -0.2 0.4 0.4 0.0 

43 859 860.6 -0.1 0.0 0.0 1427.9 1428.2 0.0 2.2 2.2 0.0 1850.5 1850.6 0.0 15.6 16.8 -7.1 1193.2 1193.2 0.0 1.9 1.9 0.0 

44 859 860.6 -0.1 0.0 0.0 1447.8 1449.3 -0.1 1.2 1.2 0.0 1852.9 1853.2 0.0 14.7 16.0 -8.1 1193.2 1193.2 0.0 0.9 0.9 0.0 

45 859 860.6 -0.1 0.0 0.0 1467.7 1470.5 -0.2 0.9 0.9 0.0 1853.8 1853.3 0.0 14.5 15.6 -7.1 1193.2 1193.2 0.0 0.6 0.6 0.0 

46 859 860.6 -0.1 0.0 0.0 1495.5 1496.9 -0.1 0.79 0.78 1.28 1854.3 1853.3 0.1 14.3 15.4 -7.1 1193.2 1193.2 0.0 0.4 0.4 0.0 

47 859 860.6 -0.1 0.0 0.0 1513.8 1515.3 -0.1 0.7 0.7 0.0 1854.5 1855.9 -0.1 14.2 15.3 -7.2 1193.2 1193.2 0.0 0.3 0.3 0.0 

48 859 860.6 -0.1 0.0 0.0 1527.3 1528.5 -0.1 0.6 0.6 0.0 1854.7 1855.9 -0.1 14.2 15.2 -6.6 1193.2 1193.2 0.0 0.3 0.3 0.0 
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Figure 6.1: Length of the frame Lf in this parametric study  

where k is ranging from 0.2 to 5.  
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Figure 6.2: Height of the PT steel Hunb where k is ranging from 0.2 to 5. 
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Figure 6.3: Effects of the relative stiffness k on the response of frames  

with zero eccentricity (spring stack has infinite travel capacity). 
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Figure 6.4: Response of frame F-10 under pushover load  

(spring stack has infinite travel capacity).  
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Figure 6.5: Effects of the relative stiffness k on the response of frames with 

 intermediate eccentricity (spring stack has infinite travel capacity). 
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Figure 6.6: Effects of the frame length Lf on the response of frames  

with zero eccentricity (spring stack has infinite travel capacity). 
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Figure 6.7: Effects of the frame length Lf on the response of frames  

with intermediate eccentricity (spring stack has infinite travel capacity).  
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Figure 6.8: Effects of the initial stress on the response of frames  

with zero eccentricity and k=0.5 (spring stack has infinite travel capacity). 
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Figure 6.9: Effects of the initial stress on the response of frames  

with zero eccentricity and k=2.0 (spring stack has infinite travel capacity). 
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Figure 6.10: Effects of the initial stress on the response of frames  

with zero eccentricity and k=0.5 (spring stack has infinite travel capacity). 
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Figure 6.11: Effects of the initial stress on the response of frames with intermediate 

eccentricity and k=2.0 (spring stack has infinite travel capacity).  
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Figure 6.12: Effects of the unbonded length Hunb on the response of frames with zero 

eccentricity and k=0.5 (spring stack has infinite travel capacity). 
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Figure 6.13: Effects of the unbonded length Hunb on the response of frames with zero 

eccentricity and k=2.0 (spring stack has infinite travel capacity). 
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Figure 6.14: Effects of the unbonded length Hunb on the response of frames with 

intermediate eccentricity and k=0.5 (spring stack has infinite travel capacity). 
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Figure 6.15: Effects of the unbonded length Hunb on the response of frames with 

intermediate eccentricity and k=2.0 (spring stack has infinite travel capacity). 
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Figure 6.16: Effects of the relative stiffness k on the response of frames with zero eccentricity 

(spring stack clamps at PT stress of 0.75 Fpy). 
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Figure 6.17: Response F-38 to pushover load: (a) Moment-drift history;  

(b) Force at the PT bar vs drift; (c) Force at the gap element that represented  

the clamping mechanism. 
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Figure 6.18: Moment-drift response of F-44  

(spring stack clamps at PT bar stress of 0.75 Fpy). 
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Figure 6.19: Effects of the relative stiffness k on the response of frames  

with zero eccentricity (spring stack has finite travel capacity). 
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Figure 6.20: Prototype frames where the PT bars are extended to the first floor  

instead of the roof.  

 

 

Figure 6.21: Benefits of extending the PT bars to lower floors.  
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CHAPTER 7  

NONLINEAR DYNAMIC ANALYSIS  

7.1 INTRODUCTION  

This chapter presents the results of the nonlinear dynamic analysis of the prototype frames. 

The frames were subjected to a set of actaul recorded ground motions scaled to the Design 

Based Earthquake (DBE) and the Maximum Considered Earthquake (MCE) levels.  A toatl 

of 44 ground motion records were considered.  

Note that presenting the complete time history responses for all the ground motions would 

be impractical. Instead, the results of this chapter are presented in two parts: The first part 

focuses on the nonlinear time history response of frames F-1, F-4, F-37, and F-40 to the 

Hector Mine earthquake. This enables a close look at the time history response parameters 

of interest to determine if they are expected. The second part presents a  summary of the 

peak responses of all the prototype frames having zero eccentricity and listed in Tables 6.1 

and 6.2.  

 

7.2 FE MODEL 

Figures 7.1 and 7.2 show the FE models used in the dynamic analyses. Note that these FE 

modes are based on previous FE model developed by Chancellor (2014) for steel rocking 

frames, but the actual model is updated here to account for the spring stack and the 

clamping associated with it. Figure 7.1 shows the model for frames with spring stack with 

infinite travel capacity. Figure 7.2 shows the model for frames with spring stacks with finite 



 

135 

 

travel capacity. The FE models shown in Figures 7.1 and 7.2 are similar to the FE models 

described in Chapter 4 for the static pushover analyses with a few changes in rocking frame 

modeling, support assignment, PT steel modeling, and the allocation of the gravity loads 

as desribed in the following sections.  

 

7.2.1 Rocking frame modeling  

The prototype rocking frames are modeled as elastic as shown in Figures 7.1 and 7.2. The 

joints between the beam-column elements are assumed to be rigid. The beam column 

elements have uniform cross-sectional dimensions of 30×7 inches. The modulus of 

elasticity of the elements is 900,000 psi.   

 

7.2.2 Support assignment  

Figures 7.1 and 7.2 show the modified support layout of the FE model used in the dynamic 

analyses. In contrast to the static FE model developed in Chapter 4, this model permits a 

vertical gap opening at both the left and the right supports under the action of the dynamic 

loads. This layout follows the work done by Chancellor (2014) for steel rocking frames. 

 

7.2.3 PT bar modeling  

The PT bar is modeled as a corotational truss element (i.e. the local axies of the element 

are updated according to the deformed position) to account for the nonlinear geometry 

during the response. However, the static FE model developed in Chapter 4 neglected these 
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effects. The corotational element is assumed to be massless and connected through the 

nodes shown in Figures 7.1 and 7.2.  

 

7.2.4 Lean on column 

To capture the secondary moment due to P-∆ effects, a lean on column is used in the 

dynamic FE model (Chancellor 2014). The column is an elastic beam-column connecting 

the nodes 24 to 27 and pinned to the ground as shown in Figures 7.1 and 7.2. The nodes of 

the lean-on-column are constrained horizontally to the rocking frame using an equal 

displacement constraint (Chancellor 2014).  

 

7.2.5 Mass calculation and assignment  

Figures 7.1 and 7.2 show the location of the masses assigned to the dynamic FE model. 

The mass allocated to the rocking frame represents the mass collected by its tributary area. 

The lean on column picks up the remaining floor mass.  

Since there are two rocking frames in the X-direction of the prototype building, half of the 

building mass goes to the dynamic FE model and thus, the results in this chapter including 

the base shear and the bending moments are half of the total values for the entire prototype 

building. Note that the mass assigned to the FE model includes the dead load of the 

prototype building and 25% of the live load.   

 



 

137 

 

7.2.6 Solution and time stepping methods  

Performing the transient analysis of the prototype frames followed these steps:  

1. The eigensolver is used to find the natural frequencies of the FE model, and this 

serves two purposes. First, knowing the required time step to avoid aliasing. 

Second, using the natural frequencies in calculating Rayleigh damping 

parameters. Table 7.1 lists the natural frequencies and the corresponding 

periods of the prototype frame.  

2. An unconditionally stable Newmark integrator with =0.5 and β=0.25 are 

implemented.  

3. Newton line search algorithm is used to solve the nonlinear equations with an 

energy increment test having a tolerance of 10E-8. The parameters of the line 

search method were used so that Bisection line search is implemented with 

MaxETA=0.2, MinETA=0.1 and a maximum number of iterations of 1000. The 

line search algorithm had a search tolerance of 0.1, which is more conservative 

than the recommended value of 0.8 by (M.A. Crisfield 1991).  

4.  The time step is chosen to be 0.003 sec, which should provide reasonable 

accuracy since the period of the highest mode considered is 0.024 sec as shown 

in Table 7.1.  

 

7.2.7 Damping  

The FE model implements Rayleigh proportional damping to represent the energy 

dissipation during vibration. The damping ratios of the 1st and the 4th modes are assumed 



 

138 

 

to be 4% and 3.3% respectively. Thus, Rayleigh damping coefficients are (ao= 0.9131) and 

(a1=0.0003), leading to the damping ratios shown in Table 7.1. Note that 4% damping for 

the 1st mode is less than the given range (5-7%) for timber structures at the working stress 

level as given by Chopra (2007). The damping for the 4th mode is chosen so that it does 

not cause too much damping for other modes.   

 

7.2.8 Ground motions selection and scaling  

A total of 22-pair ground motions were used in the dynamic analyses of the prototype 

frames. These ground motions are the “Far-Field” record set given in the FEMA P695, 

and Table 7.2  lists the name, location, and the magnitude of these events.  

The procedure of scaling the ground motions to the DBE, and the MCE according to the 

ASCE 7-10 is as follows. First, the records of the ground motions are available on  

(http://www.csuchico.edu/structural/researchdatabases/ground_motion_sets.shtml). 

Second, the eigensolver in OpenSEES (Mazzoni et al. 2006) was used to determine the 

fundamental period of the FE model (T). Third, the scaling factor for the DBE was 

chosen so that the mean value of the spectral acceleration for the periods ranging from 

0.2T to 1.5T is equal the design spectral acceleration of site location. As a result, the 

scaling factors for the DBE and the MCE are determined to be 0.87 and 1.3 respectively. 

 

http://www.csuchico.edu/structural/researchdatabases/ground_motion_sets.shtml
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7.3 TIME HISTORY RESPONSE OF HECTOR MINE EARTHQUAKE 

This section presents the time history response of frames F-1, F-4, F-37 and F-40 to Hector 

Mine earthquake scaled to the DBE and the MCE levels. It noted that: 

1.  F-1 and F-4 have spring stacks with infinite travel capacities, whereas F-37 and F-

40 have spring stacks with finite travel capacities; 

2. F-1 and F-37 have relatively flexible spring stacks (k=0.2), whereas F-4 and F-40 

have relatively stiff spring stacks (k=2).  

The results below compare the response of F-1 with F-4 and F-37 with F-40. This is 

because the aim of this section is to understand the impact of the spring stack stiffness on 

the dynamic response.  

 

7.3.1 Floor displacements and roof drift  

Frames 1,4  

Figures 7.3, 7.4, 7.5, and 7.6 show the floor displacements, and the roof drifts of F-1 and 

F-4 due to the DBE. In general, the figures demonstrate that the peak displacements and 

drifts of F-1 (k=0.2) were larger than the peaks of F-4 (k=2). Indeed, the peak floor 

displacements of F-1 were 27%, 33%, and 29% greater than F-4 peak floor displacement. 

Notice that having a relatively flexible spring stack such as the case for F-1 causes the 

frame to have small lateral stiffness after the gap opening. Thus, F-1 is expected to undergo 

more lateral displacement than F-4 assuming that both are subjected to the same lateral 
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force, and the gap at the base of the frame is opened. This could explain why F-1 

experienced larger peaks than F-4.  

Figures 7.7, 7.8, 7.9, and 7.10 present the floor displacements and the drifts of F-1 and F-

4 due to to the MCE. As expected, we can see that the peak responses are higher than the 

DBE level. Also, the peak responses for F-1 are still larger than F-4. In fact, the peak floor 

displacements of F-1 were 8%, 9%, and 9% greater than F-4 peaks. These increased values 

are less than the increases in peak floor displacements obtained under the DBE.   

Interestingly, the plots show that when the gap at the base of the frame opens, the natural 

period of F-1 is slightly longer than F-4, which is as expected because F-1 has less lateral 

stiffness after the gap opening.  

 

Frames 37,40  

Figures 7.11, 7.12, 7.13, 7.14 show the floor displacements, and the roof drifts of F-37 and 

F-40 due to the DBE. The figures illustrate that the peak responses of F-37 are larger than 

that of F-40. Also, it could be noticed that the responses of F-37 and F-40 are exactly 

similar to that of F-1 and F-4 under the same earthquake because the DBE was not high 

enough to cause clamping of the spring stack.  

Figures 7.15, 7.16, 7.17, and 7.18 show the response of F-37 and F-40 due to the MCE, 

and again the response under the MCE is larger than the DBE. Again, the peak responses 

of F-37 are greater than F-40. Notice again that the natural period of F-37 is slightly longer 

than F-40 since F-37 has less lateral stiffness after the gap opening.  
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It is observed that F-1 and F-37 responses under the MCE decay more quickly than F-4 

and F-40. It is important to note that F-4 and F-40 experienced yielding of the PT steel 

which should reduce the PT force, and thus the decompression moment Mdec. This would 

make it easier for F-4 and F-40 to rotate as a rigid body after a significant loss of the PT 

force. The implication of this reduction in the PT force is that the small lateral forces acting 

on the rocking frame by the end of the ground motion can easily cause the gap at the base 

of the frame to open and lead to large lateral displacements due to the rigid body rotation. 

However, F-1 and F-37 did not experience yielding, and thus the decompression moment 

remains the same by the end of the ground motion. As a result, the small lateral forces 

acting on the frame by the end of the ground motion will not cause the gap to open, and the 

frame will vibrate without any rigid body rotations. This explains why F-1 and F-4 response 

seem to decay quickly, while F-4 and F-40 seem to continue vibrating with larger 

amplitudes by the end of the ground motion.  

 

7.3.2 PT Force   

Frames 1,4  

Figure 7.19 shows the force at the PT bar of F-1 and F-4 due to the DBE. The figure implies 

that the peak PT force of F-1 is smaller than that of F-4. The reason is that F-1 has a flexible 

spring stack (k=0.2) that leads to a reduction in the effective stiffness of the assembly 

(Accorsi and Sarisley 1990), whereas the F-4 has stiff spring stack (k=2) leading to 

increase the stiffness and the peak PT force.  
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The difference between the peak PT forces developed in F-1 and F-4 becomes more 

apparent when the MCE is applied. As shown in Figure 7.20, the peak PT force of F-4 has 

significantly increased that it eventually reached the yield stress. As a result, F-4 

encountered a loss in the PT force due to this yielding, but the PT force of F-1 remains the 

same.  

 

Frames 37,40  

Figure 7.21 shows the PT force developed in F-37 and F-40 due to the DBE, and it can be 

seen that it is similar to that of F-1 and F-4 shown in Figure 7.19 since the DBE was not 

enough to cause clamping of the spring stack.  

However, the force response due to the MCE is shown in Figure 7.22. Interestingly, both 

of F-4 and F-40 experienced yielding of the PT bar as shown in Figures 7.22 and 7.20, but 

it appears that F-40 experienced more PT loss than F-4.  

 

7.3.3 Spring stack force and displacement  

Frames 1,4  

Figures 7.23, and 7.24 show the spring stack force and the corresponding displacement 

under the DBE. The spring stack of F-40 experienced large peak force, but less peak 

displacement in comparison with F-1. This discrepancy comes as expected since F-4 has 

stiff spring stack (k=2).  
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Figures 7.25 and 7.26 show the spring stack force and the corresponding displacement 

under the MCE level. It can be seen that the spring stack force is equal to the force of the 

PT bar shown in Figure 7.20 because the FE model connects the spring stack and the PT 

bar in series. Also, the spring stack force drops as yielding occurs at PT bar of F-4. 

Additionally, the spring stack experienced some relaxation by having a negative 

displacement due to the reduction of the PT force due to yielding. Again, the spring stack 

of F-4 experienced more force and less displacement. Moreover, it does capture the 

decrease in the PT force due to yielding.  

 

Frames 37, 40  

Figures 7.27 and 7.28 show the spring stack force and the corresponding displacement due 

to the DBE. The response is similar to that of F-1 and F-4 because the spring stack did not 

clamp during the DBE.  

Figures 7.29 and 7.30 show the response under the MCE. It can be seen that the spring 

stack of F-40 has reached its maximum travel capacity (clamping) due to the increased 

force at the PT bar. Also, the force at the spring stack does not increase once clamping 

occurs. In fact, Figure 7.31 shows that the gap element picks up the additional load beyond 

clamping and prevents the spring stack from deforming.  

Figure 7.30 reveals that the spring stack of F-40 did not return to its initial static position 

of equilibrium since the force at the PT bar was reduced due to the yielding. F-37 

experienced more peak displacement and less peak PT force, but no damage by yielding.  
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7.3.4 Overturning moment vs. roof drift  

Frames 1,4  

Figure 7.32 shows the recorded overturning moment of F-1 and F-4 versus the roof drift 

due to DBE. We can see that F-4 has more stiffness after the DEC limit state since it has a 

spring stack that is stiffer than F-1. Also, no hysteretic behavior in either F-1 or F-4 is 

present because no yielding occurred under the DBE level.  

On the contrary, the response under the MCE is different and is shown in Figure 7.33. The 

figure demonstrates that the MCE caused the PT steel of F-4 to yield leading to the 

hysteresis loop shown. Also, the figure indicates that the drop in the PT force of F-4 caused 

the decompression moment to be less and this explains the secondary backbone curve of 

F-4 shown in Figure 7.33.  

In contrast to F-4, the PT steel of  F-1 did not yield, and there was no loss in the PT force 

as illustrated in Figure 7.33. It is clear that both of F-1 and F-4 recentered after the 

earthquake ended.  

 

Frames 37,40  

Figure 7.34 shows the response of F-37 and F-40 under the DBE. Both of F-37 and F-40 

follow the same responses of F-1 and F-4 shown in Figure 7.32 since the DBE did not 

induce clamping of the spring stack.  

Figure 7.35 shows the response to the MCE, and it indicates that the PT bar of F-40 

experienced yielding that led to the hysteretic behavior shown. However, we can see that 
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the clamping of the spring stack caused some gain in stiffness after the gap opening 

(marked with an arrow in Figure 7.35), which complies with the findings of the parametric 

study presented in Chapter 6. 

Figure 7.35 shows that the DEC moment becomes smaller after yielding of F-40 steel, and 

this leads to the secondary backbone path. However, the remaining PT force was larger 

enough to cause recentering  of the rocking frame by the end of the earthquake.  

 

7.3.5 Vertical reaction at supports  

Frames 1,4  

Figures 7.36 and 7.37 present the vertical reactions at the base of F-1 and F-4 under DBE. 

The figures show that the supports are originally in compression due to the initial PT force 

and the gravity loads on the rocking frame. Also, the supports carry compression loads 

only as intended when building the FE model. Note that the gap at the base of the frame 

opens when the reaction is zero. Now, the peak reactions of F-4 are larger than that of F-1, 

and the reason is that F-4 developed more PT force during its response due to stiff springs.  

Figures 7.38 and 7.39 present the response due to the MCE level. The frames exhibit more 

reactions than the DBE level, but the peak reaction of F-4 is still larger than F-1.  

 

Frames 37,40 
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Figures 7.40 and 7.41 show the vertical reactions at the base of F-37 and F-40 under the 

DBE. The response is the same to the response of F-1 and F-4 shown in Figures 7.36, 7.37 

because there was no clamping of the spring stack during the earthquake.   

Figures 7.42 and 7.43 show the vertical reaction at the base of F-37 and F-40 under the 

MCE. We can see that the peak vertical reaction at F-40 is larger than the peak vertical 

reaction of F-37 because the peak PT force developed in F-40 is greater than F-37. 

Moreover, the reactions are greater than the once obtained under the DBE. Notice that 

while F-4 and F-40 developed more peak vertical reactions under the MCE, their response 

has a lower amplitude than F-1 and F-4 by the end of the ground motion. This is because 

both of F-4 and F-40 experienced a reduction of the PT force due to yielding, which reduces 

the vertical reaction at the supports.  

 

7.3.6 Vertical gap at supports  

Frames 1,4  

Figures 7.44 and 7.45 show the vertical displacement of the left and the right supports due 

to the DBE. We can see that the peak displacement for F-1 is larger than F-4.  

Figures 7.46 and 7.47 show the vertical displacement due to the MCE level. It is greater 

than the DBE response, but the peak vertical displacement of F-1 is still bigger than F-4.  

 

Frames 37,40  
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Figures 7.48 and 7.49 show the vertical displacement due to the DBE, and it is equal to that 

of F-1 and F-4 for the same DBE as shown in Figures 7.44 and 7.45. However, Figures 

7.50, 7.51 demonstrate the response under the MCE, and the same trend could be seen that 

F-37 has larger peak vertical displacement than F-40.  

Note that F-4 and F-40 have more frequent gap opening than F-1 and F-37 under the MCE. 

This is explained by the fact that the yielding of the PT steel reduces the decompression 

moment. Thus, it was easier for F-4 and F-40 to open the gap at the base of the frame even 

with small lateral force.     

 

7.3.7 Brace forces  

Figures 7.52 and 7.53 show the first story brace forces of F-1, F-4, F37, and F-40 under the 

DBE. All braces were originally in compression due to the initial PT force besides the 

gravity loads on the rocking frame. We see that the tension force in the braces is too small 

because the base of the column is free to move laterally and vertically when the gap at the 

base of the frame opens. Figures 7.54and 7.55 show the response due to the MCE, and the 

peak forces are higher than the DBE.  

 

7.3.8 Base shear and overturning moment history  

Frames 1,4  

Figures 7.56 and 7.57 show the base shear and the overturning moment of F-1 and F-4 

under the DBE. In general, the peak overturning moment and base shear of F-1 are less 
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than F-4 under the DBE. Indeed, peak base shear for F-1 is 20% less, while the overturning 

moment is 14% less.  

Figures 7.58 and 7.59 show the base shear and the overturning moment of F-1 and F-4 

under the MCE. The peak base shear for F-1 is 9% higher than F-4, while the overturning 

moment is 21% less.   

 

Frames 37,40  

Figures 7.60 and 7.61 show the base shear and the overturning moment history response 

of F-37 and F-40 under the DBE, and it is similar to the base shear and overturning moment 

of F-1 and F-4 under the DBE. This similarity is attributed to the fact that no clamping of 

the spring stack occurred under the DBE.  

On the other hand, the response under the MCE in Figures 7.62 and 7.63 show that F-37 

developed more peak base shear and less peak overturning moment than F-40.  

 

7.3.9 Floor accelerations 

Figures 7.64, 7.65, 7.66 and 7.67 show the floor accelerations of F-1 and F-4 due to the 

DBE with the ground motion time history, which are similar to that of F-37 and F-40 shown 

in Figures 7.68, 7.69 and 7.70. Under the DBE, the peak floor accelerations of F-1 and F-

37 are less than the peaks of F-4 and F-40. Note that this is consistent with the previous 

finding that the peak base shear for F-1 and F-37 were less than F-4 and F-40 peaks for the 

DBE.   
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Also, the results for the MCE with the ground motion history are shown in Figures 7.71, 

7.72, 7.73 and 7.74 for F-1 and F-40 and Figures 7.75, 7.76and 7.77 for F-37 and F-40. 

The peaks of the floor accelerations for F-1 and F-37 are larger than F-4 and F-40 under 

the MCE. Again, this is consistent with the finding that the peak base shear for F-1 and F-

4 is larger than the other frames.   

 

7.4 PEAK RESPONSES  

This section summarizes the peak responses of the prototype frames (F-1, F-4, F-6, F-37, 

F-40, and F-43) to the entire set of 44 Far-Field ground motion record given in the FEMA 

P695.  The above frames are in three groups:  

1) F-1 and F-4 have spring stacks with infinite travel capacities (i.e. spring 

does not clamp); 

2) F-37 and F-40 have spring stacks with finite travel capacities (i.e. spring 

does clamp); 

3) F-6 is a standard rocking frame without disc springs.  

It is noted that F-1 and F-37 have spring stack with k=0.2, while F-4 and F-40 have spring 

stack with k=2.0. The peak responses of interest are the followings: (1) base shear; (2) 

overturning moment; (3) roof drift; (4) maximum PT force (5) residual PT force; (6) inter-

story drifts; (7) storiy displacements; and, (8) roof acceleration.  
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7.4.1 Base shear  

F-1, F-4, and F-6  

Figure 7.78 shows the peak recorded base shear for F-1, F-4, and F-6 due to the 22-pair 

ground motions scaled to the DBE. The figure illustrates that the peak base shear of 

different frames is essentially the same for the given ground motions are applied.  

Figure 7.79 shows the maximum recorded base shear of F-1, F-4, and F-6 under the MCE. 

As expected, the figure shows that peak base shear under the MCE is larger than the DBE.  

 

F-37, F-40, and F-6 

Figure 7.80 shows the peak base shear of F-37, F-40, and F-6 under the DBE. It worth 

mentioning that under certain earthquakes scaled to the MCE, (EQ ID =11 in Figure 7.82 

for example) the peak recorded base shear of F-40 is different from F-4 peak base shear. 

This difference means that the clamping of the spring stack of F-40 during the response 

could affect the peak base shear.  

Table 7.3 lists the average peak base shear and the standard deviation of the 22-pair ground 

motions. In general, the frames with flexible spring stack (k=0.2) developed slightly less 

peak shear.  

 

7.4.2 Overturning moment  

F-1, F-4, and F-6 
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Figure 7.82 shows the peak recorded the overturning moment of F-1, F-4, and F-6 due to 

the DBE. In most cases, the peak overturning moment of F-1 is less than that of F-4 and F-

6, and this is because the peak PT force of F-1 is always less.   

Figure 7.83 shows the peak recorded overturning moment under the MCE. Although F-1, 

F-4, and F-6 experienced an increase in the peak overturning moment due to the MCE, F-

1 experienced the smallest increase. This is because the PT steel of F-1 experienced the 

smallest increase in the peak force due to its relatively flexible spring stack.   

 

F-37, F-40, and F-6  

Figure 7.84 shows the peak overturning moment of F-37 and F-40 under the DBE. In a 

similar manner to F-1 and F-4, the peak overturning moment of F-37 is less than that of F-

40 and F-6 since the peak PT force of F-37 is less.  

Figure 7.85 shows the peak recorded overturning moment at the base of F-37, F-40, and F-

6 due to the MCE. In general, the peak overturning moment under the MCE is larger than 

the peak overturning moment under the DBE. It is noted that F-37 continues at have the 

least peak overturning moment.  

Table 7.4 lists the average peak recorded overturning moments due to the Far-Field record 

set. Ingeneral, frames with flexible spring stack (k=0.2) developed less peak overturning 

moment.  
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7.4.3 Maximum and residual PT force  

F-1, F-4, and F-6 

Figure 7.85 shows the maximum recorded PT force during the 22-pair ground motions 

scaled to the DBE. The figure follows the trend that F-1 always exhibits the lowest increase 

in the PT force, while F-6 encounters the largest increase. However, Figure 7.87 shows that 

F-6 reached the yield stress in 4 out of the 44 ground motions, while F-1 and F-4 never 

experienced yielding in any of the ground motions. 

Figure 7.88 shows the maximum PT force due to MCE ground motion level. The figure 

indicates that the MCE in general induced more peak PT force than the DBE. Also, as 

illustrated in Figure 7.89, F-6 encountered yielding in 20 out of the 44 ground motions, 

while F-4 encountered yielding in 11 of them. However, the figure shows that the residual 

PT force of F-4 was always larger than that of F-6.  

Interestingly, Figure 7.89 showes that F-6 fully lost its PT force three times, but F-1 never 

yielded in any of the ground motions. This shows that the more flexible the spring stack, 

the less maximum PT force is developed provided that the rocking frames are pushed 

laterally the same magnitude.    

 

F-37, F-40, and F-6 

Figure 7.90 shows the peak PT force developed during the DBE response of F-37, F-40, 

and F-6. In a similar manner to the previous F-1 and F-4, the maximum developed PT force 

is less for the frame that has flexible spring stack. As a matter of fact, we can see in Figure 
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7.91 that F-6 encounters yielding in 4 out of 44 ground motions, whereas F-40 yielded in 

only one of them and F-37 never yielded. Note that F-4 in Figure 7.87 never yielded in any 

of the ground motions, but F-37 in Figure 7.91 yielded once because of the clamping of the 

spring stack that suddenly increases the PT force and causes yielding.   

Figure 7.92 shows the maximum PT force under the MCE, and it implies that the MCE 

induced more peak PT force. In particular, F-40 reached yielding in 14 out of the 44 ground 

motions as seen in Figure 7.93 and one of these cases caused a total loss of the PT force. 

Still, F-37 like F-1; it never yielded, and the residual PT force always equals the initial 

force.   

Table 7.5 lists the average peak PT forces due to the 44-pair ground motions. In general, 

the frames with flexible spring stack (k=0.2) developed less peak PT force. 

 

7.4.4 Roof drift  

F-1, F-4, and F-6  

Figure 7.94 shows the maximum recorded drift due to the DBE. The figure indicates that 

even with different spring stack stiffnesses, F-1 and F-4 have exhibited the same  response 

if the ground motion does not push the frames far beyond their decompression (DEC) limit 

state.  

Figure 7.95 shows the maximum recorded roof drift due to the MCE. The peaks are higher 

than the peaks obtained under the DBE. However, most frames were pushed far beyond 

their DEC limit state under the MCE, and this led to the results shown in Figure 7.95.  
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F-37, F-40, and F-6  

Figure 7.96 shows the maximum recorded drift due to the DBE. However, some 

earthquakes caused clamping of the spring stack and led to slightly different results than 

F-1 and F-4.  

Figure 7.97 shows the response due to the MCE, and it can be seen that the maximum drifts 

are generally larger than the DBE.   

Table 7.7 lists the average peak recorded roof drifts due to the 22-pair ground motions. In 

general, frames with flexible spring stack (k=0.2) underwent larger roof drift. This 

behavior is expected since frames with flexible spring stacks have small lateral stiffness 

after the gap opening.   

 

7.4.5 Roof acceleration  

Figures 7.98 and 7.99 show the peak roof acceleration of F-1, F-4, and F-6 under the DBE 

and the MCE. It can be seen that the peak responses are essentially very close. Figures  

7.100 and 7.101 show the peak roof acceleration of F-37, F-40, and F-6 under the DBE and 

the MCE. As expected, the figures indicate that the peaks are higher for the MCE than the 

DBE.  

Table 7.6 lists the average peak recorded floor acceleration due to the 22-pair ground 

motions. The table shows that the average roof drift is similar. However, the average for 

the MCE is larger than the DBE.   



 

155 

 

 

7.4.6 Maximum inter-story drift and displacement  

Figures 7.102, 7.103, 7.104, 7.105, 7.106 and 7.107 show the maximum recorded interstory 

drifts and the corresponding floor displacements of F-1 and F-4 under the DBE. Figures 

7.108, 7.109, 7.110, 7.111, 7.112 and 7.113 show the peak drifts and the corresponding 

floor displacement under the MCE for F-1 and F-4. The response is generally higher for 

the MCE than the DBE.  

Figures 7.114, 7.115, 7.116, 7.117, 7.118 and 7.119 show the peak drifts and the 

corresponding floor displacements of F-37 and F-10 under the DBE. Figures 7.120, 7.121, 

7.122, 7.123, 7.124 and 7.125 display the response the MCE. Notice that under low 

intensity seismic load, especially for the cases where F-6 did not reach the LLP limit state, 

the response of F-1, F-4, F-37, F-40, and F-6 matches. This is expected because these 

frames have the same backbone curves up to the DEC limit state (i.e. before the DEC limit 

state, all deformations are elastic, and there is no rigid body rotation). Thus, the low 

intensity seismic load would push F-1, F-4, F-37, F-40, and F-6 to the same peak lateral 

displacement since their backbone curves are similar in this special case.  However, if the 

seismic load is causing the frames to go far beyond their DEC limit state, their backbone 

curves would diverge and lead to different peak lateral displacements. 
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7.5 AVERAGE PEAK RESPONSES 

Note that peak responses presented in Section 7.4 are only for F-1, F-4, F-6, F-37, and F-

40 to keep the discussion focused. However, this section presents the average peak 

response of the entire frames with zero eccentricity listed in Tables 6.1 and 6.2 due to the 

22-pair ground motions scaled to the DBE and MCE.  

Figure 7.126 shows the average peak response of the first group in Table 6.1, which has 

spring stacks with infinite travel capacities. The followings are noticed: (1) the peak 

average base shear has negligible increase; (2) under both the DBE and MCE, the average 

overturning moment and the PT force is reduced with the reduction of the spring stack 

stiffness; and, (3) the average peak roof acceleration and roof drift have negligible change.  

Figure 2.127 shows the average peak response of the second group shown in Table 6.2, 

which have spring stacks with finite travel capacities. Notice that the same observations 

mentioned above apply to this figure. In fact, the differences between Figures 7.126 and 

7.127 are barely dsitingushable. It is important to notice that frames with flexible spring 

stacks, k=0.2 for example, have the same peak average value for all the response quantities 

whether we allow the spring stack clamping or not as shown in Tables 7.3, 7.4, 7.5, and 

7.6. This is because these frames never reached the LLP limit state (yielding of the PT 

steel) during the ground motion because of the flexible spring stack.  
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7.6 CONCLUSIONS   

1. The dynamic analyses show that even though a set of rocking frames have the 

same dimensions and PT steel area, adding a disc spring stack with variable 

stiffness could alter the dynamic response of each frame.   

2. Frames with flexible spring stacks are likely to develop less peak PT force 

during the ground motions. This was explained by the fact that adding the 

spring stack reduces the effective stiffness of the assembly (Accorsi and 

Sarisley 1990).  

3. The dynamic analyses show that even though significant ground motions are 

applied to the frames, the residual PT force of frames having flexible spring 

stacks is always more than other frames with stiff spring stack. In fact, the 

frames with k=0.2 (i.e. flexible spring stack) had never experienced yielding 

in any of the ground motions in this study. This is attributed to the flexible 

spring stack.   

4. The dynamic analyses demonstrate that the moment hysteresis loop for a frame 

with k=0.2 (flexible spring stack) is likely to be flat after the frame 

decompression, while the hysteresis loop of a frame with k=2.0 (stiff spring 

stack) is steeper under the same circumstances.  

5. The clamping of the spring stack during the ground motions caused a sudden 

increase in the PT force. Interestingly, the moment hysteresis loop of frames 

where the spring stack clamped during the dynamic response has shown to 

gain lateral stiffness after clamping.  
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Table 7.1: Natural frequencies and damping ratios. 

 

  

Mode Frequency (Hz) Period (sec) Damping Ratio (%) 

1 11.8 0.529 4.0 

2 34.9 0.187 1.8 

3 62.8 0.100 1.6 

4 209.4 0.030 3.3 

5 314.1 0.026 3.7 

6 314.1 0.024 3.9 
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Table 7.2: ATC-63 far-field ground motion set (Haselton 2008). 

EQ ID Name Year Magnitude 

PEER-NGA 

Sequence 

Number 

1st Component 2nd Component 

Peak 

Ground 

Accelerati

on (g) 

Peak 

Ground 

Velocity 

(cm/sec) 

1-2 Northridge 1994 6.7 953 NORTHR/MUL009 NORTHR/MUL279 0.52 63 

3-4 Northridge 1994 6.7 960 NORTHR/LOS000 NORTHR/LOS270 0.48 45 

5-6 Duzce, Turkey 1999 7.1 1602 DUZCE/BOL000 DUZCE/BOL090 0.82 62 

7-8 Hector Mine 1999 7.1 1787 HECTOR/HEC000 HECTOR/HEC090 0.34 42 

9-10 Imperial Valley 1979 6.5 169 IMPVALL/H-DLT262 IMPVALL/H-DLT352 0.35 33 

11-12 Imperial Valley 1979 6.5 174 IMPVALL/H-E11140 IMPVALL/H-E11230 0.38 42 

13-14 Kobe, Japan 1995 6.9 1111 KOBE/NIS000 KOBE/NIS090 0.51 37 

15-16 Kobe, Japan 1995 6.9 1116 KOBE/SHI000 KOBE/SHI090 0.24 38 

17-18 Kocaeli, Turkey 1999 7.5 1158 KOCAELI/DZC180 KOCAELI/DZC270 0.36 59 

19-20 Kocaeli, Turkey 1999 7.5 1148 KOCAELI/ARC000 KOCAELI/ARC090 0.22 40 

21-22 Landers 1992 7.3 900 LANDERS/YER270 LANDERS/YER360 0.24 52 

23-24 Landers 1992 7.3 848 LANDERS/CLW-LN LANDERS/CLW-TR 0.42 42 

25-26 Loma Prieta 1989 6.9 752 LOMAP/CAP000 LOMAP/CAP090 0.53 35 

27-28 Loma Prieta 1989 6.9 767 LOMAP/G03000 LOMAP/G03090 0.56 45 

29-30 Manjil, Iran 1990 7.4 1633 MANJIL/ABBAR--L MANJIL/ABBAR--T 0.51 54 

31-32 Superstition Hills 1987 6.5 721 SUPERST/B-ICC000 SUPERST/B-ICC090 0.36 46 

33-34 Superstition Hills 1987 6.5 725 SUPERST/B-POE270 SUPERST/B-POE360 0.45 36 

35-36 Cape Mendocino 1992 7.0 829 CAPEMEND/RIO270 CAPEMEND/RIO360 0.55 44 

37-38 Chi-Chi, Taiwan 1999 7.6 1244 CHICHI/CHY101-E CHICHI/CHY101-N 0.44 115 

39-40 Chi-Chi, Taiwan 1999 7.6 1485 CHICHI/TCU045-E CHICHI/TCU045-N 0.51 39 

41-42 San Fernando 1971 6.6 68 SFERN/PEL090 SFERN/PEL180 0.21 19 

43-44 Friuli, Italy 1976 6.5 125 FRIULI/A-TMZ000 FRIULI/A-TMZ270 0.35 31 
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Table 7.3: Average peak base shear due to the Far-Field ground motion set.  

 

 

 

 

 

 

 

 
Relative stiffness 

k 

DBE MCE 

 

Mean (kips) 

 

Standard 

Deviation (kips) 

 

Mean (kips) 

 

Standard 

Deviation (kips) 

Spring stack has 

infinite travel 

capacity 

k=0.2 109.0 26.1 154.0 47.0 

k=0.5 111.2 27.1 157.9 44.0 

k=1.0 113.5 27.7 159.2 46.2 

k=2.0 113.7 27.0 157.5 43.4 

Spring stack has 

finite travel 

capacity 

k=0.2 109.0 26.1 154.0 47.0 

k=0.5 111.2 27.1 158.2 44.7 

k=1.0 113.5 27.7 158.4 44.6 

k=2.0 114.0 26.9 157.7 44.3 
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Table 7.4: Average peak overturning moment due to the Far-Field record set.  

 

 

 

 

 

 

 

 
Relative stiffness 

k 

DBE MCE 

 

Mean (kips.in) 

 

Standard 

Deviation (kips.in) 

 

Mean (kips.in) 

 

Standard 

Deviation (kips.in) 

Spring stack has 

infinite travel 

capacity 

k=0.2 17218 643 18397 1107 

k=0.5 18253 1242 20480 2099 

k=1.0 19107 1624 22062 2623 

k=2.0 19980 2249 23194 2679 

Spring stack has 

finite travel 

capacity 

k=0.2 17218 643 18397 1107 

k=0.5 18253 1242 21006 2865 

k=1.0 19224 1899 22585 3018 

k=2.0 20144 2573 23572 2801 
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Table 7.5: Average peak PT force due to the Far Field record set.  

 

 

 

 

 

 

 

 
Relative stiffness 

k 

DBE MCE 

 

Mean (kips) 

 

Standard 

Deviation (kips) 

 

Mean (kips) 

 

Standard 

Deviation (kips) 

Spring stack has 

infinite travel 

capacity 

k=0.2 191.0 10.7 210.7 18.5 

k=0.5 208.2 20.7 245.4 35.1 

k=1.0 222.5 27.1 271.8 43.8 

k=2.0 237.0 37.5 290.6 44.7 

Spring stack has 

finite travel 

capacity 

k=0.2 191.0 10.7 210.7 18.5 

k=0.5 208.2 20.7 254.2 47.8 

k=1.0 224.4 31.7 280.5 50.4 

k=2.0 239.7 42.9 297.0 46.7 
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Table 7.5: Average peak roof acceleration due to the Far-Field record set.  

 

 

 

 

 

 

 

 
Relative stiffness 

k 

DBE MCE 

 

Mean (g) 

 

Standard 

Deviation (g) 

 

Mean (g) 

 

Standard 

Deviation (g) 

Spring stack has 

infinite travel 

capacity 

k=0.2 0.802 0.255 1.246 0.427 

k=0.5 0.817 0.275 1.252 0.408 

k=1.0 0.836 0.281 1.269 0.407 

k=2.0 0.826 0.270 1.251 0.407 

Spring stack has 

finite travel 

capacity 

k=0.2 0.802 0.255 1.246 0.427 

k=0.5 0.817 0.275 1.256 0.409 

k=1.0 0.836 0.281 1.263 0.402 

k=2.0 0.826 0.270 1.250 0.411 
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Table 7.6: Average peak roof drifts due to the Far-Field record set.  

 

 

 

 

 
Relative stiffness 

k 

DBE MCE 

 

Mean (%) 

 

Standard 

Deviation (%) 

 

Mean (%) 

 

Standard 

Deviation (%) 

Spring stack has 

infinite travel 

capacity 

k=0.2 1.192 0.585 2.236 0.943 

k=0.5 1.171 0.581 2.188 0.923 

k=1.0 1.127 0.525 2.122 0.936 

k=2.0 1.118 0.559 2.096 0.957 

Spring stack has 

finite travel 

capacity 

k=0.2 1.192 0.585 2.236 0.943 

k=0.5 1.171 0.581 2.171 0.898 

k=1.0 1.128 0.527 2.114 0.932 

k=2.0 1.117 0.558 2.079 0.934 
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Figure 7.1: FE model for frames with spring stack with infinite travel capacity.  
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Figure 7.2: FE model for frames with spring stack with finite travel capacity.  
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Figure 7.3:  1st story displacement of F-1 and F-4 under Hector Mine earthquake scaled 

to the DBE level (spring stack has infinite travel capacity). 

 

 

Figure 7.4:  2nd story displacement of F-1 and F-4 under Hector Mine earthquake scaled 

to the DBE level (spring stack has infinite travel capacity). 
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Figure 7.5:  3rd story displacement of F-1 and F-4 under Hector Mine earthquake scaled 

to the DBE level (spring stack has infinite travel capacity). 

 

 

Figure 7.6:  Roof drift of F-1 and F-4 under Hector Mine earthquake scaled to the DBE 

level (spring stack has infinite travel capacity). 
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Figure 7.7:  1st story displacement of F-1 and F-4 under Hector Mine earthquake scaled 

to the MCE level (spring stack has infinite travel capacity). 

 

 

Figure 7.8:  2nd story displacement of F-1 and F-4 under Hector Mine earthquake scaled 

to the MCE level (spring stack has infinite travel capacity). 

 



 

170 

 

 

Figure 7.9:  3rd story displacement of F-1 and F-4 under Hector Mine earthquake scaled 

to the MCE level (spring stack has infinite travel capacity). 

 

Figure 7.10:  Roof drift of F-1 and F-4 under Hector Mine earthquake scaled to the MCE 

level (spring stack has infinite travel capacity). 
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Figure 7.11:  1st story displacement of F-37 and F-40 under Hector Mine earthquake 

scaled to the DBE level (spring stack has finite travel capacity). 

 

 

Figure 7.12:  2nd story displacement of F-37 and F-40 under Hector Mine earthquake 

scaled to the DBE level (spring stack has finite travel capacity). 
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Figure 7.13:  3rd story displacement of F-37 and F-40 under Hector Mine earthquake 

scaled to the DBE level (spring stack has finite travel capacity). 

 

 

Figure 7.14:  Roof drift of F-37 and F-40 under Hector Mine earthquake scaled to the 

DBE level (spring stack has finite travel capacity). 
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Figure 7.15:  1st story displacement of F-37 and F-40 under Hector Mine earthquake 

scaled to the MCE level (spring stack has finite travel capacity). 

 

 

Figure 7.16:  2nd story displacement of F-37 and F-40 under Hector Mine earthquake 

scaled to the MCE level (spring stack has finite travel capacity). 
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Figure 7.17:  3rd story displacement of F-37 and F-40 under Hector Mine earthquake 

scaled to the MCE level (spring stack has finite travel capacity). 

 

Figure 7.18:  Roof drift of F-37 and F-40 under Hector Mine earthquake scaled to the 

MCE level (spring stack has finite travel capacity). 
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Figure 7.19:  Force at the PT bar of F-1 and F-4 under Hector Mine earthquake scaled to 

the DBE level (spring stack has infinite travel capacity). 

 

 

Figure 7.20:  Force at PT bar of F-1 and F-4 under Hector Mine earthquake scaled to the 

MCE level (spring stack has infinite travel capacity). 
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Yielding 
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Figure 7.21:  Force at PT bar of F-37 and F-40 under Hector Mine earthquake scaled to 

the DBE level (spring stack has finite travel capacity). 

 

 

Figure 7.22:  Force at PT bar of F-37 and F-40 under Hector Mine earthquake scaled to 

the MCE level (spring stack has finite travel capacity). 

 

Yielding 

limit 
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Figure 7.23:  Force at spring stack of F-1 and F-4 under Hector Mine earthquake scaled 

to the DBE level (spring stack has infinite travel capacity). 

 

 

Figure 7.24:  Spring stack displacement from the static position of equilibrium of F-1 

and F-4 under Hector Mine earthquake scaled to the DBE level (spring stack has infinite 

travel capacity). 
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Figure 7.25:  Force at spring stack of F-1 and F-4 under Hector Mine earthquake scaled 

to the MCE level (spring stack has infinite travel capacity). 

 

 

Figure 7.26:  Spring stack displacement from the static position of equilibrium of F-1 

and F-4 under Hector Mine earthquake scaled to the MCE level (spring stack has infinite 

travel capacity). 
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Figure 7.27:  Spring stack force of F-37 and F-40 under Hector Mine earthquake scaled 

to the DBE level (spring stack has finite travel capacity). 

 

 

Figure 7.28:  Spring stack displacement from the static position of equilibrium of F-37 

and F-40 under Hector Mine earthquake scaled to the DBE level (spring stack has finite 

travel capacity). 

 

Clamping 

limit 



 

180 

 

 

Figure 7.29:  Spring stack force of F-37 and F-40 under Hector Mine earthquake scaled 

to the MCE level (spring stack has finite travel capacity). 

 

 

Figure 7.30:  Spring stack displacement from the static position of equilibrium of F-37 

and F-40 under Hector Mine earthquake scaled to the MCE level (spring stack has finite 

travel capacity). 

 

Clamping 

limit 
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Figure 7.31:  Gap element force of F-37 and F-40 under Hector Mine earthquake scaled 

to the MCE level (spring stack has finite travel capacity). 

 

 

Figure 7.32:  Overturning moment vs. roof drift of F-1 and F-4 under Hector Mine 

earthquake scaled to the DBE level (spring stack has infinite travel capacity). 
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Figure 7.33:  Overturning moment vs. roof drift of F-1 and F-4 under Hector Mine 

earthquake scaled to the MCE level (spring stack has infinite travel capacity). 

 

 

Figure 7.34:  Overturning moment vs. roof drift of F-37 and F-40 under Hector Mine 

earthquake scaled to the DBE level (spring stack has finite travel capacity). 
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Figure 7.35:  Overturning moment vs. roof drift of F-37 and F-40 under Hector Mine 

earthquake scaled to the MCE level (spring stack has finite travel capacity). 
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Figure 7.36:  Left support vertical reaction of F-1 and F-4 under Hector Mine earthquake 

scaled to the DBE level (spring stack has infinite travel capacity). 

 

 

Figure 7.37:  Right support vertical reaction of F-1 and F-4 under Hector Mine 

earthquake scaled to the DBE level (spring stack has infinite travel capacity). 
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Figure 7.38:  Left support vertical reaction of F-1 and F-4 under Hector Mine earthquake 

scaled to the MCE level (spring stack has infinite travel capacity). 

 

Figure 7.39:  Right support vertical reaction of F-1 and F-4 under Hector Mine 

earthquake scaled to the MCE level (spring stack has infinite travel capacity). 
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Figure 7.40:  Left support vertical reaction of F-37 and F-40 under Hector Mine 

earthquake scaled to the DBE level (spring stack has finite travel capacity). 

 

Figure 7.41:  Right support vertical reaction of F-37 and F-40 under Hector Mine 

earthquake scaled to the DBE level (spring stack has finite travel capacity). 
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Figure 7.42:  Left support vertical reaction of F-37 and F-40 under Hector Mine 

earthquake scaled to the MCE level (spring stack has finite travel capacity). 

 

Figure 7.43:  Right support vertical reaction of F-37 and F-40 under Hector Mine 

earthquake scaled to the MCE level (spring stack has finite travel capacity). 
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Figure 7.44:  Left support vertical displacement of F-1 and F-4 under Hector Mine 

earthquake scaled to the DBE level (spring stack has infinite travel capacity). 

 

Figure 7.45:  Right support vertical displacement of F-1 and F-4 under Hector Mine 

earthquake scaled to the DBE level (spring stack has infinite travel capacity). 
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Figure 7.46:  Vertical displacement of the left support of F-1 and F-4 under Hector Mine 

earthquake scaled to the MCE level (spring stack has infinite travel capacity). 

 

Figure 7.47:  Vertical displacement of right support of F-1 and F-4 under Hector Mine 

earthquake scaled to the MCE level (spring stack has infinite travel capacity). 
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Figure 7.48:  Vertical displacement of the left support of F-37 and F-40 under Hector 

Mine earthquake scaled to the DBE level (spring stack has finite travel capacity). 

 

Figure 7.49:  Vertical displacement of the right support of F-37 and F-40 under Hector 

Mine earthquake scaled to the DBE level (spring stack has finite travel capacity). 
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Figure 7.50:  Vertical displacement of the left support of F-37 and F-40 under Hector 

Mine earthquake scaled to the MCE level (spring stack has finite travel capacity). 

 

Figure 7.51:  Vertical displacement of the right support of F-37 and F-40 under Hector 

Mine earthquake scaled to the MCE level (spring stack has finite travel capacity). 
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Figure 7.52:  1st story brace forces of F-1 and F-4 under Hector Mine earthquake scaled 

to the DBE level (spring stack has infinite travel capacity). 

 

Figure 7.53:  1st story brace forces of F-37 and F-40 under Hector Mine earthquake 

scaled to the DBE level (spring stack has finite travel capacity). 
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Figure 7.54:  1st story brace forces of F-1 and F-4 under Hector Mine earthquake scaled 

to the MCE level (spring stack has infinite travel capacity). 

 

Figure 7.55:  1st story brace forces of F-37 and F-40 under Hector Mine earthquake 

scaled to the MCE level (spring stack has finite travel capacity). 

 



 

194 

 

 

Figure 7.56:  Base shear of F-1 and F-4 under Hector Mine earthquake scaled to the 

DBE level (spring stack has infinite travel capacity). 

 

Figure 7.57:  Overturning moment of F-1 and F-4 under Hector Mine earthquake scaled 

to the DBE level (spring stack has infinite travel capacity). 
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Figure 7.58:  Base shear of F-1 and F-4 under Hector Mine earthquake scaled to the 

MCE level (spring stack has infinite travel capacity). 

 

Figure 7.59:  Overturning moment of F-1 and F-4 under Hector Mine earthquake scaled 

to the MCE level (spring stack has infinite travel capacity). 
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Figure 7.60:  Base shear of F-37 and F-40 under Hector Mine earthquake scaled to the 

DBE level (spring stack has finite travel capacity). 

 

Figure 7.61:  Overturning moment of F-37 and F-40 under Hector Mine earthquake 

scaled to the DBE level (spring stack has finite travel capacity). 
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Figure 7.62:  Base shear of F-37 and F-40 under Hector Mine earthquake scaled to the 

MCE level (spring stack has finite travel capacity). 

 

Figure 7.63:  Overturning moment of F-37 and F-40 under Hector Mine earthquake 

scaled to the MCE level (spring stack has finite travel capacity). 
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Figure 7.64:  1st story acceleration of F-1 and F-4 under Hector Mine earthquake scaled 

to the DBE level (spring stack has infinite travel capacity). 

 

Figure 7.65:  2nd story acceleration of F-1 and F-4 under Hector Mine earthquake scaled 

to the DBE level (spring stack has infinite travel capacity). 
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Figure 7.66:  3rd story acceleration of F-1 and F-4 under Hector Mine earthquake scaled 

to the DBE level (spring stack has infinite travel capacity). 

 

Figure 7.67:  Ground acceleration of Hector Mine earthquake scaled to the DBE.  
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Figure 7.68:  1st story acceleration of F-37 and F-40 under Hector Mine earthquake 

scaled to the DBE level (spring stack has finite travel capacity). 

 

Figure 7.69:  2nd story acceleration of F-37 and F-40 under Hector Mine earthquake 

scaled to the DBE level (spring stack has finite travel capacity). 
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Figure 7.70:  3rd story acceleration of F-37 and F-40 under Hector Mine earthquake 

scaled to the DBE level (spring stack has finite travel capacity). 
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Figure 7.71:  1st story acceleration of F-1 and F-4 under Hector Mine earthquake scaled 

to the MCE level (spring stack has infinite travel capacity). 

 

 

Figure 7.72:  2nd story acceleration of F-1 and F-4 under Hector Mine earthquake scaled 

to the MCE level (spring stack has infinite travel capacity). 
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Figure 7.73:  3rd story acceleration of F-1 and F-4 under Hector Mine earthquake scaled 

to the MCE level (spring stack has infinite travel capacity). 

 

 

Figure 7.64:  Ground acceleration of Hector Mine earthquake scaled to the MCE.  
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Figure 7.75:  1st story acceleration of F-37 and F-40 under Hector Mine earthquake 

scaled to the MCE level (spring stack has finite travel capacity). 

 

 

Figure 7.76:  2nd story acceleration of F-37 and F-40 under Hector Mine earthquake 

scaled to the MCE level (spring stack has finite travel capacity). 
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Figure 7.77:  3rd story acceleration of F-37 and F-40 under Hector Mine earthquake 

scaled to the MCE level (spring stack has finite travel capacity). 
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Figure 7.78: Maximum base shear of F-1, F-4, and F-6 under the DBE ground motions 

(spring stack has infinite travel capacity). 

 

 

Figure 7.79: Maximum base shear of F-1, F-4, and F-6 under the MCE ground motions 

(spring stack has infinite travel capacity). 
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Figure 7.80: Maximum base shear of F-37, F-40, and F-6 under the DBE ground motions 

(spring stack has finite travel capacity).  

 

Figure 7.81: Maximum base shear of F-37, F-40, and F-6 under the MCE ground 

motions (spring stack has finite travel capacity).  
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Figure 7.82: Maximum overturning moment of F-1, F-4, and F-6 under the DBE ground 

motions (spring stack has infinite travel capacity). 

 

 

Figure 7.83: Maximum overturning moment of F-1, F-4, and F-6 under the MCE ground 

motions (spring stack has infinite travel capacity). 
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Figure 7.84: Maximum overturning moment of F-37, F-40, and F-6 under the MCE 

ground motions (spring stack has finite travel capacity).  

 

 

Figure 7.85: Maximum overturning moment of F-37, F-40, and F-6 under the DBE 

ground motions (spring stack has finite travel capacity). 
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Figure 7.86: Maximum PT force of F-1, F-4, and F-6 under the DBE ground motions 

(spring stack has infinite travel capacity). 

 

Figure 7.87: Residual PT force of F-1, F-4, and F-6 under the DBE ground motions 

(spring stack has infinite travel capacity). 
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Figure 7.88: Maximum PT force of F-1, F-4, and F-6 under the MCE ground motions 

(spring stack has infinite travel capacity). 

 

 

Figure 7.89: Residual PT force of F-1, F-4, and F-6 under the MCE ground motions 

(spring stack has infinite travel capacity). 
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Figure 7.90: Maximum PT force of F-37, F-40, and F-6 under the DBE ground motions 

(spring stack has finite travel capacity).  

 

 

Figure 7.91: Residual PT force of F-37, F-40, and F-6 under the DBE ground motions 

(spring stack has finite travel capacity).  
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Figure 7.92: Maximum PT force of F-37, F-40, and F-6 under the MCE ground motions 

(spring stack has finite travel capacity).  

 

 

Figure 7.93: Residual PT force of F-37, F-40, and F-6 under the MCE ground motions 

(spring stack has finite travel capacity).  
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Figure 7.94: Maximum roof drift of F-1, F-4, and F-6 under the DBE ground motions 

(spring stack has infinite travel capacity). 

 

 

Figure 7.95: Maximum roof drift of F-1, F-4, and F-6 under the MCE ground motions 

(spring stack has infinite travel capacity). 
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Figure 7.96: Maximum roof drift of F-37, F-40, and F-6 under the DBE ground motions 

(spring stack has finite travel capacity).  

 

 

Figure 7.97: Maximum roof drift of F-37, F-40, and F-6 under the MCE ground motions 

(spring stack has finite travel capacity).  
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Figure 7.98: Maximum roof acceleration of F-1, F-4, and F-6 under the DBE ground 

motions (spring stack has infinite travel capacity). 

 

 

Figure 7.99: Maximum roof acceleration of F-1, F-4, and F-6 under the MCE ground 

motions (spring stack has infinite travel capacity). 

 



 

217 

 

 

Figure 7.100: Maximum roof acceleration of F-37, F-40, and F-6 under the DBE ground 

motions (spring stack has finite travel capacity).  

 

 

Figure 7.101: Maximum roof acceleration of F-37, F-40, and F-6 under the MCE ground 

motions (spring stack has finite travel capacity). 
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Figure 7.101: 1st peak interstory drift of F-1, F-4, and F-6 under the DBE ground 

motions (spring stack has infinite travel capacity). 

 

Figure 7.103: 2nd peak interstory drift of F-1, F-4, and F-6 under the DBE ground 

motions (spring stack has infinite travel capacity). 
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Figure 7.104: 3rd peak interstory drift of F-1, F-4, and F-6 under the DBE ground 

motions (spring stack has infinite travel capacity). 

 

 

Figure 7.105: 1st story peak displacement of F-1, F-4, and F-6 under the DBE ground 

motions (spring stack has infinite travel capacity). 
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Figure 7.106: 2nd story peak displacement of F-1, F-4, and F-6 under the DBE ground 

motions (spring stack has infinite travel capacity). 

 

 

Figure 7.107: 3rd story peak displacement of F-1, F-4, and F-6 under the DBE ground 

motions (spring stack has infinite travel capacity). 
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Figure 7.108: 1st maximum interstory drift of F-1, F-4, and F-6 under the MCE ground 

motions (spring stack has infinite travel capacity). 

 

Figure 7.109: 2nd maximum interstory drift of F-1, F-4, and F-6 under the MCE ground 

motions (spring stack has infinite travel capacity). 
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Figure 7.110: 3rd maximum interstory drift of F-1, F-4, and F-6 under the MCE ground 

motions (spring stack has infinite travel capacity). 

 

 

Figure 7.111: Maximum 1st story displacement of F-1, F-4, and F-6 under the MCE 

ground motions (spring stack has infinite travel capacity). 
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Figure 7.112: Maximum 2nd story displacement of F-1, F-4, and F-6 under the MCE 

ground motions (spring stack has infinite travel capacity). 

 

 

Figure 7.113: Maximum 3rd story displacement of F-1, F-4, and F-6 under the MCE 

ground motions (spring stack has infinite travel capacity). 
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Figure 7.114: 1st maximum interstory drift of F-37, F-40, and F-6 under the DBE ground 

motions (spring stack has finite travel capacity).  

 

 

Figure 7.115: 2nd maximum interstory drift of F-37, F-40, and F-6 under the DBE ground 

motions (spring stack has finite travel capacity).  

 



 

225 

 

 

Figure 7.116: 3rd maximum interstory drift of F-37, F-40, and F-6 under the DBE ground 

motions (spring stack has finite travel capacity).  

 

 

Figure 7.117: 1st maximum story displacement of F-37, F-40, and F-6 under the DBE 

ground motions (spring stack has finite travel capacity).  
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Figure 7.118: 2nd maximum story displacement of F-37, F-40, and F-6 under the DBE 

ground motions (spring stack has finite travel capacity).  

 

 

Figure 7.119: 3rd maximum story displacement of F-37, F-40, and F-6 under the DBE 

ground motions (spring stack has finite travel capacity).  
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Figure 7.120: 1st maximum interstory drift of F-37, F-40, and F-6 under the MCE ground 

motions (spring stack has finite travel capacity).  

 

 

Figure 7.121: 2nd maximum interstory of F-37, F-40, and F-6 under the MCE ground 

motions (spring stack has finite travel capacity).  
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Figure 7.122: 3rd maximum interstory of F-37, F-40, and F-6 under the MCE ground 

motions (spring stack has finite travel capacity).  

 

Figure 7.123: 1st story maximum displacement of F-37, F-40, and F-6 under the MCE 

ground motions (spring stack has finite travel capacity).  
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Figure 7.124: 2nd story maximum displacement of F-37, F-40, and F-6 under the MCE 

ground motions (spring stack has finite travel capacity).  

 

 

Figure 7.125: 3rd story maximum displacement of F-37, F-40, and F-6 under the MCE 

ground motions (spring stack has finite travel capacity).  
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 Figure 7.126: Average peak responses and the corresponding standard deviations 

for frames with zero eccentricity (spring stacks have infinite travel capacities). 
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Figure 7.127: Average peak responses and the corresponding standard deviations for 

frames with zero eccentricity (spring stacks has finite travel capacities and clamps at 0.75 

Fpy).
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CHAPTER 8 

SUMMARY CONCLUSION AND FURTHER WORK 

This chapter summarizes the results of the research and presents conclusions.  

Recommendations for future work are also given.  

8.1 SUMMARY  

Chapter 1 showed a scheme of the post-tensioned lateral force resistant systems. The 

literature indicates that these systems have large drift capacity and could be designed to 

reduce damage during extreme events. Also, these systems make use of the post-tensioning 

(PT) steel to provide self-centering force and eliminate the residual drift. 

To make such systems available to developing communities that have no access to 

specialized PT equipment or highly trained workers, a simple manually post-tensioned self-

centering system has been proposed. The system introduces spring element connected in 

series with the PT steel to facilitate the manual PT process. This also promotes more 

sustainable seismic resistant systems in that the systems are less prone to damage that 

requires extensive repair or demolition after a seismic event.   

Chapter 2 presented the required background information on the relevant topics. Topics 

include a review of the rocking systems. Most importantly, a description of the disc spring 

elements used in this study. It highlights the essential characteristics of the disc springs, 

how do disc springs behave during compression loads, and how a single disc spring could 

provide a flexible way to gain different force-deformation response by stacking this spring 

in series or parallel.  
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Chapter 3 discusses the process underlying the derivation of the closed-form expressions. 

These equations were based on several assumptions to simplify the derivations.  Two 

important cases were included in the derivation process. The first case included frames 

with spring stacks having infinite travel (deformation) capacities, while the second case 

included frames with spring stacks having finite travel capacities. It was shown that these 

two different cases have backbone curves with different shapes and the reason is the 

clamping of the spring stack.  The equations in Chapter 3 show that the force at the PT 

steel is expected to increase as more lateral load is applied. Thus, the compression load on 

the spring stack also increases. This increase in the spring stack force causes it to shorten 

under the increased load, and once it reaches its full travel capacity, the backbone curve 

changes its response. This will not happen if the spring stack has unlimited travel capacity, 

or if the maximum compression load on the spring stack is less than the load that causes 

the stack to reach its full flat position.  

Chapter 4 discusses the development of the FE model to represent the proposed system 

during static pushover loads. The foundation of the finite element model was based on a 

study completed in the literature. However, the current report updates the existing model 

to include the presence of the disc spring stack. A significant change to the existing FE 

model has been applied to account for the clamping of the spring stack during the pushover 

loads. The FE model includes several limit states such as decompression, yielding of the 

spring stack, clamping of the spring stack, fracture of the PT steel. Damage to the rocking 

frame components such as the columns, beams, and braces were excluded from the model, 

i.e. the frame itself was to remain elastic.  
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Chapter 5 presents the prototype building used in this thesis. This building is a wooden 

structure that was used in the literature to study the self-centering wood lateral resistant 

systems. It was also used here in this study. The building was assumed to be located in a 

region with moderate earthquake hazard. Analysis matrices for the parametric evaluation 

of rocking frame parameters were developed.  

Chapter 6 presented the results the parametric study of the prototype frames. All frames 

were analyzed using both the FE model and the CFE, and the results were compared in a 

series of plots and tables. These results indicate that the CFE and the FE are, in general, in 

excellent agreement.  The largest discrepancies occur in the prediction of the drift at PT 

bar fracture, with the CFE providing a conservative estimate of the drift as compared with 

the FE model.  This is attributed to the small deformations assumptions used in the 

derivations of the CFE.  

Chapter 7 develops the FE model and conducts the dynamic analysis of selected prototype 

frames. The finite element model in this chapter is an update of a previous model used to 

study the rocking steel frames. The original model was updated to include the modeling of 

the spring stack and the clamping mechanism associated with it. In contrast to the FE model 

developed in Chapter 4, this FE model includes the elastic deformations of the rocking 

frame. However, it continues to exclude possible damage to the rocking frame (i.e. the 

frame remains elastic).  Chapter 7 also compares the results of selected prototype frames 

subjected to a set of ground motions. The goal was to examine how the spring stack 

influences the dynamic response. This chapter is divided into two parts. The first part 

presents the time history response of selected frames to the Hector Mine earthquake. The 

second part lists the peak responses of selected frames to the entire set of ground motions. 
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1.2 CONCLUSIONS  

1.2.1 Static pushover analysis  

1. Disc springs provide a flexible way to attain various force-deformation responses 

by combining multiple springs differently. 

2. The literature shows that using a spring element connected in series with the PT 

bars can be used to reduce the PT loss associated with time dependent deformations 

like creep and shrinkage.  

3. The closed form expressions derived in Chapter 3 display an excellent agreement 

with the FE results. The largest errors are for drift at bar fracture at large drifts 

because the CFE were simplified using the small deformation theory.  

4. Even though a rocking frame has constant member dimensions and PT steel area, 

connecting the PT steel in series with a spring stack having variable stiffness can 

be used to modify the backbone curve under lateral loads.  

5. The use of a flexible disc spring stack connected in series with the PT steel increases 

the drift capacity and delays the onset of the PT steel yielding.  

6. The use of a flexible disc spring stack causes the prototype frames to have low 

lateral stiffness after the gap opening (DEC limit state) at the base. In contrast, the 

use of stiff disc spring stack increases the lateral stiffness after the gap opening.  

7. When the PT steel was extended to the roof of the prototype frames, some frames 

displayed large drifts without reaching the nominal moment capacity of the frame 

(i.e. PT steel yielding).  The parametric study showed that limiting the height of the 

PT bars to only the first floor instead of the roof would reduce the lateral drift at 

yielding of the PT bars.  This observation suggests that the use of spring stacks 
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could eliminate the need to extend the PT bars to higher floor levels. This offers 

two possible advantages to explore in design: (1) In a standard rocking frame with 

full height post-tensioning, all the structural elements of columns and braces below 

the anchorage point of the PT bars must be designed to accommodate the large PT 

force that develops during the application of the lateral load. However, limiting the 

height of the PT bars to, for example, the first floor would eliminate the need to 

design the elements above the first floor for these larger forces; (2) Limiting the PT 

bars to lower stories would require less total length of PT bars. 

8. When the spring stack has finite travel capacity, clamping can occur leading to 

increase in the lateral stiffness and sudden increase in PT steel force.  

 

1.2.2 Dynamic Analysis  

1. The dynamic analyses show that the use of disc spring stacks alters the 

dynamic response of rocking frames.   

2. Rocking frames with flexible spring stacks in general develop less peak PT 

force during the ground motions.  

3. Rocking frames with flexible spring stacks with maintain a higher residual 

force in the PT bars after an extreme seismic event as compared to rocking 

frames with relatively stiffer spring stacks. For the rocking frames and ground 

motions treated in this study, the frames with k=0.2 (i.e. flexible spring stack) 

never experienced yielding in any of the ground motions.   

4. The dynamic analyses demonstrate that the moment hysteresis loop for a frame 

with k=0.2 (flexible spring stack) is likely to be flat after the frame 
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decompression, while the hysteresis loop of a frame with k=2.0 (stiff spring 

stack) is steeper under the same circumstances.  

5. The clamping of the spring stack during the ground motions caused a sudden 

increase in the PT force. Correspondingly, the moment hysteresis loop of 

frames where the spring stack clamped during the dynamic response has shown 

to gain lateral stiffness after clamping.  

 

8.3 FUTURE WORK  

Suggestions for future work include the following: 

1. Additional design studies to more fully investigate the use of spring stacks in 

rocking wall assemblies. 

2. Experimental studies (quasi-static pushover and dynamic tests) of rocking wall 

assemblies with flexible spring stacks. 

3. Consideration of the use of replaceable energy dissipation devices. 

4. Creep studies of rocking walls with flexible spring stacks. 

5. Constructability studies of rocking walls with flexible spring stacks.    
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APPENDIX A 

A.1.1 FRICTION OF THE SPRING STACK  

As explained in Chapter 2, the disc spring stack has hysteretic behavior under cyclic 

loadings. Though, modeling the hysteretic behavior as a friction damper and using the 

friction coefficients given on the DIN 2092 (Schnorr, 2003) standards showed that such 

small friction of the spring stack does not significantly affect the dynamic response.  

However, it worth mentioning that the values of friction given in the DIN standards are for 

spring stack that is lubricated to reduce friction and we expect the more friction to develop 

if no lubricant is present.  

Our goal here will be to convert the area under the hysteresis loop of the spring stack to an 

equivalent column friction damper that can dissipate the same energy using the following 

steps.  

• Find the hysteresis area under one cycle of force-deformation of the spring 

stack.  

• Equate this area to a friction damper based on Coulomb model as seen in 

Equations A.1, A.2, A.3, A.4, and A.5.  

• Now the friction damper dissipates the same amount of energy as the original 

spring stack as shown in in Figure (A.1).  

 
∫ (𝐹𝑠𝑙 − 𝐹𝑠𝑢) 𝑑𝑢 = ∫ 2 𝐹𝑛 𝑑𝑢

𝑢

0

𝑢

0

 

 

(A.21) 

 
𝐹𝑠𝑢, 𝐹𝑠𝑙 = 𝑘𝑠 𝑢 ( 

1

1 ± 𝜇𝑚(𝑛 − 1) ± 𝜇𝑟
) 

(A.22) 
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∫ 𝑘𝑠 𝑢 (

𝑢

0

1

1 − 𝜇𝑚(𝑛 − 1) − 𝜇𝑟
−

1

1 + 𝜇𝑚(𝑛 − 1) + 𝜇𝑟
 ) 𝑑𝑢 = ∫ 2 𝐹𝑛 𝑑𝑢

𝑢

0

 

 

(A.23) 

 
𝑘𝑠

𝑢2

2
 (

1

1 − 𝜇𝑚(𝑛 − 1) − 𝜇𝑟
−

1

1 + 𝜇𝑚(𝑛 − 1) + 𝜇𝑟
 ) = 2 𝐹𝑛 𝑢  

 

(A.24) 

 
𝐹𝑛 =

1

4
 𝑘𝑠 𝑢 (

1

1 − 𝜇𝑚(𝑛 − 1) − 𝜇𝑟
−

1

1 + 𝜇𝑚(𝑛 − 1) + 𝜇𝑟
 ) 

(A.25) 

 

In Equation A.5, We can introduce the assumption that the amplitude of motion of the 

friction damper is equal to the travel capacity of the spring stack. However, a significant 

error would be introduced leading to large damping in the FE model especially if the 

amplitude of motion is less than the travel capacity. Even with the introduction of this error, 

the difference between the response would still be negligible as shown in Figure A.2.  
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Figure A.1: Equating the energy dissipation of a single  

disc spring into an equivalent friction damper. 
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Figure A.2: Response under NORTHR/MUL009 earthquake for three cases: (a) no 

friction (μm=0, μr=0); (b) moderate friction (μm=0.018, μr=0.04) ; (c) and high friction 

(μm=0.03, μr=0.05). 
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