
Lehigh University
Lehigh Preserve

Theses and Dissertations

2016

Shape Function Limitations within Equivalent
Single-Degree-of-Freedom Analysis for Structural
Elements Subject to Blast Loading
Evan Mullen
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Structural Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Mullen, Evan, "Shape Function Limitations within Equivalent Single-Degree-of-Freedom Analysis for Structural Elements Subject to
Blast Loading" (2016). Theses and Dissertations. 2738.
http://preserve.lehigh.edu/etd/2738

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=preserve.lehigh.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2738?utm_source=preserve.lehigh.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


 
Shape Function Limitations within Equivalent Single-Degree-of-Freedom Analysis for 

Structural Elements Subject to Blast Loading 
 

by 

 

Evan M. Mullen 

 

 

A Thesis 

Presented to the Graduate and Research Committee 

of Lehigh University 

in Candidacy for the Degree of  

Master of Science 

 

 

 

 

in 

Structural Engineering 

 

 

 

 

Lehigh University 
January 2016 



ii 
 

Copyright Page 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 



iii 
 

This thesis is accepted and approved in partial fulfillment of the requirements for the 
Master of Science. 
 

 
_______________________ 
Date 
 
 
 
 
 
 
 
 
 
 
 
 
 

_______________________________________ 
Dr. Spencer Quiel, Thesis Advisor 

 
 
 
 
 
 
 
 

________________________________________ 
Dr. Panayiotis (Panos) Diplas, Chairperson of Department 

 
 
 

 
 
  
 
 
 
 
 



iv 
 

Acknowledgements 

I would like to first thank Sara Barker and Harry Nimoityn for their continuous support 

throughout my studies and research.  They offered great encouragement from start to 

finish during this challenging, yet rewarding process.   

 

I would also like to thank my research advisor, Dr. Spencer Quiel.  His combination of 

practical and theoretical knowledge shaped my research and helped me complete my 

thesis with significant conclusions.    

 

 

 

 

 

 

  



v 
 

Table of Contents 

 
Acknowledgements ......................................................................................................... iv 

List of Tables .................................................................................................................... ix 

List of Figures .................................................................................................................... x 

Abstract ............................................................................................................................. 1 

Chapter 1 Introduction ..................................................................................................... 3 

1.1 General .................................................................................................................... 3 

1.2 Background ............................................................................................................. 3 

1.3 Research Objectives ................................................................................................ 4 

1.4 Scope of Thesis ........................................................................................................ 5 

Chapter 2 Background and Modeling ............................................................................... 6 

2.1 General .................................................................................................................... 6 

2.2 Numerical Solutions ................................................................................................ 7 

2.3 Time Discretization ............................................................................................... 10 

2.4 Loads ..................................................................................................................... 10 

2.5 Material Properties and Plasticity ......................................................................... 13 

2.6 Boundary Conditions ............................................................................................. 15 

2.6.1 Transformation Factors (For SDOF Analysis) .................................................. 16 



vi 
 

2.7 Space Discretization .............................................................................................. 21 

2.8 Element Type ........................................................................................................ 23 

2.9 Geometric Effects .................................................................................................. 24 

2.10 Mass Matrix......................................................................................................... 26 

2.11 Mode Shapes ....................................................................................................... 27 

2.12 Damping .............................................................................................................. 29 

Chapter 3 Single-Degree-of-Freedom Solver.................................................................. 34 

3.1 General .................................................................................................................. 34 

3.2 SBEDS .................................................................................................................... 34 

3.2.1 Intro Tab ......................................................................................................... 34 

3.2.2 Input Tab ........................................................................................................ 34 

3.2.3 Results Tab ..................................................................................................... 35 

3.2.4 P-I_Diagram Tab ............................................................................................. 36 

3.2.5 SDOF Output Tab ............................................................................................ 36 

3.2.6 Database Tab .................................................................................................. 37 

3.2.7 Beam_Types Tab ............................................................................................ 37 

3.3 MATLAB Replica .................................................................................................... 37 

3.3.1 Main File ......................................................................................................... 38 

3.3.2 Load File .......................................................................................................... 38 



vii 
 

3.3.3 Biggs File ......................................................................................................... 39 

3.3.4 Const_vel File ................................................................................................. 39 

3.4 Solver Verification ................................................................................................. 40 

3.4.1 Inconsistencies ............................................................................................... 42 

Chapter 4 Multi-Degree-of-Freedom Solver .................................................................. 50 

4.1 General .................................................................................................................. 50 

4.2 SAP2000 ................................................................................................................ 50 

4.2.1 Inputs .............................................................................................................. 50 

4.2.2 Outputs ........................................................................................................... 53 

4.3 MATLAB Replica .................................................................................................... 53 

4.3.1 Input File ......................................................................................................... 54 

4.3.2 Main File ......................................................................................................... 54 

4.4 Solver Verification ................................................................................................. 55 

4.4.1 Inconsistencies ............................................................................................... 59 

Chapter 5 Comparisons .................................................................................................. 69 

5.1 General .................................................................................................................. 69 

5.2 Results and Analysis .............................................................................................. 70 

5.2.1 First Data Set .................................................................................................. 70 

5.2.2 Second Data Set.............................................................................................. 80 



viii 
 

5.2.3 Third Data Set ................................................................................................. 84 

5.2.4 Individual Deflected Shapes ........................................................................... 89 

Chapter 6 Conclusions and Future Research .................................................................. 99 

6.1 General .................................................................................................................. 99 

6.2 Summary ............................................................................................................... 99 

6.3 Conclusions ......................................................................................................... 100 

6.4 Future Research .................................................................................................. 102 

References .................................................................................................................... 106 

Appendix A: MATLAB Code for SBEDS Replica (SDOF Solver) ............................... 108 

Appendix B: SDOF Solver Verifications (Time-History Plots) ................................. 123 

Appendix C: MATLAB Code for More Accurate Model (MDOF Solver) ................... 177 

Appendix D: MDOF Solver Verifications (Time-History Plots) ............................... 246 

Appendix E: First Data Set Plots ................................................................................ 264 

Appendix F: Second Data Set Plots ............................................................................ 300 

Appendix G: Third Data Set Plots ............................................................................... 310 

Vita ................................................................................................................................ 320 

 



ix 
 

List of Tables 

Table 2.5.1: Various Strength Increase Factors for Steel (US Army, 2008)………………….13 

Table 2.6.1.1a: Transformation Factors for Pinned-Pinned Beam (Biggs, 1964)……….…18 

Table 2.6.1.1b: Transformation Factors for Fixed-Fixed Beam (Biggs, 1964)………………18 

Table 2.6.1.1c: Transformation Factors for Fixed-Pinned Beam (Biggs, 1964)…………….19 

Table 5.1.1: Constant Input Parameters…………………………………………………………………….70 

Table 5.1.2: Charges and Standoffs for Data Set 1……………………………………………………..71 

Table 5.2.3.1: Experimental Blast Data (Nassr, 2012)………………………………………………...85 

Table 5.2.3.2: Timoshenko Solution Calibrations to Better Match Experimental  

Data....................................................................................................................86 

 

  



x 
 

List of Figures 

Figure 2.4.1: Friedlander Equation Plot and Ramp Approximation with Arbitrary  

Values…………………………………..………………………………………………………………………..11 

Figure 2.4.2: Pressure-Time Plot to Approximate Friedlander Equation (ASCE/SEI 59-11,  

2011)…………………………………………..…………………………………………………………………12 

Figure 2.5.1: Stress-Strain Relationship for Two Different Materials………………………….14 

Figure 2.6.1.1: Transformation from Continuous System to SDOF System (US Army,  

2008)…………………………………………………..…………………………………………………………16 

Figure 2.6.1.2: Illustration of Stages of Yielding (US Army, 2008)……………………………….20 

Figure 2.6.1.3: General Resistance-Deflection Relationship for SBEDS (US Army,  

2008)……………………………..………………………………………………………………………………21 

Figure 2.7.1: Example of Space Discretization for Two-Member Frame……………………..22 

Figure 3.2.5.1: Displacement-Time Plot for Arbitrary SBEDS Analysis (SBEDS, 2008)….37 

Figure 3.4.1: Acceleration Comparison of SBEDS with SDOF MATLAB Program………….41 

Figure 3.4.1.1a: Resistance-Deflection Plot for W40X655 Fixed-Pinned with Uniform  

Load and 0% Damping…………………………………………..……………………………………….43 

Figure 3.4.1.1b: Resistance-Time Plot for W40X655 Fixed-Pinned with Uniform Load  

and 0% Damping………………………………....………………………………………………………..43 

Figure 3.4.1.2a: Resistance-Deflection Plot for W10X12 Fixed-Fixed with Uniform Load  

and 0% Damping……………………………….…………………………………………………………..44 

Figure 3.4.1.2b: Resistance-Time Plot for W10X12 Fixed-Fixed with Uniform Load and  



xi 
 

0% Damping………..…………………………………………………………………………………………45 

Figure 3.4.1.2c: Resistance-Deflection Plot for W10X12 Fixed-Fixed with Uniform Load  

and 0% Damping (Magnified)……………………………………………..………………………….45 

Figure 3.4.1.3a: Deflection-Time Plot for W10X12 Fixed-Pinned with Point Load and 0%  

Damping…………………………………….………………………………………………………………….47 

Figure 3.4.1.3b: Acceleration-Time Plot for W10X12 Fixed-Pinned with Point Load and  

0% Damping……………………………………………..……………………………………………………47 

Figure 3.4.1.3c: Acceleration-Time Plot for W10X12 Fixed-Pinned with Point Load and  

0% Damping (Magnified)………………………………………………………. ………………………48 

Figure 3.4.1.4: Deflection-Time Plot for W10X12 Fixed-Fixed with Uniform Load and 5%  

Damping………………………………………….…………………………………………………………….49 

Figure 4.2.1.1: Example of Material Definition Window for SAP2000…………………………51 

Figure 4.2.1.2: Graphical Representation of a Pinned-Fixed Beam with 0.35 k/in Load  

and 4 Elements……………………………………..………………………………………………….……52 

Figure 4.2.2.1: Example Plot of Deflection-Time in SAP2000……………………………….……..53 

Figure 4.4.1a: Midpoint Deflection Comparison of SAP2000 with MDOF MATLAB  

Program………………………..……………………………………………………………………………….57 

Figure 4.4.1b: Midpoint Resistance Comparison of SAP2000 with MDOF MATLAB  

Program……………………………..………………………………………………………………………….58 

Figure 4.4.1.1 Equations for Reduced Plastic Moment Capacity in SBEDS (US Army,  

2008)…………………………………………………………..…………………………………………………62 

Figure 4.4.1.2a: Resistance-Time Plot for W10X12 Fixed-Pinned with Point Load, 2%  



xii 
 

Damping, and 0.2 Axial Load…………………………………………..……………………………..64 

Figure 4.4.1.2b: Deflection-Time Plot for W10X12 Fixed-Pinned with Point Load, 2%  

Damping, and 0.2 Axial Load……………………………………………………..…………………..65 

Figure 4.4.1.3a: Deflection-Time Comparison for Different Stiffness and Mass  

Models………………………………………………………………..…………………………………………67 

Figure 4.4.1.3b: Resistance-Time Comparison for Different Stiffness and Mass  

Models…………………………………………………..………………………………………………………68 

Figure 5.2.1.1: Deviation in K¬L vs. Z for W14X48……………………………………………………...72 

Figure 5.2.1.2: Deviation in K¬L vs. Z for W14X257……………………………………….……………73 

Figure 5.2.1.3: Deviation in Bernoulli-SDOF Maximum Deflection vs. Z for  

W14X257……………………………………………………………………..………………………………..75 

Figure 5.2.1.4: Deviation in Timoshenko-SDOF Maximum Deflection vs. Z for  

W14X257………………………………………….……………………………………………………………77 

Figure 5.2.1.5: Deviation in Timoshenko-Bernoulli Maximum Deflection vs. Z for  

W14X257…………………..…………………………………………………………………………………..79 

Figure 5.2.2.1: Deviation in Bernoulli-SDOF Maximum Deflection vs. Z for Pinned- 

Pinned W14X109 (Fine Z Increment)…………………………………....……………………….81 

Figure 5.2.2.2: Deviation in Timoshenko-SDOF Maximum Deflection vs. Z for Pinned- 

Pinned W14X109 (Fine Z Increment)…………………………...............…………………….83 

Figure 5.2.3.1: Deviation in Bernoulli-SDOF Maximum Deflection vs. Z for Pinned- 

Pinned W14X109 (Calibrated Damping)……………………………………………..………….87 

Figure 5.2.3.2: Deviation in Timoshenko-SDOF Maximum Deflection vs. Z for Pinned- 



xiii 
 

Pinned W14X109 (Calibrated Damping)…………………………………………..…………….89 

Figure 5.2.4.1: Deflected Shape at First Yield for Pinned-Pinned W14X109 with Z=12.4  

ft lb1 3⁄⁄ ……………………………….…………………………………………………………………………………….91 

Figure 5.2.4.2: Deflected Shape at First Yield for Pinned-Pinned W14X109 with Z=9.1  

ft lb1 3⁄⁄ ………………….....…………………………………………………………………………………..91 

Figure 5.2.4.3: Deflected Shape at First Yield for Pinned-Pinned W14X109 with Z=7.7  

ft lb1 3⁄⁄ …………………………………….....………………………………………………………………..92 

Figure 5.2.4.4: Deflected Shape at First Yield for Fixed-Fixed W14X109 with Z=11.0  

ft lb1 3⁄⁄ ………………………………….………………………………………………………………………94 

Figure 5.2.4.5: Deflected Shape at First Yield for Fixed-Fixed W14X109 with Z=9.5  

ft lb1 3⁄⁄ ……………………….....……………………………………………………………………………..95 

Figure 5.2.4.6: Deflected Shape at First Yield for Fixed-Fixed W14X109 with Z=5.8  

ft lb1 3⁄⁄ ………………..………………………………………………………………………………………..95 

Figure 5.2.4.7: Deflected Shape at First Yield for Fixed-Fixed W18X65 with 45 psi and  

45 psi-msec……………………………....…………………………………………………………………..97 

Figure 5.2.4.8: Deflected Shape at First Yield for Fixed-Fixed W18X65 with 50 psi and  

50 psi-msec…………………………………....……………………………………………………………..98 

 

 



1 
  

Abstract 

This thesis presents an investigation into the potential inaccuracies when analyzing 

structural elements under blast loads using equivalent single-degree-of-freedom 

(SDOF) systems.  An equivalent SDOF system converts a continuous element into a 

single mass-spring-damper system, where the displacement of the mass equates to 

the largest deflection of the continuous element.  The potential inaccuracies arise 

from the fact that this equivalent system uses the static deflected shape of the 

element.  The Single-Degree-of-Freedom Blast Effects Design Spreadsheet (SBEDS) is 

an example of an industry accepted software package that is used for this type of 

simplification.   

 

To identify inaccuracies in results from SDOF methods, the results were compared to a 

more accurate model.  This model is a multi-degree-of-freedom (MDOF) system, which 

is able to better represent a structural element, due to discretizing the element into 

smaller segments.  These smaller segments are able to respond with a more realistic 

deflected shape when subjected to blast loading.  This is more accurate than lumping 

all of the information about the element to a single degree of freedom. 

 

Using MATLAB, blast analysis of single structural elements were performed to 

replicate the corresponding results from two software packages: SBEDS (for SDOF 

analysis) and SAP2000 (for MDOF analysis).  Once the MATLAB solutions were verified 



2 
  

and calibrated, analyses were performed using both MATLAB scripts for combinations 

of input parameters, such as boundary conditions, magnitude of load, and section size.  

After results were obtained from these analyses, they were compared, which allowed 

for identification of static-shape limitations of SDOF analysis.  



3 
  

Chapter 1 Introduction 

1.1 General 

This thesis presents an investigation into inaccuracies within equivalent single-degree-

of-freedom (SDOF) analysis under blast loading.  This chapter introduces the topic of 

blast design, and outlines the objectives and scope of this thesis. 

 

1.2 Background 

Dynamic loading of a structure requires dynamic analysis to obtain accurate values of 

deformation and internal stress.  Examples of dynamic loads are live loads, 

earthquakes, wind, and blasts.   The duration of the load distinguishes blast loads from 

the other dynamic loads.  While these other loads can last seconds or minutes, blast 

loads have much shorter durations on the order of milliseconds.  Whether this blast 

load is a result of an accidental explosion or an intended terrorist act, the load is 

always a fast-acting pulse.   

 

SBEDS is used in the structural engineering industry for the “design of structural 

components subjected to dynamic loads using single degree of freedom (SDOF) 

methodology” (US Army, 2008).  This program is often used for the design of these 

components under blast loading.  By defining inputs such as the time-history of the 

blast load, material properties, and geometric features of the structural element in 

question, SBEDS performs this SDOF analysis and outputs several results that the 



4 
  

Structural Engineer may use to aid in the design of the component.  These outputs 

include maximum deflection, maximum support rotation, ductility, and maximum 

shear force, as well as time-histories of various output variables.  Due to the fact that 

SBEDS uses equivalent SDOF methods, the analysis requires little computing time, 

which is convenient for the industry.   

 

1.3 Research Objectives 

Yokoyama (2014) has shown that for large blasts at close distance, discrepancies arise 

between SBEDS solutions and solutions from more accurate models.  Scaled distance 

(Z) is a common measure used to define the strength of a blast.  The conventional Z 

cutoff for which SDOF analysis is considered to be no longer applicable is below 1.2 

𝑚 𝑘𝑔1 3⁄⁄  (3𝑓𝑡 𝑙𝑏1 3⁄⁄ ).  However, Yokoyama has shown cases where applying a scaled 

distance above the cutoff produces significantly different results between SBEDS and 

more accurate models.   This can be a major issue for Structural Engineers who utilize 

SBEDS for blast design without knowing the boundaries for which the results from 

SBEDS become unacceptably inaccurate.   

 

The research presented in this thesis investigates and establishes more specific cutoffs 

for when SDOF analysis becomes too inaccurate.  The objectives of this research are 

listed below: 

 



5 
  

(1)  Write MATLAB code that replicates the SBEDS solution (Single-Degree-

of-Freedom (SDOF) solver)  

(2)  Write MATLAB code that uses a more accurate model (Multi-Degree-of-

Freedom (MDOF) solver) 

(3)  Run both MATLAB programs for various input parameters, and compare 

solutions obtained from both solution methods. 

(4)  Identify the limitations of using single-degree-of-freedom analysis when 

analyzing structural components under blast loading based for various 

input parameters. 

 

Objective (1) will be validated against like analyses in SBEDS.  Objective (2) will be 

validated against like analyses in SAP2000, until the limitations of SAP2000 are 

exceeded.  Objective (3) will be completed by obtaining percent variation on the 

outputs for each case of inputs.  For Objective (4), a maximum acceptable percent 

variation must be established to determine these region boundaries.   

   

1.4 Scope of Thesis 

Five additional chapters follow this chapter.  Chapters 2, 3, and 4 discuss background 

information, modeling techniques, and the creation of both MATLAB solvers.  Chapter 

5 presents the comparisons of the data frames for each solver.  Finally, Chapter 6 

provides a summary of the research, identifies boundaries of SDOF analysis limits, and 

concludes the paper with future research to be explored on this topic.



6 
  

Chapter 2 Background and Modeling  

2.1 General 

Modeling refers to the creation of a simulation that replicates an event which occurs in 

reality.  Modeling is a very complex topic in structural engineering, as well as in other 

disciplines.  The complexity arises from the vast amount of choices, approximations, or 

assumptions that the modeler may make when creating this model.  Some options are 

better suited for certain events than others.  Also, certain combinations of these 

choices may interact to cause very different outcomes.  The user must judge each 

modeling choice and decide which options will best represent a realistic result.  

Another problem the modeler faces is creating a model that is not only reasonably 

accurate, but efficient as well.  Certain modeling options will be chosen that are 

simpler than others, in order to decrease computational runtimes.  Having the most 

sophisticated model, which is most accurate, may be unrealistic for some applications 

due to the limited processing power of the modern computer.  

 

For this paper, the events of interest are the behaviors of structural elements (beams 

and beam-columns) subjected to blast loading.  Models of this type implement various 

techniques from structural dynamics, which is a combination of structural analysis and 

dynamics.   

 



7 
  

This chapter discusses the modeling techniques for structural dynamics, and how they 

specifically relate to structural elements subjected to blast loads.  Sections 2.2 through 

2.6 and section 2.9 pertain to all models.  Section 2.6.1 pertains to SDOF models only.  

Sections 2.7, 2.8, and 2.10 through 2.12 pertain to MDOF models only. 

 

2.2 Numerical Solutions 

The analysis of any structural dynamics problem starts with the equation of motion, 

which is shown below in Equation 2.2.1: 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑓(𝑡)               (2.2.1) 

 

where: 

𝑚=mass 

𝑐=damping coefficient 

𝑘=stiffness coefficient 

𝑓(𝑡)=applied force 

𝑢̈=acceleration 

𝑢̇=velocity 

𝑢=displacement 

 

Displacement is the unknown variable, and velocity and acceleration are time 

derivatives of displacement.  A closed form solution is available for this second-order 



8 
  

differential equation, depending on the form of the applied force.  To be able to solve 

this equation for any form of applied force, numerical methods are often used.  

Numerical methods take initial conditions, and extrapolate values incrementally, to 

obtain approximate solutions.  Depending on the increments, the solutions may have 

little error compared to their closed form solutions.   

 

Several numerical methods are available to solve a second-order differential equation.  

Some examples are the constant-velocity procedure (Biggs, 1964), the central 

difference method (Chopra, 1995), and Newmark’s method (Chopra, 1995).  Each 

method approaches the problem slightly differently, but they all produce consistent 

results assuming an appropriate time step was chosen.  An important parameter that 

relates to the accuracy and stability of each solution method is the natural period, 𝑇, 

shown below in Equation 2.2.2: 

 

𝑇 = 2𝜋√
𝑚

𝑘
                   (2.2.2) 

 

For the constant-velocity procedure, Biggs states that a time increment should not 

exceed one-tenth of the natural period for accurate results.  He also states that the 

time increment should be small enough to accurately capture the load.  This is 

especially important for blast loads, where the total duration of the load is small.  For 

the central difference method, Chopra states that the solution will only be stable 



9 
  

(converge) if the ratio of time step to natural period of vibration is below a certain 

value.  This value is displayed below in Equation 2.2.3a.  He also states the same 

accuracy limit that Biggs states, which a smaller increment than the stability limit is.  

Newmark’s method is more complex, and involves two additional constants (β, γ), 

which control the acceleration within each time step.  The stability limit for this 

solution method is also shown below in Equation 2.2.3b: 

 

∆𝑡

𝑇
<

1

𝜋
                   (2.2.3a) 

∆t

T
≤

1

π√2
∙

1

√γ−2β
               (2.2.3b) 

 

SBEDS uses the constant-velocity procedure to solve the equation of motion.  The 

MATLAB SDOF solver will therefore implement this procedure as well.  The MATLAB 

MDOF solver will implement Newmark’s method for its versatility and unconditional 

stability for certain values of β and γ. 

 

These methods are either classified as explicit or implicit methods.  Implicit methods 

iterate within each time step.  They calculate the internal and external forces on the 

structure and drive the unbalanced load (the difference of these forces) below a 

certain tolerance by adjusting the displacements, velocities, and accelerations, before 

proceeding to the next time step (Newton-Raphson iteration).  Explicit methods 

neglect this unbalanced force and proceed through the time stepping without 



10 
  

analyzing unbalanced forces.  The constant-velocity procedure is an explicit solver, 

while Newmark’s method with Newton-Raphson iteration is an implicit solver. 

 

2.3 Time Discretization 

Discretization refers to the subdivision of a continuous domain into distinct quantities.  

Discretization is how numerical solutions can be achieved.  For the equation of motion, 

time is the continuous domain that is discretized as time steps.  As explained above, it 

is important to pick a time step that satisfies stability and accuracy limits for the 

numerical method chosen, as well as captures the load accurately. 

 

2.4 Loads 

Blast loads are very complex loads to model.  How to characterize blast loads as 

applied to structures is not in the scope of this thesis.  However, the basic concepts of 

determining a load function are described below.  Blasts create fast-acting shock 

waves.  These shock waves create positive pressure, followed by negative pressure on 

any mass in its direction of travel.  Friedlander (1946) fit a curve to the pressure of 

blast wave over time.   The Friedlander Equation is shown below: 

 

𝑃 = 𝑃𝑠 ∙ 𝑒
−𝑡

𝑡∗ ∙ (1 −
𝑡

𝑡∗
)                 (2.4.1) 

 

where: 



11 
  

𝑃=pressure at time t 

𝑃𝑠=peak pressure 

𝑡=time 

𝑡∗=time of positive duration of pressure 

 

Figure 2.4.1 below shows a graph of this equation with arbitrarily selected values as 

well as a ramp approximation to the curve, which is explained after: 

 

 

Figure 2.4.1: Friedlander Equation Plot and Ramp Approximation with Arbitrary Values 

 

ASCE/SEI 59-11 (2011) describes a procedure for converting a weight of explosive 

material into a pressure-time graph that approximates the Friedlander relationship.  



12 
  

This graph becomes the applied load to the element by converting the pressure into a 

load.  Figure 2.4.2 below shows the diagram depicted in the actual manual: 

 

 

Figure 2.4.2: Pressure-Time Plot to Approximate Friedlander Equation (ASCE/SEI 59-11, 2011) 

 

Often in practice, the negative portion of the graph is neglected, as a conservative 

simplification of the analysis since the negative phase will partially counteract the 

effects of the initial positive pressure in most cases.  The scope of this thesis is not to 

investigate the load itself.  Therefore, the loads to be applied to the structural 

elements will follow what is most commonly used in practice.  This approach consists 

of obtaining a value for positive peak pressure and positive impulse from a charge (lb 

of TNT) and standoff (ft from structure).  With the peak pressure and impulse, a simple 

triangular ramp-down time-history is created, with positive pressure only.  This 



13 
  

pressure is applied to the structural element using its tributary area.  Figure 2.4.1 from 

before shows this simplified approach. 

 

2.5 Material Properties and Plasticity 

Materials can exhibit different properties under dynamic loading, compared to static 

loading.  Therefore, increase factors can be applied to the yield strengths of the 

materials in dynamic analyses.  The Methodology Manual for the Single-Degree-of-

Freedom Blast Effects Design Spreadsheets (SBEDS) summarizes these different 

increase factors, as shown in Table 2.5.1 below: 

 

 

Table 2.5.1: Various Strength Increase Factors for Steel (US Army, 2008) 

 

Modeling plastic behavior can be complicated and is material dependent.  For 

example, hot-rolled steel exhibits a linear stress-strain relationship until its yield point, 

at which it gains no increase in stress with additional strain.  At a certain strain value, it 

then exhibits strain hardening, and has an increase in stress with additional strain.  



14 
  

This strain-hardening portion of the curve is strain-rate dependent, which causes much 

complexity to modeling this behavior.  Reinforced concrete has a less distinct linear 

stress-strain relationship, and has no distinct point of yielding.  The stress-strain curve 

continues to decrease in slope until a maximum stress is observed.  Because of the 

complexity and variation in stress-strain behavior, assumptions are usually made 

about the stress-strain curve that do not introduce significant error into the solution, 

and at the same time, make computations significantly simpler.  A crude 

representation of the stress-strain behaviors of the two materials explained is shown 

below in Figure 2.5.1: 

 

 

Figure 2.5.1: Stress-Strain Relationship for Two Different Materials 

 



15 
  

Blast loads often have enough energy in such a short duration to cause yielding in the 

structural elements they are applied to.  Due to these conditions, plasticity must be 

considered in blast analysis.   

 

For this thesis, only hot-rolled steel is considered.  Hardening of the material is 

neglected to simplify the analysis without risking much inaccuracy.  Therefore, the 

stress-strain relationship used in both MATLAB solvers follows an elastic-perfectly 

plastic relationship.  For the analysis, once the internal moment reaches the plastic 

moment, that location is considered fully plastic until rebounding (change in sign of 

velocity).  After rebounding, the section becomes elastic again, but with residual 

displacement.  Yielding within the cross-section is neglected.  Additionally, all types 

and modes of buckling are not considered.  All elements considered are assumed to be 

non-slender and not susceptible to lateral torsional buckling.  Only compact sections 

are considered to avoid local buckling considerations as well.  Buckling limit states are 

outside the scope of this thesis. 

 

2.6 Boundary Conditions 

In reality, boundary conditions are never fully rigid nor fully rotatable.  Connections 

will have partial restraint of rotation.  However, for simplicity, connections are often 

modeled as either fully moment-connected, or fully pinned.  For this thesis, the 

boundary conditions considered are fully fixed, fully pinned, and free (no constraint).   

 



16 
  

2.6.1 Transformation Factors (For SDOF Analysis) 

SDOF analysis is computationally convenient because the quantities in the equation of 

motion are scalars.  For MDOF analysis, these quantities becomes matrices, which 

requires matrix computations.  For this reason, SBEDS makes use of certain 

transformation factors that convert beams (MDOF systems with potentially infinite 

DOFs) to SDOF systems.  Figure 2.6.1.1 below shows this transformation pictorially: 

 

 

Figure 2.6.1.1: Transformation from Continuous System to SDOF System (US Army, 2008) 

 

As explained in Methodology Manual for the Single-Degree-of-Freedom Blast Effects 

Design Spreadsheets (SBEDS), “[a]n equivalent SDOF system is defined as a system that 

has the same energy in terms of work energy, strain energy, and kinetic energy, as the 

blast-loaded component responding in a given, assumed mode shape.”  The 

mathematical derivations of these definitions are listed in the following equations: 

 

𝐾𝑀 =
𝑀𝑒

𝑀𝑡
=

∫ 𝑚(𝑥)[∅(𝑥)]2𝑑𝑥
𝐿

0

∫ 𝑚(𝑥)𝑑𝑥
𝐿

0

            (2.6.1.1) 

 



17 
  

where: 

𝐾𝑀=mass factor 

𝑀𝑒=equivalent SDOF mass 

𝑀𝑡=total mass of MDOF element 

𝑚(𝑥)=distributed mass along MDOF element 

∅(𝑥)=static deflected shape (unit normalized) 

𝐿=length of element 

 

𝐾𝐿 =
𝐹𝑒(𝑡)

𝐹𝑡(𝑡)
=

∫ 𝑝(𝑥,𝑡)∅(𝑥)𝑑𝑥
𝐿

0

∫ 𝑝(𝑥,𝑡)𝑑𝑥
𝐿

0

  (2.6.1.2) 

 

where: 

𝐾𝐿=load factor 

𝐹𝑒(𝑡)=equivalent SDOF load 

𝐹𝑡(𝑡)=total load on MDOF element 

𝑝(𝑥, 𝑡)=distributed load along MDOF element 

 

Using the above equations, these factors are calculated.  The mass of the system gets 

multiplied by the mass factor, and the load on the system and the resistance of the 

system get multiplied by the load factor.  These factors vary for each static deflected 

shape.  Therefore, they change based on the boundary condition, the shape of loading, 

and the state of plasticity.  By dividing the mass factor by the load factor, a single 



18 
  

“load-mass” factor can be used as well.  Biggs originally derived these factors for 

various conditions, which are shown below in Tables 2.6.1.1a, 2.6.1.1b, and 2.6.1.1c: 

 

 

Table 2.6.1.1a: Transformation Factors for Pinned-Pinned Beam (Biggs, 1964) 

 
 

 

Table 2.6.1.1b: Transformation Factors for Fixed-Fixed Beam (Biggs, 1964) 

 



19 
  

 

 

Table 2.6.1.1c: Transformation Factors for Fixed-Pinned Beam (Biggs, 1964) 

 

Displacement is calculated at each time step of the solution.  From the original beam, 

a value of displacement can be solved for, corresponding to first yielding of the 

section.  If the displacement of the equivalent system reaches this value of 

displacement, the transformation factors change from the elastic factors to the elastic-

plastic factors or the plastic factors, depending on which boundary condition is used.  

After rebound, the factors go back to the elastic factors and the tracking restarts in the 

opposite direction.   

 

Certain boundary conditions have two sets of transformation factors, while other 

boundary conditions have three sets.  This is because depending on the boundary 

condition, the beam can develop several locations of sequential yielding before 



20 
  

becoming a collapse mechanism (not able to resist any further increase in loading).  

For example, pinned-pinned beams yield in the center and then become a collapse 

mechanism.  Fixed-fixed beams first yield at the supports simultaneously, and the 

beam essentially becomes a pinned-pinned beam, until it yields again at the center, 

forming the collapse mechanism.  An illustration of this process is shown below in 

Figure 2.6.1.2: 

 

 

Figure 2.6.1.2: Illustration of Stages of Yielding (US Army, 2008) 

 

SBEDS makes use of these factors in its analysis.  By tracking the displacements at 

which yielding occurs, SBEDS creates a load-displacement graph that tracks how much 

resistance the system can have at any given displacement.  Figure 2.6.1.3 on the 

following page shows the general resistance-deflection relationship that SBEDS uses.  

This resistance-deflection relationship is equivalent to the stress-strain relationship 

mentioned earlier, and takes into account the varying transformation factors at 

different points of yielding. 



21 
  

 

 

Figure 2.6.1.3: General Resistance-Deflection Relationship for SBEDS (US Army, 2008) 

 

 

2.7 Space Discretization 

For SDOF analysis, the mass of the system is located at a point.  There is no need to 

discretize space, because the mass is all located at the same point in space.  However, 

for MDOF analysis, the mass of the system for a structural element is distributed along 

the element itself.  The solution to the displacement of each point along this element 

can be solved for using continuum analysis.  However, this is complex and not 

computationally efficient.  It is therefore necessary to discretize space along the 

element, so that mass can be lumped at specific points (nodes) along the element.  

This allows matrices to be assembled that represent the mass, stiffness, damping, and 

applied loads for the element.  These matrices can then be used in a matrix 



22 
  

formulation of any numerical method described above.  An example of space 

discretization for a two-member frame is shown below in Figure 2.7.1. 

 

 

Figure 2.7.1: Example of Space Discretization for Two-Member Frame 

 

The two continuous elements of lengths 3 and 2 meters are discretized into multiple 

elements of length 0.1 meters.  The mass (and any applied loads) of the continuous 

elements becomes lumped at each node using tributary widths.  Each discretized 

element has its own stiffness and damping coefficients as well, which relate to the 

overall stiffness and damping of the structure. 

 



23 
  

2.8 Element Type 

In MDOF analysis, an element type must be selected.  Different types of elements are 

capable of exhibiting different types of response behavior.  For example, the Euler-

Bernoulli Beam only considers deformation due to bending, while the Timoshenko 

Beam considers deformation due to both bending and shear.  It is important to know 

which type of element is appropriate to use.  If the element in question is slender, 

Euler-Bernoulli Beams give good approximations of behavior.  However, for short 

elements, shear deformation is significant, and Timoshenko Beams must be used to 

obtain more accurate results.  In “A First Course in the Finite Element Method” (Logan, 

2012), stiffness matrices for both types of elements are derived.    Below displays the 

elemental elastic stiffness matrix of a Timoshenko Beam:  

 

𝒌𝑒 =
𝐸𝐼

𝐿3(1+𝑟)
(

12          6𝐿
6𝐿 (4 + 𝑟)𝐿2

−12     6𝐿
−6𝐿 (2 − 𝑟)𝐿2

−12𝐿 −6𝐿
6𝐿 (2 − 𝑟)𝐿2

12 −6𝐿
−6𝐿 (4 + 𝑟)𝐿2

)                     (2.8.1) 

 

where: 

𝒌𝑒=elemental elastic stiffness matrix 

𝐸=elastic modulus of element 

𝐼=moment of inertia of element 

𝐿=length of element 

𝑟 =
12𝐸𝐼

𝐴𝑠𝐺𝐿2
 



24 
  

𝐴𝑠=shear area of element 

𝐺=shear modulus of element 

 

By substituting zero for r, this stiffness matrix reduces to the Euler-Bernoulli elastic 

stiffness matrix.   

 

After a system is discretized in space, elemental stiffness matrices are calculated for 

each discretized element.  These elemental stiffness matrices are then assembled into 

an overall global stiffness matrix, by utilizing the connectivity of the structure. 

 

2.9 Geometric Effects 

When axial load is applied to a beam, it becomes classified as a beam-column, because 

it resists axial load like a column as well as transverse load like a beam.  Axial load has 

an effect on the stiffness of the element.  In general, tension in a member will increase 

its stiffness, while compression will decrease its stiffness.  Different methods may be 

implemented to account for this decrease in stiffness in SDOF analysis.  One method, 

which is implemented by SBEDS, applies additional transverse load to the element for 

the following time step, based on the static axial load on the member as well as the 

deflection at the current time step.  Here, the stiffness is not directly manipulated, but 

the end result is the same: a larger deflection. 

 



25 
  

For MDOF analysis, a geometric stiffness matrix can be used to account for this change 

in stiffness.  This geometric stiffness matrix is added to the elastic stiffness matrix, 

either before assembly as element matrices, or after assembly as a global matrix.  In 

“Structural Element Stiffness, Mass, and Damping Matrices” Gavin (2014) derives 

geometric stiffness matrices for both Euler-Bernoulli and Timoshenko elements.  By 

substituting zero into the shear factor, the Timoshenko geometric stiffness matrix 

reduces to the Euler-Bernoulli matrix.  Below is the elemental geometric stiffness 

matrix for Timoshenko Beam: 

 

 

(2.9.1) 

 

where: 

𝑘𝑔=elemental geometric stiffness matrix 

𝑃=applied axial load (tension positive) 

𝐿=length of element 

𝑟 defined earlier in Equation 2.8.1 

 



26 
  

2.10 Mass Matrix 

In MDOF analysis, mass matrices can be modeled differently as well.  A simple way to 

model mass matrices is to lump half of the elements mass at each node (assuming a 

two-node element), thus creating a diagonal mass matrix.  A more comprehensive 

approach involves the use of shape functions, which come from the Finite Element 

Method (not covered in this thesis).  “A First Course in the Finite Element Method” 

(Logan, 2012) derives mass matrices using these shape functions.  This “consistent-

mass matrix” is shown below:  

 

𝒎𝑒 =
𝜌𝐴𝐿

420
(

   156   22𝐿
    22𝐿   4𝐿2      

 54    −13𝐿
13𝐿    −3𝐿2

     54   13𝐿
−13𝐿 −3𝐿2

  156   −22𝐿
−22𝐿       4𝐿2

)                  (2.10.1) 

 

where: 

𝒎𝑒=elemental mass matrix 

𝜌=density of element 

𝐴=area of element 

𝐿=length of element 

 

Przemieniecki (1968) derived the consistent-mass matrix using Timoshenko theory. 

Substituting zero for the shear factor in the Timoshenko mass matrix reduces the 

matrix to the Euler-Bernoulli mass matrix.  The Timoshenko mass matrix requires 



27 
  

significantly more space to display than the Euler-Bernoulli consistent-mass matrix, 

and is therefore not shown. 

 

After a system is discretized in space, elemental mass matrices are calculated for each 

discretized element.  These elemental mass matrices are then assembled into an 

overall global mass matrix, by utilizing the connectivity of the structure.  This process is 

identical to the process for assembling the global stiffness matrix. 

 

2.11 Mode Shapes 

In MDOF analysis, once the global matrices are assembled, there are two options for 

solving the displacements using numerical methods.  The first option is to directly 

input the matrices into Equation 2.2.1 from earlier, and then use the matrix 

formulation of whichever numerical method is chosen.  This involves matrix 

computations.   

 

The second option is to use transformations to create another set of matrices, called 

modal matrices.  These matrices are diagonal, which allows Equation 2.2.1 to be 

decoupled.  This means that instead of having one N by x matrix equation (N is number 

of DOFs), there are instead N scalar equations.  Each of these scalar equations can be 

solved independently using any chosen numerical method.  The solution to these 

equations are modal displacements, which then get transformed back into physical 

displacements.   



28 
  

 

To obtain the modal stiffness and mass matrices, a matrix eigenvalue problem must be 

solved, which is shown below in Equation 2.11.1: 

 

𝒌∅𝑛 = 𝜔𝑛
2𝒎∅𝑛              (2.11.1) 

 

where: 

𝒌=global stiffness matrix 

𝒎=global mass matrix 

∅𝑛=mode shape for mode n of N 

𝜔𝑛=natural frequency of vibration for mode n of N 

 

Once the mode shapes are determined, they can be concatenated into a matrix, Φ.  

The global stiffness and mass matrices can then be pre-multiplied and post-multiplied 

by Φ to create the modal stiffness and modal mass matrices, which are diagonal as 

stated previously.  These new matrices can be substituted into Equation 2.2.1, with the 

unknown quantities now being modal displacements (𝑞𝑛), modal velocities (𝑞̇𝑛), and 

modal accelerations (𝑞̈𝑛).  These form decoupled equations, since the modal matrices 

are diagonal.  Therefore, the modal displacements can be solved for, for each mode 

individually.  Once these are determined, a transformation brings the modal 

displacements into the physical displacements.  The same equation applies to 

velocities and accelerations.  Equation 2.11.2 shows this transformation: 



29 
  

 

𝒖(𝒕) = ∑ ∅𝑟𝑞𝑟(𝑡)𝑁
𝑟=1               (2.11.2) 

 

where: 

𝒖(𝒕)=vector of physical displacements 

 

This second method has two benefits.  The first benefit is the fact that the differential 

equations become decoupled and are simpler to solve independently.  The second 

benefit is that higher modes can be neglected in the transformation back to physical 

coordinates.  These higher modes have large corresponding natural frequencies of 

vibration.  This means the periods of vibration for these higher modes are very short, 

which can lead to inaccuracy and instability in the numerical solution, as described in 

Chapter 2.2.  By neglecting these higher modes, the accuracy and stability limits 

become more feasible to satisfy when choosing a time step.   

 

However, Chopra (1995) states that, “[c]lassical modal analysis is […] not applicable to 

the analysis of nonlinear systems.”  Therefore, a different formulation will be 

explained in the following section. 

 

2.12 Damping 

Damping refers to the loss of energy due to friction, which causes a decrease in the 

response over time.  Damping can be strain-rate dependent, which can make it very 



30 
  

complex to model.  In SDOF analysis, damping is modeled using the damping 

coefficient, c, in Equation 2.2.1 from earlier.  SBEDs allows users to input a damping 

ratio, which is used to calculate c for the analysis.  In Methodology Manual for the 

Single-Degree-of-Freedom Blast Effects Design Spreadsheets (SBEDS), reference is 

made to TM 5-1300, which recommends using damping ratios of 5% for steel, and 1% 

for reinforced concrete.  Below is another excerpt from the methodology manual: 

 

“UFC 3-340-01 recommends that damping values commonly used for 
earthquake analysis and design […] can be used for elastic and elastoplastic 
component response only.  Therefore, the damping term is set to zero for all 
plastic response.  This is recommended because the damping forces for 
structure response to earthquake loading were developed primarily for elastic 
component response, which involves deformation over the whole volume of 
the component.  After ultimate resistance, deformation consists primarily of 
localized hinging at maximum moment regions, which occurs over a much 
smaller volume, so that no significant additional damping occurs” (Us Army, 
2008). 

 

 

In MDOF analysis, there are many modeling options for damping, which vary in 

complexity.  Chopra (1995) presents three main options: Caughey Damping, 

superposition of modal damping matrices, and nonclassical damping.  The first two 

options fall under the category of classical damping.   

 

The formulation of the natural modes explained in the previous section are 

constructed in a way so that the mass and stiffness matrices are orthogonal to each 

mode.  This means that pre-multiplying either matrix by the transpose of any mode 



31 
  

shape, and post-multiplying the result by the same mode shape will result in 0.  For a 

damping matrix to be classically damped, it must also satisfy this mode orthogonality.   

 

In the first method, Caughey Damping, damping ratios for the first J modes can be 

specified.  The rest of the damping ratios that are not specified are automatically 

calculated.  Equations 2.12.1a and 2.12.1b below are used to calculate this type of 

damping matrix: 

 

𝒄 = 𝒎 ∑ 𝑎𝑙[𝒎−1𝒌]𝑙𝐽−1
𝑙=0            (2.12.1a) 

𝜁𝑛 =
1

2
∑ 𝑎𝑙𝜔𝑛

2𝑙−𝑙𝐽−1
𝑙=0             (2.12.1b) 

 

where: 

𝒄=global damping matrix 

𝜁𝑛=damping ratio for mode n 

𝐽=number of modes to specify damping ratios for 

 

First, damping ratios are specified for J modes.  Then, 𝑎𝑙 constants are solved for using 

Equation 2.12.1b.  Once these constants are determined, the global damping matrix 

can be determined.  A special case of this is called Rayleigh Damping, where only two 

modes have determined damping ratios (J=2).   

 



32 
  

The second method, superposition of modal damping matrices, is very similar to 

Caughey Damping.  Damping ratios are specified for any number of modes.  However, 

instead of the modes not specified being automatically calculated, there is no damping 

in these modes.  Equation 2.12.2 below is used to calculate the classical damping 

matrix using superposition of modal damping matrices: 

 

𝒄 = 𝒎 (∑
2𝜁𝑛𝜔𝑛

𝑀𝑛

𝐽
𝑛=1 𝜙𝑛𝜙𝑛

𝑇) 𝒎            (2.12.2) 

 

where: 

𝑀𝑛=modal mass for mode n (nth diagonal term on modal mass matrix) 

 

The third method, non-classical damping, involves modifying the eigenvalue 

formulation for determining mode shapes.  In the previous section, the eigenvalue 

problem was formulated by neglecting damping.    By including damping, the matrix 

eigenvalue problem becomes the quadratic eigenvalue problem.  Equation 2.12.3 

below represents this formulation: 

 

(𝜆𝑛
2 𝒎 + 𝜆𝑛𝒄 + 𝒌)𝜓𝑛 = 𝟎                           (2.12.3) 

 

where: 

𝜆𝑛=eigenvalue of problem 



33 
  

𝜓𝑛=eigenvector of problem 

 

𝜆𝑛 can be thought of as equivalent to 𝜔𝑛
2 in the matrix eigenvalue problem and 𝜓𝑛 can 

be thought of as equivalent to 𝜙𝑛 in the matrix eigenvalue problem.  The solution to 

this equation yields complex numbers. 

 

Under nonlinear dynamic analysis, damping becomes even more complex.  Once an 

element yields, with the sudden reduced stiffness, the velocity is likely to increase 

suddenly.  Since viscous damping is proportional to the velocity, there would be 

increased damping at this point of yielding, which is not realistic.  To mitigate this 

issue, many solvers implement a reduction in damping during yielding.  An example of 

this is to reduce the elemental damping matrices that correspond to any element that 

yields by a factor of 10−3.  This reduction would make the damping force associated 

with the increased velocity insignificant enough not to overdamp the system during 

yielding. 



34 
  

Chapter 3 Single-Degree-of-Freedom Solver 

3.1 General 

This chapter discusses all aspects of the SDOF analysis.  This includes the modeling 

techniques that SBEDS implements, how SBEDS was replicated using MATLAB, and 

some minor inconsistencies between theory and output.     

 

3.2 SBEDS 

SBEDS is a Microsoft Excel-based spreadsheet used to design structural elements 

under dynamic loading.  It is commonly used for blast design.  There are several sheets 

to the file, which are explained in the following sections. 

 

3.2.1 Intro Tab 

The Intro tab allows the user to select a type of component used for the analysis, such 

as a steal beam, or a reinforced concrete beam.  In this tab, the user can also choose 

between English and Metric units.  For this thesis, English units will be used, as this is 

the standard in practice.  The Intro tab also lists instructions and comments about the 

program. 

 

3.2.2 Input Tab 

The Input tab allows users to input several parameters for the analysis.  Specifically, 

yellow cells specify user input cells.  Element size, braced length, boundary conditions, 



35 
  

supported weight, axial load, lateral load functions, time step, damping ratio, and 

incident angle are some input parameters in this tab.  A recommended time step is 

displayed here.  This recommended time step is the smallest of several values, which 

are listed below (US Army, 2008): 

•  10% of the natural period 
•  10% of the smallest time increment in a manually input, point-wise l
 inear blast load 
•  3% of the equivalent triangular positive phase duration or 1.5% of the  

equivalent triangular negative phase duration of an input charge 
weight-standoff blast load 

•  3% of the smallest calculated time between local maxima and minima 
points of an input blast load file 

•  eight natural periods divided by 2900 time steps 
 

This tab also displays the resistance-deflection relationship for the chosen parameters, 

as well as yield displacements and other important parameters.  Once the input 

parameters are entered, a green button labelled “RUN SDOF” runs the analysis.  

Results of this analysis include maximum values of displacement, rotation, and 

ductility. 

 

3.2.3 Results Tab 

This tab displays several plots once the analysis is run.  These plots include 

displacement-time, load-time, resistance-time, resistance-displacement, and dynamic 

shear-time.   

 



36 
  

3.2.4 P-I_Diagram Tab 

This tab allows the user to create a pressure-impulse diagram for the selected 

element.   

 

3.2.5 SDOF Output Tab 

This tab shows the tabulated data for the analysis.  These values are the plots in the 

Results tab.  This output tab displays columns of output, such as deflection, velocity, 

acceleration, resistance, and the load-mass factor for each time step.  SBEDS uses the 

constant-velocity procedure to calculate the output, as explained in section 2.2 earlier.  

This method solves the displacement, velocity, and acceleration at each time step.  

When the value of the displacement reaches a yield value (calculated in the Input tab), 

the load-mass factor changes to the appropriate factor, and the time stepping 

continues.  On rebound, the load-mass factor changes back to the elastic value and the 

process starts over on rebound.  The program calculates these values for a total of 

2900 time steps, no matter what size time step is chosen.  Figure 3.2.5.1 on the 

following page shows the displacement-time plot for an arbitrary analysis: 

 



37 
  

 

Figure 3.2.5.1: Displacement-Time Plot for Arbitrary SBEDS Analysis (SBEDS, 2008) 

 

3.2.6 Database Tab 

The Database tab has various constants that the analysis uses, depending on what the 

user chooses as inputs.  These constants include the Biggs transformation factors for 

each condition, yield stresses and elastic moduli for certain materials, and increase 

factors for yield values. 

 

3.2.7 Beam_Types Tab 

This tab is similar to the Database tab.  In this tab, properties of every cross-section 

type are listed for the analysis to reference.  For every section type (Wide Flange, Tube 

Section, etc.), properties are listed such as weight, plastic section modulus, and 

moment of inertia.  These are all needed for the analysis. 

 

3.3 MATLAB Replica 

The first step in quantifying the inaccuracies in SBEDS is to create a program that takes 

the same inputs as SBEDS, performs an equivalent SDOF analysis, and returns the 



38 
  

same outputs as SBEDS.  The reason this has to be done with programming is because 

this program will be used several times for ranges of different input parameters, in 

order to create data frames.  These data frames will be compared to data frames 

created from the MDOF solver.  MATLAB was used to write this program.   

 

To keep the program organized like SBEDS is, several function files were created that 

have different features.  These functions are equivalent to the different tabs that 

SBEDS has.  For the full set of program files, see Appendix A: MATLAB Code for SBEDS 

Replica (SDOF Solver). 

 

3.3.1 Main File 

The first program file, called “main.m,” is the main part of the program.  From here, 

variables are passed to and from all other functions for analysis.  This main file starts 

with declarations of all inputs.  This is equivalent to the Intro and Input tabs from 

SBEDS.  All of the input parameters are then converted to a consistent set of units so 

that all further calculations are in consistent units.   The rest of the main file consists of 

functions that transfer variables and perform calculations. 

 

3.3.2 Load File 

The first function, called “Load.m,” creates the loading function.  Four inputs are taken 

from the main file (initial applied pressure [psi], length of pressure [ms], time step 



39 
  

[ms], and number of steps).  This load function creates a triangular load function and 

passes the value of the load at each time step back to the main file. 

 

3.3.3 Biggs File 

The next function, called “Biggs.m,” specifies which transformation factors will be used 

for the equivalent SDOF analysis.   This function takes two inputs from the main file 

(load type [point load or uniform load], and boundary conditions [pinned-pinned, 

fixed-fixed, fixed-pinned, or cantilevered]).  From these two inputs, all the 

transformation factors are defined, and passed back to the main file.   

 

3.3.4 Const_vel File 

The next function, called “const_vel,” performs the bulk of the calculations.  Here, the 

constant-velocity procedure is implemented.  Initial conditions on the displacement 

and velocity, the Biggs transformation factors, mass, damping ratio, stiffness, the 

loading function, time step, and number of steps are all passed to this function.  For 

each time step, the value of the resistance is compared to the values of resistance that 

would cause yielding, and therefore would cause the transformation factors to 

change.  Once the value of resistance reaches 95% of maximum resistance, the 

damping ratio changes to zero until rebound.  SBEDS implements this modeling option 

for damping, as explained earlier.   

 



40 
  

For each time step, every value of time, loading, displacement, velocity, acceleration, 

stiffness, resistance, load-mass factor, and internal shear are stored into a matrix 

called “alldata.”  This is the same format as the SDOF Output tab in SBEDS, so that it is 

easy to compare the output of SBEDS to the output of this MATLAB program.  All of 

these calculated variables are then sent back to the main file, where final post-

processing is performed, at which point plots are created of the outputs. 

 

3.4 Solver Verification 

To ensure that this MATLAB program functions identically to SBEDS, several sets of 

inputs were analyzed with both programs and compared.  The element chosen for 

comparison was a W10X12 Grade 50 steel beam, with length of 20 ft and tributary 

width of 0.5 ft.  The duration of the pressure load was 17.8 ms, which is a common 

duration length in practice.  Every boundary condition and load type were tested, with 

damping ratios of 0%, 5%, and 20%.  The initial pressure load was also varied for each 

combination to get the maximum displacement of the system to be in each region of 

plasticity.   

 

Once all of these cases were verified, other parameters were changed as well.  This 

included changing the duration of the pressure load to 8 ms, adding additional weight 

(30 psf, which converted to additional mass) to the system, and changing the beam 

shape to a W40X655.   

 



41 
  

An example of how the two analyses were compared is shown below in Figure 3.4.1: 

 

 

Figure 3.4.1: Acceleration Comparison of SBEDS with SDOF MATLAB Program 

 
 

The data from the SDOF Output tab from SBEDS was pasted into a new Excel 

document.  The data from the “alldata” matrix was also pasted into this Excel 

document.  Plots were created for the displacement, velocity, acceleration, resistance, 

and internal shear force for each set parameter variations.  Since the plots of both sets 

of outputs overlapped, the MATALB replica was verified as being identical to SBEDS.  

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120A
cc

e
le

ra
ti

o
n

 (
in

/m
s^

2
)

TIme (ms)

Acceleration Comparison for W10X12 
Fixed-Pinned Point Load with 20% 

damping, elasto-plastic region

MATLAB ACC

SBEDS ACC



42 
  

For the full set of verifications, see Appendix B: SDOF Solver Verifications (Time History 

Plots).   

 

3.4.1 Inconsistencies  

While comparing each set of parameters to SBEDS, an inconsistency was found 

between the theory stated in the SBEDS Manual and the SBEDS output. Additionally, 

some minor inconsistencies between SBEDS and the MATLAB replica were displayed in 

the plots, which are the results of certain modeling choices. 

 

The inconsistency between SBEDS theory and output was in the resistance-deflection 

relationship.  Figure 2.6.1.3 from earlier shows this relationship that SBEDS apparently 

always follows.  The results from the W40X655 element, however, showed a different 

resistance-deflection relationship.  Figures 3.4.1.1a and 3.4.1.1b below shows the 

resistance-deflection output for this W40X655 element, which underwent a load large 

enough to create a fully plastic resistance: 

 



43 
  

 

Figure 3.4.1.1a: Resistance-Deflection Plot for W40X655 Fixed-Pinned with Uniform Load and 0% Damping 

 

 

 

Figure 3.4.1.1b: Resistance-Time Plot for W40X655 Fixed-Pinned with Uniform Load and 0% Damping 

 

-4000

-2000

0

2000

4000

6000

8000

10000

12000

14000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
e

si
st

an
ce

 (
p

si
)

Deflection (in)

Resistance-Deflection

MATLAB Resistance

SBEDS Resistance

-4000

-2000

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25

R
e

si
st

an
ce

 (
p

si
)

Time (ms)

Resistance-Time for W40X655

MATLAB RESISTANCE

SBEDs RESISTANCE



44 
  

From Figure 3.4.1.1a, it can be seen that the first yield transition occurs at a resistance 

of approximately 8000 psi.  Once the mass goes through rebound, and then inbound 

again, the resistance reaches this value again.  This can be seen in Figure 3.4.1.1b, 

since there is no overlap.  However, the resistance function does not change slopes 

here (the stiffness stays the same).  In other cases, the resistance-deflection 

relationship is consistent with the SBEDS theory.  Figures 3.4.1.2a, 3.4.1.2b, and 

3.4.1.2c below show this with the W10X12 element, which also underwent a load large 

enough to create a fully plastic resistance: 

 

 

Figure 3.4.1.2a: Resistance-Deflection Plot for W10X12 Fixed-Fixed with Uniform Load and 0% Damping 

 
 
 

-60

-40

-20

0

20

40

60

80

0 1 2 3 4 5 6 7 8R
e

si
st

an
ce

 (
p

si
)

Deflection (in)

Resistance-Deflection for W10X12

MATLAB RESISTANCE

SBEDS RESISTANCE



45 
  

 

 Figure 3.4.1.2b: Resistance-Time Plot for W10X12 Fixed-Fixed with Uniform Load and 0% Damping 

 

 

 
 

Figure 3.4.1.2c: Resistance-Deflection Plot for W10X12 Fixed-Fixed with Uniform Load and 0% Damping (Magnified) 

-60

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70R
e

si
st

an
ce

 (
p

si
)

Time (ms)

Resistance-Time for W10X12

MATLAB RESISTANCE

SBEDs RESISTANCE

-60

-40

-20

0

20

40

60

80

5.3 5.5 5.7 5.9 6.1 6.3 6.5R
e

si
st

an
ce

 (
p

si
)

Deflection (in)

Resistance-Deflection for W10X12

MATLAB RESISTANCE

SBEDS RESISTANCE



46 
  

 
 

 

From Figure 3.4.1.2a, it can be seen that the first yield transition occurs at a resistance 

of approximately 50 psi.  Once the mass goes through rebound, and then inbound 

again, the resistance reaches this value again.  This can be seen in Figure 3.4.1.2b, 

since there is no overlap.  For this analysis, the resistance function does change in 

slope.  Figure 3.4.1.2c shows this (the stiffness changes).  In other cases, the 

resistance-deflection relationship is consistent with the SBEDS theory. 

 

To account for this inconsistency in the MATLAB replica, a datum resistance value is 

stored during the time stepping.    This datum resistance is subtracted from the 

resistance that is checked against the resistance values to cause the transformation 

factors to change (yield regions).    This allows the replica to match SBEDS for both 

situations.  Although this inconsistency does exist in SBEDS, it does not cause any 

major issues while using the program.  This is because design is based on maximum 

response, and most maximum responses occur before rebound, which is before this 

issue ever arises. 

 

The modeling choices made while creating the MATLAB replica led to some minor 

inconsistencies in the plots when validating each case.  Figures 3.4.1.3a, 3.4.1.3b, and 

3.4.1.3c on the following pages show one of these discrepancies: 

 



47 
  

 

Figure 3.4.1.3a: Deflection-Time Plot for W10X12 Fixed-Pinned with Point Load and 0% Damping 

 

 

Figure 3.4.1.3b: Acceleration-Time Plot for W10X12 Fixed-Pinned with Point Load and 0% Damping 

 

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

D
e

fl
e

ct
io

n
 (

in
)

Time (ms)

Deflection-Time Discrepancy

MATLAB DISPL

SBEDS Displ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120A
cc

e
le

ra
ti

o
n

 (
in

/m
s^

2
)

Time (ms)

Acceleration-Time Discrepancy

MATLAB ACC

SBEDS ACC



48 
  

 

Figure 3.4.1.3c: Acceleration-Time Plot for W10X12 Fixed-Pinned with Point Load and 0% Damping (Magnified) 

 

As seen in the above plots, the acceleration in SBEDS is slightly more negative than the 

MATLAB replica, which causes the SBEDS displacement to be decreased.  This is due to 

the time step at which the transformation factors change, as a result of the resistance 

reaching the yield value.  For this specific case, the SBEDS solution spent a few more 

time steps in the elasto-plastic region than the MATLAB solution did.  This additional 

stiffness for the elasto-plastic time steps is what caused the deflection to be smaller 

for the SBEDS solution.  The reason for these additional elasto-plastic time steps may 

be due to the amount of significant digits that Excel stores compared to the amount 

that MATLAB stores, and if SBEDS rounds the deflection values at which the stiffness 

changes.  However, this is a minor discrepancy (1.3% error), and when damping is 

introduced, the plots overlap one another. 

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

15 16 17 18 19 20
A

cc
e

le
ra

ti
o

n
 (

in
/m

s^
2

)

Time (ms)

Acceleration-Time Discrepancy

MATLAB ACC

SBEDS ACC



49 
  

 

Another slight discrepancy is shown in Figure 3.4.1.4 below: 

 

 

Figure 3.4.1.4: Deflection-Time Plot for W10X12 Fixed-Fixed with Uniform Load and 5% Damping 

 

This discrepancy is due to the fact that the MATLAB program does not reset the 

resistance as the exact yield value when transitioning.  Instead, it uses the calculated 

resistance from the previous time step, and therefore slightly overshoots the value of 

resistance.  Since the resistance is larger for one time step, the deflection is slightly 

lower for the rest of the solution.  However, this decrease is small enough (1.3% error) 

to still be considered accurate with respect to SBEDS’s output.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70

D
e

fl
e

ct
io

n
 (

in
)

Time (ms)

Deflection-Time

MATLAB DISPL

SBEDS Displ



50 
  

 

Chapter 4 Multi-Degree-of-Freedom Solver 

4.1 General 

This chapter discusses all aspects of the MDOF analysis.  This includes the modeling 

techniques that SAP2000 implements, how the single-beam analysis in SAP2000 was 

replicated using MATLAB, and some minor inconsistencies between the two solvers as 

well as SAP2000 methodology and SBEDS methodology. 

 

4.2 SAP2000 

SAP2000 is a software package used to perform structural analysis, structural dynamic 

analysis, and structural design.  It is commonly used in the structural engineering 

industry.  The structural dynamic analysis capabilities of SAP2000 are the primary 

focus of this verification study.  This is a more precise version of the analysis that 

SBEDS performs.  The increase in accuracy comes from the fact that SAP2000 performs 

MDOF analysis, whereas SBEDS performs SDOF analysis.  Some of the key features of 

this tool are explained in the following sections. 

 

4.2.1 Inputs 

SAP2000 has a graphical user interface as opposed to being a spreadsheet like SBEDS.  

First, a grid is created for the nodes, or degrees of freedom to be placed.  Next, 

definitions of materials and section properties are specified, including material 



51 
  

nonlinear hinges which be applied to the nodes.  Once these are specified, the user 

can create the structural element or system with nodes and lines.  An example of the 

material definition window is shown below in Figure 4.2.1.1: 

 

 

Figure 4.2.1.1: Example of Material Definition Window for SAP2000 

 

Once the geometry is defined with associated materials and section properties, 

boundary conditions and loads can be applied to the structure, as well as mass 



52 
  

definitions, which will be used in dynamic analysis.  These loads can be linked to time-

history plots, and damping and a numerical method can be specified for the time-

history analysis.  SAP2000 is limited by having lumped mass matrices only; it does not 

use consistent-mass matrices.  However, shear area can be included or neglected, 

thereby specifying Timoshenko stiffness matrices or Euler-Bernoulli stiffness matrices, 

respectively.  Geometric effects due to axial load can be included or neglected as well.  

Figure 4.2.1.2 below shows the graphical representation of a defined structure in 

SAP2000: 

 

 

Figure 4.2.1.2: Graphical Representation of a Pinned-Fixed Beam with 0.35 k/in Load and 4 Elements 

 

Damping in SAP2000 is specified with Rayleigh Damping factors.  These factors, 𝛼 and 

𝛽 are multiplied by the elemental mass and elastic stiffness matrices respectively.  An 

important note is that SAP2000 uses the initial assembled damping matrix throughout 

the whole time-history analysis.  If a degree of freedom corresponding to an element 

yields, its corresponding elemental stiffness-proportional damping matrix is multiplied 

by a factor between 10−2 and 10−3, and then the global damping matrix is 

reassembled.  This is used until the degree of freedom that yielded reverses direction, 

at which the original damping matrix is used again. 



53 
  

 

4.2.2 Outputs 

Once the input parameters are chosen, a time-history can be performed, and all the 

output data is accessible.  This includes time-history data in spreadsheet format for 

displacements, velocities, accelerations, internal forces, and reactions.  SAP2000 has a 

feature for plotting the data as well.  Shown below in Figure 4.2.2.1 is an example plot 

from SAP2000: 

 

 

Figure 4.2.2.1: Example Plot of Deflection-Time in SAP2000 

 

4.3 MATLAB Replica 

The next step in quantifying the inaccuracies in SBEDS is to create a program that takes 

the same inputs as SAP2000 (and SBEDS), performs a MDOF analysis like SAP2000, and 



54 
  

returns the outputs of interest.  MATLAB was used to write this program as well, as 

explained earlier.  This code is provided in Appendix C: MATLAB Code for More 

Accurate Model (MDOF Solver). 

 

4.3.1 Input File 

The first function file, called “input.m,” contains all the input data for the analysis, 

specified by the user.  This file allows the user to specify the geometry of the structure, 

type of mass matrices to be used (consistent or lumped), type of elements to be used 

(Timoshenko or Euler-Bernoulli), β and γ factors for Newmark’s method, tolerance of 

unbalanced load for Newton-Raphson iteration, shape of the loading time-history 

curve, boundary conditions, force values and locations scaled by the time-history 

curve, axial load, Rayleigh Damping factors, length of the system, number of elements 

(mesh), material parameters (elastic modulus, yield stress, density), section properties 

(cross-sectional area, moment of inertia, shear area), and non-structural masses. 

 

4.3.2 Main File 

The program file, called “mainNR.m,” is the bulk of the code.  It first reads the data 

from the input function and performs preprocessing on this data to setup all the 

matrices and vectors for time-history analysis.  The code follows the steps that a 

standard direct stiffness method or finite element method approach would follow, by 

assigning all the properties to each element, and then assembling global matrices 

based on the boundary conditions.  Several small functions are used throughout this 



55 
  

process, such as a function that compute equivalent nodal loads for distributed loads 

(called “g_element.m”) and a function that calculates the stiffness and mass matrices 

for each element passed to it (called “k_element.m”). 

 

Once all of this setup is complete, a “while” loop runs through the time stepping of 

Newmark’s method with Newton-Raphson iteration.  If an element yields, its stiffness 

and mass matrices are passed to a function, called “condense.m,” that performs static 

condensation to release the degree of freedom that hinged.  After releasing this 

degree of freedom, the resistance of this degree of freedom is capped at the plastic 

moment capacity, since the solution is incremental.  When this element yields, the 

rows and columns in the stiffness-proportional damping matrix associated with the 

degree of freedom that yielded are scaled by 10−3.  SAP2000’s solution scales the 

entire stiffness-proportional damping matrix; however, by only scaling the rows and 

columns associated with the yielded degree of freedom, the MATLAB solution matches 

SAP2000 more closely. 

 

Once the time stepping is complete, some post-processing is performed on the data to 

allow the data to be stored in a more efficient manner and plotted. 

 

4.4 Solver Verification 

To ensure that this MATLAB program functions as close to SAP2000 as possible, 

several sets of inputs were analyzed with both programs and compared.  The element 



56 
  

chosen for comparison was a W10X12 Grade 50 steel beam, with length of 10 ft.  Four 

elements were used for the mesh.  Tributary width was not used because for these 

solvers, force is directly specified, as opposed to specifying pressure and tributary 

width.  Therefore a ramp-down load was used with a specific value of force or force 

per length.  The duration of the forcing load was 17.8 ms.  Every boundary condition 

and load type were tested, with 2% damping in the first two modes, as well as no 

damping.  Peak loads were also varied for each combination to allow the output to 

vary significantly.  Axial loading was also incorporated into the verifications, as 

proportions of the compressive capacity of the section.  These values were 0, 0.2 and 

0.4.  A case was also performed with additional mass, equal to ten times the self-

weight. 

 

An example of how the two analyses were compared is shown on the following pages 

in Figures 4.4.1a and 4.4.1b.  A 40k point load was used here as the initial value of the 

ramp-down load function. 

 



57 
  

 

Figure 4.4.1a: Midpoint Deflection Comparison of SAP2000 with MDOF MATLAB Program 

 



58 
  

 

Figure 4.4.1b: Midpoint Resistance Comparison of SAP2000 with MDOF MATLAB Program 

 

The output from SAP2000 and the MATLAB program was pasted into a new Excel 

document for comparison.  Plots were created for deflection and resistance (internal 

moment) at midpoint for each set of parameters.  Even though the maximum 

deflection does not occur at the midpoint for fixed-pinned boundary conditions, the 

midpoint was still used as the comparison for convenience.  For cantilevered boundary 

conditions, the deflection was measured at the free end, and the internal resistance 

was measured at the support end.  Since the plots of both sets of outputs overlapped 



59 
  

well, the MATLAB replica was verified as being a good representation of what SAP2000 

would output.  For the full set of verifications, see Appendix D: MDOF Solver 

Verifications (Time-History Plots). 

 

4.4.1 Inconsistencies 

While comparing each set of parameters to SAP2000, some discrepancies were 

noticed between the two solutions.  This could be the result of modeling choices; 

however, these discrepancies are minor and do not cause the MATLAB solution to 

deviate enough from the SAP2000 solution to cause significant differences in outputs. 

 

With some of the test comparisons, the maximum deflections at midspan varied, and 

the resistance curves were not identical.  However, the deflections from the MATLAB 

solution never deviated from the SAP2000 deflections by more than 3%.  Therefore, 

the MATLAB solution was accurate enough to be substituted for SAP2000 for the 

analyses.  This discrepancy in deflection and resistance could be attributed to several 

minor differences in modeling choices between SAP2000 and the MATLAB replica: 

 

1. When an element in SAP2000 undergoes yielding in the time-history 

analysis, the time step of yielding is broken up into smaller increments.  

This allows the solution find more accurately when the yielding occurs, 

since the yielding occurs within a time step.  The MATLAB replica does not 

increase the time step of yielding; instead, if the resistance of an element 



60 
  

surpasses the plastic capacity, its corresponding resistance vector (all 

internal forces in the beam), are scaled back until the highest value of 

resistance is the plastic capacity.  This is a more inaccurate method, 

however since all analyses are performed with very small time increments 

to begin with (from the nature of a blast load), the difference in the two 

modeling choices is negligible.   

 

2. Another difference in the two solutions is how the damping matrix is 

reduced during yielding.  As explained previously, SAP2000 reduces any 

stiffness-proportional damping matrix that corresponds to a degree of 

freedom undergoing yielding.  Once a rotational degree of freedom yields, 

the stiffness components of the damping matrices corresponding to 

elements that share this yielded global degree of freedom are reduced by a 

factor between 10−2 and 10−3.  By implementing this strategy into the 

MATLAB replica, deflections were significantly larger than the deflections in 

SAP2000.  To better represent SAP2000’s output, more damping was 

required during yielding to reduce the deflections.  By only reducing the 

rows and columns of the stiffness-proportional damping matrices 

associated with yielded global degrees of freedom (by a factor of 10−3), the 

MATLAB replica matched the SAP2000 output within 3% error (compared 

to as much as 300% error before).  All verification cases with damping use 



61 
  

this method of row/column-only reduction, to get as close to SAP2000 as 

possible. 

 

3. The final differences between the models are related to adding axial load to 

the beam, creating a beam-column.  The first of these differences is related 

to the reduction in the plastic moment capacity of a section due to axial 

load.  There are several resources that can be used for calculating this 

reduction in plastic moment capacity.  Some of these include Equation 5-4 

from Prestandard and Commentary for the Seismic Rehabilitation of 

Buildings (FEMA 356) and Equations H-1a and H1-1b from Steel 

Construction Manual Fourteenth Edition (AISC).  Since the goal is to 

compare SBEDS to other models, it makes the most sense for the model 

being compared to SBEDS to have the same reduced plastic capacity 

calculation to stay consistent.  In the SBEDS Methodology Manual, the 

reduced plastic capacity calculation is outlined.  Figure 4.4.1.1 on the 

following page is taken from the SBEDS manual:  

 

 

 



62 
  

 

 

Figure 4.4.1.1 Equations for Reduced Plastic Moment Capacity in SBEDS (US Army, 2008) 

 



63 
  

By simply entering a yield stress for the material in SAP2000, and then performing the 

time-history analysis with applied axial load, the yielding occurred at an internal 

moment value different than expected.  This value varied significantly from the value 

that SBEDS uses for the same set of inputs.  Hand calculations were performed to 

identify the plastic moment from Equation 5-4 from Prestandard and Commentary for 

the Seismic Rehabilitation of Buildings (FEMA 356) and Equations H-1a and H1-1b from 

Steel Construction Manual Fourteenth Edition (AISC), but neither value matched the 

value from SAP2000.  Unable to determine how SAP2000 calculates reduced plastic 

capacity, a different approach was taken.  A different yield stress was manually 

inputted into the SAP2000 material until the plastic moment capacity matched that of 

SBEDS.  This is how all of the verification tests for the MATLAB replica were performed. 

 

After the plastic moment capacities matched, there was still a discrepancy between 

SAP2000 and the MATLAB replica.  This difference arose from including geometric 

effects, which would implement the geometric stiffness matrices in the solution.  In 

the SAP2000 solution, the internal axial force in the beam-column fluctuated.  Since 

the axial force has an effect on the geometric stiffness matrix, this was changing the 

geometric stiffness matrix at every time step.  In the MATLAB replica, the axial load is 

applied statically before the time-history analysis, and then this axial load is held 

constant through the time stepping, and therefore so does the geometric stiffness 

matrix.  In SAP2000, a static analysis with the axial load was also applied to the system 

before the time-history analysis.  However, during the time-history analysis, the axial 



64 
  

degrees of freedom continued to move, causing this change in axial internal force.  

SBEDS holds the axial load constant through the time-history analysis, so this was the 

modeling choice chosen for the MATLAB solution as well, even though SAP2000 was 

unable to keep the axial load constant through the time-history analysis.   

 

This difference in modeling choice is most likely causing the discrepancy between 

SAP2000’s and the MATLAB replica’s internal moment resistance plots.  Once the 

plastic capacity is reached, the MATLAB solution stays at this value until rebound.  

However, the SAP2000 solution oscillates around the plastic capacity.  This is shown 

below in Figure 4.4.1.2a: 

 

 

Figure 4.4.1.2a: Resistance-Time Plot for W10X12 Fixed-Pinned with Point Load, 2% Damping, and 0.2 Axial Load 



65 
  

 

The fact that the resistance does not flat-line during yielding changes the rest of the 

solution.  However, this discrepancy does not result in significant deflection deviation, 

as shown below in Figure 4.4.1.2b: 

 

 

Figure 4.4.1.2b: Deflection-Time Plot for W10X12 Fixed-Pinned with Point Load, 2% Damping, and 0.2 Axial Load 

 

The discrepancy in the resistance plot has little effect on the deflection.  For this 

particular case, there is 2.5% deviation in the deflection from the SAP2000 solution, 

which is acceptable.  Also, by varying the yield stress in SAP2000, the deviation can be 

further reduced. 

 



66 
  

All of the verifications thus far were performed with lumped mass matrices.  SAP2000 

is unable to implement a consistent-mass matrix.  However, after all these 

verifications were performed, a final comparison was performed.  This analysis held 

everything constant (W10X12 pinned-pinned with 40k point load), and only varied the 

mass matrix between a lumped mass matrix and a consistent-mass matrix.  The 

comparisons to SBEDS are performed with consistent-mass matrices, so a comparison 

of the lumped mass solution to the consistent-mass matrix solution provides a 

verification that the consistent-mass matrix is properly defined, even though the 

consistent-mass matrix exceeds the capabilities of SAP2000.  Figures 4.4.1.3a and 

4.4.1.3b on the following pages show these final comparisons: 

 



67 
  

 

Figure 4.4.1.3a: Deflection-Time Comparison for Different Stiffness and Mass Models 

 



68 
  

 

Figure 4.4.1.3b: Resistance-Time Comparison for Different Stiffness and Mass Models 

 

The figures above show that by using a consistent-mass matrix, the solution changes 

slightly; however the implementation of the consistent-mass matrix is shown as not 

significantly affecting the solution because the overall resistance-time and deflection-

time plots remain very similar.  It is expected that the period should change slightly 

when changing from a lumped mass matrix to a consistent-mass matrix, since the 

period is dependent upon the stiffness and mass distribution.   

 



69 
  

Chapter 5 Comparisons 

5.1 General 

This chapter discusses the different input parameters that were varied for all of the 

analyses, and the corresponding output of each case.  This includes incorporating the 

two created MATLAB codes into one overall code and which output parameters were 

saved into the data frames for each analysis.     

 

In section 8.1.2 of Yokoyama’s thesis, he introduces a stiffness factor that compares 

the overall deflected shape of SDOF solution to the MDOF solution, for a specified 

time step.  This “KL factor” takes the effective stiffness of the MDOF solution and 

divides by the SDOF stiffness.  When the deflected shape of the MDOF solution 

matches that of the SDOF solution, this factor will be near the load transformation 

factor explained in section 2.6.1 earlier.  Deviation of this “KL factor” from the load 

transformation factor means that the two solutions develop different overall deflected 

shapes (Yokoyama, 2011).   

 

The parameters varied for the analyses were charge of TNT (lb), standoff distance from 

charge to structure (ft), axial load as proportion of axial capacity of the element, 

boundary conditions, damping ratio, section shape, and added weight (psf).  Other 

input parameters were held constant for all three data sets.  Table 5.1.1 on the 

following page summarizes the constant parameters: 



70 
  

 

Parameter Length of 
Element 

Loading Tributary 
Width 

Elastic 
Modulus 

Yield 
Stress 

Mesh of 
Element 

Type of 
Element 
and Mass 

Value 15 ft Uniform 15 ft 29,000 ksi 50 ksi 16 
elements 

consistent-
mass 

Comment Standard 
for Column 

More 
applicable 
to blast 

Conservative 
for spacing 

Steel Steel Less than 
1 ft per 
element 

Most 
accurate 

 

Table 5.1.1: Constant Input Parameters 

 

Additionally, a static and dynamic increase factor is applied to the yield stress, as 

SBEDS uses.  These values vary from 1.00 to 1.05 (static) and 1.19 to 1.24 (dynamic), as 

explained in the following sections.  Whenever a Bernoulli element is specified, the 

corresponding consistent-mass matrix for a Bernoulli element is used.  Whenever a 

Timoshenko element is specified, the corresponding consistent-mass matrix for a 

Timoshenko element is used. 

 

5.2 Results and Analysis 

The following sections contain selections from the full sets of analyses performed, 

with comments on the selected plots. 

 

5.2.1 First Data Set 

A first set of analyses were performed, with large increments in each varied 

parameter, to get a sense of the regions of discrepancy between SDOF and MDOF 

analysis.  Charges from 10 lb to 2000 lb were paired with standoffs from 3 ft to 250 ft.  



71 
  

However, only combinations which resulted in a scaled distance between 0.25 and 10 

𝑚 𝑘𝑔1 3⁄⁄  were included.  A summary table of the combinations of charges and 

standoffs is shown below: 

 

Standoff (ft) 3 5 10 25 50 100 250 

Charges (lb) 10 10 10 10 10     

  25 25 25 25 25     

  50 50 50 50 52     

    200 200 200 200 200   

    500 500 500 500 500   

      2000 2000 2000 2000 2000 

 

Table 5.1.2: Charges and Standoffs for Data Set 1 

 

Axial loads were 0, 0.2, and 0.4 proportion of compressive axial capacity.  Boundary 

conditions were pinned-pinned, fixed-pinned, and fixed-fixed.  Damping was set to 2%, 

and in the first two modes for the MDOF analysis.  Section shapes included were 

W14X48, W14X53, W14X61, W14X82, W14X109, W14X132, W14X145, and W14X257.  

The added weights used were 0 psf, 15 psf, 40 psf, and 81.25 psf.  These values 

represent no weight, glazing, brick, and concrete wall.  The static and dynamic increase 

factors were set to 1.05 and 1.19, respectively. 

 

For this first set, 4 sets of plots were created for each beam section.  All graphs are 

plotted against scaled distance, Z.  The first set of plots displays the deviation in the KL 

factor using Bernoulli elements from the appropriate load factor for the SDOF solution.   

The time step used for comparison was the time step in which first yield occurred.  No 



72 
  

axial load is incorporated here because the SDOF solution stiffness does not take into 

account axial load, so the plots would not be comparable.  Additionally, Timoshenko 

elements are not included in these plots because the overall shape for a Timoshenko 

beam will always be different than the overall shape for a SDOF model.  Two examples 

of this set of plots are shown below: 

 

Figure 5.2.1.1: Deviation in KL vs. Z for W14X48 

0 5 10 15 20 25
-50

0

50

100

150

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24
-50

0

50

100

150

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24
-50

0

50

100

150

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



73 
  

 

Figure 5.2.1.2: Deviation in KL vs. Z for W14X257 

 

Depending on the boundary condition, the Z at which the MDOF solution begins to 

deviate from the SDOF solution will change.  Additionally, the beam section size 

changes this deviation point as well, since adding stiffness will reduce the potential for 

yielding under the same load.  Since the Z values had such large increments, the 

deviation appears to grow instantaneously.  Additionally, the solution may break down 

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



74 
  

at very low Z values near 2 𝑓𝑡 𝑙𝑏1 3⁄⁄ , but a limit can clearly be seen.  The deviation 

curves would be more gradual if finer increments were to be used.  From this data, it 

can be seen that the supposed 3 𝑓𝑡 𝑙𝑏1 3⁄⁄  limit does not necessarily apply universally 

for all analyses, and this limit is highly dependent upon the element’s stiffness and 

boundary condition. For a pinned-pinned W14X257, this limit may be acceptable, but 

by decreasing the section size to a W14X48 and changing the boundary conditions to 

fixed-fixed, the limit is at roughly 12𝑓𝑡 𝑙𝑏1 3⁄⁄ .  From these plots, the added weight 

does not seem to have significant effect on changing the limit for a specific set of 

conditions. 

 

The second set of plots displays the deviation in maximum deflection using Bernoulli 

elements from the SDOF maximum deflection.  Axial load was implemented for these 

plots.  An example of this set of plots is shown on the next page: 



75 
  

 

Figure 5.2.1.3: Deviation in Bernoulli-SDOF Maximum Deflection vs. Z for W14X257 

 

In these plots, the significant deviations start to occur under 8.5𝑓𝑡 𝑙𝑏1 3⁄⁄ .  This is 

interesting because Figure 5.2.1.2 indicates consistent overall shape until 12𝑓𝑡 𝑙𝑏1 3⁄⁄ .  

This shows that even though deflected shapes at first yield may be the same, their 

magnitudes can be different.  This is still a deviation in solution.  Adding axial load 

creates more deviation in solutions.  This may be due to the fact that the SDOF 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



76 
  

solution takes axial load and applies additional equivalent transverse load, while the 

MDOF solution decreases the stiffness of the element (using the geometric stiffness 

matrix).  Since the deviation values become negative, the Bernoulli maximum 

deflection is smaller than the SDOF solution. 

 

The third set of plots displays the deviation in maximum deflection using Timoshenko 

elements from the SDOF maximum deflection.  An example of this set of plots is 

shown on the following page: 



77 
  

 

Figure 5.2.1.4: Deviation in Timoshenko-SDOF Maximum Deflection vs. Z for W14X257 

 

The above plots show how different maximum deflections may be when shear 

deformation is included.  For very high Z values, deviation is at 25% to 50%.  Since the 

Bernoulli solution starts to undershoot the SDOF solution below a certain Z, and since 

Timoshenko elements allow more overall deformation of the system, the two facts 

almost negate each other.  The absolute values of the deviations in Figure 5.2.1.4 are 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



78 
  

smaller than those in Figure 5.2.1.3.  However, the deviations in Figure 5.2.1.4 are still 

significant.  A definitive limit on Z cannot be seen because the Timoshenko solution is 

always above or below the SDOF solution.   

 

The final set of plots displays the deviation in maximum deflection using Timoshenko 

elements from maximum deflection using Bernoulli elements.  An example of this set 

of plots is shown on the following page: 

 



79 
  

 

Figure 5.2.1.5: Deviation in Timoshenko-Bernoulli Maximum Deflection vs. Z for W14X257 

 

This set of plots shows that the Timoshenko solution always produces a larger 

maximum deflection than the Bernoulli solution, since the deviation is always positive.  

Also, the deviations grow as Z decreases, especially for pinned-pinned and fixed-fixed 

boundary conditions.  This makes sense because these boundary conditions are less 

stiff, so the inclusion of shear deformation has a larger effect for these conditions. 

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



80 
  

 

For this first data set, each curve held boundary conditions, added weight, and axial 

load constant.  However, different combinations of charge and standoff were lumped 

together on this curve.  The fact that these curves are not smooth at high Z values 

shows that using Z to identify a limit for SDOF analysis is not necessarily a viable 

option.  Different combinations of charge and standoff that create a similar Z value 

have different deviations.  This can be seen in Figure 5.2.1.5 for the fixed-pinned and 

fixed-fixed conditions, where there is an immediate jump in deviation at a Z of 

17𝑓𝑡 𝑙𝑏1 3⁄⁄ .  For two different combinations of charge and standoff that create a Z of 

17𝑓𝑡 𝑙𝑏1 3⁄⁄ , the deviation in maximum deflection changes.  This is why the plots in the 

first data set seem to oscillate (in addition to the large increment in Z for each data 

point).   

 

The full set of plots for the first data set is located in Appendix E: First Data Set Plots. 

 

5.2.2 Second Data Set 

The second set focused on the fact that two different sets of charges and standoffs 

that create the same Z value can have different results.  This data set used a W14X109 

(mid-stiffness from the first data set) with 2% damping, and used the same modes for 

damping as the first data set for MDOF analysis.  With a 25 lb charge and a 200 lb 

charge, standoffs were back-calculated to establish a range of Z values from 2.5 to 15 



81 
  

𝑓𝑡 𝑙𝑏1 3⁄⁄  in smaller increments than the first data set, so that a finer solution set could 

be obtained.  By separating the curves by charge and by creating a finer Z increment, 

the oscillations and jagged nature of the curves from the first data set are removed.  

The same combinations of boundary conditions, added weight, and axial loads were 

used as the first data set.  The same deviations from the first data set were plotted 

against Z.  An example of one of these plots is shown below: 

 

Figure 5.2.2.1: Deviation in Bernoulli-SDOF Maximum Deflection vs. Z for Pinned-Pinned W14X109 (Fine Z Increment) 

2 4 6 8 10 12 14 16
-100

-50

0

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-100

-50

0

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-100

-50

0

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



82 
  

 

Since the different charges are not in the same curve anymore, the plots are smoother 

and follow a more distinguishable path.  The above plots show that for a pinned-

pinned, W14X109 member, increasing the charge while also increasing Z, decreasing 

supported weight, and adding axial load all cause the Bernoulli MDOF solution to 

deviate from the SDOF solution at a higher Z value.  The curve of various standoffs 

with no axial load, 81.25 psf added weight, and a 25 lb charge never significantly 

deviates from the SDOF solution, even at Z values lower than the accepted limit of 

3𝑓𝑡 𝑙𝑏1 3⁄⁄ .  Meanwhile, the curve with 0.4 axial load, 15 psf added weight, and a 200 

lb charge shows 20% deviation from the SDOF solution at a Z of 12𝑓𝑡 𝑙𝑏1 3⁄⁄ .  These 

two curves represent the extremes for the pinned-pinned condition, but they illustrate 

the fact that significant deviations start to develop at very different Z values, 

depending on the conditions. 

 

The figure on the following page shows the same plots as Figure 5.2.2.1, but using 

Timoshenko elements instead of Bernoulli elements, to see the effect of shear 

deformation.   

 



83 
  

 

Figure 5.2.2.2: Deviation in Timoshenko-SDOF Maximum Deflection vs. Z for Pinned-Pinned W14X109 (Fine Z 
Increment) 

 

As stated previously in the first data set, the fact that the Bernoulli MDOF solution 

undershoots the SDOF solution, and the fact that the Timoshenko MDOF solution 

allows more deformation than the Bernoulli MDOF solution, tends to negate one 

another.  For the plot with 0 axial load, the Timoshenko solution overestimates the 

maximum deflection of the SDOF solution by roughly 8%, until a Z of approximately 

2 4 6 8 10 12 14 16
-50

0

50

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-50

0

50

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-50

0

50

Z (ft/lb(1/3))

M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



84 
  

11.5𝑓𝑡 𝑙𝑏1 3⁄⁄ .  At this point, only the curve for 15 psf added weight and 200 lb charge 

starts to show increased deviation.  By a Z of 9𝑓𝑡 𝑙𝑏1 3⁄⁄ , the curve for 40 psf added 

weight and 200 lb charge starts to deviate more as well.  However, all these deviations 

stay under 30%, and by very low Z values, the curves tend to stop increasing and start 

to decrease – this trend was also shown in the Bernoulli plots.   

 

Due to all these factors, especially since different charges exhibit larger deviations 

than other charges for the same scaled distance, it is difficult to attach a single value 

on the limit of Z for accuracy of SDOF analysis to blast loads. 

 

The full set of plots for the second data set is located in Appendix F: Second Data Set 

Plots. 

 

5.2.3 Third Data Set 

Experimental blast testing was performed on various beams and beam-columns, which 

was published in “Experimental Performance of Steel Beams under Blast Loading” by 

Amr A. Nassr and others.  The results from 5 blast shots are shown on the following 

page in Table 5.2.3.1.  In the same paper, models were created to replicate the blast 

and results.  In the paper, no static increase factor was used, and a dynamic increase 

factor of 1.24 seemed to match the experimental data the best (for holding the 

increase factor constant throughout the analysis).  For this reason, the dynamic 



85 
  

increase factor of 1.24 was used for the third data set, even though this is larger than 

the conventional value. 

 

 

Table 5.2.3.1: Experimental Blast Data (Nassr, 2012) 

 

The third data set was the same as the second set, but with two changes.  This third 

set re-calibrated the SDOF and MDOF models to better match the experimental data.  

For this reason, the static increase factor was set to 1 and the dynamic increase factor 

was set to 1.24 for data set three.  The first mode was damped at 2%, and the second 

chosen mode to be damped by 2% for MDOF analysis was adjusted until the 

Timoshenko solution came closest to the experimental data.  The Timoshenko solution 

is assumed to be the most accurate solution, so once the variables were calibrated 

using the Timoshenko solution, these calibrated variables were applied to the 

Bernoulli and SDOF solutions, where applicable.  Only simply supported data was 

available.  For the 16 element model in use, damping in the first and 48th modes 

resulted in a maximum deflection closest to the experimental data.  This represented 

the last mode of the system, and therefore fixed-pinned and fixed-fixed conditions had 

damping applied to their first and last modes as well.  A summary of the adjustments 

and results of the adjustments are displayed on the next page in Table 5.2.3.2: 



86 
  

 

 Measured Maximum 
Deflection (mm) 

Timoshenko Maximum 
Deflection (mm) 

Second Mode Set to 2% 
Damping 

SIF,DIF 

Shot 1 6.9 7.1 48th (Last) 1.00, 1.24 

Shot 3 33.2 32.7 46th  1.00, 1.24 

Shot 5 62.8 68.2 30th  1.00, 1.24 

 

Table 5.2.3.2: Timoshenko Solution Calibrations to Better Match Experimental Data 

 

To best match experimental deflection from each shot, the second mode to be 

damped at 2% changed for each shot.  Therefore, the last mode was the chosen mode 

for data set three.  It is difficult to say which chosen mode is most accurate because 

there may be other factors that are causing the discrepancy in deflection, such as the 

fact that the pressure gages along the length of the beam reported different pressure 

values for the same time step (the experimental load was non-uniform).  Additionally, 

one of Nassr’s conclusions is that, “[u]sing constant dynamic increase factor to 

estimate the material strength because of strain rate might not provide a realistic 

assessment of the actual effect of the strain rate on the dynamic response of beams.”  

The models for this thesis implement a constant dynamic increase factor, so this is why 

calibrations were made to other variables in order to best match the experimental 

data. 

   

Once the model was re-calibrated, this third data set was performed, and the same 

types of plots were created with this new data.  The figure on the following page 

shows one of these plots: 



87 
  

 

 

Figure 5.2.3.1: Deviation in Bernoulli-SDOF Maximum Deflection vs. Z for Pinned-Pinned W14X109 (Calibrated 
Damping) 

 

From the second data set, these conditions led the Bernoulli solution to undershoot 

the SDOF solution.  Altering the static and dynamic increase factors has little effect on 

the results, since these values are used in both the SDOF and MDOF solutions to define 

2 4 6 8 10 12 14 16
-20

0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
) Pinpin SDOF-Bernoulli Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
) Pinpin SDOF-Bernoulli Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
) Pinpin SDOF-Bernoulli Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



88 
  

when yielding in an element will occur.  Additionally, using a static increase factor and 

dynamic increase factor of 1.05 and 1.24 respectively creates a net increase factor of 

1.25.  This third set of data uses a net increase factor of 1.24, which is very close to 

1.25.  The damping is the main difference between data set two and data set three.  

Now that damping for the MDOF model has been decreased, the Bernoulli solution 

overshoots the SDOF solution.  This third set of data was calibrated using the 

Timoshenko solution, so the following plots are even more relevant: 

 

In these plots, the MDOF solution overshoots the SDOF solution even more.  The plots 

follow the same trends as every other set of plots mentioned, with larger deviations 

depending on the set of conditions used.   One again, this supports the fact that it is 

not accurate to use a single value of Z to distinguish when SDOF analysis is applicable. 

 

The full set of plots for the third data set is located in Appendix G: Third Data Set Plots. 

 



89 
  

 

Figure 5.2.3.2: Deviation in Timoshenko-SDOF Maximum Deflection vs. Z for Pinned-Pinned W14X109 (Calibrated 
Damping) 

 

5.2.4 Individual Deflected Shapes 

This fourth section consists of individual chosen analyses where the MDOF solution 

deviated significantly from the SDOF solution.  Included is the same set of inputs which 

Yokoyama (2011) identified as causing significant deviation in the MDOF deflected 

2 4 6 8 10 12 14 16
-20

0

20

40

60

80

100

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
) Pinpin SDOF-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

60

80

100

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
) Pinpin SDOF-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

60

80

100

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
) Pinpin SDOF-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



90 
  

shape from the SDOF deflected shape.  Plots here display the SDOF, Bernoulli MDOF, 

and Timoshenko MDOF deflected shapes of the element at first yield.  Input 

parameters stayed consistent with parameters from the third data set, such as 

dynamic increase factors and damping options. 

 

The first individual case investigates a pinned-pinned W14X109 beam with a 200 lb 

charge, 15 psf added weight, and no axial load.  Cases were taken from the first plots 

in Figures 5.2.3.1 and 5.2.3.2, using Z values of approximately 12.4, 9.1, and 

7.7𝑓𝑡 𝑙𝑏1 3⁄⁄ .  In Figure 5.2.3.1, these cases encompass little deviation to large 

deviation in maximum deflection for the Bernoulli elements.   

 

 

Figure 5.2.4.1: Deflected Shape at First Yield for Pinned-Pinned W14X109 with Z=12.4𝑓𝑡 𝑙𝑏1 3⁄⁄    

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Deflected Shape,W14X109,pinpin, with0 Axial,15 psf,72.3305 ft Standoff,200 lb Charge, At First Yield

Distance Along Beam (in)

D
e
fl
e
c
ti
o
n
 (

in
)

 

 

SDOF

Bernoulli

Timoshenko



91 
  

 

 
Figure 5.2.4.2: Deflected Shape at First Yield for Pinned-Pinned W14X109 with Z=9.1𝑓𝑡 𝑙𝑏1 3⁄⁄  

 
 

 
Figure 5.2.4.3: Deflected Shape at First Yield for Pinned-Pinned W14X109 with Z=7.7𝑓𝑡 𝑙𝑏1 3⁄⁄  

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Deflected Shape,W14X109,pinpin, with0 Axial,15 psf,53.0937 ft Standoff,200 lb Charge, At First Yield

Distance Along Beam (in)

D
e
fl
e
c
ti
o
n
 (

in
)

 

 

SDOF

Bernoulli

Timoshenko

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Deflected Shape,W14X109,pinpin, with0 Axial,15 psf,45 ft Standoff,200 lb Charge, At First Yield

Distance Along Beam (in)

D
e
fl
e
c
ti
o
n
 (

in
)

 

 

SDOF

Bernoulli

Timoshenko



92 
  

 

 

Figure 5.2.4.1 shows little deviation in maximum deflection for the Bernoulli elements.  

This is consistent with how the deflected shape looks at first yield; the Bernoulli 

solution fits almost exactly on the SDOF solution.  The standoff and charge 

combination here must not be strong enough to cause the MDOF solution to deviate 

the maximum deflection significantly.  Both the Bernoulli and SDOF solutions yield at a 

midspan deflection of 1.02 inches.   

 

By decreasing the standoff, the solutions deviate from one another, as shown in Figure 

5.2.4.2.  Now, the Bernoulli solution yields at 1.08 inches, while the SDOF solution 

yields at 1.15 inches.  Because the SDOF solution assumes a certain deflected shape 

through the whole analysis, the only reason for an increase in deflection at first yield 

would be the duration and magnitude of the load versus the time step.  By decreasing 

the duration and/or increasing the magnitude of the load, the change in resistance will 

be larger for every time step, and the time step under first yield will overshoot the 

theoretical deflection at first yield, depending on the size of the time step.  However, 

for a MDOF analysis, since each node can deflect independently, a change in the 

deflection at first yield can be caused by the relative deflection between nodes, which 

may vary different combinations of duration and magnitude of load.  In addition, the 

MDOF deflection at first yield is dependent upon the time step for the same reason as 

the SDOF solution.  From Figure 5.2.3.1, this case with a Z of 9.1𝑓𝑡 𝑙𝑏1 3⁄⁄ shows a 



93 
  

deviation of 11.5%.  However, the deviation at first yield is -6.1%.  This means that 

during the time steps past yield, the Bernoulli solution deflects enough to change its 

relative deviation from -6.1% to 11.5% compared to the SDOF solution.  This shows 

that most of the deviation comes from the time steps post-yield.   

 

Decreasing the standoff even further, the deflected shapes change relative to each 

other again, as shown in Figure 5.2.4.3.  Here, the Bernoulli deflection at first yield is 

1.20 inches, while the SDOF deflection at first yield is 1.17 inches.  This is a 2.6% 

deviation.  From Figure 5.2.3.1, this case with a Z of 7.7𝑓𝑡 𝑙𝑏1 3⁄⁄ shows a deviation of 

14%.  Once again, this shows that the deviation in maximum deflection for the 

Bernoulli solution is primarily due to the time steps post-yield.   

 

The second individual case investigates a fixed-fixed W14X109 beam with a 200 lb 

charge, 15 psf added weight, and no axial load.  Cases were taken from equivalent first 

plots in Figures 5.2.3.1 and 5.2.3.2 for a fixed-fixed condition, using Z values of 

approximately 11.0, 9.5, and 5.8𝑓𝑡 𝑙𝑏1 3⁄⁄  (see Appendix G: Third Data Set Plots for 

these plots for a fixed-fixed condition).  These cases encompass little deviation to large 

deviation in maximum deflection for the Bernoulli elements.   

 



94 
  

 

Figure 5.2.4.4: Deflected Shape at First Yield for Fixed-Fixed W14X109 with Z=11.0𝑓𝑡 𝑙𝑏1 3⁄⁄  

 
 

 

Figure 5.2.4.5: Deflected Shape at First Yield for Fixed-Fixed W14X109 with Z=9.5 𝑓𝑡 𝑙𝑏1 3⁄⁄  

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Deflected Shape,W14X109,fixfix, with0 Axial,15 psf,64.3284 ft Standoff,200 lb Charge, At First Yield

Distance Along Beam (in)

D
e
fl
e
c
ti
o
n
 (

in
)

 

 

SDOF

Bernoulli

Timoshenko

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Deflected Shape,W14X109,fixfix, with0 Axial,15 psf,55.5563 ft Standoff,200 lb Charge, At First Yield

Distance Along Beam (in)

D
e
fl
e
c
ti
o
n
 (

in
)

 

 

SDOF

Bernoulli

Timoshenko



95 
  

 

 

Figure 5.2.4.6: Deflected Shape at First Yield for Fixed-Fixed W14X109 with Z=5.8 𝑓𝑡 𝑙𝑏1 3⁄⁄  

 

The same remarks from Figures 5.2.4.1 through 5.2.4.3 can be applied to Figures 

5.2.4.4 and 5.2.4.5.  However, as Z is decreased for fixed-fixed boundary conditions, 

the deflected shapes at first yield for the MDOF solutions become drastically different 

than for the SDOF solution.  Since the SDOF solution assumes a deflected shape, only 

the magnitude of the overall shape may change at first yield.  However, the MDOF 

solutions may have any shape, especially as the number of elements used increases.  

From Figure 5.2.4.6, the MDOF solutions yield in locations different than at midspan.  

The beam will yield where the relative displacement between consecutive nodes is 

large enough to cause a resistance equal to the yield moment.  This can occur at any 

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Deflected Shape,W14X109,fixfix, with0 Axial,15 psf,33.6262 ft Standoff,200 lb Charge, At First Yield

Distance Along Beam (in)

D
e
fl
e
c
ti
o
n
 (

in
)

 

 

SDOF

Bernoulli

Timoshenko



96 
  

node.  For this set of conditions, this happens to occur at approximately quarter-span 

(and three-quarter-span).  The combination of boundary conditions, load, and 

duration of load causes the beam to deflect in a way where the quarter-span (and 

three-quarter-span) experiences the largest relative deflection.  If the shapes at first 

yield look this dissimilar and the majority of the deviation comes from the time steps 

post-yield, then these solutions will be vastly different, since they start the post-yield 

time step at vastly different shapes already.  

 

The last individual case is a replica of Yokoyama’s case (2011).  The inputs for this case 

consist of a fixed-fixed W18X65 beam with no added weight and no axial load.  The 

length and tributary width are 30 ft and 10 ft, respectively.  Yokoyama directly 

inputted a peak pressure and impulse, instead of obtaining these from a certain charge 

and standoff.  Yokoyama used a peak pressure of 100 psi and an impulse of 100 psi-

msec.  The case here has peak pressures of 45 and 50 psi, and impulses of 45 and 50 

psi-msec.  This is so the duration of the load stays the same for each pressure-impulse 

combination, and is consistent with the duration from Yokoyama’s case.  The following 

figures show the deflected shapes at first yield: 

 



97 
  

 

Figure 5.2.4.7: Deflected Shape at First Yield for Fixed-Fixed W18X65 with 45 psi and 45 psi-msec 

 

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Deflected Shape,W18X65,fixfix,0 Axial,0 psf,45 psi ,45 psi*ms, At First Yield

Distance Along Beam (in)

D
e
fl
e
c
ti
o
n
 (

in
)

 

 

SDOF

Bernoulli

Timoshenko



98 
  

 
 

Figure 5.2.4.8: Deflected Shape at First Yield for Fixed-Fixed W18X65 with 50 psi and 50 psi-msec 

 

In Yokoyama’s article, “SDOF Limits on Static Deflected Shape Assumptions,” he plots a 

deflected shape for his SDOF analysis and MDOF analysis, using Bernoulli elements 

with 100 psi and 100 psi-msec.  The shapes from Figure 5.2.4.8 above are consistent 

with the results from Yokoyama.   

 

The yielding of the element at locations different than midspan supports the fact that 

SDOF methodology may not be the best choice for analysis, under certain 

circumstances. 

 

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Deflected Shape,W18X65,fixfix,0 Axial,0 psf,50 psi ,50 psi*ms, At First Yield

Distance Along Beam (in)

D
e
fl
e
c
ti
o
n
 (

in
)

 

 

SDOF

Bernoulli

Timoshenko



99 
  

Chapter 6 Conclusions and Future Research 

6.1 General 

This final chapter discusses summarizes the results from the research.  Also included in 

this chapter are areas for future study. 

 

6.2 Summary 

Single-Degree-of-Freedom and Multi-Degree-of-Freedom analyses are two different 

methods for obtaining the time-history results (displacement, internal force, etc.) for a 

structural element under a dynamic load.  They attempt to model reality by 

discretizing the continuous domains, time and space.    MDOF analysis is generally 

accepted as a more precise representation of structural behavior than SDOF analysis.  

However, SDOF analysis is more computationally efficient, and is therefore more 

commonly used in practice.   

 

Under blast loading, the structural element experiences load which is large in 

magnitude and short in duration.  These fast-acting loads may cause deflected shapes 

that cannot be represented by SDOF analysis.  SDOF analysis assumes a deflected 

shape for the element, which is based on its static deflected shape.  These blast loads 

may cause the element to respond with a deflected shape very different than the 

static shape.  This is where the discrepancy between SDOF and MDOF analysis arises.   

 



100 
  

Scaled distance (Z) is a measure of the intensity of a blast load.  The conventional Z 

cutoff for which SDOF analysis is assumed to be no longer applicable is below 1.2 

𝑚 𝑘𝑔1 3⁄⁄  (3𝑓𝑡 𝑙𝑏1 3⁄⁄ ).  However, results from this research show from several sets of 

initial conditions that this cutoff is too low, and that using scaled distance may not 

even be an appropriate factor for determining a limit on SDOF analysis.  

 

 

6.3 Conclusions 

For this thesis, an absolute deviation larger than 15% is considered too large to still be 

considered accurate.  Several figures presented in Chapter 5 that display deviation in 

maximum deflection reach deviation values larger than this 15% limit before Z 

decreases to 3𝑓𝑡 𝑙𝑏1 3⁄⁄ .   

 

The results from the analyses displayed in this research point towards the fact that 

establishing a simple boundary for when SDOF analysis becomes inaccurate is not as 

simple as stating a Z value.  Results from Figures 5.2.3.1 and 5.2.3.2 for 15 psf added 

weight and a 200 lb charge show that the MDOF solution can deviate 15% to 20% (for 

Bernoulli and Timoshenko elements, respectively) from the SDOF solution at a Z of 

9𝑓𝑡 𝑙𝑏1 3⁄⁄ .  This is three times the accepted limit.  Using other sets of inputs, the 

deviation can be much smaller for a Z value down to 5𝑓𝑡 𝑙𝑏1 3⁄⁄  for 81.25 psf added 

weight and a 25 lb charge.   Several factors affect how MDOF analysis may deviate 

from SDOF analysis.  Different combinations of charges and standoffs may produce the 



101 
  

same Z value, but will have different values for deviation in maximum deflection.  This 

fact alone is enough to prove that using Z as a limit is not appropriate.  A better way 

may be to create charge-standoff surfaces.  This will eliminate the issue of different 

combinations of charge and standoff that have the same Z leading to different 

amounts of deviation.  However even this surface method may be too simple, since 

this neglects other factors that are important to consider.  This includes strain rate 

effects, which will change the dynamic increase factor, and damping, which will 

change the results. 

 

The effect of shear deformation and distributed mass are two factors that work 

against each other, but can produce very different results from SDOF analysis as well. 

Conventional SDOF analysis does not take into account the effects of shear 

deformation, but it may in fact be a significant proportion of the deformation of the 

element, which would increase the overall deflection.  With the implementation of an 

MDOF system, the mass becomes distributed along the element, instead of lumped 

into one point, as is done in SDOF analysis.  This distribution will tend to decrease the 

overall deflection of the element, due to the inertial forces being distributed to each 

degree of freedom.  These forces balance with each stiffness force at each degree of- 

freedom, which will decrease each degree of freedom’s movement compared to an 

equivalent SDOF system.  Although shear deformation and distributed mass work 

against each other, it is hard to tell by how much, and the result could be an overall 



102 
  

increase or decrease in maximum deflection compared to that of the SDOF system.  

For this reason, Z is too simple of a parameter to use as a limit for SDOF accuracy. 

 

As load intensifies, SDOF and MDOF solutions for pinned-pinned conditions vary in 

magnitude.  However, the shape of the deflected element remains fairly similar.  

However, for fixed-fixed conditions, there is a point where the MDOF solution will 

yield at points along its length not predicted by static analysis.  This causes the rest of 

the solution (post-yield) for MDOF analysis to be very different than for SDOF analysis.  

This change in overall shape at first yield can occur at 5.8𝑓𝑡 𝑙𝑏1 3⁄⁄ , which 

approximately twice the currently accepted limit. 

 

6.4 Future Research 

Several areas of the research included in this paper have room to be expanded upon 

and further developed.  It is very imperative that the model being used be as accurate 

as possible.  Therefore, more blast load testing needs to be recorded for further 

verification of the MDOF model.  Damping and dynamic increase factors play a large 

role in the sensitivity of the model.  Therefore, it is very important that these factors 

be set to values that most closely represent the testing results.   

 

The MDOF model used for this research has limitations as well.  A more accurate 

model can be used to achieve more accurate results.  This model could account for 



103 
  

material nonlinearity, since the model for this research used an elastic-perfectly plastic 

material.  Steel is to a certain extent elastic-perfectly plastic, but only if the strain in 

the steel does not get high enough to cause strain hardening.  Much of the analyses in 

this research have large enough strains to cause strain hardening, yet this was 

neglected.  However, since strain hardening is also neglected in SDOF analysis, the 

comparison is valid.  Additionally, yielding was lumped at the nodes for MDOF analysis.  

In reality, there is a region of plasticity that spreads outward along the element from 

the point of initial yielding.  Fiber elements may be used to better represent this 

plastic flow.  Additionally, fiber elements would be able to distinguish between initial 

yielding of the outermost fiber and full yielding of the section, which would change the 

results of an analysis. 

 

Only steel material was used in this research, for simplicity in analysis.  The result of 

reinforced concrete elements under blast load is a topic that can be explored, as the 

resistance curves for these elements are different than those for steel.  Considering 

failure modes due to bending about the strong axis only, reinforced concrete sections 

can fail in concrete crushing or steel reinforcement rupture.  The stress-strain curve for 

concrete softens for most of the curve, whereas the stress-strain curve for steel is 

linear until a definitive point of yielding (see Figure 2.5.1).  Due to the different 

material properties of concrete, reinforced concrete sections will have different 

responses than steel. 

 



104 
  

For MDOF analysis, geometric effects are accounted for in this research with the use of 

the geometric stiffness matrix.  However, the co-rotational formulation could be 

implemented in the MDOF solution to obtain a more accurate representation of 

geometric effects, since this formulation takes into account the deformations from the 

chord of each element, instead of only taking into account deformations from a global 

coordinate system.  The results of the MDOF solution with a co-rotational formulation 

may be more precise at predicting response due to blast loading.   

 

Under initial axial loading, the moment capacity of the section will be reduced, due to 

initial stress within the element.  There are different equations that model this 

decrease in capacity, or P-M interaction.  Further investigation on the best P-M 

interaction to use would increase the accuracy of this research.  However, SDOF and 

MDOF analysis used in this research use the same P-M interaction equation, so there is 

no inconsistency in solutions with regards to P-M interaction. 

 

Lastly, the loading under blast analysis can be further investigated.  The load used in 

this research is converted from a charge and standoff into a peak pressure and impulse 

with a ramp-down shape.  This load is then applied to the element as a uniform load. 

However, depending on the standoff of the charge, the load may not be uniform along 

the length of the element at different time steps.  However, results from this research 

are consistent between SDOF and MDOF analysis, since they both represent the load 



105 
  

as uniform.  Additionally, negative-phase can be introduced to the forcing function, to 

better represent a real blast. 

 

  



106 
  

References 

AISC (2011), Steel Construction Manual Fourteenth Edition.  American Institute of Steel 
Construction. 
 
ASCE/SEI 59-11 (2011), Blast Protection of Buildings.  American Society of Civil 
Engineers.   
 
Biggs, J. M. (1964), Introduction to Structural Dynamics. McGraw-Hill, Inc. 
 
Chopra, A.K. (1995), Dynamics of Structures. Pearson Education, Inc. 
 
FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of 
Buildings.  American Society of Civil Engineers. 
 
Friedlander, F. G. (1946), “The diffraction of sound pulses.  I. Diffraction by a semi-
infinite plate.” Proc. Roy. Soc. Lond. A, pp. 186, 322-344. 
 
Gavin, Henri P (2014), Structural Element Stiffness, Mass, and Damping Matrices.  
Department of Civil and Environmental Engineering, Duke University. 
 
Logan, Daryl L (2012), “A First Course in the Finite Element Method.”  Cengage 
Learning. 
 
Nassr, A.A. (2012), “Experimental Performance of Steel Beams under Blast Loading.”  
Journal of Performance of Constructed Facilities. American Society of Civil Engineers. 
Vol. 26, Issue 5, pp. 600-619. 
 
Przemieniecki, J. S. (1968), Theory of Matrix Structural Analysis. McGraw-Hill, Inc. 
 
US Army Corps of Engineers (2008), Methodology Manual for the Single-Degree-of-
Freedom Blast Effects Design Spreadsheets (SBEDS).  U.S. Army Corps of Engineers 
Protective Design Center Technical Report.   
 
Yokoyama, T. (2014, November 4), “SDOF Limits on Static Deflected Shape 
Assumptions.”  Hinman Consulting Engineers Internal Technical Brief.  Retrieved by 
request from tyokoyama@hce.com. 
 
Yokoyama, T. (2014), “Limits to Deflected Shape Assumptions of the SDOF 
Methodology for Analyzing Structural Components Subject to Blast Loading.” Journal 
of Performance of Constructed Facilities.  American Society of Civil Engineers.  Vol. 29, 
Issue 5. 



107 
  

 
Yokoyama, T. (2011), Verification and Expansion of Single-Degree-of-Freedom 
Transformation Factors for Beams Using a Multi-Degree-of-Freedom Non-Linear 
Numerical Analysis Method. Master of Science Thesis, Department of Architectural 
Engineering, California Polytech State University, San Luis Obispo, California. 
 
 
 

  



108 
  

Appendix A: MATLAB Code for SBEDS Replica (SDOF Solver) 

Main Program (Executable) 

clc 
clear 

  
%% For SBEDs Check (Enter the result of an SBEDS analysis to compute 

error 

  
y_yield_SBED=0; 
y_yield2_SBED=0; 
rotation_SBED=0; 
ymax_SBED=0; 
%duct_SBED=0; 

  
%% inputs 

  
del_t =.03; % time increment for Newmark (ms) 

  
p_giv=14.6161; % input pressure of pulse (psi) 

  
t_giv=15.2042; %length of pulse (ms) 

  
bc='pinpin'; %set as pinpin, fixpin, fixfix, or cantil 

  
load_type = 'unifrm';  % set as unifrm for uniform, pointd for point 

  
zeta=0.02; %damping ratio of element (enter as decimal) 

  
axial=0;   %axial load in pounds 

  
L=10; %length of beam (ft) 

  
B=5; %tributary width that gets transferred to element (ft) if 

distributed load 

  
cross_area=3.54; %cross-sectional are (in^2) 

  
A=B*L; %tributary area that gets transferred to element (ft^2) if 

point load 

  
E=29000; %modulus of elasticity (ksi) 

  
fy=50; %yield strength (ksi) 

  
stat=1.05; %static increase factor for yield strength 

  
dyn=1.19; %dynamic increase factor for yield strength  

  



109 
  

I=53.8; %moment of inertia (inches^4) 

  
Z = 12.6; %Plastic section modulus (in^3) 

  
weight=12; %weight of element in (lb/ft) 

  
weight_supported=0; %supported weight in psf 

  
steps = 2000; % number of steps for Newmark 

  

  
u_init=0; % initial displ 
v_init=0; % initial vel (ft/s) 

  
gam=1/2; %factor for Newmark 
beta=1/4; %factor for Newmark (between 1/4 and 1/6) 

  

  
%% unit conversions to s, lb, in 

  
L=L*12; 

  
B=B*12; 

  
A=A*144; 

  
weight=weight/12; 

  
weight_supported=weight_supported/144; 

  

  

  
%% 

  
[t p load] = Load(t_giv,p_giv,del_t,steps,load_type,B,A); % creates 

linearly decreasing pressure 

  
g=0.0003864; 

  
weight=weight*L/A+weight_supported; 

  
m=weight/g; %convert weight/in to mass in psi with g in in/s^2 

  
fy=fy*dyn*stat; 

  

  
rg=sqrt(I/cross_area); 

  
if bc=='cantil' 
    klr_fact=2; 



110 
  

elseif bc=='pinpin' 
    klr_fact=1; 
elseif bc=='fixpin' 
    klr_fact=.7; 
elseif bc=='fixfix' 
    klr_fact=.5; 
end 

  
Klr=klr_fact*L/rg; 

  
Cc=Klr/pi*sqrt(fy/E); 

  
if Cc<=1.5 
    Pcr=(.658^(Cc^2))*fy*1000*cross_area; 
else  
    Pcr=.877/Cc^2*fy*1000*cross_area; 
end 

  

  
Mpset(1)=fy*1000*Z; 

  
Mpset(2)=(1-axial/Pcr)*fy*1000*Z; 

  
Mpset(3)=(1-axial/(fy*1000*cross_area))*1.18*Z*fy*1000; 

  
Mp=min(Mpset); 

  
Mp=Mp/1000; 

  

  
axial=axial/B; 

  
if load_type=='pointd'  %for P-delta effects 

     
    if bc=='cantil' 
    k_fact=1/L^2; 
    axial=axial*k_fact;     
    else 
    k_fact=4/L^2; 
    axial=axial*k_fact; 
    end 

     

     
elseif load_type=='unifrm' 

     
    if bc=='cantil' 
    k_fact=2/L^2; 
    axial=axial*k_fact;   
    else 
    k_fact=8/L^2; 
    axial=axial*k_fact; 
    end 



111 
  

  

  
end 

  

 

  
[k_m k_F k R F m k_V_RF] = Biggs(L, bc, load_type, E, I, Mp, load, m, 

A); % creates Biggs Factors 

  
%% 

  
wn=sqrt(k/m); %natural freq 

  
wd=wn*sqrt(1-zeta^2); %damped freq 

  
c=zeta*2*m*wn; %damping coeff 

  
 

    [u, v, a, alldata, V] = const_vel(bc, load_type, u_init, v_init, 

m, c, k, k_F, k_m, R, t, F, zeta, wn, wd, steps, del_t, p, A, k_V_RF, 

axial); 

  

 
%figure(1) 
%plot(t*1000,p*1000) 
%title('Load') 
%xlabel('time (ms)') 
%ylabel('Pressure (psi)') 

  

  
%figure(2) 
%hold on 
%plot(t*1000,u,'r'); 
%plot(t*1000,u_actual); 
%grid on 
%legend('Newmark', 'Actual'); 
%title('Displacements') 
%xlabel('Time (ms)') 
%ylabel('Deflection (in)') 
%hold off 

  

  
%figure(3) 
%plot(t*1000,u_residual); 
%title('Residual') 
%xlabel('Time (ms)') 
%ylabel('Deflection (in)') 

  

  

  
ymax=max(u) 
Vmax=max(V) 



112 
  

%ymax=max(u_actual); 

  
half=L/2; 

  
if bc=='cantil' 
    rotation=atan(ymax/L); 

     
else 
    rotation=atan(ymax/half); 
end 

  

  
rotation=rotation*180/pi; 

  
R=R/A*1000; %converts R values to psi. 

  
y_yield=R(1)/(k(1)); 

  
y_yield2=y_yield+(R(2)-R(1))/(k(2)); 

  

  
%if duct==1 
%    ductility=ymax/y_yield; 

     
%elseif duct==2 
%    ductility=ymax/y_yield2; 
%end 

  
er(1)=Error(y_yield, y_yield_SBED); %first hinge displacement 

  
sdf=1; 

  
if bc=='pinpin' 

     
    sdf=0; 
end 

  
if bc=='cantil' 

     
    sdf=0; 
end 

  
if bc=='fixfix'  
    if load_type=='pointd' 

     
    sdf=0; 
    end 
end 

  

  

  



113 
  

if sdf==0 

     
    er(2)=0; 

     
else 

  

  
    er(2)=Error(y_yield2, y_yield2_SBED); %2nd hinge displacement 

     
end 

  

  
er(4)=Error(rotation, rotation_SBED); % total rotation 
er(3)=Error(ymax, ymax_SBED); %max displacement 
%er(5)=Error(ductility, duct_SBED) %ductility 

 

Load Function 

function [t p load] = Load(t_giv,p_giv,del_t,steps,load_type,B,A) 

  
t(1)=0; 
p(1)=p_giv; 

  
for i=2:1:steps  

     
    if t(i-1)<t_giv-del_t 

         
        t(i)=t(i-1)+del_t; 
        p(i)=p(i-1)-p_giv/t_giv*del_t;     

         
    else 

         
        t(i)=t(i-1)+del_t; 
        p(i)=0; 

     
    end 

  
end 

  

  
if load_type == 'unifrm' 
    load=p.*B; 
end 

  
if load_type == 'pointd' 
    load=p.*A; 

  
end 

 



114 
  

Biggs Function 

function [k_m k_F k R F m k_V_RF] = Biggs(L, bc, load_type, E, I, Mp, 

load, m, A) 

  

  
if bc == 'pinpin' 

   
    if load_type == 'unifrm' 

         
        k_F=[.64 .64 .5]; 
        k_m=[.5 .5 .33]; 
        R=[0 8*Mp/L]; 
        k=[384*E*I/5/L^3 384*E*I/5/L^3 2*10^-6/1000*A]/A*1000; 
        k_V_RF=[.39 .11; .39 .11; .38 .12]; 

        

       

         
    elseif load_type == 'pointd' 

        
        k_F=[1 1 1]; 
        k_m=[.49 .49 .33]; 
        R=[0 4*Mp/L]; 
        k=[48*E*I/L^3 48*E*I/L^3 2*10^-6/1000*A]/A*1000; 
        k_V_RF=[.78 -.28; .78 -.28; .75 -.25]; 

  

       

         
    end 

     
elseif bc == 'fixpin' 

     
    if load_type == 'unifrm' 

         
        k_F=[.58 .64 .5]; 
        k_m=[.45 .5 .33]; 
        R=[8*Mp/L 12*Mp/L]; 
        k=[185*E*I/L^3 384*E*I/5/L^3 2*10^-6/1000*A]/A*1000; 
        k_V_RF=[.43 .19; .43 .19; .46 .12]; 

      

       

         
    elseif load_type == 'pointd' 

         
        k_F=[1 1 1]; 
        k_m=[.43 .49 .33]; 
        R=[16*Mp/3/L 6*Mp/L]; 
        k=[107*E*I/L^3 48*E*I/L^3 2*10^-6/1000*A]/A*1000; 
        k_V_RF=[.97 -.28; .97 -.28; .92 -.25]; 

  

         



115 
  

    end 

     
elseif bc == 'fixfix' 

     
    if load_type == 'unifrm' 

         
        k_F=[.53 .64 .5]; 
        k_m=[.41 .5 .33]; 
        R=[12*Mp/L 16*Mp/L]; 
        k=[384*E*I/L^3 384*E*I/5/L^3 2*10^-6/1000*A]/A*1000; 
        k_V_RF=[.36 .14; .39 .11; .38 .12]; 

         

  
    elseif load_type == 'pointd' 

         
        k_F=[1 1 1]; 
        k_m=[.37 .37 .33]; 
        R=[0 8*Mp/L]; 
        k=[192*E*I/L^3 192*E*I/L^3 2*10^-6/1000*A]/A*1000; 
        k_V_RF=[.71 -.21; .71 -.21; .75 -.25]; 

  

  

         
    end 

      

     
elseif bc == 'cantil' 

   
    if load_type == 'unifrm' 

         
        k_F=[.4 .4 .5]; 
        k_m=[.26 .26 .33]; 
        R=[0 2*Mp/L]; 
        k=[8*E*I/L^3 8*E*I/L^3 2*10^-6/1000*A]/A*1000; 
        k_V_RF=[.69 .31; .69 .31; .75 .25]; 

  

    

         
    elseif load_type == 'pointd' 

        
        k_F=[1 1 1]; 
        k_m=[.24 .24 .33]; 
        R=[0 Mp/L]; 
        k=[3*E*I/L^3 3*E*I/L^3 2*10^-6/1000*A]/A*1000; 
        k_V_RF=[1.74 -.74; 1.74 -.74; 1.5 -.5]; 

        

   

     
    end 

     

     



116 
  

end 

  

  
k_F=transpose(k_F); 

  

  
if load_type == 'unifrm' 

     
    F=load*L; 

     
elseif load_type == 'pointd' 

     
    F=load; 

  
end 

 

Constant Velocity Function 

function [u, v, a, alldata, V] = const_vel(bc, load_type, u_init, 

v_init, m, c, k, k_F, k_m, R, t, F, zeta, wn, wd, steps, del_t, p, A, 

k_V_RF, axial) 

  

  
R=R/A*1000; %converts R values to psi. 

  
y_yield=R(1)/(k(1)); 

  
y_yield2=y_yield+(R(2)-R(1))/(k(2)); 

  
skip2=0; 

  
Rmax=.95*R(2); 

  
KLM=k_m./transpose(k_F); 

  
c_cr=2*sqrt(k(1)*m*KLM(1)); 

  
c_use=zeta*c_cr; 

  
c_min=.05/100*c_cr; 

  

  
R_datum=0; 
 

 

%% initial constant velocity calcs 

  
i=1; 

  



117 
  

t(i)=0; 

  
u(i)=u_init; 

  
v(i)=v_init; 

  
equiv_pdelt(i)=axial*u(i); 

  
if u(i)<=y_yield 

     
    c=c_use; 
    Res(i)=u(i)*k(1); 
    a(i)=(p(i)+equiv_pdelt(i)-c*v(i)-Res(i))/(m*KLM(1)); 
    stiffness(i)=k(1); 
    factor(i)=KLM(1); 
    V(i)=k_V_RF(1,1)*Res(i)+k_V_RF(1,2)*p(i); 

     
elseif u(i)>y_yield && u(i)<y_yield2 

     
    Res(i)=R(1)+(u(i)-y_yield)*k(2); 

     
    if Res(i)<Rmax 
        c=c_use; 
    elseif Res(i)>=Rmax 
        c=c_min; 
    end 

     
    a(i)=(p(i)+equiv_pdelt(i)-c*v(i)-Res(i))/(m*KLM(2)); 
    stiffness(i)=k(2); 
    factor(i)=KLM(2); 
    V(i)=k_V_RF(2,1)*Res(i)+k_V_RF(2,2)*p(i); 

     

    
elseif u(i)>=y_yield2 

     
    Res(i)=R(2)+(u(i)-y_yield2)*k(3); 
    c=c_min; 
    a(i)=(p(i)+equiv_pdelt(i)-c*v(i)-Res(i))/(m*KLM(3)); 
    stiffness(i)=k(3); 
    factor(i)=KLM(3); 
    V(i)=k_V_RF(3,1)*Res(i)+k_V_RF(3,2)*p(i); 

     
end 

  

  
d_u(i)=.5*a(i)*del_t^2+v(i)*del_t; 
 

  
alldata(i,1)=t(i); 
alldata(i,2)=p(i); 
alldata(i,3)=equiv_pdelt(i); 
alldata(i,4)=u(i); 



118 
  

alldata(i,5)=v(i); 
alldata(i,6)=a(i); 
alldata(i,7)=stiffness(i); 
alldata(i,8)=Res(i); 
alldata(i,9)=d_u(i); 
alldata(i,10)=factor(i); 
alldata(i,11)=V(i); 

  

  
i=2; 

  
%% Main Constant Velocity loop 

  

  
while i<=steps %loop for Constant Velocity iterations 

  

  
    t(i)=t(i-1)+del_t; 

  
    u(i)=u(i-1)+d_u(i-1); 

  
    v(i)=(u(i)-u(i-1))/del_t+.5*a(i-1)*del_t; 

     
    equiv_pdelt(i)=axial*u(i); 

     
    R_check=abs(Res(i-1)-R_datum); %amount of change in resistance 

from inflection point ("0 strain") 
 

 

%%%%%elastic region%%%%%% 

  
    if R_check<=R(1)  || skip2==1 

  

         
        Res(i)=Res(i-1)+(u(i)-u(i-1))*k(1); 

         

  

         
        if Res(i)>R(2) %prevents going past maximum resistance 

             
            Res(i)=R(2); 

             
        end 

         
        if Res(i)<-R(2)%prevents going past maximum resistance 

(negative) 

             
            Res(i)=-R(2); 

             
        end 

  



119 
  

                 
        if sign(Res(i))==sign(v(i)) %decreases damping when close to 

yielding 

  
            if Res(i)<Rmax 
                c=c_use; 
            elseif Res(i)>=Rmax 
                c=c_min; 
            end 

  
        else 

             
            c=c_use; 
        end 

         

                
        a(i)=(p(i)+equiv_pdelt(i)-c*v(i)-Res(i))/(m*KLM(1)); 
        stiffness(i)=k(1); 
        factor(i)=KLM(1); 
        V(i)=k_V_RF(1,1)*Res(i)+k_V_RF(1,2)*p(i); 

         
        if sign(v(i))~=sign(v(i-1)) %once an inflection point occurs 

(sign change of velocity), R_datum is set as the current resistance 

             
            R_datum=Res(i); 

             
        end 

         
        %with skip2, it forces stage 1 on turnaround while the net 
        %Resistance is still larger than yield Resistance.  Resets the 
        %datum 
        if sign(Res(i))~=sign(Res(i-1)) 
            skip2=0; 
            R_datum=0; 

         
        end 

         
    %%%%%elasto-plastic region%%%%%% 

     
    elseif R_check>R(1) && R_check<R(2) 

  

  

        
        Res(i)=Res(i-1)+(u(i)-u(i-1))*k(2); 

         
        if Res(i)>R(2) %prevents going past maximum resistance 

             
            Res(i)=R(2); 

             
        end 

   



120 
  

         
        if Res(i)<-R(2)%prevents going past maximum resistance 

(negative) 

             
            Res(i)=-R(2); 

             
        end 

         

         
        if Res(i)<Rmax %decreases damping when close to yielding 
            c=c_use; 
        elseif Res(i)>=Rmax 
            c=c_min; 
        end 

         
        a(i)=(p(i)+equiv_pdelt(i)-c*v(i)-Res(i))/(m*KLM(2)); 
        stiffness(i)=k(2); 
        factor(i)=KLM(2); 
        V(i)=k_V_RF(2,1)*Res(i)+k_V_RF(2,2)*p(i); 

  

         
        if sign(v(i))~=sign(v(i-1)) %once an inflection point occurs 

(sign change of velocity), R_datum is set as the current resistance 

             
            R_datum=Res(i); 
            skip2=1; 

  
        end 

         

         
    % %%%%%plastic region%%%%%% 

     
    elseif R_check>=R(2) 

  

         
        Res(i)=Res(i-1)+(u(i)-u(i-1))*k(3); 

         
        c=c_min; 
        a(i)=(p(i)+equiv_pdelt(i)-c*v(i)-Res(i))/(m*KLM(3)); 
        stiffness(i)=k(3); 
        factor(i)=KLM(3); 
        V(i)=k_V_RF(3,1)*Res(i)+k_V_RF(3,2)*p(i); 

  
        if sign(v(i))~=sign(v(i-1)) %once an inflection point occurs 

(sign change of velocity), R_datum is set as the current resistance 

             
            R_datum=Res(i); 
            skip2=1; 

  

           
        end 



121 
  

  

         
    end 

  

  
    d_u(i)=u(i)-u(i-1)+a(i)*del_t^2; 

     

     
alldata(i,1)=t(i); 
alldata(i,2)=p(i); 
alldata(i,3)=equiv_pdelt(i); 
alldata(i,4)=u(i); 
alldata(i,5)=v(i); 
alldata(i,6)=a(i); 
alldata(i,7)=stiffness(i); 
alldata(i,8)=Res(i); 
alldata(i,9)=d_u(i); 
alldata(i,10)=factor(i); 
alldata(i,11)=V(i); 

  

 
    i=i+1; 

     
end 

  
figure(1) 
subplot(2,2,1) 
plot(t,a) 
title('acc') 
xlabel('time') 
ylabel('Acceleration') 
grid on 

  

  
subplot(2,2,2) 
plot(t,v) 
title('vel') 
xlabel('time') 
ylabel('Velocity') 
grid on 

  

  

  

  
subplot(2,2,3) 
plot(t,u) 
title('displ') 
legend('Displacement'); 
xlabel('time') 
ylabel('displacement') 
grid on 

 



122 
  

Error Function 

function [error] = Error(i, j) 

  
error=(j-i)/j*100; 

 

 

 

  



123 
  

Appendix B: SDOF Solver Verifications (Time-History Plots) 

All verifications use 15 ft Length and 0.5 ft Tributary Width 

W10X12 Pinned-Pinned Point Load (30 psi in 17.8 ms) 0% Damping 

 

 

 

 

0

1

2

3

4

5

6

7

0 50 100 150

D
e

fl
e

ct
io

n
 (

in
)

Time (ms)

MATLAB DISPL

SBEDS Displ

-20

-15

-10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160

In
te

rn
al

 M
o

m
e

n
t 

(p
si

)

Time (ms)

MATLAB RESISTANCE

SBEDs RESISTANCE



124 
  

W10X12 Pinned-Pinned Point Load (30 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

0 50 100 150

MATLAB DISPL

SBEDS Displ

-20

-15

-10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



125 
  

W10X12 Pinned-Pinned Uniform Load (40 psi in 17.8 ms) 0% Damping 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150

MATLAB DISPL

SBEDS Displ

-40

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



126 
  

W10X12 Pinned-Pinned Uniform Load (40 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150

MATLAB DISPL

SBEDS Displ

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



127 
  

W10X12 Fixed-Pinned Point Load (100 psi in 17.8 ms) 0% Damping 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-30

-20

-10

0

10

20

30

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



128 
  

W10X12 Fixed-Pinned Point Load (100 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



129 
  

W10X12 Fixed-Fixed Point Load (50 psi in 17.8 ms) 0% Damping 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

MATLAB DISPL

SBEDS Displ

-40

-30

-20

-10

0

10

20

30

40

0 10 20 30 40 50 60 70

MATLAB RESISTANCE

SBEDs RESISTANCE



130 
  

W10X12 Fixed-Fixed Point Load (50 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

MATLAB DISPL

SBEDS Displ

-30

-20

-10

0

10

20

30

40

0 10 20 30 40 50 60 70

MATLAB RESISTANCE

SBEDs RESISTANCE



131 
  

W10X12 Fixed-Fixed Uniform Load (100 psi in 17.8 ms) 0% Damping 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

MATLAB DISPL

SBEDS Displ

-60

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70

MATLAB RESISTANCE

SBEDs RESISTANCE



132 
  

W10X12 Fixed-Fixed Uniform Load (100 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

MATLAB DISPL

SBEDS Displ

-60

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70

MATLAB RESISTANCE

SBEDs RESISTANCE



133 
  

W10X12 Cantilever Point Load (15 psi in 17.8 ms) 0% Damping 

 

 

 

 

 

 

0

5

10

15

20

25

30

0 100 200 300 400 500

MATLAB DISPL

SBEDS Displ

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450

MATLAB RESISTANCE

SBEDs RESISTANCE



134 
  

W10X12 Cantilever Point Load (15 psi in 17.8 ms) 5% Damping 

 

 

  

 

 

 

0

5

10

15

20

25

30

0 100 200 300 400 500

MATLAB DISPL

SBEDS Displ

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450

MATLAB RESISTANCE

SBEDs RESISTANCE



135 
  

W10X12 Cantilever Uniform Load (20 psi in 17.8 ms) 0% Damping 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500

MATLAB DISPL

SBEDS Displ

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450

MATLAB RESISTANCE

SBEDs RESISTANCE



136 
  

W10X12 Cantilever Uniform Load (20 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500

MATLAB DISPL

SBEDS Displ

-8

-6

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450

MATLAB RESISTANCE

SBEDs RESISTANCE



137 
  

W10X12 Pinned-Pinned Point Load (70 psi in 17.8 ms) 0% Damping 30 psf Added 

Weight 

 

 

 

 

0

5

10

15

20

25

0 50 100 150 200 250

MATLAB DISPL

SBEDS Displ

-20

-15

-10

-5

0

5

10

15

20

0 50 100 150 200 250

MATLAB RESISTANCE

SBEDs RESISTANCE



138 
  

W10X12 Pinned-Pinned Point Load (70 psi in 17.8 ms) 5% Damping 30 psf Added 

Weight 

 

 

 

 

0

5

10

15

20

25

0 50 100 150 200 250

MATLAB DISPL

SBEDS Displ

-20

-15

-10

-5

0

5

10

15

20

0 50 100 150 200 250

MATLAB RESISTANCE

SBEDs RESISTANCE



139 
  

W10X12 Pinned-Pinned Uniform Load (70 psi in 17.8 ms) 0% Damping 30 psf Added 

Weight 

 

 

 

 

0

1

2

3

4

5

6

7

0 50 100 150 200 250

MATLAB DISPL

SBEDS Displ

-40

-30

-20

-10

0

10

20

30

40

0 50 100 150 200 250

MATLAB RESISTANCE

SBEDs RESISTANCE



140 
  

W10X12 Pinned-Pinned Uniform Load (70 psi in 17.8 ms) 5% Damping 30 psf Added 

Weight 

 

 

 

 

 

0

1

2

3

4

5

6

7

0 50 100 150 200 250

MATLAB DISPL

SBEDS Displ

-40

-30

-20

-10

0

10

20

30

40

0 50 100 150 200 250

MATLAB RESISTANCE

SBEDs RESISTANCE



141 
  

W10X12 Fixed-Pinned Point Load (70 psi in 17.8 ms) 0% Damping 30 psf Added Weight 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

0 50 100 150

MATLAB DISPL

SBEDS Displ

-30

-20

-10

0

10

20

30

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



142 
  

W10X12 Fixed-Pinned Point Load (70 psi in 17.8 ms) 5% Damping 30 psf Added Weight 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

0 50 100 150

MATLAB DISPL

SBEDS Displ

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



143 
  

W10X12 Fixed-Pinned Uniform Load (70 psi in 17.8 ms) 0% Damping 30 psf Added 

Weight 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150

MATLAB DISPL

SBEDS Displ

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



144 
  

W10X12 Fixed-Pinned Uniform Load (70 psi in 17.8 ms) 5% Damping 30 psf Added 

Weight 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150

MATLAB DISPL

SBEDS Displ

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



145 
  

W10X12 Fixed-Fixed Point Load (70 psi in 17.8 ms) 0% Damping 30 psf Added Weight 

 

 

 

 

 

 

0

2

4

6

8

10

12

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-40

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



146 
  

W10X12 Fixed-Fixed Point Load (70 psi in 17.8 ms) 5% Damping 30 psf Added Weight 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-40

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



147 
  

W10X12 Fixed-Fixed Uniform Load (70 psi in 17.8 ms) 0% Damping 30 psf Added 

Weight 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-60

-40

-20

0

20

40

60

80

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



148 
  

W10X12 Fixed-Fixed Uniform Load (70 psi in 17.8 ms) 5% Damping 30 psf Added 

Weight 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-60

-40

-20

0

20

40

60

80

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



149 
  

W10X12 Cantilever Point Load (40 psi in 17.8 ms) 0% Damping 30 psf Added Weight 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700

MATLAB DISPL

SBEDS Displ

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 100 200 300 400 500 600 700

MATLAB RESISTANCE

SBEDs RESISTANCE



150 
  

W10X12 Cantilever Point Load (40 psi in 17.8 ms) 5% Damping 30 psf Added Weight 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

MATLAB DISPL

SBEDS Displ

-4

-3

-2

-1

0

1

2

3

4

5

0 100 200 300 400 500 600 700

MATLAB RESISTANCE

SBEDs RESISTANCE



151 
  

W10X12 Cantilever Uniform Load (40 psi in 17.8 ms) 0% Damping 30 psf Added Weight 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700

MATLAB DISPL

SBEDS Displ

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 100 200 300 400 500 600 700

MATLAB RESISTANCE

SBEDs RESISTANCE



152 
  

W10X12 Cantilever Uniform Load (40 psi in 17.8 ms) 5% Damping 30 psf Added Weight 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700

MATLAB DISPL

SBEDS Displ

-8

-6

-4

-2

0

2

4

6

8

10

0 100 200 300 400 500 600 700

MATLAB RESISTANCE

SBEDs RESISTANCE



153 
  

W10X12 Pinned-Pinned Point Load (40 psi in 17.8 ms) 0% Damping 10 kip Axial Load 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

0 50 100 150

MATLAB DISPL

SBEDS Displ

-15

-10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



154 
  

W10X12 Pinned-Pinned Uniform Load (70 psi in 17.8 ms) 0% Damping 10 kip Axial 

Load 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

0 50 100 150

MATLAB DISPL

SBEDS Displ

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



155 
  

W10X12 Fixed-Pinned Point Load (40 psi in 17.8 ms) 0% Damping 10 kip Axial Load 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



156 
  

W10X12 Fixed-Pinned Uniform Load (70 psi in 17.8 ms) 0% Damping 10 kip Axial Load 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-40

-30

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



157 
  

W10X12 Fixed-Fixed Point Load (40 psi in 17.8 ms) 0% Damping 10 kip Axial Load 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70

MATLAB DISPL

SBEDS Displ

-20

-10

0

10

20

30

40

0 10 20 30 40 50 60 70

MATLAB RESISTANCE

SBEDs RESISTANCE



158 
  

W10X12 Fixed-Fixed Uniform Load (70 psi in 17.8 ms) 0% Damping 10 kip Axial Load 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

MATLAB DISPL

SBEDS Displ

-30

-20

-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

MATLAB RESISTANCE

SBEDs RESISTANCE



159 
  

W10X12 Cantilever Point Load (40 psi in 17.8 ms) 0% Damping 1 kip Axial Load 

 

 

 

 

 

 

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

MATLAB DISPL

SBEDS Displ

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450

MATLAB RESISTANCE

SBEDs RESISTANCE



160 
  

W10X12 Cantilever Uniform Load (40 psi in 17.8 ms) 0% Damping 10 kip Axial Load 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

MATLAB DISPL

SBEDS Displ

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450

MATLAB RESISTANCE

SBEDs RESISTANCE



161 
  

W40X655 Pinned-Pinned Point Load (10,000 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

0 10 20 30 40 50

MATLAB DISPL

SBEDS Displ

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40 45

MATLAB RESISTANCE

SBEDs RESISTANCE



162 
  

W40X655 Pinned-Pinned Uniform Load (10,000 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

MATLAB DISPL

SBEDS Displ

-4000

-2000

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30 35 40 45

MATLAB RESISTANCE

SBEDs RESISTANCE



163 
  

W40X655 Fixed-Pinned Point Load (10,000 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

5

10

15

20

25

0 5 10 15 20 25

MATLAB DISPL

SBEDS Displ

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25

MATLAB RESISTANCE

SBEDs RESISTANCE



164 
  

W40X655 Fixed-Pinned Uniform Load (10,000 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

MATLAB DISPL

SBEDS Displ

-2000

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25

MATLAB RESISTANCE

SBEDs RESISTANCE



165 
  

W40X655 Fixed-Fixed Point Load (10,000 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

1

2

3

4

5

6

0 5 10 15 20 25

MATLAB DISPL

SBEDS Displ

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

MATLAB RESISTANCE

SBEDs RESISTANCE



166 
  

W40X655 Fixed-Fixed Uniform Load (20,000 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25

MATLAB DISPL

SBEDS Displ

-4000

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 15 20 25

MATLAB RESISTANCE

SBEDs RESISTANCE



167 
  

W40X655 Cantilever Point Load (2,000 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-1000

-500

0

500

1000

1500

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



168 
  

W40X655 Cantilever Uniform Load (2,000 psi in 17.8 ms) 5% Damping 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



169 
  

W10X12 Pinned-Pinned Point Load (70 psi in 8 ms) 5% Damping 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150

MATLAB DISPL

SBEDS Displ

-20

-15

-10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



170 
  

W10X12 Pinned-Pinned Uniform Load (70 psi in 8 ms) 5% Damping 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150

MATLAB DISPL

SBEDS Displ

-40

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100 120 140 160

MATLAB RESISTANCE

SBEDs RESISTANCE



171 
  

W10X12 Fixed-Pinned Point Load (70 psi in 8 ms) 5% Damping 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



172 
  

W10X12 Fixed-Pinned Uniform Load (70 psi in 8 ms) 5% Damping 

 

 

 

 

 

 

-0.5

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

MATLAB DISPL

SBEDS Displ

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

MATLAB RESISTANCE

SBEDs RESISTANCE



173 
  

W10X12 Fixed-Fixed Point Load (100 psi in 8 ms) 5% Damping 

 

 

 

 

 

 

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

MATLAB DISPL

SBEDS Displ

-40

-30

-20

-10

0

10

20

30

40

0 10 20 30 40 50 60 70

MATLAB RESISTANCE

SBEDs RESISTANCE



174 
  

W10X12 Fixed-Fixed Uniform Load (100 psi in 8 ms) 5% Damping 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

MATLAB DISPL

SBEDS Displ

-60

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70

MATLAB RESISTANCE

SBEDs RESISTANCE



175 
  

W10X12 Cantilever Point Load (70 psi in 8 ms) 5% Damping 

 

 

 

 

 

 

0

20

40

60

80

100

120

0 100 200 300 400 500

MATLAB DISPL

SBEDS Displ

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450

MATLAB RESISTANCE

SBEDs RESISTANCE



176 
  

W10X12 Cantilever Uniform Load (70 psi in 8 ms) 5% Damping 

 

 

  

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500

MATLAB DISPL

SBEDS Displ

-8

-6

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450

MATLAB RESISTANCE

SBEDs RESISTANCE



177 
  

Appendix C: MATLAB Code for More Accurate Model (MDOF 

Solver) 

Main Program (Executable) 

clc 
clear 

  

  
ii=sqrt(-1); 

  
[Nodes Node_class ElementNodes ElementProp ElementSec BC Force 

Force_distr, Axial_distr, Moment_distr analysis modes lumping 

nonstr_mass gamma beta forcecurve del stopt ICu ICv TOL rayleigh axial 

bc_type]=Input(); %Brings in data from input file 

  

  

  
NumNodes=numel(Nodes(:,1)); %number of nodes 

  
NumElem=numel(ElementNodes(:,1)); %number of elements 

  

  
% preprocessing 

  
sizBC=size(BC,1);         %adds a row of 0's for BC, Force, 

Axial_distr, Force_dist, Moment_distr, nonstr_mass, ICs 
BC(sizBC+1,:)=zeros; 

  
sizForce=size(Force,1); 
Force(sizForce+1,:)=zeros; 

  
sizAxial=size(Axial_distr,1); 
Axial_distr(sizAxial+1,:)=zeros; 

  
sizForce_d=size(Force_distr,1); 
Force_distr(sizForce_d+1,:)=zeros; 

  
sizMoment=size(Moment_distr,1); 
Moment_distr(sizMoment+1,:)=zeros; 

  
sizmass=size(nonstr_mass,1); 
nonstr_mass(sizmass+1,:)=zeros; 

  
sizICu=size(ICu,1); 
ICu(sizICu+1,:)=zeros; 

  
sizICv=size(ICv,1); 



178 
  

ICv(sizICv+1,:)=zeros; 

  

  
siz1=size(Axial_distr,2); %number of columns of axial_distr 
siz2=size(Force_distr,2); %number of columns of force_distr 
siz3=size(Moment_distr,2); %number of columns of moment_distr 

  

  
counter1=1;  %counter to loop over Axial_distr 
counter2=1;  %counter to loop over Force_distr 
counter3=1;  %counter to loop over Moment_distr 

  

  
degree1=siz1-1; %degree of polynomial for axial(x) 
degree2=siz2-1; %degree of polynomial for force(x) 
degree3=siz3-1;  %degree of polynomial for moment(x) 

  

  

  
for i=1:1:NumElem  %preprocessing for elements (fills out full distr. 

load) 

     
    if i==Axial_distr(counter1,1) %for the size of the constants 

(a's), loops and stores into temporary full load vector 

         
        Axial_distrfull(i,1)=i; 

         
        for count=2:1:siz1 
            Axial_distrfull(i,count)=Axial_distr(counter1,count); 
        end 

         
        counter1=counter1+1; 

         
    else 

         
        Axial_distrfull(i,1)=i; 

         
        for count=2:1:siz1 
            Axial_distrfull(i,count)=0; 
        end 

         
    end 

     

     
    if i==Force_distr(counter2,1) %for the size of the constants 

(a's), loops and stores into temporary full load vector 

         
        Force_distrfull(i,1)=i; 

         
        for count=2:1:siz2 
            Force_distrfull(i,count)=Force_distr(counter2,count); 



179 
  

        end 

         
        counter2=counter2+1; 

         
    else 

         
        Force_distrfull(i,1)=i; 

         
        for count=2:1:siz2 
            Force_distrfull(i,count)=0; 
        end 

         
    end 

     

     
    if i==Moment_distr(counter3,1) %for the size of the constants 

(a's), loops and stores into temporary full load vector 

         
        Moment_distrfull(i,1)=i; 

         
        for count=2:1:siz3 
            Moment_distrfull(i,count)=Moment_distr(counter3,count); 
        end 

         
        counter3=counter3+1; 

         
    else 

         
        Moment_distrfull(i,1)=i; 

         
        for count=2:1:siz3 
            Moment_distrfull(i,count)=0; 
        end 

         
    end 

     

         
end 

  

  
if degree1==0 

     
    Axial_distrfull(:,2)=zeros; 
end 

  
if degree2==0 

     
    Force_distrfull(:,2)=zeros; 
end 

  
if degree3==0 



180 
  

     
    Moment_distrfull(:,2)=zeros; 
end 

  

  
counter=1;      %counter to loop over Force 
counter2=1;     %counter for BC's 
counter3=1;     %counter for nonstr_mass 
counter4=1;     %counter for ICu 
counter5=1;     %counter for ICv 

  
position=1;     %position in Force vector 
position2=1;    %position in BC vector 
position3=1;    %position in nonstr_mass vector 
position4=1;    %position in ICu vector 
position5=1;    %position in ICv vector 

  
for i=1:1:NumNodes %preprocessing for nodes 

         
    if i==Force(counter,1)  %if the node i matches the node from Force 

         

         
        Forcefull(position,1)=Force(counter,2); 
        Forcefull(1+position,1)=Force(counter,3); 
        Forcefull(2+position,1)=Force(counter,4); 

         
        counter=counter+1; 

         
    else %otherwise, put a 0 

         
        Forcefull(position,1)=0; 
        Forcefull(1+position,1)=0; 
        Forcefull(2+position,1)=0; 

         
    end 

     
    position=position+3; 

     
    if i==BC(counter2,1)  %if the node i matches the node from BC 

         

         
        BCfull(position2,1)=BC(counter2,2); 
        BCfull(1+position2,1)=BC(counter2,3); 
        BCfull(2+position2,1)=BC(counter2,4); 

         
        counter2=counter2+1; 

         
    else % otherwise put sqrt(-1) as placeholder 

         
        BCfull(position2,1)=ii; 
        BCfull(1+position2,1)=ii; 
        BCfull(2+position2,1)=ii; 



181 
  

         
    end 

     
    position2=position2+3; 

     

     
    if i==nonstr_mass(counter3,1)  %if the node i matches the node 

from nonstr_mass 

             
        nonstr_massfull(position3,1)=nonstr_mass(counter3,2); 
        nonstr_massfull(1+position3,1)=nonstr_mass(counter3,3); 
        nonstr_massfull(2+position3,1)=nonstr_mass(counter3,4); 

         
        counter3=counter3+1; 

         
    else % otherwise put 0 mass 

         
        nonstr_massfull(position3,1)=0; 
        nonstr_massfull(1+position3,1)=0; 
        nonstr_massfull(2+position3,1)=0; 

         
    end 

     
    position3=position3+3; 

     
    if i==ICu(counter4,1)  %if the node i matches the node from ICu 

         

         
        ICufull(position4,1)=ICu(counter4,2); 
        ICufull(1+position4,1)=ICu(counter4,3); 
        ICufull(2+position4,1)=ICu(counter4,4); 

         
        counter4=counter4+1; 

         
    else % otherwise put 0 IC 

         
        ICufull(position4,1)=0; 
        ICufull(1+position4,1)=0; 
        ICufull(2+position4,1)=0; 

              
    end 

     
    position4=position4+3; 

     
    if i==ICv(counter5,1)  %if the node i matches the node from ICv 

         

         
        ICvfull(position5,1)=ICv(counter5,2); 
        ICvfull(1+position5,1)=ICv(counter5,3); 
        ICvfull(2+position5,1)=ICv(counter5,4); 

         



182 
  

         

         

         
        counter5=counter5+1; 

         
    else % otherwise put 0 IC 

         
        ICvfull(position5,1)=0; 
        ICvfull(1+position5,1)=0; 
        ICvfull(2+position5,1)=0; 

         

         
    end 

     
    position5=position5+3; 

     
end 

  

  
BCfull_original=BCfull; 

 
for i=1:1:NumElem  %Loops over each element for lengths and material 

properties 

     
    %% lengths and angles 

     
    node1=ElementNodes(i,1);  %temporarily stores node 1 for element i 
    node2=ElementNodes(i,2);  %temporarily stores node 2 for element i 

     
    x1=Nodes(node1,1); %temporarily stores x coordinate of node 1 for 

element i 
    y1=Nodes(node1,2); %temporarily stores y coordinate of node 1 for 

element i 
    x2=Nodes(node2,1); %temporarily stores x coordinate of node 2 for 

element i 
    y2=Nodes(node2,2); %temporarily stores y coordinate of node 2 for 

element i 

     
    [ang Length]=Lengths(x1, x2, y1, y2); %Function to calculate 

lengths/angles 

     

     
    angle(i)=ang; 
    L(i)=Length; 

     
    %% Material properties 

     
    Mat_num=ElementProp(i,1); 
    Type_num=ElementProp(i,2); 

     
    Area=ElementSec(i,1); 



183 
  

    Inert=ElementSec(i,2); 
    Flange=ElementSec(i,3); 
    Z=ElementSec(i,4); 
    d_l=ElementSec(i,5); 
    b_l=ElementSec(i,6); 
    f_l=ElementSec(i,7); 
    w_l=ElementSec(i,8); 
    nodeset=ElementNodes(i,:); 

     

     
    [EM GM DENS Ar Ar_sh Inertia Fy Mpl]=Data(Mat_num, Type_num, Area, 

Inert, Flange, Z); 

     
    E(i)=EM; 
    G(i)=GM; 
    A(i)=Ar; 
    As(i)=Ar_sh; 
    I(i)=Inertia; 
    rho(i)=DENS; 
    Fyield(i)=Fy; 
    Mp(i)=Mpl; 
    Tp_num(i)=Type_num; 

     

     
    %uses first element as section for axial capacity 
    if i==1 

         
        Py=Ar*Fy; 
        axial=axial*Py 

         

     
        if axial~=0    % P-M reduction in plastic moment (to match 

SBEDS) 

             
            rg=sqrt(Inertia/Ar); 

             
            if bc_type=='cantil' 
                klr_fact=2; 
            elseif bc_type=='pinpin' 
                klr_fact=1; 
            elseif bc_type=='fixpin' 
                klr_fact=.7; 
            elseif bc_type=='fixfix' 
                klr_fact=.5; 
            end 

             
            Klr=klr_fact*Length*NumElem/rg; 

             
            Cc=Klr/pi*sqrt(Fy/EM); 

             
            if Cc<=1.5 
                Pcr=(.658^(Cc^2))*Fy*Ar; 
            else 



184 
  

                Pcr=.877/Cc^2*Fy*Ar; 
            end 

             

             
            Mpset(1)=Fy*Z; 

             
            Mpset(2)=(1-axial/Pcr)*Fy*Z; 

             
            Mpset(3)=(1-axial/(Fy*Ar))*1.18*Z*Fy; 

             
            Mp_red=min(Mpset) 

            
        end 

         
    end 

     
    if axial~=0 

         
        Mp(i)=Mp_red; 
    end 

  

    
%    if axial~=0 
%          
%         Pboundary=w_l*(d_l-2*f_l)*Fy; 
%        
%         if axial>=Pboundary 
%              
%             NA=(2*b_l*f_l*Fy-axial+w_l*Fy*(d_l-2*f_l))/(2*b_l*Fy); 
%              
%             Mp(i)=b_l*NA*Fy*(d_l-NA); 
%              
%   
%         elseif axial<Pboundary 
%              
%             NA=-(axial-d_l*w_l*Fy)/2/w_l/Fy; 
%             
%             Mp(i)=-Fy*(b_l*f_l^2-f_l^2*w_l+w_l*NA^2-

b_l*d_l*f_l+d_l*f_l*w_l-d_l*w_l*NA); 
%             Mp(i)=557.3; 
%             Mp(i)=511;  
%             Mp(i)=473; 
%         end 
%  
%     end 

     

     

     

     

     

     

     



185 
  

     

     
    %% connectivity b's 

     

     

     
    [b_e] = connectivity(ElementNodes(i,:),NumNodes); 

     
    belement(:,:,i)=b_e; 

     

     
    %% Initializing internal forces as all 0 for first state 

determination 

     
    Finternal(:,1,i)=[0;0;0;0;0;0]; 
    FsElement(:,1,i)=[0;0;0;0;0;0]; 
    FdElement_b(:,1,i)=[0;0;0;0;0;0]; 
    FdElement_a(:,1,i)=[0;0;0;0;0;0]; 
    FiElement(:,1,i)=[0;0;0;0;0;0]; 

     
end 
 

 [F_t t steps] = Forcetime(forcecurve, del, stopt); 

  
timecount=1; 

  
%first timestep outside the loop 

  
kglobal=[]; kglobal=zeros;  %clears matrices every timestep 
gglobal=[]; gglobal=zeros; 
mglobal=[]; mglobal=zeros; 
cglobal=[]; cglobal=zeros; 
reducer=[]; reducer=zeros; 

  

  
for i=1:1:NumElem  %Loops over each element for stiffness, mass, 

damping, and equivalent nodal loads 

     

     
    node1=ElementNodes(i,1);  %temporarily stores node 1 for element i 
    node2=ElementNodes(i,2);  %temporarily stores node 2 for element i 
    nodeclass1=Node_class(node1,1); 
    nodeclass2=Node_class(node2,1); 

     
    moment_left=abs(FsElement(3,timecount,i)); 
    moment_right=abs(FsElement(6,timecount,i)); 

     

     
    if Type_num==6 

         
        order=ElementProp(i,3); 



186 
  

         
        [N_e B_e C_e N_e_r B_e_r hinging] = NBC_element(L(i), E(i), 

A(i), As(i), G(i), I(i), Tp_num(i), order); 

         
    else 

         
        N_e=0; 
        B_e=0; 
        C_e=0; 
        N_e_r=0; 
        B_e_r=0; 

         

         
    end 

     
    [k_e m_e r kms kss] = k_element(L(i), E(i), A(i), As(i), G(i), 

I(i), Tp_num(i), B_e_r, C_e, N_e_r, lumping, analysis, rho(i), 

FsElement(:,timecount,i), Mp(i), nodeclass1, nodeclass2); 

     
    kelemento(:,:,i)=k_e; 

     
    melemento(:,:,i)=m_e; 

     
    if nodeclass1=='I'  %Nonstructural masses block (adds half if 

internal node, adds full if external node) 

         
        melemento(1,1,i)=melemento(1,1,i)+0.5*nonstr_massfull(node1*3-

2); 
        melemento(2,2,i)=melemento(2,2,i)+0.5*nonstr_massfull(node1*3-

1); 
        

melemento(3,3,i)=melemento(3,3,i)+0.5*nonstr_massfull(node1*3); 

         
    elseif nodeclass1=='E' 

         
        melemento(1,1,i)=melemento(1,1,i)+nonstr_massfull(node1*3-2); 
        melemento(2,2,i)=melemento(2,2,i)+nonstr_massfull(node1*3-1); 
        melemento(3,3,i)=melemento(3,3,i)+nonstr_massfull(node1*3); 

         
    end 

     

     
    if nodeclass2=='I' 

         
        melemento(4,4,i)=melemento(4,4,i)+0.5*nonstr_massfull(node2*3-

2); 
        melemento(5,5,i)=melemento(5,5,i)+0.5*nonstr_massfull(node2*3-

1); 
        

melemento(6,6,i)=melemento(6,6,i)+0.5*nonstr_massfull(node2*3); 

         
    elseif nodeclass2=='E' 



187 
  

         
        melemento(4,4,i)=melemento(4,4,i)+nonstr_massfull(node2*3-2); 
        melemento(5,5,i)=melemento(5,5,i)+nonstr_massfull(node2*3-1); 
        melemento(6,6,i)=melemento(6,6,i)+nonstr_massfull(node2*3); 

         

         
    end 

     
    %% Equivalent Nodal Loads 
 

    axial_nodal=Axial_distrfull(i,:); 
    forces_nodal=Force_distrfull(i,:); 
    moment_nodal=Moment_distrfull(i,:); 

     
    [g_e] = g_element(Length, degree1, degree2, degree3, axial_nodal, 

forces_nodal, moment_nodal, N_e_r, Tp_num(i), r, kms, kss, 

FsElement(:,timecount,i), Mp(i), nodeclass1, nodeclass2);  %Equivalent 

Load Function 

     
    gelemento(:,i)=g_e; 

     
    %% transformation matrices 

     

     
    c=cos(angle(i)); 
    s=sin(angle(i)); 

     
    transf=[c  s 0  0 0 0 
        -s c 0  0 0 0 
        0 0 1  0 0 0 
        0 0 0  c s 0 
        0 0 0 -s c 0 
        0 0 0  0 0 1]; 
 

    kelement_tr(:,:,i)=transpose(transf)*kelemento(:,:,i)*transf; 

%rotates elemental stiffness to global coordinates 
    gelement_tr(:,1,i)=transpose(transf)*gelemento(:,i); %rotates 

elemental equivalent nodal loads to global coordinates 
    melement_tr(:,:,i)=transpose(transf)*melemento(:,:,i)*transf; 

%rotates mass matrix 

  
    %%  Assembly 
    

kglobal=kglobal+transpose(belement(:,:,i))*kelement_tr(:,:,i)*belement

(:,:,i); %assembles k matrix, k=sum(b_eT*k_e*b_e) 

     
    gglobal=gglobal+transpose(belement(:,:,i))*gelement_tr(:,1,i); 

%assembles g vector, k=sum(b_eT*g_e) 

     
    

mglobal=mglobal+transpose(belement(:,:,i))*melement_tr(:,:,i)*belement

(:,:,i); %assembles global mass matrix m=sum(b_eT*m_e*b_e) 

     



188 
  

    Fnet=gglobal+Forcefull; %calculates total load vector, which is 

sum of nodal loads and equivalent nodal loads 

     

     
    % update BC vector for size of reducer matrix (and reduced 
    % stiffness, mass, damping matrices) 

     
    if nodeclass1=='E' %if a fixed end is yielding, creates different 

boundary conditions 

         
        if moment_left>=Mp(i)  %Hinge at left node 

             
            BCfull(node1*3,1)=ii; 

             
        elseif moment_left<Mp(i) 

             
            BCfull(node1*3,1)=BCfull_original(node1*3,1); 

             
        end 

         
    end 
 

    if nodeclass2=='E' %if a fixed end is yielding, creates different 

boundary conditions 

         
        if moment_right>=Mp(i)  %Hinge at left node 

             
            BCfull(node2*3,1)=ii; 

             
        elseif moment_right<Mp(i) 

             
            BCfull(node2*3,1)=BCfull_original(node2*3,1); 

             
        end 

         
    end 

     
end 

  
reduce_count=1; 

  
for i=1:1:NumNodes*3 %calculates reducer matrix 

     
    if BCfull(i,1)~=0 

         
        reducero(reduce_count,i)=1; 
        reduce_count=reduce_count+1; 

         
    else 

         
        reducero(:,i)=0; 



189 
  

    end 
 

end 

   
%applying B.C.s with reducer matrix 

  
ko=reducero*kglobal*transpose(reducero); 

  
go=reducero*gglobal; 

  
mo=reducero*mglobal*transpose(reducero); 

  

  
%elastic frequencies 

   
modes_solve=min(modes,size(ko,1)); 

  

  
[phi w2]=eigs(ko,mo,modes_solve,'SM'); 

  
w=sqrt(w2); 

  
for freq=1:1:size(w,1) 

     
    T(freq,freq)=2*pi/w(freq,freq); 

     
end 

  

  
firstmode=rayleigh(1,1); 
secondmode=rayleigh(2,1); 
z1=rayleigh(1,2); 
z2=rayleigh(2,2); 

  
w1=w(firstmode,firstmode); 
w2=w(secondmode,secondmode); 

  

  
c_alpha=2*w1*w2/(w2^2-w1^2)*(w2*z1-w1*z2); 
c_beta=2/(w2^2-w1^2)*(w2*z2-w1*z1); 

  

  
c_alpha=0; 
c_beta=.000002; 

  

  
  if axial~=0  
      kglobal=[]; kglobal=zeros; 
  end 

   

   



190 
  

   
for i=1:1:NumElem  %Loops over each element damping 

     
    node1=ElementNodes(i,1);  %temporarily stores node 1 for element i 
    node2=ElementNodes(i,2);  %temporarily stores node 2 for element i 
    nodeclass1=Node_class(node1,1); 
    nodeclass2=Node_class(node2,1); 

     
    moment_left=abs(FsElement(3,timecount,i)); 
    moment_right=abs(FsElement(6,timecount,i)); 

     

     
    if Type_num==6 

         
        order=ElementProp(i,3); 

         
        [N_e B_e C_e N_e_r B_e_r hinging] = NBC_element(L(i), E(i), 

A(i), As(i), G(i), I(i), Tp_num(i), order); 

         
    else 

         
        N_e=0; 
        B_e=0; 
        C_e=0; 
        N_e_r=0; 
        B_e_r=0; 

         

         
    end 

     
    damp_switch=1; 

     

     
    [celemento_a(:,:,i) celemento_b(:,:,i)]=Damping(kelemento(:,:,i), 

melemento(:,:,i), c_alpha, c_beta, damp_switch); 

     
    celemento(:,:,i)=celemento_a(:,:,i)+celemento_b(:,:,i); 

       
    if axial~=0 %adds geometric stiffness to elastic stiffness AFTER 

calculating stiffness-proportional damping 

         
        k_g = k_geom(L(i),axial,r); 

         
        kgelemento(:,:,i)=k_g; 

         
        kelemento(:,:,i)=kelemento(:,:,i)+k_g; 
    end 

     

     
    c=cos(angle(i)); 
    s=sin(angle(i)); 



191 
  

     
    transf=[c  s 0  0 0 0 
        -s c 0  0 0 0 
        0 0 1  0 0 0 
        0 0 0  c s 0 
        0 0 0 -s c 0 
        0 0 0  0 0 1]; 

     

   
    celement_tr(:,:,i)=transpose(transf)*celemento(:,:,i)*transf; 

%rotates damping matrix 

     
    if axial~=0  
        kelement_tr(:,:,i)=transpose(transf)*kelemento(:,:,i)*transf; 

%rotates damping matrix 
    end 

     
    %%  Assembly 

     
    

cglobal=cglobal+transpose(belement(:,:,i))*celement_tr(:,:,i)*belement

(:,:,i); %assembles global damping matrix c=sum(b_eT*c_e*b_e) 

     
    if axial~=0 
        

kglobal=kglobal+transpose(belement(:,:,i))*kelement_tr(:,:,i)*belement

(:,:,i); 
    end 

     
end 

  

  
co=reducero*cglobal*transpose(reducero); 

  
%applying axial load statically before dynamic analysis 

  
if axial~=0 

     
    ko=reducero*kglobal*transpose(reducero);   
    siz=size(ko,1); 
    F_axial=zeros(siz,1); 
    F_axial(1,1)=axial; 
    u_axial=ko\F_axial; 
    u_axial_full=reducero'*u_axial; 
    ICufull=u_axial_full; 

     

  

     
end 

  

 
% for i=3:3:3*NumNodes 



192 
  

% 
%     if abs(Fnet(i,1))>Mp(1) 
% 
%         Fnet(i,1)=Fnet(i,1)/abs(Fnet(i,1))*Mp(1); 
% 
%     end 
% 
% end 
 

Fexternal=reducero*Fnet; 

   
% for first timecount, sets initial conditions 

 
minvo=inv(mo); 

  
Re(:,1)=Fexternal*F_t(1); 

  
Ru(:,1)=Re(:,1)*0; %sets unbalanced to 0 initially 

  
Ri(:,1)=Ru(:,1); %sets internal to 0 intially 

  
u_t(:,1)=reducero*ICufull; 

  

   
Fs(:,1)=ko*u_t(:,1); 

  
v_t(:,1)=reducero*ICvfull; 

  
Fd(:,1)=co*v_t(:,1); 

  
a_t(:,1)=minvo*(Re(:,1)-Fd(:,1)-Fs(:,1)); 

  
Fi(:,1)=mo*a_t(:,1); 

  
u_t_total(:,1)=ICufull; 
v_t_total(:,1)=ICvfull; 

  

  
count=1; 

  
for i=1:1:NumNodes*3  %this loop adds back the boundary conditions to 

initial a_t_total vector 

     

     
    if BCfull(i,1)==ii 

         
        a_t_total(i,1)=a_t(count,1); 

         
        count=count+1; 

         

         



193 
  

    elseif BCfull(i,1)==0 

         
        a_t_total(i,1)=0; 

         
    end 

     

     
end 

  

 
%stores the original (elastic) matrices 

  
ao=gamma/beta*co+1/beta/del*mo; 

  
bo=1/2/beta*mo+del*(gamma/2/beta-1)*co; 

  
kbaro=1/del*ao; 

  
kstaro=ko+kbaro; 

  
invko=inv(kstaro); 

  

  
for i=1:1:NumNodes % initializes 

     
    yieldnodes(i,1)=0; 
    yieldvalues(i,1)=0; 
end 

  

 
while (timecount<=steps) %Timestepping 

     
    %% intial calcs done every timesetep 

     
    Re(:,timecount+1)=Fexternal*F_t(timecount+1); %external applied 

load of timestep 

     
    %Re(:,timecount+1)=Re(:,timecount+1)+F_axial; 

     
    dRe(:,timecount)=Re(:,timecount+1)-Re(:,timecount); %change in 

applied load of timestep 

     

     
    %The remainder of the timestepping is split into 2 sets of 

solutions 
    %The first set is the timestep solved elastically to determine 

yielding 
    %The second set is only calculated if there is yielding (using 

hinged elements where required) 

     

     



194 
  

    %% First set (elastic for yielding determination) 

     

     

     
    %yielded='n'; %determines whether the second set is calculated 

     
    %     for i=1:1:NumNodes % stores all yielded nodes as unyielded 
    % 
    %         yieldnodes(i,timecount+1)=yieldnodes(i,timecount); 
    %     end 

     
    

Ru(:,timecount+1)=dRe(:,timecount)+ao*v_t(:,timecount)+bo*a_t(:,timeco

unt)+Ru(:,timecount); %unbalanced load 

     
    du(:,timecount)=Ru(:,timecount+1)*0; %initializes du 

     
    norm_check=TOL+1; %initializes the norm as greater than tolerance 

         
    while (norm_check>TOL)  %NR iteration 

         
        yielded='n'; 

         
        du(:,timecount)=du(:,timecount)+invko*Ru(:,timecount+1); 

         
        dv(:,timecount)=gamma/beta/del*du(:,timecount)-

gamma/beta*v_t(:,timecount)+del*(1-gamma/2/beta)*a_t(:,timecount); 

         
        da(:,timecount)=1/beta/del^2*du(:,timecount)-

1/beta/del*v_t(:,timecount)-1/2/beta*a_t(:,timecount); 
 

        u_t(:,timecount+1)=u_t(:,timecount)+du(:,timecount); 

         
        v_t(:,timecount+1)=v_t(:,timecount)+dv(:,timecount); 

         
        a_t(:,timecount+1)=a_t(:,timecount)+da(:,timecount); 

             

         
        count=1; 
        for i=1:1:NumNodes*3  %this loop adds back all values to u, v, 

a vectors 

             
            if BCfull(i,1)==ii 

                 
                u_t_total(i,timecount+1)=u_t(count,timecount+1); 
                du_total(i,timecount)=du(count,timecount); 

                 
                v_t_total(i,timecount+1)=v_t(count,timecount+1); 
                dv_total(i,timecount)=dv(count,timecount); 

                 
                a_t_total(i,timecount+1)=a_t(count,timecount+1); 



195 
  

                da_total(i,timecount)=da(count,timecount); 

                 

                 
                count=count+1; 

                 

                 
            elseif BCfull(i,1)==0 

                 
                u_t_total(i,timecount+1)=0; 
                du_total(i,timecount)=0; 

                 
                v_t_total(i,timecount+1)=0; 
                dv_total(i,timecount)=0; 

                 
                a_t_total(i,timecount+1)=0; 
                da_total(i,timecount)=0; 

                 
            end 

             
        end 

         
        Finternal_global=[]; %initialize internal as 0 
        Finternal_global=zeros; 

         
        for i=1:1:NumElem  %Loops over each element for internal 

forces 

             
            set=size(kelemento(:,:,i),2); 

             
            node1=ElementNodes(i,1);  %temporarily stores node 1 for 

element i 
            node2=ElementNodes(i,2);  %temporarily stores node 2 for 

element i 
            nodeclass1=Node_class(node1,1); 
            nodeclass2=Node_class(node2,1); 

             

             
            du_t_element(:,timecount,i)=[du_total(node1*3-2,timecount) 

%creates du for element i 
                du_total(node1*3-1,timecount) 
                du_total(node1*3,timecount) 
                du_total(node2*3-2,timecount) 
                du_total(node2*3-1,timecount) 
                du_total(node2*3,timecount)]; 

             

             
            dv_t_element(:,timecount,i)=[dv_total(node1*3-2,timecount) 

%creates dv for element i 
                dv_total(node1*3-1,timecount) 
                dv_total(node1*3,timecount) 
                dv_total(node2*3-2,timecount) 
                dv_total(node2*3-1,timecount) 



196 
  

                dv_total(node2*3,timecount)]; 

             
            da_t_element(:,timecount,i)=[da_total(node1*3-2,timecount) 

%creates da for element i 
                da_total(node1*3-1,timecount) 
                da_total(node1*3,timecount) 
                da_total(node2*3-2,timecount) 
                da_total(node2*3-1,timecount) 
                da_total(node2*3,timecount)]; 

             
            u_t_element(:,timecount+1,i)=[u_t_total(node1*3-

2,timecount+1) %creates u for element i 
                u_t_total(node1*3-1,timecount+1) 
                u_t_total(node1*3,timecount+1) 
                u_t_total(node2*3-2,timecount+1) 
                u_t_total(node2*3-1,timecount+1) 
                u_t_total(node2*3,timecount+1)]; 

             
            v_t_element(:,timecount+1,i)=[v_t_total(node1*3-

2,timecount+1) %creates v for element i 
                v_t_total(node1*3-1,timecount+1) 
                v_t_total(node1*3,timecount+1) 
                v_t_total(node2*3-2,timecount+1) 
                v_t_total(node2*3-1,timecount+1) 
                v_t_total(node2*3,timecount+1)]; 

             

             

             
            a_t_element(:,timecount+1,i)=[a_t_total(node1*3-

2,timecount+1) % creates a for element i 
                a_t_total(node1*3-1,timecount+1) 
                a_t_total(node1*3,timecount+1) 
                a_t_total(node2*3-2,timecount+1) 
                a_t_total(node2*3-1,timecount+1) 
                a_t_total(node2*3,timecount+1)]; 
                      

dFsElement(:,timecount,i)=kelemento(:,:,i)*du_t_element(:,timecount,i)

; 

             
            

FsElement(:,timecount+1,i)=FsElement(:,timecount,i)+dFsElement(:,timec

ount,i); %Spring forces for element i (incremental) 

             
            

FdElement_a(:,timecount+1,i)=celemento_a(:,:,i)*v_t_element(:,timecoun

t+1,i); 

             

   

             

             

             



197 
  

            

FdElement_b(:,timecount+1,i)=celemento_b(:,:,i)*v_t_element(:,timecoun

t+1,i);   

             
FdElement(:,timecount+1,i)=FdElement_a(:,timecount+1,i)+FdElement_b(:,

timecount+1,i); 

             
            

FiElement(:,timecount+1,i)=melemento(:,:,i)*a_t_element(:,timecount+1,

i); 

             
            

Finternal(:,timecount+1,i)=FsElement(:,timecount+1,i)+FdElement(:,time

count+1,i)+FiElement(:,timecount+1,i); %Internal forces for element i 

             
            moment_right=abs(FsElement(6,timecount+1,i)); %right end 

moment for element i 
            moment_left=abs(FsElement(3,timecount+1,i)); 

             

                         
            if moment_right>=Mp(i)  %allows for recalculation using 

end released elements after this section 

                 

                 
                yielded='y'; %this allows the second set to be 

calculated 
                yieldnodes(node2,timecount+1)=1; %tracks which node 

yielded 
                yieldvalues(node2,timecount+1)=moment_right; 

                 
                %%%%%%%%%%%%%%%%%%%%%%decrease timestep here and get 

more accuracy for other elements spring forces 

                 

                              
                %                 value=abs(FsElement(6,timecount,i)); 

%This scales the previous spring force to the yielded value so that 

the second set has this value in the internal force 
                % 
                %                 scale=Mp(i)/value; 
                % 
                %                 

FsElement(:,timecount,i)=scale*FsElement(:,timecount,i); 

                 
            else 

                 
                yieldnodes(node2,timecount+1)=0; 
                yieldvalues(node2,timecount+1)=0; 

                 

                 
            end 

                

             



198 
  

            if nodeclass1=='E' 

                 
                if moment_left>=Mp(i) 

                     
                    yielded='y'; 
                    yieldnodes(node1,timecount+1)=1; 
                    yieldvalues(node1,timecount+1)=moment_left; 

                     

                     
                else 

                     
                    yieldnodes(node1,timecount+1)=0; 
                    yieldvalues(node1,timecount+1)=0; 

                     
                end 

                 
            end 
            

Finternal_global=Finternal_global+transpose(belement(:,:,i))*Finternal

(:,timecount+1,i); %assembles the internal force vector 

             
        end 

         

         
        Ri(:,timecount+1)=reducero*Finternal_global; %reduces the 

internal force vector to the correct size 

         
        Ru(:,timecount+1)=Re(:,timecount+1)-Ri(:,timecount+1); 

%calculates the unbalanced load 

         
        norm_check=norm(Ru(:,timecount+1)); %restores the norm to be 

checked against tolerance 

         
    end 

     

     
    %%  This is the second set (recalculation of all matrices and 

solution for timestep if yielding occurs) 

     
    if yielded=='y' %only goes into this set if the yielded marker is 

'y' 

         
                

yield_values_sorted(:,timecount+1)=sort(yieldvalues(:,timecount+1),'de

scend'); 

         

         
        loop='stay'; 

         

         



199 
  

        while (loop=='stay') %iterates this whole section until the 

yielded nodes are correct 

             
            a=[]; 
            b=[]; 
            kbar=[]; 
            kstar=[]; 
            invk=[]; 

             
            kglobal=[]; kglobal=zeros; 
            gglobal=[]; gglobal=zeros; 
            mglobal=[]; mglobal=zeros; 
            cglobal=[]; cglobal=zeros; 
            reducer=[]; reducer=zeros; 

             
            for i=1:1:NumElem 

                            

                 
                moment_left=abs(FsElement(3,timecount+1,i)); %These 

moments were calculated in the first set so the yielded values will be 

above Mp(i) 
                moment_right=abs(FsElement(6,timecount+1,i)); 
                node1=ElementNodes(i,1);  %temporarily stores node 1 

for element i 
                node2=ElementNodes(i,2);  %temporarily stores node 2 

for element i 
                nodeclass1=Node_class(node1,1); 
                nodeclass2=Node_class(node2,1); 

                 
                %reassemble k 

                 
                kelement(:,:,i)=kelemento(:,:,i); 
                melement(:,:,i)=melemento(:,:,i); 

                 
                damp_switch=1; 

                 
                scale=0; 

                 

                 
                if nodeclass1=='E' 

                     
                    if moment_left==yield_values_sorted(1,timecount+1) 

                         
                        [kelement(:,:,i) 

Tr_k(:,:,i)]=Condenseleft(kelemento(:,:,i));%-kgelemento(:,:,i)); 

%creates hinged matrix 
                        [melement(:,:,i) 

Tr_m(:,:,i)]=Condenseleft(melemento(:,:,i)); %creates hinged matrix 
                        

%kelement(:,:,i)=kelement(:,:,i)+kgelemento(:,:,i); 

                         

                         



200 
  

                        value=abs(FsElement(3,timecount,i)); %This 

scales the previous spring force to the yielded value so that the 

second set has this value in the internal force 

                         
                        scale=Mp(i)/value; 

                         
                        

FsElement(:,timecount,i)=scale*FsElement(:,timecount,i); 

                         

                         
                        if moment_right==Mp(i) %if the right end is 

previously yielded, becomes bar 
                            'error- increase mesh to avoid fully 

yielded element' 
                            break 

                             

                             

                             
                        end 

                         

                         
                    elseif moment_left==Mp(i) 

                         

                         
                        [kelement(:,:,i) 

Tr_k(:,:,i)]=Condenseleft(kelemento(:,:,i));%-kgelemento(:,:,i)); 

%creates hinged matrix 

                         
                        [melement(:,:,i) 

Tr_m(:,:,i)]=Condenseleft(melemento(:,:,i)); %creates hinged matrix 

                      
                        

%kelement(:,:,i)=kelement(:,:,i)+kgelemento(:,:,i); 

                         

                         
                    end 

                     
                end 

                               
                if moment_right==yield_values_sorted(1,timecount+1) 

%Hinge at right node for first node yielded 

                     
                    [kelement(:,:,i) 

Tr_k(:,:,i)]=Condense(kelemento(:,:,i));%-kgelemento(:,:,i)); %creates 

hinged matrix 
                    if i~=NumElem 
                        [melement(:,:,i) 

Tr_m(:,:,i)]=Condense(melemento(:,:,i)); %creates hinged matrix 
                    end 
                    

%kelement(:,:,i)=kelement(:,:,i)+kgelemento(:,:,i); 

                     



201 
  

                     
                    value=abs(FsElement(6,timecount,i)); %This scales 

the previous spring force to the yielded value so that the second set 

has this value in the internal force 

                     
                    scale=Mp(i)/value; 

                     
                    

FsElement(:,timecount,i)=scale*FsElement(:,timecount,i); 

                                     

                     
                    if nodeclass1=='E' %if it is the left end member 

and the left end is also previously yielded, becomes bar 

                         
                        if moment_left==Mp(i) 
                            'error- increase mesh to avoid fully 

yielded element' 
                            break 

                             
                        end 

                         
                    end 

                     
                    %damp_switch=10^-3; 

                     
                elseif moment_right==Mp(i) %any already yielded nodes 

(takes value of Mp) 

                     

                     
                    [kelement(:,:,i) 

Tr_k(:,:,i)]=Condense(kelemento(:,:,i));%-kgelemento(:,:,i)); %creates 

hinged matrix 
                    if i~=NumElem 
                        [melement(:,:,i) 

Tr_m(:,:,i)]=Condense(melemento(:,:,i)); %creates hinged matrix 
                    end 
                    

%kelement(:,:,i)=kelement(:,:,i)+kgelemento(:,:,i); 
                   %damp_switch=10^-3; 

                     

                    
                end 

                 
                if moment_left>=Mp(i)  %accounts for the other side of 

each node yielded to decrease damping as well 

                     

                     
                   %damp_switch=10^-3; 

                     

 
                    %value=abs(FsElement(3,timecount,i));  



202 
  

                                                             
                    %scale=Mp(i)/value; 

                     
%                     

FsElement(:,timecount,i)=scale*FsElement(:,timecount,i); 

                 
                end 

                 

                 
                [celement_a(:,:,i) 

celement_b(:,:,i)]=Damping(kelement(:,:,i), melement(:,:,i), c_alpha, 

c_beta, damp_switch); 
                celement(:,:,i)=celement_a(:,:,i)+celement_b(:,:,i); 

                       

                 
%                  
                celement_a(:,:,i)=celemento_a(:,:,i); 
                celement_b(:,:,i)=celemento_b(:,:,i); 

                 
                damp_switch_left=1; 
                damp_switch_right=1; 

                 
                if moment_right>=Mp(i) 

                     
                    damp_switch_right=10^-3; 

       
                end 

                 

                 
               if i==1 

                    
                   moment_previous(i)=moment_left; 
               end 

                 

                     
                    if moment_previous(i)>=Mp(i) 

      
                        damp_switch_left=10^-3; 

                         
                    end 

             
                celement_b(6,:,i)=celement_b(6,:,i)*damp_switch_right; 

%"zeros" damping for right end rotational DOF of element i 
                celement_b(:,6,i)=celement_b(:,6,i)*damp_switch_right; 
                celement_b(6,6,i)=celement_b(6,6,i)/damp_switch_right; 

                 
                celement_b(3,:,i)=celement_b(3,:,i)*damp_switch_left; 

%"zeros" damping for left end rotational DOF of adjacent member (same 

DOF as above) 
                celement_b(:,3,i)=celement_b(:,3,i)*damp_switch_left; 
                celement_b(3,3,i)=celement_b(3,3,i)/damp_switch_left; 



203 
  

                 
%        
%                    

celement_b(:,:,i)=celement_b(:,:,i)*damp_switch_right; 
%                     
%                    if damp_switch_right==1 && damp_switch_left~=1 
%                         
%                        

celement_b(:,:,i)=celement_b(:,:,i)*damp_switch_left; 
%                    end 

                
                moment_previous(i+1)=moment_right; 

                 
                %celement_b(:,:,i)=celement_b(:,:,i)*damp_switch; 
                celement(:,:,i)=celement_a(:,:,i)+celement_b(:,:,i); 

                 

                 
                %% Equivalent Nodal Loads 

                     
                axial_nodal=Axial_distrfull(i,:); 
                forces_nodal=Force_distrfull(i,:); 
                moment_nodal=Moment_distrfull(i,:); 

                 
                [g_e] = g_element(Length, degree1, degree2, degree3, 

axial_nodal, forces_nodal, moment_nodal, N_e_r, Tp_num(i), r, kms, 

kss, FsElement(:,timecount+1,i), Mp(i), nodeclass1, nodeclass2);  

%Equivalent Load Function 

                 

                 
                gelement(:,i)=g_e; 

                 
                %% transformation matrices 

                 
                c=cos(angle(i)); 
                s=sin(angle(i)); 

                 
                transf=[c  s 0  0 0 0 
                    -s c 0  0 0 0 
                    0 0 1  0 0 0 
                    0 0 0  c s 0 
                    0 0 0 -s c 0 
                    0 0 0  0 0 1]; 

                 
kelement_tr(:,:,i)=transpose(transf)*kelement(:,:,i)*transf; %rotates 

elemental stiffness to global coordinates 
                gelement_tr(:,1,i)=transpose(transf)*gelement(:,i); 

%rotates elemental equivalent nodal loads to global coordinates 
                

melement_tr(:,:,i)=transpose(transf)*melement(:,:,i)*transf; %rotates 

mass matrix 
                

celement_tr(:,:,i)=transpose(transf)*celement(:,:,i)*transf; %rotates 

damping matrix           



204 
  

                 
                %%  Assembly 

                 
                

kglobal=kglobal+transpose(belement(:,:,i))*kelement_tr(:,:,i)*belement

(:,:,i); %assembles k matrix, k=sum(b_eT*k_e*b_e) 

                 
                

gglobal=gglobal+transpose(belement(:,:,i))*gelement_tr(:,1,i); 

%assembles g vector, k=sum(b_eT*g_e) 

                 
                

mglobal=mglobal+transpose(belement(:,:,i))*melement_tr(:,:,i)*belement

(:,:,i); %assembles global mass matrix m=sum(b_eT*m_e*b_e) 

                 
                

cglobal=cglobal+transpose(belement(:,:,i))*celement_tr(:,:,i)*belement

(:,:,i); %assembles global damping matrix c=sum(b_eT*c_e*b_e) 

                 
                Fnet=gglobal+Forcefull; %calculates total load vector, 

which is sum of nodal loads and equivalent nodal loads 

                 
                % update BC vector for size of reducer matrix (and 

reduced 
                % stiffness, mass, damping matrices) 

                 
            end 

             
            %applying B.C.s with reducer matrix 

             
            k=reducero*kglobal*transpose(reducero); 

             
            g=reducero*gglobal; 

             
            m=reducero*mglobal*transpose(reducero); 

             
            c=reducero*cglobal*transpose(reducero); 

             

             
            %Newmark Beta solution 
 

            Fexternal=reducero*Fnet; 

             
            Re(:,timecount+1)=Fexternal*F_t(timecount+1); %external 

applied load of timestep 

             
            %Re(:,timecount+1)=Re(:,timecount+1)+F_axial; 

             
            dRe(:,timecount)=Re(:,timecount+1)-Re(:,timecount); 

%change in applied load of timestep 

             



205 
  

             
            a=gamma/beta*c+1/beta/del*m; 

             
            b=1/2/beta*m+del*(gamma/2/beta-1)*c; 

             
            kbar=1/del*a; 

             
            kstar=k+kbar; 

             
            invk=inv(kstar); 
            

Ru(:,timecount+1)=dRe(:,timecount)+a*v_t(:,timecount)+b*a_t(:,timecoun

t)+Ru(:,timecount); 

             
            du(:,timecount)=Ru(:,timecount+1)*0; 

             
            norm_check=TOL+1; 

             

             
            while (norm_check>TOL)  %NR iteration 

                 
                

du(:,timecount)=du(:,timecount)+invk*Ru(:,timecount+1); 

                 
                dv(:,timecount)=gamma/beta/del*du(:,timecount)-

gamma/beta*v_t(:,timecount)+del*(1-gamma/2/beta)*a_t(:,timecount); 

                 
                da(:,timecount)=1/beta/del^2*du(:,timecount)-

1/beta/del*v_t(:,timecount)-1/2/beta*a_t(:,timecount); 

        

                 
                u_t(:,timecount+1)=u_t(:,timecount)+du(:,timecount); 

                 
                v_t(:,timecount+1)=v_t(:,timecount)+dv(:,timecount); 

                 
                a_t(:,timecount+1)=a_t(:,timecount)+da(:,timecount); 

                 

                 
                count=1; 
                for i=1:1:NumNodes*3  %this loop adds back the 

boundary conditions to u vector 

                     
                    if BCfull(i,1)==ii 

                         
                        

u_t_total(i,timecount+1)=u_t(count,timecount+1); 
                        du_total(i,timecount)=du(count,timecount); 

                         
                        

v_t_total(i,timecount+1)=v_t(count,timecount+1); 
                        dv_total(i,timecount)=dv(count,timecount); 



206 
  

                         
                        

a_t_total(i,timecount+1)=a_t(count,timecount+1); 
                        da_total(i,timecount)=da(count,timecount); 

                         

                         
                        count=count+1; 

                         

                         
                    elseif BCfull(i,1)==0 

                         
                        u_t_total(i,timecount+1)=0; 
                        du_total(i,timecount)=0; 

                         
                        v_t_total(i,timecount+1)=0; 
                        dv_total(i,timecount)=0; 

                         
                        a_t_total(i,timecount+1)=0; 
                        da_total(i,timecount)=0; 

                         

                         
                    end 

                     
                end 

                 
                Finternal_global=[]; 
                Finternal_global=zeros; 

                 
                for i=1:1:NumElem  %Loops over each element for 

internal forces 

                     

                     
                    set=size(kelement(:,:,i),2); 

                     
                    node1=ElementNodes(i,1);  %temporarily stores node 

1 for element i 
                    node2=ElementNodes(i,2);  %temporarily stores node 

2 for element i 
                    nodeclass1=Node_class(node1,1); 
                    nodeclass2=Node_class(node2,1); 

                     

                     
                    du_t_element(:,timecount,i)=[du_total(node1*3-

2,timecount) %creates du for element i 
                        du_total(node1*3-1,timecount) 
                        du_total(node1*3,timecount) 
                        du_total(node2*3-2,timecount) 
                        du_total(node2*3-1,timecount) 
                        du_total(node2*3,timecount)]; 

                     

                     



207 
  

                    dv_t_element(:,timecount,i)=[dv_total(node1*3-

2,timecount) %creates dv for element i 
                        dv_total(node1*3-1,timecount) 
                        dv_total(node1*3,timecount) 
                        dv_total(node2*3-2,timecount) 
                        dv_total(node2*3-1,timecount) 
                        dv_total(node2*3,timecount)]; 

                     

                     
                    da_t_element(:,timecount,i)=[da_total(node1*3-

2,timecount) %creates da for element i 
                        da_total(node1*3-1,timecount) 
                        da_total(node1*3,timecount) 
                        da_total(node2*3-2,timecount) 
                        da_total(node2*3-1,timecount) 
                        da_total(node2*3,timecount)]; 

  

                     
                    u_t_element(:,timecount+1,i)=[u_t_total(node1*3-

2,timecount+1) %creates u for element i 
                        u_t_total(node1*3-1,timecount+1) 
                        u_t_total(node1*3,timecount+1) 
                        u_t_total(node2*3-2,timecount+1) 
                        u_t_total(node2*3-1,timecount+1) 
                        u_t_total(node2*3,timecount+1)]; 

                     

                     
                    v_t_element(:,timecount+1,i)=[v_t_total(node1*3-

2,timecount+1) %creates v for element i 
                        v_t_total(node1*3-1,timecount+1) 
                        v_t_total(node1*3,timecount+1) 
                        v_t_total(node2*3-2,timecount+1) 
                        v_t_total(node2*3-1,timecount+1) 
                        v_t_total(node2*3,timecount+1)]; 

                     
                    a_t_element(:,timecount+1,i)=[a_t_total(node1*3-

2,timecount+1) % creates a for element i 
                        a_t_total(node1*3-1,timecount+1) 
                        a_t_total(node1*3,timecount+1) 
                        a_t_total(node2*3-2,timecount+1) 
                        a_t_total(node2*3-1,timecount+1) 
                        a_t_total(node2*3,timecount+1)]; 

  
                    

dFsElement(:,timecount,i)=kelement(:,:,i)*du_t_element(:,timecount,i); 

                     
                    

FsElement(:,timecount+1,i)=FsElement(:,timecount,i)+dFsElement(:,timec

ount,i); %Spring forces for element i (incremental) 

                     

                     

                     



208 
  

                    moment_left=abs(FsElement(3,timecount+1,i)); 

%These moments were calculated in the first set so the yielded values 

will be above Mp(i) 
                    moment_right=abs(FsElement(6,timecount+1,i)); 

                     

                     
%                     if moment_left>=Mp(i) 
%                          
%                         

FsElement(3,timecount+1,i)=abs(FsElement(3,timecount+1,i))/FsElement(3

,timecount+1,i)*Mp(i); 
%                     end 

  

                     
                    

FdElement_a(:,timecount+1,i)=celement_a(:,:,i)*v_t_element(:,timecount

+1,i);   
                    

FdElement_b(:,timecount+1,i)=celement_b(:,:,i)*v_t_element(:,timecount

+1,i); 
                    

FdElement(:,timecount+1,i)=FdElement_a(:,timecount+1,i)+FdElement_b(:,

timecount+1,i); 
                    

FiElement(:,timecount+1,i)=melement(:,:,i)*a_t_element(:,timecount+1,i

); 
                                        

Finternal(:,timecount+1,i)=FsElement(:,timecount+1,i)+FdElement(:,time

count+1,i)+FiElement(:,timecount+1,i); %Internal forces for element i 

                     
Finternal_global=Finternal_global+transpose(belement(:,:,i))*Finternal

(:,timecount+1,i); 
 

                    moment_right=abs(FsElement(6,timecount+1,i)); 

%again this value will be over Mp(i) if yielded 
                    moment_left=abs(FsElement(3,timecount+1,i)); 

                     
                    if moment_right>=Mp(i) 

                         
                        yieldnodes(node2,timecount+1)=1; 
                        yieldvalues(node2,timecount+1)=moment_right; 

                         
                    else 

                         
                        yieldnodes(node2,timecount+1)=0; 
                        yieldvalues(node2,timecount+1)=0; 

                         
                    end 

                     

                     
                    if nodeclass1=='E' %leftmost node 

                         

                         



209 
  

                        if moment_left>=Mp(i) 

                             
                            yieldnodes(node1,timecount+1)=1; 
                            

yieldvalues(node1,timecount+1)=moment_left; 

                             
                        else 

                             
                            yieldnodes(node1,timecount+1)=0; 
                            yieldvalues(node1,timecount+1)=0; 

                             
                        end 

                         
                    end 

                     

                     
                end 

                 

                 
                Ri(:,timecount+1)=reducero*Finternal_global; 

                 
                Ru(:,timecount+1)=Re(:,timecount+1)-Ri(:,timecount+1); 

                 
                norm_check=norm(Ru(:,timecount+1)); 

                 

                 
            end 

             
            

yield_values_sorted(:,timecount+1)=sort(yieldvalues(:,timecount+1),'de

scend'); 

             
            loop='exit'; 

             
            for i=1:1:NumNodes %if there is a value that isn't scaled 

to Mp, it stays in the loop 

                 
                j=i; %moment check is associated with the left node of 

the element 

                 
                if i==NumNodes 

                     
                    j=i-1; %moment check is associated with right 

moment for last node 

                     
                end 

                 
                if yield_values_sorted(i,timecount+1)~=0 && 

yield_values_sorted(i,timecount+1)~=Mp(j) 

                     
                    loop='stay'; 



210 
  

                     
                end 
            end 

             

             
        end %end of yieldcheck convergence (converges to the correct 

number of yielded nodes 

         
    end %end of yielded='y' section 

     

     
    %% increase timesetep for next timestep 

     
    timecount=timecount+1; 

     
end 

  

 
DOFs=NumNodes*3; 

  
midpoint=(DOFs+1)/2; 

  
figure(1) 

  
subplot(4,1,1) 
plot(t,F_t) 
title('Force function') 
ylabel('Forcing shape with max=1 for scaling') 
grid on 

  
t(timecount+1)=[]; 

  
subplot(4,1,2) 
plot(t,u_t_total(midpoint,:)) 
title('midspan deflection') 
grid on 

  
subplot(4,1,3) 
plot(t,v_t_total(midpoint,:)) 
title('midspan velocity') 
grid on 

  
subplot(4,1,4) 
plot(t,a_t_total(midpoint,:)) 
title('midspan acceleration') 
grid on 

  
F1=Finternal(:,:,1); 
F2=Finternal(:,:,2); 
F3=Finternal(:,:,3); 
F4=Finternal(:,:,4); 

  



211 
  

Fs1=FsElement(:,:,1); 
Fs2=FsElement(:,:,2); 
Fs3=FsElement(:,:,3); 
Fs4=FsElement(:,:,4); 

  
Fd1=FdElement(:,:,1); 
Fd2=FdElement(:,:,2); 
Fd3=FdElement(:,:,3); 
Fd4=FdElement(:,:,4); 

  
Fi1=FiElement(:,:,1); 
Fi2=FiElement(:,:,2); 
Fi3=FiElement(:,:,3); 
Fi4=FiElement(:,:,4); 

  
u1=u_t_element(:,:,1); 
u2=u_t_element(:,:,2); 
u3=u_t_element(:,:,3); 
u4=u_t_element(:,:,4); 

  
v1=v_t_element(:,:,1); 
v2=v_t_element(:,:,2); 
v3=v_t_element(:,:,3); 
v4=v_t_element(:,:,4); 

  
a1=a_t_element(:,:,1); 
a2=a_t_element(:,:,2); 
a3=a_t_element(:,:,3); 
a4=a_t_element(:,:,4); 

  

  
text1='Element '; 

  
text3=' left moment'; 

  
text4=' right moment'; 

 
%figure(2) 

  
% counter=1; 
%  
% for i=1:1:NumElem 
%      
%     text2=num2str(i); 
%      
%     lefttext=strcat(text1,text2,text3); 
%     righttext=strcat(text1,text2,text4); 
%      
%     subplot(NumElem,2,counter) 
%     plot(t,Finternal(3,:,i)); 
%     title(lefttext) 
%     grid on 
%      



212 
  

%      
%     subplot(NumElem,2,counter+1) 
%     plot(t,Finternal(6,:,i)); 
%     title(righttext) 
%     grid on 
%      
%      
%      
%     counter=counter+2; 
%      
% end 

  
spring='spring'; 

  
figure(3) 

  
counter=1; 

  
for i=1:1:NumElem 

     
    text2=num2str(i); 

     
    lefttext=strcat(text1,text2,spring,text3); 
    righttext=strcat(text1,text2,spring,text4); 

     
    subplot(NumElem,2,counter) 
    plot(t,FsElement(3,:,i)); 
    title(lefttext) 
    grid on 

     

     
    subplot(NumElem,2,counter+1) 
    plot(t,FsElement(6,:,i)); 
    title(righttext) 
    grid on 

     
    counter=counter+2; 

     
end 

  
%  
%  
%  
%  
%  
% spring='damping'; 
%  
% figure(4) 
%  
% counter=1; 
%  
% for i=1:1:NumElem 
%      



213 
  

%     text2=num2str(i); 
%      
%     lefttext=strcat(text1,text2,spring,text3); 
%     righttext=strcat(text1,text2,spring,text4); 
%      
%     subplot(NumElem,2,counter) 
%     plot(t,FdElement(3,:,i)); 
%     title(lefttext) 
%     grid on 
%      
%      
%     subplot(NumElem,2,counter+1) 
%     plot(t,FdElement(6,:,i)); 
%     title(righttext) 
%     grid on 
%      
%      
%      
%     counter=counter+2; 
%      
% end 
%  
%  
%  
%  
% spring='inertial'; 
%  
% figure(5) 
%  
% counter=1; 
%  
% for i=1:1:NumElem 
%      
%     text2=num2str(i); 
%      
%     lefttext=strcat(text1,text2,spring,text3); 
%     righttext=strcat(text1,text2,spring,text4); 
%      
%     subplot(NumElem,2,counter) 
%     plot(t,FiElement(3,:,i)); 
%     title(lefttext) 
%     grid on 
%      
%      
%     subplot(NumElem,2,counter+1) 
%     plot(t,FiElement(6,:,i)); 
%     title(righttext) 
%     grid on 
%      
%      
%      
%     counter=counter+2; 
%      
% end 
%  



214 
  

%  
% text3=' left'; 
%  
% text4=' right'; 
%  
% spring='displ'; 
%  
% figure(6) 
%  
% counter=1; 
%  
% for i=1:1:NumElem 
%      
%     text2=num2str(i); 
%      
%     lefttext=strcat(text1,text2,spring,text3); 
%     righttext=strcat(text1,text2,spring,text4); 
%      
%     subplot(NumElem,2,counter) 
%     plot(t,u_t_element(3,:,i)); 
%     title(lefttext) 
%     grid on 
%      
%      
%     subplot(NumElem,2,counter+1) 
%     plot(t,u_t_element(6,:,i)); 
%     title(righttext) 
%     grid on 
%      
%      
%      
%     counter=counter+2; 
%      
% end 
%  
%  
% spring='vel'; 
%  
% figure(7) 
%  
% counter=1; 
%  
% for i=1:1:NumElem 
%      
%     text2=num2str(i); 
%      
%     lefttext=strcat(text1,text2,spring,text3); 
%     righttext=strcat(text1,text2,spring,text4); 
%      
%     subplot(NumElem,2,counter) 
%     plot(t,v_t_element(3,:,i)); 
%     title(lefttext) 
%     grid on 
%      
%      



215 
  

%     subplot(NumElem,2,counter+1) 
%     plot(t,v_t_element(6,:,i)); 
%     title(righttext) 
%     grid on 
%      
%     counter=counter+2; 
%      
% end 
%  
%  
% spring='acc'; 
%  
% figure(8) 
%  
% counter=1; 
%  
% for i=1:1:NumElem 
%      
%     text2=num2str(i); 
%      
%     lefttext=strcat(text1,text2,spring,text3); 
%     righttext=strcat(text1,text2,spring,text4); 
%      
%     subplot(NumElem,2,counter) 
%     plot(t,a_t_element(3,:,i)); 
%     title(lefttext) 
%     grid on 
%      
%      
%     subplot(NumElem,2,counter+1) 
%     plot(t,a_t_element(6,:,i)); 
%     title(righttext) 
%     grid on 
%      
%      
%      
%     counter=counter+2; 
%      
% end 
%  

 
 

 

% text3=' left shear'; 
% 
% text4=' right shear'; 
% 
% figure(3) 
% 
% counter=1; 
% 
% for i=1:1:NumElem 
% 
%     text2=num2str(i); 
% 



216 
  

%     lefttext=strcat(text1,text2,text3); 
%     righttext=strcat(text1,text2,text4); 
% 
%     subplot(NumElem,2,counter) 
%     plot(t,Finternal(2,:,i)); 
%     title(lefttext) 
%     grid on 
% 
% 
%     subplot(NumElem,2,counter+1) 
%     plot(t,Finternal(5,:,i)); 
%     title(righttext) 
%     grid on 
% 
% 
% 
%     counter=counter+2; 
% 
% end 
 

 

t=transpose(t); 
u_t=transpose(u_t); 
Fs2=-transpose(Fs2); 
Fs3=transpose(Fs3); 
Fs4=transpose(Fs4); 

  
a_output(:,1)=t; 
a_output(:,2)=u_t(:,7); 
a_output(:,3)=Fs2(:,6); 
a_output(:,4)=-Fs4(:,6); 

  
%if BC has left fixed end 

  
%  
% a_output(:,1)=t; 
% a_output(:,2)=u_t(:,6); 
% a_output(:,3)=Fs2(:,6); 
% a_output(:,4)=-Fs4(:,6); 

  
% % 
% % % if cantilever 
%  
% a_output(:,1)=t; 
% a_output(:,2)=u_t(:,2); 
% a_output(:,3)=-Fs4(:,6); 
% a_output(:,4)=-Fs4(:,6); 

  
% Fs3=transpose(Fs3); 
% 
% 
% Fs1=transpose(-Fs1); 
% 
% a_outputspr(:,1)=t; 



217 
  

% a_outputspr(:,2)=Fs1(:,3); 
% 
% mcheck=melemento(:,:,1); 

  
aaimpose(1)=c_alpha; 
aaimpose(2)=c_beta; 
aaimpose(3)=axial; 
aaimpose(4)=axial*L(1)*NumElem/A(1)/E(1); 

  

  
min(u_t_total(8,:)); 

 

Input Function 

%% This is the input file. Enter in units of inches, seconds, and kips 

  

  
function [Nodes Node_class ElementNodes ElementProp ElementSec BC 

Force Force_distr, Axial_distr, Moment_distr, analysis, modes, 

lumping, nonstr_mass gamma beta forcecurve del stopt ICu ICv TOL 

rayleigh axial bc_type] = Input 

  

  
%% Input Section 

  
i=sqrt(-1); 

  
% enter type of analysis 
% 1 for static analysis 
% 2 for modal/dynamics analysis 

  
analysis=2; 

  

  
%NR iteration unbalanced load tolerance 

  
TOL=10^-5; 

  

  

  
% If modal analysis: enter number of modes to calculate, otherwise 

enter 
% any. Enter type of mass matrix. otherwise, enter any. 
        % 1: Consistent mass matrix 
        % 2: Particle Lumping (SAP) 
        % 3: Row Summing 
        % 4: HRZ Lumping 

  
modes=1000; 
lumping=2; 



218 
  

type=5; %mbeam type (4  bernoulli, 5 timoshenko) 

  
% If modal analysis: gamma and beta values for newmark time stepping 

  
beta=1/4;  
gamma=1/2; 

  
% If modal analysis, list linear endpoints of force time curve 
% Scale so that largest point is 1 since you will be entering in the 

values 
% of the scaling later 

  
% example: triangle function with 0 to 15k in 0.3 sec and back down 

is: 
%  [0 0 
%   .3 1 
%  .6 0] 

  

  
%enter delta t for timestepping (must be dividable into each 
%segment) 
%Also, enter time to stop analysis (delta t must be dividable) 

     
del=0.0001;  

  

  
ts=.0178; 

  
% forcecurve=[0 0 
%             .01-del 0 
%             .01 1 
%             .01+ts 0 
%             .1 0 ]; 

         

         
        forcecurve=[0 0 
            .0099 0 
            .01 1 
            .01+ts 0 
            .1 0 ]; 

  
% forcecurve=[0 1 
%            ts 0]; 

        
     stopt=.08; 

                

  

  
% enter pinpin, fixpin, fixfix, or cantil 

  

  



219 
  

  
bc_type='pinpin'; 

  

  
midforce=-40; %this gets put into the force vector at midspan (see 

line 211) 
midforce=0; 

  

  

  

  
distr_load=-.45;     % k/in this gets put into the distr load vector 

(see line 258) 
%distr_load=0; 

  

 
axial=0; %enter axial load as proportion of axial cap 

  

     
% Enter initial conditions in node order 
% for nodes with nonzero ICs, list conditions 
% example ICu=[1 5 4 0 
%              6 -2 0 0]; 
% ICu is the displacement initial conditions (node, ux0, uy0, r0) 
% ICv is the velocity initial conditions (node, vx0, vy0, rdot0, 

  

  

  
ICu=[]; 

  
 ICv=[]; 

 
%enter 2 modes followed by damping value as proportion 

  
rayleigh=[1  .02 
          2  .02]; 

  

  

  
%List total length of beam (inches), and number of elements (must be 

even) 

  
ltotal=120; 
nElem=4; %even number 
nNodes=nElem+1; 

  
lElem=ltotal/nElem; 

  

  

  



220 
  

  
 %{  
for below,  

  
material:   
            1: 50 ksi steel with 1.05 static increase, 1.19 dynamic 
            increase 
            2. Unit Material(E=1, G=1, density=1, fy=1 

  

            
type:  
           1:  bar (1d or 2d) (Can only have constant distributed 

loads) 

            
           4: Bernoulli Beam with decoupled axial (Can only have 

constant distributed loads) 
           5: Timoshenko Beam with decoupled axial (Can only have 

constant distributed loads) 
           6: Polynomial Finite Beam (Can have any polynomial 

distributed load 

        
% order (for type 6 elements only, if not type 6, enter 0 here): 

             
            1: linear 
            2: quadratic 
            3: cubic  
             etc... 

                 
       %}        

           

      
matrl=1; 
tp=type; 
ord=0; 

  

  
%Section info  

  
Area=3.54; 
Inertia=53.8; 
shear_area=9.87*.19; 
Z=12.6; 
d_l=9.87; 
b_l=3.96; 
f_l=0.21; 
w_l=0.19; 

  

  

  

  

 

  



221 
  

%% Node Looping 

  
for n=1:1:nNodes 

     
    Nodes(n,1)=(n-1)*lElem;  %Creates coordinates of each node 

(constrained to a beam) 
    Nodes(n,2)=0; 

     

     
    if n==1 || n==nNodes   %Labels node as exterior or interior 

         
        Node_class(n,1)='E';  

         
    else 

     
        Node_class(n,1)='I'; 
    end 

     

     

     
end 

  

 

  
%% Element Looping 

           

 
for n=1:1:nElem 

     

     
    ElementNodes(n,1)=n; %Connectivity info (orders nodes left to 

right) 
    ElementNodes(n,2)=n+1; 

     

     
    ElementProp(n,1)=matrl; 
    ElementProp(n,2)=tp; 
    ElementProp(n,3)=ord; 

     
    ElementSec(n,1)=Area; 
    ElementSec(n,2)=Inertia; 
    ElementSec(n,3)=shear_area; 
    ElementSec(n,4)=Z; 
    ElementSec(n,5)=d_l; 
    ElementSec(n,6)=b_l; 
    ElementSec(n,7)=f_l; 
    ElementSec(n,8)=w_l; 

     

  
end 

 



222 
  

%% More Direct Inputs 

         

         
%list boundary conditions in node order (node, BCx, BCy, BCrot)         
%put 0 for constrained, i for free,      

  

  
if bc_type=='pinpin' 

     
    BC=[1 i 0 i 
        nNodes 0 0 i]; 

     
elseif bc_type=='fixpin' 

     
    BC=[1 i 0 i 
        nNodes 0 0 0]; 

     
elseif bc_type=='fixfix' 

     
    BC=[1 i 0 0 
        nNodes 0 0 0]; 

     
elseif bc_type=='cantil' 

     
    BC=[1 i i i  
        nNodes 0 0 0]; 

     
end 

  

  
%list applied nodal forces in order by node (node, x force, y force, 

moment)   

  

             
Force=[ 

     
];             

             

  
Force=     [(1+nNodes)/2 0 midforce 0   %for point load at midspan 
               ]; 

  

             

            
           if bc_type=='cantil' 

                
               Force=[]; 

                
               Force=[1 0 midforce 0];           

                



223 
  

                
           end 

  

             
%If modal analysis: Enter non-structural masses to nodes by listing 

nodes in order, then mass in x, y, and rotation 
% (node, x-direction mass, y-direction mass, rotational inertia) 

  
nonstr_mass= [1 1.619171e-4 1.619171e-4 0 
              2 3.238342e-4 3.238342e-4 0 
              3 3.238342e-4 3.238342e-4 0 
              4 3.238342e-4 3.238342e-4 0 
              5 1.619171e-4 1.619171e-4 0 

     
                    ]; 

                                         
nonstr_mass=[]; 

   
%list all distributed forces on elements in order by element(element, 

values of constants)                                 
%for values of constants list a's , ao + a1x + a2x^2 + .....)                                 

           

     
Axial_distr=     [ 

                     
                     ];   

                                
%list all distributed forces on elements in order by element(element, 

values of constants)                                  
%for values of constants list a's , ao + a1x + a2x^2 + .....)          

  
Force_distr=     [ 

     
                    ];   

                               
for nn=1:1:nElem 

   
    Force_distr(nn,1)=nn; 
    Force_distr(nn,2)=distr_load; 

     
end 

  

  

  

                 

                 

                 

                                 

                                 

  



224 
  

%list all distributed forces on elements in order by element(element, 

values of constants)                                  
%for values of constants list a's , ao + a1x + a2x^2 + .....)                               

                                  
Moment_distr=     [ 

                    

                     
                   ];   

                                 

                                                                                                   
end 

  

                     

Lengths Function 

%% This function calculates the length and angle for each element sent 

to it 

  
function [ang Length] = Lengths(x1, x2, y1, y2) 

  

  
    Lx=x2-x1; % x component of length 
    Ly=y2-y1; % y component of length 

     
    ang=atan(Ly/Lx); %computes angle 

     
    Length=sqrt(Lx^2+Ly^2);  %computes length 

 

  
end 

 

Force Time History Function 

%% This function creates force vs time lines for dynamic analysis 

  

  

  
function [F_t t steps] = Forcetime(forcecurve, del, stopt)   

  
ii=sqrt(-1); 

  
steps=stopt/del; 

  
F_t(1)=forcecurve(1,2); 

  
t(1)=forcecurve(1,1); 

  
curvecount=1.0; 



225 
  

  
siz=size(forcecurve,1); 

  
forcecurve(siz+1,:)=ii;  %adds row of zeros at end 

  

  
for i=1:1:steps+1 

     

     
    t(i+1)=t(i)+del; 

     

     
    if forcecurve(curvecount+1,1)~=ii 

          

     
        if t(i+1)>=real(forcecurve(curvecount+1,1))+10^-13 

         

         
            curvecount=curvecount+1; 

         
        end 

         
        slope=(forcecurve(curvecount+1,2)-

forcecurve(curvecount,2))/(forcecurve(curvecount+1,1)-

forcecurve(curvecount,1)); 
        F_t(i+1)=F_t(i)+del*slope; 
    end 

     
    if forcecurve(curvecount+1,1)==ii 

         
        F_t(i+1)=0; 

         
    end 

     
end 

  
t=real(t); 
F_t=real(F_t); 

 

  
end 

 

Connectivity Function 

%% this function calculates the b matrix for each element 

(connectivity) 

  

 
function [b_e] = connectivity(Nodes,NumNodes) 



226 
  

      

         
 b_e=zeros(6,NumNodes*3);  %first fills with zeros of size, 6 by 

Nodes*3 

   
for i=1:1:NumNodes  %loops over the nodes 

     
        if Nodes(1,1)==i  %if element node 1 is global node of 

iteration 

             
            b_e(1,3*i-2)=1;  
            b_e(2,3*i-1)=1; 
            b_e(3,3*i)=1; 

             

             
        end 

         
        if Nodes(1,2)==i %if element node 2 is global node of 

iteration 

             
            b_e(4,3*i-2)=1; 
            b_e(5,3*i-1)=1; 
            b_e(6,3*i)=1; 

             
        end 

   

 
end 

 

Data Function 

%% This function contains all the data for materials 

  
function [EM GM DENS Ar Ar_sh Inertia Fy Mpl] = Data(Mat_num, 

Type_num, Area, Inert, Flange, Z)   

  

  
% list of materials E, G, density, fy 

  
materials=[29000 29000/2/(1+.29) .284/386.0886/1000 50*1.05*1.19 %ksi, 

ksi, kip*s^2/in^3, ksi 
           1 1 1 1]; 

  

  
EM=materials(Mat_num,1); %assigns E to element sent to function 
GM=materials(Mat_num,2); %assigns G to element sent to function 
DENS=materials(Mat_num,3); %assigns density to element sent to 

function 
Fy=materials(Mat_num,4); 



227 
  

  
Ar=Area;  

  
Ar_sh=Flange; %Shear area 

  

  
Inertia=Inert; 

  
Mpl=Fy*Z; 

  
end 

 

Elemental NBC Function 

%% This function calculates N, B, and C matrices for each element sent 

to it 
 

function [N_e B_e C_e N_e_r B_e_r] = NBC_element(Length, EM, Ar, 

Ar_sh, GM, Inertia, Type_num, order)  

  
E=EM; 
L=Length; 
A=Ar; 
As=Ar_sh; 
G=GM; 
I=Inertia; 

  
syms x 
z=2/L*x-1;  %zeta for shape functions 

  
%{ 

  
if Type_num==1 

     
    N=[.5*(1-z) 
        .5*(1+z)]; 

     
    N_e=[N(1,1) 0 0 N(2,1) 0 0 
          0      0 0  0     0 0 
          0      0 0  0     0 0]; 

       

       
      B_e=diff(N_e); 

       
      C_e=[E*A 0 0 
          0 As*G 0 
          0 0  E*I]; 

       

       

       



228 
  

elseif Type_num==4 

     
    N=[1/4*(1-z)^2*(2+z)      
        1/4*(1-z)^2*(z+1) 
        1/4*(1+z)^2*(2-z) 
        1/4*(1+z)^2*(z-1)]; 

     
    Nx=[.5*(1-z) 
        .5*(1+z)]; 

  
    N_e=[Nx(1,1) 0 0 Nx(2,1) 0 0 
         0 N(1,1) L/2*N(2,1) 0 N(3,1) L/2*N(4,1) 
         0 diff(N(1,1),x) L/2*diff(N(2,1),x) 0 diff(N(3,1),x) 

L/2*diff(N(4,1),x)]; 

      
     B_e=diff(N_e,x); 

      
     B_e(2,:)=zeros; 

      
     C_e=[E*A 0 0 
         0 0 0  
         0 0 E*I]; 

      
elseif Type_num==5 

     

     
    N=[.5*(1-z) 
        .5*(1+z)]; 

     
    N_e=[N(1,1)     0       0      N(2,1)     0       0 
             0  N(1,1)      0          0  N(2,1)      0  
             0      0   N(1,1)         0      0   N(2,1)]; 

          

          

          
    B_e=diff(N_e); 
    B_e(2,3)=-N(1,1); 
    B_e(2,6)=-N(2,1); 

     

     

     
    C_e=[E*A 0 0 
          0 As*G 0 
          0 0  E*I]; 

     

     
%} 

  
    n=order+1; 

     
    space=2/order; 



229 
  

     
    zee(1)=-1; 

     
    for i=2:1:n 

         
        zee(i)=zee(i-1)+space; 

         
    end 

     

     

     
    for k=1:1:n  %calculates lagrange functions 

         
        num1=1; 

         
        for i=1:1:k-1 

         
            num1=num1*(zee(i)-z); 

             
        end 

         
        num2=1; 

         
        for i=k+1:1:n 

         
            num2=num2*(zee(i)-z); 

             
        end 

         
        den1=1; 

         
        for i=1:1:k-1 

             
            den1=den1*(zee(i)-zee(k)); 

             
        end 

         
        den2=1; 

         
        for i=k+1:1:n 

             
            den2=den2*(zee(i)-zee(k)); 

             
        end 

         
        N(k,1)=num1*num2/(den1*den2); 

         
    end 

         

    



230 
  

    count=1; 

     

     
    for i=1:3:order*3+1 

         
        N_e(1,i)=N(count,1); 
        N_e(2,i+1)=N(count,1); 
        N_e(3,i+2)=N(count,1); 

         
        count=count+1; 

         
    end 

     

     
    %reorders N matrix so that external nodes are first 2 nodes 

   

     
    for i=1:1:3 

         

             
            N_e_r(i,i)=N_e(i,i); 

             
    end 

         

  
    for i=1:1:3 

         
        N_e_r(i,3+i)=N_e(i, 3*(order)+i); 

         
    end 

     

     

     
    for i=4:3:order*3 

         
        N_e_r(1,i+3)=N_e(1,i); 
        N_e_r(2,i+4)=N_e(2,i+1); 
        N_e_r(3,i+5)=N_e(3,i+2); 

         
    end 

     

    

  

     
    B_e=diff(N_e,x); 

    

     
    B_e_r=diff(N_e_r,x); 

     

     



231 
  

     
    for i=1:3:order*3+1 %adds the -1 part for B matrices 

     
        B_e(2,i+2)=-N_e(1,i); 
        B_e_r(2,i+2)=-N_e_r(1,i); 

         
    end 

         
    C_e=[E*A 0 0 
          0 As*G 0 
          0 0  E*I]; 

     
end 

  

 

K_Element Function (Elemental Stiffness and Mass Matrices) 

%% This calculates k matrix (and mass if modal) for each element sent 

to it 

  

  
function [k_e m_e r kms kss] = k_element(Length, EM, Ar, Ar_sh, GM, 

Inertia, Type_num, B_e_r, C_e, N_e_r, lumping, analysis, DENS, 

Finternal, Mp, nodeclass1, nodeclass2) %Stiffness Matrix Function 

  
            L=Length; 
            E=EM; 
            A=Ar; 
            As=Ar_sh; 
            G=GM; 
            I=Inertia; 
            type=Type_num; 
            density=DENS; 

  

  

  
if type~=6  %If not polynomial finite element 

     
    if analysis==1 %if not modal, set mass equal to 0 

         
        m_e=0; 
    end 

     

  

  
r=12*E*I/L^2/G/As; %rho for timoshenko 
beta=r/12; %beta for timoshenko mass 

  

  



232 
  

%block that defines the type of stiffness matrix 
    if type==1   %if bar element 

         
        I=0; 
        r=0; 

         

  
    elseif type==4 %if bernoulli element 

         
        r=0; 

         
    end 

  

     
    k_e1=E*A/L*[1 -1;-1,1];  %element stiffness for bar 

     
    if analysis==2 %if modal, element mass for bar 

         
        mass_e=density*L*A; 

         
        m_e1=mass_e/6*[2 1; 1 2]; 

         
        if lumping==2 

             
                    m_e_new=zeros; 

             
                    for i=[1 2] 

             
                        m_e_new(i,i)=density*L*A/2; 

             
                    end 

                     
                    m_e1=m_e_new; 

             

             
        end 

         
        if type==1 %if bar, zeros mass so following calcs are zero for 

bending 

             
            mass_e=0; 
        end 

         
    end 

     
    moment_left=Finternal(3,1); 
    moment_right=Finternal(6,1);     

  

  
%initially sets element stiffness as having no hinges 



233 
  

     
    k_e2=E*I/L^3/(1+r)*[12    6*L        -12    6*L %element stiffness 

for beam 
                        6*L   L^2*(4+r)  -6*L   L^2*(2-r) 
                        -12   -6*L       12     -6*L 
                        6*L   L^2*(2-r)  -6*L   L^2*(4+r)]; 

     

                     
                if nodeclass2=='I'  %any member except rightmost 

member 

  

                     
                        if abs(moment_right)>=Mp %Hinge at right node 

                             

                             
                            k_e2=Condense(k_e2); 

                            

                             

      

                          
                        end 

                         

                         
                end 

     

     
      if analysis==2 %if modal, element mass for beam 

           

           
          if type==5 %if timoshenko element 

               
              comp1=[13/35+7/10*r+1/3*r^2          

(11/210+11/120*r+1/24*r^2)*L    9/70+3/10*r+1/6*r^2            -

(13/420+3/40*r+1/24*r^2)*L 
                     (11/210+11/120*r+1/24*r^2)*L  

(1/105+1/60*r+1/120*r^2)*L^2    (13/420+3/40*r+1/24*r^2)*L     -

(1/140+1/60*r+1/120*r^2)*L^2 
                     9/70+3/10*r+1/6*r^2           

(13/420+3/40*r+1/24*r^2)*L      13/35+7/10*r+1/3*r^2           -

(11/210+11/120*r+1/24*r^2)*L 
                     -(13/420+3/40*r+1/24*r^2)*L   -

(1/140+1/60*r+1/120*r^2)*L^2   -(11/210+11/120*r+1/24*r^2)*L  

(1/105+1/60*r+1/120*r^2)*L^2]; 

               
              radius=sqrt(I/A);    

                  
              comp2=(radius/L)^2*[6/5              (1/10+1/2*r)*L              

-6/5               (1/10-1/2*r)*L 
                                  (1/10+1/2*r)*L   

(2/15+1/6*r+1/3*r^2)*L^2    (-1/10+1/2*r)*L    (-1/30-

1/6*r+1/6*r^2)*L^2 



234 
  

                                  -6/5             (-1/10+1/2*r)*L             

6/5                (-1/10+1/2*r)*L 
                                  (1/10-1/2*r)*L   (-1/30-

1/6*r+1/6*r^2)*L^2   (-1/10+1/2*r)*L    (2/15+1/6*r+1/3*r^2)*L^2]; 

               
              m_e2=density*A*L/(1+r)^2*(comp1+comp2); 

           

                             
          elseif type==4 %if bernoulli element 

                          
              beta=0; 

               
              m_e2=mass_e*[48*beta^2+42/5*beta+13/35 -(-6*beta^2-

11/10*beta-11/210)*L 24*beta^2+18/5*beta+9/70 -

(6*beta^2+9/10*beta+13/420)*L 
                               -(-6*beta^2-11/10*beta-11/210)*L 

(6/5*beta^2+1/5*beta+1/105)*L^2 -(-6*beta^2-9/10*beta-13/420)*L (-

6/5*beta^2-1/5*beta-1/140)*L^2 
                               24*beta^2+18/5*beta+9/70 -(-6*beta^2-

9/10*beta-13/420)*L 48*beta^2+42/5*beta+13/35 -

(6*beta^2+11/10*beta+11/210)*L 
                               -(6*beta^2+9/10*beta+13/420)*L (-

6/5*beta^2-1/5*beta-1/140)*L^2 -(6*beta^2+11/10*beta+11/210)*L 

(6/5*beta^2+1/5*beta+1/105)*L^2]; 

               
          end 

           
          if lumping==2 

               

               
              for i=[1 3] %fills translationals 

                   
                  m_e_new(i,i)=density*L*A/2; 

                   
              end 

               
              for i=[2 4] %fills rotationals 

                   
                  m_e_new(i,i)=density*L*A*L^2/24; 

                   
              end 

               
              m_e2=m_e_new; 

               

               

               

               
          end 

           
          if nodeclass2=='I'  %any member except rightmost member 

               



235 
  

               
              if abs(moment_right)>=Mp %Hinge at right node 

                   

                   
                  m_e2=Condense(m_e2); 

                   
              end 

               

               
          end 

           

                     
      end 

       
       k_e(2,:)=k_e2(1,:);  %shifting the k_e2 matrix with zeros in 

axial spots 
       k_e(3,:)=k_e2(2,:); 
       k_e(5,:)=k_e2(3,:); 
       k_e(6,:)=k_e2(4,:); 
       k_e(4,:)=zeros; 
       k_e(1,:)=zeros; 

   

         
       k_e(:,6)=k_e(:,4); 
       k_e(:,5)=k_e(:,3); 
       k_e(:,4)=zeros; 
       k_e(:,3)=k_e(:,2); 
       k_e(:,2)=k_e(:,1); 
       k_e(:,1)=zeros; 

        

  

        
       if analysis==2 %if modal, shifting the m_e2 matrix with zeros 

in axial spots 

            
        m_e(2,:)=m_e2(1,:);  
        m_e(3,:)=m_e2(2,:); 
        m_e(5,:)=m_e2(3,:); 
        m_e(6,:)=m_e2(4,:); 
        m_e(4,:)=zeros; 
        m_e(1,:)=zeros; 

   

         
        m_e(:,6)=m_e(:,4); 
        m_e(:,5)=m_e(:,3); 
        m_e(:,4)=zeros; 
        m_e(:,3)=m_e(:,2); 
        m_e(:,2)=m_e(:,1); 
        m_e(:,1)=zeros; 

            
       end 

         



236 
  

      
      for i=[1,4]  %fills stiffness matrix for axial components 

           
          for j=[1,4] 

               
              k_e(i,j)=k_e1(sqrt(i),sqrt(j)); 

  

               
              if analysis==2 %if modal 

                   
                  m_e(i,j)=m_e1(sqrt(i),sqrt(j)); 

                   
              end 

              

          
          end 

           
      end 

  

        
      kms=0; 
      kss=0; 

          

       
elseif type==6 %if polynomial finite element 

     
    if analysis==1 %if not modal, set mass equal to 0 

         
        m_e=0; 
    end 

  

     
        r=0; 
        syms x 

  
        indef=int(transpose(B_e_r)*C_e*B_e_r); 

         
        smaller=subs(indef,x,0); 

         
        larger=subs(indef,x,L); 

     
        k_e=larger-smaller; 

         
        k_e=double(k_e); 

         
        if analysis==2 %if modal 

             
            sizeM=size(N_e_r,2); 

                  

             



237 
  

            for i=1:3:sizeM-2 

                 
                N_e_m(i,1)=N_e_r(1,i); 
                N_e_m(i+1,1)=N_e_r(2,i+1); 
                N_e_m(i+2,1)=N_e_r(3,i+2); 

               

                 
            end 

             

        
            indefM=int(N_e_m*transpose(N_e_m)); 

            
            smallerM=subs(indefM,x,0); 

             
            largerM=subs(indefM,x,L); 

    

             
            m_e=DENS*A*(largerM-smallerM) 
        end 

        
        sizek=size(k_e,1); 

      
       if sizek>6 
 

        %static condensation to get rid of internal nodes 

        
        for i=1:1:6 % loop for kmm matrix 

             
            for j=1:1:6 

                 
                kmm(i,j)=k_e(i,j); 

                 
            end 

             
        end 

        

         
        for i=1:1:sizek-6 %loop for kss matrix 

             
            for j=1:1:sizek-6 

                 
                kss(i,j)=k_e(i+6,j+6); 

                 
                if analysis==2 

                     
                    mss(i,j)=m_e(i+6,j+6); 

                     
                end 

                 
            end 



238 
  

            
        end 

         

         
        for i=1:1:sizek-6 %loop for ksm matrix 

             
            for j=1:1:6 

                 
                ksm(i,j)=k_e(i+6,j); 

                 
                if analysis==2 

                     
                    msm(i,j)=m_e(i+6,j); 

                     
                end 

                 
            end 

            
        end 

          
        kms=transpose(ksm); 

         
        k_e=kmm-kms*inv(kss)*ksm; 

         
        if analysis==2 

             
            mbot=-inv(mss)*msm; 

             
            sizembot=size(mbot,2); 

             
            Ident=eye(sizembot); 

             
            TransfM=vertcat(Ident,mbot); 

             
            rows0=size(TransfM,1); 

             
            cols0=size(mbot,2); 

             
            for i=cols0+1:1:rows0 

                 
                TransfM(:,i)=0; 

                 
            end 

           

             
            m_e=transpose(TransfM)*m_e*TransfM; 

             
        end 

        

         



239 
  

       else 

            
           kms=0; 
           kss=0; 

         
       end 

         

     
end 

  

  

 
end 

 

K_geometric Function (Geometric Stiffnes Matrices) 

%% This calculates k matrix (and mass if modal) for each element sent 

to it 

  

  
function [k_g] = k_geom(L,P,r) %Stiffness Matrix Function 

  

  

  
k_g=-P/L/(1+r)^2*[1 0            0                           -1 0           

0                                           %geometric stiffness 
                  0 6/5+2*r+r^2  L/10                        0 -6/5-

2*r-r^2 L/10 
                  0 L/10         2*L^2/15+L^2*r/6+L^2*r^2/12 0 -L/10        

-L^2/30-L^2*r/6-L^2*r^2/12 
                  -1 0            0                           1 0            

0 
                  0 -6/5-2*r-r^2 -L/10                       0 

6/5+2*r+r^2  -L/10 
                  0 L/10         -L^2/30-L^2*r/6-L^2*r^2/12  0 -L/10        

2*L^2/15+L^2*r/6+L^2*r^2/12]; 

  

  

  

  

  

  

  

  

  
end 

  

 



240 
  

G_Element Function (Equivalent Nodal Loads) 

%% This function calculates g for each element 

  

  
function [g_e] = g_element(Length, degree1, degree2, degree3, 

axial_nodal, forces_nodal, moment_nodal, N_e_r, Type_num, r, kms, kss, 

Finternal, Mp, nodeclass1, nodeclass2)  %Equivalent Load Function 

  

  
L=Length; 

   

  
Pbeam=forces_nodal(1,2); 
Pbar=axial_nodal(1,2); 
Pmoment=moment_nodal(1,2); 

  

 
Loadvect=[Pbar 
    Pbeam 
    Pmoment]; 

  

 
if Type_num==6 

     

     
    g=int(transpose(N_e_r)*Loadvect,x); 

     
    smaller=subs(g,x,0); 

     
    larger=subs(g,x,L); 

     
    g_e=larger-smaller; 

     
    g_e=double(g_e); 

     
    sizeg=size(g_e,1); 

     
    if sizeg>6 

         

         
        %static condensation to get rid of internal nodes 

         
        for i=1:1:6 %loop for gm vector 

             
            gm(i,1)=g_e(i,1); 

             
        end 

         
        for i=1:1:sizeg-6 %loop for gs vector 



241 
  

             
            gs(i,1)=g_e(i+6,1); 

             
        end 

         
        g_e=gm-kms*inv(kss)*gs; 

         
    end 
 

else 

     
    moment_left=Finternal(3,1); 
    moment_right=Finternal(6,1); 

     
    %%initially sets equivalent load vector as having no hinges 

     
    a=[0 0 
        -L/2 1/(1+r) 
        -L^2/12 -L*r/2/(1+r) 
        0 0 
        -L/2 -1/(1+r) 
        L^2/12 -L*r/2/(1+r)]; 

     
    b=[Pbeam 
        Pmoment]; 

     
    g_e=-a*b; 

     
    if abs(moment_right)>=Mp %Hinge at right node 

         

         

         
        a=[0 0 
            -5*L/8 1/(1+r) 
            -L^2/8 -L*r/2/(1+r) 
            0 0 
            -3*L/8 -1/(1+r) 
            0 -L*r/2/(1+r)]; 
        % 

         
        a=[0 0 
            -7*L/12 1/(1+r) 
            -L^2/12 -L*r/2/(1+r) 
            0 0 
            -5*L/12 -1/(1+r) 
            0 -L*r/2/(1+r)]; 
        % % 

         
        % 

         

         
        b=[Pbeam 



242 
  

            Pmoment]; 

         
        g_e=-a*b; 

         
    end 

     
    if nodeclass1=='E' 

         
        if abs(moment_left)>=Mp  %hinge at leftmost node 

             
            a=[0 0 
                -3*L/8 1/(1+r) 
                0 -L*r/2/(1+r) 
                0 0 
                -5*L/8 -1/(1+r) 
                L^2/8 -L*r/2/(1+r)]; 

             
            a=[0 0 
                -5*L/12 1/(1+r) 
                0 -L*r/2/(1+r) 
                0 0 
                -7*L/12 -1/(1+r) 
                L^2/12 -L*r/2/(1+r)]; 
            % % 
            % 
            % 
            % 
            % % 
            % 

             
            b=[Pbeam 
                Pmoment]; 

             
            g_e=-a*b; 

             
        end 
    end 

     

     

     
    g_e(1,1)=Pbar*L/2; 

     
    g_e(4,1)=Pbar*L/2; 

     
end 

  

  
end 

 

Damping Function 



243 
  

%% This function creates Rayleigh Damping Matrix 

  
function [c_matrix_alpha c_matrix_beta] = Damping(kglobal_BC2, 

mglobal_BC2, c_alpha, c_beta, damp_switch)   

  

  

  
m=mglobal_BC2; 

  
k=kglobal_BC2; 

  
a=c_alpha; 

  
b=c_beta; 

  
c_matrix_alpha=m*a; 
c_matrix_beta=k*b*damp_switch; 

  

  
end 

 

Condense Function (Static Condensation for Right Rotation) 

%% This function condenses the right rotation out of the matrix 

  

  
function [ksend Tr] = Condense(k)   

  

 
for i=1:1:5 

     
    kab(i,1)=k(i,6); 
end 

  
kbb=k(6,6); 

  
kinput=-kbb^-1*transpose(kab); 

  
Id=[1 0 0 0 0;0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 1]; 

  
col1=vertcat(Id,kinput); 

  
col2=[0;0;0;0;0;0]; 

  
T=horzcat(col1,col2); 

  
ksend=transpose(T)*k*T; 

  
Tr=kinput; 



244 
  

  

  
end 

 

Condense Left Function (Static Condensation for Left Rotation) 

%% This function condenses the right rotation out of the matrix 

  
function [ksend Tr] = Condenseleft(k)   

  

  

  
for i=1:1:5 

     
    kab(i,1)=k(i,6); 
end 

  
kbb=k(6,6); 

  

  
kinput=-kbb^-1*transpose(kab); 

  
Id=[1 0 0 0 0;0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 1]; 

  
col1=vertcat(Id,kinput); 

  
col2=[0;0;0;0;0;0]; 

  
T=horzcat(col1,col2); 

  
kcond=transpose(T)*k*T; 

  

  
kint=kcond; 

  
kint(:,3)=kcond(:,6); 
kint(:,6)=kcond(:,3); 

  
kint2=kint; 

  
kint2(3,:)=kint(6,:); 
kint2(6,:)=kint(3,:); 

  

  
ksend=kint2; 

  

  

  



245 
  

Tr=kinput; 

  

  
end 

 

  



246 
  

Appendix D: MDOF Solver Verifications (Time-History Plots) 

All verifications use 15 ft Length, 4 Elements, W10X12, 2% damping in first two modes 

unless specified otherwise 

Pinned-Pinned Point Load (17 k in 17.8 ms) 40% Axial Capacity Applied 

 
 



247 
  

Pinned-Pinned Point Load (30 k in 17.8 ms) 20% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



248 
  

Pinned-Pinned Uniform Load (0.25 k/in in 17.8 ms) 40% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



249 
  

Pinned-Pinned Uniform Load (0.4 k/in in 17.8 ms) 20% Axial Capacity Applied 

 

 
 
Large deviation in deflection curve (7%) likely due to poorly adjusted yield stress in SAP2000, 
causing a smaller reduced plastic moment capacity 
 
 
 
 
 
 
 
 
 

 

 

 

 



250 
  

Fixed-Pinned Point Load (25 k in 17.8 ms) 40% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



251 
  

Fixed-Pinned Point Load (37.5 k in 17.8 ms) 20% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



252 
  

Fixed-Pinned Uniform Load (0.35 k/in in 17.8 ms) 40% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



253 
  

Fixed-Pinned Uniform Load (0.6 k/in in 17.8 ms) 20% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



254 
  

Fixed-Fixed Point Load (30 k in 17.8 ms) 40% Axial Capacity Applied 

 

 

 

 

 

 

 

 

 

 

 



255 
  

Fixed-Fixed Point Load (40 k in 17.8 ms) 20% Axial Capacity Applied 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 



256 
  

Fixed-Fixed Uniform Load (0.45 k/in in 17.8 ms) 40% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



257 
  

Fixed-Fixed Uniform Load (0.7 k/in in 17.8 ms) 20% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



258 
  

Cantilever Point Load (3 k in 17.8 ms) 40% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



259 
  

Cantilever Point Load (6 k in 17.8 ms) 20% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



260 
  

Cantilever Uniform Load (0.06 k/in in 17.8 ms) 40% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



261 
  

Cantilever Uniform Load (0.125 k/in in 17.8 ms) 20% Axial Capacity Applied 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



262 
  

Pinned-Pinned Uniform Load (0.45 k/in in 17.8 ms) with Added Mass 10X Self Weight, 

α=0 β=0.0000002 (damping) 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



263 
  

Cantilever Point Load (20 k in 17.8 ms) with Added Mass 10X Self Weight 

α=0 β=0.0000002 (damping) 

 

 

 
  



264 
  

Appendix E: First Data Set Plots 

Various Sections With 2% Damping in First and Second Modes 

 

W14X48 Section 

KL factor 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

100

150

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24
-50

0

50

100

150

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24
-50

0

50

100

150

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



265 
  

SDOF-Bernoulli 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



266 
  

SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



267 
  

Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



268 
  

W14X53: 

KL factor 

 

 

 

 

 

 

 

 

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



269 
  

SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



270 
  

SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



271 
  

Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



272 
  

W14X61 

KL Factor 

 

 

 

 

 

 

 

 

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



273 
  

SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



274 
  

SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



275 
  

Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



276 
  

W14X82 

KL Factor 

 

 

 

 

 

 

 

 

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



277 
  

SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



278 
  

SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



279 
  

Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



280 
  

W14X109 

KL Factor 

 

 

 

 

 

 

 

 

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

4 6 8 10 12 14 16 18 20 22 24

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



281 
  

SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



282 
  

SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



283 
  

Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



284 
  

W14X132 

KL Factor 

 

 

 

 

 

 

 

 

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



285 
  

SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



286 
  

SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



287 
  

Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



288 
  

W14X132 

KL Factor 

 

 

 

 

 

 

 

 

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



289 
  

SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



290 
  

SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



291 
  

Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



292 
  

W14X145 

KL Factor 

 

 

 

 

 

 

 

 

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



293 
  

SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



294 
  

SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



295 
  

Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



296 
  

W14X257 

KL Factor 

 

 

 

 

 

 

 

 

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15psf

40psf

81.25psf

0 5 10 15 20 25

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15psf

40psf

81.25psf



297 
  

SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



298 
  

SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



299 
  

Bernoulli Timoshenko 

 

 

 

 

 

  

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf

0 5 10 15 20 25
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Timoshenko-Bernoulli Deflection

 

 

0 axial 15 psf

0 axial 40 psf

0 axial 81.25 psf

0.2 axial 15 psf

0.2 axial 40 psf

0.2 axial 81.25 psf

0.4 axial 15 psf

0.4 axial 40 psf

0.4 axial 81.25 psf



300 
  

 

Appendix F: Second Data Set Plots 

W14X109 With 2% Damping in First and Second Modes 

KL factor  

 

 

 

 

 

 

2 4 6 8 10 12 14 16
-50

0

50

100

150

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Pinpin KL factor

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-50

0

50

100

150

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixpin KL factor

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-50

0

50

100

150

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

tio
n
 (

%
)

Fixfix KL factor

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



301 
  

Pinned-Pinned SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-100

-50

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



302 
  

Pinned-Pinned SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-50

0

50

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



303 
  

Pinned-Pinned Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
0

50

100

150

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Bernoulli-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
0

50

100

150

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Bernoulli-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
0

50

100

150

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Pinpin Bernoulli-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



304 
  

Fixed-Pinned SDOF Bernoulli  

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
-60

-40

-20

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-60

-40

-20

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-60

-40

-20

0

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



305 
  

Fixed-Pinned SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16

-20

0

20

40

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

-20

0

20

40

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

-20

0

20

40

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



306 
  

Fixed-Pinned Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Bernoulli-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Bernoulli-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
0

50

100

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixpin Bernoulli-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



307 
  

Fixed-Fixed SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
-40

-20

0

20

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-40

-20

0

20

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

4 6 8 10 12 14 16
-40

-20

0

20

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



308 
  

Fixed-Fixed SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16

-20

0

20

40

60

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

-20

0

20

40

60

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

-20

0

20

40

60

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



309 
  

Fixed-Fixed Bernoulli Timoshenko 

 

 

 

 

 

 

 

  

2 4 6 8 10 12 14 16
0

20

40

60

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Bernoulli-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
0

20

40

60

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Bernoulli-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

4 6 8 10 12 14 16
0

20

40

60

Z (ft/lb(1/3))M
a
x
 d

e
fle

c
tio

n
 d

e
v
ia

tio
n
 (

%
)

Fixfix Bernoulli-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



310 
  

Appendix G: Third Data Set Plots 

W14X109 With 2% Damping in First and Last Modes 

KL factor 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin KL factor

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin KL factor

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

0

100

200

Z (ft/lb(1/3))

K
L
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix KL factor

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



311 
  

Pinned-Pinned SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
-20

0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin SDOF-Bernoulli Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



312 
  

Pinned-Pinned SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16

0

50

100

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

0

50

100

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

0

50

100

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin SDOF-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



313 
  

Pinned-Pinned Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
-20

0

20

40

60

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin Bernoulli-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

60

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin Bernoulli-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

60

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Pinpin Bernoulli-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



314 
  

Fixed-Pinned SDOF Bernoulli 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16

-20

0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

-20

0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

-20

0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin SDOF-Bernoulli Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



315 
  

Fixed-Pinned SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16

0

50

100

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

0

50

100

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16

0

50

100

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin SDOF-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



316 
  

Fixed-Pinned Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
-20

0

20

40

60

80

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin Bernoulli-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

60

80

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin Bernoulli-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

40

60

80

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixpin Bernoulli-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



317 
  

Fixed-Fixed SDOF Bernoulli  

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
-20

0

20

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
-20

0

20

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix SDOF-Bernoulli Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



318 
  

Fixed-Fixed SDOF Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
0

20

40

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix SDOF-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



319 
  

Fixed-Fixed Bernoulli Timoshenko 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16
0

20

40

60

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix Bernoulli-Timoshenko Deflection 0 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
0

20

40

60

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix Bernoulli-Timoshenko Deflection 0.2 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge

2 4 6 8 10 12 14 16
0

20

40

60

Z (ft/lb(1/3))

M
a
x
 d

e
fl
e
c
ti
o
n
 d

e
v
ia

ti
o
n
 (

%
)

Fixfix Bernoulli-Timoshenko Deflection 0.4 Axial

 

 

15 psf 25 lb charge

15 psf 200 lb charge

40 psf 25 lb charge

40 psf 200 lb charge

81.25 psf 25 lb charge

81.25 psf 200 lb charge



320 
  

Vita 

Evan Mullen was born in on February 15, 1992 in Philadelphia, Pennsylvania.  He is the 

son of Mark and Lauren Mullen.  Evan graduated from Lehigh University in Bethlehem, 

Pennsylvania in May of 2014 with a Bachelor of Science in Civil Engineering.  In January 

2016, Evan will receive his Master of Science in Structural Engineering from Lehigh 

University.  Evan works as a structural engineer for Thornton Tomasetti in Austin, 

Texas. 


