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Notation

  elastic strength  

  yield strength 

  initial stiffness of the system 

m mass of the system 

 magnitude earthquake 

 mean magnitude earthquake 

 site to source distance  

 mean site to source distance  

R  strength reduction factor 

 spectral pseudo-acceleration 

 spectral displacement 

  median spectral displacement 

 conditioning period 

  natural period of the structure 

 peak conditioning period 

  peak displacement 

  yield displacement 

  shear wave velocity in top 30 m 

Y intensity measure of interest 

 

 

α  post yielding stiffness ratio 

β  energy dissipation ratio 

ζ  damping ratio 

  peak conditioning period ratio  

ε  epsilon  

ε  mean epsilon  

ε  random error for ground motions 

  ductility demand 

  median ductility demand 

  maximum ductility demand 

  peak median ductility demand
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Abstract 

This research explores the use of the Conditional Mean Spectrum for selecting 

and conditioning ground motion records for the seismic analysis of nonlinear systems 

with an emphasis on self-centering systems.   Self-centering systems are an innovative 

type of seismic lateral force-resisting system which can reduce the post-earthquake 

damage sustained by building structures.  Self-centering systems may experience greater 

lateral displacements than conventional systems, resulting in more significant period 

elongation. The period elongation may cause self-centering systems to be more sensitive 

to ground motions selected and conditioned on periods other than the initial natural 

period.  Specifically, this study focuses on the influence of conditioning period with 

respect to the displacement-ductility demands on self-centering and conventional 

systems. During the study, nonlinear response spectra for 25 different single-degree-of-

freedom models were evaluated over a range of 60 natural periods. Conditional Mean 

Spectra were constructed for ten logarithmically spaced conditioning periods. Twenty 

ground motions were selected and amplitude scaled to match each of these ten 

Conditional Mean Spectra.     

 The results show that conditioning periods greater than the initial natural period 

of the structure produced the largest ductility demands.  A conditioning period ratio was 

defined as the ratio of the conditioning period which produces the largest ductility 

demand to the initial natural period. The results show that the conditioning period ratio is 

strongly dependent on the strength reduction factor and energy dissipation, and 

approximately independent of the initial natural period.  The effects of variation of the 

post-yielding stiffness are not considered. For a given strength reduction factor and 

energy dissipation, the conditioning period ratio appears to be constant. Conventional 

bilinear elasto-plastic systems exhibited a period ratio close to unity for strength 



2 

reduction factors greater than 2. Although the results suggest a relationship between the 

conditioning period and the nonlinear characteristics of self-centering and conventional 

systems, further study is required due to the limited number of conditioning periods 

considered in the present study.
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Introduction  

The seismic hazard for the site of a structure is frequently quantified based upon 

a pseudo-acceleration response spectrum (spectral acceleration) with a certain probability 

of exceedance.  In current design provisions, the spectral acceleration used for design is 

based on a Uniform Seismic Hazard Spectrum (UHS).  The UHS identifies the pseudo-

acceleration at each period with a given probability of exceedance in a specified period of 

time.  The UHS thus provides the spectral acceleration with uniform probability over the 

range of periods; however it does not represent the response to individual ground motion 

records. 

Response history analyses and site specific ground motion procedures are 

important tools for analysis of innovative earthquake-resistant structural systems.  

Selecting and conditioning ground motions (i.e., scaling) to represent a given level of 

seismic hazard for a given site and structure can lead to more accurately predicting the 

response for the stated level of seismic hazard.  Correctly selecting and conditioning 

records is critical to the accurate analysis of innovative systems.   
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As noted, the UHS provides the pseudo-acceleration response with a constant 

probability of exceedance for all periods. The pseudo-acceleration response to an 

individual earthquake record is not consistent with the UHS at every period. Typically the 

pseudo-acceleration response spectrum for an individual ground motion has peaks only at 

certain periods. Therefore a UHS may be an overly conservative target spectrum for 

selecting and conditioning ground motions for a given site and structure. Baker [1] begins 

to address this concern by proposing the Conditional Mean Spectrum (CMS) as an 

alternative to the UHS for ground motion selection and conditioning.  The CMS has a 

similar value as the UHS at a specified period of interest, denoted as the “conditioning 

period”, while trending below the UHS and toward the median spectrum away from this 

period [1]. Crucial to properly using the CMS as the basis for selecting ground motions is 

the selection of an appropriate conditioning period. The current study aims to assess the 

effect of different conditioning periods on the nonlinear response of single-degree-of-

freedom (SDOF) structures.  In particular, the study focuses on “self-centering” SDOF 

structures.  

Self-centering structures are a special class of earthquake-resistant systems that 

aim to reduce post-earthquake structural damage in the form of residual drift [2].  A self-

centering system typically dissipates less energy than a bilinear elasto-plastic system, 

however, a self-centering system with comparable initial period can be identified that has 

equal or better performance than bilinear elasto-plastic system by varying the self-

centering system parameters [3] [4]. Past research [5] found when selecting ground 

motions that are consistent with a target CMS, in some cases the ground motions based 

on a CMS with a conditioning period larger than the initial natural period of the structure 

produced greater displacement demands.  While others have investigated the effect of the 

conditioning period, they have focused on ways to broaden the CMS, or the effect the 
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conditioning period has on structural reliability [6] [7].  The primary focus of the current 

study is to examine the effect of the conditioning period for selecting ground motion 

records as it relates to the displacement ductility demands for self-centering systems. 

  

Background  

SEISMIC HAZARD ANALYSIS 

The seismic hazard can be quantified using seismic intensity measures such as 

the peak ground acceleration, peak ground velocity, and pseudo-acceleration.  The United 

States Geological Survey (USGS) defines the seismic hazard as the level of ground 

shaking or motion for a given probability of exceedance in a given time period, and 

further identifies this time period to be 50 years [8].  Seismic hazard analysis (SHA) 

determines the intensity of earthquake induced ground motion at a particular site.   This 

analysis aggregates the effects of seismic events of various magnitudes from earthquake 

sources at different distances from a site, while taking different earthquake sources into 

account [5]. The seismic hazard maps developed by the USGS are based on detailed 

probabilistic seismic hazard analyses for the entire United States [9].  Maps have been 

developed for the peak ground acceleration and for the pseudo-acceleration (or spectral 

acceleration) corresponding to natural periods of 0.2 seconds and 1.0 seconds [8].  

GROUND MOTION PREDICTION EQUATIONS 

Understanding ground motions is fundamental to gaining insight into the 

response of a structure to an earthquake [9].  Crucial to this understanding is the ability to 

estimate a response quantity based on the geological and seismological characteristics of 

a site. A Ground Motion Prediction Equation (GMPE) is an empirically derived function 
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that provides a probabilistic estimate of a seismic intensity measure at a particular site 

with given seismic characteristics.  Common input parameters may include magnitude, 

distance, and fault mechanism. GMPEs are usually logarithmic, and are expressed as 

follows:  

ln 	 ln  
EQUATION 1 

Here, Y is the intensity measure; while	 , , and 	are the magnitude, distance, 

and random error in the intensity respectively. In Equation 1,	 ,	  , , and  denote 

the model parameters. GMPEs are developed based on historical data for a specific 

region [9], and are required in order to conduct a Probabilistic Seismic Hazard Analysis 

(PSHA).  For the western North American region, the USGS has used four GMPEs, 

which are named according to the researchers which developed them; Abrahamson & 

Silva, Boore et al, Sadigh et al, and Campbell & Bozorgnia [9] [8].  

Each principal input parameter required by a GMPE describes a characteristic of 

the site specific seismic hazard. Earthquake magnitude is used to characterize the severity 

of an earthquake at the source (e.g. at a location on a known fault). The “moment 

magnitude” is related to the energy released by an earthquake and is often used as a 

GMPE input parameter. The distance from the site to the source is an important GMPE 

input parameter, which characterizes the reduction of ground motion intensity as seismic 

waves radiate away from the earthquake source. Faults may be considered as either point 

sources or finite sources.  Large earthquakes are better characterized using finite sources 

because they have greater rupture areas that are not well represented by point sources. 

Two common distance measures for finite sources are the Joyner-Boore distance and the 

closest distance to the fault rupture plane.  The Joyner Boore distance is the closest 



7 

horizontal distance to the fault rupture plane and is easy to estimate for future 

earthquakes [9].  The closest distance to the rupture plane is not as easy to estimate, but 

may be inferred from properties of the fault mechanism [9].  It has been noted by past 

research that inelastic displacement demands are not sensitive to the distance parameter 

in GMPEs [10].  Site soil conditions are critical in evaluating the seismic hazard since 

soft soils tend to amplify the ground shaking.  Current design standards permit site soil 

conditions to be considered through the use of GMPEs that are representative of local and 

regional geology [11]. Local soil conditions can be characterized by various parameters, 

however, the shear-wave velocity and soil depth to bedrock are preferred because they 

are quantitative descriptions of subsurface conditions [9]. The site classes described in 

the International Building Code [12],  and by the NEHRP (National Earthquake Hazard 

Reduction Program) Recommended Seismic Provisions for New Buildings and Other 

Structures [13] are based on the average shear wave velocity in the top 30 meters of soil, 

denoted as  [9]. 

PROBABILISTIC SEISMIC HAZARD ANALYSIS  

In earthquake engineering, response history analyses are usually used for three 

different assessments, namely: scenario-based, intensity-based, and risk-based 

assessments.   Often the earthquake hazard is characterized by a ground motion intensity 

measure with an annual rate of exceedance, or a return period. Defining the hazard in this 

way is referred to as risk-based assessment [14]. Probabilistic seismic hazard analysis is a 

risk-based assessment and considered to be the most comprehensive of the methods [15]. 

UNIFORM HAZARD SPECTRA 

Response spectra are used to describe the response of SDOF structures as a 

function of the natural period, . Elastic pseudo-acceleration response spectra (spectral 
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acceleration) are usually prescribed by design standards and codes [16]. In critical cases, 

the spectral accelerations are determined by a site specific seismic hazard analysis [16]. 

The design spectra in current building codes are based on and similar to a UHS.  A UHS 

identifies spectral values, often the spectral accelerations, which have a uniform 

probability of exceedance (POE) over a range of periods.  For example the USGS UHS 

with 2% POE in 50 years is similar to the Maximum Considered Earthquake outlined in 

the American Society of Civil Engineers (ASCE) Minimum Design Loads For Buildings 

and Other Structures (ASCE 7-10) [1] [11].  For a given site, various magnitudes and 

distances contribute to the seismic hazard at the site.  The UHS is an upper bound or 

envelope of the structural response for these various magnitudes and distances, and does 

not represent the response across the range of periods for any specific ground motion. 

Some consider the traditional UHS to be overly conservative as a target spectrum for 

selecting a set of ground motions to represent the seismic hazard for a given site and 

structure, arguing that the spectral accelerations at different  in the UHS are caused by 

different earthquake events [1]. In the present study, the UHS and median spectra were 

calculated for a sample site, an example of which can be seen in Figure 1. The study 

focused on selecting ground motions that are consistent with several different target 

CMS.   

CONDITIONAL MEAN SPECTRUM 

Prior research has investigated the Conditional Mean Spectrum (CMS) for use in 

selecting ground motion records. The CMS, as defined by Baker [1], provides a target 

spectral acceleration value ( ) for each	  conditional on the  value at a specified 

conditioning period,		 . Baker asserts the CMS is easier to compile than the UHS and 

only requires existing GMPEs, PSHA results, and two other equations [1]. When 

constructing the CMS based on PSHA results, mean values of , , and  from 
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the disaggregation are used to obtain the target value of  at	 . The principal advantage 

of the CMS is the consistency between the PSHA and the ground motion selection [1]. As 

shown in Figure 1 and mentioned earlier, the CMS has an  value that is similar to the 

UHS at , and trends below the UHS and toward the median spectrum at	  away 

from . This shape of the CMS represents the average shape of response spectra 

associated with earthquake input (magnitude and distance) that produces the target value 

of  at the specified		 , and ground motions consistent with the CMS are 

representative of the site specific seismic hazard as defined at 	  [1] [7].  The CMS 

incorporates the effect of the epsilon parameter, , which represents the number of 

standard deviations an  value deviates from the predicted median value [1].  

FIGURE 1 – Comparison of different response spectra  
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There are a few limitations of the CMS as proposed by Baker in [1]. One 

limitation was that it did not include the variability of spectra for a given		  [17] [18]; 

however, more recent work has focused on selecting a set ground motions where the 

mean and variance of the set match a target spectrum [19], such as the CMS, and the 

corresponding conditional variance [17]. Also, Baker explicitly notes that the CMS 

should be constructed and evaluated for all periods of interest.   In the case of nonlinear 

systems, multiple CMS should be calculated for a range of 	  [1]. There is a tradeoff 

between the two approaches. The UHS is more conservative but also more convenient; 

the CMS is not as conservative but requires additional analyses when multiple CMS are 

used [1]. If the response of a nonlinear structure is primarily driven by an earthquake 

input at a period other than 	, the ground motions selected for a CMS may produce 

low and inappropriate responses [1].  Multiple CMS should be considered if a multi-

degree-of-freedom structure is sensitive to the response at various modes or if the   

value to be used as	  is uncertain. Although the CMS can provide a better 

representation of the hazard, it becomes cumbersome if is unknown, or is not easy to 

estimate [1]. 

 should be selected to produce the largest response.  For a linear elastic 

SDOF system, or near linear elastic SDOF system,  should equal the period   of 

the system. Guidelines for selecting   for nonlinear self-centering systems do not 

exist.  Due to the highly nonlinear behavior of self-centering systems, these structures go 

through greater period elongation than conventional bilinear elasto-plastic systems, and 

their response may be especially sensitive to  [20]. Other research has explored the 

problem of constructing multiple CMS and the effects of  on nonlinear seismic 

response of structures; however, these studies have been limited and do not directly 
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investigate the effect of 	 and the selection of ground motions consistent with the 

corresponding CMS on the response of self-centering systems [6].   

GROUND MOTION SELECTION & CONDITIONING METHOD 

Ground motions can be characterized by various parameters depending on the 

application. One common application is nonlinear response history analyses. The 

significant variations between different ground motion records are due to many factors 

including magnitude, distance, and fault mechanism [9], as well as inherent randomness.  

Ground motions are often selected based on the response spectrum value at the 

fundamental natural period of a structure, as it is the period corresponding to the largest 

response for a linear elastic system, and is expected to be the period of largest response 

for a nonlinear system [5].   

Individual ground motions are often selected so that their pseudo-acceleration 

response spectrum matches a target response spectrum at a specified  or over a 

specified range of periods. In practice ASCE 7-10 requires the average response spectrum 

for a set of ground motions selected for response history analyses to be not less than the 

design spectrum for periods ranging from 0.2  to 1.5 .  To select ground motions 

with spectra that match the CMS, a period range should be identified [1].  The procedures 

by which appropriate ground motions are identified and conditioned, or scaled, should 

take into account the potential for nonlinear structural response [11].   

The provisions of ASCE 7-10 for ground motion selection require a period range 

of 0.2  to 1.5  to be considered, however, for highly nonlinear structures the response 

may be sensitive to ground motion components at periods greater than 1.5	  [11]. 

Therefore, ASCE requires ground motions used in response history analyses be selected 

from events having magnitude, distances, and sources appropriate for the site [11] [21].  
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Where a set of seven or more ground motions are used in analysis, the mean nonlinear 

response can be taken as the structural response, otherwise the maximum nonlinear 

response should be used [11].   

The Sum of the Squared Errors (SSE) is an effective method for determining how 

well the spectrum for a ground motion matches a target spectrum [1]. The SSE can be 

calculated for each individual ground motion under consideration and the records with 

the smallest SSE are those that best match the target spectrum, in this case, the CMS [1]. 

Buildings designed based on amplitude-scaled ground motions have been shown 

to be comparable to those based on other conditioning methods such as, spectral 

matching [22].  A common and straightforward method of ground motion conditioning is 

to scale each record so the response spectrum matches the target spectrum at the 

conditioning period [1] [14]. 

ASCE 7-10 requires a ground motion record to be scaled so the corresponding 

response spectrum approximately matches the target spectrum over the period range [11]. 

Another scaling method which is consistent with the requirements of ASCE 7-10 is to 

scale the ground motion so the average response spectrum over the period range matches 

the average of the target spectrum over the same period range [11].  Scaling the ground 

motion so the response spectrum matches the CMS at the conditioning period does not 

significantly impact the consistency of the ground motion with the CMS, so Baker 

recommends this method since it is the simpler method [1]. 

BACKGROUND ON SELF-CENTERING SYSTEMS 

Self-centering (SC) systems are a new type of lateral force-resisting system 

which has virtually no residual drift following a seismic event [2].  The appeal of these 
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systems is the potentially low level of post-earthquake structural damage allowing for 

immediate use of the structure following an earthquake. By definition, the lateral 

displacement response of a self-centering system oscillates around zero displacement, 

unlike the baseline offset of the displacement response that may occur for conventional 

bilinear elasto-plastic (BEP) systems.  The development of SC systems poses new 

challenges to engineers.   Response history analyses have shown that the softening and 

associated period elongation of SC systems limits the acceleration response; however, SC 

systems may have greater lateral displacement response amplitude compared to 

conventional systems [5] [20].  The displacement response of conventional systems can 

include permanent residual drift requiring expensive repairs [5] [20]. While the SC 

systems may have greater displacement and ductility response, they are expected to have 

relatively little residual drift or post-earthquake damage [20].  

The lateral displacement demand for SC systems is often greater than for similar 

BEP systems [4] [20]. Self-centering systems with low levels of hysteretic energy 

dissipation typically exhibit large lateral displacement responses.  The energy dissipation 

ratio, β, corresponds to the ratio of the area enclosed by the hysteresis loop of an SC 

system relative that of a BEP system with the same initial properties subjected to the 

same peak displacement [20].  The post-yielding stiffness ratio, α, is the ratio of the 

system lateral stiffness beyond the point of yield to the initial stiffness, as illustrated in 

Figure 2. Increasing β from 0 to 12.5% or more can reduce the displacement demands; 

however the equal displacement principle should not be applied to SC systems with small 

values of α and β.  To prevent excessive displacements demands a β value of 12.5% is 

considered to be the minimum [5].   
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In general, the displacement ductility demand is strongly dependent on the period 

of the structure for short periods but is approximately period independent at long periods 

[20].  Ductility demand is the ratio of the maximum displacement of the system, , to 

the yield displacement of the system, , which are shown in Figure 2. The ductility 

demand for SC systems is controlled by the parameters α, β, and strength reduction 

factor, R.  The ductility demands for self-centering systems have been shown to increase 

with increasing R values [20].   For a given R value, ductility demands similar to those of 

conventional systems can be achieved by varying the parameters α and β. Generally 

increasing α or β can reduce the ductility demand, however, increasing α is more 

effective for SC systems with large R values (low strength) than it is for SC systems with 

small R values (high strength) [5]. 

INDIVIDUAL RESPONSE SPECTRA 

A response spectrum describes the peak response of an SDOF system, over a 

range of periods, subjected to a given ground motion [23] [9]. The response quantities 

FIGURE 2 – Force versus displacement diagram showing yield strength formulation based on 
elastic strength 
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may be based on the elastic response, or the nonlinear (inelastic) response of SDOF 

models [9]. While elastic response spectra only require the natural period, , and 

damping ratio, ; nonlinear response spectra require a complete definition of the force-

deformation relationship [9]. The yield strength of the system, , is an important 

property in this relationship [20] (See Figure 2). The strength reduction factor, R, is 

defined as the ratio of the force associated with peak displacement of a structure if the 

structure were to remain elastic, , relative to  as shown in Figure 2  [16]. In seismic 

design practice the yield strength of a structure, , is often determined by reducing the 

elastic strength by a specified R value as follows [20] [2]:  

 
 

EQUATION 2 

Low R (e.g., not greater than 2.0) values correspond to systems with high lateral 

strength, which exhibit similar behavior to linear elastic systems [20].   Many previous 

research studies of nonlinear response spectra determined the elastic strength and the 

corresponding yield strength for SDOF systems based on individual ground motion 

spectra. Seo and Sause [20] determined the yield strength from a smooth spectrum like 

those commonly used in seismic design provisions.  

Current design standards expect structures to exhibit inelastic response during the 

design earthquake [20]. As conventional systems yield and move into the inelastic range, 

the system sustains structural damage and often permanent residual lateral displacements 

[20].  As noted previously SC systems are expected to have little permanent residual 

displacement. 
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In buildings, a significant amount of both structural and nonstructural damage 

from severe earthquakes is the result of lateral displacements [24].  Consequently 

displacement demand is a response quantity associated with damage, and is often used to 

evaluate structural performance [16]. For a given R value the ductility ratio, , is a 

convenient, normalized response parameter for nonlinear systems.  is the ratio of the 

maximum nonlinear displacement to the yield displacement [2]. A ratio of 1.0 or less 

indicates the response has remained linear elastic [9].  The ductility ratio is expressed as 

follows:  

  
EQUATION 3 

where 	and 	are the peak displacement and yield displacement of the system, 

respectively [2].  Prior studies have shown the effect of α  on  is dependent upon . Seo 

and Sause [20] found for periods less than 0.5 sec, a small increase in α can significantly 

reduce	 , while at periods longer than 0.5 sec the impact of α on  is nearly independent 

of period [20].  Furthermore, it was found that increasing β reduces , and the effect is 

relatively uniform over the period range evaluated [20].	

Analysis Methods 

The seismological and geological properties of the site of a structure depend 

upon the physical location of a site, including the proximity to active faults. The seismic 

hazard depends on the site-to-source distance, fault type, site soil conditions, and other 

factors.  As noted earlier, design standards often use approximate methods to characterize 

the seismic hazard, whereas the CMS is based on site-specific seismic hazard analysis 

procedures.  
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SITE SELECTION FOR STUDY  

For the current study certain site characteristics are preferable.  A site where 

similar events govern the hazard over the period range of interest helps to reduce the 

variability introduced by properties of the seismic event, which is beneficial since the  

focus of the study is on the effects of the conditioning period,	 , and not the seismic 

event.  A site which has a strong peak in the CMS at each  is desirable so trends in 

the results will be more readily observed. When reviewing potential sites for the study, it 

was observed that for sites where the hazard is governed by a single fault, the spectral 

acceleration often has less dispersion. Consequently, the UHS and the median spectrum 

(for a characteristic earthquake magnitude and distance) for the site are closer together 

over the period range of interest. For sites near multiple less active faults with one 

dominant fault, the CMS tends to have a stronger peak.  Finally, a site with unique or 

uncommon characteristics is less desirable.  

FIGURE 3 – Earthquake Shaking Potential Map showing preliminary site locations 
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Several preliminary sites were selected by reviewing shake maps and interactive 

fault maps published by the California Division of Mines & Geology (CDMG). The 

preliminary sites are shown on the shake map in Figure 3 which classifies regions by 

severity of the ground motion during an earthquake. These preliminary sites were 

selected because they have high potential for damaging ground motions and are in close 

proximity to active faults.  An initial probabilistic seismic hazard analysis was conducted 

for each preliminary site using the USGS online tool [25].  Ultimately Site G, Emerald 

Hills, was identified as a site with the seismic hazard controlled by similar seismic events 

across the period range of interest, and was selected for the current study.  

SITE SPECIFIC SEISMIC HAZARD  

The initial probabilistic seismic hazard analysis was used to evaluate the 

contribution of each GMPE toward the total seismic hazard of the site, since only one 

GMPE is used to construct the CMS.  The Campbell & Bozorgnia 2008 GMPE was 

selected for use in the remainder of the study based on its contribution to the overall 

FIGURE 4 –Fault map of sample site location used in the current study
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hazard, and its validity across the period range of interest. Additionally, this GMPE 

provides  values corresponding to an individual horizontal ground motion component, 

which is the seismic intensity measure used in the current study. Although updated 

versions of the Campbell & Bozorgnia model are available, the 2008 version was used 

for consistency with the work by Baker since the correlation function by Baker is based 

on data corresponding to the Campbell & Bozorgnia 2008 GMPE [1]. 

A probabilistic seismic hazard analysis was carried out using OpenSHA [26] 

analysis tools, specifically the Hazard Spectrum Calculator and Hazard Curve Calculator, 

for all available periods.  OpenSHA can perform PSHA at only at only a few discrete 

periods. The discrete periods are shown in Table 1. For other conditioning periods, linear 

interpolation was used. The UHS was calculated for a 2% probability of exceedance in 50 

years. The spectral acceleration from the UHS at each discrete period was then used to 

disaggregate the seismic hazard at each discrete period. The seismic hazard 

disaggregation at each discrete period is shown in Table 1 and Appendix I. At each 

discrete period, the following characteristic (i.e., mean) values for the site were obtained 

from the disaggregated hazard data: the mean earthquake magnitude,	 , the mean 

site-to-source distance,	 , and the mean epsilon, ,̅ which is a measure of the 

difference between the spectral acceleration from the UHS (i.e., the hazard) at the period 

and the median spectral acceleration from the GMPE for the 	  and 	 . A larger  ̅

will produce a CMS with a stronger peak.   

CONSTRUCTING CONDITIONAL MEAN SPECTRUM FOR SITE  

For each , a CMS was constructed following procedures outlined by Baker 

[1] using the 	 , 	 , and ,̅  values obtained from the PSHA described above.  As 

mentioned above, the PSHA was carried out at only the discrete periods listed in Table 1.   
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Ten conditioning periods, denoted , were selected with logarithmic spacing over the 

period range of interest, 0.5 seconds to 5.0 seconds, where  0.500s, 0.646s, 0.834s, 

1.077s, 1.391s, 1.797s, 2.321s, 2.997s, 3.871s, and 5.000s. The values of 	 ,	  , 

and 	̅at were obtained by interpolating the data in Table 1.  

 TABLE 1 – OpenSHA disaggregation for discrete periods of the sample site  

       
  	      

 0.01 0.900 7.5331 3.0266 1.3891  
 0.02 0.920 7.5331 3.0270 1.3900  
 0.03 1.000 7.5319 3.0397 1.4024  
 0.05 1.220 7.5250 3.1099 1.4113  
 0.08 1.463 7.4972 3.4076 1.4545  
 0.10 1.680 7.4735 3.6486 1.4877  
 0.15 1.940 7.4616 3.8243 1.5103  
 0.20 2.130 7.5092 3.4599 1.4547  
 0.25 2.140 7.5309 3.2442 1.4217  
 0.30 2.130 7.5383 3.1586 1.4086  
 0.40 2.100 7.5462 3.0262 1.3894  
 0.50 2.000 7.5889 3.0085 1.3870  
 0.75 1.620 7.6562 3.0363 1.3691  
 1.00 1.360 7.7039 3.0681 1.3452  
 1.50 1.000 7.7575 3.0989 1.3130  
 2.00 0.780 7.7844 3.1145 1.2860  
 3.00 0.520 7.8039 3.1245 1.2606  
 4.00 0.400 7.8124 3.1285 1.2534  
 5.00 0.350 7.8079 3.1400 1.2553  
 7.50 0.260 7.8416 3.1544 1.2077  
 10.00 0.210 7.8541 3.1694 1.1839  

 

The Conditional Selection Algorithm provided by Baker [27] constructs the 

CMS, selects corresponding ground motion records, and determines the scale factor for 

each ground motion record using a MatLab [28] script.  This MatLab script utilizes the 

correlation function from Baker [1], and outputs the median spectrum (for the given	  

,		  ), standard deviation spectrum (for the given	 , 	 ), the CMS (for the 

given 	  	  and ε), and the conditional standard deviation spectrum (for the given 

	 ,		  , and ε, and using Baker’s correlation function). The Conditional Selection 
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Algorithm provided by Baker [27] was adapted to function with other MatLab scripts 

developed specifically for the current study. 

GROUND MOTION SELECTION & CONDITIONING  

The Conditional Selection Algorithm provided by Baker uses the Monte-Carlo 

method to simulate random earthquake spectra.  A set of simulated spectra are generated 

and then ground motions are selected which best match these spectra.  In addition to 

matching the ground motions to the CMS the algorithm also matches the conditional 

standard deviation. The greedy improvement method of optimization is then used to 

refine the results [17].  

The Conditional Selection Algorithm amplitude scales the individual ground 

motions so that the spectral acceleration at	 , matches the CMS value at .  The 

ground motion scale factor, denoted  is determined using Equation 4 where  

and	  are the spectral accelerations of the individual ground motion and target CMS 

respectively as shown in Figure 5. 

 

In the current study,  is limited to be no more than a factor of four, as follows: 

0.25	 	 4.0 

 
 

EQUATION 4	
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Using the Conditional Selection Algorithm, 10 sets of 20 ground motions were 

generated for each value of  (given previously as 0.500s, 0.646s, 0.834s, 1.077s, 

1.391s, 1.797s, 2.321s, 2.997s, 3.871s, and 5.000s), which are, as noted earlier,  

logarithmically spaced over the period range of interest of 0.5 seconds to 5.0 seconds. 

Appendix II describes the ground motion sets in more detail. For each ground 

motion set, the appendix lists	 , 	 , and  .̅ For each ground motion in the set, the 

record sequence number (RSN), the magnitude,		 , the distance from the recording 

site to the source,		 , the horizontal ground motion component direction, 

“Component”, and the ground motion scale factor ( ) are listed.  The RSN is a 

unique identifier for each ground motion record in the PEER NGA West 2 Database [29].  

 

 

Figure 5 – Scaling method for individual ground motions to match CMS at  
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SDOF ANALYSIS  

SDOF analyses were carried out for a variety of systems to evaluate the impact of 

the  value used to construct a CMS and associated ground motion set, on the 

nonlinear structural response.   Nonlinear dynamic analyses of the SDOF systems were 

conducted using the Newmark Beta Method with Newton Raphson Iteration. For 

simplicity, a unit mass was assumed for each SDOF system. The natural period of each 

SDOF system was calculated based on the initial stiffness. The natural periods range 

from 0.10 to 10.0 seconds and are linearly spaced. In addition, SDOF systems with 

natural periods equal to the values of  were included in the study. The SDOF 

systems were assigned 5% initial stiffness proportional viscous damping to model the 

inherent damping of the system  

 Figure 6 shows that the SDOF systems had various hysteretic force-deformation 

models, including  linear elastic (‘LIN’), bilinear elastic (‘BEL’), bilinear elasto-plastic 

(‘BEP’),  and self-centering (‘SC’) models. All systems, except linear elastic, were 

assigned a post-yielding stiffness ratio, , of 5%.   Self-centering systems were given an 

energy dissipation ratio, , of 12.5% or 25%.  

The yield strength of each SDOF system was determined systematically.  As 

noted earlier, the strength reduction factor, R, can be defined as the ratio of the elastic 

strength,		 , relative to the yield strength, , of the inelastic system. 

 
R  

EQUATION 5	

Alternatively  can be calculated from , for a specified R value, as follows:   

 
 EQUATION 6 
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where  is the spring force that develops in a linear elastic system (with the same 

natural period and 5% damping ratio) at the point of peak displacement based on the 

FIGURE 6 – Force Deformation Models for (a) Bilinear Elastic System, (b) Self-Centering System, 
(c) Bilinear Elasto-Plastic System 
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median spectral acceleration for the ground motion set. Thus,  can be expressed as 

follows: 

 ∙  
EQUATION 7 

Since the SDOF systems have a unit mass, Equation 7 simplifies to:  

  
EQUATION 8 

and  can then be determined as:  

 
 EQUATION 9 

Systems with R values of 2, 4, 6, 8, and 10 were studied. Nonlinear response histories 

were determined for each ground motion, each SDOF system (  and force deformation 

model), and each R value using MatLab.  The results were output in the format of 

nonlinear response spectra.   

Results 

The analyses generated 5,000 nonlinear response spectra, which correspond to 25 

nonlinear SDOF systems subjected to 10 ground motion sets of 20 records each. Details 

of the ground motion sets used in the present study may be found in Appendix II. 

Examining the displacement demand of different systems it is evident that, due to its 

higher energy dissipation capacity, the BEP system generally has the lowest displacement 

demand, as shown in Figure 7. A BEP system can be thought of as an SC system having a 

β value of 100%.  For a true SC system, β must be less than 50%.  Considering an SC 

system with decreasing levels of energy dissipation, the special case of an SC system 

with a β value of zero corresponds to a BEL system.  This is an important concept; a BEL 

system being an SC system with β = 0%, and a BEP system being an SC system with β 
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=100%. The response of an SC system is expected to be bounded by the response of the 

corresponding BEP and BEL systems.   

Figure 7 shows the median nonlinear displacement response, , for various 

SDOF systems, for the ground motion set conditioned on  = 2.321s. Figure 8 shows 

the nonlinear displacement response, , for various SDOF systems for an individual 

ground motion of the set. The SDOF systems shown in these figures have R = 6.  It can 

be observed that the response of the two SC systems, SC-12 and SC-25, are bounded by 

the response of the BEL and BEP systems over most of the period range.  While the 

results for the individual ground motion exhibits some irregularities, the median spectra 

are generally consistent with this expected behavior.  

FIGURE 7 – Median displacement demand comparison of inelastic systems for suite of ground motions
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  An alternative to the nonlinear displacement, the ductility ratio , is an efficient 

normalized parameter for evaluating the performance of nonlinear systems. The analysis 

results shown in Figures 9, 10, and 11 revealed local maxima in  at periods other than, 

 confirming observations by others [5].  For systems with high lateral strength (e.g., 

R = 2) the peak  occurs at, or near,  for all systems.  As the R value increases the 

local maxima can be observed at periods shorter than	 .     

  

FIGURE 8 – Displacement demand comparison of inelastic systems for individual ground motion  
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FIGURE 9 – Median ductility ratio for Ground Motion Set JW0F00834 conditioned at Tcms = 0.834 s

FIGURE 10 – Median ductility ratio for Ground Motion Set JW0F02321 conditioned at Tcms = 2.321 s



29 

 

 

  Comparisons of the BEL and BEP systems are shown in Figures 9, 10, and 11 for 

conditioning periods of 0.834 s, 2.321 s, and 5.000 s respectively1.  The figures depict the 

median ductility ratio,	 	, for each set of ground motions over the range of R values 

considered. Systems with high lateral strength, low R values, have a local maximum 

occurring near  for all models.  The BEP systems generally exhibit a decreasing  

with increasing , with any local maxima near		 . This trend was consistent for BEP 

systems for all R values. For BEL systems,  is larger than for BEP systems due to 

reduced energy dissipation. This relative increase in  is greater in the short and 

intermediate period range and less significant in the long period range.  The BEL 

systems, shown in Figure 11, have local maxima occurring at periods less than the . 

                                                      
1 A complete set of plots for all systems and ground motion sets can be found in Appendix III. 

FIGURE 11 – Median ductility ratio for Ground Motion Set JW0F05000 conditioned at Tcms = 5.000  s
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This trend is present in the SC systems as well, the results of which can be found in 

Appendix III.   

  Additionally, with increasing R values, the period at the local maximum in  

decreases.  Upon closer inspection, the BEP systems have small deviations in similar 

locations to these local maxima, however, those exhibited by the SC and BEL systems 

are of greater significance.  The magnitude of the maximums increases with increasing R 

value as well.  

The maximum  at  less than   is of particular interest for ground motion 

selection, as it indicates uncertainty regarding the period that should be used for . 

Recall that linear SDOF systems will have responses similar to the CMS, with local 

maxima at . Nonlinear systems with small R values and low levels of nonlinear 

response can be expected to have their peak response for ground motions conditioned at 

.  With increasing nonlinearity,  significant period elongation may cause a larger 

response to occur for ground motions conditioned at a period ( ) larger than .  

Highly nonlinear structures, such as self-centering systems, will have greater response to 

input at longer periods.   Noted earlier, multiple CMS should be constructed for the 

periods to which the structure is sensitive, and the results of the present study indicate for 

SC systems these periods are greater than .  The largest  	for the ground motion sets 

considered, or the absolute peak median ductility ratio at each period,  can be 

expressed as:  

  
EQUATION 10 

Comparing  for various systems subjected to different ground motion sets, it is evident 

that  is usually caused by a ground motion set with  that is greater than	 .  

Comparisons of  over the range of conditioning periods are shown in Figures 12 a, b, 



31 

and c for the BEP, SC-12, and BEL models respectively. The 	values shown are for 

models with R = 6.   

 

FIGURE 12 – Peak displacement ductility comparison  
(a) BEP (α=5%) , (b) SC (α=5%, β=12.5%), (c) BEL (α=5%) 
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Consider an example system with 	 = 1.797s. For the BEP system,  is caused 

by the ground motion set with =	 = 1.797s.  For the comparable SC-12 system,  

is caused by the ground motion set with = 2.997s, and not the set with = .  

Similarly, for the BEL system,  is caused by a ground motion set with  	greater 

than .  The  for this system is caused by the set with = 3.871s.  Considering 

these results further, it is useful to determine the value of  which causes , defined 

as , as follows:  

  
EQUATION 11 

The importance of nonlinear response on the value of 	  can be observed by plotting  

against the .  The relationship is shown for the ten values of 	  for the BEL, SC-12, 

FIGURE 13 – Peak conditioning period, , versus intial natural period, ,  for (a) BEL (α = 5%)  
(b) SC (α = 5%, β = 12.5%) (c) SC (α = 5%, β = 25%) (d) BEP (α = 5%) 
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SC-25, and BEP systems in Figures 13 a, b, c, and d respectively. The results shown in 

Figure 13 only include the first value of  = 5.0s for each series, as it was the upper limit 

of 	 values considered in the study. The results indicate that the value of  has a 

significant impact on the ductility demand of the system. 

 The results shown in Figure 13 indicate an approximately linear relationship 

between  and , as demonstrated by the trendlines.  An exception is seen for the BEP 

system, where the trend is less clear for R = 10, (Figure 13d) where the trendline has been 

omitted. Trendlines with a slope of unity indicate that using a ground motion set 

conditioned on =  should give an appropriate estimate for the expected value of 

the ductility ratio for a given hazard level.  Trendlines with slopes greater than unity 

indicate the extent to which  for the ground motion set should exceed  to properly 

estimate the expected value of the ductility ratio for a given hazard level.  The results 

shown in Figure 13 show that as R increases, for all systems, the slopes of the trendlines 

tend to increase. The exception is for the BEP system where a distinct trend for R = 6, 8, 

and 10, as R increases, is less clear for the current data set.  The trendline for a BEP 

system with R = 10 has been omitted since the resulting data is seemingly random. 

Furthermore, for systems with R = 2, the slopes of the trendlines are approximately equal 

to unity indicating it is appropriate to use = .  For all systems with R > 2, the slope 

of the trendlines are greater than unity, and it is therefore not appropriate to use = .  

As the energy dissipation ratio, , decreases,  should be increasingly larger than , 

as shown by the steeper trendlines. The plots terminate at a  value of 5.0s, which is the 

largest  considered in the present study.   

  As a specific example, consider a structure with = 2.0s.  Based on the results in 

Figure 13, when selecting ground motions for a BEL or SC system it would be more 
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appropriate to construct a CMS and the corresponding ground motion set based on 

3.0	  for R = 4.0 and 5.0	  for R =  10.0, rather than using = .   

In reviewing the data summarized in Figure 13 the relationship appears roughly 

linear, so the ratio of   to  may be a convenient way to characterize the relationship. 

The ratio of  to  is defined as , and is written as follows: 

 
 

EQUATION 12 

The variation of  is plotted versus R using a standard box and whisker plot in Figure 14 

for the systems considered. The box and whisker plot highlights the median, upper 

quartile, lower quartile, and extreme values of each dataset.  For BEL and SC systems,  

is relatively constant for a specified R value. Figure 14 shows the variability of 	for a 

given R of the SDOF system.  The plots on the left show all conditioning periods; while 

the plots on the right include only up to the first values where 	= 5.0s due to the 

limited number of 	considered. The noticeable reduction in scatter, illustrated by the 

reduced space between the median and the quartile marks, between the two plots 

demonstrates the need for additional   to be evaluated. Ultimately the results of the 

study indicate the greatest displacement ductility demand is usually caused by a ground 

motion set conditioned on a  greater than  for structures with highly nonlinear 

behavior.    is shown to vary with lateral strength (R) and energy dissipation. 
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FIGURE 14 –Variation in period ratio, , values by R value for (a)  BEL (α = 5%) 

(b)  SC-12 (α = 5%, β = 12.5%) (c)  SC-25 (α = 5%, β = 25%)  (d)  BEP (α = 5%) 
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Conclusions 

Self-centering (SC) systems are a class of lateral systems which aims to reduce 

post-earthquake damage in the form of residual drift.  Due to the limited energy 

dissipation capacity inherent in these systems, SC systems may experience greater lateral 

displacements than conventional systems.  The larger displacements may result in greater 

period elongation, which causes them to be more sensitive to ground motions selected 

and conditioned for a conditioning period,	 , longer  than	 .  For this study, 

nonlinear response spectra for 25 different single-degree-of-freedom models were 

constructed over a range of 60 initial periods. Conditional Mean Spectra (CMS) were 

constructed for ten logarithmically spaced  values. Twenty ground motions were 

selected and amplitude scaled to match each target CMS.  A total of 5,000 nonlinear 

response spectra were calculated, with an additional 200 linear elastic response spectra.   

 The results of the study found that ground motion sets with  greater than 	  

produced the largest ductility demand.  The value of   resulting in the largest 

ductility demand for each value of 	  was denoted .The period elongation experienced 

by highly nonlinear structures creates sensitivity to ground motion sets conditioned at 

larger  values.  Based on the results of the study, the conditioning period ratio,  

, was found to be primarily dependent on lateral strength (R) and energy 

dissipation.  The effects of post-yielding stiffness ratio, α, were not evaluated. The study 

showed that for systems with high lateral strength (R not greater than 2.0), is 

approximately equal to 1.0.   increases with increasing R value and decreasing energy 

dissipation.  For a given R value and energy dissipation ratio, appears to be relatively 

constant, and 	appears to be directly proportional to 	 . For SC systems with low R 
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values, 	is approximately equal to	 .   Conventional BEP systems exhibited values 

close to 1.0 except at large R values. 

There are limitations to the results of the current study. The CMS  and the 

corresponding ground motion set, was developed for only ten values of ; the 

limitations of having only ten  up to only 5.0s can be observed from Figure 13.   

With additional conditioning periods, especially at periods longer than 5.0s, a more 

complete relationships, between , , and  could be observed over a wider range of 

periods.  

Future work should further investigate the effects of  on displacement 

ductility. CMS should be constructed for a greater number  and corresponding 

ground motions sets should be compiled.   Other single-degree-of-freedom systems 

should be analyzed for additional values of R and β; as well as for the effects of post-

yielding stiffness α.  The additional results could be used to develop a relationship for 

estimating the most appropriate  for a given structure.   
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Appendix I Site Hazard Disaggregation 

 
Tn = 0.01 s 

 
Tn = 0.02 s 



44 

 
Tn = 0.03 s 

 
Tn = 0.04 s 
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Tn = 0.05 s 

 
Tn = 0.07 s 
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Tn = 0.10 s 

 
Tn = 0.15 s 
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Tn = 0.20 s 

 
Tn = 0.25 s 
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Tn = 0.30 s 

 
Tn = 0.40 s 
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Tn = 0.50 s 

 
Tn = 0.75 s 
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Tn = 1.00 s 

 
Tn = 1.50 s 
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Tn = 2.00 s 

 
Tn = 3.00 s 



52 

 
Tn = 4.00 s 

 
Tn = 5.00 s 
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Tn = 7.50 s 

 
Tn = 10.00 s 
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Appendix II    Ground Motion Sets 
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  Ground Motion Set 1: JW0F00500 =  0.500 sec 
  = 7.5889 = 3.0085  = 1.3870 
 RSN Filename   Component2  
1 1479 CHICHI/TCU034-E.at2 7.62 35.69 000 2.0747 
2 2114 DENALI/ps10047.at2 7.90 0.18 047 3.4356 
3 1282 CHICHI/HWA033-N.at2 7.62 49.31 090 3.9765 
4 848 LANDERS/CLW-TR.at2 7.28 19.74 090 1.7868 
5 1198 CHICHI/CHY029-N.at2 7.62 10.97 090 2.6612 
6 1258 CHICHI/HWA005-W.at2 7.62 43.17 180 3.8005 
7 986 NORTHR/0638-285.at2 6.69 12.92 285 3.0705 
8 1504 CHICHI/TCU067-E.at2 7.62 0.64 000 2.3380 
9 1487 CHICHI/TCU047-N.at2 7.62 35.00 090 2.5198 
10 1504 CHICHI/TCU067-N.at2 7.62 0.64 090 1.7838 
11 900 LANDERS/YER270.at2 7.28 23.62 270 3.6346 
12 322 COALINGA/H-CAK270.at2 6.36 23.78 270 3.1455 
13 825 CAPEMEND/CPM000.at2 7.01 8.20 000 1.2659 
14 313 CORINTH/COR--L.at2 6.60 10.27 000 3.0644 
15 1158 KOCAELI/DZC180.at2 7.51 13.60 180 3.0154 
16 1512 CHICHI/TCU078-E.at2 7.62 0.00 000 2.2682 
17 1493 CHICHI/TCU053-E.at2 7.62 5.97 000 2.9986 
18 316 WESTMORL/PTS225.at2 5.90 16.54 225 3.2959 
19 183 IMPVALL/H-E08140.at2 6.53 3.86 140 2.6044 
20 1508 CHICHI/TCU072-N.at2 7.62 7.03 090 1.9574 

 

                                                      
2 For programming and data processing components labeled with cardinal direction were relabeled using numerical 
values with East corresponding to 000°.   Where components are denoted by longitudinal or transverse, longitudinal was 
labeled as 000°. 
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  Ground Motion Set 2: JW0F00646  =  0.646 sec 
  = 7.6281 =  3.0247  = 1.3766 
 RSN Filename   Component2  
21 1087 NORTHR/TAR090.at2 6.69 0.37 090 0.8430 
22 778 LOMAP/HDA255.at2 6.93 24.52 255 2.1810 
23 1425 CHICHI/TAP032-E.at2 7.62 93.15 000 3.7134 
24 1198 CHICHI/CHY029-E.at2 7.62 10.97 000 2.5637 
25 1493 CHICHI/TCU053-E.at2 7.62 5.97 000 3.7175 
26 1158 KOCAELI/DZC270.at2 7.51 13.60 270 2.6800 
27 1487 CHICHI/TCU047-N.at2 7.62 35.00 090 2.2812 
28 1505 CHICHI/TCU068-E.at2 7.62 0.32 000 2.0394 
29 1491 CHICHI/TCU051-N.at2 7.62 7.66 090 3.4204 
30 1317 CHICHI/ILA013-W.at2 7.62 81.71 180 2.9553 
31 1524 CHICHI/TCU095-E.at2 7.62 45.15 000 2.8976 
32 1158 KOCAELI/DZC180.at2 7.51 13.60 180 2.5214 
33 170 IMPVALL/H-ECC092.at2 6.53 7.31 092 3.2285 
34 1187 CHICHI/CHY015-W.at2 7.62 38.14 180 2.7653 
35 1508 CHICHI/TCU072-E.at2 7.62 7.03 000 1.2597 
36 1085 NORTHR/SCE288.at2 6.69 5.19 281 2.6714 
37 1508 CHICHI/TCU072-N.at2 7.62 7.03 090 1.7510 
38 1194 CHICHI/CHY025-N.at2 7.62 19.09 090 3.9255 
39 949 NORTHR/ARL090.at2 6.69 3.30 090 2.5814 
40 777 LOMAP/HCH180.at2 6.93 27.33 180 2.5724 
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  Ground Motion Set 3: JW0F00834 =  0.834 sec 
  = 7. 6722 =  3. 6722  = 1. 3611 
 RSN Filename   Component2  
41 1246 CHICHI/CHY104-N.at2  7.62 18.04 090 2.5272 
42 1147 KOCAELI/ATS000.at2  7.51 68.09 000 2.6664 
43 1541 CHICHI/TCU116-N.at2  7.62 12.40 090 3.5703 
44 2114 DENALI/ps10047.at2  7.90 0.18 047 1.5667 
45 1513 CHICHI/TCU079-N.at2  7.62 10.97 090 1.9848 
46 1541 CHICHI/TCU116-E.at2  7.62 12.40 000 3.9397 
47 1509 CHICHI/TCU074-N.at2  7.62 13.46 090 2.0969 
48 1425 CHICHI/TAP032-E.at2  7.62 93.15 000 3.8514 
49 721 SUPERST/B-ICC000.at2  6.54 18.20 000 3.0670 
50 963 NORTHR/ORR360.at2  6.69 20.10 360 1.2853 
51 1317 CHICHI/ILA013-W.at2  7.62 81.71 180 3.3015 
52 180 IMPVALL/H-E05140.at2  6.53 1.76 140 2.5863 
53 729 SUPERST/B-IVW360.at2  6.54 23.85 360 3.2970 
54 1508 CHICHI/TCU072-E.at2  7.62 7.03 000 1.0687 
55 1602 DUZCE/BOL000.at2  7.14 12.02 000 1.9491 
56 1504 CHICHI/TCU067-E.at2  7.62 0.64 000 1.8089 
57 900 LANDERS/YER270.at2  7.28 23.62 270 3.7548 
58 1198 CHICHI/CHY029-E.at2  7.62 10.97 000 3.3062 
59 1549 CHICHI/TCU129-E.at2  7.62 1.84 000 2.1211 
60 1492 CHICHI/TCU052-N.at2  7.62 0.66 090 1.5280 
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  Ground Motion Set 4: JW0F01077 =  1.077  sec  
  = 7.7122 =  3.0729   = 1. 3402 
 RSN Filename   Component2  
61 1194 CHICHI/CHY025-E.at2  7.62 19.09 000 3.0808 
62 1489 CHICHI/TCU049-N.at2  7.62 3.78 090 3.8331 
63 1549 CHICHI/TCU129-E.at2  7.62 1.84 000 2.3346 
64 900 LANDERS/YER270.at2  7.28 23.62 270 3.0669 
65 1492 CHICHI/TCU052-N.at2  7.62 0.66 090 1.0895 
66 1193 CHICHI/CHY024-E.at2  7.62 9.64 000 3.6827 
67 1504 CHICHI/TCU067-E.at2  7.62 0.64 000 1.3706 
68 1515 CHICHI/TCU082-E.at2  7.62 5.18 000 3.6888 
69 1505 CHICHI/TCU068-E.at2  7.62 0.32 000 1.3178 
70 2114 DENALI/ps10047.at2  7.90 0.18 047 1.3946 
71 1419 CHICHI/TAP017-E.at2  7.62 97.69 000 3.2638 
72 1494 CHICHI/TCU054-N.at2  7.62 5.30 090 3.8080 
73 779 LOMAP/LGP090.at2  6.93 3.88 090 2.8509 
74 1508 CHICHI/TCU072-E.at2  7.62 7.03 000 1.7974 
75 1166 KOCAELI/IZN090.at2  7.51 30.74 090 3.3470 
76 723 SUPERST/B-PTS225.at2  6.54 0.95 225 1.3364 
77 776 LOMAP/HSP000.at2  6.93 27.67 000 1.4559 
78 1203 CHICHI/CHY036-E.at2  7.62 16.06 000 2.7584 
79 864 LANDERS/JOS000.at2  7.28 11.03 000 2.7693 
80 738 LOMAP/NAS180.at2 6.93 70.90 180 3.5528 
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  Ground Motion Set 5: JW0F01391 =  1.391 sec 
  =7. 7458 =  3. 0922   = 1. 3200 
 RSN Filename   Component2  
81 143 TABAS/TAB-TR.at2  7.35 1.79 090 2.7426 
82 1494 CHICHI/TCU054-N.at2  7.62 5.30 090 3.8660 
83 1045 NORTHR/WPI046.at2  6.69 2.11 046 1.3295 
84 1504 CHICHI/TCU067-E.at2  7.62 0.64 000 2.1487 
85 1492 CHICHI/TCU052-N.at2  7.62 0.66 090 0.9814 
86 1515 CHICHI/TCU082-N.at2  7.62 5.18 090 3.1935 
87 1500 CHICHI/TCU061-E.at2  7.62 17.19 000 3.7472 
88 1491 CHICHI/TCU051-E.at2  7.62 7.66 000 3.7949 
89 1505 CHICHI/TCU068-N.at2  7.62 0.32 090 1.2400 
90 170 IMPVALL/H-ECC092.at2  6.53 7.31 092 2.2377 
91 1411 CHICHI/TAP005-E.at2  7.62 105.45 000 3.5812 
92 1505 CHICHI/TCU068-E.at2  7.62 0.32 000 1.2896 
93 779 LOMAP/LGP090.at2  6.93 3.88 090 2.1722 
94 1166 KOCAELI/IZN090.at2  7.51 30.74 090 3.5019 
95 900 LANDERS/YER270.at2  7.28 23.62 270 2.0665 
96 171 IMPVALL/H-EMO270.at2  6.53 0.07 270 2.0443 
97 1147 KOCAELI/ATS090.at2  7.51 68.09 090 2.3253 
98 2114 DENALI/ps10047.at2  7.90 0.18 047 1.4312 
99 1231 CHICHI/CHY080-N.at2  7.62 0.11 090 1.1396 

100 1048 NORTHR/STC180.at2 6.69 12.09 180 1.5658 
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  Ground Motion Set 6: JW0F01797  =  1.797 sec 
  =7. 7735 = 3.1082   = 1.2970 
 RSN Filename   Component2  
101 1329 CHICHI/ILA037-N.at2  7.62 81.70 090 2.5903 
102 1509 CHICHI/TCU074-N.at2  7.62 13.46 090 2.6515 
103 1504 CHICHI/TCU067-E.at2  7.62 0.64 000 1.5173 
104 778 LOMAP/HDA165.at2  6.93 24.52 165 3.0341 
105 1508 CHICHI/TCU072-N.at2  7.62 7.03 090 2.7318 
106 1494 CHICHI/TCU054-N.at2  7.62 5.30 090 2.7783 
107 2507 CHICHI03/CHY101-E.at2  6.20 24.40 000 2.9057 
108 1551 CHICHI/TCU138-N.at2  7.62 9.79 090 2.3002 
109 1492 CHICHI/TCU052-N.at2  7.62 0.66 090 0.9376 
110 1546 CHICHI/TCU122-N.at2  7.62 9.35 090 3.9717 
111 1495 CHICHI/TCU055-E.at2  7.62 6.36 000 3.8223 
112 1529 CHICHI/TCU102-E.at2  7.62 1.51 000 1.5312 
113 2114 DENALI/ps10047.at2  7.90 0.18 047 1.3570 
114 1528 CHICHI/TCU101-E.at2  7.62 2.13 000 3.9278 
115 1505 CHICHI/TCU068-E.at2  7.62 0.32 000 1.3654 
116 1500 CHICHI/TCU061-N.at2  7.62 17.19 090 3.8292 
117 900 LANDERS/YER270.at2  7.28 23.62 270 3.3964 
118 1501 CHICHI/TCU063-N.at2  7.62 9.80 090 2.8290 
119 1505 CHICHI/TCU068-N.at2  7.62 0.32 090 1.1520 
120 1193 CHICHI/CHY024-N.at2  7.62 9.64 090 2.9059 
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  Ground Motion Set 7: JW0F02321  =  2.321 sec 
  =7. 7907 =  3.1177   = 1.2779 
 RSN Filename   Component2  
121 1111 KOBE/NIS000.at2  6.90 7.08 000 3.4387 
122 1500 CHICHI/TCU061-E.at2  7.62 17.19 000 3.9649 
123 1114 KOBE/PRI090.at2  6.90 3.31 090 3.3798 
124 1508 CHICHI/TCU072-N.at2  7.62 7.03 090 3.3420 
125 2114 DENALI/ps10047.at2  7.90 0.18 047 1.1242 
126 1492 CHICHI/TCU052-N.at2  7.62 0.66 090 1.0454 
127 1501 CHICHI/TCU063-N.at2  7.62 9.80 090 1.9829 
128 1505 CHICHI/TCU068-E.at2  7.62 0.32 000 0.9409 
129 3548 LOMAP/LEX090.at2  6.93 3.22 090 2.3016 
130 1491 CHICHI/TCU051-N.at2  7.62 7.66 090 3.2146 
131 1542 CHICHI/TCU117-N.at2  7.62 25.44 090 2.5212 
132 2114 DENALI/ps10317.at2  7.90 0.18 317 2.4085 
133 1490 CHICHI/TCU050-N.at2  7.62 9.51 090 3.1880 
134 1529 CHICHI/TCU102-E.at2  7.62 1.51 000 1.5693 
135 806 LOMAP/SVL360.at2  6.93 23.92 360 3.0614 
136 1526 CHICHI/TCU098-N.at2  7.62 47.67 090 3.9737 
137 721 SUPERST/B-ICC090.at2  6.54 18.20 090 2.6281 
138 1495 CHICHI/TCU055-N.at2  7.62 6.36 090 2.9877 
139 1505 CHICHI/TCU068-N.at2  7.62 0.32 090 1.8615 
140 1533 CHICHI/TCU106-N.at2  7.62 14.99 090 2.4366 
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  Ground Motion Set 8: JW0F02997  =  2.997 sec  
  = 7.8038 = 3.1245  = 1.2607 
 RSN Filename   Component2  
141 1508 CHICHI/TCU072-N.at2  7.62 7.03 090 3.9330 
142 1492 CHICHI/TCU052-N.at2  7.62 0.66 090 1.4488 
143 721 SUPERST/B-ICC090.at2  6.54 18.20 090 3.8058 
144 1629 STELIAS/059v2279.at2  7.54 80.00 279 3.0397 
145 1505 CHICHI/TCU068-E.at2  7.62 0.32 000 0.9909 
146 1494 CHICHI/TCU054-N.at2  7.62 5.30 090 3.4900 
147 1501 CHICHI/TCU063-N.at2  7.62 9.80 090 1.8577 
148 1550 CHICHI/TCU136-W.at2  7.62 8.29 180 3.3640 
149 1515 CHICHI/TCU082-N.at2  7.62 5.18 090 2.9968 
150 1482 CHICHI/TCU039-E.at2  7.62 19.90 000 2.8058 
151 1488 CHICHI/TCU048-E.at2  7.62 13.55 000 3.6268 
152 1533 CHICHI/TCU106-N.at2  7.62 14.99 090 2.3187 
153 1510 CHICHI/TCU075-E.at2  7.62 0.91 000 1.6879 
154 778 LOMAP/HDA165.at2  6.93 24.52 165 3.8963 
155 1528 CHICHI/TCU101-E.at2  7.62 2.13 000 3.7646 
156 1180 CHICHI/CHY002-W.at2  7.62 24.98 180 2.8093 
157 803 LOMAP/WVC000.at2  6.93 8.48 000 3.7577 
158 1045 NORTHR/WPI046.at2  6.69 2.11 046 1.4428 
159 1477 CHICHI/TCU031-E.at2  7.62 30.18 000 3.4175 
160 1262 CHICHI/HWA011-N.at2  7.62 49.29 090 3.7837 
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  Ground Motion Set 9: JW0F03871  =  3.871 sec  
  = 7.8113 =  3.1280  = 1.2543 
 RSN Filename   Component2  
161 1120 KOBE/TAK000.at2  6.90 1.46 000 2.0950 
162 1505 CHICHI/TCU068-N.at2  7.62 0.32 090 1.5474 
163 1482 CHICHI/TCU039-E.at2  7.62 19.90 000 2.8889 
164 806 LOMAP/SVL360.at2  6.93 23.92 360 3.0750 
165 1519 CHICHI/TCU087-E.at2  7.62 7.00 000 3.6200 
166 1527 CHICHI/TCU100-E.at2  7.62 11.39 000 3.4843 
167 1528 CHICHI/TCU101-E.at2  7.62 2.13 000 2.7547 
168 1548 CHICHI/TCU128-E.at2  7.62 13.15 000 2.2793 
169 1605 DUZCE/DZC180.at2  7.14 6.58 180 2.1173 
170 1538 CHICHI/TCU112-E.at2  7.62 27.50 000 1.9631 
171 2114 DENALI/ps10047.at2  7.90 0.18 047 1.7478 
172 1492 CHICHI/TCU052-E.at2  7.62 0.66 000 1.2292 
173 1517 CHICHI/TCU084-N.at2  7.62 11.24 090 3.6797 
174 1502 CHICHI/TCU064-E.at2  7.62 16.62 000 2.7843 
175 879 LANDERS/LCN260.at2  7.28 2.19 260 1.2656 
176 1505 CHICHI/TCU068-E.at2  7.62 0.32 000 0.9314 
177 1495 CHICHI/TCU055-N.at2  7.62 6.36 090 2.2470 
178 1310 CHICHI/ILA004-W.at2  7.62 86.61 180 3.4162 
179 1482 CHICHI/TCU039-N.at2  7.62 19.90 090 2.3553 
180 1515 CHICHI/TCU082-N.at2  7.62 5.18 090 2.4194 
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  Ground Motion Set 10: JW0F05000 =  5.000 sec 
  = 7.8079 = 3.1400  = 1.2553 
 RSN Filename   Component2  
181 1492 CHICHI/TCU052-N.at2  7.62 0.66 090 2.1065 
182 1553 CHICHI/TCU141-W.at2  7.62 24.21 180 1.5525 
183 1479 CHICHI/TCU034-E.at2  7.62 35.69 000 3.0362 
184 1527 CHICHI/TCU100-E.at2  7.62 11.39 000 3.7775 
185 1505 CHICHI/TCU068-N.at2  7.62 0.32 090 1.0126 
186 1505 CHICHI/TCU068-E.at2  7.62 0.32 000 0.9572 
187 1494 CHICHI/TCU054-N.at2  7.62 5.30 090 3.8145 
188 1538 CHICHI/TCU112-N.at2  7.62 27.50 090 3.9127 
189 1550 CHICHI/TCU136-N.at2  7.62 8.29 090 2.9015 
190 1492 CHICHI/TCU052-E.at2  7.62 0.66 000 0.9059 
191 1548 CHICHI/TCU128-E.at2  7.62 13.15 000 2.1695 
192 1554 CHICHI/TCU145-W.at2  7.62 35.34 180 3.2410 
193 1484 CHICHI/TCU042-E.at2  7.62 26.32 000 3.7491 
194 1491 CHICHI/TCU051-E.at2  7.62 7.66 000 3.9391 
195 1488 CHICHI/TCU048-E.at2  7.62 13.55 000 3.2935 
196 143 TABAS/TAB-TR.at2  7.35 1.79 090 0.9185 
197 1491 CHICHI/TCU051-N.at2  7.62 7.66 090 3.1173 
198 779 LOMAP/LGP000.at2  6.93 3.88 000 1.7245 
199 1233 CHICHI/CHY082-N.at2  7.62 36.11 090 3.5621 
200 2114 DENALI/ps10047.at2 7.90 0.18 047 2.1499 
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Appendix III Analysis Results 

Median Ductility Demand 
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